
AD-A137 264 BEGINNERS' TUTORIAL FOR JHU UNIX AT BRL (BALLISTIC 1/g
RESEARCH LABORATORY)(U) ARMY ARMAMENT RESEARCH AND
DEVELOPMENT CENTER ARERDEEN PROVIN. N LCIDER DEC 83

UNCLASSIFIED ARBR - P -0 0 036 SRI AD-300 373 F/s 9/2 NL

mmmhhhhhhhhu
mhmmomhhhhh
Eomhhmhhmuo
momhhmmhhu
mhEEEmhEEEohEE

18 52
2

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

p V

A

CID [AD

SPECIAL PUBLICATION ARBRL-SP-00036

BEGINNERS' TUTORIAL FOR JHU UNIX AT BRL

Nancy L Cider

T~JAN 1 8 1984

December 1983 A

I I ARMY ARMEINT RESEACH AID DEVELOPMT CENTER
BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

Approvd ftr public rl~ee; istrlbutiem nlloted.

84 01 17 109

Ld

Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
Z2161.

I

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documnts.

210 ueeof tiabnow# or qj'MSg M P M inj *s Mre

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Marl, Da Enft..4

REPORT DOCUMENTATION PAGE BFRED CONSTRUCTORM
I. RPOR NUBER2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

SPECIAL PUBLICATION ARBRL-SP-00036 ft5, 13 7 .20 _____________

4. TITLE (and Subtitle) 5. TYPE OF REPORT 6 PERIOD COVERED

BEGINNERS' TUTORIAL FOR JHU UNIX AT BRL FINAL
S. PERFORMING ORG. REPORT NUMBER

7. AU THOR(&) 11. CONTRACT OR GRANT NUMBER(*)

NANCY L. CIDER

a. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

US Army Ballistic Research Laboratory, ARDC AE OKUI UBR

ATTN: DRSMC-BLT(A) I121A8
Aberdeen Proving Ground, MD 21005 1121A8

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army AMCCOM, ARDC December 1983
Ballistic Research Laboratory, ATTN: DRSMC-BLA-S(A) 13 NUMBER OF PAGES

Aberdeen Proving Ground, MD 21005 94 __________

14. MONITORING AGENCY N AME & ADORESS(It different from Contfrolling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIF ~
IS. DECLASSIFICANK5DWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of thi. Report)

Approved for public release; distribution unlimited.

1?. DISTRIBUTION STATEMENT (of thu. abstrt en tered In Block 20, It different from Report)

1S. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contliua on reverse aid& If necessary mid Identify by block nhmber)

*UNIX Tutorial
Computer
Software

* Introduction

2.ABSTRACT CCIeo sm pevrne sfdea Nf nsmseeiy and idemeify by block number)

This paper is meant to help beginners get started with the UNIX operating
system. It is by no means all inclusive; however, an attempt was made to touch
on most topics. It will cover, first, the basics needed for day-to-day use of
the system. Included w:ill be: typing conventions, special character meanings,
logging in and out, the file system, file manipulation, and inter-user communi-
cation. Second, it will provide a brief description of the available document

greparation programing software. Emacs, the 'led" editor, C, Basic, Nroff and
11f il be covered. Third. a sectonf eanes an MES~iAd~avM

DO ,~ 12 tmow p ww a a oaoaaitUNCLASSIFIED

U LASSIFIED
gCUrTv LAMUICATM OF TrHIS PAWo(henv D a,,

20. included. Finally, there is a list of terms, for those of you who are
unfamiliar with some of the language and meanings used in computing, and a read-
ing list of UNIX documents. The reading list .ontains documents which I have on
hand.

Di

UKMLASSI PIED
89CURItv CLASSIFICATION OF THIS. PAC.CftWhe" Dole 3Itn)

: !-

Table of Contents

I. Introduction........................ .,* **************.......... 0...5

II. Getting Started.....o........ oo.................. ooo...... 5

A. Typing to UI.o.....................5

1. The BACKSLASH Character........ o... o................. o.... 5

2. The RETURN and LINEFEED Keys _....6

3. The CONTROL Key
~R. -H, RUBOUT, BACKSPACE, -U, -S. -Q, -C, -I, TAB, -D 6

B. Readahead, 7

C. Login.. o........... 7

D. Typing CommandsI ~ ~~~~date, changing password,wh.... 8

E.* Mail..o.o...... o-.... o-........o....... o... o. 9

tF. Writing to Other Users........... 1

G. Ending Your Session. 1

III. Day-To-Day Use.. .. 12

A. Creating Files-The Editors
ed, emacse-e 12

B. What Files Are Out There?
1, chmod... o............ 1oooo~eeo3

C. Printing Files
type, pr.* lpr.o . .. - . -.... o.......... 15

D. Shuffling Files About
mye op.m 1

E. What's in a Filename

F. What's in a Filename, Continued
/, root, pathname, pwd, mkdir, cd.,..... 4 19

G. Using Files Instead of the Terminal

H.Pps.. ..

1. The Shell

IV. Document Preparation *.241

A. Nroff

.sp, .ce, .ul, .1s, .nf, .fi, .11, inf, ti-. 25

B. Hints for Preparing Documents....*............ o....... 27

C. Standard Macro Packages ('MsERL' and 'Mm')................. 28

D. Printing Travel Orders.. 29

E. Miscellany

eqn, neqn, typo, grep, wc, tr, diff, sort, cref, index, Ptx ... 31
V. Programmaing. o 31

A. Programming the Shell *.............. 32

B. Programming in BASIC...................... 33

C. Programming in C..314

D.* At Your Service35

BIBLIOGRAPHY ... 36

APPENDICES

APPENDIX A - EXAMPLES 37

APPENDIX B - A SYSTEM SUMMARY FOR VARIOUS COMMANDS63

APPENDIX C - USING EMACS 77

APPENDIX D - UNIX READING LIST.85

APPENDIX E - TERMS. 89

44

L

I. INTRODUCTION

In many Ways, UNIX represents the state of the art in computer operating
systems. From the user's point of view, it is easy to learn and Use, and
its tool-oriented structure makes it very productive.

It is hard, however, for the beginner to know where to start and how to
make the best Use of the facilities available. The purpose of this tutorial
is to point out high spots for new Users, so they can get Used to the main
ideas of UNIX and start making good Use of It quickly. It is not an attempt
to rewrite the UNIX Programmer's Manual; instead, it should suggest in what
order to read the manual and collect together things that are stated only

* indirectly there. Throughout, references to the manual will look like this:
see Msg(1), which means "see the article titled 'M3g' in section 1 of the
Programmer's Manual." If you don't have a copy of the Programmer's Manual,
there is one on-line. You give the command 'man Msg' to get information on
the 'Msg' command. You can also do a 'man man' to see how 'man' works.

There is also an on-line program called 'learn' you can Use to help you
get started. It is a self-paced course on various topics. It may be worth
your while to spend some time going through this course as an introduction to
the system.

There are four main sections to this manual:

II. Getting Started: How to type to UNIX, using simple
commands, and how to log in and out.

III. Da-to-day Use: Things you need every day to use UNIX
effectively; generally useful commands and the file system.

IV. Document Preparation: Preparing manuscripts is one of the
most common Uses for UNIX. This section contains an
introduction to the simplest text processing program, and
some information about more sophisticated software.

V. Programming: UNIX is an excellent system for program
development. This section talks about some of the tools,
but again is not a tutorial in any of the programming
languages that UNIX provides.

II. GETTING STARTED

A. Typing To UNIX

Typing on a computer terminal is similar to Using a typewriter, with the
exception that some keys have special meanings to the computer. YOU should

* become familiar with these keys because some are essential and some may cause
unexpected things to happen. Typing characteristics can be changed Using the
'stty' command to suit various kinds of terminals and user preferences. See
stty(1) for more information.

1. The Backslash Character M\. This is the UNIX escape character. It
Usually means that If the following character has a special meaning (see

below), the special interpretation is to be turned off. Because of this, it
is a lengthy task to precisely define what this key will do; see tty(4) for
more information. This key is also used extensively in the 'ed' editor.

2. The RETURN and LINEFEED Keys. Each computer terminal will have one
or both of these keys, used to terminate the current line. You should use
the LINEFEED key, although the computer will accept RETURN and immediately
convert it to LINEFEED. On output, LINEFEEDs or RETURNs are converted to a
LINEFEED and RETURN. They will hereafter be referred to collectively as
RETURN. Most of the time, the computer will not process what you have typed
until you have terminated it with a RETURN. If you expect something to
happen, and nothing does, make sure you have ended your command with a
RETURN.

3. The CONTROL Key. This key is similar to the shift key, and is used
to provide extra characters which are usually nonprinting. To type the
'control C' character, for example, type the 'C' key while holding the
CONTROL key depressed. Hereafter, control characters will be represented by
a 'A', so that 'control C' looks like I C.

a. ^R. This character causes UNIX to retype the current line of input
as it now stands. This is useful because some special characters (e.g..
BACKSPACE) may alter the appearance of the line, and because the computer may
interrupt you with a message while you are typing. After the ^R. you may
continue working on the line as before.

b. -H, RUBOUT, BACKSPACE. These keys are used to correct typing
mistakes on the current line. You will have to experiment with your terminal
to see which of these keys your terminal accepts. They will be referred to
collectively as BACKSPACE. Each time BACKSPACE is pressed, it will cause the
last character typed to be deleted. On some terminals, the last character
will actually disappear from the screen. On others the BACKSPACE character
may do one of a few things. It may appear as an underscore, or the terminal
may back up and overwrite what was there before, or it may do something
entirely different. You'll just have to get used to what your terminal does.

c. AU. If repairing the line you are working on would require extensive
use of the BACKSPACE key, you may prefer to throw away the entire line by
typing a AU and then starting over. When this key is used, UNIX will give
you a fresh line.

d. AS and AQ. These two keys have a special meaning when 'stall' is
turned on using atty (on our system, 'stall' is turned on for you
automaticaly). Typing a AS will cause all output to the terminal to be
stopped (stalled). This is useful for fast CRT terminals, where you may want
to look closely at the output before it scrolls off the screen. Output is
resumed by typing a ^Q. You can set your page length with the stty command
in the form atty pagexx' where 'xx' is a number less than 63. This will
automatically insert a AS after lxx' lines, so you will have to type a AQ to
start the screen moving again.

e. 4C. Most programs and commands may be halted by typing a AC. There
are exceptions; for example, the led' editor will stop what it is doing, but
will not go away.

6

f. "I and TAB. These two characters are identical; both cause the
current line position to be advanced to the nearest tab stop. These are
conventionally set every eight spaces. They may be reset by using the 'stty'
command.

g. D. This character is used to indicate an 'end-of-file' from the
terminal. That is, some commands or programs which read multiple lines of
input from the terminal expect input terminated by a ^D, which must be the

* first character typed on a new line. It is also used as a fast exit off the
system.

B. Readahead

UNIX has full readahead, which means that you can type as fast as you
* want, whenever you want, even when some program is typing at you. If you

type during output, your input characters will appear intermixed with the
output characters on your terminal, but they will be stored away by UNIX and
used in the order you typed them. Thus, you can type two commands, one after
the other, without waiting for the first to finish or even begin. If you get
a message while you're typing, Just act as if it did not occur. You don't
need to back up, or type anything to get rid of the message, it will be
ignored when you hit your RETURN. If you want to see what you've typed so
far, use ^R.(See above.)

C. Login

Turn on the terminal, and activate the modem if necessary. Press RETURN,
until the computer asks you to 'enter class'. If the computer does not
respond, press BREAK, then RETURN again. When it does respond, type the
class for the computer you wish to connect with, followed by RETURN. Classes
in BRL are as follows:

Class code Computer
bmd BRL-BMD
vld BRL-VLD
cyber mfa
mfa mfa

mfb mfb
tac BRLNET Tao
vgr BRL-VGR
aunix AMSAA Unix Vax
avms ANSAA VMS Vax

After you enter the class, press RETURN again, and the computer should
ask for your 'User Name'. Type in the name you were given, followed by

* RETURN. Then the computer should ask for your 'Password'. Type in the
password you were given with your User Name, followed by RETURN. You will
notice that your password does not appear on the screen. This is normal, and
is necessary for security purposes. -Then the computer will print a message,

followed by a now lin and a '$'. This is the UNIX prompt. It lets you know
that you may type commands. From now on the things the computer types to you
will be in boldface, and the things you must type will be in normal typeface.

7

D. Typing Commands

Once You've seen the prompt, you may type commands, which are requests
that UNIX do something. In the rest of the manual, if YOU see "$ command',
this means that whenever YOU see the '$', you can type your command. Try
typing

$ date

followed by RETURN. You should get back something like

Tue Oct 12 10:52:29 EST 1982

Don't forget the RETURN after the command, or nothing will happen. If you
think you're being ignored type a RETURN; something should happen. (The
carriage returns aren't shown, but they have to be there.)

One very important exercise you should attempt now is changing your
password. A password known only by you is your major protection against
other people. Keep in mind that if Someone logs on as you, he can do
anything he wants with the information you have put into the system. TO
change your password, do the following

$ passwd
Your login name:
Old password: Type in your old password
New password: Type in what you want for the new

password (at least 6 characters)
Confirm: Retype your new password
Password changed

From now on, whenever the System asks for your password, you will type in
your new password. Two things to remember: you can change your password as
often as you'd like, and regulations require you to change it at least once a
year. Also, if someone else has been using your account for some reason,
(Usually, it's until they get their own) change your password after they've
stopped using it.

Another command you might try is

$ who

which tells you the 'names' of everyone who is currently logged in, and the
ID of their terminals. It gives something like

harry ttya 041
oider ttyJ 641
bobs ttyb 102

If you would like to find out what a user's real (as opposed to login) name
is, type

$ who is cider

which will respond with

Nancy Cider (TBD/PNB) <ciderfbmd7O>

If you need to know a person's user name and you know their real name,
you can use a command called 'grep' as follows

$ grep 'Cider' /etc/password

You need to type their name in upper and lower case as in my example, or the
'grep' program won't be able to find them. The output should be something
like

oider::882:202:Nancy Cider (TBD/PMB) <clderebmd7O>:/other/cider

The user name you are looking for is the name at the beginning of the line,
if the user is on another machine you will need both the user name and the
site they are at. The name then is what is contained in the angle brackets,
like "<cider@bmd7O>" in my listing. When you type it, you shouldn't type the
angle brackets, just use "cider@bmd7O".

If you make a mistake typing a command name, UNIX will tell you. For
example, if you type

$ whom

you will be told

whom: not found

E. Mail

When you log in, you may sometimes get the message

You have mail.

UNIX provides a postal system so you can send and receive letters from other

users of the system. To read your mail, issue the command

$ msg

The 'meg' program will say that it is reading your mailbox file, and will
tell you how many messages 'mailbox' contains. It then gives you the mail
prompt, which is '->'. To read your first message, type 't' followed by
RETURN. As you type the It', the program will finish the word by adding
'ypet , to make the word 'type'. When you press RETURN, it prints out the
current message. You can also read message number 1 by typing 't 1'. To
read your next message, type 'n', and the program will print it. To type
messages I through 5, type 't 1-5'.

If you want to get a list of messages, their authors, and the subject,
type 'ha'. Then you can type just the one you want, by using 't n' where 'n'
is the number of the mesage you wish to see *.g., 't 5' types the 5th
message).

To type any of the msg commands, simply type the first letter, the
program will add the rest by itself. To delete a message, type 'd', and then
the message number or RETURN for the current one. Messages are not actually
deleted until you leave the 'msg' program; until then you can undelete
messages with the undelete command. To back up to the previous message, type
'b'; and to jump to a known message number, type 'g' followed by the message
number and RETURN.

To send a message, type 's'. The 'm3g' program will respond with 'To: I
to which you reply with one or more valid user's names, on the same line
separated by commas. Then it asks 'cC: ' (carbon copies); it is usually a
good idea to keep a copy of a message, in case of mishaps. So you would
reply with your name, and anyone else you feel should get a copy again
separated by commas. It then asks 'Subject: ', to which you reply with the
general idea of the message, which can be up to 30 characters in length. The
fields may be left blank, if so desired, by simply hitting RETURN. Then you
may begin typing your message. Each line must end with a RETURN, and the
message ends with a ^D.

The send prompt will come up after you type the ^D, and is 'command or
V. You can change your message or headings after you finish writing the
message. To see what the entire message looks like, type an 'r' (review).
In send, the rest of the command does not appear on the screen as it did in
the 'msg' program. However, you still only need to type the first letter of
the command. To edit the body of the message, you can type 'ed' (edit), or
'x' (emacs). To edit the headers on the message, type 'h' (header edit).

You can add a file to the message by typing 'f' (file include). You can
also save a message in a file, by using the 'p' command. The 'send' program
will ask you the name of the file you wish to save the message in. If the
system goes down while you are creating a message, it will often be saved as
'draft'. If you type 'msg' and 's', you will be notified that a draft
exists, and will be given a chance to delete it or append new information to
it.

There is also a command '?', in both 'msg' and 'send', which is very
handy. It gives a summary of the commands that you can give either program
(depending on which you are in), with a short explanation for each. Finally,
there are two commands you can give to exit the program. The first is 'e'
(exit and update), which will update your files, and put undeleted mail in
'mbox'. To read the mail in your file 'mbox' you would have to type 'msg
mbox'. It is a good idea to print out the messages in your 'mbox' that you
wish to have a copy of, but don't need on the computer. After you've printed
them, you can delete them. If you ever delete all files from your 'mbox'
you'll get a message asking if you want 'mbox' to be deleted. Reply with a
'y', when you need a new 'mbox' to put undeleted mail in, 'msg' will create a
new one for you. The second is a fast exit that does not update your files.
To do this you type 'q' (quit).

If you want to send some mail to someone on the Arpanet, you have to know
their login name and their host name. Then you give their name as
'name@site', when the 'msg' program asks 'To:'. For example, my name would

10

be 'cider@brl-bmd'. There are a few walkthrough examples in the example
appendix that you can use to get the general idea behind msg. This should be
enough to get you started, and you can use '?', or msg(1) for further
details.

F. Writing to Other Users

At some peint in your UNIX career, out of the blue will come a message
like

Message from Joe 0 ttyf

accompanied by a startling beep. It means that Joe wants to carry on a
conversation with you, but unless you take explicit action you won't be able

to write back. To respond, type the command

$ write Joe

This establishes a two-way communication path. Now whatever Joe types on his
terminal will appear on yours, and vice versa. The path is rather slow. If
you are in the middle of something, you have to get to a state where you can
type a command. Normally, whatever program you are running has to terminate
or be terminated. If you're editing, you can escape temporarily from the
editor -- see ed(1).

A protocol is needed to keep what you type from getting garbled up with
what Joe types. Typically, it's like this

Joe types 'write smith', then 'Are you there?' and
waits. Smith types 'write joe' and waits. Joe now
types his message (as many lines as he likes). When
he's finished, he signals it by typing 'o', which
stands for 'over'.

Now Smith types a reply, also terminated by 'o'.
This cycle repeats until someone gets tired; he then
signals his intent to quit with 'o+o' or 'o/o', for
'over and out'.

To terminate the conversation, each side must type aAD alone on a line. When the other person types his
AD, you will get the message 'EOT' (end of transmis-

sion) on your terminal.

If you write to someone whc isn't logged in, or who doesn't want to be
disturbed, you'll be told. To avoid getting any messages yourself you can
type 'mesg'. 'meag' changes writing permission to the opposite of what it
was (eg., if others were able to write to you before, they won't be able to
now). If the target person is logged in, but doesn't answer after a decent
interval, simply type 4D.

11

.......

G. Ending Your Session

To end a session with the computer, you must first terminate any programs
or commands you may be running. When you have a prompt, type a ^D (end of
file). If YOU Wish to see some accounting information as well, you can type
'logout' instead. If you don't logout, someone else can turn on the terminal
and be you. affecting what you have done. If after the terminal responds to
your logout command you get a message back saying 'quota exceeded'. that
means you don't have enough room to store all the things you've put on the
computer. YOU Must get rid of enough files to allow you to logout, do so,
then come and see me. I will try to get your quota increased so that you
don't have that problem in the future. This problem is often caused by not
deleting messages from your mailbox. If your mailbox file becomes large
enough you may exceed quota. The solution to this is to periodically print
out messages you want copies Of, then delete them from your mailbox.

III. DAY-TO-DAY USE

A. Creating Files - The Editors

If you have to type a paper, a letter, or a program, how do you get the
information stored in the machine? Most of these tasks are done with the
UNIX 'text editor' called 'ed', or just 'e'. Since 'e' is thoroughly
documented in ed(1) and explained in 'A Tutorial Introduction to the UNIX
Text Editor', we won't spend any time here describing how to use it. All you
want it for right now is to create some files. (A file is just a collection
of information stored In the machine, a Simplistic but adequate definition.)

To create a file with some text in it, do the following

$ ed, or e (invokes the text editor)
? (means that the file did not already exist)

a (command to append text)
now type in
whatever text you want

(stops appending)

At this point you could do various editing operations on the text you typed
in, such as correcting spelling mistakes, rearranging paragraphs and the
like. Finally, you write the information you have typed into a file with the
editor command

w junk

You could have replaced 'Junk' with any ether name you chose. 'e' will
respond with the number of characters it wrote into the file called junk.

You have probably noticed by now that there are no prompts in the editor.
The editor is a 'quiet' program, which means that it doesn't say anything
unless something goes wrong. This means that you really have to remember if
you were entering text, or editing. If you are appending and you type editor
commands, the editor will take them as part of the text. Just type a period
on a line by itself and edit out the extra commands.

12

It is usually a good idea to write your file about every page worth, just
in case the computer goes down, or you make a terrible mistake. For example,
you're typing along and want to get an idea of how things look. But instead
of typing 't,$p' to print what you have, you type '1,$d'! This means you
have lost you entire file! But if you have been writing the file every page,
then you have only lost what you had entered since the last write. That's
not quite as catastrophic!

If the system goes down however, usually there is a file created for each
user that was editing, called 'ed-hangup'. This file is created from what
you were doing when the computer went down. However, it is not always in
exactly the form you had it when the computer died, so you may not want to
depend on that. To edit this file, type 'ed ed-hangup'. After you make your
changes, change the name of the 'ed-hangup' file, so that if the computer
goes down again, you will not lose the changes you Just made.

Suppose you now add a few more lines with 'a', terminate them with '.',

and write the whole thing out as 'temp', .sing

a
new lines of text
to be added

w temp

We should now have two files, a smaller one called 'Junk' and a bigger one
(bigger by the extra lines) called 'temp'. Type a 'q' to quit the editor.
If you forgot to write out your file, the editor will say 'Write filet'. To
quit the editor without writing the file, type 'q!'.

You might also like to know about another editor called lemacs'. This is
a screen editor, that is, instead of editing one 'line' of a file at a time,
you edit one 'screen' of a file at a time. A page is displayed on the
terminal, and you use various control characters to move you around and enter
text. To get into emacs, give the command

$ emacs filename (to edit an existing file)
or

$ emacs RETURN (to create a new file)

For more information, and a command summary, refer to the hand-out on emacs,
as well as the appendix of examples. One of the examples is an emacs test
file that you can copy and use, with commands you type to get yourself
familiar with this screen editor. There is a new command called emacs-teach
that will lead you through a comprehensive list of the possibilities
available with maMos. Not all of the information is accurate with regard to
our eamcs, some of the commands are not implemented, and some are handled
differently.

B. What Files Are Out There?

The 'Is' or '1' (for list) command lists the names (not contents) of any
of the files that UNIX knows about. If you type

13

$1

the response will be something like

junk
temp

They are sorted into alphabetical order automatically, but other variations
are possible. For example, if you add the optional argument 't',

$ 1 -t

they are listed in the order in which they were last changed, most recent
first. The '-1' option gives a 'long' listing and will produce something
like

-rw-r--r- 1 cider 41 Oct 12 12:56 junk
-rw-r--r- 1 cider 78 Oct 12 12:58 temp

The date and time are of the last change to the file. The 41 and 78 are the
number of characters in the file. The '-rw-r--r--' tells who has permission
to read and write the files, and this particular grouping is the default.
There are three classes of users that permission is granted for: 'owner',
'group', and 'other'.

'owner' is the user who created the file, and that person's name should
be the user name in the long list. 'Cider' is the owner in the listing
above, and cider's permissions appear first in the '-rw-r--r' grouping. The
second in the grouping is the 'group' users; usually those users in your
branch or team. The 'other' classification is last in the grouping, and is
all other users. In the grouping listed above, the 'owner cider' has read
and write permission, and the 'group' and 'other' users have only read
permission.

To change the permissions you need to know who should have what
permissions for each file, and they are set using the 'chmod' command.
Permissions are represented by numbers In the command. Read permission is
designated with a 4, write permission is 2, execute permission is 1, and no
permission at all is a 0. To give someone more than one permission you add
the appropriate numbers together. For example, if you want to have read,
write, and execute permissions your number would be a 7. To give yourself
read, write, and execute permissions, your group read permission, and
everyone else no permissions on the 'Junk' file you've created, the command
would be

$ chmod 740 junk

And then a 'ls -1' would produce

-rwxr---- 1 cider 41 Oct 12 12:56 junk
-rw-r-r- 1 cider 78 Oct 12 12:58 temp

Your directories can also be set for other people to have access to all
or none of the files in your directory. For more information on setting

14

permissions and resetting the default permissions, see chmed(1) and umask(1).
Use only that Information In the manual that pertains to the absolute mode,
Ignore Information on the symbolic mode.

Getting back to the '1' command, options can be combined: '1 -it' would
give the same thing as the '1 -1' above, but sorted into time order. You can
also name the files you are interested in, and '1' will list the information
about then only. More details can be found In la(1). It is generally true
of UNIX programs that 'flag' arguments like '-t' precede filename arguments
like 'Junk'.

There is another variation of the '1' command available. This is 'lss'.
which lits your files In 6 columns across the screen. This becomes
especially useful when you have many files to list. The 'ls' command given
now, would produce

junk tamp

C. Printing Files

Now that you've got a file of text, how do you print it so that people
can look at it? There is a host of programs that do Just that. One simple
thing is to use the editor, since printing is often done Just before making
changes anyway. You can say

$ e junk
1,$p

or more simply,

$ e junk
1,$

'e' will reply with the count of the characters In 'Junk' and then print all
the lines In the file. After you learn how to use the editor, you can be
selective about the parts you print.

There are times when it's not feasible to use the editor for printing.
For example, there Is a limit on how big a file 'e' can handle (about 124,000
characters or 7,000 lines). Secondly, It will only print one file at a time,
and sometimes you want to print several, one after another. So here are a
couple of alternatives.

First is 'type', the simplest of all the printing programs. 'type'
simply Copies all the files In a 11st onto the terminal. So you can say

$ type junk

or, to print two files,

$ type junk temp

15

The two files are simply concatenated and typed (hence the name 'type') onto
the terminal in the order listed. The command 'cat' does a similar job, but
it puts in the control characters that may be stripped by 'type'.

'pr' produces formatted printouts of files. As with 'type', 'pr' prints
all the files in a list. The difference is that at the top of each page it
produces headings with date, time, page number and file name for each file
specified and extra lines to skip over the fold in the paper. Thus

$ pr junk temp

will list 'Junk' neatly, then skip to the top of a new page and list 'tempt

neatly.

'pr' will also produce multi-column output; as in the following

$ pr -3 junk

which prints 'junk' in 3-column format. You can use any reasonable number in
place of '3', and 'pr' will do Its best.

It should be noted that 'pr' is not a formatting program in the sense of
making new paragraphs and JustifyT- margins. The 'rue formatters are
'nroff', 'troffl, and 'vroff', which you will get to in the section on
document preparation.

There are also programs that print files on a high-speed printer. To
print 'Junk' on the line printer, type

$ lpr junk

and the cursor will come back when 'lpr' is finished See lpr(1) for more
information.

D. Shuffling Files About

Now that you have some files in the file system and some experience in
printing them, you can try bigger things. For example, you can move a file
from one place to another (which amounts to giving a file a new name), like
this

$ mv junk precious

This means that what used to be 'Junk' is now 'precious'. If you do an '1'
command now, you will get

precious
temp

Beware that if you move a file to another one that already exists, the
contents of the file before the 'mv' command was executed are lost forever.

If you want to make a copy of a file (that is, to have two versions of
something), you can use the op command.

16

A

$ op precious tempi

makes a duplicate copy of 'precious' in 'temupi'. This is a good idea when
you want to make many changes to a file. Copy the file to another file with
a new name, then edit the new file. This Way, if anything weird happens to
new file, you still have the old one to fall back on.

Finally, when you get tired of creating and moving files, there is a
command to remove files from the file system

$ rm temp tempi

will remove the files named. You will get a warning message if one of the
named files wasn't there.

E. What's in a Filename

So far we have Used filenames without ever saying what's a legal name, so
it's time for a couple of rules. First, filenames are limited to 14
characters, which is enough to be descriptive. Second, you must refer back
to these files later, so pick a name that means something to you. YOU Must
type this name in every time, so it would be worthwhile to keep it short.
Keep in mind that if you make it too short, you won't remember what was in
the file, so you must compromise somehow. Third, you must never use a
filename that has a space in it anywhere! This will cause many unexpected
and undesired resultsf Instead Of a space, Use a period, hyphen, or
underscore.

Finally, although you may use almost any character in a filename, common
sense says you should stick to ones that are Visible, and that YOU should
probably avoid characters that might be used with other meanings. We already
saw, for example, that in the '1' command, '1 -t' meant to list in time
order. So if you had a file whose name was '-t',I you would have a tough time
listing it by name. There other characters which have special meaning either
to UNIX as a whole, or to numerous commands. To avoid pitfalls, YOU would
probably do well to use only letters, numbers, and the period. (Don't use
the period as the first character of a filename, for reasons too complicated
to go into here.)

On to some more positive suggestions. Suppose you're typing a large
document like a book. Logically this divides into many small pieces, like
chapters and perhaps sectons. Physically it Must be divided too, for 'e'
will not handle big files. You might have a separate file for each chapter,
called

chapi
chap2
etc...

Or, if each chapter were broken Into several files, you might have

17

ohapl.1
chapi.2
chapl.3

ohaP2. I
ohap2.2
etc...

You can now tell at a glance where a particular file fits into the whole.

There are advantages to a systematic naming convention which are not
obvious to the novioe UNIX user. What if you wanted to print out the whole
book? You could say

$ pr chapl.1 chapl.2 chapl. ...

but you would get tired pretty fast, and would probably even make mistakes.
Fortunately, there is a shortcut. You can say

$ pr chap*

The ,0, means 'anything at all', so this translates into 'print all files
whose names begin with 'chap'', listed in alphabetical order. This shorthand
notation is not a property of the 'pr' command, by the way. It is
system-wide, a service of the program that interprets the commands (the
'shell', 'sh'). Using that fact, you can see how to list the names of files
of the book

$ 1 chap*
produces

chapl.1
chapl.2
chapi.3

The 10 is not limited to last position in a filename -- It can be anywhere.

Thus

$ rm *Junk*

removes all files that contain 'Junk' as any part of their name. As a
special Case. 'a0 by itself matches every filename, so

$ pr *

prints all the files (alphabetical order), and

$ rm

removes all files. (You had better be sure that's what you wanted to say!)

The '0' is not the only p~ttern-matohing feature available. Suppose you
went to print only chapters 1 through 4, and 9 of the book. Then you can say

* pr ohap[12349]4

18

The '[...]' means to match any of the single characters inside the brackets.

You can also do this with

$ pr chap[1-49)0

'[a-z]' matches any single character in the range 'a' through 'z'. there is
also a '?' character, which matches any single character, so

$ pr ?

will print all files which have single-character names. Of these niceties,
', is probably the most useful, and you should get used to it. The others

are neat extras and worth knowing, but will probably take a while to
remember.

If you should ever have to turn off the special meaning of 1,1, ,9',

etc., enclose the entire argument in quotes (double), as in

$ 1 "next?"

F. What's in a Filename, Continued

When you first made that file called 'Junk', how did UNIX know that there
wasn't anothe- 'junk' somewhere else, especially since the person in the next
room may also read this tutorial? The reason is that generally each user of
UNIX has his own 'directory', which contains only the files that belong to
him. When you create a new file, unless you take specific action the new
file is made in your own directory, and is unrelated to any other file of the
same name that might exist in any other directory.

The set of all files that UNIX knows about are organized into a (usually
big) tree structure, with your files located several branches up into the
tree. It is possible for you to 'walk' around this tree, and to find any
file in the system, by starting at the root of the tree and walking along the
right set of branches.

To begin, type

$ 1ss /

'' is the name of the root of the tree (a convention used by UNIX). You
will get a response something like this

backup boot etc oft tap usr
bin d lib other unix vld
tbd dav mnt sys

This is a collection of the basic directories that UNIX knows about.
Here, '/bmd' could be a directory which contains tbd users' files. Now try,

$ lss /bmd

This should list a long series of names, among which is your login name.
Finally, try

19

4

I

$ 1 /bmd/yourname

You should get what you get from a plain

$1

By the way, '/bmd/yourname' is your home directory. That is, when you
sign on, that is where you will be. You can do anything with these files as
well as any subdirectories you make, but there is more to directories than
this.

Try

$ type /bmd/yourname/junk

(if 'Junk' is still around). The name '/bmd/yourname/junk' is called the
'pathname' of the file that you normally think of as 'Junk'. 'Pathname' has
an obvious meaning: it represents the full name of the path you have to
follow through the tree of directories to get to a particular file. It is a
universal rule in UNIX that anywhere you can use an ordinary filename, you
can use a pathname.

This isn't too exciting if all the files of interest are in your own
directory, but if you work with someone else or on several projects

concurrently, it becomes handy indeed. For example, your friends can type
your book by saying

$ pr /bmd/yourname/chap*

Similarly, you can find out what files your neighbor has by saying

$ 1 /bmd/neighborname

or make your own copy of one of his files by

$ op /bmd/neighborname/hisfile yourfile

If your neighbor doesn't want you poking around in his files, or vice
versa, privacy can be arranged. Each file and directory has
read-write-execute permissions for the owner, a group, and everyone else, to
control access. Go back to part B of this section, the examples in the first

appendix, or ls(1) and chmod(1) for details. As a matter of observed fact,
most users find openness of more benefit than privacy most of the time.

As a final experiment with pathnames, try

$ lss /bin /usr/bin

Do some of the names look familiar? When you run a program, by typing its
name after a '$', the system simply looks for an executable file of that
name. It looks first in your directory (where it typically doesn't find it),
then in '/bin' and finally in '/usr/bin'. These are the two default
directories that contain command files. There is nothing magic about

20

A . , *,

commands like *type' or '1', except that they have been collected into two
places to be easy to find and administer. You may also look into other

directories if they are accessible.

What if you work regularly with someone else on common information in his

directory. You would save time and effort if you could access his files
without typing the entire path name. This is done by changing the directory
that you are currently in, by

$ cd /bmd/yourfriend

Now when you use a filename in something like 'type' or 'pr', it refers to
the files in your friend's directory. Changing directories doesn't affect
permissions associated with the file - if you couldn't access a file from
your directory, changing to another directory won't alter that fact. If you
forget what directory you're in, use

$ pwd

('print working directory') to find out.

It is often convenient to arrange one's files so that all the files
related to one thing are in a directory separate from other projects. For
example, when you write your book, you might want to keep all the text in a
sub-directory called book. So make one with

$ mkdir book

then go to it with

$ cd book

then start typing chapters. The book is now found in (presumably)

/bmd/yourname/book

To delete a directory, see rmdir(1).

You can go up one level in the tree of files (in the computer business,
trees are always upside down; thus 'up' means 'toward the root') by saying

$ cd

'..' is the name of the parent of whatever directory you are currently in.
For completeness, '.1 is an alternate name for the directory you are in.

G. Using Files Instead of the Terminal

Most of the commands you have seen so far produce output on the terminal;
some, like the editor, also take their input from the terminal. It is

universal in UNIX that the terminal can be replaced by a file for either or
both of input and output. As one example, you could say

$1

21

to get a list of files. But you can also say

$ 1 > filelist

to get a list of your files and put it into the file 'filelist'. ('filelist'
will be created If it doesn't already exist, or overwritten if it does.) The
symbol ,>' Is used throughout the UNIX command system to mean 'put the
Standard Output on the following file, rather than the terminal'. Nothing is
produced on the terminal. As another example, you could concatenate several
files into one by capturing the output of 'type' in the file 'temp' by

$ type fl f2 f3 > temp

This is especially handy when you know you are going to want more than one
copy of the output of a program, and you don't want to rerun the program
every time you want a copy. It is also helpful when you want the output to
be used by someone else on another terminal.

Similarly, the symbol '<' means 'use as Standard Input the contents of
the following file, instead of the terminal keyboard'. Thus, you could make
up a script of commonly used editing commands and put them into a file called
'script'. Then you can run the script on a file by saying

$ ed file (script

There is a file in the system called '/etc/passwd' that contains a list
of user and login names, the division and branch, and other accounting
information for each user. If you wanted to print out this file, you might
have problems reading the output, because the fields are separated by colons.
You can change the colons to tabs to make the output more readable by using
the 'tr' command. 'tr' translates characters from Standard Input, and can be
used here in the form

$ tr ':' 'TAB' < /etc/passwd

Where I have put the word TAB, you would press the TAB key, or use I. This

will give you a cleaner listing on the terminal, in a form that is much more
readable.

H. Pipes

One of the novel contributions of UNIX is the idea of a pipe. A pipe is

simply a way to connect the output of one program to the input of another
program, so the two run as a sequence of processes - a pipeline.

For example,

$ pr f g h

will print the files 'f', 'g', and 'h', beginning each on a new page.

Suppose you want them run together instead. You could say

$ type f g h > temp
$ pr temp
$ rm tampj 22

but this is more work than necessary. Clearly what you want is to take the

output of 'type' and connect it to the input of 'pr'. So let's use a pipe,

as follows

S type f g h 1 pr

The vertical bar means to take the output from 'type', which would normally

have gone to the terminal, and put it into 'pr', which formats it neatly.

Since 'pr' uses characters as they appear in the pipeline, this version runs

faster than the one using the 'temp' file, because you don't have the time
lag for creating a new file.

Pipes are also handy for counting things, eg. the number of files you

have, the number of users logged in, or how many instances a certain sequence

of characters occurs. The program used for counting is 'wC' (word count).
To count the number of users logged-on, use the command

$ who : wc

To count the number of files you have, use

$ ls 1 we

To count the number of filenames that contain a sequence of characters, you
could use

$ ls I grep ".bas" ; wC

This example gives as its result the number of BASIC files, since BASIC

programs must have a '.bas' extension on them.

Many UNIX programs are written so that they will take their input from

one or more files if file arguments are given; if no arguments are given they

will be read from the terminal. Any program that reads from the terminal can
read from a pipe instead; any program that writes on the terminal can drive a
pipe. You can have as many elements in a pipeline as you wish.

I. The Shell

We have already mentioned once or twice the mysterious 'shell', which is
in fact 'sh'. The shell is the program that interprets what you type as

commands and arguments. It also looks after translating t0", etc., into
lists of filenames. It handles the redirection of input and output, pipes,

and some new things besides. For example, you can start two programs with

one command line by separating the commands with a semicolon; the shell
recognizes the semicolon and breaks the line into two commands. Thus

$ date ; who

does both commands before returning with a 'S'.

You can also have more than one program running simultaneously if you

wish. For example, if you are doing something time-consuming, like
formatting a document using 'nroff', and you don't want to wait around for
the results before starting somethin else, you can say

23

... - ,,. L 17 /IA

$ nroff -msBRL manuscript > newman &

The ampersand at the end of a command line says 'start this command running,
then take further commands from the terminal immediately'. Thus the nroff
will begin, but you can do something else at the same time. This is referred
to as 'running in the background'. The reason for putting the results in a
new file is to avoid having the results from the nroff command printed while
you're working on something else.

You can also say

$ (command 1; command 2; command 3) &

to start these commands in the background, or you can start a background
pipe-line with

$ (command 1 1 command 2) &

When you initiate a command with '&', UNIX replies with a number called
the process number, which identifies the command in case you later want to
stop it. If you do, you can say

$ kill process 0

If you forget the process number, you can use 'ps' to print out a list of the
processes currently running and their corresponding process numbers. For
more information, see ps(1).

Just as you can tell the editor or some similar program to take its input
from a file instead of from the terminal, you can tell the shell to read a
file to get commands. For instance, suppose you want to set tabs on your
terminal, and find out the date and who's on the system every time you log
in. Then you can put the three necessary commands ('stty tabs'; 'type
/usr/pub/tabs'; 'date'; 'who') into a file, let's call it 'xxx', and then run
it with either

$ sh xxx
or

$ sh < xxx

This says to run the shell with the file 'xxx' as input. The effect is as if
you had typed the contents of 'xxx' on the terminal. (If this is to be a
regular thing, you can eliminate the need to type 'sh xxx' by putting it in
your '.profile'. See chmod(1) and sh(1).) The shell has quite a few other
capabilities as well, some of which we'll get to in the section on
programming.

IV. DOCUMENT PREPARATION

UNIX is used extensively for document preparation. There are three major
form.itting programs, that is, programs which produce a text with justified
right margins, automatic page numbering and titling, automatic hyphenation,
etc. The simplest of these formatters is 'nroff', which in fact is simple

24

enough that if you type almost any text into a file and 'nroff' it, you will
get plausibly formatted output. You can do better with a little knowledge,
but basically it's easy to learn and use.

'Nroff' is designed to produce output on CRT terminals, typewriter-like
terminals (Diablos, Spinwriters, etc.), line-printers, and the like. Another
formatter, 'troff' (pronounced tee-roff'), instead drives a Graphic Systems
phototypesetter, which produces very high quality output photographic paper.
There is a third formatter called 'vroff' which puts its output onto a
Versatec printer. All three of these packages operate similarly except for a
few specialized commands. Therefore, we'll just deal with generalities, and
leave the specifics for you to discover for yourself.

However, 'nroff' and 'troffl' are relatively hard to learn to use effect-
ively, so several 'packages' of canned formatting requests are available
which let you do things like paragraphs, running titles, multicolumn output,
and so on, with little effort.

A. Nroff

The basic idea of 'nroff' and 'troff', is that the text to be formatted
contains within it 'formatting commands' that indicate in detail how the
formatted text is to look. For example, there might be commands that specify
how long lines are, whether to use single or double spacing, and what running
titles to use on each page. In general, you don't have to spell out all of
the possible formatting details. Most of them have 'default values', which
you will get if you say nothing at all. For example, unless you take special
steps, you'll get single-spaced margins and 58 text lines per page when you
'nroff' a file. This is the reason that 'nroff' is so simple -- most of the
decisions have been made for you. Some things do have to be done, however.
If you want a document broken into paragraphs, you will have to tell 'nroff'
where to add the extra blank lines. This is done with the '.sp' command, as
follows

this is the end of one paragraph.
.sp
This begins the next paragraph ...

In 'nroff', formatting commands consist of a period at the beginning of a
line, followed by two letters, an optional argument, and nothirl more. The
'.sp' command tells 'nroff' to finish printing any of the previous line that
might be still unprinted, then print a blank line before continuing. You can
have more than one space if you wish; '.sp 2' asks for 2 spaces, and so on.

If you simply want to ensure that subsequent text appears on a fresh

output line, you can use the command '.br' (for 'break') instead of '.sp'.

Most of the other commonly used 'nroff' commands are equally simple. For

example, you can center one or more lines with the '.ce' command.

.ce
Title of Paper
.sp 2

25

This causes the title to be centered, then followed by two blank lines. As

with '.sp', '.ce' can be followed by a number: in that case, that many lines

are centered. '.ul' underlines lines, and can also be followed by a number,
as follows.

.ce 2

.ul 2
An Earth shaking Paper
.sp
John Q. Scientist

Will center and underline the two text lines. Notice that the '.sp' between
the lines is not part of the line count.

You can get multiple-line spacing instead of the default single-spacing

with the '.ls' command

.1s 2

causes double spacing.

If you're typing things like tables, you will not want the automatic
filling-up and justification of output lines that is done by default. You

can turn this off with the command '.nf' (no-fill), and then back on again
with '.fi' (fill). Thus

this section is filled by default.
.nf
here lines will appear just
as you typed them -
no extra spaces, no moving of words.
.fi
Now go back to filling up output lines.

You can change the line-length with '.11', and the left margin (the
indent) by '.in'. These are often used together to make offset blocks of

text

.11 -10

.in +10
this text will be moved 10 spaces to
the right and the lines will also be

shortened by 10 characters from the
left. The '+' and '-' mean to
change the previous value by that
much. Now revert:

.11 +10

.in -10

Notice that '.11 +10' adds ten characters to the current line length, while

'.11 10' makes the line ten characters long.

26

The I.til (temporary indent) command indents (in either direction) just
like '.in', except that it only acts On the following line of text. Thus, to
make a new paragraph with a 10-character indent, you would say

.3sp

.ti +10
New paragraph..

you can put running titles on both the top and bottom of each page, like
this

.ds LH left top

.ds CH center top
.ds RH right top
.d3 LF left bottom
.d3 CF center bottom
.ds RF right bottom

The headers and/or footers are divided into three parts. If any part of the
title is left out, that part of the title will be left blank. If you Use a
percent sign anywhere in a header or footer, the current page number will be
inserted. So to get centered page numbers with dashes around them, at the
top, Use

.ds CHI-5

You can skip to the top of a new page at any time with the I bpt command; if
.bp' is followed by a number, that will be the new page number.

The foregoing is probably enough about 'nroff' for you to format most
everyday documents. Read nroff(1) for more details.

B. Hints for Preparing Documents

Most documents go through several versions (always more than you
expected) before they are finally finished. Accordingly, YOU should do
whatever possible to make the job of changing them easy.

First, when you do the purely mechanical operations of typing, type so
subsequent editing will be easy. Start each sentence on a new line. Make
lines short, and break lines at natural places, such as after commas and
semicolons, rather than randomly. Since most people change documents by
rewriting phrases and adding, deleting and rearranging sentences, these

* precautions simplify any editing you have to do later.

Also, remember not to type a space at the end of the line after a period.
The formatting programs will automatically insert two spaces after periods
(and other such punctuation) at the end of each line. However, if one or
more spaces follow such punctuation, the formatters assume special treatment
and generate only one space as a separator.

The second aspect of making changes easy is not to commit yourself to
formatting details too early. For example, if you decide that each paragraph
Is to have a space and an Indent of 10 characters, you might type, before
each

27j

,sp

.ti +10

But what happens When later you decide that it would have been better to have
no space and an indent of only 5 characters? It's tedious Indeed to go back
and patch this up.

Fortunately, all of the formatters let you delay decisions until the
actual moment of running. The secret is to define a new operation (called a
'macro'), for each formatting operation you want to do, like making a new
paragraph. You can say, in all three formatters

.de ni

.ti +15

This defines '.nil' as a new 'nroff' (or 'nroff or 'troff') operation, whose

meaning is exactly

.ti +15

(The '..' marks the end of the definition.) Whenever '.ni' is encountered in
the text, it is as if you had typed the definition in place of it. It means
that everytime .ni is typed you will have a temporary indent of 15 spaces on
the following line.

The beauty of this scheme is that now, if you change your mind about what
a paragraph should look like, you can change the formatted output merely by
changing the definition of '.ni' and rerunning the formatter.

As a rule of thumb, for all but the most trivial jobs, you should type a
document in terms of a set of macros like '.ni' and then define them
appropriately. As long as you have entered the text in a systematic way, it
can always be cleaned up and reformatted by a judicious combination of
editing and macro definitions. The packages of formatting commands that we
mentioned earlier are simply collections of macros designed for particular
formatting tasks.

C. Standard Macro Packages ('msBRL' and 'mm')

There exist standard 'macro' commands for 'nroff', 'troffl', and 'vroff'
specifically designed for producing papers. Although the macro packages are
made up of 'nroff'-like commands, the macros that are defined give you a much
easier method for controlling the style and layout of your paper. Also, the
commands are defined for all three packages, so that papers written for one
formatter can be reproduced by another if desired.

There are a number of styles which you can request: the 'Technical
Memorandum', the 'Released Paper', and the 'Mike Leak paper saving Released
Paper' for the 'msBRL' package. We shall concern ourselves here only with
the 'Released Paper' format, as it is the most heavily used of the three.
This paper is an example of what you can do with the 'msBRL' macro package.

28

!I

The command file (what you feed to the formatter, text and commands
interspersed) for a simple paper would look something like

.RP

.TL
Title of the document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution(s) if wanted.
(This command and text need not appear)

.AB (optional)
Abstract to be placed on cover sheet.
.AE (Abstract End) used only if .AB invoked
.SH (Section Heading)
As much heading as you would like ...

.PP (Paragraph begins)
First paragraph.
Type your text here,
as many lines of text as you like,

as much text on each line
as
suits
you.
.PP
Second paragraph.
The same thing over and over again ...

.SH
Another section heading.
.PP
Yet another paragraph

<End of Paper>

Once you have entered your text (with the macro requests included) into a
file, you can print your paper with 'nroff' by typing

$ nroff -msBRL your text file name(s) ...

and 'nroff' will do the rest! Similarly, you can substitute 'troff' and
'vroff' where 'nroff' is above. The '-msBRL informs the formatters to use
the 'msBRL' macro package.

For a more detailed discussion of the macro packages, see: 'NROFF/TROFF

User's Manual' by Joseph Ossanna, or 'Text Processing' from SECAD listed in
the bibliography of this manual.

D. Printing Travel Orders

There are a number of coordinating programs written by various persons to
make writing travel orders a little easier. To begin you must link a few
files into your directory, as follows

29

I -A

$*In /bmd/steven/tbdfiles/to.copy
$ In /bmd/steven/tbdfiles/person.copy
$ In /bmd/steven/tbdftiles/place.copy

The 'in' command makes a link to the files. You now have a directory
listing of the file and it seems as if you have a copy of It. However, you
really only have a pointer to that file, so when you execute it, you are
really executing the copy in '/bmd/steven/tbdftilest, not your home directory.
Therefore, it is important that you do not change these files. Otherwise, no
one else will be able to use them properly. If you plan to change things in
these macro files, use the 'cp' command in place of 'in'. To remove them
from your directory, you can still use the 'rm' command.

To begin writing a travel order, issue the command

$ person.copy

Now the program will begin by prompting you for the filename for the person
file, then for the things you need to fill out in the travel order that
pertain to an individual (i.e, name, address, phone, etc.). You may want to
keep this file in your directory for any future travel orders on this
particular person.

In order to fill out the rest of the information (ie., that information

specific to just the one travel order), you must give the command

$ place.copy

This time the program will prompt you for a file name for your travel file,
and then the travel information (i., purpose of the trip, no. of days travel,
date leaving, etc.). When you get to the Mode of Transportation, there are
various possibilities, but only the codes are listed. The codes and their
meaning translate as follows

CR Commercial Rail
CA ' Air
CB ' Bus
CS ' Ship
GA Government Auto
GV ' Vessel
GS ' Ship
P Privately Owned Vehicle

to actualy write the travel order, type

$ to.copy personfile travelftile

but, before you press RETURN (You do remember the RETURNS now, don't you?)
put the form for the order in the printer and line it up, then turn the
printer on. Make sure that the margin is lined up properly, or you may wind
up going by bus instead of flying.

30

E. Miscellany

In addition to the basic formatters, UNIX provides a host of supporting
programs. 'eqn' and 'neqn' let you integrate mathematics into the text of a
document, in a language that closely resembles the way you would speak it.
'tbl' formats tables of various types, where you may enter combinations of
labels and data. 'spell' detects possible spelling mistakes in a document.
'grep' looks for lines containing a particular text pattern (rather like the
editor's context search does, but on a whole series of files). For example,

$ grep 'ing$' chap*

will find all lines ending in the letters 'ing' in the series of files
'chap*'. (It is almost always a good practice to put quotes around the
pattern you're searching for, in case it contains characters that have a
special meaning for the shell, as in this case '$' is special.)

'wc' counts the words and lines in a set of files. 'tr' translates
characters into other characters; for example, it will convert upper to lower
case and vice versa. This translates upper case letters into lower case

$ tr '[A-Z]' '[a-z]'

'diff' prints a list of the differences between two files, so you can
compare two versions of something automatically (which certainly beats
proofreading by hand). 'sort' sorts files in a variety of ways; 'cref' makes
cross-references; 'index' makes concordances and indexes; 'ptx' makes a

permuted index (keyword-in-context listing).

Most of these programs are either independently documented (like 'eqn'
and 'neqn'), or are sufficiently simple that the description in the 'UNIX'
Programmer's Manual' is adequate explanation.

V. PROGRAMMING

UNIX is a marvelously pleasant system for writing programs; productivity
seems to be an order of magnitude higher than on other Interactive systems.
There will be no attempt made to teach any of the programming languages
available on UNIX, but a few words of advice are in order. First, UNIX is
written in C, as is most of the applications code. If you are undertaking
anything substantial, C is the reasonable choice. More on that In a moment.
But remember that there quite a few programs already written, some of which
have substantial power.

The editor can be made to do things that would normally require special
programs on other systems. For example, to list the first and last lines of
each of a set of files, say a book, you could laboriously type

$ e chapl.1

1p

q
$ e chapl.2

31

ip

q
etc...

But instead you can do the job once and for all. Type

$ 1 chap* > temp

to get the list of filenames into a file. Then edit this file to make the
necessary series of editing commands (Using the commands Of 'emacs'), and
write it into 'script'. Now the command

$ e < script

will produce the same output as the laborious hand typing.

The pipe mechanism lets you fabricate quite complicated operations out Of
spare parts already built. For example. the first draft of the spell program

type ... (collect the files)
tr ... (put each word on a new line, delete

punctuation, etc.)
sort (into dictionary order)
uniq (strip out the duplicates)
'Comm (list words found in text but not

in dictionary)

A. Programming the Shell

An option often overlooked by newcomers is that the shell is itself a
programiming language, and since UNIX already has a host of building-block
programs, you can sometimes avoid writing a special purpose program merely by
piecing together some of the building blocks with shell command files.

As an unlikely example, suppose you want to count the number of users on
the machine every hour. You could say

$date
$ who I wc -1

every hour, and write down the numbers, but that is rather primitive. The
next step is probably to say

$ (date; who 1 WC -1) >> Users

which uses '>>' to append to the end of the file 'Users'. (We haven't
mentioned '>>' before -_ it's another service of the shell.) Now all you
have to do is put a loop around this, and ensure that it's done every hour.
Remember that all programs are just files, and can therefore be created with
any of the editors you know about. Thus, place the following commands into a
file with either ad or emaCs, and call it 'count'

32

- - ~Aloft

: loop
(date; who 1 we -1) >> users
sleep 3600
goto loop

The command ':' is followed by a space and a label, which you can then
'goto'. Notice that it's quite legal to branch backwards. Now if you issue
the command

$ sh count &

the users will be counted every hour, and you can go on with other things.
(You will have to use 'kill' to stop counting.)

If you would like 'every hour' to be a parameter, you can arrange for
that too. You can change 'sleep 3600' to 'sleep $1', so the program looks
like

: loop
(date; who 1 we -1) >> users
sleep $1
goto loop

'$1' means the first argument when this procedure is invoked. If you say

$ sh count 60

it will count every minute. A shell program can simultaneously access up to
nine arguments, '$1' through '$9', but can have more. See shift(I) on how to
access the extra ones.

The other aspect of programming is conditional testing. The 'if' command
can test conditions and execute commands accordingly. You could arrange that
the 'count' procedure count every hour by default, but allow an optional
argument to specify a different time. Simply replace the 'sleep $1' line by

if $1x = x then sleep 3600 else sleep $1 fi

The construction

if $1x = x

tests whether or not '$1', the first argument, was present. If you use an
else clause, you need to end the 'if' with a 'fl'.

More complicated conditions can be tested: you can find out the status
of an executed command, and you can combine conditions with 'and', 'or',
'not' and parentheses -- see if(I). You should also read shift(I) which
describes how to manipulate arguments to shell command files.

B. Programming in BASIC

For small, 'quick and dirty' programs, or programs that you are only
going to use a few times, BASIC is probably the best choice. It is easy to

33

learn, has a reasonably powerful syntax, and gives excellent diagnostics and
debugging aids. We have interactive DEC RSTS BASIC-PLUS that has been
adapted to run under UNIX.

To get into BASIC, simply type

$ bdsic

BASIC will respond with something like

Revised 02.11.76
Ready

and you are ready to go! You can use BASIC to create your program. if you
don't want to use one of the editors. If you want to use one of the editors,
you will have to number the lines of text sequentially, and the file name
must have the extension '.bas' (e.g., test.bas). After you enter the BASIC
program you can load in your created file with 'old filename'.

If you wish to use BASIC to create your text file, enter the BASIC
program with the command 'basic', then say 'new filename'. This creates a
place for your new file. You can then enter your program by giving the line
number and the text for that line. An example would be

10 PRINT "Hello therel"

Once the file has been created you may modify any lines by typing the
line number and the replacement text. The new file is then saved by typing
'save' if this is a new file, or 'replace' if it was an old one. Lines are
listed by typing 'list'. To exit from BASIC, Just type ,Ab. There is more
information on BASIC that was written by Steven Segletes. To look at it type
'cat /bmd/steven/tbdfiles/basic.doc'. You could also refer to the 'BASIC'
Language Manual', and basic(M).

C. Programing in C

As we said, C is the language of choice: everything in UNIX is tuned to
It. It is also a remarkably easy language to use once you get started.
Sections II and III of the user's manual describe the system interfaces, that
is, how you do 1/0 and similar functions.

You can write quite significant C programs with the level of I/O and
system interface described in 'Programming in C: A Tutorial', if you use
existing programs and pipes to help. For example, rather than learning how
to open and close files you can (at least temporarily) write a program that
reads from standard input, and use 'cat' to concatenate several files into
it. This may not be adequate for the long run, but for the early stages it's
just right.

There are a number of supporting programs that go with C. The C
debugger, 'cdb', is marginally useful for digging through the dead bodies of
C programs. 'adb', the assembly language debugger, is actually more useful
most of the time, but you have to know more about the machine and system to
use it well. I have found that the program 'lint', when applied to programs

34

k *m

gives a thorough listing of possible errors in a program (and usually it's
rightl) The most effective debugging tool is still careful thought, coupled

with judiciously placed print statements.

You can instrument C programs and thus find out where they spend their

time and what parts are worth optimizing. Compile the routines with the '-p'

option; after the test run use 'prof' to print an execution profile. The
command 'time' will give you the gross run-time statistics of a program, but
it's not super accurate or reproducible. See cc(1) and prof(I) for more on
this.

C programs that don't depend too much on special features of UNIX can be
moved to the Honeywell 6070, IBM 370, DEC VAX and many other computer systems
with modest effort. Read 'The Portable C Library' by M.E. Lesk for details.

D. At Your Service

If you want to use Fortran, you might consider 'RATFOR', which gives you
the decent control structures and free-form input that characterize C, yet

lets you write code that is still portable to other environments. Bear in
mind that UNIX Fortran tends to produce programs that are larger and slower
than their equivalents in C.

If you want to use assembly language, be aware that there are three

assembly languages on UNIX: 'as', the standard UNIX assembler, 'asm', a
macro assembler similar to MACRO-11; and 'macro', a macro assembler
specifically geared to Fortran. However, for virtually all applications, C
should be used instead of assembler. This implementation of C is essentially
a very powerful shorthand for assembly language. Most statements compile
into a very few instructions.

If your application requires you to translate a language into a set of
actions or another language, you are in effect building a compiler, though
probably a small one. In that case, you should be using the 'yacc' or 'tmg'
compiler-compilers, which help you develop a compiler quickly.

If you are making a few changes to a large or 'sacred' program/database,
ard two (slightly different) copies would be undesirable, there is a

solution! The programs 'mkpat' and 'patch' are the answer. 'Mkpat' takes two
files and, after some fiddling, comes up with the editor commands that, if
applied to the original file, will reconstitute the modified file. 'patch'
accepts the original file and the file output by 'mkpat', and reconstitutes
your modified file.

35

BIBLIOGRAPHY

1. B. Henriksen, N. Hartwig, and S. Wolff, "Text Processing," The Ballistic
Research Laboratory Office Of The Director Automated OfficeSystem, SEC
Internal Memorandum.

2. B. W. Kernighan, "A Tutorial Introduction to the UNIX Text Editor," UNIX
Programmer's Manuel for UNIX System III, Vol. II, Western Electric
Company, Inc., Greensboro, 1981.

3. B. W. Kernighan, "UNIX for Beginners - Second Edition," UNIX Programmer's
Manual for UNIX System III, Vol. II, Western Electric Company, Inc.,
Greensboro, 1981.

4. B. W. Kernighan, The C Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, 1978.

5. M. E. Lesk, "Typing Documents on the UNIX System: Using the -ms Macros
with TROFF and NROFF," Bell Labs Internal Memorandum, Bell Laboratories.
Murray Hill, 1978.

6. R. Thomas, and J. Yates, A User Guide to the UNIX System, Osborne/McGraw-

Hill, Inc., Englewood Cliffs, 1978.

7. K. Thompson, and D. M. Ritchie, UNIX Programmer's Manual for UNIX System
III, Vol. I, Western Electric Company, Inc., Greensboro, 1981.

8. Computer Technology Group, Telemedia, Inc., Class notes, 1982.

36

APPENDIX A -EXAMPLES

37

I. Login

Login refers to what you have to do to let the computer know that you.
wish to speak to it. This is a sample login, you must type those things that
are in the normal type, the things that the computer types to you are in
boldface.

BREAK (you don't need this if you have a dial-up

modem)

RETURN (may be repeated)

(The RETURN key must be pressed after every command as indicated by the
'RETURN' responses below)

enter class bmd RETURN

class bad start RETURN

JHU/UNIX 6.174 Ballistic Modeling Division ttyN

11/70 1024kw mem, 102/150 procs, 29 users. Unattended

User Name: cider RETURN (you would type your user name)
Password: nancyc RETURN (you would type your password)

11/22/82 10:56:06 Nancy Cider (TBD/PMB) <ciderfbmd7O>
Prey: 11/22 08:17 from ttyI

$

• ' 3,

II. Password

This is an example of how to change your password. The only things that
show up on the screen are "passwd" and the computer prompts, the rest is

invisible to protect your new password. Your password must be at least 6
characters, and can be any combination of upper and lower case letters, plus
digits.

$ passwd
cider: (Everything on the next 3 lines that you type

won't show on the terminal)
Old password: nancyc RETURN (Type your password as it is)
New password: TBDstuff RETURN (Type what you want as your new password)
Confirm: TBDstuff RETURN (Type your new password again)
$

~40

III. Permissions

Before we discuss how to change permissions, maybe we ought to discuss
exactly what permissions are and how you are affected by them. If you make a
listing of your files by executing the command

$ is -1

you will get a result like the following

-rw-rw-rw- 1 older 1345 Dec 1 10:35 emacs.test
-rw 1 cider 0 Feb 10 12:56 mailbox
-rw 1 cider 12786 Feb 10 12:56 mbox

the section that looks like '-rw-rw-rw- is the permission section. You
should notice that the permission section has three parts. The first 'rw-
is the permissions that you have, which are read and write. The second and
third parts are for your group and others, respectively. Everyone has read
and write permission for the first file, but my group and others have no
permissions for my mailbox and mbox files.

There are default permissions used when you create a directory or a file.
If you feel that these permissions are either too liberal or too stringent
for your use, you can change them. Your directory and individual files can
be changed by using the "chmod" command.

You can do

$ chmod 777 junkfile

and the result will be that everyone can read the file, write a new version
of the file, delete the file, and execute the file (if appropriate). In
files, 4 is the ability to read the file, 2 is the ability to write a new
version of the file or delete it, and 1 is the ability to execute the file
(used only for programs).

The same type of thing can be done to your directories. The permissions

for your home directory can be changed by typing

$ chmod abc

where the abc stands for the sum of the permissions you wish to allow for
everyone. In directories, 4 is the ability to do an 13 (list the filenames
in a directory), 2 is the ability to put something into the directory, and 1
is the ability to take something from the directory, or delete a file from a
directory. The abc refers to the separate person's permissions. The a
refers to you, the b refers to your group members, and the c refers to
everyone else. So, 777 would allow everyone to search your directory, write
things into it, and read things from it. Using 766 allows you to list,
write, and delete files in the directory, and other people to list the files
in your directory and put new files into it, but not take something from it.

0$1

If you wish every file you create to have the same permissions, and you
don't want to use the ones that are the default (644, or read and write for
you, and read everyone else), you can put the command "umask abe" in your
.profile that is executed each time you login. The "umask" subtracts the
permissions listed for every file you create. The command "umask 026" says
to subtract no permissions from yourself, subtract write permission from your
group, and subtract read and write permission from all others, every time a
file is created.

You may, on the other hand. want to create a "closed" directory for
sensitive information as follows

$ mkdir CLOSED (It is sugg6sted that directories be
distinguishedi from files by capitalizing

directory names)

$ chmod 700 CLOSED

Then to store files in this directory, you move to it with the following
command

$ cd CLOSED

Now you can edit and create files with the editor or emacs as you
normally would. To change back to your original directory, Just type 'cd'
without any argument, and you will be back in your HOME directory.

42

IV. Send

This is an example of how to send a message to someone else on the system
via the mail facility.

$ send
SEND (22 Nov 82)
To: barb (The user name of whomever you want to send mail

to)
cc: RETURN (You can give names of users you wish to receive

a copy, or RETURN for no copies)
Subject: Type whatever the message is about!
Type message; end with a CTRL-D...

Give the contents of the message, however many lines you wish, until
you have said everything you wish to say!
D

Command or ?: f (To include another file with your text)
File: barb.msg (Type the name of the file to be included)
...included

Command or ?: e (To edit the file)
234
I'$
Give the contents of the message, however many lines you wish, until
you have said everything you wish to sayl
This is the contents of the file called "barb.file" that I created
for sending to barb in my message! I just have a few lines of ths/that
for example.
$-1
for sending to barb in my messagel I just have a few lines of ths/that
s/ths/this/p
for sending to barb in my message! I just have a few lines of this/that
w
235
q
Command or ?: s (For send)
barbQBrl-Bmd: address ok
Message posted.

$

V. Msg

There are two examples here, containing different possibilities and

options of the "msg" command. You can refer to the section on mail in part I

of my tutorial.

A.

$ msg
MSG (22 Nov 82) Type ? for help.
Reading /other/clder/mailbox .. 2 messages total.

<- headers all
IN 1251: 17 Nov 82 Myra Hartwig Computer Maintenance

2N 532: 19 Nov 82 Nancy Cider (TB Your assistance
<- type 1
(Message P 1: 1251 bytes)
Date: 17 Nov 82 9:56:50-EST (Fri)

From: Myra Hartwig <myraeBRL-BMD>
To: keller at Brl-Bmd, klem at Brl-Bmd, etc
cc: myra at Brl-Bmd, hardware at Brl-Bmd
Subject: Computer Maintenance
Folks,

We are rapidly approaching the "drop dead" date for the

current computer maintenance contract, and the start-up of our
new contract. ETC.
<- delete 2
<- headers all

1 1251: 17 Nov 82 Myra Hartwig Computer Maintenance

2ND 532: 19 Nov 82 Nancy Cider (TB Your assistance

(The "D" is the delete flag, to tell you that you wanted that message
deleted. There are other flags that are also used, N for new, A for

answered, P for put into file, etc.)
<- forward 1

1N 1251: 17 Nov 82 Myra Hartwig Computer Maintenance
SEND (22 Nov 82)

Subject: [Myra Hartwig: Computer Maintenance]
To: barb (The user name of the person to whom the message

is forwarded to)

Your comment; end with CTRL-D on a new line ...

I just wanted to give you a copy of this in case you
didn't recieve one. Is there anything you wish to say in reply?

Nancy
'D

... Included
command or ?: s
barbfBrl-Bmd: address ok
Message posted.

<- exit and update /other/cider/mailbox into /other/cider/mbox
(Confirm] yes (Or RETURN)

Moving undeleted mail to /other/cider/mbox
$

44

- -- -- T-.7 - ,

T4

B.

$ m3g mbox ("mbox" is where your undeleted mail goes when
you exit)

MSG (22 Nov 82) Type ? for help.
Reading ubox 4 messages total.
<- headers all

1 565: 9 Nov 82 Mike Nuuss Experience
2 231:12 Nov 82 Barbara Ringers Your apprenticeship
3 1251:17 Nov 82 Myra Hartwig Computer Maintenance

4 232:21 Nov 82 Nancy Cider Sample

<- answer 3
1 A 1251:17 Nov 82 Myra Hartwig Computer Maintenance

copies to which original addresses: ccd
(You have a choice of "c" for copy the header off the original letter, or

RETURN for no copy. I'm afraid that if you want different header Info.,
you have to RETURN, then do a header edit to change it.)

To: Myra Hartwig <myraQbrl-md>
cc: myra at Brl-Bmd, hardware at Brl-Bad
Subject: Re: Computer Maintenance
Type message; end with CTRL-D...

This is just a little message to show you what's going on!
^D

Command or ?: h (For header edit)

[Return (skip) - (delete) + (append)]

To: Myra Hartwig <myralbrl-bmd>
To: RETURN
cc: myra at Brl-Bmd, hardware at Brl-Bmd

cc: cider
Subject: Re: Computer Maintenance
Subject: RETURN
Command or ?: r (For review)
From: Nancy Cider (TBD/PMB) <ciderQBRL-BND>
To: Myra Hartwig <myratbrl-bmd>
cc: cider at Brl-Bmd
Subject: Re: Computer Maintenance

This is just a little message to show you whatts going on!
Command or ?: s (For send)

myra at Brl-Bud: address ok
cider at Brl-Bud: address ok

<- quit
i$

1q5

VI. Emacs

There is a file in /bmd/cider called "emacs.test". Use the following
commands on it to test out what emacs can do. You must do everything in the
order it is listed here, or odd results will occur.

A. Type "cp /bmd/cider/emacs.test emacs.test" to get a copy in your

directory. DO NOT USE "my" or "ln"! This will remove the file from use by
others.

B. Type "emacs emacs.test". This puts you in emacs, editing "emacs.tst".

C. Before you begin typing, you need to know something about the characters
you will be using. There are 2 types, control and meta-characters. By
convention, the control characters are represented by the "A", followed by a
character. For example, the "control d" character would look like "Ad", and
it is typed by holding down the CTRL key, and pressing the "d".
Meta-characters are represented by a capital M followed by a character. For
example, "meta d" is represented by "M-d", and is typed by pressing the ESC
or ESCAPE key, (which produces "M-: " at the bottom of the screen) and then
the "d". Another different feature is the "multiplier", which allows you to
get multiples of a command. You use the ESCAPE key followed by how many
times you wish to perform the command, then the command you wish to perform.
This means that if you want to move down 16 lines, you can type "M-16",
followed by "an".

D. The first thing in the file to be done is that of deleting my beginning
message. This can be done by typing "M-6", then "^k". The "^k" kills from
the current cursor position to the end of the line. The cursor should be
positioned at the beginning of the text.

E. The first typo to correct is the word "publcty" in the first line. Two
"i"'s must be added in the appropriate positions to make the word
"publicity". To move over there, type "M-3", then "M-f", which moves you
forward 3 words, then type "M-5", and "^f", which moves you forward 5
characters. The cursor should now be positioned on the "c" and if so, you
can type your first "i". Type a "^f" to move you forward, and type your
second "i". The rule for inserting text is to position the cursor on the
character after the position where the text is to be inserted and Just type.

F. The second typo is 6 lines down in the word "recleving". To get there,
type "14-6", then "An". The cursor should now be in the right line, but the
wrong place, so you'll need to back up. Type "M-2", "M-b" to back up 2
words, then "M-7" and "^b" to back up so that the cursor is positioned on the
first "i" in "recieving". Type "At" and you should notice that the "i" and
"e" have been transposed. That is the function of "At".

G. The last typo is "meckanisms" another 12 lines down. Type "1-12" and
"An", then use "Ab" to back up so that the cursor is on the "k", then type
"Ad". The "Ad" deletes forward one position, meaning that the cursor is the

place where the deletion is to occur, then the cursor stays where it is.

There is also a "Ah" that deletes backward. Position the cursor one
character in front of the one you want to delete, then type "Ah" and the

46

character in back of the cursor is deleted, while the cursor backs up to take

that place. Now that the "k" is deleted, all you need to do to fix the word
is type the "h".

H. Since we're through with the typos, why don't we save what we've done in
case the computer goes down? The command to do this is "^x", "^s". As you
type the "^x", notice that the cursor moves to the bottom of the screen, and
is preceded by a "^X:". After the "^s" is typed, you should get a message at

the bottom of the screen saying "Wait" then "Written: emacs.test", which says
that the buffer we've been working with has been saved.

I. There was supposed to be a new paragraph at the line that begins "The
ozone layer ranges ... ". To correct this use "M-11" and "^p", then type "^a"
to get to the beginning of the line. Type "RETURN" followed by 3 spaces, and
it should look just like the other paragraphs.

J. The last thing to be done is use the search to find and correct an oddity
that you might find a useful application. Go to the beginning of the file by
typing "M-<". Now to search type "^s", and you should see "Search:" at the
bottom of your screen. Type a "-" and the cursor should jump to the dash in
between "microcomputer-based". Type "RETURN" and the "Search:" string should
be "Search: -^J", which is the control symbol for RETURN. The cursor should
jump to the dash in "strato-", and the screen should rewrite with line 21 as
the first line on the screen.

Some packages like 'nroff' don't allow hyphenation, because 'nroff'
hyphenates as it sees fit. So I'm going to show you a way to join the words
without retyping them. Type a "-d" to get rid of the dash, as well as ending
the search. Type another "'d" to get rid of the end-of-line character and
join the word. Go to the end of the word with a "M-f", and type "^d" to get
rid of the space between words. Type a "RETURN" and you now have 2 lines
with "stratospheric" joined and positioned on the upper line.

K. This is the end of the emacs example, so let's exit and save the file.
Type "ex", "-c" and a message should appear at the bottom of the screen
saying "buffer emacs.test modified since last write to file emacs.test,
write?". You can say "y" if you want the file written (this is what you

should type), "n" if you don't want the file written, and "^g" if you want to

abort the exit and write command and continue to edit. After the file has
been written, emacs sometimes doesn't clear the screen and give you back a
cursor, but don't panict Type 2 letters of a command (I usually use "^q"
twice) and the screen will come back with a cursor, and the command you've
typed.

L. There is more to emacs than just these few commands I've taught you. The
best way to learn is to create a file, and Just experiment using the list of
commands I've included in this handout. And, if you ever get stuck doing
something you don't want to do, just type "^g", it usually quits anything
you've started. Or, if the file is wrecked beyond repair, you can read the
file in again using "ax", "^r" and start everything over.

47

VII. Creating Emacs Files

A. .Profile

These are some of the options you can put in your .profile. The "path"
and "mail" lines are pretty standard, but you'll have to change "cider" to
your user name. In the "tern." line you will have to change the terminal type
to that of your terminal, and the "stty" will probably have a different page
length. If you don't know your terminal type, give me a call and we can work
one out. The "stty" command has many more options that are listed in
stty(1). If you don't wish to use the reminder command, you can leave off
the last two lines.

To actually enter the file, type "emacs". The emacs screen will come up,
and you can begin to enter text. Enter the whole portion, then use any emacs
commands you need if you make a mistake. Then to save the file, type " X
^C", and the words "Main modified since last write to Main, write file?" will
appear at the bottom of the screen. You reply with "y" for yes, and the
words "Write file?" will appear at the bottom of the screen. You reply with
".profile" which will be the file name.

PATH=:/bin:/usr/bin:/usr/sbin:/usr/ofebin:/usr/3bin
MAIL=/other/cider/mailbox
TERM=adm3a
export PATH MAIL TERM

umask 026
stty page23
grep 'date %m/%d/%y' .dates
reminder

B. .Dates

These dates are used by "reminder" (from your .profile). The first
section is the date of the event, the second section is the number of days in
advance you wish to be reminded, and the third section is the content of the
reminder. The fourth section is who the event is about or from. The last
section is the status field, which is usually "n" or "x". An "n" just
reports the event, and the "x" deletes the event after it has passed. You
can create this file in the same manner as your .profile, but when "Write
file?" appears, you reply ".dates".

12-25:365:Christmas::n
12-22:4:Checking about a bumper stickerl::nx
1-2:14:Birthday:Mom:n

When you logged on for 21 December, the output would look like

4 days before Christmas
One day before checking about a bumper stickerl
12 days before Mom's Birthday

48

C. .Plan

Your .plan is used when someone does a "finger" on you. It can be
whatever information you wish to give anyone trying to get a hold of you, or
general information you wish people to know about you. All you need to do is
create a file called ".plan" and fill it with whatever text you wish given
out. This can be created as above, only you must use the name .plan.

49

-AM.4

VIII. Creating Files With "ed"

This is a sample file that you can create yourself using "ed".

$ ed junkfile
? (This means that the file did not previously

exist)

a (This means to append to the text existing in
the file)

Despite all the publcty about damage being done to
the ozone layer, scientists have had little information
with which to judge man's impact on this part of the
earth's atmosphere. A microcomputer-based satellite
designed and operated by the University of Colorado is
now examining the ozone layer, sending data and
recieving instructions through a minicomputer.
* (end the apending)
1 (move to line 1)

Despite all the publcty about damage being done to
s/lcty/licity/p (substitute the first occurrence of the string

"lcty" with "licity")
Despite all the publicity about damage being done to

+6 (move down 6 lines)
recieving instructions through a minicomputer.
s/ie/ei/p (substitute the first occurrence of "ie" with

"ei")

receiving instructions through a minicomputer.
w (write out a copy of the file "junkfile")
771 (number of characters in the file)
q (quit the editor)
$

i io

IX. Logout

You have your choice of doing a "AD", or a "logout". The "logout" is a
longer version that gives you some accounting information as well as logging
you out. It looks like:

$ logout
Checking... OK (375/1000 blocks)
Disk reads 303 writes 64
Connected 0:03:18 to date 51:58:05
CPU time 0:00:12.86 to date 2:39:23.65
ttyd free Mon Nov 22 14:52:13 1982

The ^D is a quick exit, and just checks to see if you are under
your storage quota, then it exits as follows:

$ ^D
Checking... OK (375/1000 blocks)
ttyd free Mon Nov 22 14:52:13 1982

51

X. Nroff

This is the text of the first section of this manual as it looked before
I put "nroff" to work on it. I've enclosed some comments,to make things
clearer, but if you have any questions, refer to the "Programmer's Manual" or
see me for additional documentation manuals.

.RP (tells nroff you have a released paper style)

.nr LL 7i 1\ these two commands tell nroff to set the

.11 7i 1/ line length at 7 inches

.ds CH -4- (Puts page numbers like "-1-" at the top of the
page)

.ce (Centers a line, or multiple lines if specified)
I. INTRODUCTION
.PP (Start of paper)
In many ways, UNIX represents the state of the art in computer operating
systems.
From the user's point of view, it is easy to learn and use,
and its tool-oriented structure makes it very productive.
.PP
It is hard, however, for the beginner to know where to start,
and how to make the best use of the facilities available.
The purpose of this tutorial is to point out high spots for new jsers,
so they can get used to the main ideas of UNIX and start making good use of
it quickly.
It is not an attempt to rewrite the UNIX Programmer's Manual;
instead it should suggest in what order to read the manual,
and collect together things that are stated only indirectly there.
Throughout, references to the manual will look like this: see msg(1);
which means "see the article titled "msg" in section 1 of the
Programmer's Manual".
If you don't have a copy of the Programmer's Manual, there is one on-line.
You give the command 'man msg' to get information to see how 'man' works.
.PP
There is also an on-line program called "learn" you can use to help
you get started.
It is a self-paced course on various topics.
It may be worth your while to spend some time going through this course as an
introduction to the system.
.PP
There are five sections to this manual:
.IP 1I. Indented paragraph set off by "II.")
.ul Getting Started (Underline the following words)
: How to type to UNIX, using simple commands, and how to log in and out.
.IP iII.
.ul Day-to-day Use
: Things you need every day to use UNIX effectively;
generally useful commands and the file system.

52

.IP IV.

.ul Document Preparation
:Preparing manuscripts is one of the most common uses for UNIX.

This section contains an introduction to the simplest text processing
program, and some information about more sophisticated software.
.IP V.
.ul Writing Programs
: UNIX is an excellent system for program development.
This section talks about some of the tools, but again is not a tutorial in
any of the programming languages that UNIX provides.
.sp 2
.ce
II. GETTING STARTED
*sp
A.
.ul
Typing to UNIX
*PP
Typing on a computer terminal is similar to using a typewriter,
with the exception that some keys have special meanings to the computer.
You should become familiar with these keys because some are essential and
some may cause unexpected things to happen.
Typing characteristics can be changed Using the 'stty' command to suit
various kinds of terminals and User preferences.

See 3tty(1) for more Information.

53

XI. DF Forms

This is a sample of a df form that you can use. It is written for nroff
and uses similar commands. A full explanation is contained in the text
processing handout that is included. To run the file type "runoff
file-name".

NOTE: The output will have the correct spacing for a standard DF form.

.CS 1 (tells the package that you're on comment 1, the
package can handle up to 9 comments)

.OS T (prints the DRDAR-BLT flag, can be changed for
other office symbols, by changing the "T")

.SB (subject)
Emergency Justification
.TO (to whom)
Ms. Sara Bauer
Procurement Directorate
.FM (from whom)
Chief, TBD

.AU (author and phone number)
BERingers/6065

.ND 9 December 1982 (new date, or no date if left blank)

.SG (signature block)
DONALD F. MENNE
.P1 (first level of paragraphing)
The Terminal Ballistics Division submitted orders W3Q4AA - 2152-0007,
2152-0009, 2152-0005, 2175-0006, 2152-0008, 2152-0006, 2152-0012, 2175-0007
for 72 Modgraph terminals.

No shipping date has yet been received for the delivery of these terminals.
.P1
Two VAX 11/780 Computer Systems and peripherals have been ordered for TBD and
have a delivery date of January, 1983.
Such systems are useless without accompanying terminals to enable TBD
personnel to access the systems.
.P1
It is thereby requested that emergency measures be taken to acquire the
aforementioned terminals ASAP.
Otherwise equipment involving considerable investment will remain idle.
.GO (last command in the file)

54

DISPOSmOINPORM
FOr u. Of this form. oft AN 3w1s; the pso epoft eumvy is TAGO.

REFERENCE ON OPPICE SYMBOL SUBJECT

DRDAR-BLT Emergency Justification

TO Procurement Directorate FRM Chief, TBD DATE 9 December 1982 CMTi

Ms. Sara Bauer BERingers/6065

1. The Terminal Ballistics Division submitted orders W3Q4AA - 21S2-0007, 2152-0009, 2152-
0005, 2175-0006, 2152-0008, 2152-0006, 2152-0012, 2175-0007 for Modgraph terminals. No
shipping date has yet been received for the delivery of these terminals.

2. Two VAX 11/780 Computer Systems and peripherals have been ordered for TBD and have a
delivery date of January 1983. Such systems are useless without accomanying terminals to
enable TBD personnel to access the systems.

3. It is thereby requested that emergency measures be taken to acquire the aforementioned
terminals ASAP. Otherwise equipment involving considerable investment will remain idle.

DONALD F. MENNE

55

A M 2416

XII. Travel Orders

There are a few programs that have been combined to make writing travel
orders easier. First issue the next three commands

$ in /other/steven/tbdfiles/to.copy
$ In /other/steven/tbdfiles/person.Copy
$ in /other/steven/tbdfiles/place.copy

You don't need to alter these files in any way (And indeed you should not,
because then the travel order programs will not work for anyone!). To begin
writing a travel order type the command

$ person.copy

You should begin getting the prompts that follow, and you would replace
my answers with those that you need for your order.

What personfile do you wish to create ?
Your response will become a UNIX file in your directory.
cider
Answer a11 questions on one line, I they will appear on the
travel orders...(any questions, 6a11 Steve Segletes X6073)

Enter person's name (last name, first name init.)
CIDER, NANCY L.
Enter the personts home address, town, state
8150 Pleasant Plains Road, Towson, MD
Enter the person's position, grade
Computer Scientist, GS-07
Enter the person's phone extension
6066
Enter the requesting official, title
C. T. CANDLAND, A/C, PHB, TBD
Enter the approving official, title
D. P. MENNE, C, TBD
Enter Organizational Element
PMB
Enter a for civilian, m for military
c

Due to regulations, the person's Social Security number will have to
be typed manually on the travel orders since it can not be entered
on the computer.

Your personfile cider is now created
Have a nice day.

56

............. 5 ' . _ ,, - "'; -- -. .. I .

You should now have a file in your directory of the form that follows.
This is your personfile.

.ds NN "CIDER, NANCY L.

.ds AD "8150 Pleasant Plains Road, Towson, MD

.ds PG "Computer Scientist, GS-07

.ds SS "

.dS PH "6355

.ds RO "C. T. CANDLAND, A/C, PMB, TBD

.ds AO "D. P. MENNE, C, TBD

.ds OE "PMB

.ds OA C

To fill out the information that is specific to each travel order (eg.,

place, dates, cost, etc.) you then type

$ place.copy

The program will prompt you as the person program did, for the following
information

Enter file name:
cider .chicago

End each entry with a period on a line by itself

Purpose of Trip:
To attend training on "C" Language Programming.

Security Clearance (type N if none):
N

No. of days TDY:
seven (7) days

Proceed on:
12 Dee 82

Itinerary:
Depart APG, MD to Chicago, IL (Telemedia, Inc.) and return.

Mode of Transportation: (CR, CA, CB, CS, GA, GV, GS, or P)
CA

57

Advance Authorized:
$475.00

Remarks:
Trip report required.
GSA motor pool/contract vehicle authorized as determined by APG
Transportation Offier for use in and around/to and from TDY station.
Authorize use of rental car/POV to and from BVI. POV is equipped with

, required seatbelts.

N. L. CIDER

Work Order Number:
XXXX-XX-XXX RG2

You should now have a second file called cider.chicago, or whatever you've
called the file, in your directory. It should be of the form

.PR
To attend training on "C" Language Programming.
.SC N
.DA seven (7) days
.PC 12 Dec 82
.IT
Depart APG, MD to Chicago IL (Telemedia, Inc.) and return.
.NT CA

.AV $475.00

.RM
Trip report required.
GSA motor pool/contract vehicle authorized as determined by APG

Transportation Officer for use in and around/to and from TDY station.
Authorize use of rental car/POV to and from BWI. POV is equipped with
required seatbelts.

N. L. CIDER
.WO
XXXX-XX-XXX RGX
.GO

To actually type out the travel order, type

$ to.copy cider cider.chicago

but, before you press RETURN, put the form for the order in the printer and
line it up, then turn the printer on. Make sure the margin is lined up
properly, or you may wind up going by bus instead of flying.

58

I

REQUEST AND AUTHORIZATION FOR TOY TRAME OF DOD PERSNNEL 1.DAEUES
(RelApence: Joint Travel Reguletlona) 1 EUIS

T"Author1zgd as Indicated in items 2 through 21. 125 Jan 1983
REQUEST Fop OFFICIAL TRAVEL

2. NAME (Lost. First, Midl I0t11l) 3. POSITION TITLE AND GRADE OR RATING
CIDER, NANCY L. SSN:
8150 Pleasant Plains Road, Towson, M~D Computer Scientist, GS-07

4. OFFICIAL STATION 5. ORGANIZATIONAL ELEMENT 6, PHONE NO

USABRL, ARRADCOM PMB 6066
7. TYPE OF ORDERS B. SECURITY CLEARANCE 9. PURPOSE OF TOY

To attend training on "C" L~anguageTDY Programming
10a APPROX NO OF DAYS OF b PR, F~ED 0 A (Datei

TDY (including travel tpme)

seven (7) days 12 Dec 82
11. ITINERARY VARIATION AUTHORIZED

Depart APG, MD to Chicago IL (Telemedia, Inc.) and return.

12. MODE OF TRANSPORTATION

COMMERCIAL GOVERNMENT PRIVATELY OWNED CONVEYANCE (Check onei
RAIL AIR, Bus SHIP AIR VEHICLE SHIP RATE PER MILE

I I I 1 [J MORE ADVANTAGEOUS TO GOVERNMENT

AS DETERMINED BY APPROPRIATE TRANSPORTATION I MILEAGE RFEIMBURSEMENT AND PER DIEM LIMITED TO CONSTRUCTIVE COST
OFFICER e~varseas Travel only) ')FT COMMON CARRIER TRANSPORTATION & RELATED PER DIEM AS

)ERMINED IN JTR TRAVEL TIME LIMITED AS INDICATED IN JTR.

Q3. [IPER DIEM AUTHORIZED IN ACCORDANCE WITH JTR.

:3OTHER RATE OF PER DIEM (Specify)
*14. ESTIMATED COST 15. ADVANCE

.'ER DIEM TRAVEL OTHER TOTAL AUTHORIZED

s $ s $475.00
16. REMARKS (Use this apace for special requirements, leave, superior or lat-clas8 accommodations excess baggage, registration fees. etc.)

* Trip report required. GSA motor pool/contract vehicle authorized as determined by APG
Transportation officer for use in and around/to and from TDY station. Authorize use ol
rental car/POV to and from BWI. POV is equipped with required seatbelts.

N. L. CIDER

17. REQUIESTING OFFICIAL (Title and aignature) 18. APPROVING OFFICIAL (Title and signature)

*C. T. CANDLAND, A/C, PM4B, TBDD.F ENC TB

19. ACCOUNTING CITATION

21X4992.06KA 6K S28017 EOE 2119
XXXX-XX-XXX RG2

20, ORDER AUTHORIZING OFFICIAL (Title sangsignature) OR AUTHENTICATION 21. DATE ISSUED

PATRICIA C. ROBERTS, DAC, Chief. PI4RD2.TRVLODRNME
USA BALLISTIC RESEARCH LABORATORY, APG, MD 210052.TAVORRUUR

DD ~ 1610

59

XIII. Subscripts and Superscripts

Steve Segletes has written a macro package for nroff that takes care of

superscripts and subscripts as well as scientific formulas. It will tell a
Diablo printer, or something similar, to move the carriage up and down. To
run the package you need to execute the following command

$ cp /bmd/steven/tbdfiles/macros macros

then to actually get the output, type the following

$ nroff -ms -T450 macros [ilename

or for a twelve-pitch wheel (elite type)

$ nroff -ms -T450-12 macros filename

A sample using some of the commands follows.

.PP
The Temperature-Humidity Index, or THI, is calculated on the basis
of the following formula:
.sp

.SB 0.4(T d \ +\ T w)\ +\ 15

.3p

In this formula, the symbol
.SB T d \ represents
the temperature of a dry-bulb thermometer, and
.SB T w \ represents
the temperature of a wet-bulb thermometer.
.PP
Since 1 kilocalorie is equal to 4.2 x

.SP 10 3 \ joules,
the value of the specific heat of a substance in SI units is simply 4.2 x
.SP 10 3 \ times
its value in MKS units.
.PP
Thus the specific heat of gold is 4.2 x
.SP 10 3 \ x

0.031 or 1.3 x
.SP 10 2 \ joules
per kilogram-kelvin.

The reason for using a backslash followed by a space in most of the
examples, is that each argument is separated by spaces. Therefore, if you
want a space to show up in the text, you need to quote it with a backslash.
If you were to enter the above text and "nroff" it in the manner described
above, you would wind up with a paper in the form on the following page.

60

I - ~ - *

Temperature-Humidity Index, or THI, is calculated on the basis of the

following formula:

0.I(Td + T)+ 15

In this formula, the symbol T d represents the temperature of a dry-bulb
thermometer, and TW represents the temperature of a wet-bulb thermometer.

Since 1 kilocalorie is equal to 4.2 x 103 joules, t e value of the
specific heat of a substance in SI units is simply 4.2 x if times its value
in MKS units. Thus the specific heat of gold is 4.2 x 10 x 0.031 or 1.3 x
10 joules per kilogram-kelvin.

61

. *-C,%

APPENDIX B -A System Summary for Various Commands

63

I. FILES

A file is a named collection of information. The collection might be,

for instance, an essay, an executable program, or merely raw data.

A. Manipulating Files

1. chmod. Used to change the mode (permissions) of a file. The mode
consists of the 'or' of permissions in three fields. The permission for read
is 4, write is 2, execute is 1, and no permission is O. The three fields are
user (owner), group, and other. In the example below the user has read,
write and execute permissions for the 'Junk' file, his group has read
permission, and others have no permissions.

$ chmod 740 junk

2. rm. Deletes the specified file, in this ease called 'junk'.

$rm junk

3. del. Deletes the file 'Junk', after again prompting for the
deletion. Gives you a minute to make sure tha't you really want that file

* deleted.

$ del junk

4. daw. Prompts for the selective deletion of files in a directory.
Answer with 'y' for yes, RETURN for no, and 'x' for exit.

$ dsw
junk RETURN

temp y
stuff RETURN
$

5. my. Moves or renames a file. Here, the old file is called 'Junk'

and the new file is called 'newjunk'.

$ my junk newjunk

6. mvall. Moves multiple files into a target directory. Here, the
files to be moved are any files beginning with a 't', and the target
directory is '/bmd/cider/temp'.

$ mvall t* /bmd/cider/temp

7. 2R. Makes a copy of a file. The old file is 'Junk' the copy of the
file is 'newJunk'.

$ op junk newjunk

65 i - U -MKWT jUU

8. cpall. Copies all the files specified to target directory keeping
their original names. The file to be moved are those whose names begin with
't' and the new directory is '/bmd/cider/temp'.

$ cpall ta /bud/cider/temp

9. is. Gives the names of all files in your directory. Lists in time
order when invoked with the -t argument; adds permissions and other

information when invoked with -1; includes filenames beginning with a '.'

when invoked with -al.

$ 1s -lt

10. iss. Gives a multiple-column listing of your files. Helpful when
listing a lot of files.

$ lss

11. in. Makes a link from your directory into the directory where the

file exists. This is only a directory entry referring to a file. The file

is not actually duplicated, but retains its original ownership and
permissions. This means that everyone having a link to the file can change
it, and will receive the new version if anyone else changes it. However, you
can edit or use it the way you would any other file.

$ in /bmd/noone/jur',

12. ar. Archives or stores a file as part of a larger file, while
allowing it to be retrieved individually, It is mainly used to make library
files to be used by the loader. See ar(1) for more information.

B. Special Files

1. .profile. Is the file that contains special commands that will be
executed each time you login to the computer.

2. .dates. If you wish to use the reminder command in your '.profile',
then you will need a file called '.dates' . This file is used store those

dates that you wish to be reminded about.

3. plan. Is used in conjunction with the 'finger' command. As
'finger' is executed, it looks for this file to print out as your plan of
action, or that information that you wish to give others looking for you.

C. Working Within Files

1. ed, or e. The UNIX text editor. 'e' is used to input and edit text,

data, and programs.

$ e junk

66

2. emacs. Is the UNIX screen editor. Edits text, but is used to edit a

screen full of text, not a single line.

$ emacs junk

3. step. Searches through a file for a given sequence of characters and
prints out any line(s) and the file(s) where they occur.

$ grep 'the' junk*

D. Comparing Files

1. cmp. Indicates the first byte where two files differ; indicates all
differing bytes when invoked with the -1 argument.

$ cmp junk diffjunk

2. diff. Prints out the changes necessary to transform one text file
into another. Used when you changed a file, then decided to change it back.
It gives 'ed' editor commands as output, which can be used on 'Junk' to get
'newjunk'.

$ diff junk diffjunk

3. comm. Indicates which lines are common to two files. It is a three
column listing, the first column contains lines from 'junk', the second
contains lines from 'diffjunk', and the third is lines contained in both
'Junk' and 'diffjunk'.

$ comm junk diffjunk

4. mkpat. Produces a patch file which can be used to convert 'Junk'
into 'diffjunk'. It produces a file with the new filename plus '.patx',
where 'x' is a letter from 'a' to 'z'. This allows you to make 26 patch
files. This 'mkpat' will produce a file called 'diffjunk.pata'.

$ mkpat junk diffjunk

5. patch. Uses the patch file to convert the first file into the
second. The output goes into a file with the old filename plus 'vxn', where
'x' matches the 'x' from the patch file, and 'n' is a number between '0' and
'9'. The number is the version number of the reconstitution. For example,
the command below would result in a file with the name 'Junk.val'.

$ patch junk diffjunk.pata

II. DIRECTORIES

UNIX maintains its file system in an upside-down tree structure of groups
of files called directories.

1. mkdir. Makes a directory, using the name you give it. Many people
like to give their directories names beginning with a period, because then

67

they aren't listed using the normal 'ls' command; 'l -al' must be used.
Some people also use all capital letters to denote directories, so they do
show up on the normal listing.

$ mkdir .new

2. cd. Moves you to another directory, in this case called .new.

$ cd .new

3. pwd. Tells you where in the file system you are. The example below
would give a result of '/bmd/cider/.new', if used after 'cd .new'.

$ pwd

4. mvdir. Moves a directory to another place in the tree, which has the
effect of renaming the directory.

$ m\,dir /bmd/cider/.new /bmd/cider/.temp

5. rmdir. Eliminates the directory. This must only be done after all
the files have been removed from the directory.

$ rmdir /bmd/cider/.temp

III. TEXT OUTPUT

A. On the Terminal

1. type. Outputs the file to the terminal, stripping certain control
characters and terminating on receipt of a null character.

2. cat. Concatenates and outputs the file (or files) but does not strip
control characters or do any similar processing.

3. pr. Produces numbered and dated pages, optionally with userspecified

columnation, line widths, page lengths, indentations, and headers.

B. On the Lineprinter

1. lpr. Prints files on the line printer.

2. dlpr. Operates similarly to 'lpr', but does not queue the output.

3. makev. Print vugraph on Versatec printer with BRL and ARRADCOM
logos printed at the top, and the date at the bottom. Use -w for a wide
vugraph and -1 for a long vugraph.

68
1I

! i

IV. Storage Media

A. Magnetic Tapes

1. tar. Saves and restores files on magnetic tape. You may append,
read, list the filenames on the tape, update, or create a new tape.

2. assign. Either lists the assigned devices or assigns one to you.

3. dump. Copies to magnetic tape all files in the file system that have
been changed after a certain date.

B. Disks

1. mount. Is used to tell the system at what point in the UNIX tree to
insert the disk's file system. Also used to determine what devices are
already mounted, and where in the file system they reside.

2. umount. Is the inverse of 'mount', and removes the disk from the
file system tree.

3. du. Summarizes disk usage for the present directory, or a directory
you specify.

4. ustat. Displays the amount of free space and some other character-
istics of mounted file systems.

V. PROGRAMMING

A. Languages

UNIX is equipped with compilers, interpreters, and front end processors
for many languages. The following are presently available:

1. Apl. A sophisticated algorithmic programming language.

2. As. PDP 11/70 assembler.

3. Asm. DEC MACRO-11 assembler converted to run in UNIX.

4. Basic. A simplified beginner's programming language.

5. Bc. An arbitrary-precision arithmetic language that is a preproces-

sor for 'dc' (desk calculator).

6. C. The language that UNIX is written in, very fast, but you need
some progpamming background to tackle this one well.

7. Fortran. A scientific programming language. Both Fortran 4 and 5
are available.

8. Ingres. A data base management system created for UNIX.

69

....... ~

9. Lisp. A sophisticated language used mainly in artificial intel-
ligence work, very good for english language processing.

10. M4. A macro preprocessor for RATFOR, C, and other languages.

11. Pascal. A language similar to C, very structured.

12. Ratfor. A dialect of FORTRAN (rational FORTRAN) that provides
control flow structures missing in normal FORTRAN.

13. Yacc. (yet another compiler-compiler) converts a context-free
grammar into a set of tables to be processed.

B. Programming Tools

The following are helpful in the debugging and optimizing of programs.

1. adb. An advanced and very powerful debugger, but it is very
difficult to learn.

2. cdb. A debugger primarily for programs written in C.

3. db. A universal debugger for examining object files.

4. ld. Links object modules to produce an executable program, resolves
external references, and searches system libraries for undefined subroutines.

5. lint. Gets the 'lint' out of C programs. Checks for statements
which are impossible to reach, data-type mismatches, subroutine calls whose
returned values are never used, inconsistent use of arguments, unused or
uninitialized variables, portability difficulties, and performs many other
helpful checks.

6. nm. Prints the symbol table of an executable program (assuming it

has not been removed).

7. od. Dumps the file specified in one of many modes.

8. prof. An optimizing tool which presents an operating profile of a
program previously run. The program must have been compiled with the
profiling option.

9. size. Gives the amount of core required to load and run a program;
broken down into text, data, and bss categories.

10. strip. Removes the symbol table and relocation bits from an

assembled or loaded program.

11. time. Prints out the execution times for a program.

70

W,!

VI. SYSTEM FEATURES

A. User and Terminal Status

1. tty. Tells you which terminal you are on.

2. uid. Indicates your user identification number.

3. money. Prints your CPU and connect time usage and quotas, terminal
authorizations, and disk storage quota.

4. quota. Tests to see if you are under your disk storage quota.

5. passwd. Allows you to change your login password.

6. stty. Sets up the mode (speed, parity, etc.) which the computer uses
to communicate with your terminal.

7. ksrset. Sets up the mode of a terminal port for use with the KSR-47.

8. admset. Sets the mode of a terminal port to that suitable for use
with an ADM scope terminal at 9600 baud.

9. Iogout. Logs you out (if you are under your disk storage quota) and
summarizes your CPU and connect time usage for the session.

10. ^D. Logs you out without summarizing your time usages.

B. Communicating With Other Users

1. who. Provides a list of what accounts are in use. To find out the
full name of each user, use the -n option. To find out the location of cach
user, use the -w option. To find out the full name of a specified user, use
'who is'.

2. write. Allows you to talk interactively with other users who are
logged in.

3. mesg. Enables or disables other's ability to write to you.

4. finger. Prints information on person specified, including last login
time, mailbox status, full name and home directory. May also print info from
the person's .plan file.

5. nchk. Check for news.

6. news. Print new news articles or send news articles.

7. send. Send mail to another user or list of users. Computer will
prompt for information.

71
7: i

C. Mail Facility

1. msg. Allows you to leave messages for someone. You can read out of
'mailbox' by default, or out of 'mbox' by saying 'msg mbox'. A list of
possible commands follow (just type the first letter of each, plus the
number, if required. If you leave out the number, 'msg' will assume you are
referring to the current message.).

a. answer f. Calls 'send' with the 'To:' and 'Subject:' already filled

in. The user is prompted for 'cc:' and the body of the message.

b. backup. Types previous message.

c. current. Prints current message number, number of messages, and the
current mail file.

d. delete 0. Sets a flag to indicate message will be deleted when an
overwrite or exit command is given.

e. exit (exit and update). Removes deleted messages, moves undeleted
messages to mbox, then quits.

f. forward #. Calls 'send' with the draft body of the named messages
and the 'Subject:' already filled in.

g. goto . Specified message becomes the current message.

h. headers #. Prints a one line header for each specified message.

i. jump (jump into lower fork running). Allows user to give a shell
command, for example, who or date.

j. list #. Copy messages to file in preparation for printing with an
optional page separator between each message. 'Hsg' will prompt for file
name.

k. move #. Same as put, followed by delete.

1. next. Types the next message in the file.

m. overwrite. Actually removes messages marked for deletion; then
re-reads the file.

n. put #. Copies messages specified to a file. 'Msg' prompts for file
name.

o. quit. Exit without changing any files or updating 'mailbox' to
'mbox' (will not perform deletions).

p. read. Read new message file. 'Msg' will prompt for file name.
Default is mail.

q. send. Call 'send' program. (See the next section for details on
send.)

72

... .. .

r. type f. Types specified message or messages.

a. undelete #. Removes delete marking from messages, so they will not
be removed.

t. :.Current date and time.

u. ?.Displays a list of valid coammands

2. Send. This program is used for the actual sending of mail. It also
allows YOU to edit your message, Input more text, review the message, etc. A
list of commands follows.

a. bcc. Prompts for addresses for blind carbon copies.

b. bye. Exits the 'send' program.

C. delete (delete body). Permits draft body to be deleted after the
message is sent.

d. ed body. Invokes the UNIX editor led' and reads in the message body
for editing.

e. file (file include). Prompts for the filename to be appended to the
end of the message body.

f. header (header edit). Allows user to change the header entries,
'To', 'Subject', etc.

g. input (input more body). Allows the User to add more text to the end
of the message.

h. program (program run). Allows the user to give a shell command.
Control returns to send when command has been executed.

i. quit. Same as bye.

J. review. Retypes message in its current form.

kc. send. Posts the message to the message delivery system.

1. x (emacs body). Invokes the screen editor 'emacs' and reads in the
file.

m. z (two-window emaCs answer). Prints the message you are to answer
along with your reply In a two-window mode.

D. Program Control

..Takes the output of one program and uses it as the input for the
next.

2. A. When appended to a command line, detaches the program from the
terminal, thus freeing the terminal to do something else.

73 1

3. Is used between commands on the same line, forcing them to be

executed1n sequence from left to right.

4. >. Put output from this program into the file that follows the '>'.

5. >>. Put output from this program into the file; but create the "ile
if it does not exist, or append it to the file if it does exist.

6. <. Take input for this program from the file that follows the ''.

7. nohup. Runs a process immune to hang-ups, useful for preventing
broken pipes and ignoring CTRL-C's and CTRL-B's.

8. tee. Used in conjunction with a pipe; allows output to go to ano.;her
process (p-rogram) as well as the terminal.

9. kill. Kills processes which have been detached from the terminal by
use of &.

10. sleep. Puts anything in a wait state for the specified time.

11. wait. Waits until all detached processes have completed and reports
on abnormal endings.

12. nice. Runs a process with a low execution priority.

E. Miscellany

1. date. Prints out the current date and time.

2. factor. Finds the prime factors of a number.

3. dc. A nearly unlimited precision 'desk calculator'.

4. units. Converts measurements from one set of units to another.

5. banner. Creates 'bannered' letters using 6 x 6 matrices of char-
acters.

6. cal. Prints a calendar for the specified year.

VII. TEXT PROCESSING

The UNIX operating system provides some of the most advanced text
processing facilities available. These facilities are sufficient to process
input text into a completely formatted document and typeset it for
publication, if desired.

A. The NROFF Family

One of the 'nroff' family's great advantages is that a document can be
processed with either 'nroff' or 'troff', without changing the text file.

74

-- 7

..... L

1. nroff. An extremely sophisticated program which can hyphenate,
justify lines, paginate, produce a table of contents, put running headers and
footers on pages, and handle footnotes. 'Nroff' is designed to be used with
a daisy wheel printer.

2. troff. The companion of 'nroff' which drives a phototypesetter.

3. vroff. Also like 'nroff', but drives a 'Versatec' printer.

4. neqn. A 'pre-processor' used with 'nroff' to process equations and
similar mathematical material.

5. eqn. Like 'neqn', but is used instead with 'troff'.

6. tbl. A 'pre-processor' for the handling of tables. Used with either

'nroff' or 'troff'.

B. Macro Packages for Nroff/Troff

1. -m3. The standard macro package; has provisions for footnotes, most
standard academic paper formats, etc.

2. -mm. Does all that the standard package does and has the ability to
insert tables of contents and other expanded features.

3. macros. There is a macro package written for subcripts, super-
scripts, and chemical formulas written by Steve Segletes. It is called
/bmd/steven/tbdfiles/macros and is available for everyone's use.
Documentation is included in the file.

C. Output Filters

1. bold. Is used to produce false or shadow emboldening.

2. col. Performs the overlays implied by reverse line feeds, allows
multi-column output on printers which have no reverse line feed capability.

3. dtx. A filter for the DTC terminal.

4. diablx. A filter for the DIABLO 1620 terminal.

D. Other Text Manipulation Programs

1. sort. Sorts a list of lines into alphabetical and/or numerical

order.

2. index. Generates an index or concordance.

3. cref. Generates cross references of program source.

4. ptx. Produces a permuted index (keyword-in-context listing).

5. spell. Checks the words of a file against a dictionary and prints
out thos0A not found.

75

6. typo. Prints out words likely to have been misspelled.

7. uniq. Finds and deletes those lines which are repeated in a file.

8. diction. Flags poor diction in specified file by enclosing suspect
phrases in words] ' .

9. suggest. Suggests a better way of phrasing. Tell 'suggest' the
phrase you want to replace and 'suggest' will suggest alternate expressions.

10. style. Gives estimate of reading level of document, along with
statistics about word use.

76

APPENDIX C - Using Emacs

77

* r

Just Some of the Commands

A means hold down the Control Key while typing the character
M- means press the Escape Key, then type the character

To CREATE a file using the emacs screen editor: emacs
To EDIT a file using the emacs screen editor: emacs your-file-name
To QUIT emacs: ^c

To ABORT an emacs command: 9g
To EXPLAIN an emacs command character: 14-? "character to be

explained"

To POSITION the cursor

p

up Line

^b < ---- backward Character forward--> Af

1-b < ---- backward Word forward ---- > M-f
Aa < ---- beginning Line end---> ^e

M-a < ---- beginning Sentence end ---- > M-e

M-v < ---- previous Page forward---> Av
M-< < ---- beginning Buffer end---> M->

down Line

v
An

To SEARCH for a string

Ar < ---- backward forward ---- > s

To DELETE text

0
BACK-

SPACE <---backward Character forward ---- > Ad
1-DEL < ---- backward Word forward ---- > M-d

End-Of-Line forward ---- > Ak

*BACKSPACE can be ^h or the BACKSPACE, DELETE, or RUB keys

79

A -A -

To OPEN a line to insert text

0

RETURN 1\
^j : > These go down one line if one is open; otherwis,they open a line

1m I/ and go down to it

To REPLACE text

M-r starts a query replace
"y" does a replace
"n" goes to next instance of the string
"r" replaces the rest of the instances of the string

To MOVE text

1. Position cursor at the beginning of text to be moved.

Set HARK with M-space.

2. Position cursor at the end of the text to be moved.
Write text between MARK and cursor into KILL-STACK and delete with "w".
Write text between MARK and cursor into KILL-STACK without deleting
(that is, duplicate the text elsewhere) by "M-w".

3. Position cursor where text is to be inserted.

Insert text from KILL-STACK into buffer with "y".

To SAVE a file

To write a new file: ^x~w file-name
To save an updated file: ^X^s

Miscellaneous

Capitalize the current character: c

Insert a tab: ^t
Redisplay the screen: A1

Redisplay the screen with the current line at the top: M-Al

Transpose the current character and the one following: At
Multiply an argument by 4 ^u
Mail the current buffer M-^m
Execute a shell command M-1
Underline a word 1-_
22222ZZ2222=2xzzz---------------z-zzz-::.: z:3::uuuuzuuz.:::uuxugu22:u: m

This is a complete (hopefully) listing of the EMACS commands

AC: sets the mark at the cursor position
AA: moves to the beginning of the line
^B: moves back one character
^C: capitalizes the current character

^D: deletes forward one character
^E: moves to the end of the line
^F: moves forward one character

80

S-'I*

^G: quits from any command In progress
^H: moves back one character
^*I: inserts a tab
^ J: opens a now line and moves to the beginning of It If the next line is

non-empty, otherwise down one line

^K: kills to end of line (with argument, kills multiple lines)
^L: refreshes the screen
"H: opens a new line and moves to the beginning of It if the next line is

non-empty, otherwise down one line
^N: moves down one line
^0: opens up a new line
^P: moves up one line
^ Q: quotes the next character
^R: starts a reverse search
^S: starts a search

^T: transposes the next two characters
^U: multiplies the argument by 4

^V: moves to the next page
^W: kills the current region (between cursor and mark)

^X: is a prefix for more single character commands, type character or 'i,

for all
^Y: restores last killed text (leaves cursor and mark around it)
^Z: exits one level

makes the next character a meta character
^]: makes a local variable of a macro invocation the argument to the next

command

: causes the last returned result to become the argument
?: deletes backward one character

M-^B: moves back one word
H-^F: moves forward one word
H-AL: re-displays with current line at top of page
M-^M: mails the current buffer
H-^Q: returns the next input character (in a macro)
H-^R: regular expression query replace
M-^S: regular expression search
H-^Z: exits one level
M-^]: assigns the result of the next command to a macro local variable
H- : sets the mark at the cursor position

M-!: gets and executes a shell command
H-": auto Fills the whole buffer
M-$: executes a command, saving the output in buffer .exec
M-/: starts a comment
H-:: maps a character to a command
H-<: moves to top of file
H->: moves to bottom of file
H-?: explains the next character
H-\: converts its argument to a character and inserts it
H- : underlines the next word
H-a: moves to beginning of sentence
M-b: moves back one word
H-c: capitalizes the next word
M-d: deletes the next word
M-0: moves to End of Sentence
-f: moves forward one word

81

-.-- ,

M-g: moves to a specific line (its argument)
M-m: displays active modes
M-p: puts a wall chart of explanations In the buffer
-q: quotes the next character and adds the 0200 bit

M-r: starts query replace
M-3: gives EMACS statistics
M-t: prompts for terminal type
M-v: moves back one page
H-w: puts the current region in the kill buffer without killing it
M-x: calls a macro by name

M-y: replaces the last restore() with the next text in the kill stack.
M-Z: kills emacs with a core dump (for debugging)
M-1: enters a command sequence (in a macro)
H-1: exits a command sequence (in a macro)
H-~: marks a buffer as being unmodified (up to date)

Control-X commands:

^X^B: changes Buffers (Change to * lists active buffers)
"XC: exits gracefully (after asking whether or not to save the buffer)
^X^D: changes the working directory
^X^E: calls emacs recursively taking input from the terminal
-X^F: edits a file in its own buffer (if file has been read into a buffer,

moves to it)
^X^I: re-directs input from a file
^X^K: kills a buffer
^X^L: loads a file full of macro definitions
^X^M: sets mode from argument (prompts for mode name) and string if neces-

sary
'X^N: changes the buffer or file name
^X^O: switches between windows
^X^Q: returns the character under the cursor (in a macro)
^X^R: reads a new file
^X S: saves the buffer in the current file (if modified)
^X^T: prompts for a buffer name and inserts the text between the cursor and

the mark into the named buffer.
.XAU: updates the display and delays for a specified time
^X^V: puts the current version on the kill stack.
^X^W: writes a new or old file
-X^X: exchanges the mark and the cursor
X^: enters a "while" loop (in a macro)
^XI: begins a case statement (in a macro)
^X%: exchanges the top of the kill stack with another item
^X&: compares two strings
^X+: causes the next entry to the kill stack to append to the previous en-

try
^X-: pops the kill stack
^X1: exits two window mode
X2: enters two window modeX<: pushes a string from the tty or macro text into the kill stack
AXX: gives statistics about the buffer
AX>: duplicates an item cn the kill stack
AXB: puts the buffer name Into the kill stack
AXF: puts the file name into the stack

82

I -

I .1 *-n*

X: causes the current window to grow one by line
AXb: changes Buffers (Change to 0 lists active buffers)
AXd: defines macros from the current buffer
Axo: switches between windows
AXI: begins a conditional execution sequence (in a macro)
*X: performs arithmetic or logical operations (in a macro)

83

- -- - -

rI

APPENDIX D - UNIX READING LIST*

i

Available from Nancy Cider

85 '

X.- =v_

I. General

"UNIX Programmer's Manual" (Ken Thompson, Dennis Ritchie, and a cast of
thousands). Lists commands, system routines and interfaces, file formats,
and some of the maintenance procedures. You will probably use this a lot to
make sure of the formats for various commands. It is rough going to learn
how to use it at first, but the effort put forth will really be rewarding.

"The UNIX Time-sharing System" (Ken Thompson, Dennis Ritchie). An
overview of the system, for people interested in operating systems. Worth
reading by anyone who programs. Contains a remarkable number of one-sentence
observations on how to do things right.

"A Tutorial Introduction to the UNIX Text Editor" (Brian Kernighan). A
walkthrough introduction to the line editor "ed". It includes commands for
appending, changing, deleting, moving, and inserting lines of text; reading
and writing files; searching; global commands; and special characters.

"An Introduction to the UNIX Shell" (S. R. Bourne). Works from simple
examples up to higher level constructs of the shell. It starts out with
definitions and procedes quickly to constructing significant programs and
flow-structures using the shell. Probably most helpful if you have had some
programming.

II. Document Preparation

"Text Processing" (BRL compilation, by Bruce Henriksen, Myra Hartwig,
and others). Helpful for all those persons wishing to get started with some
of the more complicated text processing packages. Includes an introduction
to "nroff" and "troff", and talks about df'3, letters, the memorandum for
record, and some other helpful stuff.

"Typing Documents on UNIX" (Mike Lesk). A macro package to isolate the
novice from the vagaries of the formatting programs. This one works with
both "nroff" and "troff".

"NROFF/TROFF User's Manual" (Joseph F. Ossanna). Difficult to read, but
good for reference.

"A TROFF Tutorial" (Brian Kernighan). Good for possibilities in TROFF.
Especially useful when making viewgraphs.

"Thl -- A Program to Format Tables" (M. E. Leak). Used for making
tables in an 'nroffed' report.

"A System for Typesetting Mathematics" (Brian Kernighan and Lorinda L.
Cherry). This and the following document detail how to put equations into
your 'nroff' and 'troff' papers.

"Typesetting Mathematics -- User's Guide (Second Edition)", (Brian'
Kernighan and L. L. Cherry).

87 1

p1m5 - Umg-w iim

III. Programming

UNIX Programming -- Second Edition" (Brian Kernighan and Dennis
Ritchie). Introduction to programming on the UNIX system, especially
concerns interfacing to the operating system and I/0.

"Programming in C: A Tutorial" (Brian Kernighan). The easiest way to

start learning C, but it's no help at all with the interface to the system
beyond the simplest I/0. Should be read in conjunction with:

"The C Programming Language - Reference Manual" (Dennis Ritchie). A
good general reference, but a bit he.vy going for the beginner, especially
one who has never used a language like C.

"UNIX Assembler Reference Manual," Dennis Ritchie.

"The UNIX I/0 System," D. M. Ritchie.

"The M4 Macro Processor," B. W. Kernighan and D. M. Ritchie.

"A Portable Fortran 77 Compiler," S. I. Feldman and P. J. Weinberger.

"Ratfor -- A Preprocessor for a Rational Fortran," B. W. Kernighan.

IV. Other

"Computer Detection of Typographical Errors," R. H. Morris and L. L.
Cherry.

"YACC (Yet Another Compiler-Compiler)," S. C. Johnson.

"BC -- An Arbitrary Precision Desk-Calculator Language," L. L. Cherry and
Robert Morris.

"DC -- An Interactive Desk Calculator," Robert Morris and L. L. Cherry.

"Lex -- A Lexical Analyzer Generator," M. E. Lesk and E. Schmidt.

See me about anything you may have heard about, but don't see listed

here. I may have a copy, or may at least be able to tell you where to go to

get it to avoid a lot of hassle.

88

.........................

I APPENDIX E -TERMS

6

k

Hardware is the physical units that make up a computer system. This
includes the computer itself, disk drives, printers, plotters, and other
output devices.

Software is the sets Of instructions that tell the physical units how to
perform their functions. That is, how to run your programs, how to properly
print out the results, and it includes the programs that you are telling the
computer to run.

The Operating System is the programs that controls the system. it
handles the scheduling of jobs (or programs), and the allocation of resour,,,es
(including the printers, disk drives, etc.). On our computer, the operating
system is UNIX.

A Modem (or modulator/demodulator), also known as a data set, converts
the machine signals from the terminal to communication signals that can be
sent over telephone lines to the computer.

Terminals are devices that permit data entry or exit to/from a computer
system. What you type on a terminal enters the system and is processed, and
the results show up again, either on paper or on the screen.

Ascii (or American Standard Code for Information Interchange) is the code
for the characters that go from your terminal to the computer. If you have
an Ascii terminal and you type an 'a', it will be understood by the computer
as an 'a'. If you were using a different standard on your terminal and you
typed an Wa, the computer might think you were typing an 'A'.

A Bit is the basic unit of data storage. It is a binary 0 or 1, and the
name comes from binary digit.

A 'Byte is the basic unit of data that is processed. It is eight bits
long, and is the length of one character.

Baud is a unit of signaling speed that is measured in terms of
units/sec., and the units are Usually either bits or characters.

A Buffer is a temporary storage device Used to compensate for data flow
rate differences. When a receiving device cannot handle as many characters
at a time as the device sending those characters it Must compensate in some
way. It uses a buffer to gather up the characters as they come in, then when
the buffer is full, it processes one buffer at a time. A transmitting device
works in the same fashion. It collects characters Until its buffer is full,

* then it sends them all at once.

Duplex is a term used in communications. Half duplex is a channel that
4k can either transmit or receive at any given time. Full duplex is a channel

that can receive and transmit information at the same time.

A Multiplexer is a piece of communications equipment which enables the
signals from a number of individual circuits to be combined and transmitted
over a common transmission path. Many terminals can be attached to a
multiplexer and the multiplexer hooked up to a telephone line, and then each
terminal has its own share of the line in turn.

aMINM" am Du

A Network is a geographically separated set of point* (Computers and
terminals) which are interconnected by communications channels. The

advantage to this is that any given terminal may then speak to any given
computer that is part of the network.

Arpanet and tilnet are the two networks established by the Advanced
Research Projects Agency of the Department of Defense.

Bug is used to denote an unwanted and/or unintended property of a program
or system.

Crash is used when there is a sudden, drastic failure. Usually said of
the system and disk drives.

Down is used when something is not working, this is usually occurring by
planm-e.g., for repair work.

A Hacker is someone who programs to learn and as a challenge, usually
working rather quickly. A hacker can also be an expert at a particular type
of program or operating system, e.g., a UNIX hacker, or a Fortran hacker.

TTY is a common abreviation for teletype, used also as a shorthand for
termn 'nl type.

92

DISTRIBUTION LIST

No. of Organization No. of Organization
Copies Copies

12 Administrator 1 Commander
Defense Technical Info Center US Army Communications Rsch
ATTN: DTIC-DDA and Development Command
Cameron Station ATTN: DRSEL-ATDDt.Alexandria, VA 22314 Fort Monmouth, NJ 07703

1Commander
Commander US Army Electronics Research

US Army Materiel Development and Development Command
and Readiness Command Technical Support Activity

ATTN: DRCDMD-ST ATTN: DELSD-L
5001 Eisenhower Avenue Fort Monmouth, NJ 07703
Alexandria, VA 22333

1 Commander
1 Commander US Army Missile Command

US Army Armament Research ATTN: DRSMI-R
and Development Command Redstone Arsenal, AL 35898

ATTN: DRDAR-TDC
Dover, NJ 07801 1 Commander

US Army Missile Command
2 Commander ATTN: DRSMI-YDL

US Army Armament Research Redstone, Arsenal, AL 35898
and Development Command

ATTN: DRDAR-TSS 1 Commander
Dover, NJ 07801 US Army Tank Automotive

Command
I Commander ATTN: DRSTA-TSL

US Army Armament Materiel Warren, MI 48090
Readiness Command

ATTN: DRSAR-LEP-L 1 Director
Rock Island, IL 61299 US Army TRADOC Systems

Analysis Activity
1 Director ATTN: ATAA-SL

US Army Armament Research White Sands Missile Range
and Development Command NM 88002

Benet Weapons Laboratory.
ATTN: DRDAR-LCB-TL 2 Commandant

* Watervliet, NY 12189 US Army Infantry School
ATTN: ATSH-CD-CSO-OR

1 Commander Fort Benning, GA 31905
US Army Aviation Research

and Development Command 6 Massachusetts Institute of
ATTN: DRDAV-E Technology, Artificial Intelligence
4300 Goodfellow Blvd Lab, 545 Technology Square, Rm 912
St. Louis, MO 63120 ATTN: Martin D. Connor

Cambridge, MA 02138

93

DISTRIBUTION LIST

No. of Organization No. of Organization
Copies Copies

1 Director Aberdeen Proving Ground
US Army Air Mobility Research

and Development Laboratory Dir, USAMSAA
Ames Research Center ATTN: DRXSY-D
Moffett Field, CA 94035 DRXSY-MP, H. Cohen

Cdr, USATECOM
1 AFWL/SUL ATTN: DRSTE-TO-F

Kirtland AFB, NH 87117 Director, USACSL
ATTN: DRSMC-CLB-PA

DRSMC-CLN
DRSM-CLJ-L

Product Assurance Directorate
Chemical Test Branch
ATTN: Darlene Bader
Building E5100
Edgewood Arsenal, MD 21040 (6)

I

94.
V T

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out
this sheet, fold as indicated, staple or tape closed, and place
in the mail. Your comments will provide us with information for
improving future reports.

1. BRL Report Number__________ _________

2. Does this report satisfy a need? (Comment on purpose, related

project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)___________________________

4. Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs
avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to
make this report and future reports of this type more responsive
to your needs, more usable, improve readability, etc.)______

6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.

Name:____________________

Telephone Number:____________ ________

Organization Address:______________________

- FOLD HERE

Director NO1PSTAG
US Army Ballistic Research Laboratory NO POSTAGE
ATTN: DRSMC-BLA-S (A) IF MAILED
Aberdeen Proving Ground, MD 21005 IN THE

UNITED STATES

OFCIALBUSINESS REPLY MAIL NES
PENALTIY FOR PRIVATE

r
USEI. $300BU I ESR PY M L

FIRST CLASS PERMIT NO 12062 WASHINGTONDCJ

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATTN: DRSMC-BLA-S (A)
Aberdeen Proving Ground, MD 21005

FOLD HERE

"-'.

ATE

,LMED

PF F TIC

