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I. INTRODUCTION

There appear to be numerous worthwhile reasons to advance dynamic loading
techniques for the processing and compaction of materials. For example, there
is the potential for (1) reducing the cost of sintered and, especially, hot-
pressed materials, (2) preparing void-free high-melting-point materials,
(3) consolidating pure materials that must be alloyed for practical sintering,
and (4) retaining special properties, phases, defects or degrees of crystal-
linity during powder compaction. Dynamic compaction can be accomplished by a
variety of techniques, but the objectives of this program are to accomplish
the following:

A. Explosively compact hot metallic and ceramic powders.

B. Explosively enhance the sinterability of ceramic powders.

C. Investigate material properties only attainable with dynamic
compaction.

In the following, progress will be described relative to the first objec-
tive. The second objective is being pursued for us by Prof. Palmour, and the
third objective will be pursued as the explosively processed and compacted
materials are obtained.

II. PROCEDURE

Dynamic loading with line initiated explosives is being used in an attempt
to form planar compacts. In this configuration, the detonation wave propagates
from one end of the sample to the other, and the problems are to attain uni-
formly compacted flat samples and, then, to recover them intact.

A wide range of loading conditions is possible with the different types
of explosives available. Depending on the explosive, the detonation character-
istics can be a function of the thickness, density and confinement used.
Several explosives have been obtained for experimental versatility. These are
listed in Table I along with the Chapman-Jouguet (CJ) pressures and detonation
rates for select thicknesses and densities.

Explosive characterizations were requested from the manufacturers, but
only limited information was obtained. Detonation velocities were furnished
for the AMATOL (CIL), ammonium nitrate-sodium nitrate mixture (IRECO) and the
ammonium nitrate-waxed PETN mixture (Trojan), although the Trojan SWP-9 mixture
has not been received. The detonation velocities for the remaining explosives
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in Table I were obtained from published reports.1-5 Nothing about the detona-
tion pressures was obtainable from the manufacturers, and our only alternative
was to estimate them from the detonation velocities for our pretest considera-
tions. These estimates were made with an equation that gives the CJ pressure
P 0 as

Sp 0 
D
2

PCJ 1 + Y (1)

where y is approximately 3, p0o is the initial explosive density and D is the
detonation velocity. The pressures listed in Table I were determined with
Eq. 1.

In general, there is an interest in attaining a steady detonation process
to cause uniform compaction and, thereby, avoid subsequent cracking. However,
local detonation irregularities can arise from inhomogeneities in an explosive,
and the method of initiation can influence detonation over an appreciable
region bounding the initiation site. We had little prior knowledge about these
details so continuous detonation velocity and pressure measurements are being
made to furnish information critical to the compaction process.

Pressures are to be recorded with Manganin piezoresistive gages, and
detonation velocities are being measured with a wire-in-tube resistance gage
described by Ribovich et al. 6 A schematic of the measuring technique is shown
in Fig. 1.

A special furnace with molybdenum disilicide heating elements has been
ordered for working temperatures up to 1600C. This is a high-cost item that
must be protected from explosive blast during compaction. Either the furnace

lB. M. Dobratz, "LLNL Explosives Handbook. Properties of Chemical Explosives
and Explosive Simulants," Lawrence Livermore National Laboratory Report No.
UCRL-52997, March 1981.

2L. Penn, F. Helm, M. Finger, and E. Lee, "Determination of Equation of State

Parameters for Four Types of ExpZosives, " Lawrence Livermore Laboratory
Report No. UCRL-51892, August 1975.

3B. Crossland and J. A. Cave, Proceedings, 5th International Conference on
High Enerngy Rate Fabrication, University of Denver Research Institute,
Colorado, 1975, pp 4.9.0-4.9.11.

4M. A. Cook, E. B. Mayfield, and W. S. Partridge, "Reaction Rates of Ammonium
Nitrate in Detonation," J. Phys. Chem., , 1955, pp 675-680.

5H. C. Hoenig, E. L. Lee, M. Finger, and J. E. Kurrie, "Equation of State of
Detonation Products," Proceedings, 5th S.nposium (International) on Detona-
tion, Ed. S. J. Jacobs and R. Roberts, Superintendent of Documents, Washing-
ton, D.C., 1970, pp 503-512.

6j. Ribovich, R. W. Watson, and F. C. Gibson, "Instrumented Card-Gap Test,"
AIAA J., 6, 1968, pp 1260-1263.
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or the explosion can be isolated, but there is some advantage in protectively
containing the furnace and letting the explosive products expand freely. This
is the approach being pursued, and a photograph of the protective barrier for
the furnace is shown in Fig. 2. This barrier is a 1.68 m (5.5 ft) outside
diameter by 3.66 m (12 ft) long steel cylinder with 15.2 cm (6 in) thick walls.
The plan is to heat the powders within this cylinder and, then, move them with
a remotely operated transfer device to a compaction site far enough from the
cylinder to avoid damage to the furnace, but near enough for the compaction to
be completed while the powder is still hot.

Computations of the compaction are underway to supplement the experimental
work and assist with the interpretation of results. These are being conducted
with the two-dimensional Lagrangian finite-difference computer code TRMr.

7

The pressure in the solid Ps is assumed to be given by the Mie-Griineisen
equation of state

Ps = CU + DU 2 + SU5 + r0 (E-E1 ), (2)

where 0 is the density, U = 0/o -1, Po is the initial density, E is the

internal energy at density p, EH is the internal energy along the Hugoniot and

r is the Grfneisen ratio. C, D and S are the constant coefficients of the
Hugoniot.

Plastic deformation of solids is based on the Reuss incremental plastic-
ity relations, and the effective plastic strain AP is given by

P (3)
Ai (a- &)/3G,(3

where 8 is the effective stress equated to the yield criterion Y, G is the

shear modulus and -N is a term with the same form as the effective stress a,,N
but formed from the nominal stress aij that would occur if the strain were

entirely elastic. The elastic strain follows from the deviator stress ij
given by

j Yj - a N (4)

and the elastic stress-strain relation.

Compaction is treated by fitting the consolidation curve with a series of
four parabolic segments.8 Within each segment, the curve is defined by the
pressures at each end of the segment and by an increment AP which is the

7L. Seawan and D. R. Curran, "TROTT Computer Progrwn for 2wo-DimensionaZ Streee
Wave propagation," BaZZiRsto Reaeaorh Laboratory Contraot Report No. ARBRL-CR-
00428, ApriZ 1980 (MoZaseified) (AD A086?6).

8Lynn Seaman, Robert E. Tokheim, and DonaZd R. Curran, "ComputationaZ Repre-
sentation of Constitutive ReZatione for Porous Materials," Defense Nuclear
Agenoy Contract Report No. DNA 3422F, May 1974 (Unolaaified).
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pressure difference between the straight line connecting the end points and
the parabola measured midway between the specific volumes at the limits of the
segment. Consolidation is specified by the critical pressure Pc at which this

occurs, and the corresponding pressure is determined with the Mie-GrUneisen
equation.

III. RESULTS

In preliminary tests of the detonation-velocity gage, high-frequency noise
was superimposed on the records of the gradual voltage decay corresponding to
the propagation of the detonation wave along the length of the resistance wire.
The cause of this noise is still unknown, but it would tend to mask other
effects such as a slope change as the detonation proceeded from initiation to
a steady state. To avoid the noise, signals are processed with a 100 kHz low-
band-pass filter. A record obtained with the filter is shown in Fig. 3. The
slope of this record changes intermittently throughout the entire recording
interval, and there is no run-in time that is clearly distinguishable from
these intermittent changes. Apparently, the detonation of the DETASHEET initia-
tor was either insufficiently different from the AMATOL for this to be a dis-
tinguishable effect or the run-in time was too short to resolve. However,
records of the detonation rate of AMATOL and DETASHEET are clearly different
as shown in Fig. 4. This indicates the recording technique is sensitive to
the characteristics of the particular explosive being tested.

There is, however, still some uncertainty about the detonation-velocity
measurements. Repetitive tests and measurements have resulted in inconsistent
results. The values recorded for MATOL are 3.32, 2.71 and 3.69 mm/psec for
explosive thicknesses of 1.27, 2.00 and 2.54 cm, respectively. The reason for
the low value of 2.71 mm/usec is unknown, and further tests are under way to
clarify the situation.

The computer computations have been particularly enlightening and give a
clear impression of how the loading geometry, initial sample density and the
pressure pulse affect compaction. An example is shown in Fig. 5 of a computa-
tion that illustrates the treatment of a two-dimensional flow of several mater-
ials and interfaces. The compaction is of copper powder (29 percent of theo-
retical density pt) in a solid copper container insulated at the top and bottom

with a layer of A1203-SiO 2 (HASH 60). The compression is symmetrical and

between two plates of AMATOL that were initiated at the left along a vertical
plane perpendicular to the figure. With this configuration the detonation
waves move from left to right. A wedge type collision zone is a well known
characteristic of this type of loading, and the cell distortion makes this
evident in Fig. 5.

An indication of the influence of a powder container during compaction is
shown in Fig. 6. In the compaction shown at the left, the explosive was in
direct contact with the porous aluminum, but the explosive products were not
allowed to penetrate the interface. In contrast, the computation shown at the
right is for the same situation as at the left except the explosive and powder
are separated by a layer of molybdenum. In both cases, the stresses at the
cell boundary, which are identified with the horizontal lines, are plotted

10
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vertically with zero stress located at the cell boundary. Without the con-
tainer, noticeable stresses develop in the powder, but when there is a layer
of molybdenum separating the explosive from the powder, only low stresses
develop in the powder and they occur much further behind the detonation front
than when there is no container. These results imply that the container can
influence compaction substantially.

The initial density of the powder is similarly shown to be a governing
factor during compaction. For example, no stresses are computed to develop in
29 percent dense copper loaded symmetrically between 4 cm plates of AMATOL as
shown in Fig. 7. In contrast, intense stresses are computed to develop in
60 percent dense copper when compressed with only 2 cm of AMATOL (Fig. 8).

Densities are also computed throughout the course of compaction, and in
keeping track of these, it was found that when intense stresses fail to develop
in the powder, the compaction is incomplete. Presumably, stresses equal to the
flow stress are attained since considerable consolidation occurs even though
theoretical density is not achieved.

Finally, 60 percent dense copper powder was actually compacted symmetri-
cally with 2 cm of AMATOL on each side. The recovered sample was considerably
cracked, at least in part, by unloading waves, but a final density greater than
97 percent of theoretical density was attained. The computations suggested
that theoretical density should have been attained, and since it essentially
was, it is concluded that the computations can be effectively used to get an
idea of what actually happens during dynamic compaction.

IV. CONCLUSIONS

Preliminary results suggest the following about the AMATOL, resistance-
wire detonation-rate gage and the compaction process.

1. The measured detonation velocity of AMATOL, 2.54 cm thick and
compressed to a density of 1.02 g/cm3 , is 3.69 mm/usec. This is in approxi-
mate agreement with the velocity of 3.65 mm/usec reported by the manufacturer.

2. Repetitive detonation velocity measurements with the resistance-
wire gage have been erratic and indicate that refinements in the measuring
technique, or an alternative method, may be desirable.

3. Computations indicate that powder density, explosive thickness,
powder container and unloading waves have pronounced effects on the compaction
process and the product formed.

11
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Figure 2. Barrier to protect equipment from explosive blast.
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COMPUTED COMPACTION

AMATOL (1. 57 in) - HASH 60 (1/4 in) - Cu (1/4 in) - POROUS Cu

Cu (314 in thick, 2. 6 glcm3)

/ ,. ,.,,1/

jij

Figure 5. Computed 3compaction of a plate of porous copper (1.90 cm thick,

the eft.The porous copper was bounded on both sides by plates
of slidcopper (0.635 cm thick), and this was separated from the
explsivewith an insulator (HASH 60, 0.63S cm thick).
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Figure 7. Computed compaction of porous Cu (29 percent of theoretical
density) illustrating less than complete compaction. This
is indicated by the low pressures (unresolvable in the
figure) attained in the powdered Cu. The Cu is bounded on
both sides with plates of solid Cu (0.635 cm thick), and
these were loaded symmetrically with amatol (3.99 cm thick)
explosions along the other sides of the solid Cu. The
amatol was initiated from the bottom end of the system as
shown above. The dotted and solid lines have the same
meaning as described under Fig. 6.
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Figure 8. Computed compaction of porous Cu (60 percent of theoretical
density). While only incomplete compaction was attained in
the computation illustrated in Fig. 7, complete compaction
is indicated above with the high pressures developed in the
compressed powder. Even though only 2.0 cm of amatol was
detonated on each side of the container - powder system in
this case, total compaction was attained because the initial
powder density was higher than for the computation illus-
trated in Fig. 7. The dotted and solid lines have the
same meaning as described under Fig. 6.
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6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.

Name:__

Telephone Number:

Organization Address:



- FOLD HERE-

US Army Ballistic Research Laboratory 1111NOCPOSAEATTN: DRSMIC-BLA-S (A) 111111 IF MALEDR
Aberdeen Proving Ground, MD 21005 TATE

OFFICIAL BUSINESSm

PKNLTYPORPRIATEUSE 830 iFIRST CLASS PERMIT NO 12062 WASHINGTON,OCJ

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director-
US Army Ballistic Research Laboratory
ATTN: DRSMIC-BLA-S (A)
Aberdeen Proving Ground, MD 21005

---- ---- --- - FOLD HERE-




