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The propagation and arrest of an edoe crack in an elastic

half-space under conditions of anti-plane shear:

Analytical and numerical results

by

Timothy C. O'Sullivan

California Institute of Technoloay

Summary

The motion of an edge crack extendinq non-uniformly in an elastic half-

'- space under conditions of anti-plane shear is analyzed. An expression for

the stress intensity factor at the crack tip is obtained, and an energy

balance crack propaqatlon criterion is used to find the equation of motion

of the tip. On solving this equation numerically, it is found that crack

arrest occurs before the second reflected wave from the boundary reaches

the tip.

In the second half of this investigation, a numerical procedure for

studying anti-plane shear crack propagation problems using finite differences

is developed. To approximate the elastodynamic field as accurately as pos-

sible near the moving crack tip, t,(here singular stresses occur, the local

asymptotic displacement field near the tip is incorporated into the finite

difference scheme. The numerical procedure is applied to the edoe crack

problem analyzed in the first part of this study, and the numerical and

exact results are compared.

The results communicated in this paper were obtained in the course of an
investigation supported in part by Contract N00014-75-C-0196 with the Office
of Naval Research in Washington, D.C.
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GENERAL INTRODUCTION

The analysis of rapid crack propagation and crack arrest in solid

bodies has recently been generating a considerable amount of interest.

Generally the failure of a structure through fracture is avoided by pre-

venting the onset of unstable crack growth. This can be done by ensuring

that the stresses do not exceed certain material-dependent limits imposed

by critical flaw sizes in the material. However excluding unstable crack

extension under a wide range of operating conditions can often be very

difficult and costly. A suitable second measure of safety would be to

ensure the timely arrest of a propagating crack and this is often a

practical necessity in important structures such as nuclear pressure

vessels, welded ships and pressurized pipelines. In cases like these,

unstable crack propagation without arrest could have very serious con-

sequences.

Dynamic crack propagation problems generally fall into two categories.

Firstly, for prescribed crack history, the elastodynamic field in the body

is to be determined. Alternatively, for an unstable crack in a body,

given all the necessary information concerning the geometry, the loads

and the material of which the body is composed, together with a crack

propagation criterion as well, one can attempt to determine the subsequent

motion of the crack. The latter case will concern us in this study.

Now the rapid motion of a crack in a body introduces inertia effects

in the form of stress waves radiating outward from the moving crack tip.

Hence in analyzing a dynamic fracture problem, the reflections and dif-

fractions of these stress waves by the material boundaries and by the
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crack itself must be taken into account. Because of the inherent mathe-

matical difficulty in the boundary-initial value problem due to the presence

of the propagating crack and the disturbances caused by these wave motions,

the theoretical analysis of such problems is exceedingly difficult and no

generally applicable solutions are available, except for some simple

regions. Section I includes a discussion of some of the analytical work

which has been done.

Consequently, in view of the considerable interest in dynamic frac-

ture problems, numerical treatments of these problems are of prime impor-

tance. It is essential that reliable numerical procedures be developed

which are relatively easy to use and are capable of accurately simulating

dynamic crack propagation. This is by no means an easy task in view of

the moving crack tip and the singularity in the stress and velocity fields

at the tip itself. Section 6 considers some of the numerical techniques

used in studying crack propagation problems.

The work contained in this investigation is restricted to infini-

tesimal deformations of homogeneous isotropic elastic bodies and to anti-

plane shear displacement fields. Although of less practical interest,

anti-plane shear is fundamentally simpler both analytically and numerically

than plane strain, having Just one non-vanishing displacement component

and one characteristic wave speed. Since certain basic features of both

plane and anti-plane crack propagation problems are similar, the anti-plane

shear problems do yield considerable insight into crack propagation in

general and may be used as a qualitative guide in analyzing the more dif-

ficult plane strain problems.

In Part I of this study, the motion of a propagating edge crack in

I

-, , r~~~~r?.,- ?,, ; -,, - -,~~~~~.-..........-.:.-..-. .-...... ........................ '. ... '........-. ....- ..- .- ...2-' " .. .
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an elastic half-space under conditions of anti-plane shear is analyzed.

An energy-balance propagation criterion is used at the crack tip to de-

termine the velocity of the tip and an expression for the stress intensity

factor at the moving crack tip is obtained.

A numerical procedure for analyzing anti-plane shear crack propaga-

tion problems using finite differences is developed in Part IL. The local

asymptotic displacement field near the moving crack tip is incorporated

into the finite difference scheme so that in the vicinity of the crack

tip, where singular stresses occur, the elastodynamic field is approximated

in the numerical process as accurately as possible. The numerical scheme

is applied to the edge crack problem studied in Part I and the numerical

and exact results are compared.

k (l _ ~~~~~.. . . .." . .' . . -. -. . -. ............ , -* . . ....................................... ... ..... ...-.--. ,
'/- , , . . , --,, - % .4 . . 4.. .'. . ... ,.,.. -. .'-........... - I 4.....-. '..'- ..
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I. THE ANALYTICAL SOLUTION OF THE EDGE CRACK PROBLEM

1. Introduction

The existing theoretical solutions to dynamic crack propagation problems

have limited applicability, since they rarely include the effects of

external boundaries. For non-uniform crack velocity, exact solutions of

dynamic crack propagation problems -valid for all time -have only been

found for simple configurations such as that of a semi-infinite crack in

an otherwise unbounded body. Generally, constant velocity crack problems

are more amenable to analysis and have been studied using a number of

techniques. However, to determine mathematically how a plane crack propa-

gates in a given situation, first the elastodynamic field near the

crack tip has to be found for the tip moving in an arbitrary fashion in

its plane and then a crack propagation criterion must be employed to

find the actual motion of the tip.

The linear elastodynamic field of a propagating crack, extending non-

uniformly under general anti-plane loading, was investigated by Kostrov

[1] and Eshelby [2], while Freund [3] and Kostrov [4] analyzed the plane

strain case. Kostrov's procedure in the anti-plane problem [1] has since

been used successfully by a number of authors and is employed here.

Kennedy and Achenbach [5] consider the extension of a crack which was

formed by cutting at a high velocity into the surface of an elastic solid

subjected to a uniform anti-plane loading. Dynamic crack growth generated

by an anti-plane shear wave incident on a crack tip was investigated by

Achenbach [6,7]. Molchanov and Nikitin [8], considering a finite crack

propagating in an unbounded body subjected to anti-plane shear, studied

the effect of the stress waves emitted from one of the moving crack tips

, ' ... , ,,., ,.. . .. .. , .. .. , * . . . .
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upon the motion of the other tip, just after the arrival of the first

such wave. Recently Melville [9] examined approximately the effect of

reflected stress waves on the stress intensity factor for an edge crack

in anti-plane shear during crack propagation and after crack arrest. In

simplifying the analysis, he assumed a constant crack tip velocity as

well as a simple form for the stress distribution ahead of the initial

crack tip.

!! O

=
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2. Basic equations; energy release rate I
Consider an elastic half-space containing a traction-free edge crack

of initial length to  along the x-axis (Fig. l(a)). The deformation is

assumed to be one of anti-plane shear and hence the only non-zero displace-

ment component, which is denoted by w, is in the z-direction out of the

plane of the paper in Fig. l(a). Initially the body is in a deformed

equilibrium state, with the crack tip held fixed at x=Z o . The initial

static displacement field of the body in this state satisfies the boundary

condition on x-O given by w=w o  for y 0 and w=-w °  for y < 0,

where wo  is assumed constant. This fixed boundary condition at x =0

is maintained for all time. At time t-0 the crack tip is released and

crack propagates along the x-axis, assuming wo  is sufficiently large.

The position of the crack tip is given by x =Z(t) at time t.

Since w-w(x,y,t), the stress tensor has only two non-zero components

given in terms of the displacement gradients by

Ozw -Uw, x  and azy -11w9y 9 (2.1)

i being the infinitesimal shear modulus of the material. The displacement

equations of motion for a homogeneous isotropic linear elastic body reduce

to the wave equation

W, +W'yy a I w~tt ,c 2 , (2.2)

where p is the mass density and c is the shear wave speed in the body.

The crack tip position i(t) is not specified a priori but is later de-

termined using an energy-balance reopagatir criterion. The only restric-

tion imposed on 1(t) is that the r-4ck tip velocity be less than the

shear wave speed i.e. 0 41(t) <c.

A. ... .-.. ........ .............. .-.. ...
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During crack propagation, the moving crack tip acts as an energy sink.

As new fracture surface is being formed, the loss of mechanical energy re-

sults from the release of the internal cohesive bonds between adjoining

particles in the material. The energy release rate G is defined as the

amount of energy being absorbed by the moving crack tip, per unit crack

tip velocity i(t) and per unit thickness of the crack. In general G

depends upon t, i(t) and the crack history L(r), Ort. The flux

of energy into the tip per unit time is

F=G , z= (t) (2.3)

From energy balance considerations, one has

F = d- -L(W+ , (2.4)dt(WK

where W and K are the strain and kinetic energies of the whole body

respectively, and P represents the rate at which work is being done by the

external forces on the body. Atkinson and Eshelby [10]showed

F lim f J,!w z[L( aw )2 w 2  n dS (2.5)
SO

where S is a closed contour surrounding the crack tip and moving with it,

and n= (n, n y) is the unit outward normal to S.

For a crack along the x axis with tip at xz-(t) , the dynamic

anti-plane shear stress intensity factor Kd= Kd(t) can be defined through

azy(x,O,t) = (27) "  Kd(t)(x- (t)) +O(x-i(t)) (2.6)

as x x(t) . Writing the asymptoticexpressions for the stress and dis-

. , •,,,o .,, , • . . . S . . . . . . . . .
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placement fields near the crack tip in terms of Kd , equation (2.5) with

(2.3) gives (see [2])

2

G Kd (2.7)2u(i._i2/c 2 )

G as given by (2.7) will be employed in formulating the crack propagation

criterion to be used for the determination of the crack history z(t)

-A
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3. Solution of the static problem

To investigate the crack tip motion, the initial static stress

field ahead of the crack is required. The configuration and boundary

conditions are shown in Fig. l(a). The crack faces are traction free,

so that

W y0 on y=0 , Ox< 0  (3.1)

Since the displacement w is now time-independent, (2.2) reduces to

Laplace's equation which must be solved in the right half-plane excluding

the crack and subject to the appropriate boundary conditions. It is also

required that w be bounded near the crack tip.

The mapping

S=arcsin(l -z2/A2) (3.2)

z=x+iy , = +in,(ivT

2 2 1,
on taking the branch cut for (1-z /0)' along the positive x axis,

transforms the configuration in Fig. 1(a) onto the semi-infinite strip

in Fig. l(b) with the boundary conditions as shown. It can now be

readily verified that the static displacement field wSt=wSt(x,y) is

2w 2w [22 .(.3
w -t = ReC 0 Re arcsin(l-z2/t 2 (3.3)

0p
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The stresses are found by differentiation to be given by

°St 2uzy st 22 2

- = 2--w- (l - z A (3.4)

Ahead of the crack tip, we have

wSt 2uwo  2 (

zy ay 0T 0

For an equilibrium crack along the x axis with tip at x=o

the static stress intensity factor Kst in anti-plane shear is defined

through

a st(x,O) = (2)'2K (x- )- +O(x - zo)2 (3.6)
zy St 0 0

as x+t o , and the static energy release rate Gst is given by (see[1l])

Gt 2 V,/2. (3.7)

Then using (3.5) for the edge crack under consideration, we have

2 pW

K st- =- 2 r (3.8)

and

2uw
2

Gst=fi 0 (3.9)

".""~ ~ ~ ~ ~ ~~~~~~~~~s f." 0 ,...."-"".."-".. .""-"" ' ' -"-., ,...-., "..,""""""""""""2
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4. Analysis of the dynamic problem

A. Formulation

The moving crack tip acts as a source of stress waves which propagate

outward from the tip behind the cylindrical wavefront (x-Z )2 +y2 =(ct 2.

Using s a ct in (2.2), where c is the shear wave speed, the dynamic

displacement field w(x,y,s) resulting from this disturbance satisfies

W,xx + Wyy = W' ss (4.1)

Let T(s) denote the position of the crack tip in terms of s at time t=s/c,

so that T(s) -(s/c). In T(s), wenowdrop the bar for convenience and from

here on, s will beusedasanormalizedtimevariable. The brundary conditions are

=W,y 0 on y= , 0:x zL(s) (4.2)

w= wo ; x-O , y>O
w -- 0• =0,y> (4.3)

-w 0; x=O , y<O

Initially at s =0 , the body is at rest i.e. w, s(x,y,O)- 0 and the

initial static displacement ww (xy) is given in (3.3).

Let w'(x,y,s) = w(x,y,s)- wSt(x,y) denote the change in displace-

ment from the initial static configuration. The boundary condition at

x=0 now becomes w'(O ,y,s) - 0. As a consequence of this fixed end con-

ditlon at x-O, the reflected stress waves must be equal in magnitude but

opposite in sign to the incident waves at this location. To incorporate

the effect of these reflected waves, we consider a center crack in an

infinite body with tips at x-±_(s) i.e. moving at the same rate but in
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opposite directions. Then the residual displacement w' must satisfy the

two-dimensional wave equation (4.1) in the full (x,y)- plane excluding the

crack, with zero initial conditions and the boundary conditions on the

crack surfaces are given by

S f.10, 0 S x< 0 (.lW (xO-+s) (4.4)
ay -P(x), Z 0 < X < Z( s )

U w" (xso±-,S) 09_ xr (4.5)
ayIP(-x), -~)<X<_

where, from equation (3.5), P(x) is given by

21'wo (x ? -1
P(x) uast(x O) - (x2- ;) )  x>Z (4.6)zy" IT '0

The solution satisfies w'(O,y,s) - 0 as required. Hence the half-plane

problem with the edge crack under consideration is equivalent to the

full-plane problem with a center crack as described above.

B. Green's Function method

Since the initial static displacement field W(x,y) is anti-symmetric

in y, w(x,y,s) and hence w'(x,y,s) is also anti-symmetric in y. In

what follows, only the half-plane ya0 is considered. Kostrov's method

of solution [1), employed here, uses the Green's Function G Which satisfies

the two-dimensional wave equation (4.1) in the half-plane y O, with zero

initial conditions and the boundary condition

MA A
.q

,K,.,? , .. . .. .. ., . .. -. . .-'. . -. j .- . . .- " .
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a zy(x O s) = i ' (x,O,s) = 6(x-Xo)d(s-s 0 ) , (4.7)

where -oo<xo < and O.so<S The displacement wave generated by this

impulsive load is (see (13])

G(X-xoYS- - - H((s-s )-(x-x ) 2+y ]2]2] (4.8)0 rR0 0

where H[ ) is the Heaviside step function and R is given by

R =(s -so)2 - (x -x) 2 _y2} (4.9)
00

This is a cylindrical wave emanating from the line x=x o , y=0 for

For general boundary conditions of the form

a zy(x,O,s):a(x,s) , (4.10)

linear superposition gives

w' x~~s - 1 I (XSo)

w (xys) dxodso (4.11)

A

where R is given in (4.9) and the region of integration A is the

parabolic region in the x0 -so  plane satisfying

s -s - (x-x 0 )2 +y2  o , s>s o O . (4.12)

On y= 0 , A reduces to a triangular region. Introducing the character-

istic coordinates

,. - , . - . . . ... , . .. * . .
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~(s -x)//2- and n=(s +x)/ 2
, (4.13)

the expression for R in (4.9), on setting y=O0, simplifies to

R=V0)"'(n - n)2 (4.14)

From (4. 11), the di spl acement w' (x,O, s) =W' (&, n) . on us ing (4.14), becomes

d& a( 0 gn )dr,

w"( 0- 0) 0 0 0 (4.15)

The (x,s) -diagram is shown in Fig. 2, along with the crack tip trajectories

and wavefronts. To determline the motion of the crack tip, the energy re-

lease rate and hence the stress intensity factor at the tip must be found.

C. The field before the arrival of the first reflected wave

The first reflected stress wave strikes the crack tip at s= s

where s r satisfies

L(sr )+o 1 0as (4.16)

From [2), or following the approach used in [12), the shear stress ahead

of the crack tip before the arrival of the first reflected stress wave is

a-(xs) = PJi4 I. (S) +O(x - (s)) (4.17)
1f~ w(- (O)) 0
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where
tCs)()I P(v)dv 

(4.18)O(s) - (t(s) -v)to

Evaluating r , where P(v)- Szt(v,O) is obtained from (3.5), gives0 zy

io 4uwo K(k) k = ((4.19)

0 7~t z0 ) 2 O

Here K(k) is the complete elliptic integral of the first kind. The stress

intensity factor then is

Kd(S)-(2/r)-'(sI(S)) 1 (s) Ors<sr (4.20)

and the energy release rate at the crack tip is

G(s) a (+1, Io(s)2 , Os<s r  (4.21)

D. The field after the arrival of the first reflected wave

After the first reflected stress wave strikes the moving crack tip at

the instant szsr given by (4.16), a diffracted wave is emitted. This

diffracted wave propagates outward behind a cylindrical wavefront with

the shear wave speed, hits the fixed boundary at x= 0 and is reflected.

It strikes the crack tip again at s=sd , where from Fig. 2, sd  satisfies

sd-t(sd) = s r + t(sr) . (4.22)

I % m ' r - w . m - * -
, 
. P V " , " " - - d • • - - • ' ' w " "

: L: ::.::: "'::: :' .':::;:% ::-. : 2::) . ? " . . ;,; :,-: ;: *i *,%, .:: - .i~::,- ..".' " . .'." . .:" "
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We now analyze the stress field in the crack plane near the tip for

Sr < s d •

In terms of g and n , the crack tip trajectory x=z(s) becomes

n -L(g) where L(C) satisfies

L(t)- = Z(L(E)+ E (4.23)

VT /T

Similarly x=-t(s) becomes n=L() where

'4.24)

The initial crack tip locations x= ±t are denoted by n = n+(& = &± V o

Consider the point with characteristic coordinates (E2' n2) shown

in Fig. 2, where for Era 0

Er<42<&d and n2>L( 2 )  . (4.25)

Here d= (sd- Z(sd))/, ' is the value of & when the diffracted wave meets

the right crack tip at s5 sd and x= Z(sd). The domain of dependence is be-

low the dotted l ines shown. Wedenoteby al(&,n) the shear stress azy at

the point (E,n) ahead of the right crack tip for - r<E<Er and similarly
let i (EA represent the shear stress azy ahead of the left crack tip

for -nr <n<nr . where nrt "0/v-. The change in displacement w'(& 2,n2)

ahead of the right crack tip is zero giving, from (4.15)

,S - - . - . .. , , . . ,. . . ,........
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2 L( ) r n2 (2 n2

f EL -D~ a( &9n dnd& r y ( & 2 nf R f R f R-E r n (O) -&r L() 4r L()

C 2 n.() &2 L(L)

+ - R dnd& = 0 (4.26)

Er E(E) &r -nr

Here R is given in (4.14),

P(&,n) = P( (n - /V-) = P(x) (4.27)

and P(,n) = P((n - )/) = P(x) = -P(-x) (4.28)

At (l,n1 ) in Fig. 2, where -&r <E <&r and n, >L(&I) , that

is before the arrival of the first reflected wave, w'( lnl) is also

zero, giving

El L(t) &l nl
P( dn) d - Rnd& dnd& = 0 (4.29)

"Cr n+(&) -Er  L()

Extending the definition of al(&,n) to the region r <&<E 2 and n >L( ),

where aM({,n) is here taken as the shear stress at (A,n) if the first

reflected stress wave is not taken into account, then the second term of

(4.26) can be rewritten as

. ", *,"* , -* -: -, ." - *- *-,', *.- *,.',-'.",. -,- . .-' .-'. -". , -'--."."."," .. -. .. . -.. ".-. "- ".. -.. , .. "- - -. - - !

.... . ..... .. . .. ... ..:-.. .... ..::.- ...:.:.: ....... :...:..:.....:...:...;..... :.... -:
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r 2 2 n2 a2 2

1r 1  R 1 , dridc =f f ~2-~-.dnd& - f~ ~ n f ~ ~ .(.0

"r -E "r L€) &r L {)

By virtue of (4.29) with (El,nl) replaced by (&2,n2 and (4.30), equation

(4.26) on using (4.14) becomes

C2 n2 ( [a2 ( "'n)- l( & n )]dnf (C -d
( 2 "  L(C) (n2 -n) L

C2 %W(- &2 l nd

= dg r P(;,n)dn f -__ (4.31)

2r(&2"{) IW (n2rn) " E 2-&) r (n2-n)2

Equation (4.31) is clearly satisfied by

n2 n.(&) i ( E )

L(f p((&) f 1 A (4.32)(nr~n)" (n2"n)" - (n2-n) . 4.)

This is an integral equation for a2(&,n) -aI(C,n) of the Abel kind which

can be solved analytically to give

" " " r ' - . F' T~f";-' ". . -' . ".' "''.','-, " " -', " "."........',."."-.-.....'..-"..- -...........-........"...-.."..."..'............'.-.".. .. .
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'n_ )

1 E(u)[L(&)'u] du
at2(& 'n) a(l n f('( ) I(6 n- U

-i(n -L (c) ) T2-

IL (4.33)

"n u &)- ] 2 du

nr
I

Similarly from (4.29) with (l,nl) replaced by ({ 2 ,n 2 ), it follows that

n & l L &)

f dn= P( &n dn (4.34 )S(n2-n).% n+(& (n2-n)
L({) n+({)2

which upon solving gives

f P(&,u)[L(&)'u] du (4.35)
l( 'n 

I ((n L( )) 
n - U

Combining (4.33) and (4.35) gives the change in shear stress ahead of the

right crack tip, taking the first reflected stress wave into account i.e.

4.1 n' = ___n. (_ ))_n-

n ( )(

L(w)- nr

: ' -W L "" : - : " ': " , ' " 7 , ''''" w "'_"' ' > ,',:
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To express a2(En) in terms of the physical variables x and s

we introduce new parameters

- =  7 and T2 (4.37)

Using (4.23), one finds that - satisfies

T- (--)= s - x (4.38)

and from (4.24)

"2 + I(T2 ) s - x (4.39)

Introducing s and s2  defined in (4.37) and the substitution v=(u-€)//2,

(4.36) becomes

t-) h "-Zo

v2(x(S) 3 ' J P(v)[t(?)-v] dv+ 0 (v)[rt(jy'.v] dv
7(x-'s -t) - V

s- )l x s )  -v - dv , (4.40)

where Bl(xS) =- (x-s-t0 )/2 . (4.41)

To find the stress intensity factor, the asymptotic behavior of (4.40)

for O<x -t(s) <<l must be examined. For x=i(s), (4.38) is satisfied

by s-s. Expanding about x-t(s) using (4.38), gives

IA V7 .
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s-(xs)= s - (1 -' (s)) (x-t(s)) +O(x - z(s)) 2  (4.42)

whence () = I(s)+O(x-L(s)) From (4.41) al(x's) = T(s)+o(x' (s))'

where

( -(s) s) -s- 0 )/2 (4.43)

Equation (4.39) may be rewritten as

T-2 + t(S-2) = s- I(S) -(x- #(s)) (4.44)

Let s2  be the solution of

s2 + t(s2) = s - Z(s)  (4.45)

For sr SS<S d , one can show that Ogs 2 <Sr From(4.44),s 2=s2+O(x-z (s)) and

so l(-2)= z(s2)+O(x-t(s)). Physically, the stress wave arriving at the

right crack tip x= X(s) at time t= s/c was emitted at the left crack

tip x=-t(s 2) at time t2 = s2/c . Using the above asymptotic results

for T and T2 near x=L(s), equation (4.40), after some further

manipulation, becomes

a2(xs) = (I-ItE(s))" r(S)+ O(- I(s))  (4.46)

[......................- -:.-..-.-.--.--'-: -,.....*..* -.-... ---... ,- ..-.. ,-....-.-.--
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where

Ir(s) P(v)dv + . P(v)dv - (447)
r ' r z(s)'v) ! s) _V)-2 ( ( ) ' 12

to (s 2 )

Here i(s) is given by (4.43) and s2 satisfies (4.45).

In (4.47), a l(x,s) the shear stress ahead of the left crack tip

for 0:s<sr  is required. Equation (4.35) gives al(,A), the shear stress

ahead of the right crack tip before the first reflected wave arrives.

Transforming ol(E,n) to the variables x and s as was done for YEA

gives

arpx~s) 1 ? P(V)[(TC)V]2 dv (4.48), x ( 'i o j x - v
{0

where s is given by (4.38). By virtue of the symmetry in the problem,

replacing x by -x , v by -v1  and P(v) by -P(-v 1 ) in the

Integrand of (4.48) gives 1 (x,s), the shear stress ahead of the left

crack tip for Oss <sr i.e.

a (x's) = 1 ____((l( ) "0+ l dvl (4.49)

in which P(v l ) = -P(-v l ) and s I satisfies

s 1(sl s + x (4.50)
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Equation (4.49) now yields

= - f dvI , (4.51)' (v- ( )) v - v1

where from (4.50), S is obtained from the relation

" = s-z(s)+2v (4.52)

For sr 5< Sd , one can show Os 2 <sr and O< <S 2 Evaluating the

integral in (4.51), one gets

-l(vs-y(s)+v)= 4w°l [K(kO'i(l'k)] (4.53)W9 ( 1()+zo)0(v_j(j1))2ii

where

= 1 2= 0 and a= d(lv)= '1+ (4.54)

Here n(&,R) is the complete elliptic integral of the third kind. Note

that &O for all v inthe interval (-(s), -z(s2)) . The second term

of (4.47), on performing the integration, is

a".'

0 P(v)dv 4w o F(,k) (455)
-{S2) (W S)-V) r2 1T ( s)+x 0) (4.55

In (4.55) F(cp,k) is the incomplete elliptic integral of the first kind,

1, , b' '',-• ,," . ,,".. ...... . ....... " ..- ".. .. -... . . . .'...... ..-. -. a
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where k=k(s) is given in (4.19) and

Z(s2)-LO
T= = arcsin (s2)+) (4.56)

Lettina

(2 0(2)1)
I(s) = 4uw 0  Ir(S)

and using (4.19), (4.53) and(4.55), equation (4.47) becomes

i(s) = (I-R 2 ) (K(k)-F(y,k))

.(2z )2  - _(s2)

Ir _,)'(4.57)- (-Z(i 1)-_V)'- (1)+% 0o)2(%(S)-v2

4-B(s)

Here k= k(s) and (P= q(s2 ) are given in (4.19) and (4.56) resp., while

k-k(sl) and a=&(i,,v) are given in (4.54). By virtue of (2.6), the

stress intensity factor then is

Kd(s) 0o(l' (s) I(S) ; r's<sd (4.58)

0

and from (2.7), it follows that the energy release rate at the right crack

tip is

G(s) = 3 021 (s  ) 2 S r S < sd (4.59

0

',w ",....................................................................................................
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5. Motion of the crack tip

During the fracture process, the moving crack tip absorbs energy

from the surrounding material. According to prevailing views of fracture,

the energy absorbed by the tip is used to create the new free surface

generated by crack propagation. In the usual quantitative model of this

process, one postulates the existence of a "specific fracture energy" r

which is characteristic of the material at hand and which has the property

I that, during crack propagation, the relation

G= r (5.1)

holds at every instant. According to (4.21), (4.19) and (4.59), (4.57),

G depends on the crack length history t(r), O:rs and on the in-

stantaneous crack tip velocity t'(s). In general r may be a (given)

function of 9'(s); we consider only the simplest model, in which r

is anabsoluteconstant. Equation (5.1) with r-constant is thus our crack

propagation criterion. It may be regarded as an "equation of motion" for

the crack tip.

In Section 2, it was assumed that the crack tip was held fixed until

time t=O, when it is released and the crack propagation process begins.

For propagation to occur at all, (5.1) requires that the static energy

release rate Gst satisfy Gst>r. Thus by (3.9), one must have

22uw0  >r (5.2)

bBlb"
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* A dimensionless parameter Q is now introduced through

2• , 2uw2

0I (5.3)

-. Then for crack extension to occur, from (5.2) it is necessary that Q
be larger than unity.

Before the arrival of the first reflected stress wave, the crack tip

equation of motion is, by (4.21), (4.19) and (5.1),

l6wo ,j~ -z S K' (54

-I-. s (4) I 5 4

Using (5.3) and the definition of k-k(t(s)) in (4.19), the differential

equation in (5.4), on solving for E'(s), becomes

K(k)4 (l-k2 )2 _w4/1602 Ors<s (5.5)
K(k)4(l-k2 )2 +w /16Q2' r (

At s=O, we have k=O and K(O) -/2 givinQ

- Q 1 (5.6)

VQ 2+1

Since Q>1 is necessary for crack extension to occur, I'(0) must be

positive. Because k=k(t(s)), equation (5.5) is an autonomous differential

equation for t with a critical point at k= kr where

K(kr)2 (l- k2) = f2 /4Q (5.7)r r

1%4
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Since an infinite amount of time is required to reach a critical point, the

crack cannot arrest before the arrival of the first reflected stress wave.

At s=sr , for Q>l the crack tip is moving with non-zero velocity

If(s r ) where O<'(s r )<l

After the arrival of the first reflected wave at s= sr until the

arrival of the second reflected wave at s=s , from (4.59) and (5.1),

the equation governing the crack tip motion is

83w2 '1' ) I(s =r (5.8)

0

Here i(s) is given by (4.57). Using (5.3), this equation reduces to

solving

S{()=is) 4-f4 /16Q 2
(s ,Sr 5 < <Sd  9(5.9)i(s) 4+ 4/16Q 2  ' d

where t(sr) is obtained from the solution of (5.5). From (4.57), I(s)

depends upon the instantaneous variables s and Z(s), and upon the

delayed crack length i(s 2 ). If for some value of s in the interval

(s r , sd )

i(s)2 2 /4Q = 0 (5.10)

then I'(s)=O and the crack arrests. Given values of z and Q,

numerical solutions of (5.5) and (5.9) can be obtained, with the value of

sr being determined from (4.16). The results of these investigations

have shown that crack arrest does indeed occur in the time interval

-.
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(s rSd) However due to the complicated nature of I(s), it is unclear

whether arrest always takes place in the interval (sr s d), particularly

for very large Q.

If in the original formulation of the problem, the variables x, y,s

and w are made dimensionless by considering instead x/Zo, Y/ 0 , S/Z 0

and w/w 0 then the governing differential equation (4.1) and the initial

and boundary conditions (3.3), (4.2), (4.3) are independent of all para-

meters appearing in the problem. In the failure criterion, from (2.3),

(2.5) and (5.1), the only variable parameter appearing is Q, defined in

(5.3). In Fig. 3, the normalized crack tip velocity Z"(s) is plotted

against s/t for Q=l.5 and crack arrest occurs before the second

reflected wave reaches the tip. Similar results were obtained for other

values of Q, both larger and smaller that Q-l.5.

In Fig. 4 the dynamic stress intensity factor Kd(s), normalized

by its initial static value Kst given in (3.8), is shown plotted against

sAt0 , Oss dt again for Q=l.5. Kd(s) drops discontinuously at

5s-O from its initial static value and then increases due to decreasing

crack velocity up to arrest. After arrest occurs, the stress intensity

factor decreases until the arrival of the next reflected stress wave

at s a sd . The effect of this stress wave arriving at s=sd is

to reduce the rate at which the stress intensity factor is decreasing and

possibly even to begin increasing it after some time. The effects of the

succeeding reflected stress waves upon the stress intensity factor become

increasingly more difficult to analyze by this method. We have not attempted

such an analysis.

SWr
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II. THE NUMERICAL SOLUTION OF THE EDGE CRACK PROBLEM

6. Introduction

In this section we discuss some of the techniques which have been

used as well as the difficulties associated with the numerical solution

of rapidly moving crack problems. For given initial and boundary condi-

tions, numerical studies of dynamic crack propagation problems are

generally conducted in one of two different ways. First, given the crack

tip position or velocity history which may have been experimentally ob-

served or is simply prescribed, then by forcing the numerical model to

respond in exactly the same manner, one can calculate items of interest

such as the dynamic stress intensity factor at the tip or possibly use

the model to study material properties from laboratory tests. Alternatively,

given a failure criterion as in (5.1), one can compute the resulting crack

growth history and the crack arrest point if arrest occurs. This may be

used to study the integrity of a structural component.

Most of the existing numerical work done in simulating two-dimensional

crack propagation in linear elastic bodies has been performed by either

the finite difference or the finite element method. In a critical review

of numerical solution techniques in dynamic fracture mechanics [14] in

1978, Kanninen discussed some of the deficiencies inherent in both methods

and stated that "Currently, finite elements are better suited for initiation

of growth calculations while finite differences can better cope with crack

propagation and arrest". Since then further contributions have been made

to both of these methods with particular emphasis on representing the

motion of the crack tip and the singular stress field locally near the

tip as accurately as possible. We now briefly review some of the work

I ... .. -.. ... .-,. .... ..-. ..:.. .....-, .. .- .- ......, ........, ..- ....,-. .- .. -.. ..- .- -.. -..



30

which has been done.

In the finite element method, the modeling of crack propagation

problems using conventional elements everywhere has been found to be not

sufficiently accurate [14]. Taking advantage of special elements near the

tip which incorporate the characteristic linear elastic crack tip singular-

ity in the stress field, the finite element method has been applied suc-

cessfully to equilibrium crack problems [15] and to crack growth initiation

problems [16]. Incorporating the singular element idea at a moving tip in

a propagating crack problem has been somewhat more difficult. The particu-

lar choice of singular element used can be very important and also the

kadvancement of the tip by sudden node release can be a source of large

transient oscillations in the numerical model [17,18].

Aoki et al [19,20] use a singular element incorporating the lowest

order asymptotic displacement elgenfunction at the moving crack tip and

as the tip gets close to the boundary of this singular element, the entire

element is shifted as a rigid body to a new location. Nishioka and Atluri

[21,22) use a linear combination of crack tip displacement eigenfunctions

valid for a constant velocity tip to construct a singular crack tip element

and in the numerical scheme this element moves with the tip at each time

- step being surrounded by deforming regular finite elements. The details

involved however are somewhat elaborate. The above two sets of authors apply

their numerical schemes to problems involving prescribed crack velocity

[19,21) and also to cases where a failure criterion is given and the crack

v velocity history is to be determined [20,22). Their results correlate

reasonably well with analytical solutions where such a comparison can be

made.

"W . ,. -.- . ... ... . ., .
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The finite difference scheme models crack growth by expressing the

elastodynamic equations of motion in difference form at each node point

of a finite grid covering the body. In the earlier models [2.3,24,25],

crack growth is simulated by intermittent crack extensions of magnitude

one mesh size which implies the solution of a sequence of transient prob-

lems, each contributing to a disturbing numerical noise with no physical

counterpart. In [25] a transition zone is used at the moving tip to aid

in remedying the above difficulty. Because of the discontinuous nature

of the crack motion and the inadequate representation of the local stress

and displacement fields near the moving tip, the degree of resolution and

accuracy obtained in the numerical results from these models is not suf-

ficiently good for extensive investigations.

To improve the local accuracy at the moving tip and in particular to

overcome the problem of intermittent crack extension, Aboudi[26] trans-

forms the equations of motion to a moving coordinate system with origin

at the moving crack tip. A finite difference scheme involving the crack

tip velocity and acceleration is developed for both the plane strain and

anti-plane shear cases and is applied to a number of problems with pre-

scribed crack history. Shmuely and Perl [27,28] introduce in the vicinity

of the propagating crack tip a local moving grid which moves with the

velocity of the tip and has its origin of coordinates at the moving tip.

Outside of the moving grid, a stationary grid is used which readily

accommodates the boundary conditions for finite specimens. Separate dif-

ference schemes are established governing the motion in both the moving

and stationary domains. As in the model by Aboudi, the difference scheme

for the moving domain directly involves the crack tip velocity and
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acceleration, and the method is applied to a number of problems also with

prescribed crack history. In the prediction case of crack growth embodying

a failure criterion, the objective is the determination of the crack tip

position and velocity. Finding the crack tip acceleration is an order of

magnitude more difficult and requires that the velocity of the tip be

evaluated with a high degree of accuracy and resolution. Hence because

the acceleration and velocity of the tip occur explicitly in both of the

above difference schemes, they are not totally suitable for the determina-
tion of crack growth history.

Unlike the situation in the finite element case, little effort has

been made in finite difference simulations to incorporate the asymptotic

nature of the stress and displacement fields near the moving crack tip.

In not doing so, the singular stress field near the tip is smoothed out,

thereby affecting the numerical solution and special care is needed in

finding the stress intensity factor. Burgers [29] uses one term asymptotic

expansions about the crack tip position to approximate the stresses and

particle velocity in the region near the tip of a propagating crack in

anti-plane shear. The difference equations are given in terms of the

three displacement gradients and are obtained on integrating the equations

of motion along bicharacteristic strips. The stress intensity factor is

computed for both steady and unsteady prescribed crack tip velocities and

compared with known values. The results are reasonably accurate for steady

crack propagation but fairly large errors occur for the unsteady propaga-

tion cases.

In the following sections, we model dynamic crack propagation under

anti-plane shear using an explicit finite difference scheme derived from

h *. -# . . .. .. . .. "*.' ° °. ",,'.. . " ..* " • .
or. .4F..% F . . . . . . . . . . . . . . . . .
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the displacement equation of motion. To improve the local accuracy near

the moving crack tip at which singular stresses occur and to smoothly

extend the crack at each time step, the lowest order asymptotic displace-

ment term near the tip is used in conjunction with the finite difference

scheme to simulate the problem as accurately as possible. The procedure

is applied to the edge crack problem discussed in Sections 2,3 and 4,

finding the crack tip velocity and the dynamic stress intensity factor

numerically. To check the accuracy of the method, the numerical and

analytical results are compared.

"4
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7. The displacement field near the moving crack tip

This section deals with determining the behavior of the out of

plane displacement w, satisfying (4.1) and (4.2), near the tip of An

extending crack in anti-plane shear and employs a technique first used

In elastostatics by Knein [30] and Williams (31']. A similar approach

was utilized by Freund and Clifton [32] in analyzing the near-tip dis-

placement field for non-uniform crack propagation in plane strain. The

procedure used here follows that of Achenbach and Bazant [33] who consider

both the plane and anti-plane situations of non-uniform crack extension

and obtain the lowest order near-tip displacement fields. The second

order correction term in the displacement field near the crack tip is

established here for non-uniform crack motion in anti-plane shear. In

implementing the numerical simulation, we will use this more refined

approximation during the initial stage of motion of the crack.

0 Consider the anti-plane problem of a straight crack extending non-

uniformly in its plane along the x-axis say, with the crack tip position

given by x-=(s) at time t, where as before we let s =ct, c being

the shear wave speed. Introducing the local polar coordinate system

(R,8), - i:c e 9r at the moving crack tip (Fig. 5) through

x- t(s) - Rcos6 , y-Rsine , (7.1)

thedisplacement field w-w(R,e,s) from (4.1) satisfies the differential

equation;
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W,RR+ wR+ j w'6 =Wss
R

+ 2£ (2o2eR _(X,(s)2s in 2e6 Z(' (s )2 sin 2 6 'w (7.2)
" R W'Re R2  1' =

R Rz  " s R Wes

- (R.'(s)cos e )w,R + (Z (s) sine) W0
R'R w

It is now assumed that

w - Rmf(e,s) as R-O, - Tr r, s O (7.3)

for some non-negative exponent m. We seek the smallest value of m O

for which the above assumption is asymptotically consistent with the

differential equation (7.2) and the traction-free boundary condition (4.2)

on the crack surface. Calculating the derivatives of w(R,e,s) given in

(7.3) asymptotically as R-o-O, inserting the results into (7.2) and setting

the dominant term in R equal to zero, one finds the following ordinary

differential equation for f(e,s):

R~e) f, ee-(M- 1)T. (9) f , 6+m(m-l) + m(2-m)PT(O)IfO 0 (7.4)

where Ne) and 8 are given by

'F(e) =i + 1- os2 e2,  a= 6(s) (1 (s)2)j (7.5)

4 .. ,,,-'-' .." .- -.---- ',,'I-, -. L. . ,. '. ,. ' •.'2 \"2" ", , - - "
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To solve (7.4), a new variable e is introduced through

tan e = a tan e (7.6)

For B given in (7.5).and O./'(s) <l, B varies continuously from

-Tr to ir as 8 varies from -7r to 7r. In terms of a, F(e) now

becomes

(- 2 2 -1P(W 4=(a)) = 0 - (l-B2)Cos28)"l  (7.7)

Making the substitution

m

f(e,s) = P(8)2'V(Gs) (7.8)

in (7.4) gives the following differential equation for v;

V, + m2V = 0 (7.9)

The traction-free boundary condition on the crack surface gives

f,o(±r,s)=O which implies V, (±ir,s) = 0 . (7.10)

For displacement fields anti-symmetric about y=0, as will be considered

here, one has w-0 on y=O giving V(O,s) = 0. The appropriate V

satisfying (7.9) is then

V(o,s) = A(s)sinme , (7.11)

A(s) being an arbitrary function of s and Z(s). The smallest value

of m in (7.11) satisfying (7.10) is m= . Combining (7.3),(7.8)

and (7.11) now gives (see also [33]),

e e Z
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w A(s)RIP(e)lsin-e- as R O. (7.12)

To find the second order correction term, let
1

w 0 f(6,s) +Rng(e,s) as R-O, n>- , (7.13)

where f(6,s) is given by (7.8), (7.11) and g(e,s) and n are to be

determined. Again obtaining the derivatives of w asymptotically as

R+O from (7.13), putting them into (7.2) and considering the dominant

term only, it can be shown that no non-trival function g(e,s) exists for

1/2<n<3/2. For n=3/2, setting the dominant term in R to zero gives

1-/I +2L 3

- fA'(s)W(s) +A(s)Z'(s)3(j'cose)f- (sine)f,eJ (7.14)

2 A(s)k' (s)( 2 (cos e)f - (sin e)f,els

Introducing e and P(S) as given by (7.6) and (7.7) respectively and

making the substitution

g(e,s) - P(e)M Z(G s) , (7.15)

equation (7.14) reduces to

Z 9Z [2A'(s).(s) + ( A(s)t'(s)sin 8

(,_a2 A(s)t'(s)sin 5 6 (7.16)

483
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The boundary conditions are Z, (±t,s) = 0 and Z(O,s) 0 as before.

Solving (7.16) now for Z(O,s) and using (7.13), (7.15) gives the following

expression for w in terms of a and s as R-'O;

e iw ", A(s)RIP()ksin 1 a

R 6 P~) A' (s) 2. (s) + (..3-0)A(s)Z'(s) sin 1 +B(s)sin 3-8

+ (18 2) A(s)f s)sin ] (7.17)
168

Here A(s), B(s) are as yet arbitrary functions of s, and Z(s) also

remains unspecified. The determination of A(s) and B(s) depends upon

the region involved and the particular loading on the body. The error in

(7.17) is 0(R5/2) as R-O.

Using the first term in (7.17) and the definition of the dynamic

anti-plane shear stress intensity factor Kd =Kd(s) given in (2.6), it

can be established that

Kd(s) - U(2.)aA(s) . (7.18)

Then the expression for the energy release rate given in (2.7) becomes

G(s) = '4'A(s)2  (7.19)

By virtue of the failure criterion (5.1) and (7.19), A(s) is determined

explicitly and is given by

ZY .
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A(s) (__)! for all s, (7.20)

where r is the specific fracture energy, assumed constant. A(s) is

then constant for all s, being independent of Z(s) also.

For the anti-plane shear edge crack problem discussed in Sections 3

and 4, A(s) becomes

A-A(s) = 2/T 0 for all s, (7.21)

where Q is the dimensionless parameter given by (5.3), to is the

initial crack length and w0  is the fixed end displacement at x =0 for

y' O (Fig. l(a)).

In a purely static problem, for a straight crack along the x axis

with local polar coordinates r and a, -it wcT situated at the fixed

crack tip, the local displacement field at the crack tip under conditions

of anti-plane shear is

1/2 13/2si n 3 r5/2

w Dr 1 sin a + D2r sin 2- a +O(r ) as r-0 (7.22)

This result may be established easily by employing the approach used in

the moving crack tip case. Considering the initial static displacement

field (3.3) for the edge crack problem in Section 3, it can easily be

shown that

Dl 2 1-0  and D= 3 (7.23)

0 0
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Across the cylindrical wavefront r=s generated by the initial

motion of the crack tip, where r is the radial distance from the initial

position of the crack tip at x=Zo, the following two conditions must

hold;

(i) w is continuous across r=s (7.24)

(ii) a +L is continuous across r=s, (7.25)

where n is the unit outward normal to r =s. Since the material must

maintain its physical integrity at the wavefront, equation (7.24) is

necessary. Equation (7.25) guarantees that the impulse-momentum relation

at the wavefront is satisfied. If (7.24) holds across r -s, it can

easily be verified that (7.25) is also valid.

Equation (7.24) for s<<l can be used to find Z'(0), z'(0) and

B(O). Equating (7.17), (7.21) with (7.22), (7.23) on r=s correct to

O(si) for s<< gives

e {'(0) (7.26)

Q 2+1

This is in agreement with equation (5.6) which results from the exact

differential equation governing the motion of the tip. Matching correct

to O(s3 /2) on r-s for s<<l gives

'(0) - z' (0)(1 - i' (0)2 )/4to  (7.27)

and

B(O) - A(16 + S1 (0) + 391' (O)(l - ' (0)2)]/192 Z 0-Z (0) 2) (7.28)

0..

A _R_
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IiJ where A is given in (7.21). Equation (7.17) used in conjunction with

~(7.21), (7.26), (7.27) and (7.28) now gives the dynamic displacement field

near the moving crack tip for s<<l.
-'.4
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8. Finite difference formulation of the edge crack problem

Here we consider the numerical solution of the dynamic anti-plane

shear edge crack problem formulated and discussed in Sections 2,3 and 4.

The two-dimensional wave equation (4.1) governing the motion of a body in

a state of infinitesimal anti-plane shear must be satisfied in the half-

plane x O, excluding the crack. The body is assumed to be initially at

rest and the boundary conditions are given by (4.2) and (4.3). The initial

static solution for the edge crack problem is given in (3.3). The problem

as formulated is anti-symmetric about y = 0 and hence we need only con-

sider the region x 0, y 0.

A. Finite difference equations

To approximate the equation of motion (4.1) by a finite difference

equation in the region x20, y20, we introduce a rectangular grid of

mesh size Ax-Ay-h in the x and y directions together with a time

increment As. The grid nodes are located at (see Fig. 6)

x-(i-l)h, y-(j- )h; ij =1,2,3,- . (8.1)

The displacement w at the time step s- kAs and at a mesh point (x,y)

given in (8.1) is denoted by

wk ~i,j - 1,2,3,-- (8.2.
W~k~ -W(x,y,s) ij (8.2)1

Sk * 0,1,2,----

Let P denote the triad (( -)h, (j- )h, kAs). Using central dif-

ferences, we have

1Note that in w.,j the comma preceding the subscript j does not denote
partial differentiation.

4
.. %~ " . . ,,. •.- - ±..-. .. . ... . ..
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-W (P) 2wk- + wl )/As 2o(
2) (.3)

For w,xx(P) +W.yy(P), we use the nine node approximation:

W,xx(P) +W.y(P) = (w.k_ + w k + k ki- ly i Wi+1'j-1 +i+l,j+l)

4(w +w + k wk  2 wk /6h 2 + h2) (8.4)

S i lJ ,j-1 i,j+l i+1,j , ]8

Equation (8.4) was found to be more satisfactory than that which 
makes

use of the usual central difference approximations for wxx(P)+wyy(P).

Accordingly from (8.3) and (8.4), we get the following finite difference

approximation for the wave equation (4.1);

wk+l -2w k _- k-i +P 2 r(w K +wk + wk + wk

.k-1o k k w k k
wlj =iw J i~j+ -_,Ij-1 -_,j+l i+1,j-l +i+l,j+l)

+ 4(w.i-_ +w1 j-l + i j+l +w i+l  ,) - 20w. (8.5)

where p=lAs/h . Equation (8.5)is a three-level explicit difference

scheme, accurate to Oh 2 + A s2) and hence it is possible to compute the dis-

placement at time step s=(k+1)As whenever its values at the two previous

time steps s=(k-1)As and sakAs are known everywhere.

The boundary condition (4.3), that is w w0 on x=0, y z0, gives

w k *w = 1,2,3,----

iJ 0 k 0,1,2,---- (8.6)

. . 0.. . .. ".. . -,~ .% -,.... . - ., .. .,,,-. '. . ,, .. . . . . . . . . . ."..** .
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To accommodate the boundary conditions on y=0, a. line of auxiliary grid

points located at y=-h/2 outside the medium is introduced (Fig. 6).

The crack plane is on y=0 and the crack length at time s is Z(s)

as before. For Ogx<X(s) the free surface boundary condition yields

r74. W, y (x,0,s)=0, which on approximating by central differences across y=0

S. gives

l k, (8.7)

for all i suchthat O (i-l)h<z(kAs). For x L(s), anti-symmetry with

respect to y=0 gives w(x,0,s) =0 and also w(x,-h/2,s) -w(x,h/2,s),

which yields

wk wk (8.8)i,-I 1,1

for all i such that (i-l)h>t(kAs)

Placing the grid points on y=-h/2, h/2, 3h/2,---- was foupd superior

to putting them on y=0, h, 2h, ----, thereby having grid nodes on the crack

plane and in the path of the crack tip. Equations (8.7) and (8.8) approxi-

mate the boundary conditions on y=0 for x<Z(s) and x ae(s) re-

spectively, correct to O(h 2) away from the crack tip. Because of the

singular displacement gradients at the tip itself, the finite difference

equation (8.5) and the corresponding boundary conditions (8.7) and (8.8)

cannot be expected to be very accurate close to the tip. Additional

measures are necessary to accurately approximate the displacement field

near the moving crack tip.

% %5 %- .1 . r: -*5 .~' - J" . .- 5
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B. Stability Analysis

To apply the proposed finite difference formula (8.5), stability

criteria must be established which guarantee that the difference between

the numerical and theoretical solution of the difference equation (8.5)

does not grow with time. The analysis performed here follows von Neumann's

method [34]. As will be shown in the following, the stability requirement

will impose restrictions on the possible values of the time increment As

in relation to the mesh size h and possibly other variables in the

problem.

The stability of (8.5) may be examined by assuming that an error

zk  exists at each mesh point (k=O, 1,2,---.. Since the difference

equation (8.5) is linear and has constant coefficients, the growthof these
k relcdb k

errors is governed by (8.5) with w. replaced by z k Performing

a harmonic decomposition of the errors at a given time level, say s -0,

gives

ZojUL A1.e (-l)86ij lh (-1)iYjih (8.9)

where the frequencies 8ij and Yij are arbitrary in general and the

summation over I and j ranges over all the grid points (finite in

number) in the x and y directions, respectively. Since the difference

equation is linear, to examine the growth of these errors, it is necessary

to consider only the single term

e (-l)Bih (-1)Iyjh

where 8 and y can be any real numbers.

- .e
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To investigate the error propagation, we now seek a solution to
(8.5) with k k

wi replaced by z which reduces to (8.10) at s=0.
tlj

A solution of the difference system (8.5), obtained by separating the

variables with (8.10) in mind, is

(-l)Ieib (-l)|yjh

ij k

where Rk satisfies

Rk+l - 2BRk + Rkl 0 , B-l-p 2 A/2 (8.12)

and

"4(stn2( T- sin2(T)sin2( - + sin2 ( ) T (8.13)

k
The general solution to (8.12) is found on letting Rk =n which gives

in -2Bn+l = 0 , (8.14)

or n a BN * . The errors zk will not grow provided hI <1in <

which leads to

O<p 2A< 4 . (8.15)

From (8.13), it may be easily verified that 0rA'16/3 , which on using

(8.15) gives p<V'Y/2 Hence round-off error will not grow and the dif-

ference scheme (8.5) will be stable provided

p --< VI (8.16)

,*'_ ,<,...:v :..'i .: : ............ ..,,.: . ..-..... ~ - % -~*** ~ \ % * ~ , P % .. .... ,, *.:.. .... . .. 'P . . . . . . .
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9. Numerical simulation procedure of crack motion and results

A. Simulation procedure and crack tip velocity determination

At each time step during the numerical process, the velocity of

the crack tip must be determined. The crack tip velocity is needed in

calculating the position of the crack tip at the next time step and also

is required in utilizing the asymptotic displacement field in the vicinity

of the moving crack tip. A procedure for determining the crack tip veloc-

ity is now presented.

Consider a region Ds  in the (x,y)- plane containing the crack tip in

its interior and hence having a portion of the crack surface as part of its

boundary (Fig. 5). The region Ds  is assumed to move with the velocity

of the tip parallel to the x-axis. The energy contained within Ds at

time s is given by

ED= f (W+K)dxdy , (9.1)

where W and K represent the potential and kinetic energies respectively

of the body per unit volume. For any closed contour Cs  surrounding the

crack tip and moving with the velocity of the tip parallel to the x-axis,

the rate at which energy is entering through Cs  is given by the contour

integral

ECs= c f [ - -7w w + R! (s)(W + K)nx]dC s  (9.2)

where ni(n x,n y) is the unit outward normal to Cs and c is the shear

wave speed. Letting Cs  be the boundary of Ds excluding the crack

surface, then the flux of energy through C given in (9.2) must equal
5

7 ,.-
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the rate of change of kinetic and potential energy within Ds  plus the

rate at which energy is being dissipated by the moving crack tip. Note

that there is no contribution to ECs in (9.2) from a traction-free

crack surface along the x-axis. Hence we have the following relation (see

[10] also);

G' (s) aw aw + Z, (s)(W + K)nx]dC s - +

C DS 
s

where G is the energy release rate. Equation (9.3) may be rewritten as

G- (W+K)nxdC ' (s)U ( )dC -- (W +K)dxdy (9.4)
C C 0

giving an equation for the crack tip velocity x'(s).

For a linear elastic body in anti-plane shear,

S ( 2 + 2 and K 2  25)
Wx (Wx wy) nw s  (

The energy release rate G in (9.4) is given by (7.19) and (7.21). Then

knowing the gradients of the displacement in a region about the moving

crack tip, equation (9.4) enables us to calculate the velocity of the tip.

This must be done using the numerical displacement field.

As was noted in Section 8, the finite difference equation (8.5)

cannot be expected to be very accurate at the mesh points closest to the

moving crack tip. To alleviate this difficulty the lowest order asymptotic

displacement term (7.12), with A(s) given by (7.21), is used at the two

nodal points in the region nearest to the crack tip i.e. at (LN,l) and

(LN+I,l), where i =LN and j :1 denote the mesh point nearest to the

IF ..p . o .4 ., .-• . . . .- . . ... ..
e ** 
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tip and to the left of it. To smooth the transition from the asymptotic

to the numerical values of the displacement as the tip moves, a linear

combination of both the asymptotic and numerical displacement values is

used at the four nodal points (LN-I,I), (LN,2), (LN+l,2) and (LN+2,1)

surrounding the tip. The linear combination used is [cw. , +(h -a)w ]/h,
I , as

where was denotes the lowest order near-tip asymptotic displacement

given in (7.12) and = [ZL(kAs)-(LN-I)h] is the distance of the tip

from i =LN.

Before calculating the crack tip velocity for the present or kth

time step, the lowest order asymptotic near-tip displacement (7.12) is

used as outlined in the preceding paragraph together with the crack tip

velocity of the previous or (k-l)St time step. After determining the

velocity of the tip for the kth time step, equation (7.12) is then

used again with this new crack tip velocity to provide the near-tip

asymptotic displacement for the current time step. Knowing the crack tip

position Z(kAs) and velocity Z(kAs) at the kth time step, the

position of the tip at the next time step is given by

L((k + 1 )As) = R(k As) + L' (k As)As , (9.6)

correct to O(AS2)

To initiate the motion of the crack tip, the near-tip asymptotic

displacement including the second-order correction term given by equation

(7.17) is used in conjunction with (7.21), (7.27) and (7.28) at the ap-

propriate mesh points near the tip for the first four time steps. The

crack tip position and velocity used with equation (7.17) for these first

four time steps is given by

'4,
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Z(S) Z(0) + ZlO)s + .,(0)s 2  (9.7)2

and

(S= (0) + Z'(o)s (9.8)

where Z'(0) and Z'(0) are given in (7.26) and (7.27) respectively.

To facilitate further the initiation of the numerical process, equations

(9.7) and (9.8) are used to give the crack tip position and velocity for

the first ten time steps. This is justified for sufficiently small time

increments As since the error in (9.7) and (9.8) is O(s ) and O(s2)

respectively for s<<l . The-eafter the crack tip velocity is found

numerically.

To determine the crack tip velocity from equation (9.4), the time

rate of change of the kinetic and potential energy in the region D s

i.e. the last term in (9.4), must be evaluated numerically. However,

because of transient disturbances introduced into the numerical values

of the displacement by the motion of the crack tip, the accurate calcula-

tion of the last term in (9.4) proved to be very difficult. Using the

lowest order asymptotic expression for the displacement near the crack tip

(7.12). it can be shown that

d . (W+K)dxdy =0(h) as h- 0 (9.9)

D 
s

Then taking a very small contour Cs  about the crack tip and neglecting

the last term in (9.4) gives the following equation which approximates

Z'(s) correct to O(h) as h 0 ,

%.... . , ........ ,,... -... ,,.......................... ....... . . ....... ... . . . .
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G- (W+K)nxdCst'(s)= (-n--)dC s  (9.10)

Cs  
C s

Fromequation (9.6) the crack tip position for the next time can then be

estimated correct to o(h 2). The energy release rate G is given by

(7.19), (7.21) and substituting for W and K from (9.5), equation

(9.10) becomes

2wo2 dw )2 + (Lo +(wL))21 2n d )2] (s)= (2--)dCs  (9.11)

C a C s

with Q given in (5.3).

In Fig. 6, the upper-half of the contour Cs  used in finding the

velocity of the crack tip is illustrated. The contour is fixed relative

to the tip for all time since it moves with the velocity of the tip.

From the symmetry inherent in the problem, it is sufficient to evaluate

the integrals in the upper half-plane. The vertical segments of the

contour are a distance 2h ahead and behind the crack tip, while the

horizontal portion is along j=3. To evaluate the contour integrals in

(9.11), the displacement gradients w,, WOy and w,s must be found at

points along the contour. At the mesh points adjacent to or on the

contour, the spatial gradients w,x and wy are found using the central

difference approximation. To find w,s  at the grid node (i,j) and at

the time step s =kAs, the following difference approximation is used

( =W k  (3wk 4wkl1 + wk'/ (2 As) (9.12)
as ij • .,j i ,j i1 ,1
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The error in (9.12) is O(As 2 ) and for the (k-2)nd  time step it is

only necessary to keep the values of the displacement at the required

mesh points near the tip. The integrals along the top segment of the

contour are evaluated using the three point Simpson's rule, while the

integrals along the vertical segments are evaluated using a three-point

formula with integration points at y=h/2, 3h/2 and 5h/2, which is exact

for cubic polynomials. At a requisite point on the contour, the displace-

ment gradients are found using a linear combination of the values of the

corresponding gradients at the two nearby grid nodes, one to the right

and one to the left of the point under consideration. This gives the dis-

placement gradients at the integration points on the contour correct to

o(h2). The normalized crack tip velocity X'(s) can now be found from

equation (9.11),

B. Stress intensity factor determination

To find the dynamic stress intensity factor Kd at the moving

crack tip, we note that from equations (7.18)and (7.5) that

Kd(s) = ("I)' i(l -r' (s)2 )4A(s) , (9.13)

where A(s) is the time-dependent function in the expression for the

lowest order asymptotic displacement near the tip in (7.12). Normalizing

Kd(s) with respect to the initial static stress intensity factor Kst

given in (3.8), equation (9.13) becomes

*1Kd(S) x.
= - ( - ,'(s)2)4A(s) (9.14)K st 2VZw °0

I * *4 .* . • . .. •. .1 2 2 : , • • * , . .% . * •. . *.•. ..
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As the crack is propagating, the failure criterion (5.1) applies; it

yields the previously derived expression in equation (7.21) for A(s).

Using (7.21), equation (9.14) reduces to

Kd(S) S(1- (S) / , (9.15)
Kst

and this equation is valid while the crack is extending i.e. Z'(s)>O.

Hence up to the time of arrest, the stress intensity factor may be easily

calculated, once the crack tip velocity is determined from the numerical

solution.

After arrest the failure criterion is no longer valid, and the stress

intensity factor must be evaluated directly from the numerical solution.

Equation (7.12) is still valid after arrest with 9,'(s) equal to zero.

Consider now the upper-half of the contour C , used in evaluating the

crack tip velocity 9'(s) in (9.11), which we denote by C, . The posi-

tion of C, is now fixed after arrest relative to the stationary tip.

To evaluate the stress intensity factor, we consider the contour integral

I = fwdC* . (9.16)
C,

Using for w the lowest order asymptotic displacement term near the tip

given in (7.12) and evaluating the contour integral analytically gives

I - wdC. * [1- (h+(41 )1)(-5(9.+(47 )]A(s +

'4 *, .~*~ .4 .4
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Rewriting equation (9.17) gives the following approximation to A(s);

A(s) , . h2 [l- (5+(41)) - 5(5+(41) dC. (9.18)
4/ C,

The contour integral in (9.18) is calculated in a similar manner to the

way in which the contour integrals in (9.11) were evaluated when determin-

ing the crack tip velocity. This enables us to determine A(s). Equation

(9.14) with 9'(s) set equal to zero and equation (9.18) then give the

stress intensity factor after arrest.

C. Numerical results

In the numerical results presented here, the exact initial static

displacement field (3.3) is used at all grid points in the mesh at s--0.

The time increment taken at each time step is As -h/2, which satisfies

the stability requirement (8.16). Considering the dimensionless variables

x/lto, Y/o, s/1o and w/wo as done in Section 5 for the analytical case, then!0

the problem depends only on the dimensionless parameter Q, defined in

(5.3). As in the analytical case, Q = 1.5 is taken here.

Plots of the crack tip velocity and crack length evaluated numerically

up to the time of arrest are shown In Figs. 7 and 8. The mesh size employed

is Ax-sAy-h -.02, while the number of grid points used for the quarter-

plane x 0, ya0 is (150,90). For the value of h under consideration

this ensures that the outer boundary effects arising from the finite grid

do not affect the results. In Fig. 7 the normalized crack tip velocity

e (s)-i(t)/c , calculated numerically using (9.11), is plotted against

s-ct and compared with the exact tip velocity acquired in Section 5.

Z ' -1
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The numerically evaluated velocity tends to oscillate slightly as the

crack tip traverses the grid, but overall the agreement with the exact

solution is quite good. The reflected wavefront from the boundary at

x=O is smoothed out in the numerical solution and hence the tip velocity

as determined from the numerical solution does not exhibit the abrupt

corner present in the exact solution when this wave reaches the crack tip.

This is to be expected, since the difference sheme cannot propagate a

sharp wavefront. In Fig. 8 the normalized crack length Z(s)/Z is plotted

against s/to =ct/t0  up to arrest and shows excellent agreement with

the exact solution.

The numerically calculated stress intensity factor Kd(s), normalized

by the initial static stress intensity factor Kst, is shown in Fig. 9 up

to the time that the second reflected wave reaches the tip from the end

x O. The mesh size used in Fig. 9 is h- .04 while the number of grid

points is (150,90) as before. Before crack arrest Kd(s) is determined

using equation (9.15) together with the numerically evaluated crack tip

velocity, while after arrest equations (9.14) and (9.18) are used. The reflected

stress waves return to the tip slightly faster in the numerical than in

the analytical solution because the wavefronts are being dispersed somewhat

in the numerical scheme as time increases.

Overall the numerical results agree remarkably well with the exact

solution. The accuracy of these results increases for smaller values of

h. Also the smaller the value of As relative to h , the better the

results, primarily because more time steps are then used in traversing

the grid, and this leads to a smoother velocity profile. Care must be

exercised in using the asymptotic solution near the moving tip to avoid

introducing unwanted oscillations into the crack tip velocity. The method

L ', ) ,f ., ,. , .d..', . :.,, .. ,.: . . -. -. . . ... ,:. . .
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presented herein for avoiding such oscillations as much as possible was

found to be the most satisfactory.
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10. Further applications

All of the work presented in this study has been for infinitesimal

anti-plane shear deformations. In plane strain crack propagation problems,

two non-zero displacement components are present, as well as both dilata-

tion and shear waves. This, together with more complicated wave reflection

patterns at the specimen boundaries makes plane strain problems, especially

for finite regions, far more difficult. Therefore one must resort to a

numerical approach. As in anti-plane shear, the stress and particle

velocity fields are singular at the moving tip and hence must be adequately

approximated in a numerical simulation.

The lowest order asymptotic displacement field near the tip of a

propagating crack in plane strain is available for non-uniform crack

velocity in (32] and so can be incorporated into a suitable finite differ-

ence scheme in order to accurately represent the elastodynamic field near

a propagating crack tip. It should be possible to accomplish this without

a lot of difficulty, not only for the case of known crack history, but

where the crack history is to be determined using a suitable failure

criterion as well.

It would be of interest to apply the finite difference technique

incorporating the local displacement field near a crack tip to some plane

strain crack propagation problems already studied and compare with such

exact results as are available or with other numerical solutions. An

interesting problem suitable for numerical study is the plane strain

analogue of the edge crack problem analyzed herein. For a constant dis-

placement in the positive y direction and an equal and opposite displace-

ment in the negative y direction at the boundary x =0, thus separating

r ',f 'v.,'.L .:,'. ,,, ..,,/ ,, ;_,'..,_ .,r... ....- ._._.- ..- ..................................-....................... ,..................,,,
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the crack surfaces; then for fixed or traction-free conditions normal to

the end x-O, one could study the effect of the individual reflected

stress waves from x-0 on the motion of the tip and check if and when

crack arrest might occur.

The anti-plane shear work discussed in this investigation has been

carried out for infinitesimal deformations in linear elastic materials.

Knowles [35] has studied the elastic field near the tip of a stationary

crack for a class of fully nonlinear elastic materials subjected to

finite deformations. It would be interesting to consider the dynamic

problem of a rapidly extending crack in a nonlinear elastic material

taking finite deformations into account. The local displacement field

near a moving crack tip may be derived, as in Section 7, for different

classes of nonlinear materials. This could then be used with a finite

difference scheme to model the problem, and thus to study the effect of

nonlinearity on the crack tip motion.

161-
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