
AD-A137 236 T IME MAINTENANCE(U) YALE UNIV NEW HAVEN CT DEPT OF j
COMPUTER SCIENCE DEAN OCT 83 YALEU/CSD/RR-289

UNCLASSIFIED NOO 89/

EEElllllllllll
EEIIIEIIIIIEEE
IEIIIIIIEEEEEE

a

11111__- -

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOARDS-1963 A

I

wil

Ht

im

Time Map Maintenance

Thomas Dean

YaleU/CSD/RR#280

October 1983

i ' . S L E C T -

YALE UNIVERSITY
DEPARTMENT OFCOMPUTER SCIENCE

r~s dommat Waa be". apiplova.

84 01 26 663
IM• -

Time Map Maintenance

Thomas Dean

Research Report #289 Accession Form

NTIS (.,I -October 1983 DTIC T,'d

fJusti;'i;

Acknowledgements

Many of the ideas presented in this paper came up in discussions with Drew McDermott,
Dave Miller, Yoav Shoham, Stan Letovsky and Eric Gold of the Yale spatial reasoning
research group. The term "time map* is due to Drew McDermott.

This work was supported in part by the Advanced Research Projects Agency of the
Department of Defense and monitored under the Office of Naval Research under
contract N00014-83-K-0281.

.cpprov7 1
,ieu

SECURITV CLASSIFICATION OF TIS PAGE (ft,. DOI* 2r, 0toiJ

READ ENSTRUCTIONSREPORT DOCUMENTATION PAGE BEFOR COMPLETG FORN
IRT NUM|et GOVT ACCESSION NO: S. ECPiENTS5 CATALOG NUMBEN

4. TITLE (Im Iubttle) S. TYPE of "EPOR1T a PERIOD COVERED

Time Map Maintenance Technical Report

S. PERFORMING Ot. REPORT NUMBER

7. AUTNO"(.* 9. CONTRACT OR *RANT NUM6E9t.)

Thomas Dean N00014-83-K-0281

S. PERFORMING 0oGANI2ATION NAME AND ADDRESS If. PROGRAM ELEMENT PWOJ CY. TASK

Yale University, Computer Science Department

10 Hillhouse Avenue
New Haven, CT 06520

Il. CONTROLLING OFFICE NAME AND ADDRESS IS. REPORT DATE

Advanced Research Projects Agency October 1983
1400 Wilson Boulevard IS. NUMUER O PAGES

Arlington, VA 22209 70
14, MONITOING AGENCY NAME & ADDNESS(fl ltferteng Iem CreWdi4flV Offie) IS. SECURITY CLASS. (of te teoprtJ

Office of Naval Research Unclassified
Information Systems Program assifieD
Arlington, VA 22217 Is.. €kDUaSOECAT|ON/DOWNGRADING

1S DISTRIBUTION STATEMENT (of th Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the abetrec I eae9ro In Slock 20. Igfet 4NO N Reipest)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cntgwe en rovoeo* aide It neoessa ae Ientfy by bloc k mNbo)

time map
tmporal logic
data dependency
planning

10. ApSTRACT (ConttuM. an memete aide it meneer &Widenift OO au.0 i""e
This paper describes a mechanism for dealing with the representation of events
and their effects occu xU$ in and over time. The mechanism, which I refer to
as a time map manager, (T3., is shown to be useful in problem solvers requiring
an ability to reason about time and causality. In addition to describing the
theory and its Implementation I will demonstrate a program-lg..±ch ue and
related discipline based upon the use of data dependenciesr(Doyle 79a). This
technique supports the design of complex control structures capable of recordi

fthe conditions under which informtion Is stored and asu ly respond

0 1473 SDIon oerI Nov Go s Ow.tR highly directed ways when those conditions
are 0 ha-o -aS'N 0102- LF, 014a- 6601 ere V 66a MP omtre TooSS w&ufob amutwSeeISIIIT¥t&,&08PL~oel I Vili P

-AA J111

JI

- OFFICIAL DISTIRUBTION LIST

Defense Documentation Center 12 copies
Cameron Station
Alexandria, Virginia 22314

Office of Naval Research 2 copies
Information Systems Program
Code 437
Arlington, Virginia 22217

Dr. Judith Daly 3 copies
Advanced Research Projects Agency
Cybernetics Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209

Office of Naval Research I copyBranch Office - Boston495 Surser Street

Boston, Massachusetts 02210

Office of Naval Research 1 copy
Branch Office - Chicago
536 South Clark Street
Chicago, Illinois 60615

Office of Naval Research 1 copy
Branch Office - Pasadena
1030 East Green Street
Pasadena, California 91106

Mr. Steven Wong 1 copy
New York Area Office
715 Broadway - 5th Floor
New York, New York 10003

Naval Research Laboratory 6 copies
Technical Information Division
Code 2627
Washington, D.C. 20375

Dr. A.L. 8lafkosky 1 copy
Csassadant of the Marine Corps
ode AD-1

Washington, D.C. 20380

Office of Naval Research 1 copy
Code 455
Arlington, Virginia 22217

Office of Naval Research I copy
Code 458
Arlington, Virginia 22217

1+ ______________ _____________________

2-

Naval Electronics Laboratory Center I copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E.H. Sleissner 1 copy
Naval Ship Research and Development
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper, USNR I copy
Naval Data Automation Comand, Code OOH
Washington Navy Yard
Washington, D.C. 20374

Dr. Robert Engelmore 2 copies
Advanced Research Project Agency
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Professor Omar Wing 1 copy
Columbia University in the City of Nov York
Department of Electrical Engineering and
Computer Science
New York, New York 10027

Office of Naval Research 1 copy
Assistant Chief for Technology
Code 200
Arlington, Virginia 22217

Captain Richard L. Martin, USN I copy
Comanding Officer
USS Francis Marion (LPA-249)
FPO New York 09501

Major J.P. Pennell 1 copy
Headquarters, Marine Corp.
(Attn: Code CCA-40)
Washington, D.C. 20380

Computer systems Nanagemnt, Inc. 5 copies
1300 Wilson Boulevard, Suite 102
Arlington, Virginia 22209

No. Robin Dillard I copy
Naval Ocean systems Center
C2 Information Processing Branch (Code 824)
271 Catalina Boulevard
Son Diego, California 92152

a ______________________________

i *' ... I-

• '..

-3-

Dr. William Woods 1 copy
SON
50 Moulton street
Cambridge, MA 02138

Professor Van Da= 1 copy
Dept. of Computer Science
Browin University
Providence, RI 02912

Professor Eugene Cbsrniak 1 copy
Dept. of Computer Science
Brown University
Providence. RI 02912

Professor Robert Wilenaky I copy
Univ. of California
Elec. Engr. and Computer Science
Berkeley, CA 94707

Professor Allen Nevell 1 copy
Dept. of Computer Science
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Professor David Waltz 1 copy
Univ. of Ill at Urbana-Champaign
Coordinated Science Lab
Urbana. IL 61801

Professor Patrick Winston I copy
MIT
545 Technology Square
Cambridge, MA 02139

Professor Marvin Minsky 1 copy
MIT
545 Technology Square
Cambridge, MA 02139

Professor Negroponte 1 copy
NIT
545 Technology Square
Cambridge, MA 02139

-4-

Professor Jerome Feldman I copy
Univ. of Rochester
Dept. of Computer Science
Rochester, NY 14627

Dr. Nile Nilsson 1 copy
Stanford Research Institute
Menlo Park, CA 94025

Dr. Alan Neyrowitz 1 copy
Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

Dr. Edward Shortliffe I copy
Stanford University
MYCIN Project TC-117
Stanford Univ. Medical Center
Stanford, CA 94305

Dr. Douglas Lenat I copy
Stanford University
Computer Science Department
Stanford, CA 94305

Dr. M.C. Harrison 1 copy
Courant Institute Mathematical Science
New York University
Ney York, NY 10012

Dr. Morgan 1 copy
University of Pennsylvania
Dept. of Computer Science & Info. Sci.
Philadelphia, PA 19104

Mr. Fred M. Briffee 1 copy
Technical Advisor C3 Division
Marine Corps Development

and Education Comand
4 "amantico, VA 22134

- 9

...._ _..._

Table of Contents
I Introduction

1.1 Organization.
2 Time Maps. 4

2.1 What is a time map manager?. 4
2.2 Some Earlier Approaches. 7

2.2.1 Procedural Nets. 8
2.2.2 HACKER's Protection Mechanism. 12

2.3 Dependency Directed Programming. 14
2.4 Time maps in the abstract: the notion of temporal dependence 1
2.5 A description of the actual TMM algorithms. 18

2.5.1 A Detailed Example. 23
3 Planning 27

3.1 Maintaining Assumptions 27
3.1.1 Plan-Expansion-Time Assumptions. 28
3.1.2 Problems lnvolviij- Classes of Constraints.... 3

3.2 Monitor Tasks 43
3.3 Aside..* * - - 45

4 Continuous Planning and Execution in Time. 48
4.1 Introduction. 48
4.2 Maintaining a moving kernel of active events: the planner's window on the

continuum. 48
4.2.1 Planning in Time. 52

4.3 Synchronizing an internal representation with real events 3
5 Conclusions
I Appendix: Time Map Garbage Collection.

ii

List of Figures
Figure 2-1: A conflict in priorities 7
Figure 2-2: Part of the TMM dependency hierarchy 19
Figure 2-3: An algorithm for updating the derived-6 fore transitive closure 20
Figure 2-4: Algorithms for adding the new tassertions and resolving inconsistencies 21
Figure 2-5: Dependency hierarchy for maintaining tasertion consistency 22
Figure 2-8: The initial scenario 24
Figure 2-7: Jarvis' alibi 25
Figure 2-8: Condemning evidence 26
Figure 3-1: Format for specifying plan choice criteria 30
Figure 3-2: A possible plan for inserting an object into a container 39
Figure 3-3: Plan specification for asking obnoxious questions 42
Figure 1-4: Task monitor for a rush job 44
Figure 4-1: Simple example illustrating token garbage collection 50
Figure 4-2: Possible rules for establishing facts about events 59
Figure 5-1: A Schematic Illustrating the Organization of Basic Functional Units in an 62

Adaptive Planner

Abstract

This paper descibes a mechanism for dealing with the representation of events and their effects
occurring in and over time. The mechanism, which I refer to as a time map manager (TMM), is
shown to be useful in problem solvers requiring an ability to reason about time and causality. In
addition to describing the theory and its implementation I will demonstrate a programming
technique and related discipline based upon the use of data dependencies [Doyle 79a]. This
technique supports the design of complex control structures capable of recording the conditions
under which information is stored and subsequently responding inl highly directed ways when
those conditions are changed.

1. Introduction

Most interesting planning problems involve dynamic issues:

" the world changes (and one would hope that our view of it is modified accordingly)

" plans evolve and goals shift to meet our varying desires and aspirations

" execution deadlines approach (and sometimes are ignored for one reason or another)
" assumptions made at one point during planning are invalidated by new knowledge or

by constraints imposed by other plans

Each of these problems require an ability to reason about time. A pragmatic foundation for

reasoning about time should be able to capture the notion that actions can modify the persistence

of facts which are true in the world. It should be able to use information about the duration and

sequence of events so as to infer possible effects. Finally it should provide a representational

structure to support planning and reasoning about the causal structure of the surrounding

environment.

A good deal of energy has been spent on developing logics of time and representations for actions

and events which attempt to capture our intuitions about cause and effect [McDermott 821

[McDermott 78] fAllen 81a)J Allen Bib]. The objective is to build a naive but pragmatic theory

of causality in order to model the world changing about us and our interaction with it. Using

such a model a robot should be capable of developing, plans to achieve its goals, executing these

plans and recovering from the inevitable problems that arise. To illustrate I'll describe two

2

simple problems from the task domain which has motivated much of the current research. The

domain involves a simple mobile robot, which you can think of as an automated forklift truck,

and an environment resembling an industrial machine shop or warehouse.

For the first example suppose that the forklift has two outstanding tasks:

" stack all similar unused items (presumably to conserve floor space) and

" Clear all unused items obstructing major thoroughfares in the work space.

(These 'tasks" are more on the order of general polices [McDermott 771 but they will suffice for

the purposes of the example). There are obvious constraints that one could suggest concerning

the order in which plans to achieve these tasks are executed. In particular if, say, a hall was

cluttered with vacant desks and the forklift was capable of lifting just one desk at a time then

certainly it should clear the desks from the hall before stacking other desks upon them. It would

also be reasonable to expect it to integrate stacking with clearing where possible.

As a second example consider that the forklift is given the task to transfer an item from one

location to another. However let us also suppose that it has been remiss in performing the tasks

of the first example and in the course of actually moving the item it encounters an obstacle. The

forklift can either change its route (if possible) or set its load down and remove the obstacle

before continuing with the transfer task. We might even expect the robot to take the

opportunity to satisfy the requirement mentioned in the first example (clearing obstructed

thoroughfares) by moving the obstacle to some less traveled area. The latter option involves

dynamically integrating new tasks into the flow of planning and execution.

I have built a planning system which deals with the above sorts of problems and a mechanism

(TMM) for maintaining temporal maps which supports the necessary reasoning. The rest of this

paper will attempt to describe this mechanism and its potential uses in robot problem solving and

understandingingerl

3

1.1 Organization

The structure of this paper is designed to anticipate the interests and possible questions of

someone interested in planning programs and planning in general. The chapters on time maps

and planning combine theory and implementation. The justification being that the abstraction

behind the implementation, data dependency, is closely tied to the theoretical issues being

addressed, in particular to the notion of temporal dependence. These chapters tend to be rather

technical though numerous examples are included to help motivate the discussion. The last two

chapters are more speculative. They are intended to encourage further discussion of the role of

time maps in particular and reasoning about time in general.

The basic organization is as follows:

1. introduction

2. time maps

" what they are

" some historical perspective on approaches and applications

" the abstraction

" the mechanism

3. planning

a maintaining planning assumptions

e execution monitoring

4. extended applications in planning

* continuous planning and execution

* coordinating a world model with the world it presumes to model

5. conclusions and research directions

" A

4

2. Time Maps

2.1 What Is a time map manager?

Events occur in time. The sort of events we will be investigating, events involving actions, canl

also be said to occur over time. It is convenient to asociate with a particular occurrence of an

event a temporal interval demarcating its beginning and ending, in which the event is said to

occur. In the following we will refer to such an event occurence as an event token. An event

type on the other hand refers to a description of an event without reference to a particular time

or occurrence fitting that description (e.g. man attempt made on the president's life" describes an

event type while "John Wilkes Booth shot Abraham Lincoln on April 14, 1805" refers to a

specific event token). Event tokens can be compared temporally by means of the relative

positions of their beginning and ending points in i single dimensional space, that of time. From

the information that two event tokens meet, overlap, or that one occurs during the other it is

often possible to infer a causal relationship between them or, in the case that a causal

relationship is already known, deduce possible events to follow. For instance knowing that

famines follow droughts might lead one to suspect a causal correlation between the two events;

knowing that during a cease fire in Lebanon a Shiite Moslem leader was assasinated at the

negotiations table one might guess that hostilities would be renewed. Most causal relationships

between events imply some sort of temporal relationship as well.

In addition to events causing other events, events can be thought of as causing certain facts to

*become true". Each fact caused by a given event is associated with an uninterupted temporal

interval designating (1) the point in time at which the event ostensibly made the fact true (it

might have already been true) and (2) the first point in time following (1) at which the fact is

known to be false. The event is said to enable the fact to persist over a particular temporal

interval which we refer to as a fact token. The beginning and ending of a fact token is often of

interest. The fact token spanning this moment and asserting r-- continued sanity is hopefully

not going to end soon. Other events can shorten the duration of a fact token. I might open a

window causing a draft because I am warm and someone else might imumediately close that

window complaining of the cold.

r One can hypothesize about a given event occurring at any point in time but the temporal

placement of a given event affects both the persistence of the facts caused by that event and the

persistence of facts caused by other events. Suppose that we are considering the event 7DKEN1

as occurring at a particular point in time. Fact&. caused by 7TOKENi affect the persistence of

facts caused by events which precede 7tKENI and the facts caused by events which follow

TOKEMi affect the persistence of facts caused by TOKENI.

A planner must be able to reason about how an event will unfold at a particular point in time.

In forming a hypothesis about how an event will occur it is necessary to make certain

assumptions concerning tbe temporal context in which the event is to be placed (i.e. the facts

which can be said to be true in adjacent temporal intervals). An event projection refers to a set

of inferences made assuming that an event will occur in a particular interval. A projection of an

event token E includes:

1. a set of fact tokens (F,, F2 ... F.,) representing the effects of E

2. a set of event tokens (E, E .. Em) suggested by causal inference rules to occur
given the immediate temjpora? context of E

3. constraints upon the time of occurrence of the tokens in the sets mentioned in (1)
and (2) relative to E

4. projections of the event tokens in JE1, E2 ... E.)

I may form a projection (or hypothesis concerning how the future is to unfold) based upon

certain fact tokens and my current estimates concerning their duration or persistence. Later I

may feel obliged to retract my hypothesis upon learning that one of the fact tokens on which I

6

was depending has been truncated by another event. After opening the window I might expect

the room will soon be cool and the air freshened. When the window is shut after so brief a time I

must either reconcile myself with the stale air (and my unaccommodating roommate) or do

something to restore the flow of fresh air.

A time map manager (TMM) keeps track of the known relative positions of points corresponding

to the beginning and ending of fact tokens and event tokens. The TMM maintains a consistent

database of fact tokens by limiting the duration of fact token intervals (figure 2-1 illustrates the

window example). By consistent we simply mean that no fact token asserting P overlaps a fact

token asserting -P. The TMM allows other programs, under a wide variety conditions, to keep

track of the validity of assumptions made on the basis of facts believed to persist over time. For

example the assertion that a particular event has occurred can be withdrawn along with its

current projection by simply withdrawing support for the assertion. Any other assertions which

depended upon this event or any of its derived effects occurring will be called into question as a

side effect. In practice this might mean that an "assumption failure" message would be

generated annotating the source of the failure and the parties involved. If the occurrnce of the

withdrawn event is under the control of the program (e.g. the event refers to a task that the

program considered executing) and the cost associated with that event not occurring is

considerable, then the original state of the data base can be restored by simply restoring the

initial event support or by providing new support (i.e. reestablishing the task).

It is also quite easy to displace an event in time while maintaining the temporal relationships

between the event and the tokens in its associated projection. This means that a cascade of

causally connected tokens can easily be hypothesized to occur at different point. in time.

Shifting an event from the point in time in which it. current projection was formulated to some

other point in time may threaten the validity of that projection. For example I may have

7

assumed that the circus clown on the trapeze would be hurt by a fail but then I discover that the

clown's act will follow the high wire act prior to which a safety net will he set up under the

trapeze. Such a shift can also threaten other projections. In the chapter on planning (chapter 3)

1 will demonstrate how the TMM enables a program to keep track of the validity of projections

under the above sorts of transformations.

Dove's conception of his situation at TI
I--,Dave opens the window

----- ------ foul air is exhausted from the room
TI l-- Dave is revived

Dave's revised conception of his situation at T2
l--ithe window is opened
---------- foul air is exhausted from the room

---IDove's disagreeable office mete closes the window
T2 I---I Dave expires

Figure 2-1: A conflict in priorities

In the following we will examine some classic approaches to dealing with events occurring in time

and what problems they did and did not solve. Then we will explore the time map proposal and

demonstrate how it both subsumes the functions of the earlier approaches and extends what can

be expected of a computational method for dealing with events and actions occurring in time.

Most of the discussion will center about planning programs though there is a great deal of related

work in story comprehension JCharniak 81) jRieger 781 and text comprehension in general !Allen

801.

2.2 Some Earlier Approaches

Probably the two most discussed planning programs of the last decade are Sacerdoti's NOAH

[Sacerdoti 771 and Sunsman's HACKER ISussman 76). Neither NOAH nor HACKER emphasized

an approach to representing time hut both were concerned with planning a sequence of actions

for accomplishing a task and hence both necessarily had to have some way of dealing with

interactions which might arise in executing a proposed sequence of actions. Each program

employed a different mechanism for detecting interactions between plans. I'll briefly discuss each

in turn.

Both programs required a data structure in which to represent the changing states of the world

over a period of time in which the program proposed to perform certain actions. The object was

to record in this structure the effects and preconditions associated with a given action in such a

Way that subsequent changes to that structure which violated those preconditions or made their

effects redundant would be noticed, and appropriate modifications made. I like to think of it in

r slightly different terms. When we choose a plan we normally do so taking into account the

temporal context in which it is to be executed. Our belief that the plan we have chosen will

continue to be reasonable is based on assumptions that certain facts which were believed to be

true throughout certain temporal intervals will remain so in spite of our changing conception of

what the future holds in store. From this perspective a plan interaction occurs when a plan

choice assumption is invalidated. Some types of interactions are inconsequential and can be

ignored while others may threaten the viability of a particular plan in a given context. When one

plan threatens another we say that the two are in conflict. In more general terms we can speak

Of conflicts between two event projections (or conjectures as to when and how a particular event

will manifest itself). In the following I will focus on one rather general class of conflicts and

begin by speaking about Sacerdoti's NOAH in order to use his description of such conflicts.

2.2.1 Procedural Nets

NOAH concerned itself primarily in dealing with interactions between actions (an action is

represented in STRIPS format [Fikes 711 as a set of preconditions, a list of "facts" which are

assumed to be true after the action is performed (procedurally this means a list of assertions to

be added to the data base) and a list of 1fact assumed to be false following the action

(assertions to be deleted from the data base)). Planning proceeds by filling in the details of some

9

initial, usually ,nordered, set of goals or actions to be performed. The current state of the plan

is represented in what Sacerdoti calls a procedural net; a data structure used for recording the

effects of actions and the ordering constraints imposed on their execution. Each action is

represented as a node in the net and two actions which are unconstrained relative to one another

will appear as child nodes of a single conjunctive node. NOAH delays constraining the execution

ordering as long as possible in order to facilitate dealing with interactions. The actions which

correspond to the children of a conjunctive node in the procedural net can presumably be

executed in any order or in parallel if processors, actuators or agents exist for each individual

action. Filling in the details of a plan (expansion) consists of expanding all action nodes resulting

from the last expansion or all of the initial action nodes in the base case. A node representing an

action A at one level of description is expanded by adding new nodes to the net which represent

those (sub)actions (A,, A2,. .. A.) characterizing A at some more detailed level of description.

Sacerdoti describes [Sacerdoti 77] two conflict types:

"If an action in one conjunct deletes an expression that is a precondition for a
purpose in another conjunct, then a conflict has occurred .'(pg 30)

"Another type of conflict occurs if an action deletes an expression that is a
precondition for a subsequent purpose." (pg 31)

NOTE: The expansion of an action A, for our purposes at least, can be thought of as a list of
(sub)actions (A,, A2. - A.). The last item on this list has particular significance to NOAH. It
serves to define the notions of purpose and precondition:

"The system assumes that the purpose of every action but the last in such an expansion is to
establish the truth of some expression in order to make the final action applicable. We will call
both the expressions that are to be made true and the nodes that make them true preconditions.
We will call both the last node in a more detailed expansion of a node and the pattern associated
with the last node the purpose of the preconditions." (pg 11)

In order to understand what it means for an "action to delete an expression that is a

precondition" for another purpose it is necessary to understand how NOAH simulates the

execution of a plan during its expansion. During an expansion each expression which is either

added or deleted is entered in a data structure called a TOME (for Table Of Multiple Effects)

10

along with a list of nodes corresponding to the actions which made reference to the expression

and whether they added or deleted it. From this table all interactions (i.e. one node adds what

another one deletes) are extracted and all expectid interactions eliminated. An example of an

expected interaction is one in which an action denies its own precondition (e.g. the precondition

for (on A B) is (clcortop B) but executing (on A B) causes (ci artop B) to be deleted). Those

interactions which remain constitute conflicts and are dealt with by either constraining the nodes

(i.e. linearization) to eliminate the conflict if possible or failing in that (the nodes are already

constrained as in the second case above) splicing in a new node corresponding to an action to

reestablish the precondition.

When a conflict between two unconstrained nodes is detected their respective actions are ordered

to eliminate the conflict and the structure of the procedural net is modified to reflect the new

(partial) execution order. This action is essentially irreversible as NOAH does not retain any

information to guide backtracking and as a result fails in finding solutions to certain classes of

problems (see (Tate 771 for an account). A later program NONLIN [Tate 751 modeled after

NOAH corrected this deficiency by retaining state information from decision points. However in

NONLIN backtracking requires restoring the state at the decision point and discarding all other

planning knowledge leading up to irreconcileable conflict some of which is likely to still be

applicable. The alternative would be to shift the whole node to a different point in the

procedural net: a process which cannot easily be done in NOAH or NONLIN except by removing

the node, reinserting it at the new spot and then re-expanding it from scratch.

Another problem with the procedural met as a representation of actions in time stems from its

poor temporal resolving power. An action in NOAH is essentially treated as a point in time. It is

impossible, for instance, to represent a precondition which must be true at the beginning of an

action but not necessarily at the end (e.g. for a train to pass successfully through a mountain

tunnel the entrance must be clear when it eaters but not necessarily when it leaves). in practice

it is always possible to introduce preliminary (gating) actions (e.g. entering the tunnel) to add

more resolution to the net, though the notation can become clumsy at times (see the references

on temporal logic for more discussion (Allen 81b] (McDermott 821 and the Hendrix article

(Hendrix 731 for a proposal to handle time in a more detailed fashion within the STRIPS

paradigm).

The STRIPS representation of action also leaves much to be desired. An action can cause other

events under the right circumstances and these in turn cause other events in a cascade of effects

resulting from a single action. Actions can also cause various facts to persist throughout some

temporal interval contingent. upon other facts being true. Flicking the light switch will have the

consequence of illuminating the room if the switch is functioning and the power is on and any

number of other conditions are met. This sort of conditional effect is not supported in NOAH

though one can see means of extending the program to incorporate such a facility. A number of

more promising approaches are outlined in the references mentioned above on temporal logic.

A final complaint has to do with the procedural net and the nature of planning itself. Planning

is a continuous process. Performing an action may cause effects which, if noticed, will require the

formulation of new tasks. If I paint the ceiling I could spatter the walls; so I might apply new

wallpaper and in the process ruin the floor finish; so I varnish the floor but now my furniture

looks so shabby in comparison ... and so on ad infinitum. Moreover there are likely to be tasks

which cannot be planned for until after some other task is executed. I won't know what color to

paint the trim until I see what the walls look like painted fuchsia. NOAH treats a set of tasks

and the plan for achieving them as an isolated process. It has only limited ability to recover

from planning errors noticed during execution and it makes no attempt integrate tasks which

seek out information from the world in order to direct subseqvent planning. A realistic planner

_ _ _ _ _ _ _ _ __--_ _

12

takes into account the limitations of its model of the world; continually supplementing and

corroborating its picture of the environment. In the following chapters I will attempt to

demonstrate how the approach described in this paper supports continuous planning in the

context of a changing representation of the world and the events occurring in it. First let us look

at one other planning program and its pragmatic approach to dealing with sequences of actions.

2.2.2 HACKER's Protection Mechanism

Sussman's HACKER took almost the complete opposite approach to planning from that of

NOAH. HACKER begins with a completely ordered sequence of actions which constitutes a

specification at some level of description of a plan for achieving a task or conjunction of tasks.

The specification may turn out to be full of *bugs" or interactions which might compromise the

plan but the process of planning consists, in HACKER's view at least, of detailing and debugging

the initial specification. As with NOAH our treatment here is necessarily brief and superficial.

Both NOAH and HACKER are thoroughly described in well written and widely available books

[Sacerdoti 771 [Sussman 75]. The purpose here is to point out certain concepts that a planner

which reasons about time must address and give some perspective on where those ideas

originated. In trying to get some grasp of how these ideas have been incorporated in past

programs we will hopefully gain some insight into how they might be incorporated into a more

comprehensive and realistic theory of reasoning about time and action.

In this regard we will be concentrating on Susman's notion of a protectio" tiototion and the

associated mechanism for detecting such violations. The principal ideas had been knocking about

in computer science for some time. In Sunman's words [Sunman 75] the *protection

mechanism" combines:

'the ideas of Intentions and Monitors (Hewitt 711 under the unifying concept of the "chronological
(vs the lexical or dynamicl scope" of a oel." (my pareutheti s) (Pg 101)

in order to capture certain intuitions concerning the implied purpose of a goal and implement a

L k AL -- -- m

13

means of recognizing when such purposes are thwarted. The idea is that if an action relies upon

a fact being true during some part of the plan's execution then the planner attempts to protect

that fact by watching for other actions which make it false within the critical part. Its not clear

just how general the actual mechanism used in HACKER was. When watching for protection

violations HACKER runs in a "careful" mode of program execution in which:

'whenever a change is made to the world model (the chronological context) ... all currently
protected expressions are fetched from the current dynamic context and tested in the world
model. Aim error results if one is found to be untrue.'

When a protected expression is violated an attempt is made to reorder the action associated with

r the purpose depending upon the protected expression in such a way as to avoid the violation.

This detection mechanism is similar in effect to that used by NOAH but there are some subtle

differences.

NOAH relied upon a simple syntactic method for distinguishing purpose and precondition. It is

clear however that a particular task can have more than one purpose (e.g. cleaning the kitchen

will get the landlord off your back and temporarily herd the reaches into the next apartment).

The important concept to be learned from HACKER with its more flexible approach to purposes

and goals is that a pair of tasks one of which serves the purpose of the other define a temporal

interval in which the object of of the servant task is implicitly protected.

The rest of this paper describes an approach to planning involving time maps which subsumes

both HACKER's protection mechanism and NOAH's procedural net. This approach supports

the use of programs (critics) such as those used in HACKER and NOAH for constraining the

order in which tasks are executed and avoids several of the deficiencies mentioned in the

discussion of NOAH.

14

2.3 Dependency Directed Programming

In order that much of the following discusion be intelligible the reader should be at least

passingly familiar with the concept of data dependency (Doyle 79b). A data dependency network

can be thought of as a graph structure whose nodes correspond to beliefs and whose links define

support or justificatory relationships. The nodes themselves (which we refer to as ddnodes for

data dependency nodes) might be associated with just about anything but for our present

purposes suppose that each ddnode is associated with a predicate calculus formula (an assertion

or inference rule). In the following we will often refer to the ddnode and its associated formula

interchangeably. A ddnode is said to be IN (in our case the associated formula is believed to be

true) if there exists a well founded or non-circular justification whose associated ddnodes are

themselves IN, or OUT, depending upon the type of support relationships involved. A

justification can depend upon some ddnodes being OUT as well as IN. Otherwise a ddnode is

said to be OUT. A formula can be made IN by simply asserting it, in which case its justification

is the fact that it is a premiss. In other cases a formula can be IN or OUT depending upon the

current status of other formulas in the network.

One important fact about data dependency mechanisms (at least those modeled after Doyle's

truth maintenance system) is that they support non-monotonic inference. In data dependency

terms, this means that changing the status of an existing ddnode can cause a change in the status

of other ddnodes. In particular asserting a new premiss can cause something that was formerly

IN to become OUT. For example suppose that my belief that stockpiling nuclear weapons is an

effective deterrent to their use is contingent upon my belief that the Soviets fear our nuclear

capability. If I later learn that the Soviets think our retaliatory capabilities can be effectively

disabled by their rst strike offensive then I might wish to reassess more than a few of my beliefs.

Since a data dependency system retains OUT justifications for beliefs (unless explicitly told to

_ _ _ _

excise them) a particular assertion can toggle between IN and OUT depending upon the context

in which it appears (i.e. the status of other formulas in the network). The notion of context has

been generalized to mean a set of formulas and a status assignment for that set. Thus a given

formula may appear IN in one context but OUT in another. Later we will discuss a mechanism

for switching efficiently between contexts [McDermott 811 which allows a planner to entertain

multiple hypotheses concerning possible futures. For the time being this should suffice for

understanding the discussion though it should be noted that data dependence networks form the

basis for a powerful abstraction which has only been hinted at in the preceding paragraphs and

the uninformed reader is urged to educate himself more thoroughly. TMM and the programs

which rely upon it derive much of their power from control structures directed by data

dependence hierarchies.

2.4 Time maps in the abstract: the notion of temporal dependence

The general ideas behind time maps and time map maintenance are quite simple. They rely

upon the notion of data dependence. A time map designates a partial order on points. Intervals

are described as ordered pairs of points with the stipulation that the first point in a pair precedes

the second one. Each pair is associated with a token and certain tokens are distinguished by

their designating a (temporally dependent) fact. The maintenance algorithm simply sees to it

that if there exists a pair (BEGINI END)) referring to a fact P, then for all pairs (BEGIN2

END2) referring to -P it is not the case that either BEGIN2 < BEGIN! < END2 or BEGIN!

< BEGIN2 < END. WhMen such an overlap is detected the token occurring earlier is shortened

so that it ends before the later token begins.

If facts were added to the time map and never erased or moved about then enforcing this

invariant would be simple. The problem is that we are anticipating the needs of a planning

algorithm which will use the time map, and those needs dictate the flexibility to quickly add,

A,__

shift, remove and restore arbitrarily large event projections. Suppose for example someone tells

you that Tycho Br-abe took into account dopier red shift in his tables plotting the motions of

celestial bodies or perhaps that tomorrow you will be required to give a lecture at 9:00 AM

though you had planned to sleep late and play squash. In the first case your belief in when the

red shift phenomena was first understood should make it difficult to assimilate the Tycho Brabe

story and in the second you might either modify your projected schedule or protest the

requirement. Ink order to achieve flexibility the maintenance system must keep track for each fact

token asserting P, those fact tokens asserting -P that are "likely" to change position in the

temporal partial order.

Determining a reasonable Context of events for planning or other forms of problem solving is

often a significant part of the problem. Suppose that I'm trying to reconstruct yesterday's events

during which my office was entered and my coffee cup with the broken handle and chipped lip

stolen. I might be justifiably interested in the event in which I went to the cafeteria, carelessly

* leaving the office door unlocked behind me. But its not likely that the events corresponding to

my waking yesterday morning or riding the shuttle last night will be of any use in discovering

just who might have perpetrated the crime.

A practical TMM might designate temporal windows or a set of categories for determining the

sort of events that might be considered valuable during planning. Unfortunately fixed-duration

windows are likely to prove too restrictive and it is difficult to specify reasonable categories that

capture what we mean by relative importance. The duration of an event is certainly not a

reliable indicator: the bomb detonations at Hirobhima and Nagasaki together spanned at most a

few milliseconds though their repercussions are likely to extend well into the next millenia (if

we're so lucky). On the other hand the duration of an event's effects is no indication either,

otherwise every person's death would would be considered as an event on a cosmic scale. Rather

17

than introduce events on the basis of some inherent property of the events themselves it seems

more reasonable to leave it up to the planner to establish criteria for inclusion.

The solution that I have adopted is to keep track of a map kernel, the set of events that the

TNIM is currently operating on. It is assumed that any events which the planning program

deems relevant will be introduced into this kernel. As long as an event remains active in the

kernel its projected effects will he taken into account by the consistency maintenance algorithm.

In the planner we will be discussing later in this paper, the kernel consists only of tokens

corresponding to tasks or events which have yet to occur or be executed and facts whose tokens

persist at least into the immediate future and upon which some currently active task has based

its choice of a plan for carrying out that task.

At this point it is obvious that knowledge about events occurring in time can become available in

at least two forms in the data base. There are the privileged few events currently residing within

the kernel: privileged in the sense that these events, in isolation at least, present to the planner a

consistent world model. Then there are all those events that we are not currently concerned with

and among which we might ind inconsistent temporal assertions. This introduces two additional

problems which we will briefly discuss and then introduce simple interim solutions which have

been adopted in the working version of the TMM-based planner.

The first problem has to do with the status of events lying outside the kernel. How are facts

caused by events no longer in the kernel retrieved efficiently from memory? The answer is, that

they may not be efficiently retrieved. They will have to he searched for and how efficient that

search is will depend upon whatever indices are currently available (perhaps through those events

currently residing in the kernel). It is up to the planner to index the events relative to other

events in such a way that given one event El it is reasonably simple to find events whose effects

may influence our consideration of El. This problem is of great interest but orthogonal in most

18

respects to the problem of maintaining time maps. In order to simplify the discussion and

maintain some common ground between the planner described here and the planners with which

it is compared we have adopted a plan and event description syntax not unlike Sacerdoti's SOUP.

No attempt will be made in this paper to describe the process of assimilating knowledge garnered

in the process of planning and execution into a well indexed and integrated episodic memory.

The second problem introduced by a privileged kernel has to do with removing items from the

kernel which are no longer relevant to the planner's immediately active tasks. The routine which

performs the removal of a token from the kernel has to perform some rather complex juggling in

order t~o maintain all active assumptions in the network. An event token must be disentangled

from its projection in such a way as to maintain dependency relationships and yet reduce the size

of the kernel. These token removal routines will be described in some detail later in the paper

(section 4.2) along with a discussion of criteria for including events in (and subsequently removing

them from) the kernel (criteria which might support other uses of the TMNI; say for example

story comprehension).

2.6 A description or the actual TMM algorithms

In the following I will assume familiarity with some sort of deductive retrieval mechanism

(PLANNER type languages, PROLOG, QA4 or the like). The actual system we employ is called

4 DUCK [McDermott 81] and is in many respects similar to AMORD [deKleer 77) in that it

integrates the basic retrieval mechanisms found in CONNIVER [McDermott 731 with a data

dependency mechanism for maintaining support relationships.

A few functions found in DUCK which we will make frequent reference to will need a bit of

explanation. (Fetch pattern) returns a generated list of all assertions in the data base which

match pattern or which can be derived from rules and assertions in the data base. If no

19

assertions can be found then fetch returns nil. (Premise pattern) adds to the data base the

assertion got from pattern by binding its free variables (of the form !var-name) in the obvious

(lexically scoped) manner. (ans.support <list of supports> <things to do>) for our purposes

simply ensures that assertions added within the dynamic scope of <things to do> will be

dependent upon the support conditions in <list of supports>, where supports are of the form

(1+1-] Ipattern pattern-list]), "+" means depends (positively) on the associated assertion(s) being

IN and "-" on it(their) being OUT. Finally (for-each-ane (fetch pattern) <things to do>) is a

looping construct which is best thought of as code which expands into:

(for (assertion-returned in (fetch pattern))
(ins-support (assertion-returned)

(things to do>))

Wherever convenient, to keep things simple, I will deviate from the actual syntax of DUCK in

describing algorithms.

(plausible token) I+ => the lower
+ I+ element

(active token) (t begin end proposition) depends on
I the upper

all related (explicit-before ptlpt2) element
I+ ieing IN

all related (derived-before ptlpt2)

Figure 2-2: Part of the TMM dependency hierarchy

As we mentioned a great deal of the power of TMM and the systems for detecting assumption

failures which we will discuss later comes from the use of dependency hierarchies. Some of the

dependencies used in the TMM are shown in figure 2-2. The assertion predicates used in the

diagram require a bit of explanation. A fact token referring to P is associated with a taeeertion

in the data base of the form (t begin end P) where begin and end correspond to the beginning and

ending of the token interval. A token is plausible if it is believed to have occurred or to be going

to occur. A token is active if it is in the kernel of the TMM. A taoeertion is a kernel data

structure: its status is dependent upon its associated fact token being active.

20

All internal temporal relationships are represented by the derived-before predicate. The efficent

operation of the TMM consistency algorithm relies upon the explicit presence in the data base of

the transitive closure of derived-before on the set of all begin and end points of tokens in the

kernel. When the planner introduces a constraint upon two tokens in the kernel (e.g. that one

token begins before the other) then appropriate explicit-before relations are added to the data

base dependent upon the two tokens being active and whatever other reasons the planner has for

adding this constraint. At the same time the transitive closure on the kernel points is updated so

that all resulting derived-before assertions are dependent upon the ezplicit-before assertion which

gave rise to them. The ezplicit-before assertions remain in the data base as long as the related

tokens are plausible but the derived-before assertions are part of the kernel and hence they exist

only as long as the related tokens are active.

(define update-before-tm (ptl pt2)
(cond C(fetch (derived-before ptl pt2)))

C(fetch (derived-before pt2 pt1)) 'INCONSISTENT)
(t (premiss (explicit-before ptl pt.2))

(ins-support ((explicit-before ptl pt2))
(premiss (derived-before ptl pt2))
(for-each-ans (fetch (derived-before pt2 ?ptA))

(premiss (derived-before ptl ?ptA)))
(for-each-ins (fetch (derived-before ?ptA pt))

(premiss (derived-before ?ptA pt2))
(for-each-ans (fetch (derived-before pt2 ?ptB))

(premiss (derived-before ?ptA ?ptB))))))))

Figure 2-3: An algorithm for updating the derived-before transitive closure

The algorithm (see figure 2-3) which maintains the transitive closure is a simple graph algorithm.

It is only of interest here to demonstrate how the dependencies are introduced so as to ensure

that when further additions and deletions are made to the data base only the correct subset of

derived-before assertions will remain.

Now we can describe the taeertion consistency algorithm. A tassertion is added to the data

base dependent upon its associated fact token being plausible. As long as the fact token remains

il ; ,
It _,_ .- -- =. [I

21

(define tessert-tm (fact-token begini endl assertion)

(let ((neg-assertion (get-assertion-negstion-ta assertion)))
(ins-support (+ (active fact-token))

(premiss (t begini end2 assertion)))

(ans-support (4 (t begin1 end2 assertion))
(for-each-ens (fetch (t ?begin2 ?end2 neg-assertion))

(ans-support ((. (derived-before begini ?begin2))
(- (derived-before ?begin2 end1)))

(premiss (inconsistent-order ?begin2 end1)))
(ens-support ((. (derived-before ?begin2 beginl))

(- (derived-before begin! ?end2)))

(premiss (inconsistent-order ?beginl end2)))))))

(rule restore-consistency
(if-added (inconsistent-order ?point1 ?point2)

(ignoring (inconsistent-order ?pointl ?point2)

(update-before-tm ?pointl ?point2))))

NOTE:

i. Get-a88ertion-negation-tm P simply returns not Pif Pie not of the form not P'and P'if it is.

ii. In the context of ans-8upport, premiss simply installs a mew ddnode contingent upon the
status of the support clauses. Hence it is possible that the resulting status of the premissed
assertion is OUT though subject to subsequent changes in the status of support clauses.

iii. (If-addcd pattern thing.-to-do) says that if an assertion matching pattern becomes IN evaluate

the things to do.

iv. All assertions premissed in the dynamic scope of an if-added rule are made dependent upon
the assertion which triggered the rule being IN . In our cane however, it is the purpose of
restore-coniestency to make the triggering assertion OUT. The ignoring construct enables us to
circumvent the default support machinery.

v. A diagram showing the dependency relations for maintaining kernel consistency is shown in 2-5.

Figure 2-4: Algorithms for adding the new tassertions and resolving
inconsistencies

active in the kernel its duration is contingent upon other tokens in the kernel. I will spare the

reader the details (the algorithm is straightforward and listed in figure 2-4 for those interested)

and supply the basic method of setting up the dependencies and restoring consistency when a

dependency failure is noticed. At the time a teaertion TI - (t beginl endl P) is added a check

is made of all currently active taauertiona of the form T2 -f begint endS -,P). For each such

leseertion T2, if (derived-before bini beginS) is IN then it must also be the case that

(diried-before kinS cndl) is IN and similarly if (derived-before beginS beginl) is IN

22

(plausible fact4oken)

(active fact-token)

I (t btqmni endl)

I (t 6elint end2 -. P)
I I+ I.

I I (derived-before beginl bei .l)
1 I I (derived-before end2 beginl)

II I I. I-

(inconsistent-order end. begini)
I I- I

SI (derived-before beginil beginS)
I I I (derived-before endl begin)

I I I I. I-

I (inconsistent-order endi begin2)
I I I-

(tconsistent fart-token)

NOTE: The +(-) indicates that the lower assertion depends upon the upper assertion being IN
(OUT).

Figure 2-6: Dependency hierarchy for maintaining taseertion consistency

(derived-before begin1 end2) must also be IN.

The tassertion initialization process taosert-tm makes the appropriate changes, if necessary,

j using update-before-tm (above). It then creates a set of ineoneietent-order assertions which are

initially OUT but whose justifications are set up so as to capture the derived-before mandates

just stated. Remember that the TMM is really only interested in the persistence of fact tokens:

that is to say the position of their endpoints in the time map partial order. The

inconsistent-order assertions refer to constraints which must be imposed if certain conditions

become true.

In order to detect and correct inconsistencies, a forward chaining rule is set up in the data base

to call a function to restore consistency whenever an assertion of the form (inconsistent-.order

.i intl fpoint,) changes its status from OUT to IN. Thus whenever a consistency mandate is

... We0. &ohm

23

violated its associated incon.sistent-order assertion will become IN and consistency can be

restored as during initialization using update-before-tm. With this algorithm a taesertion need

only be "aware" of tassertione added before it, as teeertioe added afterward will take care of

any interactions which they cause.

2.6.1 A Detailed Example

In this section I'll try to present an example of how the TMM routines might be useful in

reasoning about events and the persistence of their effects. The following example involves

testing the alibi of a suspect implicated in a gothic murder mystery. The scenario is contrived in

order that it be both brief and illustrative. I apologize to any disappointed (or offended) gothic

mystery afficiandos.

To begin with the events of the interval (EVENTI) surrounding the mysterious death of Sigmund

Montcalm IV:

1. Inspector MacPherson from the Yard found Sigmund in the study of the castle at
approximately 1:00 AM. The recent heir to the Montcalm estate was pronounced
dead by Dr. Corry the police surgeon; Montcalm's death was attributed to a bullet
wound in the chest. We'll refer to this as EVENTS.

2. When MacPherson entered the study the lights were on (FACT2) and Sigmund was
clutching a copy of Proust's "Remembrance of Things Past" (FACT3). The book
was covered with fresh fingerprints determined to belong to Montcalm's aging butler,
Jarvis.

3. Investigators found out that the castle security system automatically turns off all
lights in the castle (EVENT3) from midnight till 6:00 AM (castles are so expensive
to maintain) and only Jarvis had a key which can overide the system.

4. The copy of Proust's book that Sigmund was holding normally resides on a shelf in
the study but the upstairs maid said that Jarvis had removed it from the study the
previous day (EVENT2).

S. Jarvis maintains that he returned the book (EVENT6) early in the evening before
Sigmund was found shot and probably turned on the study lights at that time
(EVENT?). He claims to have spent the rest of the night in the company of
Margaret Squally enjoying a quiet walk on the Thames.

The inspector wishes to see if Jarvis' alibi is reasonable given the facts. Figure 2-6 shows the

initial TMM display (added comments are italicized) with no constraints upon when EVENT6

24

***************************-TINE PAP DISPLAY-****************************
EVENT6

< I Jarvis returns the copy of Rembrance of Thinge Past
FACT6 resulting in it. precense in the study (FACTO)
I--, in eo doing he turns on the study lights (EVEIM)

EVENT7 illuminating the etudy FACT5
I-- I

FACTS

Note: the above tokens in this display are
temporally unrelated to those below.

EVENT2
<--I Jartis borrows the copy of Proust resulting

FACT4 in its absenee from the study (FACT4)
------ I

EVENT3 the security system turns off the castle lights and
I--I as a result the study is no longer illuminated (FACTI)

FACT1

I-----------I
EVENT4
-- - > Sigmund is present in the study

EVENTS
I----- I MacPherson finds Sigmund dead and

FACT2 discovers that the lights are on
1--> (FACT) and that the Proust book
FACT3 is present in the study (FACTS)

o e .Figure 2-8: The initial scenario

occurred.

If Jarvis is not lying and he did return the book before midnight then it is difficult to explain the

fact that the lights were on in the study when the police arrived (figure 2-7 displays the facts as

seen from the TMM data base assuming Jarvis is telling the truth).

If on the other hand Jarvis returned the book after midnight then the facts fit together quite

nicely. But if this conjecture (see figure 2-8) is correct why did Jarvis mislead the police?

25

es**i*******sa*-T M AP DISPLAY-**** .*** ,e********
EVENT2
<--I Jarvis borrow* the book

FACT4
I-----------

EVENT6
I------- I Jarvis returns the book

FACT6
I -- :o

EVENT7 and in the procese turns on the study lighte
I--I

FACT5

EVENT3 but the security system
I--I turne all the lights off and in

FACT1 particular the etudy lights (FACTI)
I---- -I

EVENT4

EVENT5

I----I making it difficult to
FACT2 ezplain why they
I--> were on (FAMe) when
FACT3 MacPherson arrived

Figure 2-7: Jarvis' alibi

I _

(I

28

**********p...*********s**** NAP DISPLAY-****************************

EVENT2
<--I Jarvis borrows the copy of

FACT4 Remembrance of Things Post and hence
I ------------------- I it is not in the study (FACT4)

EVENT3
I--I the security system turns off castle

FACTI lights including the study lights (FACTI)
I-----------

EVENT4
I ---------------- I Sigmund is believed to

EVENT6 be in the study (EVEN76)
I-------I Jarvis returns the book

FACT6 the result being that
I--p it is in the study (FACT6)

EVENT7 In the process Jarvis turns
I-- I on the study lights (FAC75)

FACT5

EVENT5 Unfortunately for
I----I Jarvis this

FACT2 arrangement of the
I--> events ezactly
FACT3 fits the facts as
I--" MacPhereon cees them

Figure 2-8: Condemning evidence

Iamid

27

3. Planning

There are two basic inferential operations that add tokens to the time map kernel. Projection is

the inference of the likely consequences of an event (e.g. if one country occupies land which

another country claims then a conflict is likely to ensue). Expansion is the inference of how the

event will occur; that is, a description of its suhevents and their interrelationships (e.g. an

invasion might be expanded into three subevents: massing troops at a strategic border under the

pretense of routine maneuvers, occupying certain key points in the coveted territory during a

swift 'police* action Tujustified" by national security and finally the eradication of opposition

forces and the setting up of permanent garrisons and fortifications). When the event being

expanded is a task of thbe planner, expansion corresponds to adding to the kernel those subtasks

associated with a specific plan for achieving that task. This process is generally called task

reduction.

Temporal elaboration is the process of expanding tokens in order to add precision to the model

and projecting token consequences to determine what effect an event is likely to have. There is

certainly more to planning than simply this. Plan evaluation, scheduling and what to do when

there is no satisfactory plan are all presumably part of planning. But in the following we will

focus primarily upon this process of elaboration and the detection of the sorts of interactions

between event projections which were discussed in the section on NOAH and HACKER.

3.1 Maintaining Assumptions

Expansion (or plan choice in the case of a task) corresponds to a hypothesis concerning how an

event will turn out (or how a task can be best achieved). The choice of expansion for a given

situation will depend upon the temporal context in which it is currently asumed to occur. As

was mentioned earlier the warrant for continued belief in an expansion is based on assumptions

28

that certain facts which were believed to be true throughout certain temporal intervals will

remain so in spite of our changing conception of what the future holds in store. An interaction

occurs when a plan choice assumption is invalidated, and a conflict is an interaction which

threatens an expansion's credibility. In the following sections I will discuss the mechanism

whereby a plan is made sensitive to its temporal context, how conflicts are brought to the

attention of the planner and how these conflicts can be meaningfully annotated in order to

facilitate the task of resolving these conflicts.

A great deal of work has gone into classifying types of "bugs" [Sussman 75] or categories of plan

interaction [Sacerdoti 77] [Wilensky 83]. We will concern ourselves here with one general

category of conflict whose detection can be efficiently implemented. Later we will discuss a

second mechanism, that of monitors (McDermott 771, which can be used to detect a larger class

of interactions but at somewhat greater computational cost.

3.1.1 Plan-Expansion-Time Assumptions

Both NOAH and HACKER employed some variant of the STRIPS representation for actions and

their effects, involving preconditions, add-lists and delete-ists. For representing events and

their possible projections I have borrowed from the logics of action and time of James Allen and

Drew McDermott [Allen 81b] [McDermott 82]. The representation attempts to overcome some of

the difficulties with the STRIPS approach mentioned earlier. In particular the notation provides

a more detailed description of the effects of an event and the underlying logic provides greater

resolution for reasoning about time. For representing the effects of an event:

* event causation: (ecause TOKi 7TOK2) denotes that the event token TOK2 will
follow the event token TOKI and that the plausibility of the second occurring is
contingent upon the first occurring.

* fact causation: (peausce TOKI TZ2K,) denotes that the fact token TOK2 will follow
the event token TOKI and persist for some indeterminate period and that, as before,
the plausibility of the second occurring is contingent upon the first.

Instead of preconditions I will refer to (explicit) planning assumptions. The only reason for this

I.

29

change is that in some cases it seems awkward to call certain plan choice constraints

preconditions. For instance I may choose to walk downtown simply because I have no other

means of transportation at my disposal. When I am later offered a ride, my plan to walk is no

less viable though my choice of plan seems in need of reassessment. The ride offer did not violate

a precondition for the success of the walk-plan though it could be said to violate a precondition

for the walk-plan's appropriateness.

Before describing the formal syntax for specifying plan choice criteria let's examine some

categories of assumptions that might be employed. First that a temporally dependent fact (a fact

token) stands in some relation to the interval in which the task (for which a plan is being sought)

is currently scheduled to occur. For example the choice of what plan to use for the forklift

loading a tractor/trailer may depend upon how the tractor/trailer is situated relative to the

loading dock and whether or not the trailer doors will be open when the plan is executed.

A second category has to do with plan choice criteria which require the absence of adjacent

intervals in which a fact is believed to be true. I don't assume that at any point in time either a

fact or its negation is believed. Some things the-planner simply has no knowledge of and it is

often to its advantage to realize the extent of its ignorance. So for example it might be

convenient to express the dictum to always load heavy items first (forward toward the

cab/tractor thus distributing the load) unless it is known that a particular item is to be unloaded

early.

The last category is meant to capture the notion that if, after my initial choice, some fact token

fortuitously occurs meeting certain temporal criteria then I would like to be alerted so that I can

reconsider my options. Suppose the forklift anticipates the need for an object upon which it can

temporarily rest its load while carrying out a task. It may have no knowledge of an

unencumbered object meeting its specifications at plan choice time. Instead it chooses some

30

alternative (and presumably more expensive) plan contingent upon the unavailability of the

desired objects. Later, if during its exploits or during subsequent planning it "discovers" an

appropriate object available in a surrounding interval, it should be alerted to determine whether

or not a "better" plan is applicable. Sacerdoti's eliminate-redundant-preconditione critic

performs a similar (though less general) function in NOAH.

The syntax for specifying plan choice criteria is shown in figure 3-1.

(to-do (some-task ?var• ?vard
(use (first-p lan-name>

assuming list of conditions which must hold>
in-lieu-of <list of conditions which must not hold>)

(use <second-plan-name>
etc)

(else-use <default-plan-name>))

Figure 3-1: Format for specifying plan choice criteria

Conditions are of the form (currently-spans <fact>) or (currently-meet8 <fact>). The

condition (currently-apana <fact>), specified with respect to a task occurring in an interval I1,

refers to a constraint involving an interval 12 in which <fact> is believed to be true and 12

begins before and ends after II. ((currently-meets <fact>) is similar with the exception that it

is only necessary that the <fact> be believed at the start of the task). These conditions are

expanded to integrate with the time-map machinery forming the basis of the conflict recognition

scheme. The order in which plarn are considered can be massaged dynamically by using the

keyword option or conditional-option as in in-lieu-of ((option <test> <plans to be tried

first>)). For instance suppose you have a task to get rich and you have a plan which involves

winning the lottery. The method for determining whether the lottery plan is reasonable is rather

complex and time consuming (it involves tarot cards and consulting an augury). However you

have an indicator (a magic bunion) which, if it responds positively, bodes well for your chances

with the lottery and hence warrants your making the more complex applicability tests. This

°" ________

31

might be represented as:

(to-do (in-the-money ?poor-jerk)
(use drudge-work in-lieu-of

((option (throbbing-bunion ?poor-jerk) win-big)))
(use win-big asumming ((tea-leaves favorable ?poor-jerk)

(signshportents high-times ?poor-jerk)))
(else-use dream-on)))

In the get rich example the option clause is only checked at plan choice time. Such an option can

also be recalled in the event that it later becomes IN by using an in-lieu-of clause of the form

(fortuitously <test> <plans>) in which case if <test> becomes IN an attempt can be made

to see if one of <plans> is applicable. This might mean in the get rich example that if you

went to work and suddenly your bunion started acting up you might drop everything and run to

the local soothsayer.

To illustrate how plan choice assumptions are used I'll present a simple (if somewhat frivolous)

example which demonstrates some of the main features of the plan choice specification format.

Suppose that you wish to return a book, Goethes Faust, to the library. You have in mind a

particular route, namely the scenic path through the park, and a particular mode of

transportation, your bicycle. Suppose further that you only ride your bike when you know it will

be clear and that after dark the path is closed to bicycles to protect muggers and other people

who require those dark avenues to ply their trades. The transport task has the following

specification:

(to-do (transport ?object ?route)
(use bicycle assuming ((relatively-smll ?object)

(current li-spans (clear-sk ies)))
in-lieu-of ((fragile ?object)

(currently-meets (ciosed ?route))))
(else-use walk))

Now let's fill in the context in which plan choice is to occur. The particular transport task that

we're interested in is associated with the event token EVENTS. Suppose that you have already

..

32

planned to listen to the weather on the radio before running your errand and that the event

token corresponding to this is EVENT3. You know from last night's news, EVENT2, that the

skies should be clear for the next few days. Finally we have the events associated with lunch and

dinner, EVENT4 and EVENTO. As the scene unfolds you have already decided to take the book

back after lunch and you are well aware that after dinner the path will closed to bicyclists.

The followving is a demo of the planner initialized as per the
above description. Some of the irrelevant annotations have been
deleted and added comments are italicized.

-> (test) setting up the scenario
Initial izing EVENT2 with status READY last night's news
Initial izing EVENT3 with status READY listening to the radio
Initializing EVENT4 with status READY lunch
Initializing EVENT5 with status READY returning the 5ook
Initializing EVENT6 with status READY dinner

Initializing FACTI with status FACT
ADDING (t POINT4 POINT14 (clear-skies))
Initializing FACT2 with status FACT
ADDING (t POINT12 POINT16 (closed bike-path))

**************************-TlME MAP DISPLAY-**************************

EVENT2
<-- during last night's news (EVENT2) we are told that

FACT1 clear skies uill prevail over the region
I--> for the next few days (FACTI)

EVENT3
I--I

EVENT4 Note:
1--I the display can be ambiguous

EVENT5 at times. EVENT5 and EVENT6
cannot be compared here

EVENT6
I-- I we know that after dinner(EVENT6)

FACT2 that the bike path will be
1--> closed to cyclists (FACT2)

BEGINNING TEST SEQUENCE

Plan chosen in EVENT5 for task (transport Goathes-Faust bike-path)
is bicycle.

Scheduling advice simply notes potential
Scheduling advice: conflicts and suggests simple remedies.

((BEFORE EVENT5 EVENT6)

. .

33

(passume EVENT5 (pout (meets (closed bike-path))) update))

ADDING (PASSUNE EVENT5 (pout (meets (closed bike-path))) update)
ADDING (PASSUME EVENT5 (pout (fragile Goethes-Faust)) update)
ADDING (PASSUNE EVENT5 (pin (spans (clear-skies))) update)
ADDING (PASSUNE EVENT5 (pin (relativeiy-small Goathes-Faust)) update)

Suppose that while listening to the radio I learn of en
approaching storm. EVENT7. which will hit before noon.

Initializing EVENT7 with status READY
an inference is made

Asserting that EVENT7 causes (not (clear-skies)).

Initializing FACT3 with status FACT
ADDING (t POINT18 POINT20 (not (clear-skies)))

TMM notes an inconsistency..
POSSIBLE CLASH WITH (t POINT4 POINT14 (clear-skies))

and resolves it by truncating the
RESOLVING BEFORE POINT4 POINT18 persistence of FACTI

it appears an assumption is violated
ERASING (PASSUME EVENTS (pin (spans (clear-skies))) update)

an attempt is made to reconfirm the assumption
UPDATING (pin (spans (clear-skies))) for EVENT5

Scheduling advice:
((BEFORE EVENT5 EVENT7)
(passume EVENTS (pin (spans (clear-skies))) update))

but the attempt fails

SUSPICIOUS PLAN bicycle -> EVENT5

INTERACTIONS AFFECTING EVENTS:
((pin (spans (clear-skies))) update EVENT7 EVENT5)

4No

34

eeee*************s***e-TINE MAP DISPLAY-**************************

EVENT2
<--I

FACT1
I----------

EVENT3
I -- I the storm represented by EVIEN7

EVENT7 causes the ely to cloud (FACTS)
I-- I thus truncating our belief that it

FACT3 would remain clear (FACTI) throughout
I- -> our trip to the libraryl (EVENT5)

EVENT4 a belief instigated by last night 'a
I--I news (EVEN7'2)

EVENTS
I--)

EVENT6
I--I

FACT2

RESTORING INITIAL STATE Not, we restore the time map to its initial
state pretending we never listened to the radio

Now for some reason the trip to the
library gets delayed til after dinner.

Scheduling EVENT6 before EVENTS
another assumption fail. this time

ERASING (PASSUME EVENTS (pout (meets (closed bike-path))) update)

SUSPICIOUS PLAN bicycle -> EVENTS

INTERACTIONS AFFECTING EVENTS:
((pout (meets (closed bike-path))) update EVENT6 EVENTS)

r*********************-**** MAP DISPLAY-**************************

EVENT2

-- ,FACT1

EVENTS
I--I

EVENT4
I - -I The library trip, EVENT5, is

EVENTS constrained to occur after
I--> dinner, EMAW7', at which time

EVENT6 it is known that the path in
I- I the park ie closed to

FACT2 bicyclists, FACre
I-->

35

RESTORING INITIAL STATE Again we restore the time map to its
initial elate

TESTING THE ASSUMPTION UPDATE MECHANISM

Suppose that we learn that the city began
this morning repaving the bike path. EVENTS.

Initializing EVENTS with status READY
Initializing FACT4 with status FACT an inference is made
ADDING (t POINT22 POINT24 (closed bike-path))

At this point the correct dependencies are in place
Scheduling EVENTS before EVENT3

.. so that if a compromising ronstraint is added
ERASING (PASSUME EVENT5 (pout (meets (closed bike-path))) update)

.. an assumption failure is noted as before.
SUSPICIOUS PLAN bicycle -> EVENT5

***********************-TIE MAP DISPLAY-.....*..****...*.*******
EVENT3
I--I

FACT 1
I--,

EVENT4
I--I

EVENT6
I--I

' FACT2
~I-->

EVENT5

EVENTS it is diseovered that the cty sill
<- I 6egin pating the bike path (EVEN718) in

FACT4 the morning causin# it to be closed (FACT4)
1--> spoiling the plan in EVENTS.

-). (e it)

3.1.2 Problems Involving Classes of Constraints

In stating assumptions concerning the applicability of a particular plan for a given task it often

seems that we can completely specify the relevant applicability conditions. People are wtually

surprised when someone asking directions fails to comprehend a staccato burst of street names

and landmarks. This is partly because the direction giver's familiarity with the details leads him

38

or her to assume that these details are implicit in the directions. I might tell an out-of-town

visitor who wishes to do some shopping at Macy's to board the Orange Street bus at the corner

of Cold Spring Road and Orange and get off at Chapel Square Mall. To New Haven residents

this would be more than sufficient but a visitor is likely to find the description inadequate.

Besides assuming a great deal of auxiliary planning knowledge these directions fail to specify a

particular bus. What if a Trailways bound for Schenectady happens along! The fact is that I

had in mind a particular bus route, and I assumed that the person using the plan would

understand the level of the plan specification and ill in the details from that great body of

arbitrary assignments, conventions and jungle savvy that we all share.

H-ad I wanted to describe the plan to someone less proficient in urban orienteering I might have

said to get on a bus which stops on Orange Street, is traveling in the direction of downtown, and

which has either "Chapel Square Mall" or "Yale Shuttle" displayed over the windscreen on the

front of the bus. But even this will be inadequate for someone who does not know what a bus

looks like, can't read or is lacking in some other necessary bit of knowledge or cognitive faculty.

If on the other hand I was to say to get on the bus we took yesterday then one might assume

(incorrectly) that I was referring to a specific bus; one which the intended recipient of the advice

is believed to have direct knowledge of (e.g. the one with *$#&% spray painted across the side

and the slashed seat cushions). The problem is that sometimes we are referring to a specific

thing and at other times we mean to denote a possible thing from some restricted class of things.

If we are attempting to communicate a method or procedure specification it is essential that the

recipient of our communication first understand our conventions for specifying things and second

have access to what-ever knowledge and skill is required to make use of the specification.

This section deals in part with parameter-passing conventions. Just as I don't have to be explicit

when telling a fellow denizen of New Haven to get on a bus whether I mean a particular rundown

37 7

smog-beicher or one of a class of such vehicles (e.g. those that travel a particular route), so the

planner should have its own internal set of conventions and procedures for unambiguously

communicating task specifications. If I have a plan to store an object in a container it should be

able to handle a task which specifies a particular container as well as one which simply constrains

the choice of container. It doesn't seem reasonable to have two plan specifications; one

describing a plan for using a specific container and a second for dealing with an unspecified

container only known to meet certain criteria. While this seems simple enough, realizing it is

difficult.

in the following I will distinguish two sorts of items that can appear as arguments in a task

specification. First an object token or simply an object refers to some actual physical item (e.g.

the crate sitting in the corner of the warehouse) or realized concept (e.g. a tolerance for a

machined part or a highway speed limit). The second type of argument is called a formal object

(Sussman 751 (Sacerdoti 771, unmnetantiated parameter (Sacerdoti 741, or indefint-nodc (Stefik

791 and serves the function of a variable with certain constraints upon what can be used to fill it

(e.g. get on a bus heading downtown). Physical objects possess a special property namely their

shape description. A formal object is represented just as an object token, with the exception that

constraints imposed upon the instantiation of a formal object are recorded in the data base along

with dependency tags indicating which plan imposed the constraint. This is done for a number of

reasons,

" it ensures that if a plan is revoked then all of the constraints it imposed will also be
removed

* if two plans attempt to impose conflicting constraints on a formal object then the
plans can be consulted to see if either one or both will relax its constraints.

" if two plans imposing mutually conflicting constraints cannot reconcile their
differences an alternate plan(s) can be found to replace one (or both) of the
combatants

One problem with the use of formal objects involves how to treat assertions containing them in

38

the data base. What should the status of such assertions be in the event that the formal objects

which they contain are instantiated (i.e. an object satisfying their constraints is specified)? Or

conversely how do we interpret them if their formal objects never are instantiated (e.g. I know

that he arrived on a train but I have no idea what train!). [Presumably this problem doesn't

apply to events corresponding to tasks executed by the planner.] One approach that has been

considered is to treat all formal objects just like regular object tokens. If the formal object has a

value (i.e. is instantiated to an object token) then the formal object and its intantiated object

token are considered identical as long as the instantiation remains justified. If on the other hand

the formal object never is identified then its properties are treated as an indication of what we do

know (or alternatively as a measure of the planner's ignorance). Implementing this involves

modifying DUCK [specifically the equality test in the unification algorithm]. A similar but far

more ambitious approach which appears promising is that taken by McAllester in his Reason

Utility Package (RUP) [McAllester 82]. RUP computes "substitution simplifications" of terms

using equality assertions (e.g. (+ x (- y (+ 1 z))) yields (- y 1) assuming that (= x z)) and

supports reasoning about transitive relations.

The use of formal objects relates to a number of issues stressed in the planning literature. The

first involves the ability to delay commitment or proceed on a partial specification [Sacerdoti 77]

[Stefik 801. For instance if I have to drive a rented truck from the east to the west coast I may

start out with no particular route in mind; only the constraint to stick to interstate highways. I

may wait to see what sort of trucks are available from the rental agency and how they handle on

the road before ,i rking any further route decisions. I might later wish to remove this constraint

or at least deviate from it at some point in order to take a scenic sidetrip. Delaying commitment

is also used in conjunction with a method of merging constraints imposed by distinct plans as a

means of coordinating the design, construction and use of a given instrument or tool or the

39

LEVEL I
FORMAL OBJECT SPECIFICATION:

GIVEN THE OBJECT AND THE PROPOSED
CONTAINER DETERMINE A REASONABLE
INSERTION PATH -> INS-PATH

INSERT OBJECT A INTO CONTAINER C I

-- I
I I I
i ----------------- I ---------------- I-------

LEVEL 2
FORMAL OBJECT SPECIFICATION:

DETERMINE AN ALIGNMENT FRAMEWORK - AFROB
A MANEUVERING ENVELOPE -> MAN-ENV

AND AN INTERMEDIATE TRANSFER FIXTURE -> TRANS-FIX
-i------ ---------- I ------------------ I-

I CONSTRUCT I I EFFECT GROSS I I TRANSFER OBJECT I
I TRANSFER FIXTURE I I MANEUVERING I I SOS TO CONTAINER I

-I I---------------- I ---------------- I
I I I I I I

LEVEL 3
FORMAL OBJECT SPECIFICATION:

DETERMINE A PHYSICAL REALIZATION OF THE TRANS-FIX
IN THIS CASE WE ASSUME AN EXISTING PHYSICAL
OBJECT PHYSI WILL SUFFICE FOR OUR PURPOSES

SI --------- I-------I---------I--------II
I ACHIEVE II MOVE II ACHIEVE II TRAVERSE II ALIGN II TRANSLATE I
I PHYSI II PHYS I I OBJECT II PATH II OBJECT II OBJECT I
I _SUPPORT_1 I I__AFROB___ I ISUPPORT_ I MAN-ENV__ II _TRANS-FIX_. I IINS-PATH_ I

Note: a fixture refers to an object or assemblage of objects employed for a special purpose. The
term originates from a class of mechanical devices built by tool and die makers for positioning
work in machine tools. In the example given in the text, a platform level with the truck's tailgate
might suffice for a transfer fixture in the plan expansion illustrated above.

Figure 3-2: A possible plan for inserting an object into a container

allocation and dispersal of some shared resource. Figure 3-2 describes one possible plan for

inserting an object into a container in the forklift domain. Assume the task is to load a long

I-beam onto an enclosed tractor/trailer. The length of the beam and restrictions on the motion

of the forklift prevent us from performing a direct insertion. Instead a fixture (see the note in

figure 3-2) is positioned at the rear of the trailer, the I-beam is placed upon the fixture, aligned

with the length of the trailer and centered with the rear doors. Finally the forklift inserts the

40

beam by sliding it along the fixture's surface until it is enclosed within the trailer. The task to

construct the transfer fixture may be elaborated before the tasks which will use the fixture.

Somewhere in the construction task the formal object corresponding to the fixture will be

instantiated but every task which will use it should also have some say in its specification. The

fixture may be the right height and position but be shaped so as to prohibit a particular forklift

from aligning the beam on the fixture surface. During plan expansion any plan can impose a

constraint upon the fixture specification. If two plans impose conflicting constraints their

differences must somehow be resolved or alternative plans found.

The use of formal objects can also be tied to the underlying paradigm that the planner relies

upon: that of hierarchical planning. Hierarchical planning involves decomposing a domain into a

hierarchy of descriptive levels, each level abstracting out some aspects of the domain which can

profitably be analyzed in isolation [Sacerdoti 741. In the context of these various levels we build

a task network and a set of plans and choice rules. It is assumed that a set of weak (in that they

carry no guarantee of success) but general (in that they potentially serve a wide range of

situations) methods will suffice for good performance. In order for such an approach to work

plans must be able to place certain constraints upon their arguments and tasks must be able to

further restrict the details of plan execution so as to tailor a general plan to a specific situation.

As an example suppose as wardens of central park we are given the task of containing a five ton

bull alligator escaped from the Lacoste display at Bloomingdales. Our generic containment plan

for the task (contain fobjecet fcontaierj only specifies that the fcontainer be of sufficient size to

fit the ?object. However we would like to stipulate that in addition the fcontainer be of

sufficient strength to confine a big mad bull alligator long enough to get it out of the park (and

out of our jurisdiction). The latter constraint will force whatever task is organized under the

generic containment plan to choose or design the Peotainier to do so in keeping with the present

41

circumstances.

Formal objects allow planning to proceed even though certain items are not immediately known.

Another problem arises when it is necessary to specify a planning assumption referring to a class

of possible event or fact tokens. In the plan specification language this occurs in the use of

in-lieu-of clauses in plan choice criteria. It was rather simple to set up the dependencies for an

in.lieu-of clause which referred to a completely specified fact type (i.e. an assertion containing

no variables or formal objects). If one was to say:

(use shop-st-SUP-R-SAV
in-lieu-of ((currently-spans (open Bimbos-Food-Shop))))

Then in order to detect when this assumption is violated it is only necessary to be aware of the

duration of fact tokens in which it is believed that (open Bimboa-Food.Shop). However, quite

often a plan is dependent upon a more loosely specified class of constraints. For instance I might

say that assuming none of the nearby restaurants are open I'll make do with what's in the

refrigerator. Or in the forklift domain: in lieu of a physical object between one and two meters

in height which will support the load I am proposing to carry and which is located within a two-

* meter radius of my destination build a composite object meeting these specifications out of

available materials. The method whereby the planner manages such constraints is not important

here. Suffice it to say that initially all tokens in the kernel satisfying the specification schema are

noted and dependency relations are invoked to ensure that their temporal intervals do not

overlap the interval associated with the task for which the plan was proposed; in addition a

forward chaining rule is set up for the duration of the plan's activation which detects the

addition of further assertions matching the constraint specification and updates the dependency

relations to suit. The reason for going into all of this is hopefully to demonstrate the utility of

being able to use such constraint specifications in planning. The examples posed thus far should

provide some justification and hopefully the reader can supply more.

77

42

One further application which I think is worth mentioning has to do with profiting from

fortuitous occurences [Dehn 84]. Suppose that you have something you want to ask of a

particular person but that person is not immediately at hand. You could seek the person out or

you could temporarily shelve the task until a better opportunity presents itself. Seeing as you

have no idea when such an opportunity might arise, it is not possible to simply reschedule the

task. Instead one can settle on a plan of waiting which is based on the assumption that the

person in whom you are interested is not in the vicinity. A simplistic plan choice specification is

shown in figure 3-3.

(to-do (obnovious-question ?question ?person-to-be-questioned)
(use wait-for-opportunity

in-lieu-of ((currently-meets
(proximity ?person-to-be-questioned))))

(else-use blurt-it-out))

Or Instead we can take advantage of a more direct procedural method invoked by the
specification syntax which causes the blurt-it-out plan to be expanded Immediately
upon detecting an adjacent token satlsfylng (proximity fperson-to-be-queetionedx

(to-do (obnoxious-question ?question ?person-to-be-questioned)
(use wait-for-opportunity

in-lieu-of ((fortuitously
(meets (proximity ?person-to-be-questioned))

blurt-it-out)))
(e(se-use blurt-it-out))

Figure 3-3: Plan specification for asking obnoxious questions

This assumes that upon hearing the voice or seeing the face of the person you wish to question

that you note that you are in the prozimity of that person. In a more realistic specification the

proximity predicate test would be replaced by some sensory stimuli which was likely to be

triggered on the occasion of seeing or hearing the person of interest. This points up a limitation

of the use of explicit planning assumptions. The problem is that often one doesn't know all of the

sorts of things which could happen to hamper or facilitate a given plan, or if one could come up

f

43

with a list of all such things it would be too lengthy to bother with. The next section deals withb a

class of tasks whose purpose it is to detect certain conditions occurring within specific temporal

intervals.

3.2 Monitor Tasks

Suppose you are robbing a bank for the first time. During the robbery it would be well to be alert

for signs of danger. You're not sure just what constitutes a sign of danger but you're pretty sure

you'll recognize one when it occurs. In this example the reason for detecting signs of danger

would be to initiate some contingency plan (e.g. throw up your hands and surrender or yell

"fire") which has been prepared in advance. But the notion of a monitor task is quite general

[McDermott 77J and can be employed in any context in which it is useful to detect a given

condition and perform a particular action on the basis of detecting such a condition. Monitors

are especially useful in the context of plan execution monitoring. For instance you might have a

task whose purpose it is to detect the occurrence of oil spills and in the event a spill is discovered

spawn a task to clean it up. Another typical use of monitors involves execution time creation of

further monitors whose task it is to protect a fact or set of facts which just became IN. As an

example suppose that you just finished troweling smooth a slab of wet concrete and you wish to

protect the fact that the slab is unblemished at least for the period required for the concrete to

set. bard. Then you might set up a monitor whose purpose it is to detect conditions which might

lead to marks in the wet concrete (e.g. people wishing to immortalize their names or amorous

exploits, or dogs blindly pursuing their prey).

The current planner has a rather simple syntax for monitor tasks. A monitor consists of:

" a condition specification which includes a fact type (or schema) preceded by a
temporal constraint keyword such as sans or meets

* either a scheduling suggestion, a token status change (e.g. change the status of a
DORMANT task to EXECUTE or EXPAND), or another task to be spawned when
the condition is met

44

(task-mon i tor
condition (meets (location ?widget-delivery loading-bay))
response (change-status IMMINENT))

Figure 3-4: Task monitor for a rush job

As an example -suppose that the forklift is expecting a shipment of widgets needed for a

production order which an irate customer is impatiently waiting for. The planner has the task of

unloading the widgets immediately upon their arrival but it also has other duties, so it schedules

a number of tasks to periodically check the loading bay to see if the truck carrying the widgets

has arrived. To accomplish this, the plan for unloading the truck initiates the monitor task

shown in figure 3-4 when it is expanded and then sets the status of the token associated with the

unloading task to DORMANT pending further notification. Monitor task initialization involves

two parts. First a dependency relation is set up just as with planning assumptions so that when

the condition is met the action specified in the monitors second field is performed. Next an

information gathering task (whose purpose is to attempt to determine if the fact is true) is

-spawned and scheduled to occur before the task which initiated the monitor. Now the forklift can

go about its chores, occassionally executing a plan to see if the truck has arrived. The task

spawned by the monitor is similar to other tasks in that different plans may be used to check the

bay depending upon the circumstances (e.g. if the forklift is in the proximity of the bay it might

just trundle over and look. If on the other hand its working in a part of the plant distant from

the bay it might find an intercom and see if anyone answers on the loading dock).

The one difference between a task spawned by a monitor task and other tasks is that monitor

spawned tasks are self replicating and self extinguishing. A task spawned by a monitor maintains

a record of the event in which the monitor responsible for its existence was initiated. When a

monitor spawned task is chosen for execution if this recorded event is past the monitor is simply

deactivated. If the recorded event is still to come then the task is executed and a hew token is

45

activated in the kernel with the same task as before. Only the first task spawned in connection

with a given monitor is forced to occur before the event which it presumably serves. The

frequency and periodicity of the execution of monitor spawned information-gathering tasks is

dependent Upon the Way in which tasks are chosen. Some sort of priority system may be

necessary in certain circumstances but the current planner makes use of ad hoc rules, awaiting a

better approach.

The primary purpose of tasks spawned in the service of a given monitor task is the extraction of

information not explicitly represented in the data base. This process of extraction

characteristically involves an attempt to derive the fact listed in the condition specification and

add the resulting fact token to the kernel. This usually means (1) situating the robot in a

position where it can use the information gathering devices linking the planner to its environment

followed by (2) the interpretation of information recieved from these sources.

tn the next chapter the importance of information gathering tasks will be stressed along with a

discussion of their role in planning and the formulation of a pragmatic model of the planner's

environment.

3.3 Aside

This is in some respects orthogonal to the principal issues this paper has set out to address.

Nonetheless I include it as an illustration of the potential dangers of mixing levels of abstraction.

It has to do with problem solvers versus theorem provers and the dubious utility of reading too

much into quantified formulae at the level of plan specifications. Consider the task to clear all

the blocks off the table. One might be tempted to represent a plan for solving this problem as:

(forall (x y)
(if (and (block x) (on z table))

(and (find y)
(not (~y table))

48

(put X))

In the planner discussed in this paper a plan could be formulated for this task by using a type of

iterative plan called a PLOOP. The PLOOP has a set of tasks which are executed followed by a

test to determine if some termination criteria is reached. If the criteria is not met the PLOOP

regenerates itself and the cycle repeats. The details are unimportant but the specification would

be more complicated than the above. Now consider the task to rotate every block on the table

90 degrees. Again the plan might be "solved" quite easily by:

(forall Wx
(if (and (block x) (on x table))

(rotate ?x pi/ 2)))

The problem with this solution is that it obscures certain parts of the problem by employing a

notation which trivializes important aspects of the task domain. A realistic solution might

include designing a tour which would move past each block on the table in turn or combining a

search task with some means of marking the blocks which have already been rotated.

It is difficult to keep separate the different levels of abstraction employed in implementing a

theory of causal reasoning or planning. It is quite easy to be seduced by the seeming power of

the theorem proving mechanism and end Up Using it as a catchall for all that proves difficult (the

logic hacker's homunculus). In this paper I have tried to be realistic about the organizational

power to be found in time maps and the use of explicit planning assumptions. It is hard for me

not to be optimistic about the role such methods might play in building autonomous robot

control programs. But thus far only a very small part of a complete theory has been presented.

What sort of sensory data could support the sort of plan failure detection mechanism sketched

here? How could generalizations be made and even simple forms of learning such as operant

conditioning occur? These questions and more must be asked of even a simple proposal such as

this. Hopefully in coming years the final judge of planning programs will be observation Of the

47

outward behavior of tbe mechanisms they control rather than the interpretation of the output of

LISP programs which despite our knowledge of the sources of their form and function continue to

fascinate and beguile Al backers. I hope that the reader sees potential in the techniques

described in this paper but I also hope that his or her general level of skepticism is raised rather

than lowered by the discussions thus far.

The final section sets forth a thesis for a simple adaptive planning scheme which relies upon the

TNMN approach. This thesis strives to be precise but even so the loose ends far outnumber the

concrete proposals. One problem is that we don't really know what we're looking for though a

popular claim is that we'll know it when we see it. What it seems is needed is well defined

correspondence between the functional components of the behavior we are trying to model and

the notations and procedures actually used in building our models. The last chapter attempts to

provide such a correspondence and a justification for assuming that the coordinated functional

components which the chapter proposes might elicit the sort of behavior expected.

48

4. Continuous Planning and Execution in Time

4.1 Introduction

This chapter addresses several planning issues: some of which are specific to my view or planning

and some of which have wider scope. The two major sections divide these issues into two

categories. The first category deals with the continuous elaboration of events in the kernel

including the execution of tasks deemed sufficiently elaborated and the addition of new tasks

which are activated in the process of elaboration. The first section describes a control structure

which supports continuous planning with an emphasis on the garbage collection routines used for

removing tokens from the kernel. The second category involves how a planner might go about

synchronizing its internal model with events of interest in the real world. With respect to the

latter, we first discuss a method of representing and dealing with probable (but likely inaccurate)

world models and then turn our attention to a methodology for achieving synchronization

(splicing validation tasks into the network) and a cursory look at coherence criteria to be used in

driving this methodology.

4.2 Maintaining a mroving kernel of active events: the planner's window on

the continuum

Its obvious that we never plan out our actions down to the minutest detail. There are levels of

description depending on the circumstances which are adequate for detecting those interactions

worth modifying ones plans to deal with. In crossing a street, if an assumption that the street is

clewr is violated by a glimpse of a speeding truck then one should not simply choose to deal with

the consequences as they come. On the other hand a detailed simulation of the actual process of

locomotion involved in transporting ones body across the intersection is not likely to be required.

We're not going to find an algorithm for determining a level of description guaranteed to detect

-- A

49

all interactions from which there can be no recovery. And even if it were feasible to plan every

action down to the most detailed level available no model short of an exact description of the

world precisely as it will be at execution time could predict success (or failure) with absolute

certainty.

The planner described in this paper adopts the same general attitude to planning and execution

that, McDermott's NASL [McDermott 771 does: choose something from the kernel, expand it and

then project its consequences. If tbe event chosen was a primitive task then expansion

corresponds to executing that task. The actual control structure is a bit hairier. It defaults to

breadth first expansion until all events are sufficiently detailed (at this point their status would

be EXECUTE rather than EXPAND) followed by depth first execution where the kernel is seen

by the program as a flat lattice of events ordered along one dimension by level of description and

along a second by temporal order. The control structure supports the use of information

gathering tasks. That is, all events in the kernel with the exeception of certain information

gathering tasks may be DORMANT pending further information. These investigatory tasks are

then executed with the side effect of causing certain of the pending tasks to have status

EXPA ND. The method is similar to that used in the fortuitous planning example of the previous

chapter. I might have a task to occupy a strategic position in a game like chess or go which

involves two tasks one to assess your opponents strength and the other to move (sereptitiously)

into a preliminary configuration. The second task must wait for the first to be executed before it

can even be planned.

During the process of elaboration, new events (some of them tasks like the above information

gathering tasks) are continually being added to the kernel. However the kernel is expensive to

maintain both in terms of storage space for all the derivedbe fore assertions and in terms of the

time required to update the transitive closure and set up consistency mandates. Luckily once we

5o

have determined when a token has occurred (in the case of a planner: the event token associated

with a task has been "executed") it is no longer necessary that it remain in the kernel. The

kernel is useful primarily for exploring the ramifications of an event's occurring at one point in

time rather than another.

Extricating a token from the kernel requires unraveling just that part of the intricately

interwoven dependency network which refers only to that token without disturbing other tokens

still active in the kernel which might depend upon that token or its effects. As we said earlier

elaboration is the process of expanding (detailing) and projecting (inferring the causal effects of)

event tokens based upon assumptions derived from other tokens in the kernel. PerformiL-, any

modifications to the kernel must be done with precision, in order to avoid unwarranted

assumption-violation warnings. The functions responsible for token garbage collection are listed

in the appendix and I won't try the reader's patience with a detailed description of their

operation. I will, however, give a simple example to demonstrate some of the problems involved.

(plausible TOKW)
I+ I+ (plausible TOK)
I (plausible TOK3) I
I I+ (plausible TOK3)
I (active TOK3) 1+

I (active TOK)
(active TOKW) I+ (plausible TOK2)

I (plausible TOK2) II
I I (active TOK2)

(active TOK2) J J+
I 14 (event-precedes TOKI TOK2)

(event-precedes TOK1 TOK2) 1
I *a I I re I ted ezplicit-be fore

e I I re I ated ezplirit-before A derived-efore re lat ions
A derived-bfore relations

INITIAL STATE AFTER GARBAGE COLLECTING TOKI

I--" I Abraham goes to the bank (ITKI)
hence he has cash (TaKS)

-- I to pay for dinner out with Lisa (TOKf)

Figure 4-1: Simple example illustrating token garbage collection

51

Suppose we know that Abraham went to the bank and cashed his paycheck. Let this correspond

to the event token TOK 1. We also know that he took Lisa out to a very expensive restaurant

and this event we associate with TOK2 (see figure 4-1). Based upon our current knowledge of

Abraham's weekly spending habits we assume that since it is late in the week TOKI must have

occurred before TOK2. Otherwise we can't imagine how Abraham could have paid the check.

Now TOKI gives rise to a fact token TOK3 asserting that for some time following TOKI

Abraham has a reasonable amount of ready cash. It is upon the taseertion associated with

TOK3 that we have based our projection that Abraham will be able to pay the maitre d' when

the time comes.

Now suppose we wish to remove TOKI from the kernel: we're still interested in exploring what

might have happened at dinner but were not interested in what came before. Two things to keep

in mind: (1) the only reason that we know TOK3 begins before TOK2 is that we assumed TOKI

occurred before TOK2 and (2) if at some future time it is determined that Abraham did not get

his paycheck cashed we want to be able to retract the assertion (plausible TOKi) and have it

wipe out all of its effects in particular TOK3 (thus alerting the program of its invalidated

assumption with respect to TOK2). The token garbage collection routine handles this by finding

all explicit-before assertions threatened by the removal of TOKI and modifying their

justifications so that they will continue to be IN contingent upon (plausible TOKI) and those

tokens still active in the kernel that depend for their temporal position upon these explicit-be fore

assertions.

As was said earlier, the decision of what is to be retained in the kernel and what is to be

discarded is pretty much left up to the discretion of the programs using the TMM. The garbage

collection routine can extract a token from the kernel but it must be told what tokens are

superfluous. In the planner described in this paper the decision of what to remove is built into

--.- j.

52

our model of integrated continuous planning and execution and our representation of possible

worlds. The next section outlines this representation and the criteria for token removal.

4.2.1 Planning In Time

Imagine the planning program as traversing a great network of events. From the planner's point

of view the network is a tree and at any one time the tree only branches into the future. As soon

as it reaches a fork it must decide which branch to take; the choice it makes determines its best

guess of what happened, the other branches are only "could've beens" (the program may later be

forced to revise its guess - we'll return to this). Each event that the planner is aware of is

marked on the tree by two points (the event's beginning and ending) located on the branch in

which the event is to occur or to have occurred.- The planner cannot always tell whether a given

point occurs before another (i.e. the tree imposes a partial order). However the planner can

consider any ordering of previously unconstrained points it wishes (e.g. the planner might believe

that one point precedes or follows another and choose to see it that way or assuming that an

event is under the planner's control, it can decide to schedule that event before or after another

event). The TMM kernel is the part of the network of events that the planner can see. Its

decision as to what it wishes to see corresponds to a hypothesis about how events are to unfold.

The branches constitute different hypotheses being considered. Some decisions constrain others

and hence if the planner chooses to see things as happening one way it cannot help but see those

things it knows will follow as consequences.

The planner always has the option to either look further up a branch (projection) or to look

closer at that portion of the branch currently in view (expansion). At some level expansion

consists of actually carrying out certain primitive steps (e.g. accelerating, reversing or lifting the

fork in the case of the forklift domain). At the point when the planner for some reason decides

to exercise some physical option, it has, in effect, chosen a branch of the tree. I call this

JI.

53

execution-time enforced scheduling. At any one time the planner has before it some number of

events which correspond to tasks that have no known events that precede them in the active

kernel. In the garbage collection algorithm these are referred to as root-tokens. The planner

chooses one of these root-tokens denoting a task and constrains all the others to follow. The

imposed schedule can easily be retracted if it is seen to lead to problems. The purpose of

imposing it is simply to force the kernel to reflect the fact that the past is a complete (linear)

order and detect any interactions which would otherwise go unnoticed. Execution-time enforced

scheduling attempts to funnel our predictions of what is be into a linearized representation of

what has been.

Let's suppose that the planner decides to execute the root-token task it has chosen. Then,

assuming that the associated plan does not for some reason meet with disaster, the root-token

will be garbage collected upon completion of all subtasks serving the associated plan. If the plan

is determined to be failing irrevocably, then either a new plan will be selected or the task itself

will be deemed not worth further effort and be revoked. In this way the planner moves along the

time network illuminating only that part which it considers of immediate value: continually

splicing in new tasks and disregarding completed ones.

The branches in our time network have a special significance in McDermott's theory of planning

(McDermott 821. They correspond to what he calls chronsesa and situating itself on a branch

which presents a reasonably accurate model of the world is the planner's single most pressing

intellectual activity.

4.3 Synchroniuing an Internal represntation with real events

A chreouc [McDermott 821 can be thought of as a single continuous path through the time

network. The planner maintains descriptions of alternative chronicles and since these

iiT

54

descriptions are necessarily incomplete, many chronicles will in general fit a given description.

We call the set of chronicles fitting a description the chronect of the description. What appear to

the planner as a number of distinct individual paths branching before it, constitute, not single

paths, but whole classes of possible futures corresponding to chronsets. A eub-chroneet is partial

description subsumed by other more detailed descriptions and their respective chronsets. A sub.

chronset was at one time a regular chronset until for some reason it was split (to examine

different possibilities stemming from a single source of uncertainty) into two or more chronsets

each of which incorporated it as a sub-chronset. The set of all chronsets which are not subsumed

by some other chronset is called the set of terminal chronsets. The TMM routines manage the

events in this set of terminal chronsets so as to maintain each event in the most general chronset

serving all those chronsets referring to that event. Every event token has a unique elaboration

and if two hypotheses concerning the temporal elaboration of one event are to be explored then

two tokens are created each with its own projection and expansion. The chronset management

routines make the operation of hypothesizing alternate futures reasonably inexpensive. The

ability to switch rapidly between chronsets is managed using the data pool mechanism of DUCK

[McDermott 81] which is similar in many respects to the CONNIVER context mechanism

[McDermott 73]. 1 won't spend any more time talking about how chronsets are managed but I

will briefly discuss the role they might play in detecting and recovering from planner errors.

We'll begin by exploring some of the many ways that the planner can be led astray.

The planner is continually making assumptions about events, their interactions with one another

and the occurrence and persistence of their effects. Its ability to anticipate or predict actual

events relies upon it having the right information at hand. Knowing that X causes Y in the

context of Z is not sufficient to predict Y. The planner must *know" that X has occurred in an

interval in which Z is believed to be true in order to infer Y. In order to 'know" anything the

• •i- i - - a'

55

planner must actively seek out (search for) observable phenomena from which to conclude the

necessary facts. This implies that either (1) the planner has already predicted that something will

occur and is only seeking to confirm its conjecture or (2) it is sufficiently important to its

purposes that something does (or does not) occur and it has deemed it a reasonable expenditure

of energy to interrupt its other activities to search for certain evidence. There is a certain sense

in which it can be said that we know nothing with certainty (except analytic truths). Certain

modern philosophers have been able to counter the arguments of the skeptic claiming that we can

know nothing by appealing to a foundation of basic assumptions about the world and our

teleologically biased view of it. I invite the reader to read one of the philosophical references

cited in the bibliography if he is interested in further pursuing this [Rescher 771 (James 071. For

the process of acquiring and assimilating information to converge on a realistic or pragmatic view

of the world the planner must assume a great deal about the world and its own ability to observe

the effects of events occurring in the world. The planner relies upon:

" Explicit assumptions concerning the occurrence of events and the persistence of facts
in the context of the modeled world.

" Implicit assumptions about facts and events in the "real" world bound up in the
planner's control structure and the store it places in its ability to perceive the world
about it.

If the planner fails (we will assume that in order to fail it must realize that it has been

unsuccessful in achieving one or more of its tasks) it does so for one of two reasons:

1. failure to anticipate a possible interaction which was understood but simply not
deemed worth probing for the signs of its manifestation. This implies the plan4 selection criteria is at fault (e.g. I assumed that flicking the switch on the appliance
was sufficient for its operation but. I neglected to see that the cord was plugged in).

2. an inappropriate assumption or belief concerning the state of the world based on
faulty sense data or incorrect inference from extracted features. The erroneous
assertion may come to light as the program attempts to validate its assumptions in
searching for the cause of its failure (e.g. I believed that if the lights were on in the
house someone would be home but I find that there is at least one exception to the
rule). In the worst case something unexpected might occur which the program may
or may not have knowledge of but which brings about an interaction it has no way
of explaining (e.g. a jet flies low over the farmhouse and later I ind the china
decimated but I fail to make the connection).

- " - --1 - _ _ _ _ _ _ n un

58

Each of these types of errors will be evident as a failure to choose a suitable chronset from all

those possible. Sometimes the planner was aware of a chronset which would have led it to

success. At other times it can construct an appropriate chronset after the fact but can only

conjecture as to the generality of the model it has constructed and its potential utility in helping

it avoid future errors. A successful planner will be able to synchronize itself with a "reasonable"

chronset in the midst of time passing and model/world discrepancies noticed. A reasonable

chroset for a given planner is one which provides a description of the world sufficient to guide

the choice and execution of plans for achieving the planner's set tasks. In order to understand

what might be entailed in such a synchronization process let's take a look at how new chronsets

are created and how they can be distinguished and in some cases discarded.

First some observations:

* chronsets split at decision points: places where uncertainty exists and hence we
conjecture alternate projections of the future. The uncertainty can be due either to
lack of knowledge about whether or not an event will occur or how it will turn out.
These two cases are related in that the question of whether or not an event El will
occur will always be relative to some other event E2 and this latter (though likely
chronologically prior) event has projections in which El occurs and those in which it
doesn't.

& there are events (corresponding to tasks) that the planner has scheduled but which
may or may not be executed

9 there are events which the planner is expecting but may or may not occur

* presumably the scheduler chooses a particular chronset first on the basis of its
expected conformance to reality and secondly on the basis of the expected viability of
its proposed plans for realizing its goals. It likely rejects those chronsets which fail to
meet with its physical (sensory) experience of reality

* let us suppose that the planner has chosen a chronset and executed a plan which in all
likelihood will include some information gathering. It will obviously be aware of
events which it has itself executed though not necessarily aware of the validity of
their projected effects (other events and facts). Some events it may believe will occur
but it will not verify that they indeed occurred. Event and fact tokens corresponding
to the effects of such events may persist in the database despite their failure to
coincide with reality. If later the planner attempts to verify these effects and fails, it
may question the projection which gave rise to the causing event (certainly successful
verification should be added to the support for an hypothesized event). It might also
try to conjecture some unforeseen interfering event. An event conjecture can be
excised from a chronset whenever the effects the conjecture proposes are invalidated
or in the case of a plan, it is implicated in a conflict and deemed unpatchable (or at

2 1 *-

57

least Dot worth patching). In any case all events corresponding to tasks organized by
some conjecture are excised along with that conjecture.

If the planner is to synchronize its internal model with the real world it must have have some

means of distinguishing fact from fantasy. Why should I believe in an event El having occurred

? Presumably because I believe that some event E2 which is believed (under certain

circumstances) to cause El has occurred and that nothing further has occurred which might

prevent El occurring. I might also believe in an event's past occurrence based upon validation of

its effects. For instance I might believe that a train has recently traveled over a section of

railroad track based upon sensing a vibration and warmth in the steel rails.

Suppose that I wish to know if anyone recently dove into a swimming pool. I might look to see if

anyone is presently in the pooi. This however would not be Conclusive as the swimmer might

have entered the pool by means other than diving. If I believed that a dive must result in a

splash then I might check around the deck for puddles of water. Unfortunately a dry deck does

not necessarily disconfirm the hypothesis that a person sighted in the pool, entered by diving.

The water could have been deposited upon the deck and evaporated before I could observe it.

There are facts which if true signal the coming of an event. There are events which if they occur

generally signal that certain other events will follow or co-occur (their respective temporal

intervals overlap). Finally there are facts and events which occur as results or consequences of an

event. When I assume that an event E will occur it is quite likely that I will make decisions

based upon this belief. In particular I may choose a plan relying upon a fact which will become

true as a result of E occurring. Now it is completely plausible that I set myself the task of

monitoring E to make sure that it unfolds as I have projected. That is, I will check to see that

the conditions leading to the event occur and that certain of its consequences are observed. Such

event validation plans will likely be tailored to the super task 'Which they subserve and hence be

selective in those effects they expend energy confirming. Validation plans can report

confirmation and yet the event fail to occur, as in the case of a swimmer who uses the ladder to

enter the pool after a summer rain storm. Validation plans can also disconfirm an event which

actually occurred : for example the sun evaporates the water on the pool deck from a diver's

splash before we can observe it.

The idea of scheduling tasks whose purpose it is to validate and detect the occurrence of events

and their effects is a crucial part of planning. It would be nice if our senses and ability to

discriminate were so reliable and rapid that we could use the simple criteria in figure 4-2 for

predicting events and determining their past occurrence.

Unfortunately it is hardly ever practical to check every condition (as in the first rule in figure

4-2) and even if it were possible it would be necessary to check infinitely often in the interval

preceding the event of interest to make absolutely sure that the conditions were in place. The

likely-occuzrred predicate assumes that all effects are detectable and that furthermore they will

persist at least until we have time to validate them. The problems of validation and choosing a

reasonable model is not apt to be solved by so simple an approach. I expect that time maps can

play a significant role in a pragmatic theory of causality: a first step toward solving these

problems. I ara currently exploring realistic projects in the fork lift task domain which depend

upon a partial solution to some of the issues raised above in order for a program to perform well

over time. The last section sketches a proposal for an adaptive planner operating in some task

domain and serving as a test bed for validation strategies and pragmatic causal theories.

69

(forll (eventl intervall)
(if (exists (event2 interval2)

(and (meets interval2 intervall)
(likoly-to-occur event2 interva12)

(ecause event2 eventl)
(formll (p)

(if (condition-for-causing p ovent2 eventl)

(exists (interval2)

(and (overlaps interval2 interval1)

(t intorval2 p)))))))
(likely-to-occur event! interval!)))

Paraphrase: You can conclude that event! is likely to occur in intervall if you know of an event
(event2) likely to occur in an interval (interval2) immediately preceding intervall such that event2
is known to cause eventl under certain conditions currently known to hold.

(formll (eventl interval1)

(if (forall (p)
(if (effect-of p event1)

(exists (interval2)
(and (overlaps interval1 interval2)

(t interval2 p)))))

(likely-occurred eventl intervall)))

Paraphrase: You can conclude that event! has likely occurred in intervall if you know that its
effects are true in intervals overlapping intervall.

Figure 4-2: Possible rules for establishing facts about events

" u t--. -

60

6. Conclusions

This paper is an amalgam of conceptual approaches, programming techniques and hints at where

my primary research is heading. The whole is presumably tied together by the notion of time

map maintenance and its potential for application in planning programs. In the following I will

try to sketch a more ambitious research proposal employing time maps.

When the planner was in an early stage of development I was asked to describe how the planner

would handle a simple blocks world problem. My answer, such as it was, relied upon a naive

conception of monitor imbued with immense power and quite as convenient as the homunculus

for avoiding real issues. In retrospect I believe that I had at that time an aversion to

muechanism'. Whenever it became apparent that here was an area in which humans performed

with extraordinary range and flexibility then it seemed obvious that no simple mechanism would

suffice to explain it and certainly no measly five thousand lines of code would serve to model it.

The problem as I now see it is that I sought to build a model of adaptive environmental response

aiming a, the wrong level of functionality. I wanted to construct a mechanism which elicited

that sort of behavior. However it was obvious that I could not adequately describe the

functionality of such a mechanism except by reference to the behaviors themselves. Once I

ceased looking at the behaviors themselves and began looking at why they might have been

evoked given the environmental stimuli, another sort of functionality became apparent. Some of

the component parts even appeared ripe for mechanization. What were the relevant stimuli of an

experience and how were they distinguished from the welter of other stimuli available? How can

relevasnce be defined in terms of teleology and pragmatics? What sort of impression must the

stimuli have made upon the organism and what part of the initial stimuli must be retained and

how is it to be encoded in order that the organism recall an appropriate pattern of response

under circumnitances in which executing that pattern will be to the organism's advantage?

Assuming such mechanisms could be constructed the problem becomes one of coordinating the

behavior of these component processes by means of conventions for passing information between

basic, functionally isolated, processes and supplying a set of rules and biases to form an initial

praxis. A similar change in perspective served to change the emphasis of neurophysiology earlier

in this century.

In the exitement following Broca's and Wernicke's discoveries supporting the centralization of

speech and language comprehension in the left hemisphere an attempt was made to map out the

entire surface of the cerebral cortex to localize the functional centers of human thought. Centers

of "ideation", mood and volition were "discovered" and their boundaries carefully drawn.

However no satisfactory mechanism was developed to explain this organization of functions and

psychologists and physiologists employed such catchall terms as association (of sensations and

ideas) and spreading activt'aion to describe what they couldn't~ explain. The early work of

Pavlov excited fPw psychologists interested in complex cognitive skills and those it did were all

too frequently prone to explain everything in terms of those few simple mechanisms that Pavlov

bad demonstrated. But other mechanisms were discovered: lateral inhibition, spatial summation

and the complex neural feedback circuitry in the cerebellar cortex to name but a few. These

mechanisms enabled researchers to begin exploring a different level of functionality; a level that

sought to explain how the organism interacted with its environment in such a way as to ensure

its continued evolutionary success. The result was a new view of functionality. A. R. Luria

writes in the opening chapter of uThe Higher Cortical Functions in Man" [Luria 66):

&Since Pavlov advanced his reflex theories, the word "function" has come to mean the product of
complex reflex activity comprising: uniting exited and inhibited areas of the nervous system into
a working mosaic, analyzing and integrating stimuli reaching the organism, forming a system of
temporary connections, and thereby ensuring the equilibrium of the organism with its
environment. This is why the concept of localization of function hag also undergone a radical
change and has come to mean a network of complex dynamic structures or combination centers,
consisting of mosaics of distant points of the nervous system, united in a common task."

62

The time map mechanism is a simple functional unit. It serves the overall pianning program by

maintaining a coherent account of the effect of actions and events hypothesized to have occurred

.The time map mechanism directly influences the functional unit dealing with event projection

by keeping explicit track of the relative positions of tokens representing facts true over time and

events occurring in time. In the present planner the process of event projection and plan

formulation is highly automated. At this level a response to a complex of stimuli recorded in the

kernel structures is formulated according to whatever rules the system possesses. In the process

of event projection whatever messages or suggestions are found tagged to data structures invoked

by inference rules are passed up to higher levels of control. Figure 541 provides a functional

schematic of the control organization being proposed.

SCHEDULING

1 I/0 IEVENT PROJECTION1 I --------- I I ASSIMILATION I

----I----- ---L Il

-- ----------I ~ I RULE DATA BASE q4-
I (EPISODIC MEMORY) I
I- - - - - - - - - - I

4 Figure 5-1: A Schematic Illustrating the Organization of Basic
Functional Units in an Adaptive Planner

The next higher level of control is presently the least well understood but I can provide a

reasonable sketch. The function most clearly linked to this level is scheduling (for a discussion of

the role of scheduling in planning see IMiller 831). The projection mechanism is responsible for

recalling past problems and spawning new tasks to gather information and deal with expected

contingencies. The scheduling unit deals with event complexes which are either relatively novel

63

or simply not fully integrated into the event projection process. In addition the scheduler, having

sought to validate the predictions of the projection process, tags those experiences which can be

compiled into causal knowledge and suggests organizational changes to the data structures which

feed the projection process. The idea is that the scheduler only introduces further constraint into

the kernel tokens or modifies the sequence of tasks when it is testing a causal hypothesis law and

the form of the test is always dictated by the success of the planner's current tasks. The only

time it tests a causal hypothsis is when it is sent a message from the projection process which was

attached to an event being adding to the time map. Such messages are attached to an event

when a validation task has reported that an event which was believed to have occurred appears

not to have and tags the record of this episode with a message to the scheduler to be read the

next time this event is suspected to occur.

Is the scheduler just a repository for all poorly understood functions: a new home for the

homunculus? I think not. There is an obvious cycle of processing. The cycle is nurtured by the

regularity and predictability of the data which the planner is designed to feed upon. All the

system is really doing is learning to mimic its environment in order to anticipate the conditions

for achieving success. The object is for what actually does happen to coincide with the planner's

internal model of what it believes will happen coordinated with whatever role it proposes to play

in order to edge things in its favor. Success is manifest as a lowering in traffic around the cycle.

Causality is just the proclivity of one thing to happen in the context of others in a demonstrably

regular or predictable fashion.

The idea of actively instigating validation tasks is central to this approach. Most planners

passively accept whatever data is presented to them, assuming that it will be adequate for their

processing needs and that irrelevant data can easily be recognized and ignored. But the content

and organization of the incoming data need not bear any relation to the immediate informational

64

needs of the program nor to the way in which the program internally organizes its experience.

The idea behind validation tasks is that the planner continually attempts to corroborate its

expectations so as to synchronize its internal model with the external environment wherever it is

to its advantage to do so (i.e. whenever coordination between the model and the modeled world

will help to achieve the planner's tasks). This sort of active information gathering is critical to

planning in complex task domains.

It is my aim to demonstrate the utility of the approaches outlined in this paper in a working

program within the next year and a half. In order to accomplish this I will have to address some

of the many problems I have avoided in this paper: the need for metric constraints or a method

of comparing the relative duration of tokens and representing continuous processes to mention

some of the most obvious omissions. By making such a demonstration I hope to answer a few

questions which were only raised in this paper as well as build a platform from which to pusue

these problems further. I appreciate the reader's perseverence in making it this far and I welcome

any comments or criticism.

65

I. Appendix: Time Map Garbage Collection

The following algorithm is used for removing tokens from the kernel without disturbing the

overall dependency structure of the events remaining in the kernel. The basic operation was

described in the chapter on planning. The algorithm is presented in LISP format with function

names chosen for clarity. No particular dialect of LISP is intended though the data structure

syntax is that of NISP [McDermott 83]. The form (: (<structure type> <structure slot>)

<structure>) is used for accessing and setting slots (fields) in a structure (record). For instance

(: (TOKEN begin) tok) refers to the beginning of the interval associated with tok.

A number of predicates require some explanation. (During toki tok2) asserts that Ptokl occurs

during tok2. The schema (during fdtokl tok) is used for fetching all sub-events in the expansion

of tok. The form (token-intert'al ?tok ?begin ?end) is used for finding the beginning and ending

points of a token given the token (or the token given its beginning and ending points). (Thnot P)

succeeds only if P is neither in the data base nor derivable from rules and assertions in the data

base. (Precedes toki tok2) refers to the fact that toki temporally precedes tokZ. The algorithm

exactly as presented will not work in DUCK as I have omitted quotes and backquotes which

would confuse readers unfamiliar with our local syntax. Just assume that the fetch function

magically knows what to evaluate and what not to. Finally in an expression of the form (:- foo

(baz t-.)) the - refers to foo in order that foe be evaluated only once.

(define gc-past-tokens-tm (tok)
(let ((begin (: (TOKEN begin) tok)) (end (: (TOKEN end) tok)))

make sure it is past: all its sub-events should have dissappeared.
(if
(fetch (thnot (and (during ?dtok tok) (active ?dtok))))

if so then update the set of the current chronset's root tokens.
(do

(for-each-ens (fetch (and (token-interval ?tok ?pbegin ?pond)

(before ?pend end)))
(gc-past-tokens-tm ?tOk))

(for-each-ens (fetch (and (precedes tok ?tokl)
(thnot (precedes ?tok2 ?tokl))))

+I

68

(push ?tokl (: (CHRONSET root-tokens) *current-chronsote)))
(wean-dependent-tokens-tm tok)

(:C: (CHRONSET subtroo-roots) *current-chronset*)
(remove tok *-*))

(:(: (CHRONSET tokens) *current-chronsot*) (remove tok -)
(oese (active tok))
(for-first-ens (fetch (during tok ?tokl))

(gc-past-tokens-tm ?tokl))))))

(def ine wean-dependent-tokens-tm (tok)
(let ((egin (:(TOKEN begin) tok)) (end (: (TOKEN end) tok)))
Cans-support (*(plausible tok))

,CASE I I-E2-1 I-E3-1

*where (EXPLICIT-BEFORE El E2)
(EXPLICIT-BEFORE E2 E3) and E2 is to be garbage collected.

(for Cgc-pt in (list begin end))
(do (let ((dependents 0) ((nheritance 0)))

(for-each-ans (fetch (explicit-before ?past-pt gc-pt))
(push ?past-pt dependents))

(for-each-ens (fetch (explicit-before gc-pt ?future-pt))
(push ?future-pt inheritance))

(for (past-pt in dependents)
(do
(for (future-pt in inheritance)
(do
(for-each-ens (fetch

(end (token-interval ?tokl past-pt ?pond)
(or (token-interval ?tok2 future-pt ?fend)

* (token-interval ?tok2 ?begin future-pt))))
(ens-support (+ (active ?tokl) (active ?tok))
(premiss (explicit-before past-pt future-pt))
(premiss (before past-pt future-pt)))))

*CASE II I-E2-1 I-E0-1

*where (EXPLICIT-BEFORE E2 E3)
(MEETS E2 El) and E2 is to be garbage collected.
(if (eq gc-pt end)

(for (future-pt in inheritance)
(for-each-ens (fetch

(and (token-interval ?mtok end ?mend)
(or (token-interval ?tok2 future-pt ?foend)

(token-interval ?tok2 ?begin future-pt))))
(ens-support (+ Cactive ?mtok) (active ?tok2))

(premiss (explicit-before end future-pt))
(premiss (before end future-pt)))))))))))

Remove the garbage collected token from the kernel associated with the chronset currently being

67

referenced. This is also used for removing tokens which are deactivated for reasons other than

garbage collection; for instance if a plan is scrapped all of the tokens associated with the tasks

that the plan organized must be removed from the kernel of the chronset in which the plan was

proposed.

(rule deactivate-garbage-col lected-token
(if-erased (active ?tok)

(: C: (CHRONSET tokens) *current-chronset*)
(remove ?tok *-*))))

L _ _ _

--1L.......

68

References

[Allen 80] Allen, J.F. and Perrault, C.R.
Analyzing intention in utterances.
Artificial Intelligence 15(3), 1980.

[Allen 81a] Allen, James.
Maintaining knowledge about temporal interval.

Technical Report TR88, U. of Rochester Department of Computer Science,
1981.

[Allen 81b] Allen, James.
A general model of action and time.
Technical Report T1,97, U. of Rochester Department of Computer Science,

1981.

[Charniak 81] Charniak, Eugene.
A common representation for problem-solving and language-comprehension

information.
Artificial Intelligence 16(3):225-255, 1981.

[Dehn 84] Dehn, Natalie.
Creative Reasoning and Invention in a Reconstructive and Dynamic Memory.
1984.
Forthcoming PhD Thesis.

IdeKleer 77) de Kleer, Johan, Doyle, Jon, Steele, Guy L., and Sussman, Gerald J.
Ezplicit control of reasoning.
Memo 427, MIT Al Laboratory, 1977.
Also in Proc. Conf. on Al and Prog. Lang., Rochester, which appeared as

SIGART Newsletter no. 64, pp. 116-125.

[Doyle 79a) Doyle, Jon.
A truth maintenance system.
Memo 521, MIT Al Laboratory, 1979.

[Doyle 79b) Doyle, Jon.
A truth maintenance system.
Artificial Intelligence 12(3):231-272, 1979.

[Fikes 711 Fikes, Richard and Nilsson, Nils J.
STRIPS: A new approach to the application of theorem proving to problem

molving.
Artificial Intelligence 2:189-208, 1971.

(Hendrix 731 Hendrix, Gary.
Modeling simultaneous actions and continuous processes.
Artificial Intelligence 4:145.180, 1973.

69

[Hewitt 71] Hewitt, Carl.
Procedural embedding of knowledge in PLANNER.
In Proc. IJCAI 2. IJCAI, 1971.

[James 071 James. William.
Pragmatism.
New York, 1907.

[Luria 68] Luria, A. R.
Higher Cortical Functions in Man.
Basic Books, 1966.

[McAllester 82] McAllester, David A.
Reasoning Utility Package User's Manual.
Technical Report 687, MIT Al Laboratory, 1982.

[McDermott 73] McDermott, Drew V. and Sussman, Gerald J.
The Conniver Reference Manual.
TR 259a, MIT Al Laboratory, 1973.

[McDermott, 77] McDermott, Drew V.
Flezibility and efficiency in a computer program for designing circuits.
Technical Report 402, MIT Al Laboratory, 1977.

[McDermott 78] McDermott, Drew V.
Planning and acting.
Cognitive Science 2(2):71-109, 1978.

[McDermott 81] McDermott, Drew V.
Contexts and data dependencies: a synthesis.
1981.
To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence.

[McDermott 82] McDermott, Drew V.
A temporal logic for reasoning about processes and plans.
Cognitive Science 6:101-155, 1982.

[McDermott 83] McDermott, Drew V.
The NISP Manual.
Technical Report 274, Yale University Computer Science Department, 1983.

[Miller 83] Miller, David.
Scheduling Heuristics for Problem Solvers.
Technical Report 264, Yale University Computer Science Department, 1983.

[Rescher 771 Rescher, Nicholas.
Methodological Pragmatism.
New York University Press, 1977.

V
| .. vi

70

[Rieger 76) Rieger, Charles.
An organization of knowledge for problem solving and language comprehension.
Artificial Intelligence 7, 1978.

(Sacerdoti 74] Sacerdoti, Earl.
Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence 7(5):231-272, 1974.

[Sacerdoti 771 Sacerdoti, Earl.
A Structure for Plans and Behavior.
American Elsevier Publishing Company, Inc., 1977.

[Stefik 79] Stefik, Mark J.
An examination of a frame-structured representation system.
In Proc. IJCAI 6, pages 845-852. IJCAI, 1979.

[Stefik 80] Stefik. Mark J.
Planning u'ith Constraints.
Technical Report STAN-CS-80-784, Stanford Computer Science Department,

1980.

[Sussman 75] Sussman, Gerald J.
Elsevier Computer Science Library: A Computer Model of Skill Acquisition.
American Elsevier Publishing Company, Inc., 1975.

[Tate 75] Tate, Austin.
Using Goal Structure to Direct Search in a Problem Sohter.
Technical Report TR86, U. of Edinburgh Machine Intelligence Research Unit,

1975.
PhD thesis.

* [Tate 77] Tate, Austin.
Generating Project Networks.
In Proc. IJCAI 5. IJCAI, 1977.

[Wilensky 83] Wilensky, R.
Planning and Understanding.
Addison-Wesley, Reading, Mass, 1983.

