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Several computer-oriented methods for the formulation of the
equations of motion for multibody systems with tree structure and also
with closed chains are presented in a unified manner. They all stem from
the same basic set of equations which are regarded as arising out of the
stationary point condition of a quadratic programming (QP) problem.
Using QP theory it is shown that the various methods are just different
ways of solving the Lagrangian system of equations.

RESUME

On présente dans un format homog2ne plusieurs méthodes infor-~

matisées pour 1'établissement des équations du mouvement de systdmes 2

plusieurs corps avec structure en arbre et avec chaitnes fermées. Ces
méthodes découlent toutes du méme ensemble d'équations de base qui
représentent la condition de point stationnaire d'un probl2me de program-
mation quadratique (PQ). A 1'aide de la théorie de la PQ, on montre que
les différentes méthodes sont simplement des fagons différentes de
résoudre le syst2me d'équations de Lagrange,
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First column of matrix En
Force at hinge point j (j=1,2,...,n-1)

Force vector with components £
j

Resultant external force on body i, acting at Ci(i-l,2,...,n)

Force vector with components F
i

Torque at hinge point j (j=1,2...,n-1)

Torque vector with components g
h]

Constraint torque vector

(v)




SYMBOLS (cont')

Resultant external torque on body i (i=1,2,...,n)
Torque vector with components G,

Angular momeantum of body i(i=1,2,...,n)

Angular momentum vector with components hi

Arc j or joint j (j=1,2,...,n-1)

Inertia matrix of body i about its centre of mass (i=1,2,...,n)
Diagonal matrix with elements RiIiRE

System inertia matrix

Vector from C, to hinge point j (i=1,2,...,n; j=1,2,...,0-1)

Matrix with elments cij Rizij

Mass of body i (i=1,2,...,n)

Total mass of the sysﬁem

Diagonal matrix with elements m, or m, E3

Number of rigid bodies in the system
Number of rotational degrees of freedom at joint j{(j=1,2,...,n-1)

n! = 3-n,
J ]

N Matrix of nonlinear elements (see Eq. (38))
0 Origin of an inertial frame
0 Zero matrix, zero vector
Pik Unit vector along the axis of rotation at joint j(j=1,2,...n-1);
k-l’..l’n')
J
P Unit vector in the direction of translational motion at joint j
P, Matrix with elements Pik (j=1,2,...,n~1)
P Diagonal matrix with elements P
j
qjk Unit vector in the constraint direction (j=1,2,...,n-1; k-l,...ng)
qjl.qu Unit vectors perpindicular to pj
Qj Matrix with elements qjk (j=1,2,...,0-1)
Q Diagonal matrix with elements Qj
(vi)
it e TG—

M i i 2 e .-J




T AN W Yoo, e

SYMBOLS (Coat ')

r Position vector of Ci from 0 (i=1,2,...,n)

r,T,T Vector with components T éi and ii respectively

Ri Transformation matrix connecting the ith frame to the inertial frame
(i=1,2,...,n)

] Matrix defined by (—e1 c)

T Transpose of a matrix

T Inverse of matrix S

Tl First row of matrix T

T, Last (n-1) rows of matrix T

U)5Uy5u, Components of force defined in Eq. (10)
1 An n-vector with unit elements

ij’ijk’i}k Relative angular position, velocity and acceleration respectively,
at joint j(j=1,2,...,n-1; k=1,...,n,)
y.,f.,i} Vectors with components ij’i and 15; respectively (j=1,2,...,n-1)

I jk
YsYsY Vectors with compoentns Yj’ fj, and 75 respectively
sij Kronecker delta
A Vector Lagrange multiplier (see Eq. (49)
A Vector Lagrange multiplier (see Eq. (63)
B Matrix defined in Eq. (26)
w; Absolute angular velocity of body i (i=1,2...,n)
éi Abgsolute angular acceleration of body i (i=1,2,...,n)
" Vector with components R;w;
nj Relative angular velocity at joint j (j=1,2,...n-1)
Q Vector with componeats nj
. First derivative with respect to time variable t
.e S8econd derivative with respect to time variable t

(vii)




Equals by definition

Initial vertex and final vertex of arc hj respectively

Cross product

Used to define the cross product (see Eq. (11)

Inverse of a matrix

Diagonal matrix

(viii)




EQUATIONS OF MOTION FOR RIGID MULTIBODY SYSTEMS

1. INTRODUCTION

The dynamic behaviour of manipulators, linkages in machines and human
body mechanism can be studied by utilizing the equations of motion derived from
rigid body dynamics. The general principles involved in formulating these
equations have been known since the days of Euler (1707-1783), d'Alembert
(1717-1783) and Lagrange (1726-1813). The equations of motion are complex and
highly nonlinear and can be only solved with the aid of computers. Most of the
recent work [1-7] is therefore devoted to the methods that are efficient and
general enough to be applicable to a wide variety of multibody systems with a
minimum amount of preparatory work.

The two most popular methods for the derivation of equations of motion
are the Lagrange's method and the Newton-Euler's method. As the final form of
the equations derived by the Lagrange's method can also be obtained by means of
Newton-Euler's method, it is only the latter method that will be considered.

In the Newton-Euler's method, equations of motion are written for each
body of the system with internal reaction forces and torques appearing as
external loads. Using graph theory concepts to describe the interconnectioans
between the bodies and writing the equations of motion in a vector-matrix form
it becomes evident that these equations can be viewed as a stationary point
condition of a quadratic programming problem with equality constraints provided
we replace the physical components of the hinge reaction forces/torques with the
Lagrange multipliers., This point of view is useful since the theory of
quadratic programming can be immediately applied for the formulation of the
equations of motions and many seemingly different approaches can then be
presented in a unified manner. In the literature [8,9], this quadratic
programming problem is known as the Gauss's principle of least constraint.

The remainder of the report is divided into four sections. In
Section 2, we present some concepts from graph theory and introduce the notion
of incidence matrix to describe the interconnections between the bodies of a
system with directed tree structure. Equations of motion are formulated for
systems with tree structure in Section 3, first for the case when the hinges are
ball-and-socket (spherical) joints and then for the case when the hinges are
ball-and-socket joints, universal joints and pin joints. Several ways of
formulating the equations of motion are discussed. They all stem from the same
set of equations but differ in the way the Lagrangian matrix in the quadratic
programming problem is manipulated. It is shown that equations formulated by
the Lagrange's form of d'Alembert's principle [10] can also be formulated by
using the Gauss's principle of least constraint., In Section 4, the methods of
Section 3 are extended to multibody systems with closed chains. Conclusions are
discussed in Section 5 and the matrix computational procedures necessary for the
determination of linear accelerations, angular accelerations, and constraint
forces and torques are presented in the Appendix.
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2. DESCRIPTION OF THE INTERCOMNECTIONS

Let us consider a system of n rigid bodies connected to each other
by n-1 hinges. If we identify the bodies with the vertices and the hinges with
the links, such a structure, in the language of graph theory, is called a

nondirected tree [11). Figs. la and lb respectively show a 6-body system and its
tree graph.

—®
5

Fig. la A 6-body system with Fig. lb System grpah of a
tree structure 6-body system

In studying the dynamics of multibody systems the hinge forces and
torques act on two contiguous bodies with opposite signs and hence we must
specify unambiguously which of the two bodies is acted upon by force/torque with
a positive sign and which one with a negative sign. This means that to describe
the interconnections between the bodies we must convert a nondirected tree to a
directed graph by assigning a sense of direction. To be specific we shall
convert the nondirected tree into a directed tree. By this we mean a directed
graph without a circuit for which the indegree of every vertex b;, (i.e. the
number of arcs which have b; as their final vertex) except one is unity: the
indegree of the exceptional vertex, called the root of the tree, being zero.

A nondirected tree can be converted into a directed tree by
arbitrarily picking any vertex as the root and choosing directions for the links
so that there is a pathbetween the root and every other vertex. It should be
noted that there can be only one such path, Fig. 2 shows a directed tree
representation of the system shown in Fig. lb.

Fig. 2 Directed tree representation of the 6-body system
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So far we have not paid any particular attention to the labeling of
either the vertices or the arcs. The numbers were assigned in an arbitrary
way. We now describe a procedure called regular labeling that produces a simple
structure for the incidence matrix (defined below). For this, label the root as
body 1 and the peripheral vertices the highest-numbers n, n-l,.... The
peripheral vertices are those vertices which have no arcs emanating from them.
The arc with final vertex n is labeled n~l and that with n-1 is labeled n-2 and
so on. Now all vertices and arcs that have been labeled are removed from the
tree producing new peripheral verticecs. The procedure is then repeated until
all vertices and arcs have been labeled. The regular labeling and an arbitrary
labeling corresponding to the system of Fig. la are shown_ in Figs. 3a and 3b
respectively. b

1
Fig. 3a Regular labeling Fig. 3b An arbitrary labeling

A directed tree is conveniently represented by an nxn-1 ircidence
matrix C (of rank n-1) whose elements cjj are defined as follows:

= ] if b; is the initial vertex of arc h:

cij j

cij = -1 if b; is the final vertex of arc hj

cij = 0 otherwise

Since each arc is adjacent to exactly two vertices, each column of the incidence
matrix contains one element 1 and one element -1. For the directed trees shown
in Figs. 3a and 3b the incidence matrices C, andCy are

hy h, hy h, b
b, 1 1 o o o
b, -1 0 1
b 0o -1 0 o0 0
C, bz 0 0 -1 o 0 (1)
b o o0 o0 -1 o
bg 6o o0 o0 o0 -l




It should be noted that with the first row omitted the incidence matrix Cg4
corresponding to the regular labeling is upper triangular having all elements on
the main diagonal as -1, while Cp does not have any such simple structure.

3. EQUATIONS OF MOTIOR FOR SYSTEMS WITH TREE STRUCTURE

Consider a system of n bodies with tree structure. Let us isolate the
ith body from the system. The forces acting on the body are the external
forces, hinge forces and the inertia forces. As regards the hinge forces and
torques we adopt the following sign convention. The forces and torques at hinge
j are taken positive on that vertex which forms the initial vertex of arc hj.
The index of such a body will be denoted by j*. The index of the body whic
is the final vertex of arc h: will be denoted by j~. For example, for the
system of Fig. 3a, 5* = 2,5 "= 6 and on body 2 the force is fg5 and torque
g5 while on body 6 the force is -fg and torque -gs.

Let 2ij denote the position vector from centre of mass C; of body

b; to the hinge j, Fig. 4. Position vector 2ij is, of course, zero if hinge
Fi’Gi

Fig. 4 Free-body diagram of body i
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j is not located on body i. The equations of motion of of body i, i=1,2,...n,
are:

n-1
m ¥ =F + §J ¢ £ (Newton's Equations) (2)
i1 i =l ijj
. T n-1
Iw+oxIw =R (G+ §J ¢ (Rg xf+g )] (Euler's equations) (3)
ii i i i i =1 i) 11i) § j

where T denotes the transpose and

m, = the mass of body i

I, = the inertia matrix of body i about its centre of mass c;
r. = the position vector of Ci from an inertially fixed point 0
!ij = yector from Ci to hinge j, expressed in body frame i

F ,G = the resultant external force and torque acting at C , expressed
i 1 in an inertial frame i

fj,gj = hinge force and torque at joint j, expressed in an inertial frame
w; = the absolute angular velocity of body i, expressed in body frame i

R = the transformation matrix connecting the ith frame to the inertial
i frame,

In the vector-matrix notation the equations of motion can be expressed as:
Mr=F+Cf (4)
h =G+ Lxf + Cg (5)
where the various vectors and matrices are defined as follows:

M = diagonal matrix with diagonal elements m, or miE3 (E3=3x3 unit matrix)

r = (FI,FZ,...,FR)T; F,G defined in the same way




£f=(f £ ,...,f )T; g defined in the same way
172 n-1

C = nxn-1 matrix with elements cij or 3nx3(n-1) matrix with elements CijE3

L = nxn~1 matrix with elements L.,. = c..R.%..
o T ij ij i%ij

h = (hl’hz"""hn) an n-vector with the ith element

h =R(Iyg +wxIw)
i i 11 i it

It should be noted that the elements of the matrix L and the vectors r, f, g, F,
G and h are 3xl matrices, while the elements of M and C can be taken either as
scalars or 3x3 matrices.

Eqs. (4) and (5) can be used to describe the motion of the system
provided the forces and torques at the couplings between two neighbouring bodies
are known. Such is not the case when the hinges are ball-and-socket (spherical)
joints giving arise to constraint forces that must be determined or eliminated.
In case the hinges are universal joints or pin joints then in addition to the
constraint forces there are also constraint torques.

3.1 Systems With Ball-and-Socket Joints

Let us first consider the simplest case when all hinges are
ball-and-socket joints. The relative motion of any two neighbouring bodies is a
pure rotation with three degrees of freedom, From Fig. 5, the constraint
equation at hinge j is given by:

2 =T, +Rj_z j=1,2,...40-1

r.. + R, 2. ..
J* J+714,) = J=s)

or

¢c. .r. 4, .r. +c¢, .R.f. .+c. .R, 8. .
J*,) 3+ 1,1 - J+,] 3t 3%, 3] J'zJ'aJ
or

n n
¢c r+)] ¢ Rg =0 (6)
i=] ij i i=1 ij i ij

since for each j, ¢. .=1, ¢, .=-1 and c,.=0, i#j+ or j-~.
I C50,5700 C5-45 ij o ' )




Fig. 5 Vectors depicting the constraint at hinge j

In vector-matrix form Eq. (6) can be written as
cfr+1T1_=0 N
where ln is an n-vector defined by 1n = (l,l,...,l)T. Differentiating Eq. (7)
twice with regard to time we obtain
cF+ili_ =0 (8)

where each element iij of L is given by

Lij - cini(mixzij*mix(mixlij)) (9)

Eqs. (4), (5) and (8) can be written in the matrix form as follows:

M 0 -c ¥ F u
- - 1
o 1 -Lff & |-| e+cen ]2 v, (10)
T _\T o\ T
-c° -(L) 0 f (L) 1 u,

where each element in matrices M and C is a 3x3 diagonal matrix having that
element aslong the diagonal; 0 is a matrix of appropriate dimensions with zero

elements; and
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L.. 3 the ijth element of L = Ri(uix(wixc. [}

ij = ijti;”

hi = the ith component of h = Ri(mixlimi)

. T T
I = diag {erlkl....,nnlnnn

W= (Rldl,...,kn&n)

- -~

L = nxn-1 matrix with elements Li" i=l,...,n, j=1,...,0~1, and the
tilda () on a vector r with compdnents x,y, and z denotes a 3x3 antisysmmetric
matrix

0 -z y
r = z 0 -x (1)
-y x 0

8o that rlxt2

determination of the linear accelerations, angular accelerations and the
constraint forces. It should be noted that the matrix representing Eq. (10) is
sparse (also symmetric) and hence sparse matrix techniques can be used to invert
this matrix. We can also reduce the order of the matrix inversion problem
through some preliminary analytic manipulations.

= Plrz. Eq. (10) represents 6n + 3(n-1) scalar equations for the

From Eq. (10) we see that if f is known then ¥ and y can be determined
easily by inverting the diagonal matrices M and I:

- M-l(ul+cf) (12)

o= 1'1(u2+if) (13)

T -1
Now, to determine f multiply the first row by CM , the second row by
(LY 1! and add to the third. This yields
-l + T1E = Tl e T e, (14)
The 3(n-1)x3(n-1) matrix representing Eq. (14) can also be written as
~ -1
T“T M O ¢
=c W g 1))
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and can be inverted r ‘merically (see Appendix) and f determined. Having found
f, the linear and & .lar positions and velocities can be computed from Eqs.
(12) and (13) by integration. We mention that only the first equation of Eq.
(12) needs to be integrated since if the position vector r is known the others

can be determined from Eq. (7). Also knowing il’ the remaining ii can be

determined from the equation CTf + LTln' 0.

It should be noted that the above mentioned procedure requires an
inversion of a 3(n-1)x3{(n-1) matrix (Eq. (14)) and the inversions of n, 3x3
matrices (Eq. (13)).

We now discuss another matrix reduction procedure. We first note that
the second equation in Eq. (10) does not contain ¥ term. So if we eliminate r
term from the third equation we obtgin equations in f and . For this multiply

the first equation of Eq. (10) by C M and add it to the third. This yields

1 -L o u2
- cwlc £ = CTM-1u1+u3 (15)

At this stage we can either solve Eq. (15) numerically for é and f or reduce the
dimensionality of the matrix further. Eliminating f we obtain

1

(1+ 1 ™l Dy = -LicM ey e uytug) e, (16)

Eq. (16) requires the inversion of the matrix CTM-IC, which can be obtained
either numrically or analytically. Numerical inversion in the context of
systems with tree structure having only one branch is discussed in [12]. We
note that the matrix in this case is tridiagonal.

To obtain the matrix inversion analytically consider the matrix

M ~C
-l 0 ) (17)
This matrix is a submatrix of the matrix representing Eq. (10) and can be
thought of as arising from the optimization problem:
min % e B IR )

subject to the constraints

T

o .‘T -
C'r + L ln 0
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This is nothing else but & quadratic programming problem with equality
constraints and the inverse of the Lagrangian matrix (17) can be written in the
following two alternative forms (see for example, [13]):

M -c \ ! w!lowles -wlea
T - (18)
-C 0 -B -A
-1 T T
( M C ( E E 2" Ty
-C 0 T.ME -T T T
2 2 TZHEHT2 -TZH T2
where
B=aAcK!

A= (cTwlig!
T T -1
E =T (T M) T

and T, is a 1 x n matrix such that T,C=0 and T, is an n-lxn patrix such that

T,CE _,, the unit n-lxn-1 matrix. In addition, matrix T= (Tl) is

nonsingular. Comparing Eqs. (18) and (19) we obtain

T T
A= -(rzunurz - rzurz) (21)

Thus A and B can be determined analytically provided the matrices T, and T, are
known.

A general method for computing T, and T, is to augment the matrix C by
adding a column such that the resulting matrix is nonsingular (see Appendix).
In the present case we can take the following matrix as the augmented matrix

§ = (-e1 c) (22)

T

vhere .3 = (100 ... 0) . The matrix S is nonsingular since it is upper

triangular with -1 elements along the main diagonal. Let its inverse be denoted
by T and represented as a partitioned matrix

T=|"1 (23)

FUINISRIEIUNE -
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Then from the definition of the inverse we have Tlc-O, T C-En_l, T e =1 and

e
2 171
Tzel-o. Since each column of C contains O“T element ] and one element -1 it

follows from TIC-O and Tlel-l’ that Tl- -1n where ln is a column matrix of n

elements, each equal to 1.

To determine Ty, first coansider Tze‘-o. Performing the matrix
multiplication we see that the first column of T, is zero. Now using Tzc-zn-l
we obtain for each j (j=1,2,...,n-1)

t.. =t..

ij-"tije T Sigp Fleeeesnnl (24)

where cij is the Kronecker symbol and tij's are the elements of Tz.

Matrix T has a simple graph-theoretical interpretation [2]. Imagine a
fictitious body b° attached to the root b1 of the directed tree such that bo is

the initial vertex of the arc ho connecting bo to bl' The elements

tkz,(k-o,l,...,n-l; 221,2,...,n), of T are obtained from the relations

tkz = -] if arc hk is on the path between bo and b

L
= 0 otherwise

For the case of a multibody system represented by the graph in Fig. la

we have
o SN2 T NS D ¢ T
0 -1 0 -1 -1 =1
T= 01,0 -1 0 ¢ O (25)
0,0 0 -1 0 O
0:'0 0 O0 -1 O
0.0 0 0 0 -1

Notice that matrix T is an upper triangular (since S is) with -1 as diagonal
elements,

Substituting the value of T, into the expression for E, B and A we

obtain
.1 T .. . T, T
E=2 11 ,B= Ty A=TMT, (26)

1 T T T
vhere m is the total mass of the system and y = Bn-'i Hlnln . Since yMy =My
the matrix A can also be written as

TT T
A= Tzuﬂu '1'2 = Tzull('l'zu)

T
=BMB (27)
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Using Eq. (27), Eq. (16) can be written as

(1+DMDMN g =Du, +u, +DMBY

~

1 2 3 (28)
vwhere the axn matrix D = ~LB = -LTzu. Substituting the values of u| ,uy,U,
into Eq. (28), the rotational equations can be written as
(L + (™) &= 0F - MD)T 1 -h Gy (29)

~ -~

where D is defined in the same way as L.

Matrix D introduced above has a simple physical interpretation.
Augment the mass of each body i by placing point masses at each hinge on the
body, the mass at hinge j being the sum of masses of all bodies connected to
body i at hinge j either directly or indirectly. As an example, for the system
shown in Fig. 3a, the augmented body 2 is obtained by placing the masses w 4mg,
m,, mg and mg at joints 1,3,4 and 5 respectively. It is clear from the
definition that all augmented bodies have the same mass m, the total mass of the
system. The centre of mass of the augmented body is called the baryceater (1,2]
of the body. The diagonal elements dii is the vector from the barycenter of

body i to the original centre of mass Ci while for each body k counnected to body

i, directly or indirectly at joint j, d, 1is the vector from the barycenter to

ik
joint j. It is quite clear that di are not all different, For example

k
(Fig. 3a), cl12 = d14 = d15 = d16°

To obtain some insight into the various terms involved in Eq. (29) let
us evaluate the matrix DM(D) . The ith diagonal element is given by

- g md d (30)
k=1 k ik ik

which simply represents the inertia matrix of the point masses of the augmented

body i about its barycenter. This means that the diagonal elements of I+DM(D)T
represent the jnegtia magrices~of_the augmented bodies. Similarly the ijth term

of the matrix DM(D)T' - md d . Using the properties of d it can be
k=1 Lk ik jk ik

shown (2] that

n - -~ o~ ~
- E md d =md d (31)

=] k ik jk ij ji
where j here refers to the index of the body.

We now simplify the expressions appearing in the matrix -DH(D)T.

The ith diagonal element of this matrix is

- -

n n -
- z md 4 = - z md (Rwx(Rwxd )) (32)
=] k ik ik =] k ik i i ii ik
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Using the identity a x (bx(bxc)) = <-bcab + ca b b Eq. (32) can be
written as

-% ad 4 =(Rw) (} md d IR (33)
k=1 k ik ik i i k=l k ik ik i i

Similarly the ijth element of the matrix is

Y mdad =@Ro)(} mad d MRau- (3 md a dlw

k=1 k ik jk J ) k=1 k jk ik jJ j k=l k jk ik j j
= (R ) d. d..d.
TB(Rywg) dypdigRywg v mdgpdggey 0

Let K denote the positive definite matrix I + DM(D)T. Then from Egs.
(30) and (31) we have

T o - -
K =RIR -~ I md d
ii iii k=l k ik ik
- - (35)
xij = m dij dji 1 #)

With this notation, Eqs. (33) and (34) can be written as

n . - T

-y mdd =®RegI)RIR -K )Ry (36)
k=1 k ik ik ii iii ii 1
n -~ N e ~ T

-Zlndd = - (Rp)Kk Ry +md d o o (37
Kelkdik gk 55 3433 di 33§

Substituting these values into Eq. (29) we get

Ko=-h+DF+G+Cg+NI1_ u (38)

A
=2

where
.' A. -

hi = the ith element of h = (Riwi) Kii(Ri“i)

and the matrix N is defined as follows

Nij =0 i=j
N.. = -(R. u ) K..R.w: *+ n;..d..w..rw. i#j
1) i3 J1 11737

To determine g from Eq. (29) or Eq. (38) we can use the Cholesky's
decomposition method for solving systems of linear equations with positive
definite matrices. It should be noted that matrix K is not sparse.

ey
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Remark 1 It was mentioned above that the first and third equation of Eq. (10)
can be obtained from an optimization problem. In fact, by using Lagrange
multipliers method it can be seen that Eq. (10) is the stationary point
condition of the following optimization problem:

min | % & - ¥Ip TG +% (b - 1 ercg - ) T1Ce-17 (Grcg-n) ) (39)

L")

subject to the constraints ¢Tr+iT1 =0
n

or Tt v (LT = -(L)Tln

This minimization problem is the statement of a principle known as Gauss's
principle of least constraint [8,9] and can be exploited for the approximate
determination of comstraint forces (vector Lagrange multipliers) by using
penalty function methods [141].

Remark 2 Equations of motion can also be obtained without the introduction of
Lagrange multipliers. Let q denote the (n+l) vector representing the
independent variables for the optimization problem. Differentiating the
optimizing function partially with regard to q, the stationary point condition
is

e« T

ar .. aw T .
(-W)(Hr-ul) +(-a-q.)(1m—ul)'0

As t and ¢ can be taken as a linear combination of § it follows that

r ot W N . . :
— ® — and — = — , Substituting these into the above equation we obtain

3¢ 34 3q 39

T . T .
EDT i up + &) (timy) = 0 (40-a)
34 3q

Eq. (40-a) is & vector-matrix formulation of the so-called Lagrange's form of
d'Alembert's principle [10}. Eq. (40-a) can also be written as

3T 3T . MO ¥ u
(=, ) (oM g)-(2)=0 (40-b)
3 24 2

We now establish the connection between the equations of motion
dgrived_by using Eq. (40-b) and the Lagrange multipliers method. For this let
s ' 384 Jutind

Z = (21,22) denote a matrix such that




N T e ——————— .

v et e b A T i, PR oy P

C T
Since( - )is of full rank 3(n-1), a nonzero Z of rank 3(n+l) exists.

L
T

Multiplying the first two equations of Eq. (10) by Z we obtain

T Ty MOy, T Uiyt . -
(21, 20 P( 2)- (WD) =0 (40~c)

As Eqs. (40-b) and (40-c) are both independent of the Lagrange multipliers we

can identify 3% vith 2z, and 2% with Zz. Thus to apply the Lagrange's form of

d'Alembert's 3gincip1e all weaaeed is to determine a matrix ZT. As an
example, we can take

T

T 1, 0 (40-d)

z =\ . |
-iT, E_ :

which corresponds to the choice of taking 61=i1,éi+1=mi(i=l,...,n). This can

be easily seen since r=r1- (LTZ) w. Eliminating r by using Eq. (19) it

1
1'n
can be seen that the rotational equations are the same as those given by Eq.
(28). It should be noted that in the language of linear algebra the space

generated by the columns of Z forms the orthogonal complement of the space

Cc
generated by the columns of( ; ).

Remark 3. In certain applications a multibody system is connected to an
external body whose motion is prescribed. For example, a manipulator attached
to a moving platform or to the ground. In such cases the above analysis can be
easily modified.

We assume, without loss of generality, that the system is counnected to
the external body through a single hinge. For if there are more than one
hinges, then the system can be broken into several dynamically independent
systems. Label the external body as 0 and the body to which it is attached as
1. Let h, denote the hinge connecting these two bodies. Then the additional
constraint at hinge 0 can be written as

r -r
o 1

+ (Rozoo —Rlzlo) = 0 41)
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where r, is the vector from the origin of the inertial frame to the centre of
mass of body o and zio(i-o, 1) are the vectors from Ci to hinge 0. By defining

Cio™ -1 for i=l and zero otherwise, Eq. (41) can also be rewritten as

n
-eTr + c R ¢ = -7
1 i=] io 1i io o]

where ;o =r ¢R L. Combining this equation with the constraint Eq. (7) we

obtain

STr + le = -7 e
n o

where

1

L = nxn matrix with elements iij' cijkizij; i=l,,,,n, 3=0,1,...,n~1
Equations of motion can therefore be obtained by replacing C with S, L with L
and by adding Eoel to the right hand side of the third equation in Eq. (10).

S is nonsingular, matrices B and A in this case are given by B = T and A = TMT .

3.2 Systems with Ball-and-Socket Joints, Universal Joints and Pin Joints

We now discuss the case when the rotational degrees of freedom at some
joints may be less than three i.e. the hinges may be universal (two degrees of
freedom) or pin (one degree of freedom) joints, Let Q; denote the relative
angular velocity of body j~ with respect to body j* expressed in the
inertial frame. Then

1
R =R uw - R w ’X ¢ Rw, j=l,...,n-1 42)
j j- j- j* 5+ i=l ij i i
In terms of the relative angular rates, Q; can be written as
nj . A

@ =] p Y =P Y
J k=1 jk jk 1]

(43)

< -

where n: ®= 1,2, or 3 according as the hinge is a pin, universal or
ball-ana-socket joint and p:p(k=1,...,n;) denote the unit vectors along the
axes of rotation and are functions of tge orientation angles.

To obtain the rotational cosntraint conditions we denote by
qjk(k-l,...,n'j) the unit vectors in the constraint directions where n'j

satisfies n.+ n! = 3,- The vectors p., and q, are mutually orthogonal. Since
there is nolreldtive angular veloci;} in thejhirection of the constraint axes we
have




o A e

¥

e—— -

~17-

Q§ 2, =0 jel.2,...0-l (44)

where Qj is a matrix with elements qjk' If Q denotes the vector (91""9n—1)
and Q the quasi~diagonal matrix Q = diag {Ql""’Qn-l} then Eqs. (42) and (44)

can be rewritten as

2= -l (45)
T

Qga=20 (46)
Substituting Eq. (45) into Eq. {46) we obtain the constraint conditions

Qfcly =0 47)

Equations of motion can now be written down as the stationary point
condition of the optimization problem stated in Eq. (39) along with the
additional constraints

T T. T T
QCw+QCuy=0 (48)

where Eq. (48) is obtained by differentiating Eq. (47) with resgect to time.
Introducing the vector Lagrange multiplier ) = (Al,xz,...,xn_l) where each

2. is an ni vector we have

M 0 -C 0 ¥ uy
0 1 -L -CQ @ u, (49)
T ,°.T =
-Cc" -(L) 0 0 £ uy
0 ¢ o o A v,

T T
where u;,u,,u, are the same as in Eq. (10) and u, = Q C w. Matrix represent-

ing Eq. (49) is sparse and symmetric and hence sparse matrix techniques can be
used for solving Eq. (49). As in the case of equations without rotational
constraints some preliminary matrix manipulations may be useful. For example,
corresponding to Eq. (14) we have

¢ Ml + Tty (;.)TI-ICQ ( £
- CetrL et leg x)’
cl‘u"lul + ! uy + uy
QTCTI-luz +u,

27w e |

P . ST D

gpr

- -
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Several other possibilities can be explored for the solution of Eq.
(49). As an example let us eliminate ¥, f from Eq. (49). This yields (see Eq.
(38)) the following equation:

‘ K -cQ o u,
T.T = (51)
- -Q°C 0 A v,
Eq. (51) can now be solved numerically using some factorization method. The
n-1

square matrix representing Eq. (51) has dimension 3n + Z n' while the mat. .x
=1 3

T T

n-1

representing Eq. (49) has dimension 6n + 3(n-1) + Z n'. However, it should
=l )

be noted that matrix in Eq. (51) is less sparse than that in Eq. (49).

Rather than solving Eq. (51) numerically we can eliminate )
analytically by utilizing the condition that the constraint torque along the
axis of rotation is zero. From Eq. (51) we have

. [

Kn =u +Cg (52)
2

where

gt = (53)

is the constraint torque at the hinges. Let the quasi-diagonal matrix P be
defined as

P = diag {P,...,P _,} (54)
where Pj’ the jth diagonal element, is given by Pj = (pjl"°"pjn ). P is
h]

n-1 T
3(n-1)x § n matrix and satisfies, by definition, the condition P Q = 0.

=l ] T T
Multiplying Eq. (53) on the left by P and using P Q=0 we obtain
T c
Pg =0 (54)

Eq. (54) is just a mathematical representation of the fact that the constraint
torques along the axes of rotation are zero.

c
To utilize Eq. (54) we need to know the expression for g . For this
multiply Eq. (52) on the left by the matrix T. This yields

Tle = Tluz (55)

ToKs = Toup + g° (56)
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since T ,C=0, T,C=E__,. To eliminate the constraint torque from Eq. (56) we
T
multiply it on the left by P and obtain
T . - T -
P Tsz P Tzuz (s7)

All that remains to be done is to express Eqs. (55) and (57) in terms of the
relative joint angles. Substituting Eq. (43) into Eq. (45) and using the
definition of P we have

cTu=py (58)
Multiplication on the left by Tz yields
T T L]
_(CTZ) w ™ TZP Y (59)
Since CT2 = En - ellz we obtain after some simplifications
w™=wl_ - TT Py (60)
1'n 2

By substituting Eq. (60) into Eqs. (55) and (57) we obtain the rotational
equations of motion:

T . T T- T T..
anlnml - anTzPY = lnuz+ ln KTZPY
T . T T T - T.o

=P ToKl w, + P T,KT,Py =~ -P T,(u, + KT,Py)

(61)

n-1

Eq. (61) represents 3 + z n scalar equations corresponding to as many
=l ]

rotational degrees of freedom.

Remark 4. When the linear or angular velocities are determined by integrating a
system of equations greater than the number of degrees of freedom then it is
advisable [9,15] to replace the constraint Eqs. (8) and (48) by equations which
are asymptotically stable. Consider, as an example, the constraint Eq. (48).

If ¢ is chosen according to

A TT
v=QCp=0

then v=0 (Eq. (48)), implies, at least theoretically, that v = 0 for all time
t. However, due to unavoidable numerical errors during the computation the
equation v = 0 will not yield y=0 for all t. To correct this situation we
replace v=0 by v + qv = 0 (q >0) which is asymptotically stable so that any
error in y tends to zero with the passage of time.




In a similar manner Eq. (8) should be replaced by
E+at + g =0 (a8 0)

where £ = CTt + I ln

Remark 5. The derivation of equations of motion have been discussed in
coanection with hinges that allow only rotational degrees of freedom between
neighbouring bodies. This is not a restriction and the procedures can be
extended in an obvious manner to other types of joints which also have
translational degrees of freedom., As an example, consider the case of prismatic

joint allowing translational motion along a unit axis p . We can now find two

. C e = -7 1 -T - .
mutually perpendicular directions qjl’qu such that qjlpj o, qupj 0, Writing

sp=- Y (c r +L ) where s is the distance along p from a point in
ji i=1 ij i ij j j
body j+, we obtain

q (Y (¢c r+L )=0
i M

_I n
q (Z (c v+ )) =0
52 1=1 ij i ij

These two equations should therefore replace the three scalar equations

n

Z (¢ r +L )=0 in forming the translational cosntraint equations. Thus
i=l ij 1 1ij

instead of Eq. (7) we have

QT(cTr+LT1n) =0

where Q = diag {Ql""’Qn-l} and Qj = (qjl’qu)' Since there is no rotational

degrees of freedom we have nj-o i.e. nj-O and Qj in Eq. (44) can be taken as E3.
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4. EQUATIONS OF MOTION FOR SYSTEMS WITH CLOSED CHAINS

We now consider multibody systems with closed chains, that is, systems
of n rigid bodies with (n-1)+n* hinges, where n* is a positive integer. Fig. 6
illustrates a 6-body system with 7 hinges. A closed chain system can be

4

-G
"~

ol : Uﬂﬁz

Fig. 6 A 6~body system with closed chains

converted into a system with tree structure in several ways by removing n¥
hinges. For example, for the system shown in Fig. 6 if we remove the hinges
between bodies 1| and 5, and bodies 4 and 6 we obtain a system with tree
structure.

To describe the interconnection structure for systems in closed chains
we first determine the incidence matrix C for the system with tree structure by
cutting n” hinghes. The cut hinges are now labeled in an arbitrary order from
n to (n-1)+n* and the arc direction chosen arbitrarily. In this way the
ax(n-1)+n* incidence matrix C. for the closed chain can be written as

*
c. = (c,c) (62)

where the nxn~] matrix C represents the incidence matrix for the tree structure
and the nxn® matrix C* repregsents the contribution from the cut hinges. For
the system shown in Figure 6, the dimensions of the matrices C., C and c*
respectively are 6x7, 6x5 and 6x2. It should be noted that the rank of the
incidence matrix C. is n-1, the same as that of C.

Equations of motion can be written down in exactly the same manner as
is done for the case of systems with tree structure. For example, in the case
of ball-and-socket joints we have

M 0 -Ec r Yy
OT I . -Lc w |=| u, (63)
-Cc -(Lc) 0 A uy
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T

n-l+n*) is a vector Lagrange multiplier with each

A8 3-vector. The Lagranian matrix in Eq. (63) is nonsingular if and only if

where xc-(xl....,x
the matrix H,

(64)

is of rank 3(n-1+n*). If rank of H is 3(n-1+n") we use the procedures
discussed in Section 3 to obtain the final form of the equations of motion.
Otherwise we must use those procedures (see Appendix) which do not require H to
be of rank 3(n-14n*). Note that the rank deficiency implies that the
constraints are not independent.

We can also make use of the results of Section 3 in another way by
partioning the constraint equation in two parts, one corresponding to the tree
structure and the other due to the cut hinges and writing only the equations of
motion for the tree structure. Let the constraint equation be written as

cTr + LTln =0 (65)

*
¢cTr v 1L Tln =0 (66)

vhere the unstarred Eq. (65) corresponds to the constraints for the system
reduced to tree structure. Using the constraint Eq. (65) we can write the
equations of motion as

90 (n)

T
Eliminating A by multiplying on the left by the matrix Z (see Remark 2).
T
T 10
z - -~
-L'l'z E n

we obtain a system of (n+l) vector equatiomns:

T oe T
lnH 0 T ln u)

-L‘l'zll I w ‘L‘l'zlhl+u2

(68)

Eq. (68) can be easily expressed in terms of i} and @. By multiplying Bq. (7)

on the left by TT we have r = r 1] -(L&z)rln. Differentiating this equation
twice with regard to t and aubléiEuting it 'into the first equation of Eq. (68)
we obtain
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T, o \T
-1 H(LT ) ® 1 U lnu(er) ln (69)

l 1

Using Eq. (19) we can express r as

-~

.. T ~T. T
r = Eu~(T) [(L) o+ (L) 1]

Substituting the above equation into the second equation of Eq. (68) we obtain
Eq. (28). Combining Eq. (69) and Eq. (28) into one matrix equation we have

T, . T . T Ty om T

) -lnM(LTz) T lnul+lnH(LT2) ln
0 I+ DH(D)T ) Du + u +DHBTu
1 2 3

These are the equations of motion for the system with tree structure. To obtain
the equations for the original system we notice that we have some further
constraints in the form of Eq. (66). Differentiating this equation twice with

geapect to time and substituting the expression for ¥ in terms of Fl and y we
ave

*‘r[

S \T ~% T, "% T
c o (LT ) - (LTZ) ln]+(L Ya=-(L) 1 (71)

l

where the starred quantxtxes have the same mean1n%s as the unstarred ongs. By

*
using the notation q = (rl,m ) T = (C Tl (L ) -C (LT} and u -C*T(LT )Tl

3

“%
-(L )Tln, Eq. (71) can be rewritten as

' = U, (72)

Introducing the vector Lagrange multiplier 2* the equations of motion can be
obtained as a solution of the following matrix equation:

J -H q u
T ) . (73)

A/ XYy

el

where J and u respectively denote the matrix and the right hand side of Eq.
(70). As the form of Eq. (73) is the same as before, any of the previously
mentioned method can be used for its solution. The exception, of course, is
when the rank of H is not 3n* implying that the constraints given by Eq. (72)
are not independant. We must therefore remove the redundant constraints from
Eq. (72) first and then apply the methods of section 3 for formulating the
equations of motion. Alternatively we can solve Eq. (73) by using those methods
that do not require that matrix H be of full rank 3n*,

A A+ AP AT O .




5. COMCLUSIONS

Several computer-orieanted methods for the formulation of the
equations of motion for multibody systems have been presented in a unified
manner. Starting with the case of a multibody system with tree structure and
with ball-and~socket joints, and using Newton-Euler's method it became evident
that the equations of motion written in the vector-matrix form can be viewed as
the stationary point condition of a quadratic programming problem with equality
constraints. In fact, this QP problem is a statement of a not too well-known
principle called the Gauss's principle of least constraint which is applicable
to both holonomic and nonholonomic systems. Using QP theory it is shown that
the various methods are nothing else but different ways of solving the
Lagrangian system of equations in the Lagrangian method. Procedures are also
discussed for systems with joints other than ball-and-socket joints and for
systems with closed chains. However, due to the lack of computational results,
no comparisons among the various methods are wmade.
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APPENDIX
In this Appendix we shall consider the solutions of systems of

equations with matrices of the following two forms:

T -1
HJ H (A-1)

T
2J2 (A-2)

where H and Z respectively are M x N and M x M-K matrices such that
ZTH-O, K is the rank of matrix H, and J is an MxM positive definite matrix.

The symmetric matrices (A-1) and (A-2) arise in the formulation of the equations
of motion of multibody system. For example, in Eq. (14)

o). 402,

and in Eq. (40-c)

T T
z = 1n —(LTy) Jg\: (I)
0 E ’

n

We need to consider two cases =(1) rank of H is N and (2) rank of
H <N.

Case 1, K=N

In this case the matrix HIJ™! H is positive definite and the usual
method for solving a system of equations with symmetric positive definite matrix
is the Cholesky factorxzatxon with sparslty taken into consideration [16-19].

Let J be factored as J = ILDLT vhere L is a unit lower triangular matrix and D
is a dlagonal matrix with positive diagonal elements. Substituting this value
of J into HT J™lH we obtain

T -1 T T -1
HJ H=H(L ) H
T -T -4 -4 -1 (A-3)
=HL D D L H

The Cholesky factor1zat10n is now obtained by performing the QR factorization of

the matrix D~ 2L lj:
-4 -1 R
D L H'Q(O (A-4)

where Q is an MxM orthogonal matrix and R is an NxN upper triangular matrix.
Substituting Eq. (A-4) into (A-3) we obtain

-1 T T (R T ]
HJ H= (R O)QQ(O-RR, (A-5)

T -l
which is the required Cholesky factorization of HJ H.

-4
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If Z is known the above procedure can be applied to the factorization
of 2TJZ. However if Z is not known we first perform the QR factorization of H
to determine 2:

R R
= QI(O) = (@, @Y (o)' QR

where Q, is an MxM orthogonal matrix and R is an NxN upper triangular matrix.
Q, is part1t1oned into two wmatrices Q and Q' such that Q 1s MxN and Q' is
MxM-N. Since Q'TQ=0 (Q, is orthogonal) it follows that Q' TH=0 and hence
Z=Q'. It should be noted that the general solution to the equation Hlx=b is
given by

x = Yb + ZIx' (A-6)

where Y=QR"r and x' is any (M-N) vector. This can be easily seen by noting

that Y is the Moore-Penrose generalized inverse of H'. However we mention

that for the solution x to be writtem in the form of Eq. (A-6) Y need not be the
generallzed inverse of HY. All that is required is to find Y such that

rh Y=Ey. YT can be regarded as the left generalized inverse of H.

A general method [13] for finding the matrices Y and Z is to augment
the MxN matrix H (M>N) by adding an MxM~N matrix H' such that (H',H) is
nonsingular. From the definition of the inverse it follows that

(z,nT = @ ,m™!
-T
Let H'=Q'., Then by taking H=QR it is easy to check that Y=QR
and Z=Q'. These are the same expressions as obtained above by the QR
method. To obtain some other expressions for Y and Z let us assume that the
last N tows of H denoted by H, are linearly independent. Then by taking
H'=(Ey-y>0)T we have

-1 -1
Ev-n 1 By “HHy
- -1
0 Hz 0 H2
N T, w u-l T -1
which yields 2 (EM-N’ HH, ) and Y =(0, H2 ).

Case 2, K5 N

An MxN matrix H, M > N, and of rank K can be decomposed as

T
H v, slw1 (A-7)

where Vl is an MxM orthogonal matrix, Wl is an NxN orthogonal matrix and S1

is an MxN matrix given by
$ 0
51 (o o) (A-8)

with 8 = diag {sl,...,sx}. The positive real numbers 8.» i=1,...,K are the

singular values of the matrix H. They are often ordered so that
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s . - '
8) 2 85000 2 .K>°' By partitioning Vl and Hl so that V1 (v,v') and

Hl-(H,H') and substituting into Eq. (A-7) we obtain

H=VS WT (A-9)
where VTV-BK and HTH = EK. The factorisation (A-7) or (A-9) is called the

singular value decomposition [17]. The general solution to the equation
HTx-b, if exists, is given by

x = Yb + 2x' (A-10)

-1 T
vhere Y=V S W and Z = V', It should be noted that Y is the Moore-Penrose
generalized inverse of .

The singular value decomposition method can also be used when K=N.
However, because of the efficiency of the QR decomposition for the case K=N the
singular value decomposition should be used only when K<N or when it cannot be
established a priori that K=N.

As in the case when rank of H is N we write HTJ-XH in the fog¥ of Eq.

(A-3). However instead of taking the QR factorization of the matrix D L H we
write the singular value decomposition:

pH gy s Wt
T -1
With this value, the matrix H.J H can be written as
' ln = ws vivsa®
2T

=WSW T -1 (A-11)
and a solution to the matrix equation HJ Hx = u is

-2 T
x=WS Wu (A-12)

It is of course assumed that the constraint equations are counsistent so that a
solution to the matrix equation exists. T

For the factorization of the matrix 2 JZ we first determine Z of full
rank M-K by the singular value decomposition and then write the Cholesky
factorization of zTJz by the QR method.

el o PSR O NP
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