
rD-R137 335 OPERATIONAL 5OFTUf1RE TECHNOLOGY WORKING GROUP REPORT i/
(IDR/OSD R&M (INSTIT..(U) INSTITUTE FOR DEFENSE
ANALYSES ALEXANDRIA VA SCIENCE AiND TECH. L E DRUFFEL

UCSSIFIED AUG 83 IDR-D-38 IDA/HO 83 25988 F/G 9/2 NEEEE..EEE80 110100hi
Enhh*E111*...EE

mE~hh.~m~hIN*uuuuuuuuu11M

lit1.0 In" Q28 JA
,IJ0

- -

LL

t MICROCOPY RESOLUTION TEST CHART

f WM WEM OF STM4DARDS-i8-A

war

CORY 9 of 200 copil

IDA RECORD DOCUMENT D-38

OPERATIONAL SOFTWARE TECHNOLOGY
WORKING GROUP REPORT

I(IDA/OSD R&M STUDY)
£::3

Lt. Col. Lawrence E. Druffel, USAF
Working Group Chairman

August 1983

The vhws ezpmsM wibhi this documut ae tHse of the workingg"w a*. ftftlo f h dum= m ro In nd om-
mt by IDA, fst Rf,ur f sponidng aaues.

Prepared for
Office of the Under Secretary of Defense for Research and Engineering

and
Office of the Assistant Secretary of Defense , .
(Manpower, Reserve Affairs and Logistics)' .

FJON"10MVffTATMENT A1-

INSTITUTE FOR DEFENSE ANALYSES
SCIENCE AND TECHNOLOGY DIVISION

jg ILE 1%1P 84 01 27 02 3 MAUM Ne. NOh325U0

The work repwted In tis document was conductedl under contract
MCA 903 79 C 0018 for the Depatment al Wease. The publication
of tils IDA Record Document dms adt Indlicate endersomuet by thle
Department of Deflense, nor shoul tile cotnts be constue as
reflecting tile offiia Postion of that agency.

I Approve far pobli releae; distrlbutlen uaniited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Do Enter"

REPORT DOCUMENTATION PAGE D ED OMsTuc'no OR
BEFORE COMLPLETING FORM-.

1. REPORT NUMBER I.GOVT ACCESSION NO. J. RECIPIENT'S CATALOG NUMBER

4. TITLE (IW Subliiloi S. TypOF REPORT & PERIOD COVERED

Operational Software Technology July 1982 - August 1983Working Group ReportJuy18-Agst93
(IDA/SD RoM Study) 6. PERFORMING ORG. REPORT NUMBER

IDA Record Document D-38
7. AUTHOR(e) S. CONTRACT OR GRANT NUMIER(&)

LTC Lawrence E. Druffel, USAF
Working Group Chaimnan MDA 903 79 C 0018

s. PRFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Institute for Defense Analyses AREA WoRK UNIT NUNSERS

1801 N. Beauregard Street Task T-2-126
Alexandria, VA 22311 _._

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of the Assistant Secretary of Defense August 1983
(MRA&L), The Pentagon I,. MUMMER OF PAGES
Waqhx ngt-mn. D.C. 20301 51. %

I. MONITORING AGENCY NAME S ADORESS(I! different fro, ControllIng Office) IS. SECURITY CLASS. (of tIe report)

DoD-IDA Managemnt Office
1801 N. Beauregard Street UNCIASSIFIED
Alexandria, VA 22311 I1. DECLASSICATION/ DOWNGRADING

SCNEIuL-

I1L OISTRIBUTION STATEMENT (o tlis Report)

Approved for public release; distribution unlimited.

17. OISTRI*UTION STATEMENT (of the ebetrt entered In Block 20, It different aom Report)

Name

I&. SUPPLEMENTARY NOTES

N/A

IS. KEY WORDS (Ceonuv an r veree side If noeseaF aid IdmutfIy elek nsmber)

reliability, maintainability, readiness, operational software, Software
Tchnology for Adaptable and Reliable Systems (STARS), failure compensating
software, fault avoidance, fault tolerance

25. ABSRMACT (Cenine as mvssr ai of noeoew and Ide1et11 6P bllok usule)

This document records the activities and presents the findings of the
Operational Software Technology Working Group part of the IDA/OSD Reli-
ability and Maintainability Study conducted during the period fran July 1982
through August 1983.

- - S --*

m, :-',,1.3 ...-- ,..-,.UNCUSSIFIED
SRCUMITV ~ ~ ~ ~ ~ ~ ~ ~ ~~. CLSIIATO FTW$PC,,1n os fird

% %.
,'l • . . , :,'. .. ',r. . b • ,'.@ ,r..,.. % ... ,, .,

IDA RECORD DOCUMENT D-38

OPERATIONAL SOFTWARE TECHNOLOGY
WORKING GROUP REPORT

(IDA/OSD R&M STUDY)

Lt. Col. Lawrence E. Druffel, USAF
Working Group Chairman .5'-

Aecession For

August 1983 NTIS GRA&I
DTIC TAB
Unannounced (J
Justification

By
Distribution/
Availability Codes

Avail and/or

Dist Special

I DA
INSTITUTE FOR DEFENSE ANALYSES

SCIENCE AND TECHNOLOGY DIVISION
1801 N. Beauregard Street, Alexandria, Virginia 22311

Contract MDA 903 79 C 0018
Task T-2-126

RELIABILITY AND MAINTAINABILITY STUDY
- REPORT STRUCTURE -

10h RIPORT R-272

VOLDU I

SUEBVr 30 vourlas

ZDA moD& -272 dim
VLUU I

Ana:Lmcon GrupReor

cEPORT

Om
I

TDA VINUM R-27 eDA REPORT R-272

WIASS III VOLUME Iv

caeStu TeChW~1oqy Steering
AaalyslsGroup Report

16.f 71 i Teeb"mg W/o :epot. U1O1±ography

THIS DOCUMENT (IDA Record Document D-38)

.:

PREFACE

As a result of the 1981 Defense Science Board Summer Study

on Operational Readiness, Task Order T-2-126 was generated to

look at potential steps toward improving the Material Readiness

0. Posture of DoD (Short Title: R&M Study). This task order was

structured to address the improvement of R&M and readiness

through innovative program structuring and applications of new

and advancing technology. Volume I summarizes the total study

activity. Volume II integrates analysis relative to Volume III,

program structuring aspects, and Volume IV, new and advancing

technology aspects.

The objective of this study as defined by the task order

is:

"Identify and provide support for high payoff actions
which the DoD can take to improve the military system
design, development and support process so as to pro-
vide quantum improvement in R&M and readiness through
innovative uses of advancing technology and program
structure. "

The scope of this study as defined by the task order is:

TO (1) identify high-payoff areas where the DoD could
improve current system design, development program
structure and system support policies, with the objec-
tive of enhancing peacetime availability of major
weapons systems and the potential to make a rapid
transition to high wartime activity rates, to sustain
such rates and to do so with the most economical use
of scarce resources possible, (2) assess the impact of
advancing technology on the recommended approaches
and guidelines, and (3) evaluate the potential and
recommend strategies that might result in quantum in-
creases in R&M or readiness through innovative uses
of advancing technology.

P-1

.J~

The approach taken for the study was focused on producing

meaningful implementable recommendations substantiated by quan-

titative data with implementation plans and vehicles to be pro-

vided where practical. To accomplish this, emphasis was placed

upon the elucidation and integration of the expert knowledge

and experience of engineers, developers, managers, testers and

users involved with the complete acquisition cycle of weapons

*systems programs as well as upon supporting analysis. A search

was conducted through major industrial companies, a director

was selected and the following general plan was adopted.

General Study Plan

Vol. III * Select, analyze and review existing
successful program

Vol. IV * Analyze and review related new and
J. advanced technology

Vol. II (e Analyze and integrate review results
(e Develop, coordinate and refine new concepts

Vol. I o Present new concepts to DoD with implementa-
tion plan and recommendations for application.

The approach to implementing the plan was based on an

executive council core group for organization, analysis, inte-

gration and continuity; making extensive use of working groups,

heavy military and industry involvement and participation, and

coordination and refinement through joint industry/service

analysis and review. Overall study organization is shown in

Fig. P-1.

.. The basic technology study approach was to build a founda-

tion for analysis and to analyze areas of technology to surface:

technology available today which might be applied more broadly;

technology which requires demonstration to finalize and reduce

risk; and technology which requires action today to provide reli-

able and maintainable systems in the future. Program structur-

ing implications were also considered. Tools used to accomplish

P-2

46r-- u - . ' - ~ . * ~ ** * ~ . -.

4.4 ?%

DIRECTOR
EXECUTIVE "

JOHN R. RIVOIRE (IDA) COUNCIL~CORE
GROUP

DEPUTY DIRECTOR
PAUL F. GORES (IDA)

CASE STUDY DIRECTOR ANALYSIS DIRECTOR TECHNOLOGY DIRECTOR

PAUL GORES RICHARD GUNKEL DR. HYLAN B. LYON, JR.
(IDA) (CONSULTANT) (TEXAS INSTRUMENTS)

FIGURE P-1. Study Organization

this were existing documents, reports and study efforts such as
the Militarily Critical Technologies List. To accomplish the

technology studies, sixteen working groups were formed and the

organization shown in Fig. P-2 was established.

This document records the activities and findings of the

Technology Working Group for the specific technology as indi-

cated in Fig. P-2. The views expressed within this document .

are those of the working group only. Publication of this docu-

ient does not indicate endorsement by IDA, its staff, or its

sponsoring agencies.
Without the detailed efforts, energies, patience and

candidness of those intimately involved in the technologies

studied, this technology study effort would not have been

possible within the time and resources available.

.9

0M.3

-.
*0 .9

_'" J'' '..-.' -'..,'',- ,%,. ,- .,- .- .-. .;. ...-.- -.. ..- %-.,-2 - ,.--,. ...-. .-..- -. .. ,,.,-. . -o .. 0

h', ,,,., .1., .. ". "..",,...,. .- %.'. "..'. ,''4"'.''-'.-'..'.,',,',,'."," ?'.",.-..'.. "-'"3'-'-."" ".'." ." "" "'.''.'',''.'','

F%'" i'2.,Ii- .- . " """." ' " :"" ,"- .'. .""" ' . r... ,'.' ' .•.' '.-p;-.3
• • , - •- " ." . -," -" ,' -.-'. ". ". ". "- -" - ' .'..,-..' ".".. , .- "-" .- " ". € "."4 "" "" ". " ""-"." .-

4?. CHAIRMAN
H. LYON

TECHNOLOGY INDUSTRY GOVERNMENT ANALYSIS
R&M REPORT COORDINATOR COORDINATOR .COORDINATOR

COORDINATOR J. Giles K. LaSala Capt J. Lowell
F. Riddell _______ _______ CWO M. Waltz

VHSIC TESTING fELECTRONIC MECHANICAL SYS
So Maynard TECHNOLOGY PACKAGING & CONDITIONI G. Neumann INTERCONNECT MONITORING

j _ ___ __ D. Clark j P. Howard

MANPOWER,
SOPERATIONAL PERSONNEL POWER DIRECTED

SERx SOFTWARE & TRAINING SUPPLIES ENERGY
~,L. Druffel P. Watson D. Hornbeck B. Mayo

NW Hebenstreit _______ _______

ARTIFICIAL NONDESTRUCTIVE DIAGNOSTICS CAD/CAM
INTELLIGENCE EVALUATION M. Nunn J. Osborn

T. Coppola G. Mayer

CABLING & FIBER OPTICS STRUCTURAL INTEGRATED
CONNECTORS A. Glista COMPOSITES SYSTEMS OF
J. Bird F.Crossuan MANUFACTURE

____ ___ ___ __ ___ ____ _ _ ___ ___ ___J._Bosworth

FIGURE P-2. Technology Study Organization

121/23-1 P- 4

% V. % ~4*~'4.- .. :-:*~~ -KK

-44-.-- -.-v~~'%

*°
i

OPERATIONAL SOFTWARE TECHNOLOGY

STUDY REPORT

na

July 20, 1983

S.

VOLUME IV, PART N OF THE OSD/IDA SYSTEMS

RELIA5ILITY AND H4IITENMACE

STUDY

A

V-
4

Table of Contents

1. Introduction 1

1.1 The Growth in Prominence of Software 2
1.2 The Relation of Software to the U.S. Military Mission 4

2. Study Goal and Objectives 7

3. Scope 8

4. Issues 9

5. Approach 11

6. Results and Findings 14

6.1 Measuring Software Reliability and Maintainability 14

6.1.1 Software Reliability 16
6.1.2 Software Maintainability 18

6.2 Software Fault Avoidance 22

6.2.1 Software Testing 22
6.2.2 The Software Development Process 25

6.3 Software as a Means to Compensate for Component Failure 27

6.3.1 Fault Tolerant Systems 27
6.3.2 Software-intensive Systems 30
6.3.3 Human Engineering 31

6.4 Acquisition Considerations 32

7. Recommendations 34

References 39

3iii

, - . + . . -

1. INTRODUCTION

This report addresses the potential impact of software technology on

system reliability and maintainability (R&M) and on operational readiness.

A considerable amount of attention has been given to software during the past

year in preparation for the Software Technology for Adaptable and Reliable

Systems (STARS) program. Consequently, much of the material in this report

was adopted from the STARS program [3 , 4]. This is a natural choice

because the objectives of STARS largely overlap the objectives of this study

effort.

The Operational Software Technology study group was commissioned late in

comparison to the other groups studying aspects of system R&M. Only one and

one half months were originally scheduled for the study effort. This was

insufficient time to adequately study and analyze such an extensive subject

area. Consequently, what follows is not an unbiased study of the impact of

software on system R&M. Rather it is the collected opinion of people who have I

studied a broader range of software issues.

The role of software in system R&M and readiness can be viewed from

several perspectives. For example, software is a component of most modern

weapon systems and affects system reliability. Software also is a component

of many tools used for reliable construction of systems, e.g., CAD/CAM. This

study focused on several important views of software. Sections 2 through 5

define the bounds of the study. Section 6 presents the results and findings,

and section 7 the recommendations. The remainder of the introduction

summarizes the Importance of software in weapon systems. The introductory

material was adapted from [3 1.

1 4

.4.

.. ,.. .. '

1.1 The Growth in Prominence of Software

Computers are an integral part of DoD weapon systems. Virtually every

system in the current and planned inventory makes extensive use of computer

technology. Computers are integral to our strategic and tactical planning.
'."

They control the targeting and flight of missiles; they coordinate and control

the sophisticated systems within high performance aircraft; they are at the

heart of the defense of carrier battle groups; and they integrate the complex

activities of battlefield command. The military power of the United States,

as we know it today, is inextricably tied to the digital computer.

Over the past twenty-five years, the weapon system computer has evolved

from a role of minor importance to one of major importance. This trend has

been accelerated in recent years by the microelectronic revolution which has

been steadily improving the cost/performance ratio of digital computers. The

amazing improvement in weight and power requirements of computers has made it

possible to use computers in weapon systems in ways not envisioned five years

ago. The improvement has been so great that embedded computer systems are now. 4.

a primary means of introducing new capability and sophistication into our

weapon systems.

Software for these embedded computers consists of computer programs and

computer data, which are integral to weapon system operation, training, or

support. Typically, such software has real-time constraints, performing both

a component control function and an integration function for the system (such

as inter-component communication and control).

In early uses of embedded computer systems, the functional capability of

the weapon system was embodied largely in weapon system hardware (sensors,

control devices, etc.) with the computer performing ancillary functions. As

the digital system evolved to control not only the central function but also

the inter-system communications, the role of software shifted from an

incidental role to that of implementing the essential system functions. The

2

ROM. W1

hardware is now simply the means by which those functions are executed.

Today, it is necessary to understand the software in order to understand the

capabilities and workings of the weapon system.

Software is a high leverage component of the system. Even though

development costs for computer hardware have continually decreased, the cost

of hardware still dominates weapon system acquisition due to the recurring

costs of purchasing multiple components during the production phase. Thus,

although software has increased in function and complexity, and in its

importance to virtually every modern weapon system, it is not always managed

as rigorously as the hardware portion of the system. This lack of rigor can

result in cost and schedule overruns. More importantly, the software may have

subpar reliability and maintainability characteristics which will affect

adversely the operational effectiveness and life cycle costs of the entire

weapon system.

Because software is a critical path item and usually the last component to

be completed in weapon system development, less than fully effective

management of the software development effort can cause late system delivery.

While a late delivery itself affects readiness, total system readiness can be

impacted in other ways. For instance, system function to be provided by {
software might be dropped or deferred in an attempt to field a weapon system

on schedule.

It is necessary to understand the nature of embedded computer software to

understand the magnitude of the challenge faced by DoD. The software

controlling some DoD embedded computer applications is among the most complex

human-designed systems in the world. Embedded computer software exhibits

characteristics which differ markedly from other types of software. For

instance, business applications software generally uses numerical and

alphabetic input and generates files, printed reports, or displays. Embedded

computer software usually uses analog (converted to digital) and/or digital

input from a variety of sensors and sources, and generates digital control

output to complex weapon system components or status information for human use.

3%

.. -- ft- - -. 4777 W7 . *.

In comparison with typical business applications of computers, DoD

embedded computer software is often required to provide considerably more

complex functions. The complexity of these functions is compounded by factors

such as size, number and type of interactions, real-time response

requirements, and distributed systems issues. In addition, this software is

usually designed and developed in paralle.1 with hardware (target computer and

other subsystems). Further, to satisfy production schedules, hardware is

often frozen earlier and changing requirements are deferred to the software.

This results in a development activity of higher risk than typical business

applications. The critical nature of embedded computer software means that

reliable performance is of much higher priority than it is for business

applications. Failures in embedded computer software involve time and

dollars, but more significantly, they involve military weapon systems whose

failure can result in the loss of human life.

The management approach, design techniques, and development process for

DoD software have many similarities to those used for business systems, but

the complexity demands a rigor and scope far exceeding that required of

business systems. To characterize the size and complexity of embedded

computer software from another point of view, it is useful to consider its

cost. The software development costs for several weapon systems, including

training devices and automatic test equipment, has exceeded $100 million,

e.g., B-1B, 9-3A, AEGIS, and Safeguard. Such development projects require

hundreds of people applied over a period as long as five to ten years and

support periods two to four times that long. The magnitude of these efforts

ranks DoD embedded computer software among the most complex endeavors

undertaken anywhere.

1.2 The Relation of Software to the U.S. Military Mission

By exploiting the flexibility of software in development of its modern

weapon systems, DoD has elevated the importance of embedded computer

software. Potentially, a function embodied in software may be modified, to

4

improve a capability or to meet new threats, more quickly and less expensively

than the comparable function embodied in hardware. The Air Force F-ll

program illustrated this point. The following table compares similar

capabilities (additional offset aim pointer and updated weapon ballistics)

implemented through hardware on the F-ll A/E and in software on the F-ll

D/F. The savings in dollars and deployment lead time in the digital F-ll D/F

are striking. Given an existing software support facility, the savings due to

making the changes via software rather than hardware have ratios of about 50:1

in cost and 3:1 in time.

Cost/Time

Modification Via Hardware Via Software Ratios

11 $5.28M/42 Mo. tO.lOM/16 Mo. 52.8:1/2.6:1

#2 $1.05M/36 Mo. J0.02M/l0 Mo. 52.5:1/3.6:1

#3 t8.00M/78 Mo. $0.02M/15 Mo. 400:1/5.2:1

Another example of the advantages which can be derived from changing

software without a physical change to the hardware was the reprogramming of

the Minuteman III missile [11. By modifying the software, engineers were able

to improve the accuracy of the system without expensive hardware change. The

change was designed and implemented in all Minuteman III missiles for

approximtedly $4 million, a relatively low cost for the performance !

improvement.

In a sore recent example, it has been reported [2] that the Sea Wolf

missiles, which were just coming into service with the British fleet when the
,alkiands conflict began, had problems with their control and guidance systems

caused by the missile exhaust plume interfering with the television guidance

system. This problem was corrected by modifying the software while the ships

5

%•. - -, , .

. ~ ~~~~~~ ~~~~~~ " cor """ - -', ,"%' - '

carrying the missiles were at sea and in combat. The software change enabled

the missile to fly offset from the direct line of sight until near the

target. The Sea Wolf missiles are credited with downing six enemy aircraft

with additional aircraft crashing while taking evasive maneuvers.

The relative adaptability of software has made it an important factor in

modern weapon systems, however that same adaptability has put software in a

position to impact the military mission adversely if it is not managed

properly. This impact manifests itself as cost escalation, lengthened

deployment lead time, and operationally unreliable systems. There is evidence

that software is having this effect and that the problem is becoming more

severe with time.

Software is often the critical path item in weapon systems deployment

because many of the requirements and design changes that occur during

development are absorbed by the software. It is also the integrating element

of the system. This again is a consequence of the adaptability of software.

Therefore, the efficiency of the software development process and the

mechanisms to react to change are directly related to the deployment lead

time. If the years It takes to develop a software system can be reduced to

months, and if the months it takes to implement major revisions can be reduced

to weeks or even days or hours, the U.S. will significantly increase its

ability to react to new threats or to pose unanswered threats to our

adversaries.

The operational effectiveness of today's weapon systems are of critical

concern. The degree to which the embedded systems help meet the operational

need and perform reliably is directly related to the quality of the software.

Recent experience where systems have not met the need, or have been faulty due

to software, underline the importance of learning how to better develop

complex software. This is especially true where software relates to the

control and delivery of nuclear weapons.

6

- ,-.
umtmS I "

2. STUDY GOAL AND OBJECTIVES

The goal of this study is to determine how a quantum improvement in system

R&M and in system readiness can be achieved, or partially achieved, through

advances in software technology. When viewing software as a system functional "

component, maintainability and operational readiness are dependent on the

adaptability of the software. The speed with which we can react to new threats

or repair software faults is directly tied to the adaptability of the software.

The following objectives support the goal of the study:

a. Identify and analyze the ways that software can impact system R&M and

readiness.

b. Survey the state-of-the-art in software technology relevant to system

t&M and readiness.

c. Identify the points in the acquisition process where software

considerations become important in regard to system R&M.

d. Make recommendations for the exploitation by DoD of software technology

as a means to improve system R&M and readiness.

7 5

A r 0--

..

0A.* X S

~- ~ t .. * .

3. SCOPE

There are several perspectives of software regarding its potential impact

on system R&M and readiness. These perspectives can be summarized into three

categories.

a. Software as an operational component of the system - this category

includes mission critical software (software that performs an important

system function). As one of several system components, this category

of software directly affects the reliability of the system.

b. Failure-compensating software - this category includes operational

software that anticipates and/or compensates for the failures of system

components thereby preventing system failure.

c. Software supporting the development or maintenance of reliable

components - this category of software includes software as part of

tools that aid the reliable development or maintenance of systems.

Some of the software in category (c), such as CAD/CAM or ATE, are

addressed directly or indirectly by other study groups and, therefore, are not

addressed in this study. The scope of this study is limited to category (a)

and (b) software and that part of category (c) supporting the development or

maintenance of category (a) and (b) software. This type of category (c)

software is referred to collectively as "support software."

I
C.

*l

.5.

•";.,. .. . , ... , .. ., -. .-8,

MW -W' -W 7 ~ 7 7

4. ISSUES

One of the primary issues facing the study group is the meaning of

software reliability. The definition of hardware system reliability is

reasonably stated. Probabilistic techniques exist for estimating system

reliability based on the reliability of its hardware components. A hardware

component fails when it wears out and, therefore, the probability of failure

can be estimated from history and/or design data. Software failures are not

due to "wear and tear". Software failures occur because of undetected

faults. A failure occurs when a logic path on which a fault resides, is

executed with a certain set of data values. For large operational software

systems there are many undetected faults. In some cases, the system operates

for years before the proper set of circumstances occur to cause a failure due

to a latent fault. In order for the software component "reliability" to be

factored into a system reliability estimate, a meaningful definition of

software reliability must be developed.

The definition of software maintainability also is complicated by the lack

of a clear analogy to hardware component maintainability. Mean time to repair

(MTTR) is a standard measure of hardware component maintainability. MTTR is

the mean time to repair or replace a worn or broken part. Since software

doesn't wear out or break, two possible interpretations might be given to

"repair". One is to use the measure to indicate the average time required to

restore the software to operation after a failure. This interpretation

assumes no correction of the underlying problem that caused the failure. This

situation may occur many times in an operational system before the error is

properly characterized. Indeed, some systems are operated for years with

failure-causing software faults. The other interpretation is to measure the

average time required to find and fix software faults that cause failures.

The fix can range from a single instruction change to a major redesign and

reimplementation of a software component.

X

% %% sN N *.'*s*.3

.

In order to evaluate quantitatively the impact of an operational software

component on system R&M, definitions of software reliability and

maintainability metrics must be provided which can be mathematically combined

with corresponding metrics for hardware components to estimate overall system

reliability and maintainability. Section 6 of this report points out that no

practical definitions for software R&M exist today. Despite this, the report

discusses various opportunities for qualitative improvements in software R&M.

10

5. APPROACH

The study group on operational software was initiated after the other

study groups were well underway. Only one and one-half months were provided

under the original schedule to perform the study. This was not sufficient

time to initiate and conduct an adequate study of a subject area of this

breadth. Therefore, the following strategy was adopted: a,

a. Since the Software Technology for Adaptable and Reliable Systems

(STARS) program addresses reliability of software as one of its major

objectives, the study and planning material developed under STARS was used as

the primary source of information regarding software as an operational

component of systems.

b. In the area of failure avoidance software, a quick survey of the

literature and the commercial marketplace was conducted to identify the bounds

of the state-of-the-art, and to identify current examples of the application

of this technology in government and industry.

c. The study report material was assembled by a small group. Lt. Col.

Larry Druffel was the study group leader. He is the former director of the

Ada Joint Program Office and of the STARS program. Technical support was

provided by Messrs. Andrew Ferrentino, Barry Perricone and John Sapp of

Software Architecture and Engineering, Inc. (Software A&E).

d. Very experienced software professionals from the Services and industry

were used to review and critique the material, drawing from their own

experience in software reliability. Although most of the comments provided

are reflected in the report, time did not allow for complete resolution of all

issues raised by the reviewers. This report cannot be viewed as representing

a consensus of the reviewers. The review team included:

I.

* ., . . 4%"5"%-

Joseph Cavano Software Engineering Section

Rome Air Development Center

Griffiss AFB, New York 13441

Richard De~illo School of Information and

Computer Science

Georgia Institute of Technology %

Atlanta, Georgia 30332

Owen McOmber Naval Embedded Computer Program Office

Headquarters, Navy Material Command

Washington, D.C. 20360

Samuel Redwine Information Systems Department

MITRE Corporation

1820 Dolley Madison Boulevard

McLean, Virginia 22102

William Riddle Software Design and Analysis

1670 Beak Mountain Drive

Boulder, Colorado 80303

Dennis Turner Comunications Software Support Division

CENTACS, DRSEL/TCS-SSD

Building 1210

Ft. Monmouth, New Jersey 07703

Robert Westbrook Tactical Software Engineering Division

Naval Weapons Center

China Lake, California 93555

12

I' NI \ ' ''. , %%" . " * • '. -. .

AIAA Software Systems Technical Committee:

Robert Jones Hughes Aircraft Company

Ground Systems Group

P.O. Box 3310, Bldg. 618(B218)

Fullerton, California 92634

Merlin Dorfman Lockheed Missile and Space Company

P.O. Box 504, MS62-22

Sunnyvale, California 94086

Herbert Hecht SOHAR Incorporated

1040 South LaJolla Avenue

Los Angeles, California 90035

Dennis Bunney Systems Development Corporation

2500 Colorado Avenue

Santa Monica, California 90406

Richard Van Tilburg Hughes Aircraft Company

Ground Systems Group

P.O. Box 3310, Bldg. 618(B218)

Fullerton, California 92634

Frank NcGarry NASA Goddad Spaceflight Center

Code 582.1

Greenbelt, Maryland 20770

13

*

il !'J !! It

- V*-

6. RESULTS AND FINDINGS

The study addressed three categories of software relating to system R&M

and readiness: software as an operational component of a system, support

software, and software that compensates for system component failures.

Software as an operational system component is addressed first in Section

6.1. The difficulties faced in attempting to measure software R&M are

discussed. At this time, an effective technique for measuring software

reliability or maintainability does not exist. This leads to a discussion of

fault avoidance in section 6.2. Support software is a key aspect of this

subject. Although a great improvement can be made in reducing the fault

content of software, complete elimination of faults is not yet feasible.

Fault tolerant techniques can compensate for latent faults in software. These

techniques are summarized in section 6.3. Finally, fault avoidance and fault

compensation considerations in regard to the system acquisition cycle are

discussed in section 6.4.

6.1 Measuring Software Reliability and Maintainability

To quantify the impact of software component reliability on system

reliability, a metric for software reliability must be defined which can be

combined with a corresponding metric for hardware components. A common

measure of hardware reliability is mean time between failures (MTBF). The

causes of hardware failures can be grouped into three categories. The first

category includes failures due to environment anomalies, e.g., a loss of the

power supply. The second category includes faults introduced in the design or

production process. The third category includes failures resulting from

operational stress over time, i.e. a part wears out or breaks. For

operationally mature hardware, the third category is most prominent in

computing MTBF. In this case, the MTBF is determined by the physical

attributfs of the hardware and can be estimated reasonably well.

14

: w , _' Y$. " *. * . ?. ., --. - ' , • ,-. , .,- I

j7 ., -

Software is quite different from hardware. Software does not wear out,

therefore it has no failures corresponding to the third hardware category.

The closest analogy would be a software failure due to an overload condition,

e.g. real-time processing of sensor inputs failing to keep pace with the rate

of sensor data input; however the failure involves no "worn or broken" parts.
Most software failures are caused by faults in the software introduced during .

software development or modification. There are models of software

reliability available today [10, 11], but none that are sufficiently mature

to be effective in predicting software reliability. Given the nature of
software failures, as discussed in section 6.1.1, it is possible that MTBF is
not a suitable measure of software reliability.

There are two ways of viewing software maintainability. One view is that

maintainability is a measure of the time required to restore a software system

to operational status after a failure. Time to restore is dependent on many

factors such as the degree of damage to files, if any, and the degree to which

recovery aids are built into the software. Many of these issues are addressed

under fault tolerance in section 6.3.1. The second view is that

maintainability is a measure of the time required to find and fix a fault in

the software that caused an operational failure. Although maintainability

viewed as time to restore the software to operational status is a more useful

measure for the purpose of computation of system availability, the view of

maintainability as time to repair was the primary focus of the study effort,

because this view results in the upgrade of the system to full operational

capability.

The issue of software maintainability is more tractable than software

reliability iu the sense that well-engineered software may attain an

operational equilibrium where fault fixes have a predictable lead time on the H
average. But as with reliability, software maintainability differs

significantly from hardware maintainability. With a hardware failure, the

failing part is patched or replaced. It may eventually fail again. When

software fails and is fixed, it is unlikely it will fail in the same way a

i

15

%-. .-.

". 'r ' , ?'.. . ,' , .- '..'. '-%. -.".'."..,.-,%

second time (assuming good engineering practices). Also, it is often possible

to work around software faults once the conditions that lead to execution of

the faulty code are known, in which case the fault may be left in the software.

The basic hardware measure of maintainability is mean time to repair

(MTTR). For repair of software, this measure is driven by the adaptability of

the software. If the software is designed for change, the MTTR may be smaller

than if it is not or if the design has degraded in integrity through many

years of modification. The factors that affect adaptability are discussed in

section 6.1.2

6.1.1 Software Reliability

In discussing software reliability it is useful to make a distinction

between faults, errors, and failures. A failure is the occurrence of a

deviation of the external behavior of the software from that defined in the

software apecification. An error, or more specifically an erroneous state, is

an internal software state which could lead to a failure under continuing

operation. A fault is the cause of an error. Faults can result from

environmental conditions, e.g. a bit "dropped" by the hardware. A software

fault is incorrectly implemented code that, when executed with certain data

values, causes an erroneous state. For example, an incorrectly coded

algorithm is a fault. The execution of the faulty code that computes che

algorithm and stores the result creates an erroneous state (i.e. the stored

result of the computation). A failure may occur when the erroneous

computational result is used to generate an external system event, such as the

firing of a weapon.

The reliability of an operational software component is characterized by

the number of uncorrected faults in the operational code, the probability that

a fault will be encountered under the expected use patterns of the system, and

the severity of the error resulting from the execution of the faulty code.

16

.P'NW !

Quantitative prediction of any one of these factors in a software component is

very difficult. Of the three factors, the probability of encountering a fault

during execution and its severity is the more important issue in regard to

reliability. The number of uncorrected faults can be misleading. One severe

fault in a location where it is likely to be encountered may have more of an
impact on reliability than one hundred faults of lesser severity in seldom

used logic paths. Likewise, a fault which produces catastrophic results such

as the failure of an automatic landing system is of more concern than one

which produces a bothersome but benign situation such as an inappropriate

warning indicator.

The probability that a software failure will be encountered in the

operation of a system is dependent on the distribution of the faults in the

code and the use patterns of the system. If the software was tested according

to the expected use patterns, the system failures due to software faults will

likely occur only in a seldom encountered use pattern. In this event, the

decision might be made to leave the fault in the system rather than fix it if

the system users can work around the use pattern without significant

operational impact. The troublesome aspect of software faults in weapon

systems'is that many faults may go undetected until a critical mission which

imposes different use patterns than peacetime exercises of a weapon system.

Thus the rate of system failure due to software faults may increase at just

the time that high reliability is essential.

As pointed out earlier, not all faults encountered in the execution of a

software component result in system failure. A classification scheme for

software faults relative to failure would be very useful. Such a scheme might

include origin, means of discovery, location, means of correction,

criticality, type of computing or action involved, level of actual damage, and

frequency. Steps can be taken in the design of software to lessen the impact

of errors resulting from software faults or hardware faults. One such

technique is called exception handling (this is a subpart of fault tolerance

17
%

1WC76. '- TW T - -4 -s *- W.T 7.Z

to be addressed later). Software components in mission critical systems

should contain these mechanisms. Ada provides explicit language features for

exception handling which, if used properly, should lead to more reliable

software components.

Determining the number of faults remaining in a software component at any

point in time is a vexing problem. Several techniques are promising for the

statistical estimation of the number of remaining faults but many questions

remain to be answered. Fault seeding [13 J is one such approach but its

success depends on the type of faults that are seeded and where they are

placed in the software. A testing strategy which supports the fault seeding

strategy also is necessary. Despite our inability to accurately predict the

number of faults in a software component, there is some promising work

evolving in measuring the relative likelihood that faults are present in a

software component. One technique makes use of a software complexity measure

to make such a judgement [14].

In summary, the reliability of software is dependent on the number and

distribution of faults in the code, the operational use patterns of the

system, and the severity of an error caused by execution of faulty code.

Until practical methods of estimating latent faults in software can be found,

until a fault classification scheme can be developed, and until error

occurrence can be predicted, the definition and estimation of software

reliability will not be practical.

6.1.2 Software Maintainability

Software maintainability and the contribution of software to system

readiness are directly related to software adaptability. Adaptability is a

measure of the effort required to change the software. The ease with which

software can be changed is dependent on many factors. Four of the more

important factors are discussed below.

18

WV

a. Complexity - There is no widely accepted meaning of the concept of

software complexity [14, 15], but it is generally agreed that as the

number of components and the interrelations among those components grow,

the software becomes more difficult to understand. For large systems.'

(systems with many components), a way to reduce complexity (defined
as

difficulty in understanding) is by reducing interrelations. This may be

accomplished through decomposition of the system into separate components

or modules. Many systems today are designed this way but are still

complex because the modularity technique used allows more interrelations
*

than are necessary. These excessive interrelations make change an

error-prone process because the effect of the change extends, through

interrelations, beyond its Intended scope.

b. Levels of Implementation - Many software systems are implemented at but

one level, e.g. assembly language. There are higher level implementations

possible. These include high order languages(HOL), table-driven software,

and non-procedural languages, proceeding from lower to higher levels.
If

a change can be made in a system by changing a data table, potentially

this change will be made faster and more reliably than a corresponding

change made in assembly language code. If special tools exist to assist

the table modifications, the change will be even faster and more

reliable. Although many systems are implemented in an HOL today, few

systems make extensive use of table-driven software and even
fewer have

application-specific non-procedural languages built into the development

environment.

c. Traceability - The ability to change software easily is directly

related to the ability to trace a new requirement to the parts of
the

design and the code it impacts (and vice-versa). This traceability

depends on the degree to which the software is designed with traceability

In mind and the quality of the documentation. Systems that have poor

traceability characteristics are difficult to change.

19.

r

d. Formal Design Recording- The design of most operational software is

either not formally documented or is poorly documented. This results in

software modifications that are evaluated, planned, and implemented at the

detailed source code level. For complex real-time systems, this results

in a change process that is longer and more costly than it should be. It
f.%

also results in degradation of the design integrity and a corresponding 'ft

increase in software complexity. To make software adaptation an efficient
process, proper formal design documentation is needed. This documentation

should clearly reflect the modularity of the system. It should present

various levels of description detail. It should minimize the amount of

documentation to be searched and understood to modify the software

correctly. The design documentation should separate the underlying design

concept from the transformations applied to optimize run-time efficiency.

As an illustration of the impact of these characteristics consider the

following real-life situation that is not unusual for many software systems

today. A real-time software system of 150,000 source lines of code is written

entirely in assembly language. The design exhibits little modularity and

interrelations are numerous. There is little design documentation and

traceability is very difficult. In short, it exhibits none of the

characteristics listed above for adaptability. The consequence is that it f

requires 40 people to maintain that software and no major changes are made to

it because of the difficulty of making even simple changes reliably.

Few systems are developed with adaptability as a development requirement.

However, even for those software systems that are designed such that change is

possible with relative ease, the adaptability of these software systems

degrades with the number of changes applied. This phenomenon described by

Lebman and Belady [12] is akin to entropy in that the complexity of a system

tends to increase exponentially with time due to the continued modifications

required for operational software systems. Therefore, not only does a

software system have to be developed with adaptability as a goal, but

modifications made over its life cycle also must be aimed at retaining

adaptability characteristics in order to forestall the effects of "entropy".

20

* *.ft_,_ft (.. .. ",,~6 6 , , ,Mae ' ,...... , " .. .".'-,'""-. . ..

Maintainability is defined for the purpose of this report as the average

time required to find and fix software faults. The time can vary

significantly for a given software component depending on the characteristics

of the fault(s) causing the failure. Some faults are easy to find and may

require the correction of a single line of code. Other faults may be very

difficult to isolate and require major redesign and code development to fix.

The maintainability of a software component is dependent on many factors.

One factor is the adaptability of the software as discussed above. Another is

the tooling available to support find-and-fix activities. Today, software

maintenance is labor intensive in a marketplace where professional shortages

are severe. To reduce the impact of labor shortage and to decrease the MTTR,

tools must be introduced to aid debugging, data reduction and analysis, and

testing among other activities. This tooling should include capabilities

built into the operational software component for real-time operational

analysis and diagnosis (possibly at a remote site).

Testing is another factor in software maintainability. The testing

required to ensure that a software fix corrects the fault of concern without

Introducing new faults is called regression testing. A regression test

strategy determines what subset of the original test set for the system must '.0

be repeated because of a fix. A good strategy leads to the minimum subset

that demonstrates correctness thus minimizing the impact on time to repair.

The size of the test set does not correlate necessarily with the number of

modules modified. A small change to one module can have a ripple effect

through the software component, requiring testing of many modules, including

the one modified. Current design techniques can limit this ripple effect but

they are not yet widely used by software production groups.

In summary, software maintainability is a measure of the time required to

find and fix faults. This time is dependent on the design of the software,

Its adaptability, the tooling available to support the process, the regression

testing required and many other factors. For most software today, these

21 :1

V4

.NLZ.N

- ... - .

factors are not managed well, leading to a great variability in the time to

find and fix a fault. Therefore an MTTR computed for software may be

misleading, especially if used in a system context to compute system

availability.

6.2 Software Fault Avoidance

Given that latent software faults are the primary cause of operational

software component failures, the reliability of operational software can be

improved by reducing the run-time existence of such faults. Activities with

this aim are referred to here as fault avoidance approaches. One such

approach is fault identification through testing. Testing has proven to be a

valuable technique for fault identification. Many improvements can be made in

how software is tested today, however testing has limitations in regard to

fault avoidance. Testing is discussed in Section 6.2.1.

Another approach to fault avoidance is to make no errors in the design and

implementation of an operational software component during its development.

Under a strict interpretation, this is not feasible for large systems, but if

we interpret this to mean the identification and removal of development errors

soon after they occur (i.e. within days or weeks), then it becomes a very

practical objective. To realize the objective requires a high quality

development process with supporting techniques and tools. These

considerations are discussed in section 6.2.2.

6.2.1 Software Testing

Testing is the dynamic execution of a software component with known inputs

in a known environment to obtain the expected response. If an unexpected

response is obtained, the software is presumed to contain a fault. Therefore,

testing provides a mmans to identify the presence of faults.

22

--- - *l_ I.. V7. .-..77. 7: V A W% 7 W- - -F

.JJ

Historically, testing has been the primary means of fault identification

during software development. Although testing is a powerful aid to fault

reduction, it cannot be expected to produce fault-free software because the

combinations of possible inputs, logic paths, and asynchronous events are

astronomically large even for small embedded systems. Understanding this

limitation, with a well-conceived testing approach, software faults can be

reduced to an operationally acceptable level. Some of the important

attributes of a well-conceived testing approach are discussed below.

a. Specification - to test software properly, a basis of determining

expected software behavior must be available. The expected behavior

should be explicitly defined in a specification (e.g. requirements

specification or functional specification). The specification must be

complete and unambiguous to the degree that the important operational

behavior of the software component is explicitly defined.

b. Planning - developing test plans and procedures for a complex software

component can be a sizable effort. To develop adequate test plans and

procedures, early involvement in the development process is necessary.

Test planning must begin early, as called for by DoD Directive 5000.3,

and continue in parallel with software development.

c. Coverage - Since it is infeasible to exhaustively test a software

component, the objective of test planning is to define a minimal test

set, or coverage, that will provide an operationally acceptable level

of remaining software faults. There are several test strategies which

can support this objective. Functional, or black box, testing is the

development of tests using the functional specification as a guide.

Structural, or white box, testing uses knowledge of the software design

or implemented code to define the test coverage. For a complex

software component a combination of functional and structural

techniques is desirable.

23

.. .-

d. Levels and objectives - testing should be carried out at various levels

of development, i.e. unit, integration, and system level testing. At

each level, the objectives of the testing will differ. For example

unit testing may have as an objective to exercise every instruction

whereas integration testing may focus exclusively on unit interfaces.

The objectives of the various levels of testing in combination should

provide an adequate test coverage strategy.

e. Administration - administration of the test activity includes test

scheduling, results reporting, trouble report tracking, software change

control, and regression test planning among others. Effective

management of the testing activity is essential to testing. The most

difficult aspect of administration is the determination of how much

testing is enough. In many cases today this decision is made on the

basis of schedule and budget. Techniques for estimating the

reliability of the system based on test results would allow for more

rigorous judgement of how much is enough. Such techniques are-

available today [17] but they lack the rigorous assessment of software

reliabilty required for confident decision making.

f. Support Software - Effective testing of embedded computer software

components requires a range of support software (or tools). These

include unit test drivers, coverage analyzers, environment simulators,

and tools to support the administrative activities.

There are few software systems today that have been exposed to test

activities with the above characteristics. A great improvement can be made in

the reliability of software with the imposition of a rigorous test process.

DoD has recognized this and has initiated the Software Test and Evaluation

Project (STEP) [16). The goal of STEP is to develop enhanced policy guidance

for DoD components in reference to test and evaluation of embedded computer

software. STEP also intends to stimulate development of techniques and tools

to support software test and evaluation.

24

Zq

6.2.2 The Software Development Process

A comprehensive approach to fault avoidance must go beyond software

testing. The software development process must be oriented to the removal of

faults shortly after they are introduced - during requirements definition,

design, coding, and integration. Two useful techniques in this regard are

formal reviews and static analysis. Formal reviews of technical products by

technical peers in a well structured format has proven to be an effective

means of early fault removal. Static analyses are methods for identifying

faults by examination of the detailed design (expressed in a formal language)

or by examination of the source code. These techniques can be automated.

A development process that supports early removal of faults is

characterized by an integrated set of techniques and tools supporting all

aspects of the process. It generates requirements, design and code products

that are well structured for review and analysis. Most software today is not

developed in this way. There are many well-documented difficulties with

current software development approaches [3]. The DoD STARS program is geared

to addressing these problems.

6.2.2.1 Software Engineering Techniques and Support Software

There Is a significant gap between the state-of-the-art and the

state-of-the-practice in software development as evidenced by the software

engineering techniques and support software used in the DoD community

(government and industry) today. Modern techniques such as formal

requirements analysis, stepwise refinement, Information hiding, data

abstraction, structured programming, and static analysis are not used widely.

The support software that is used centers on code generation with little or no

automated support of requirements, design, or management activities. The

development process is labor-intensive.

25

Although the state-of-the-practice can be greatly improved with available

technology, there are two factors that resist this improvement. One is

investment. It takes a great deal of investment to introduce new techniques

and tools. The existing software must undergo costly re-engineering in order

for the new technology to be effective, and new computers and support software

may have to be procured. The second factor'is people. In order for the new

technology to be used effectively, the skills of the software professionals

have to be improved, and new methods must be learned.

DoD is taking an important first step by introducing a standard, modern 4%.

programming language, Ada, and an integrated support system called the Ada

Programming Support Environment (APSE). The APSE will be introduced in an .

evolutionary manner. The initial capability, called the Minimal APSE (MAPSE),

will support code generation. Tools to support requirements analysis, design,

verification, testing, and management will be added over time. Through

standardization of the interfaces, it will be easier to promulgate new

techniques and tools into software development environments. Both the

productivity of development groups and the reliability of the resultant

software will be improved. Ada provides features supportive of data

abstraction, information hiding, exception handling, and reuseable

components. All of these are important in developing more reliable and

adaptable software.

The APSE is the first major step in improving software engineering

environments in DoD. It will provide the means to manage effectively the

total information base associated with software development. Software,

descriptive data, and management data all will be maintained in the APSE

integrated data base. The APSE tools will use the integrated data base and

will be accessed through a common command language. The introduction of

integrated support environments that provide automated aid to all activities

of the development process will positively impact software reliability and

adaptability.

26

' ,' . - *.. • . .%', , o

-- %~ ~ ~ ..- .. -. - -. -' --r7-"W- N

6.2.2.2 Standard Components

Another means of increasing the reliability and adaptability of

operational software components is the use of tailorable, reuseable standard

components. These might include real-time operating systems, data base

management systems, message handlers, display formatters, and report

generators, among others. Today we tend to custom build these components with

each new weapon system even though the function is large]y the same. Thus,

each new incarnation goes through the same shakedown process as reliability

stabilizes. If tailorable, standard components were used instead, the

reliability of these components would be much better at the outset. At the

same time, productivity and adaptability would be improved.

6.3 Software as a Means to Compensate for Component Failure

Software can be used to improve the reliability of a system by

compensating for failures in system components. One approach, known as fault

tolerance, is to use software to compensate for failures during system

operation. Another approach is to redesign the system such that a

failure-prone hardware component is replaced by software or by a combination

of software and hardware. These two approaches are described in the following

sections.

6.3.1 Fault Tolerant Systems

Fault tolerance is an attribute of a system that allows it to continue

with its intended operational behavior after the occurrence of a fault. Fault

tolerance has three key aspects: detection, damage assessment and

containment, and recovery. These can be realized through a combination of

hardware and software.

I
27

.. ~ -7 b4. 'N o- C. o

Fault detection is the automatic identification of a system component

failure or erroneous state. Fault detection at various levels can be

implemented in hardware or software. Hardware techniques include error

detecting codes, disagreement detectors with majority voters, and built in

test equipment [5, 6, 7 1. Many of the hardware techniques such as

disgreement detection, can be implemented in software. Software also can be

used to monitor for certain conditions in an op-line mode.

Having detected that the system is in error, it is necessary to determine

how much of the state of the system has been corrupted before recovery

procedures are invoked. The assessment of damage is made based on knowledge

of system structure and the flow of information in the system, and/or the

outcome of additional error checking.

Once the extent or damage is estimated, steps may be taken to ensure that

no further damage is inflicted on the system state. This may require the

switching off-line of hardware components, the suspension of a software

component, or the cessation of operations against a data base.

Recovery activities to compensate for the fault are initiated after damage

containment is completed. Recovery techniques can be described in terms of

three classes:

a. Full recovery - the system is returned to a state that existed prior to

the fault. This usually requires redundant, reconfigurable hardware,

software, and/or logical file components, periodic saving of the system

state, and transaction logs to back out bad transactions from a file or to

recreate the state of the system at failure from a saved state.

b. Fail soft - sometimes called graceful degradation, the system is

returned to a fault-free state but without the service of all its

components. Many of the same attributes of full recovery systems, such as

redundant hardware and software components, are needed.

28

.4

c. Fail Safe - the remaining functioning components are not sufficient to

carry out minimal system activities and the system is safely shut down

without damaging stored information or the non-failed systems

components. Also, interactions with other systems are properly terminated.

The fault recovery activities can be implemented in hardware or software.

The advantage of software-implemented recovery is that fault tolerant systems

can be built with off-the-shelf hardware components. The disadvantage is that

the recovery software itself may be impaired by the fault.

When fault tolerant techniques are applied to a software component of the

system, the implementation is more complex than that of a hardware component

[18]. The primary reason for this is that redundant software components

cannot be implemented through duplication. If software fails due to a

software fault, it is likely that a copy of the software will fail also.

Therefore, a redundant software component must be designed and implemented as

a functionally equivalent but different version of the primary operational

component. There are two techniques for the use of redundant software

components - recovery blocks and inversion programming. Recovery blocks test

output assertions and invoke the operation of a redundant component when an

assertion evaluates as false. Inversion programming makes use of a majority

vote of the output of concurrently operating redundant software components.

Fault tolerant systems currently exist in government and industry [8,9].

The spread of fault tolerant systems has been modest because they can be

costly. The primary cost is due to redundant components required in many

fault tolerant architectures. With the rapid decline in the cost of digital

hardware, the cost effectiveness of fault tolerance as a means of increasing

system reliability is on the rise.

Some examples of fault tolerant systems include the FAA air traffic

control system, the Bell electronic switching systems (ESS), Apollo control

systems, and airline reservation systems. DoD is also a major user of fault

tolerant systems such as those employed in submarine fire control systems.

29

29 % %V .'o

-"7 7. .

Most tault tolerant systems use a combination of hardware and software for

detection, and software controlled recovery. The fundamentals of fault

tolerance are understood well enough that fault tolerance features are built

into many commercial computer hardware and systems software. So-called

non-stop systems are commercially available with many computer manufacturers

entering this marketplace. This emergence in the commercial marketplace is

due both to the solidification of an acceptable fault tolerant paradigm and to

the decreasing cost of hardware.

DoD can exploit fault tolerance as a means of increasing system

reliability. To do this DoD must capture the well-proven fault tolerant

design paradigms much as the commercial computer vendors are doing and factor

these designs into weapon systems. The decreasing cost trends in digital

components will make this feasible on an ever broader scale. DoD also should

consider the implications of fault tolerance in its computer standardization

efforts. For the future, research into better digital hardware to encompass

some of the necessary detection and recovery logic will enhance DoD's ability

to field.fault tolerant systems.

6.3.2 Software-intensive Systems

Another application of software as a means of compensating failures in

system components is to redesign the system, replacing the failure-prone

component with software or a combination of software and a more reliable

hardware alternative. This is illustrated best through an example.

Consider a system that relies on sensors for inputs and uses a computer to

process the sensor data. If one of the sensors is unreliable, it can have a

severe impact on the reliability of the system. A more reliable alternate

sensor might be available but exhibiting more noise content in its readings

than the unreliable sensor. An alternative design might be to use the noisier

sensor but with an increased sampling rate coupled with software filtering

30

* i . - ., - • -.

1%

techniques to obtain readings of comparable accuracy to the unreliable

sensor. This may require more processing power in the computer. Thus, in

this example, the combination of a noisier (but more reliable) sensor,

software filtering techniques, and more processing power might result in a

more reliable system.

The opportunity for system reliability improvement through design

alternatives that are more software-intensive is open-ended. Taking advantage

of the opportunities requires system designers who understand the potential

applications of the digital computer in weapon systems and who understand the

opportunity for systems reliability improvement through software.

6.3.3 Human Engineering

An often overlooked component of weapon systems or other mission critical

systems is the human "component". Many systems today are human-interactive.

Therefore, it is possible for these systems to fall due to human error.

Software plays a role in this type of system failure because it controls or is

a factor in the human interface of many systems.

A related problem is that of data base integrity. System failures can

occur due to incorrect data in a system data base. One source of erroneous

data is the system user. Unless systematic techniques for input validation

are implemented, system failure due to data base errors can be expected.

Human engineering relates to the effective design of system interfaces

with the human component. For software, this is an area which has had

insufficient focus. Much improvement can be made in the design of software

controlled human interfaces regarding the manner in which information is

presented to the human, the way information is entered by the human, and the

way the software reacts to human errors. Emerging techniques from the field

of artificial intelligence night be applied to make the interfaces more

natural to the human and more resilient in the presence of human error.

31

'S.~~ ~ MV(*.* *~~

~~~ % %-~~*



U' U'_. W. IM. P- ft. V. V....: - ~ ~ * .'. - - - - 7

6.4 Acquisition Considerations

Within the current state-of-the-art, the opportunities for system

reliability improvement through software are many. These opportunities can be

realized today if the proper actions are taken at the right places in the

acquisition cycle. The majority of the opportunities for reliability

improvement through software occur before DSARC III, namely in the

demonstration and validation phase and in the full-scale development phase.

The use of software intensive design and fault tolerance must be addressed in

the demonstration and validation phase. The reliability of software as a

component becomes critical in the latter part of this phase and during the

full-scale development phase.

During the demonstration and validation phase, the primary focus should be

on design issues as they relate to R&M. High risk reliability components

should be identified. Alternative designs using software in place of the high

risk reliability components then should be evaluated. If the projected system

reliability is not adequate, fauflt tolerant design alternatives can be

investigated.

Once a system design with adequate reliability is completed, the digital

subsystems portion of the design should be analyzed to ensure that no design

decisions have been made which will make development of reliable software

components difficult. An example of this would be the choice of a digital

computer with insufficient memory causing overcomplication of the software

component. Mechanism are needed in the acquisition process to ensure that

these design issues are properly addressed in the demonstration and validation

phase.

At the initiation of the full-scale development phase, there are several

items which should be included in the RiP for, and contract of, the

development agent. The RFP should be based on systems and software

32
* 1 .' ~ hq

U * ~ . *9t



-4

specifications that are well defined to the degree that the significant design

decisions of the previous phase are unambiguously defined. The contract

should include specific guidelines on software engineering techniques and

tools to be used in development. The procuring agent should have oversight

that the contractor is properly employing these techniques and tools. In -.,

addition, the RFP and contract should explicitly define requirements for
software reliability and adaptability, e.g., parameterization of constants.

Predictable mission changes and possible system changes to adopt emerging

technological innovations should be identified. Finally, the contract should

state requirements on the degree of software quality assurance and

verification to be performed. Acceptance criteria should be clearly and fully

defined.

Once the full-scale development contract(s) has been awarded, the

procuring agent must take an active role in review and approval of the

software product as It progresses through development. This can be

accomplished through PDR, CDR and QA audits. The acceptance criteria for the

system must be applied rigorously with proper emphasis on the adaptability 4.

requirements. 1Z.

3,



7. RECOMMENDATIONS

The Operational Software Technology study has identified several ways that

software can impact system R&M and readiness. Improvements in areas such as

testing, reliability prediction, software engineering techniques and tools,

and fault tolerance techniques can have a significant positive effect on

system R&H and readiness. The STARS program plan addresses these areas and

many more in a broad software context that includes R&M. Therefore, the

primary recommendation of this study effort is for DoD to use a fully funded

STARS program as the means to exploit software technology for the improvement

of system R&M and readiness.

The STARS Program has been established to improve mission-critical defense

software and to preserve the U.S. lead in this field. It will accomplish this

by addressing a wide range of software-related problems that have become

pervasive and serious throughout the defense community. Through a strong,

focused initiative that involves the defense components, industry, and the

software research community, the STARS Program will create the technology and

establish the practices that will facilitate quicker development and support

of software and improvement in its quality, adaptability, and reliability.

Areas to be attacked initially include acquisition and project management,

measurement, human resources, human engineering, systems technology, software

support systems, advanced applications, and technology transfer.

STARS will be managed by a jointly-staffed program office under the USDR&E

and supported by an executive committee reporting to the DUSD (R&AT), service

and defense agency program management offices, a joint review committee, and a

Software Engineering Institute. The Program, which was initiated in the

Spring of 1983, is funded at $222 million over the FY84-88 FYDP.

Each of the eight STARS technical areas addresses aspects of R&M as

discussed in this report. A short description of each technical area and its

R&M focus is given below.

34

.-. "%



a. Support Systems - Support Systems focuses on the preparation and

suppovt of demonstrably effective software development and in-service

support in DoD software-intensive systems. The term "environment" is

used in its technical sense to connote a "core" set of basic tools and

an integrated, extended set of support tools. The "core" (or the core

environment) is relatively invariant over time (i.e., it evolves

slowly), whereas evolution of the tools and toolsets is expected. The

term "support system" encompasses both environments and methods.

Activities which should be supported include the development of methods

and tools to support testing, to support the design of adaptable

software, to support the design of reuseable components, and to support

the maintenance activity. The techniques and tools recommendations of
STEP will be factored into the plan and should be supported. "mm

b. Systems - Systems is concerned with the target system environment but

includes some concern with its relationship to the support system

environment. A target system environment is the configuration of

systems software and hardware in which the applications software

operates. Improvements in the overall quality of defense systems

depends upon a corresponding increase in the quality of the underlying

systems software and hardware. This in turn requires that methods,

tools, and knowledge to make effective use of the advanced systems

technology be developed and placed in the support systems environment.

Some of the R&M concerns which should be supported in this area are Z,

fault tolerant computer architectures, standardizing system component

interfaces, definition of system development methods that foster high

reliability, and research into reliability prediction. Systems issues

relating to maintenance should be addressed also including

considerations of remote diagnostics, embedded support tools, the

logistics of fielding modifications and supporting documentation, and

communications connectivity of distributed support groups.

35



-- . . * - 5 . .. . . . . . . . o

c. Acquisition - The Specific goals and objectives of the Acquisition Task

Area are the improvement of all business and contract related policies

and practices, attainment of a higher degree of uniformity in the

application of acquisition policies and practices; and an improvement

of the tools associated with the acquisition of systems and software in

order to streamline, simplify and accelerate the acquisition process;

and to foster a more effective DoD contractor relationship. Major

emphasis is to be placed on computer software associated with "mission

critical" applications and embedded computer systems, and the

integration of this software with the surrounding hardware. A thorough

analysis of the acquisition process will be initiated and should

identify areas were software R&M concerns should be addressed as

suggested in section 6.4.

d. Measurement - Measurement is concerned with activities to develop

models and metrics, creating and maintaining software data collection

and analysis activities, supporting the use of the metrics and models

during the total life cycle, and providing customized measurement

support for the STARS program. Measurements which quantify software

reliability and maintainability should be researched. Data collection

activities should include reliability and maintainability.

e. Human Resources - The primary objective in the Human Resources task

area is to "increase the level of expertise" and "expand the base of

expertise" available to DoD. This is a direct attack by DoD and

industry on Improving human resources within the software field.

Broadly stated, the objectives would be satisfied by defining

software-related job knowledge, skills, and abilities; software-related

education and training. The target audience includes personnel in

software engineering and management. Activities will address the

personnel shortages that are affecting the software maintenance groups

in DoD. They also should address the need to teach software

professionals new techniques in design relating to fault avoidance,

fault tolerance and software adaptability.

36



{ h ,* ; =i - - -' - - --' ' '

f. Human Engineering - A primary objective in the Human Engineering Task

Area is to incorporate human engineering principles into the design of

all computer-based systems that interface with the human user. The

characteristics that define good human engineering - such as ease of

learning, flexibility and efficiency - cannot be added on at the end of

system development but must be an integral part of the design from the

beginning. There are a number of activities which must be performed

during each development phase (i.e. requirements analysis, system

specification, etc.) to insure this. What is needed is a methodology

that focuses on human factors issues at all stages of the system

development process. The design of human-friendly interfaces which

exhibit human-error-tolerance will be one of the objectives.

g. Project Management - The overall objective in this task area should be

to improve the practice of project management to contribute to the

goals of: shorter schedules, higher quality products, greater cost

effectiveness, better forecasting, and increased product knowledge

transfer. The objective would be accomplished by producing and making

available to project managers tools, methodologies, models, and

training programs designed to achieve the goals. Activities will

address techniques that foster management visibility into and control

of the technical decisions that impact R&M.

h. Application Specific - DoD applications will serve as conduits for the

transition of new technologies into 'target-of-opportunity" military

system programs. The products of the STARS program will be molded into

.DoD-specific applications. In particular, activities will address the

technologies of reuseable components, component composition systems,

very high level languages, application generators, and knowledge-based

systems, each of which can have a significant impact on software R&M.

37

[r*ps'.% , ~



The STARS program addresses many aspects of software. Reliability is

included in the planned activities but it is not addressed in an integrated

manner. The principal proposed means of integrating efforts is to focus on

development of a complete life cycle environment. Integrating tools into a

coherent environment requires a conceptual basis for the integration. Any

number of different conceptual or methodological bases for integration could

and should be investigated in the STARS program. The study group feels that

STARS should include the development of a reliability-based environment

encompassing the aspects of software reliability discussed in this report.

This effort will tend to focus technology development on reliability in a more

integrated manner. The lessons learned from experimentation with such an

environment can be factored into the more general environment to be created by

STARS.

\.,

38

.( % .. ,. * %. % .WA.~~~ SNA. , ~ ~ A



REFERENCES

1. Science, 22 Sept 78, "Technology Creep and the Arms Race: ICBM Problem

a Sleeper."

2. Aviation Week and Space Technology, 19 July 1983, "Air Defense Missiles

Limited Tactics of Argentine Aircraft."

3. Report of the DoD Joint Service Task Force on Software Problems,

Department of Defense, 30 July 1982.

4. Software Technology for Adaptable, Reliable Systems (STARS) Program

Management Plan, Department of Defense, 31 March 1983. .

5. Avizienis, Algerdas, "Fault-Tolerance: The Survival Attribute of

Digital Systems," Proceedings of the IEEE, Vol. 66, No. 10, October

1978.

6. Champine, George A. "What Makes a System Reliable?" Datamation,

September 1978.

7. Christian, Flavice "Exception Handling and Software Fault Tolerance",

IEEE Transaction on Computers, Vol. C-31, No. 6 June 1982.

8. Hopkins, Albert L., Smith, T. Basil, and Lala, Jaynarahan II. "FTMP - A

Highly Reliable Fault-Tolerant Multiprocessor for Aircraft" Proceeding

of the IEEE, Vol. 66, No. 10, October 1978.

9. Ossfeldt, Bengt 8. and Jonsson, Ingmar, "Recovery and Diagnostics in

the Central Control of the AXE Switching System" IEEE Transactions on

Computers, Vol. C-29, No. 6 June 1980.

10. Quantitative Software Models, Data and Analysis Center for Software,

RADC/ISISI, Griffis AF2, NY 13441, Report #SRR-1, March 1979.

39

, ~ ~ ~ ~ ~ P J , ,. .,



11. "Special Issue on Software Reliability," IEEE Transactions on

Reliability, Vol. R-28, No. 3 August 1979.
5..

12. Lehman, M. and Belady, L., "Programming System Dynamics", ACM SIGOPS

Third Symposium on Operating System Principles, October 1971.

13. Mills, H.D. "On the Statistical Validation of Computer Programs." 1970,

Software Productivity, Little, Brown Computer Systems Series, 1983.

14. Curtis B., et al. "Measuring the Psychological Complexity of Software

Maintenance Tasks with the Halstead and McCabe Metrics, "IEEE

Transactions on Software Engineering," March 1979.

15. Curtis, B. "In Search of Software Complexity," Workshop on

Quantitative Software Models, IEEE Catalog No. TH0067-9, October 1979.

16. Proceedings of the National Conference on Software Test and Evaluation,

National Security Industrial Association, Washington, DC, February 1983.

17. Koch, H.S. and Kubat, P., "Optimal Release Time of Computer Software,"

IEEE Transactions on Software Engineering, Vol. SE-9, No. 3, May 1983.

18. Anderson T. and Knight J.C. "A Framework for Software Fault Tolerance

In Real-Time Systems", IEEE Transactions on Software Engineering, Vol.

SE-9, No. 3, May 1983.

40

* .. ' _ ...



FI IE

84

ITI


