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1. INTRODUCTION

It is frequently important for the analysis of propagation of
sound in the ocean to be able to compute the acoustic field in a range
dependent ocean environment. Although good computational methods have
been developed for modeling acoustic propagation in horizontally
stratified acoustic media, range variations in the environment play such
an important role in many realistic propagation problems that the

simplifying assumption of horizontal stratification is not justified.

The methods available for modeling sound propagation in a range
variable medium may be roughly categorized as wave theoretical and ray
theoretical. Reference 1 is a survey of these methods.

Wave theoretical methods applicable to range dependent

environments include the adiabatic normal mode approach, 2 horizontal ray

theory,3'4 the parabolic equation method,5 coupled mode theory, 6' 7 and
direct numerical solution of the wave equation. All but the last of
these procedures make use of various approximations in order to reduce
the required computational effort. The approximations are valid only for

gradual variations of the media with range. The direct numerical

approach is computationally very intensive and may not be practical to
implement except on the largest and fastest scientific computers. For
all of these models, the amount of computation required increases rapidly

with increasing acoustic wave number, so the models are effectively
limited to low frequency applications. The principal advantages of wave
models are the correct treatment of diffraction effects and the ability
to correctly model complex bottom interaction effects.

The principal advantage of ray theory, on the other hand, is
that the paths of energy propagation through the medium are explicitly



identified. The ability to single out the energetically important
propagation paths appeals to physical intuition and is very useful for
gaining an understanding of the important influences on propagation.

The convenience of the ray theory formulation is achieved at
the cost of an approximation. The ray theory approximation and the
approximations made in practical wave models, together with the

computational limitations on wave models, are such that the advantages
and limitations of ray models and wave models are almost the reverse of
each other. Wave models are limited to low frequencies; ray models are
most accurate at high frequencies. Wave models include diffraction and
boundary interaction effects; uncorrected ray models neglect diffraction
effects and have less sophisticated treatments of boundaries. Wave
model s are inaccurate to varying degrees near sources, particularly in
the extreme nearfield; ray models grow more accurate as one approaches
the source. Most wave models can tolerate almost any variation of the
environment with depth, but ray models can better tolerate range
variations.

In recent years, ray models have benefited from the development
of correction formulas which introduce diffraction effects8' 9 and improve
the treatment of boundaries. 10

The author's involvement with ray models began in 1976 with his
development and implementation of a range independent ray model"1 at

Applied Research Laboratories, The University of Texas at Austin

(ARL:UT). Prior to that time, several range dependent ray models had
already been implemented at other facilities.'12"13 All of these, however,

suffered from various deficiencies, including the representation of the
acoustic media, methods for tracing rays (determining the paths of energy

propagation), the location of eigenrays (finding the rays which travel
from the source to an observation point or receiver), the calculation of
acoustic pressure along a ray path, and the design and implementation of
the software itself. These problems are not at all independent of each
other and the adverse consequences of an inadequate solution to any one

2



of them will usually be compounded in several others. Nor could these

difficulties reasonably be anticipated; all were uncovered by attempting

to build and use practical models.

In 1980, with U.S. Navy funding, the author undertook to

develop a new range dependent ray model. The effort drew on several

years of experience in numerical modeling and borrowed heavily from

existing ray models and published research. The result is the ray model

MEDUSA, which, after three years of development, testing, and revision,

is being released to a growing number of research and prediction

facilities.

The methods developed to redress the problems inherent in ray

modeling are the subject of this report. The techniques are developed

and explained. Considerable attention is also given to the pitfalls of

ray modeling and to seemingly plausible procedures, often used, which do

not work. Always, the focus is on the means of implementing practical,

reliable ray models on scientific computers.

The remainder of this report is organized as follows. The ray

path and intensity equations are derived in Chapter Ii. The procedures

for solving these equations are described in Chapter Il1. The methods

for computing the sound speed, sound speed gradients with respect to

depth and range, and the bathymetry (the ocean bottom depth as a function

of range from the source), given only tabulated samples of these

quantities, are described in Chapter IV. Chapter V covers the methods

used to determine the eigenray launch angles and to compute eigenray path

data, such as travel times and arrival angles. Chapter VI is an overview

of the organization of the MEDUSA model. The report concludes in

Chapter VII with a typical application of MEDUSA.

3



II. REVIEW OF RAY THEORY

Brief derivations of the ray path and intensity equations are

presented here to establish the notation and coordinate system

conventions and to provide background for the development of the

specialized equations used in MEDUSA. More extensive treatments of ray

theory are available in several texts.
14-16

The acoustic wave equation for pressure P(,t),

= 2P 1 2P (IIJl)

c (r).1)

becomes, upon assuming P( ,t)=A(r)eoc()wt

A k 2 + V 2 A ]+ j[2 A.'V + AV 2~ 0 (11.2)

where k= c is the wave number and 4 represents an expanding wave front.

Since A and * are assumed to be real functions, the terms in brackets in

Eq. 11.2 must vanish separately and identically:

jI 42 = K2  , (12.3)

2N40 + AV20 = 0(1.4)
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where K2*k2+ VA/A.

Surfaces of constant phase, 4, are wave fronts. The outward
normals to these surfaces, parallel to the vector V4 , indicate the

directions of wave propagation. Equation H1.3, the eikonal equation,

gives rise to equations for ray paths which are perpendicular to the wave

fronts. Equation II.4, the transport equation, leads to equations for

intensity along the ray paths.

The intensity at a point on a ray path is
16

* A2PP A

c 2pc (11.5)

where p is the density of the medium. For two points located on a ray

and both points in the water, p and c are constant to within a few

percent, so the intensity ratio at the two points is given approximately

by

12 -2

11 A2  (11.6)

1AI

where the subscripts indicate the two points. We now seek an expression

for A 2/A2.

The volume V, shown in Fig. 1, is enclosed by the surface S,

defined by the wavefront surface sections Wi and W2 and the four ray

paths resulting from a small change 66s in the ray source depression

5
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angle Os, and a smAll change s in the azimuthal source angle s"

Noting that Eq. II.4 can be written as a divergence,

V.(A )= 0 , (11.7)

one obtains by Gauss' theorem

dV . (A2 q) =fdSn.A29 (11.8)

where A is the outward unit vector normal to S. Since nV4=0 along the

ray paths by definition, the only contributions to the integral occur at

the end surfaces W1 and W2 . Since is always directed away from the

source one has, from Eq. II.3,

O on W
A1

n =(11.9)

-( O)/K on W

Hence,

J A2KdW =f A2KdW (11.10)

7



For infinitesimal variations in launch angles, the integrands will be

constants on the surfaces W, and W2, so from Eq. 11.10,

2 f dW
A-K 2  1  (111.11)

W2

Thus far the only approximation made has been the assumption that p and c

are nearly constant in the water.

If A varies slowly over a wavelength, which will ordinarily be

true for high frequencies, slow spatial variations in c, and in the

absence of nearby boundaries, then

2L

k2 >> 2
A (11.12)

Inequality 11.12 is the ray theory approximation. When it is valid, K~k

and, since kl=k 2 in the water,

- - d (11.13)
I I A 2 dW

1 W2

Equation 11.13 states that the intensity ratio is inversely proportional

to the ratio of the infinitesimal areas of W, and W2.

8



We now seek differential equations for the ray paths. Recall

that Vp defines the direction of ray propagation. The unit vector in the

direction of the ray path is, by Eq. 11.3, '74/K. If s is ray path length

and ~(s) is the ray path position vector, then d-/ds is also the unit

vector in the direction of the ray path, so

Kds (11.14)

Differentiation of Eq. 11.14 with respect to path length yields

dskds ds (11.15)

But, using the vector operator identity d/ds=dx/ds.V and the fact that

V =Kdx/ds , the right hand side of Eq. 11.15 can be simplified:

d +F, A * y +

ds \ds x3x ay

+A +~
x Kx yK

} 2K

(11.16)

9I



If we again invoke the ray theory approximation (replacing K by k), then

Eq. 11.16 becomes

TS-~ (11.17)

The replacement of K by k enables one to factor out w from Eq. 11.17,I

making explicit the frequency independence of ray theory. Division of

Eq. 11.17 byw~/c 0 yields

where c 0 is an arbitrary reference sound speed and n=c 0/c is the index of
refraction. Equation 11.18 is the ray path equation.

The two basic functions of a ray model are to solve the ray
path equation and then to compute intensities at desired points on the
ray paths by determining the ratio of the areas of W1and W 2. In the
next two sections differential equations are derived for the ray paths
and intensities in forms suitable for solution on a digital computer.

A. Ray Path Equations in an Azimuthally Symm~ietrical Environment

The source is now assumed to lie on the vertical axis of a
cylindrical coordinate system (see Fig. 2) and the sound speed and

bathyinetry are assumed to be azimuthally symmnetrical about the vertical
axis.

10
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If we equate vector components on the left- and right-hand

sides of the ray path equation (Eq. 11.18), we obtain equations for the

ray path position coordinates in terms of the path length. In the

cylindrical coordinate system depicted in Fig. 2, the ray path

coordinates are range (r), depth (z), and azimuthal angle ( ). In scalar

form, Eq. 11.18 becomes

d (n z) an (II.19a)

d ( dr d_ an (II.19b)

and

d (r2n L n(ds / = (II.20c)

If, for convenience, the ray azimuthal angle at the source, P

is taken to be zero, then the solution to Eq. II.19c is simply (s)=O,

because the azimuthal symmetry of the environment assures that rays which

originate in the r-z plane remain in the r-z plane. We therefore need

only concern ourselves with Eqs. II.19a and II.19b.

Equations I1.19a and 11.1gb are parametric second order

nonlinear equations for the ray path position coordinates r and z in

terms of the path length s. These two equations can be combined in a

single second order nonlinear differential equation for path depth z as a

function of range r by changing the independent path parameter from path
length to range. The change of variable is accomplished using the

12



relation d/ds = cos ed/dr, where 0 is the vertical ray path angle, or

depression angle (see Fig. 2). With the change of independent variable,

and using dP/ds=O, Eqs. I1.19a and 1I.19b become

dzcose L (n cose) + n cos2e d2  ndr d77 z (11.20a)
dr drdr

and

doe (n cose) = nr
cos d r (II.20b)

where nz and nr are the depth and range gradients of n. Substitution of

Eq. II.20b into Eq. 1I.20a then gives

n
z (+z')- (n Z (11.21)

where primes denote differentiation with respect to r.

The initial values required for solution of the path equations

are obtained from the source position and ray launch angle:

z(o) = zs  (11.22)

and

z'(O) = tan s  , (11.23)

13
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where zs is the source depth and es is the launch depression angle (see
Fig. 2).

Whenever a ray undergoes a surface or bottom reflection, the

solution of the path equation must be restarted at the boundary

intersection with a new ray path slope. The ray path slope upon specular

reflection, z , is calculated from the incident ray path slope, zi, and

the ocean bottom slope, z , if applicable. In the case of a surface
reflection, the reflected ray path slope is

Z = . (11.24)

In the case of bottom reflection,

z = tan(2OB- I )  , (11.25)

hereItan-l(z is the incident ray path angle and OB=tanl(z ) is theBwheristh
ocean bottom slope angle.

B. Intensity -in an Azimuthally Symmetrical Environment

As shown in the derivation of Eq. 11.13 and in Fig. 1, the

calculation of intensity depends upon the calculation of the

infinitesimal areas of the wave front surfaces W, and W2, which are swept

out by making small variations in the ray launch angles. In the

azimuthally symmetrical environment of Fig. 2, the area of W2  at

horizontal range r is given by

area W2 = I(r6s) (6z cose)I I(r6,s) (6r sine) .

(11.26)

14



Since Eq. 11.13 is an expression for intensity ratios, it is convenient
to compute the ratio of the intensity at an arbitrary point along the ray
path to a reference intensity measured one unit distance from the source.

The area of the surface at unit distance from the source, W1 , is from
Eq. 11.26 and Fig. 2,

area W= Icoses 6 sl (11.27)

Then, by Eqs. 11.13, 11.26, and 11.27, the intensity ratio is

=12 cos e s cos es( 1 .8
I r cose 6z/e s - r sine 6r/66• (1I.28)

Passing to the limit of vanishing launch angle variations,

12 coses - coses
_= _ _ 

r  sin (11.29)
I r 3- cose r 2r sine

The calculation of intensity thus requires the calculation of either
az/aeslrwconst or ar/De slz=const, the vertical and horizontal rates of
ray spreading with changing launch depression angle.

The intensity ratio of Eq. 11.29, when expressed in decibels,
is the propagation loss, or transmission loss, due to geometrical
spreading along the ray. A fuller treatment of propagation loss must
await a discussion of eigenrays, and so is deferred to Chapter VII, where
the role and implementation of propagation loss in ray models is

described.

15



One can sometimes estimate az/30 s by tracing two rays with

slightly different launch angles out to range r, where the arrival depths
will differ by 8z for a launch angle difference of 6es• One then makes

the finite difference approximation Dz/as=6z/66s. Similarly, one might

estimate Ir/aes  by tracing two rays to a common depth and using

ar/30s=6r/60s. Indeed, these procedures are used in ray models, but they

are not very satisfactory. They can at best attain an error on the order

of 6e and are subject to cancellation errors.

Moreover, even a slight change in the ray launch angle may

cause a ray to follow a path which suddenly veers from the course

followed by the companion ray. For example, a slight change in the

launch angle of a ray which passes near the surface of the ocean could

cause the ray to strike the- surface- -and- ref-ect -from--4- The-surf-ace
reflected ray and the surface grazing ray would not be suitable ray pairs

for the finite difference method at any range beyond the surface

reflection point because both az/a@ s and r/3e s are discontinuous in the

launch angle interval (Os, %+6%s) beyond that range.

To avoid numerical differentiation, we seek a method of

computing az/aOs along a ray path as the ray trace progresses. Solomon
and Armijo 18 proposed a suitable method, described below.

The ray path depth z at range r is a function not only of the
range, but also of the ray launch angle, that is, z=z(r,os). One may

therefore differentiate the ray path equation (Eq. 11.21) with respect to
O to obtain

C11 - (l+z' 2)+ z ,z,
+[(1+z' 2 (. _* nrz) _ z.. n] (11.30)

16



where =az/a0s, nzz =a2n/az2 , nrz=2r/azar, and primes denote d/dr.

Initial values C (zs ) and C'(z s ) are needed to solve Eq. 11.30.

Since the source depth is given and does not depend on Os,

(z s )  0 . (11.31)

Since z'(r)=tane,

sec20 (11.32)
aos  aos

so that, at the source,

C,(Z = sec2es (11.33)

When a ray reflects from the bottom, a new set of initial

values for c and ' is needed in order to proceed with the solution of

Eq. 11.30. Figure 3 shows two rays, differing in launch angle by the

small increment 6Os, striking the bottom at two slightly separated

points, labeled 1 and 2. The value of r at the point of incidence is, by

definition, the limit

I = lim Z 4  (11.34)

(see Fig. 3). Similarly, the value of ' at the point of incidence is

17
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= im 4  (11.35)
6 s-*0 66s

Upon reflection, and 4' take on the new values

z3 - zI

CR lim (11.36)
6es O 6es

and

R= m a R (11.37)

where z~l is the ray path slope at point 1 upon reflection. We will now

derive expressions for R and % in terms of I, j, and the geometry of

the ray path and bottom. The task is complicated by the fact that both

the ray paths and the bathymetry are curvilinear.

The approach used will be to express the values of z, z, ,

and t' at the points 2, 3, and 4 as first order Taylor series expansions

about point 1 and substitute in Eqs. 11.36 and 11.37. The final

expressions are exact, not first order approximations, because of the

limiting process.

Let us begin with the derivation of .R by deriving an

expression for z3 to first order in 6'.

19



z2 = Z1 + (r2-r1)z 1 +

rB

= Zl + 6's as ZB + (11.38)

z= z2 + (r -r2 )zR2 +

60 rB , rB ,s5 ~ .

3 z2 1 2% R2 B s  R

ZrB , rBI + 60-e zk 68sa (Z + )+

ZarB , ,
1 + D0s OTs (zB1 (11.39)

where 8rB=r2 -rl, z 1 is the bottom slope at point 1, z 2 is the ray path
slope upon reflection from point 2, and arB/DOs is the rate at which the
range of the bottom intercept changes with launch angle. Note that in
Eq. 11.39, it is permissible to make the approximation z 2n-Z l because
only first order terms in 6es are being retained. Later, during the
derivation of , the full first order expansion of z 2 will be needed.

The quantity rB/OAS will be needed several times in the
remainder of this section and also in Chapter V, so it is worthwhile to
develop an expression for it here. Again, to first order,

z2 = zI +
6 rBZB1 + ... (11.40)

20



But another expansion for z2 is also available:

z4  =z1  + 
6rBz! + ... (11.41)

z 2  z4 + 6es 4 +

= Z + 6rBz' + 66s(RI + +

= zI + 6rBz! + 6esCI + .. (11.42)

Combining Eqs. 11.40 and 11.42 and taking the limit 6e-0 yields

arB 6rB

Os 6-i 6e

1
= - z (11.

Notice the use of the first order approximation ,1ir 4 in Eq. 11.42.

With z3 and arB/aeS now in hand, it is possible to evaluate the

right-hand side of Eq. 11.36 to obtain

21



B" ZR 
(11.44)

If desired, Eq. 11.44 can be rewritten with the aid of trigonometric

identities in the form

cos I

CR= -I cose R (11.45)
R .

Turning now to R we see from Eq. 11.37 that a first order

expansion of z is needed.

3 z6 + (rl-r 2)zR2 +

rB

ZR2 - z + . (11.46)
2 20a Ri

Here, we are able to make the approximation zR2 Z1 but this time we

must develop the first order expansion of z42.

z: Zj + (r2-rl)z1 +

= zI + 60 z" + I.)
Z 2 0 (11.47)

22



z= z4 + 6) ' +

= rB zi, + 6 ..

/ar i
= z l, + 6 6 s a -o + z ' , .8

Z 2  ZB1 + (r2-rl)zll +

- = I' + 2 +i

= Z 0 Is ZB i + " (11.49)

z42 = tan(2eB 2-92)

= tan (2tan-1(z 2) - tan-l(z)

1tn(z81  S% 8= ta(2tan- L + 's 60-s z1 +"

- tan-(,z + 60 5( r zi + i) + . (11.50)

Using
2 (II1.51)

tan(x+c) = tan x + c sec x +

-1 1(1I1.52)

tan- (x+c) = 
tan-x + c 

1 +

1+x

23



and retaining only terms up to first order in Sos' Eq. 11.50 becomes

z I  
Cos2Bl

z41 2 66 Bi 1 C
ZR2  Zl + ' s  2 I  z 1 zI  cos2 R1

- 1~2 (11.53)Cos CR1 R1)

We may now evaluate the right-hand side of Eq. 11.37, using Eqs. 11.43,

11.46, and 11.53, to obtain

zg Cos2  Z Cos

2c I i cos20 ---- Icos
zR cos2R

2 i 2 (11.54)
'B ZI Cos eR

New values for r and U are also required when a ray reflects

from the surface. Derivation of expressions for t R and JR proceeds in

the same way as for bottom reflections, but is very much simplified by

the assumption that the surface, unlike the bottom, is horizontal and

perfectly flat. The results are

R= -t;I (11.55)

and

SI + CI - I (11.56)

24



C. Summary

In this chapter expressions involving differential equations

have been derived for ray paths and intensities in azimuthally

symmetrical ocean environments. Also derived were initial values needed

to start the solutions of the differential equations at the source and to

restart the solutions when rays reflect from the surface and bottom.
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111. SOLUTION OF THE RAY EQUATIONS

In this section we will discuss methods for solving the ray
path equation (Eq. 11.21) and the depth spreading equation (Eq. 11.30),
which are practical for implementation on a digital computer. Since the

computational effort expended tracing rays typically exceeds by two

orders of magnitude the efforts required in any other single

computational task, and since the success of any attempt to locate

eigenrays or perform any other further processing depends critically on

high quality ray traces, the ray tracing techniques may be the single

most important facet of a ray model.

Ray trace methods based on analytical solutions of the ray

equations are discussed in the section below. Models which rely entirely

on these methods have generally not been very successful. The

difficulties with analytical methods are set forth in some detail not
only because they are frequently employed, but also because hybrid

analytical/numerical techniques show promise of substantially improving

future ray tracing techniques. Hybrid methods employ numerical

perturbation procedures to refine approximate analytical computations,
but the analytical expressions used must be extricated from the pitfalls

described below.

The numerical ray tracing methods currently employed in MEDUSA
are discussed in Section 111.8.

A. Analytic Solution of the Ray Equations

One can sometimes solve the ray path equation, the depth

spreading equation, and even the equations of intersection of rays with

boundaries, when n(r,z) and the bathymetry are particularly simple

functions. For example, if (1/n) is a constant vector, then the ray

paths can be shown to be circular arcs.
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Furthermore, one can approximate more complicated n's to any
desired degree of accuracy by breaking up the r-z plane into a patchwork
of smaller domains and fitting n(r,z) in each domain with simple

(tractable) functions. The ray paths are then constructed by solving the '
ray path equation analytically within each domain traversed and

connecting the path segments. One could, for example, break up the r-z

plane into triangles within which the ray paths are circular arcs.

The availability of analytic solutions to the ray equations
makes this procedure seem attractive; and it is, in fact, used in a
number of ray models. However, the method suffers from several

drawbacks, which are examined below.

Perhaps the most serious difficulty has to do with seemingly
innocuous limitations of the fitting functions used to approximate n.
When n is approximated with some of the simplest and most convenient
fitting functions, such as the one which gives circular ray arcs, the
resulting gradients n z and n r are generally mismatched at the boundaries
of the small domains. These discontinuities in turn give rise to

discontinuities in z(r,e s)lr.const. (Recall that the derivative of this

function with respect to 6Sis the depth spreading function i.) In other

words, if the fitting functions do not preserve the smoothness of n, then

the ray paths do not change smoothly with changing launch angle. These

erratic ray paths produce well publicized anomalies in propagation loss

curves, 19such as false caustics and shadow zones; but more importantly,
they greatly complicate the process of locating the eigenrays (rays
connecting the source and receiver) which are needed to compute

propagation loss. Location of eigenrays and the ramifications of

discontinuities are discussed in Chapter V.

One might solve this problem by finding fitting functions which

are flexible enough to permit the gradients of n to be matched at the
domain boundaries, but the author is not aware of any such functions
which do not introduce nonphysical contortions in n and yet are still
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simple enough in form to allow solution of the ray equations. And even

if such functions could be found, it turns out that even discontinuities

in the second derivatives of n can cause anomalies in propagation loss

calculations.

One might also mitigate the problem by creating smaller and

more numerous domains, with smaller gradient mismatches, in order to

better approximate n, but this may impose unacceptable demands on

computer resources. Yet, experience shows that ray model predictions are

often sensitive to the number and location of domains, an indication that

the number of domains typically used is too small to produce stable,

reliable predictions.

A second set of difficulties relates to the analytic solutions

to the ray equations. It is sometimes assumed that solutions of the path

equations in the form of combinations of algebraic or elementary

transcendental functions automatically guarantees accurate computation

since these simple functions are readily available on computers and can

be evaluated with great accuracy. This is not at all the case; the

solutions to the ray equations usually will have to be recast in

mathematically equivalent forms which are resistant to cancellation

errors and other numerical difficulties. To do this requires specialized

knowledge of numerical analysis and is something of an art in any case.

It is also necessary to ensure that the ray formulas do not break down

for certain limiting cases. The author knows of several ray models which

fail when n is a constant.

Lastly, analytic solutions of the ray equations are inherently

dependent on the form of the function n. If n is changed, then new

solutions to the path equations must be derived. For example, if a ray

model were developed in which \(1/n) was a constant vector, then the

corresponding ray paths would be circular arcs. If, later on, one wished

to change n(r,z) so that V(n2 ) was a constant vector instead, then one

would also have to revise the part of the model concerned with tracing

28



rays so that the circular arcs become parabolic arcs. The depth

spreading formulas, boundary intersection formulas (if any), travel time
formulas, path length formulas, and any other ray formulas would also
have to be altered. The necessary modifications to the model clearly f
could be very extensive, yet the ability to change n readily is a very
valuable asset to a ray model, particularly if the model is intended to

be a research tool.

B. Numerical Solution of the Ray Equations

All of the foregoing difficulties are avoided (or at least
exchanged for a different set of problems) if the ray equations are

solved numerically.

Methods for solving ordinary differential equations have been
the subject of vigorous research within the field of numerical analysis

for several decades and a great many procedures have been developed. It

will therefore not be necessary to develop any new techniques, but rather

to identify the methods best suited to solving the ray equations. As we

shall see, the methods of choice turn out to be some of the oldest and

simplest.

The most outstanding fact about ray traces from the standpoint
of computational procedure is that the progress of a ray is highly
eventful. It may undergo surface reflections and bottom reflections, it

may pass through caustics (points where =0 and the ray theory

approximation K,-k breaks down), it can encounter receivers, it may pass

through turning points (where zl=Q), and so on. It is essential to
diagnose these events as they occur, locate them precisely and, in the

case of boundary reflections, restart the ray trace with new initial
conditions. This at once removes from consideration various global

methods for solving differential equations which rely on variational
principles and which are not well suited to discovering and responding to

local disruptions.
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We shall therefore restrict our attention to incremental

methods, which will allow us to advance the solution to the ray path
equation in a series of small range steps leading away from the source.
After each tentative step, an exhaustive battery of tests will be

performed to locate any significant events which may have occurred within
the range step. In response to some events, such as boundary encounters,
it will be necessary to reject the step and adjust the range step size so
that the ray path segment ends exactly where the event occurs in order to
reinitialize and properly resume the ray trace after the event.

In addition, it has proven highly advantageous to be able to
vary the step size in response to changes in the environment. In order

to maintain desired accuracy in the ray trace, d step size of no more
than a few meters may be possible as a ray undergoes rapid undulations
near the surface, where n z may vary rapidly. Yet, step sizes of a
kilometer or more may be permissible for the same ray as it travels in
deep water, where n zis nearly constant.

The search has now been narrowed to methods which are easily
started (and restarted) and permit the step size to vary continuously.
These requirements unfortunately rule out the multistep and variable
order methods which have occupied much of the attention of numerical
analysts in recent years. When applicable, these methods can be

extremely accurate and efficient, but they require somewhat complicated
and inconvenient initialization procedures, they can only double or halve
their step sizes conveniently, and they lose efficiency when interrupted
after every step. We are left with Runge-Kutta methods 20 and Taylor
series expansions.

In fact, we are confined to Runge-Kutta and Taylor series
methods of low order. The Taylor series expansion for the ray path depth
z at range r+Ar, given the path depth and its range derivatives at range
r, is
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z(r+Ar) = z(r) + Arz'(r) + 1 Ar2z"(r) + -Ar3 Z'(r) +

The accuracy of the expansion is limited by the number of continuous

derivatives of z there are in the interval (r,r+Ar); accuracy increases

as more terms are added until a term with a discontinuous derivative is

encountered. The order of the expansion is given by the largest power of
Ar included in the series. Runge-Kutta methods do not depend explicitly

on the derivatives as Taylor series do, but they are derived from Taylor

series expansions and are subject to exactly the same accuracy

limitations. The order of a given Runge-Kutta method is the same as the

order of the Taylor series it was derived from. Repeated differentiation

of the ray path equation,

n? n)
" :(l+z '

12
. (l - '

shows that the higher derivatives of z remain continuous only as long as

the gradients of n remain continuous. A practical method is developed in

Chapter IV which achieves two continuous gradients of n at domain

boundaries (all gradients are continuous within the domains). With that

limitation, experience indicates that greatest efficiency is achieved

with methods of about order three. Higher order methods lose efficiency

crossing domain boundaries, where their greater computational costs are

not offset by increased accuracy and the ability to take longer range

steps.

Taylor series methods are effectively limited to second order

because of the inconvenience of computing higher derivatives of z and C.

Therefore, the method currently implemented in MEDUSA is a third order

Runge-Kutta method, specifically, Kutta's third order rule. 21 Using this
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method, the ray path depth and ray path slope at r+ Ar are computed from
z(r) and z'(r) by application of the formulas

[z( r+-,r)[ z(r)] +k z(r) + 4zi + z (112

[z'(r+Ar)j z'(r)J z11r) + 4z 1 + z 2

Ar

z z(r) + 2 zP(r)(1.3

7 P z(r) + ' rz' (r~z (r) z(r))

r2  r +Ar

z2 z(r) + r 12zj-z'(r)

z' (r) + .Ar 2zII - z"(r,z(r, z'(r))j ]114

zp z"(rz 2,z')

( (r~z) n(r,z)
z"(r,z,z') = (1+z .2 ) (nzr) _ , zn r(1.5kn(r,zY n~r,z)

This simple Runge-Kutta formula lacks a procedure for
estimating the error incurred in taking a step. One independent means of
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estimating the error is based on a recasting of the ray path equation in
the form of an integro-differential equation:

n 2Cs2 cos~o 2 a + arn dr (111.6)

Equation 111.6 is a generalized form of Snell's law which is applicable
when n is a function of range as well as depth. In a horizontally
stratified (range independent) medium, n =0 and Eq. 111.6 reduces to

Snell's law: 2 -oe n cos e One n~oe-0.can differentiate Eq. 111.6 with
respect to r and recover the ray path equation. If one lets ro=r and

r 1=r+rtakes a step using Eqs. 111.2-5, and then evaluates the left-
and right-hand sides of Eq. 111.6, then the inevitable discrepancy

between the left- and right-hand side is a measure of the numerical error
incurred in the step. This procedure does not yield error estimates for
the ray path depth and slope; it is a measure of how well the predicted
and actual values of n2 Cos 2 0 agree.

1 1

The error incurred in one step using Kutta's third order rule
is roughly proportional to Ar. If the estimated error in a step is
unacceptably large, then the step is rejected and attempted anew using a
step size reduced in accordance with the fourth power law. On the other

hand, if the error is much smaller than allowable, one can increase the
step size for the next step, again using the fourth power law as a guide.

The efficacy of Kutta's third order rule, together with the
error estimator, has been severely tested by comparing solutions obtained
using these methods with known solutions for analytically tractable forms
of n. Not only do the rays arrive within a few millimeters of the
correct depths across range intervals of thousands of kilometers, but the

errors themselves are usually very close to the specified tolerances.
Kutta's third order rule is also used to solve the depth spreading
equation.
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The error estimation procedure calls for the numerical

evaluation of a definite integral. The integrity of the error estimation

procedure requires a numerical integrator of higher order than Kutta's

third order rule, so that the integrator itself does not become an

important source of error. A suitable integrator is the Euler-Maclaurin

formula 
2 2

1 (x(- Xo0)f(x)dx - 2 [f(Xo)+f(x,)]

(x1-xo)2 [f,(x)-f'(xo)+ 
(x7-xo) f(4 )

12 1+ 720 f4)) ,

(111.7)

Xo v xI

The error term (xl-xO) 5f(4 )(v)/720 compares favorably with the error term

of the more familiar Simpson's rule 23 integrator. The Simpson's rule

error term is (x1-xo) 5f(4)(N/90.

The Euler-Maclaurin integrator requires not only the values of

the integrand at x0 and xl, but also the values of the derivative of the

integrand. Thus, inspection of Eq. 111.6 reveals that the range

derivative of (n2)/Pr is eded. It is

2 - 1

d ;(n2 + Z. z'

-r r a-r + z - 2Dr

= 2[n2 + nn + z'(nznr+nn)J (111.8)
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The author has also experimented with Runge-Kutta-Fehlberg

methods24 for solving the ray equations. They proved successful,

offering the ability to estimate errors and readily adjust the step size

to accommodate error tolerances and variations in the environment, but

their greater complexity and a tendency to balk at domain interfaces made

them less advantageous than the procedure described earlier. Runge-

Kutta-Fehlberg methods are general purpose algorithms and, as such,

cannot make use of specialized information about the differential

equations they may be required to solve, as we have done here.

It is expected that further research into ray tracing

techniques will be carried out. The present method is more than

sufficiently accurate, but it is somewhat slow.

C. Path Length and Travel Time Integrals

The integrals for path length and travel time are

s = f (l+z' I 2 dr (111.9)

and

pr

t F n(l+z') 1  dr (III.10)

The most popular numerical method for computing such integrals, Simpson's

rule, is inappropriate here because the range points at which the
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integrands are available are neither equally spaced nor necessarily odd

in numoer, as required by Simpson's rule. However, at each end of a

range step one has available the integrands and their range derivatives

at both ends of a given range step:

ds _ 21/2 sece,()/-d- (1+z ) ee ,(I~l

2ds= z'z"cose (111.12)

dr

dt n ds

dr c0 dr ' (111.13)

and

2 (n--[ nz s ds
d2t _ n + z' -- + . (Il.14)

dr2  con n dr dr2

The third order Euler-Maclaurin formula is used to compute the

contributions to the integrals over a range step using the integrands and

their range derivatives.

D. Summary

In this chapter the ray path and intensity differential

equations were cast in forms suitable for solution on a digital computer.

The numerical procedure used, Kutta's third order rule, was described and

the reasons for selecting it were presented. An expression for the ray
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path error tolerance was derived and the numerical method for achieving
the accuracy requirement by varying the integration step size was
presented. Lastly, the use of the Euler-Maclaurin formula to perform the
ray path length and travel time integrations was explained.
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IV. REPRESENTATION OF THE BATHYMETRY AND SOUND SPEED

Bathymetry is usually presented to ray models in the form of a

table of measured ocean bottom depths as a function of range from the

source. To simplify location of eigenrays, it is necessary to fit the

tabular data with a function which provides two continuous derivatives of

the depth with respect to range. There is a function which is designed

to do just that; it is called a cubic spline. 25 The use of cubic splines

to fit sound speed profile data in range invariant environments was

suggested by Moler and Solomon. 26 The ray model GRASS13 fitted splines

to profiles in range dependent environments and traced rays numerically.

A. Cubic Splines

The cubic spline is usually defined to have the following

properties:

(1) Given tabular data xi,yi, where the xi's are abscissas,

the yi's are the corresponding ordinates, and 1sisn, the

cubic spline S(x) is defined to be the union of cubic

polynomials Si(x). Each Si is defined on the interval

x i<xxi+ I•

(2) Si(xi) = Yi.

I I

(3) Si(xi) = il(Xi).

II II

(4) Si(xi) = il(xi)-

II

(5) S1 (xl) = Sn_1(Xn) = 0
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It can be shown that the cubic spline, thus defined, is unique.

It can also be shown that

fn [s"(x)J2dx = 0 (Iv.1)

that is, the cubic spline is the function which minimizes a quantity

closely related to the total curvature of a curve, subject to the

constraints that the spline interpolates the data and has two continuous

derivatives.

Cubic splines perform very well when the data are well sampled,

but bathymetric data are often very sketchy. When cubic splines were

used to fit undersampled bathymetry data, the result was often something

like that depicted in Fig. 4. The four data points were intended to

represent the transition from an abyssal plain through a continental

slope to a continental shelf, as indicated by the linear segments. When

the data are fitted with a cubic spline, however, the spline is seen to

undergo unintended excursions, resulting in a nonphysical basin and in

the creation of an "island". These anomalous features, hereafter called

spline artifacts, are a consequence of the spline's extremalizing

property.

The detection and correction of spline artifacts proved to be

an extremely onerous process, involving the repeated generation of high

resolution plots of suspect portions of the bathymetry and the

painstaking insertion of corrective data points into the bathymetric

data.
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The problem of spline artifacts was solved by inventing a new

spline fitting procedure. The new fitting function, described below,

will be referred to as a T-spline.

B. T-Splines

The rationale for the development to follow is that, to be

consonant with the spline user's expectations, the T-spline should be

linear over most of the region between the data points; nevertheless, the

T-spline T(x) is to be everywhere continuous through the second

derivative. The extremalizing condition is counterproductive here and

will not be retained. The requirement that T(x) interpolate the data

will be slightly relaxed, a concession to the requirement that T(x) be

twice differentiable everywhere.

To proceed with the definition of the T-spline, we introduce

new abscissa values xi, 0 and x i, to either side of the original abscissa

values xi for 2sign-1 (that is, for every x i except the first one and the

last one) as follows:

xi, 0 = x i - Ax (IV.2)

and

xi,1 = xi + Ax , (IV.3)

where the increment Ax is always chosen small enough that

I
Ax < 7 (X -xi _) (IV.4a)
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and

Ax < -2(x~+- ~ (IV.4b)

(see Fig. 4). For each of these new abscissa values, we also introduce
new ordinate values YiOand y,. The point (xiO,yiO) is required to

lie on the line segment connecting (xi,yi) to (x,,yi). The point
(xi,yij) is required to lie on the line segment connecting (xi,yi) to
(xi+i,yi+i). The T-spline is the union of cubic polynomials defined
below.:L

T(x) =a 0+ aT+ a 2T2+

When xi-,!xs '

a0 = iI '
a, = (iy-)(ix-)

a 2 =0,

a 3 =0, and

T= X - Xi11

T(x) is linear in this interval; the cubic polynomial
is degenerate.

When xi 5XX

ao Yi'O'
a1 =y-ij/(ix-)

a 2 =0

a y,,2yi+y,1,)/(6Ax3), and

T =X - X 1 0 .
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When xisx xi I

a0  (Yi,o+4Yi+Yi,16,
a, (Yi,l-Yi,o)/(2Ax),2

a2  (Yi,o-2Yi,31)(2Ax

a -(yi,o-2yi+yi,l)/( 6 Ax3), anda3

T= x - xi.

When Xi,l:XSX

ao =Yil

a1  (Yi+i-Yi)/(xi+1-xi),

a2  0,

a3  0, and

T X - Xi, 1

T(x) is linear in this interval also.

It is straightforward, although tedious, to verify that T(x),
thus defined, is continuous and everywhere twice differentiable. One can

also show that T(xi) yi, that is, T(x) does not interpolate the data.

C. T-Splines and the Bathymetry

Figure 5 shows that when the bathymetry data of Fig. 4 are

fitted with a T-spline, the "corners" formed by connecting the bathymetry

data with straight line segments are "rounded off" by the T-spline. But,

for practical bathymetries, this rounding error has always proven to be

on the order of a fraction of a meter, well below the limits of

measurement error.

D. T-Splines and Sound Speed Profiles

In general, sound speed information is supplied to a ray model

in the form of a series of sound speed profiles (sound speeds as
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functions of depth at given ranges) taken at various distances from the

source. The requirement that n(r,z) and several of its gradients be

continuous can be met by fitting each sound speed profile separately with

T-splines, which provides two continuous depth derivatives (nz and nzz)

and performing linear interpolations in range between profiles to obtain

continuous range derivatives (nr and nrz ) between profiles.

The domains thus formed are rectangular, except where the

bottom cuts through some of the rectangles to form its own, irregularly
shaped domain boundaries. Except along the bottom, the boundaries of the
rectangles are set by horizontal lines at the T-spline node depths and by

vertical lines at the sound speed profile ranges.
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V. EIGENRAYS

In principle, it is possible to locate an eigenray (a ray which
connects a source and a receiver) by numerically searching between two
rays which arrive at the receiver range above and below the receiver
depth. In practice, it is not usually feasible to perform the numerical
search because of the large number of rays which would have to be traced.

Instead, one can interpolate between pairs of rays to locate eigenrays.

Also, pairs of rays suitable for interpolation are usually not available
for receivers near the surface because it is unlikely that a ray will
pass through the small depth interval above the receiver and below the
surface, even if a very large number of rays are traced. On the other

hand, it is relatively easy with a large sample of rays to locate pairs
of rays which bracket the receiver in range, so it is preferable to
locate eigenrays by interpolating between rays which bracket the receiver
in range, not depth.

The following strategy was adopted in MEDUSA for finding

eigenrays. First, a large number of rays are traced in small increments
of the launch angle from the source to a range beyond the range of the

most distant receiver. As a ray progresses, it will undergo a series of
significant events, such as surface reflections, transition through

caustics, etc. These events, their order of occurrence, and certain path

information associated with each event, together constitute the ray path
history. Detailed ray path histories are recorded, including ranges at
which rays cross a receiver depth. After this ray sweep-out is

completed, eigenrays are located by scanning the ray history records for
pairs of rays in which the sequence of events in the ray path histories
are identical, but which differ by the launch angle increment and which
bracket the receiver in range as they cross the receiver depth. A third

order interpolation scheme is used to determine the eigenray launch
angle. Other third order interpolations, together with the eigenray

launch angle and information stored in the history records, then yield
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arrival angles, travel times, and path lengths, as well as the locations

of bottom reflection points and bottom grazing angles. A second order

interpolation produces eigenray intensity. The details of the procedure

are described in Section V.A, "Location of Eigenrays," and Section V.B,

"Eigenray Path Data Interpolation."

This method of locating eigenrays offers several advantages in

efficiency and reliability. The reliance on interpolation reduces the

number of rays to be traced by eliminating the ray traces which would be

required to probe numerically for eigenrays. Comparison of detailed ray

path histories prevents attempting meaningless interpolations between

rays which follow significantly different paths (for example, rays having

different numbers of bottom reflections). Extrapolations are strictly

avoided. The ray sweep-out approach makes it possible for rays, which

may cross the receiver depth many times before the traces are terminated,

to be used in many different eigenray interpolations for receivers at

different ranges. Ray sweep-outs of several hundred rays have been used

to locate thousands of eigenrays.

A. Location of Eigenrays

The procedure by which eigenrays are located using the ray

history records lends itself to graphical illustration. Let the function

r(es) be the range at which a ray, with launch angle Os, crosses the

receiver depth. This function will generally be multivalued since a ray

may cross the receiver depth several times at different ranges. For

example, Fig. 6 shows r(0 s ) for the sound speed profile and source and

receiver shown in Fig. 7. The eigenray launch angles for a receiver
located at range rR are the zeroes of r(Os)-r R , as illustrated in Fig. 6

for rR = 50 km.

Devising an automatic procedure for locating the zeroes

accurately, reliably, and efficiently while avoiding false predictions is

a challenging task. As Fig. 6 suggests, the range function r(6s)-rR is
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usually a complicated multivalued function having singularities, slope

discontinuities, and an unknown number of zeroes. In fact, Fig. 6

provides a cr.nparatively simple illustrative example; a more typical

range function will be discussed in Section VII (see Fig. 13). A

practical eigenray location scheme must determine the approximate

locations of the zeroes, and it must refine the launch angle estimates to

an acceptible degree of precision.

During the ray sweep-out, r(%s) is sampled at finely spaced

intervals of oS' If the sampled points are designated by .-si and ri,

then, with some restrictions, the zeroes are located in those intervals

where

(ri-r R ) (ri+l-rR )  5

It is impractical to locate an eigenray numerically by tracing

trial rays in the interval [ si I because of the time needed to

compute the individual rays and the large number of eigenrays to be

found. Instead, r(es) is replaced in the interval by a hermite cubic
s27

interpolating polynomial r ( s), described below in Section V.A.1, and

the zero of r c(s)-rR is located numerically.

As we shall see, if hermite splines are to be substituted for

r(s ), then we will need not only the values ri for each of the 's but

also the values of (3r/ZOIzR )i; that is, we need both r as a function

of 0 and the derivative of r with respect to e at each of the Os. The

quantity 3r/ 8siz.const was first encountered in Chapter 1I in connection

with the calculation of intensity; it is the range spreading with

changing launch angle. We define =Dr/P siz=const' much as we defined

C=3z/3Os Ir=const (the depth spreading function).
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As to the means of calculating , one might consider deriving a

differential equation for , as was done for c That will not be

necessary, however;E can be calculated from C:

z=const s=const r=constv

Moreover, it is preferable from a computational standpoint to calculate

from c rather than attempt to solve a differential equation for

because E is singular at ray turning points (where z'=O), as inspection

of Eq. V.1 will quickly disclose. These singularities would disrupt

numerical solution of the differential equation. Thus, c serves not only

in the calculation of intensity but also in the location of eigenrays.

It turns out that C' will also be needed. Differentiation of

Eq. V.1 with respect to range holding Os constant yields

= -(r.'+z")/z' (V.2)

1. Hermite Cubic Splines

The hermite cubic spline and the T-spline have quite

different applications even though both fit data piecewise with cubic

polynomials. Because both types of splines are used extensively and are

easily confused, the uses of the splines will be distinguished here and

the hermite cubic spline will be described.

T-splines are useful when the only available information

about a function consists of sample values. Il many cases, the sample

values are obtained by measurements of a physical system and are expected
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to be representative of a function which is in some sense smooth. The

T-spline guarantees two continuous derivatives of the fitting function

and is used to fit the sound speed profiles and bathymetry.

On the other hand, hermite cubic spline interpolation is

used to approximate a known function when function evaluations are

costly. It is more accurate than linear interpolation because use is

made of the derivative of the function as well as the function itself.

These splines are used to fit the r(es ) curves, for example.

Given a function f(x), its derivative f'(x), and the

values f(x0 ), f'(xo), f(xl), f'(xl), the hermite cubic interpolating

polynomial fc (x) applicable for x0 Sxx1 is

fc (x) = a0 + a(x-xO ) + a2(x-xO
) 2 + a3(x-xO ) 3

a0 = f(Xo),

aI = f'(xo), 2

a2 = 3[f(x I -f(xo)]/Ax [2f'(Xo)+f2(xl)]/Ax ,

43  2[f(x 0 -f(xl)]/Ax + [f'(Xo)+f'(xl)]/Ax2, and

Ax x - xO.

The interpolation error is

f(x) - fc ( x) 24 f() (V.3)

for some v in [xox 1]. This error is proportional to Ax4 provided f(x)

has four continuous derivatives in [xO,x] By contrast, the linear

interpolation error is proportional to Ax2.
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Derivatives and integrals of fc(x) can also be used to

estimate derivatives and integrals of f(x). When fc(x) is

differentiated, the interpolation error, f'(x)-f'(x), is proportional to' C

Ax3; differentiation is therefore less accurate than interpolation.

Integration of fc(x) over the interval [xo,x 1] yields the Euler-Maclaurin

integration formula described in Section III.B.

2. Contents of the Ray History Records

Each ray history record is a record of the significant

events which occurred during propagation of the ray in the order they

occurred, plus quantitative data about each event. The quantitative

information varies with the nature of the event. In this section, the

events recorded are described, and the ancillary data stored with the

events is specified. The reasons for including specific data items will

become apparent when eigenray location and interpolation procedures are

discussed later in this chapter. In general, just enough information is

recorded to specify the location of the event and the ray path slope

there, to carry out several kinds of interpolations, and to provide ray

path information which experience has shown to be particularly useful.

More specifically, the ray history records contain enough information

about each ray in the sweep-out to (1) determine whether two rays bracket

an eigenray of a receiver at a given range, (2) numerically determine

eigenray launch angles, (3) accurately estimate eigenray arrival angles,

path lengths, travel times, intensities, and phases and, for eigenrays

which undergo bottom reflections, to determine the bottom intercepts, ray

path slopes, and bottom slopes at each reflection point, and (4) permit

accurate reconstruction of the ray path trajectories.

a. Surface Reflection

Whenever a ray reflects from the surface, the values

of r and z' are recorded, along with z, which is of course zero.
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b. Bottom Reflection

Upon bottom reflection, the values of r, z, z', z",

, ', and z are stored. These quantities are used in eigenray

interpolations to determine the point of bottom incidence (range and

depth), the eigenray path slope at incidence, and the bottom slope at

incidence.

c. Ray Splitting Point

As shown in Fig. 6 and discussed in Section V.A.3,

rays launched at certain launch angles may encounter features in the

sound speed profile which cause ray paths to diverge sharply in response

to a slight change in launch angle, giving rise to discontinuities in the

r(as) diagram. The passage of a ray through a point of divergence is

detectable. If, in advancing the ray path solution from r, to r2, the

ray path has an inflection point, that is, z" undergoes a sign change,

but if sign(zl-z2) sign(zI), then the event, its location, and the path

slope there are recorded. The location of the event coincides with the

inflection point, which is found by assuming that z" varies linearly from

r to r2 and finding the zero of z".

d. Receiver Depth Crossing

Whenever a ray crosses a specific receiver depth, the

values of r, z, z', z", C, C', s, 3s/aes, t, and 3t/3O s are recorded at

the point where the ray crosses the receiver depth. Also recorded are

the number of surface reflections, bottom reflections, caustics, turning

points, and ray splitting points (see Section V.A.2.d).

e. Turning Points

Turning points, where z'=O, are located by monitoring

the ray trace for changes in the sign of V. When one is detected, the
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approximate range of the turning point is determined by fitting a hermite

spline to z' and z" over the interval defined by the last step of the ray

trace and finding the zero of the spline. The depth of the turning point

is then obtained by fitting a hermite cubic spline to z and z' and

evaluating the spline at the turning point range. The point and path

slope are recorded.

f. Caustics

Caustics, points where =O, are located by monitoring

the ray trace for changes in the sign of C. When one occurs, the range

of the caustic i: located approximately by fitting a hermite spline to C

and ' over the last range step and determining the zero of the spline.

The depth of the caustic is obtained by fitting a hermite cubic spline to

z and z' over the range step and evaluating the cubic for z at the range

of the caustic. The point and path slope are recorded.

g. Marker Points

One of the most useful functions of a ray model is to

produce plots of the ray paths. The ray history records, containing as

they do the locations of important events along the ray paths, furnish

the information needed to generate ray plots and much else besides. A

ray path is plotted by connecting the events in its ray history record

with a smooth curve and drawing the curve.

To take full advantage of a ray history record to

plot a ray trajectory, one extracts from the record the locations of the

events in order, as well as the ray path slopes at the events. Hermite

splines are used to connect each pair of events in turn, thus

reconstructing the ray path in the intervals between the events. The

smooth curve formed of the union of the splines is plotted to complete

the drawing of the ray path.
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However, there is no assurance that significant

events will occur often enough to permit accurate reconstruction of the
ray path. It is therefore necessary to insert periodically into the ray
history record points whose only purpose is to mark more precisely the
ray trajectory.

In order to know when, during the stepwise solution
of the ray path equation, to introduce marker points into the history
record, we need some means of determining when the solution has advanced
so far beyond the last recorded event that later reconstruction of the
ray path is compromised. Since the ray path is to be represented later
by hermite cubic splines, we need to know when the spline will deviate
unacceptably from the actual ray path.

Inspection of the hermite interpolation error

(Eq. V.3) suggests that the largest error is to be expected near the
midpoint of the interval of interpolation since the interpolation error
at the interval endpoints is zero and since ziv(r) tends to vary slowly
with range. But it is inconvenient and costly to compute a new spline
after each step and evaluate the midpoint error.

A much more satisfactory means of estimating the

midpoint error is, ironically, to compute the difference between the
third order (cubic) hermite spline and the much more complex fifth order
hermite spline at the midpoint. The fifth order spline would use not
only r, z, and z', but also z" at the endpoints of an interval. The

extra information makes the fifth order interpolation formula much more
accurate than the third order formula, so that the difference between the
third and fifth order formulas is a good estimate of the error in the
third order formula.

But, if it is too costly and inconvenient to

construct the third order spline after every step, then it is certainly
out of the question to construct both a third order spline and a fifth
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order spline after every step in order to difference them. However, the

difference between the third and fifth order formulas, when evaluated at

the midpoint, is a surprisingly simple expression:

ArAr Ar I  11 )+1

z3 (ro + r + +) Ar_ 2[z'(rl)-z'(ro) ] - Ar[z"(r 0 )+Z"(r 1)
(V.4)

where r0 is the range of the last point entered in the history record, r1
is the range just attained with the last step of the ray trace, Ar=rl-rO,'

and z3 and z5 are the third and fifth order interpolation formulas. It

is not necessary to construct splines in order to make use of Eq. V.4.

After each step in the ray trace, the right-hand side of Eq. V.4 is

evaluated and, if the resulting error estimate exceeds a tolerance, the

point (rl,zl) is entered in the history record along with zi.

h. Ray Termination

Ray traces are ended under several user controlled

conditions. Traces are terminated if a ray (1) reaches a maximum

specified range, (2) exceeds a specified number of surface or bottom

reflections, (3) is steeper than a given maximum ray path angle, or

(4) strikes the bottom with a grazing angle exceeding a specified

maximum. The ray termination point and the path slope are recorded.

3. Determination of the Eigenray Launch Angle

The simple r( s) diagram of Fig. 6 contains many of the

features of the more complex diagrams commonly encountered in practice.

Three of these, described below, are critical to the location of

eigenrays by interpolation.

(1) Rays launched at angles in the interval (-2.00, 2.00)

never reach the receiver depth; consequently, no ray
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with a launch angle in this interval can be an

eigenray.

(2) Rays launched at angles near -50 and 50 encounter a

local maximum in the sound speed profile and diverge

strongly. A discontinuity in r( s) is created.

(3) Rays launched at ±100 graze the surface; rays

launched at ,150 graze the bottom. At these angles,

r/aes is discontinuous.

Although these features have been described specifically for the diagram

of Fig. 6, in general there are ranges of values of s for which r(e s ) is

not defined, and there will be values of as for which r(e ) or r/e s is
discontinuous.

In a range variable environment these features of r(e S)

cannot be so readily identified with specific launch angles, yet it is

not meaningful to attempt eigenray interpolations in a launch angle

interval containing any of these features. Two rays are considered to

bracket an eigenray if, and only if, (1) they differ by the launch angle

increment AO s , (2) they bracket the receiver in range when they cross the

receiver depth, and (3) the events in their ray history records occur in

exactly the same sequence, with the following exception. If the history

record of one ray shows that the ray passed through a caustic and then a

turning point, while the companion ray passed through the turning point

and then the caustic, it is nevertheless permissible to use these two

rays for eigenray interpolation provided their history records are

otherwise identical. This exception is allowed because no

discontinuities in r(O s) or (O s ) arise from it.

When two rays satisfy these requirements, a hermite spline

rc(es) is computed using the values of r1, ( r/ es)1 , r2, and ()r/ es)29

where the subscripts denote evaluation at points 1 and 2 where the rays
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cross the receiver depth. The eigenray launch angle is then determined

by locating the zero of rc(es)-rR numerically.

Successive approximations to the zero usually converge

very nearly to the limits of precision of the computer within three

iterations if Newton's method 28 is used. In general, if one is seeking a

zero of the function f(x) and x0 is known to be a good approximation to

the desired zero, then often an improved estimate, xl, is given by

Newton's iterative formula

x1 = x0 - f(x0 )/f'(x O ) • (V.5)

To apply Eq. V.5 to the eigenray problem, one must be able to compute

r c( s)-r R and its derivative dr c/dO . But r c( s) is simply a cubic

polynomial and drc/d s is the quadratic polynomial obtained by differen-

tiating rc(0s). Both functions can be evaluated very rapidly on a

computer. Thus, hermite splines and Newton's method are well suited to

each other and to the task of eigenray location. However, it should be

emphasized that the true eigenray launch angle error depends less on the

error in the zero of the cubic than the interpolation error committed by

replacing r( s) with r c(Os ). In order to keep the interpolation error

small the ray sweep-out angle increment AOs must be kept small.

B. Eigenray Path Data Interpolation

Having determined an eigenray launch angle, interpolations

between the rays bracketing the eigenray yield additional information

about the eigenray. In particular, interpolation gives the arrival

angle, travel time, path length, and intensity of the eigenray when it

arrives at the receiver. For eigenrays which undergo bottom reflections,

the reflection points, the ray path angles at intercept, and the bottom
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slope at intercept are also found. The interpolation methods are

described below.

1. Arrival Information

In the formulas and derivations which follow, two rays
bracketing the eigenray cross the receiver depth at points 1 and 2, where

esl<es 2. The eigenray launch angle is 0 se*

a. Arrival Angle

A hermite spline zl(es) is defined on the interval

[Os 1,es2] using the values zj, (z'/3es)l, z , and ( z'/ es) 2 .  The

arrival angle is

OR = tan- (z(Ose)) (V.6)

The values of az'/aos are not available directly from the ray history

records. They are computed using c' as follows:

azI z30 ' (V.7)

5

Note that here az'/a sO is computed holding depth constant (z=zR), whereas

' is computed holding range constant (see Section II.B); 3z'/e s as

computed above is not to be confused with r'.

The above expression for 3z'/aO can be obtained by
5

resorting to Taylor series expansions. In Fig. 8, two rays differing in
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launch angle by 60s (not the sweep-out angle increment AOs) are shown as
they pass near an observation point (r,z). The ray path slope at (r,z)

is z'; at (r,z+C6es) the slope is z'+ '6Os to first order. The slope at

(r+ 6esz) is therefore (z'+C'66s)+z,6es, again to first order. Passing

to the limit 60s O,

6z'60'O 60'a~sl =lima Z : Z R O s 0  6 6 s

(z'+ es) + z"ves -z
= lim s

6Os-O 6es

C1 + z%

9- (V.8)

where use has been made of Eq. V.2.

b. Path Length

A hermite spline sc is defined using the values Sl,

(as/aes) 1, s2, and (as/Dos)2 . The path length is

s (Ose) (V.9)
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where

DO s es=const % z=const

ISI (V.l10)= /cose

c. Travel Time

A hermite spline tc is defined using the values tl,

(t/aes)l, t2, and (9t/es)2 . The travel time is

t = tc(0se) (V.11)

where

t n  9s (V.12)30s Co Des

d. Intensity

A hermite spline r was defined using rl-rR, l 1 r2-rR'

and 2 in order to determine the eigenray launch angle:

rc(os) : rc0 + (s_ 1)r c + (s-e1) 2r 2 + (S-el) 
3r 3 (V.13)
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where rco, rcl, rc?, and rc3 are the hermite spline coeff icients. The
derivative dr do evaluated at 0s'i

C/ s'e$ i

C(65)=r C + 2(0 e - e)rc2 + 3(0 e 9 1)2 r c3  (V.14)

Then, by Eq. 11.29,

cose s
se (V.15)

0 ~ s sin ORI

2. Bottom Intercept Interpolation

In the following formulas and derivations, variables with
subscripts 1 and 2 are evaluited at the points where rays intersect the
bottom.

a. Eigenray Bottom Intercepts

The range at which the eigenray strikes the bottom is

r 8 ~(e ) ,(V.16)

where r Bc is the hermite spline defined by r B1 (1rB/1Os)l, rB?, and
( rB/ho 2  Likewise, the depth at intercept is
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z B  =ZBc( ,se)  ,(V.17)

where z is defined by z8 l, ()ZB/',s)l, ZB2, and ((ZB/;s)2.

An expression for rB/ 3 
s  was developed in

Section II.B:

r B 1
-z

From this expression, we can derive an expression for )zB/aes

ZB 3ZB rB

e Dr De
S B s

Z Z- (V.18)

b. Ray Path Angle at Intercept

A hermite spline, z' is defined by zjl (2zI~Gs)l,Ic
z2, and (z 's) 2 , where Iz /'I s  is the rate of change of ray path

slope at the bottom intercept with respect to launch angle. The path

slope at intercept is

z2= tan-'(z ', (e)) (V.19)
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To find zl/Do s by a Taylor series expansion we refer

back to Fig. 3 in Chapter II, where we see that

Dzi  Z -zi
P -= lim I (V.20)

s 60s- O 60s

An expression for z2, Eq. H1.48, was developed in Section II.B:

B

.1

so that

os  +I (v.21)

c. Bottom Slope at Intercept

A hermite spline, z'c is defined using z~l,

(Nz/ s)l zk2, and (3z/?s)2 . The bottom slope at intercept is

' = tan- (q (Oe) (V.22)
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To find zD/as  we again refer to Fig. 3 in

Chapter II and find that

3zr B lim zB2 - z l

S 60s -0 6 (V.23)
I

Equation 11.49 is an expression for zB2:

zrB

ZB2 Z1 + s ae , 8 1

Combining Eqs. V.23 and 11.49 yields

z zB (V.24)
Des - -i

C. Summary

In this chapter, the procedure used to locate eigenrays by

interpolation between rays traced during a sweep-out was described. Also

presented were the interpolation methods used to determine eigenray

arrival data and eigenray bottom reflection information.
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VI. ORGANIZATION OF MEDUSA

The ray model described in Chapters II through V of this reoort

is implemented on a CDC CYBER 171 as a package of FORTRAN programs,
collectively referred to as MEDUSA. Figure 9 is a schematic diagram of
MEDUSA, showing the programs in the package, the data required by the
programs, and the output produced by them.

The organization of MEDUSA is unusual in that the various

functions of the model are performed by separate programs. Each program

performs a very limited computational or display task. In some cases,
the output from one program is used as input by several other programs.
In the more conmmon configuration, a model is implemented as a single
large program, and all of the functions and capabilities of the model are
incorporated in the program. The compartmentalized design of MEDUSA,
however, has several advantages. It makes the system more compact and
reliable. Modifications and additions are more easily implemented than
they would be in a monolithic program, and the many pathways through the
system make it possible to recombine and display ray information in a
variety of ways.

The components of the package can be roughly categorized as
environmental preprocessing and display routines, ray tracing programs,
and eigenray, propagation loss, and diagnostic postprocessors. Their

functions and relations to each other are briefly summarized here. Their

use is illustrated in the next chapter.

In the first category is ENVPLT. ENVPLT plots the sound

velocity profiles and bathymetry. It is used for graphical display of
the environment, which is usually received in the form of tabulated data.

Such displays are informative in their own right, and they may reveal
input data errors.
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Also in the first category are programs which format data from

environmental databases for use by MEDUSA. The author has assisted in

the installation of MEDUSA at computer facilities which possess databases

containing archives of sound velocity profiles, bathymetry, and bottom

loss data. At each computer site, programs convert the archival data

retrieved by the database system into the format required by MEDUSA.

RAYFAN is the program responsible for tracing rays and

generating ray history records, which are very lengthy and so are stored

on a disk. In addition to the environmental data, RAYFAN requires as

input the source depth, the launch angles to be used in the sweep-out,

and the depths of all receivers for which eigenrays will be required.

The ray history records produced are used by a growing array of

postprocessors.

RAYTREK plots the ray paths of any of the rays recorded in the

ray history records.

CAUSTIC plots the locations of caustics encountered during the

ray sweep-out.

THSPLT produces plots of r( s); THRPLT plots arrival angles as

a function of receiver range.

SERPENT locates eigenrays by interpolation of the ray histories

and generates eigenray path history records. The eigenray records are

also extremely lengthy and therefore are stored on a disk also. EIGONY

prints eigenray path summaries for specified receivers.

PROPLOS adds the pressure contributions of the eigenrays and

computes propagation loss. PLPLOT plots the propagation loss curves.
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VII. APPLICATIONS

This chapter illustrates the use of the MEDUSA programs. For

the example presented here, the environment, particularly the bathymetry,

changes rapidly with range, bottom interaction effects are important, and

the track ranges are relatively short. MEDUSA has also been used in long

range propagation analysis problems. The computer resources required

have proved to be remarkably insensitive to the ranges involved. For the

long range case, long ray traces are compensated by the reduced number of

rays to be traced and the small path angles involved.

Each use of MEDUSA begins with the generation of environmental

plots by ENVPLT. Figure 10 is the graphical output from ENVPLT for this

example. The bathymetry and sound speed profiles are presented to the

programs as tabulated data in the usual fashion. The tabulated sound

speed and bathymetry points supplied to ENVPLT are plotted as discrete

points. The smooth curves interpolating the user supplied data points

are generated by repeated evaluation of the bathymetric and sound speed

profile T-splines at finely spaced intervals of depth and range. Several

sound speed profiles are also shown in Fig. 10 between the user supplied

profiles. These profiles, distinguished by the absence of accompanying

discrete data points, are intermediate profiles which show how the

profiles evolve with range from one user supplied profile to the next.

Environmental plots thus provide not only a graphical representation of

the somewhat cryptic tabulated data, but are also a valuable diagnostic

aid against input data errors, undersampling of the environment, and

possible range interpolation anomalies in the sound speed profiles.

Occasionally, usually for special research purposes, a user

will supply sound speeds or bathymetry to MEDUSA as mathematical

functions of his own devising, bypassing the standard procedure of

fitting T-splines to tabulated data. ENVPLT will then produce plots of

the user defined environmental functions. The substitutions pose no
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special problems for MEDUSA, provided the functions possess the required
degrees of continuity discussed in Chapters III and IV.

Once satisfied with MEDUSA's representation of the environment,

the next step is usually to produce ray path plots, such as Fig. 11. In
this example, the source is located 1 m above the bottom at a depth of
5303 m. This is accomplished by tracing a few rays with RAYFAN and
plotting the ray paths using RAYTREK. These plots are often all that is

required of MEDUSA, but they can also convey very quickly to an

experienced user a great deal of information about the effecfts of

bathymetry and range and depth variations of the sound speed on sound
propagation. Thus, RAYTREK is often used as a survey tool in preparation

for eigenray and propagation loss calculations.

In order to proceed beyond the generation of ray path plots, a
ray sweep-out is performed with RAYFAN, in which hundreds of rays are
traced in fine increments of the launch angle to a maximum range beyond

the range of the most uistant receiver of interest. The ray history
records generated form the basis for all further processing. In this

example, the rays traced had launch angles ranging from -50 0 to 50 0 in
0 0 00.5 increments, except for the interval from -10 to 10 , where a finer

0.25 0 increment was used. A receiver depth of 18.3 m (60 ft) was

specified. Rays were traced to a maximum range of 35 km.

Figure 12, generated by program CAUSTIC, shows the caustics
encountered by the rays during the sweep-out. Unusually high signal
pressure levels occur near caustics, which are focal points of acoustic
energy. Although the ray theory approximation Kz-k is invalid within a
few wavelengths of a caustic, the effect of the approximation is always
to cause uncorrected ray theory to overestimate the pressure near a
caustic. Thus, ray theory predictions of the locations of acoustic focal

points are accurate, although predictions of actual signal pressure are
exaggerated extremely close to them. Corrections can be made to revise
ray theory pressure predictions downward and such corrections are likely
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to be introduced into MEDUSA at a later time. In any case, Fig. 12 shows

the caustics are well below the 18.3 m receiver depth and we need not be

concerned with them in this example.

THSPLT produced the r( S)plot of Fig. 13. Each point on the

plot represents a range at which a ray crossed the receiver depth and the

launch angle of the ray. The fine sampling of launch angles causes the

points to pack closely together, so that they tend to form smooth curves,

although the curves do have discontinuities and cusps. The intersections

with the curves of a straight line, drawn across the plot at a constant

range corresponding to a receiver range, occur at launch angles

corresponding to eigenray launch angles. By moving the straight line

back and forth over the plot to represent receivers at various ranges,
one can observe the eigenray launch angles changing as the line

intersects different parts of the curves.

The arrival angle diagram of Fig. 14 was produced by THRPLT in

much the same way as THSPLT generated the launch angle diagram of

Fig. 13; the points on the arrival angle diagram indicate the ranges

where rays crossed the receiver depth and the angles the ray paths made
with respect to the horizontal as they crossed the receiver depth. The

intersections of the arrival angle curves with a straight line, drawn

across the plot at a given receiver range, indicate the expected ray

arrival angles for a receiver at that range. By varying the receiver

range, one can tell at a glance which arrival angles to expect at various

receiver ranges and how the arrival angle structure may be expected to

change with range.

The preceding display programs, except ENVPLT, all simply

plotted information stored in the ray history files. To proceed beyond

this point, further processing is necessary. The next step is to locate

eigenrays, using SERPENT to perform eigenray interpolations on the data

stored in the ray history records. SERPENT will produce eigenray history

records.
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EIGONY will display any desired portion of the eigenray

records. Figure 15 shows a very brief excerpt from the output normally

generated by EIGONY. Here, we see that SERPENT found eight eigenrays for

the receiver located at a range of 14 km and a depth of 18.3 m. For each

of those eigenrays, EIGONY prints the launch and arrival angle, the

travel time, the number of surface and bottG' reflections the eigenray

underwent and the number of caustics it passed through on the way to the

receiver, and the acoustic pressure at the receiver. The pressure is

computed according to the geometrical spreading law of Eq. 11.29; the

frequency dependent effects of volumetric attenuation in the water and

bottom loss are accounted for later. For each bottom reflection which an

eigenray undergoes, EIGONY prints the location of the bottom intercept,

the bottom slope angle, and the grazing angle (the angle of the ray with

respect to the bottom at the intercept).

PROPLOS adds the complex eigenray pressure contributions at

each of the receiver locations. If the user specifies tables of

reflection coefficients (which are generally frequency dependent), then

the reflection loss and phase shift due to each bottom reflection of each

eigenray are figured into the pressure summation. At the same time, if

the user wishes to apply a frequency dependent volumetric attenuation

coefficient, then those losses are taken into account also. The total

complex pressure P at a given receiver is

N (-cosm/2 Jt -j -j nc b
= Am e e e fI Rm (VII.1)

m=1 z=I

where N is the number of eigenrays, cx is the attenuation (dB/m), sm is

the path length of the mth eigenray, tm is the travel time of the mth

eigenray, ns is the number of surface reflections, nc is the number of

caustics, Nb is the number of bottom reflections, and RmZ is the complex
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reflection coefficient for the Zth bottom reflection of the mth eigenray.

The phase inversion of a ray upon surface reflection arises from the

representation of the surface as a flat pressure release perfect

reflector. Notice the -r/2 phase shift as a ray passes through a

caustic. 8  The sign of the phase shift is often reversed (incorrectly) in

ray models, and the phase shift itself is sometimes mistakenly associated

with turning points rather than caustics.

The coherent propagation loss is

PLcoh =-10 log 10 PP (VII.2)

The incoherent propagation loss is defined to be

PLincoh -0 loglo A 2 RmZRm)] (VII.3)
Lm=l -~I

Here, the root-mean-square pressures are added without regard to phase.

This procedure is not well justified mathematically, but it does yield

propagation loss curves (the "incoherent" propagation loss) which vary

more slowly with range than the coherent propagation loss, and which, in

some cases, seem to approximate a range averaged coherent propagation

loss. In any event, the incoherent propagation loss is frequently

required of a ray model and must be provided.

PROPLOS computes, prints, and stores on disk the coherent

propagation loss, the incoherent propagation loss, and the incoherent

propagation loss computed assuming an infinitely rigid, perfectly

reflecting bottom.
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PLPLOT plots the propagation loss computed by PROPLOS.

Figure 16 shows the coherent and incoherent propagation loss curves for a
frequency of 150 Hz and an attenuation of 1.5 x 10-6 dB/m. Bottom loss

tables were also specified, so that each time an eigenray struck the

bottom it incurred some grazing angle dependent loss but no phase shift.

Figure 16 also shows the incoherent propagation loss for an infinitely

rigid, perfectly reflecting bottom. The difference between the
incoherent propagation loss curves for the reflecting bottom and the

partially absorbing bottom gives a quick indication of the importance of

the bottom in propagation analysis.
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VIII. CONCLUSION

When ray models began to make the transition from range

invariant to range dependent media, many of the techniques developed for

range independent media were no longer applicable. In range independent

environments, the ray paths are periodic functions of range, and a ray

with a given launch angle has a characteristic period, or cycle distance.

The first ray models fully exploited that fact to greatly simplify ray

tracing and locating eigenrays (see Ref. 11).

Since rays in a horizontally stratified medium are cyclic, it

is only necessary to perform the calculations needed to trace a ray

through half of a cycle; the ray trajectory can then be extrapolated to

any desired range by connecting half cycle paths and segments of half

cycle paths. Thus, range independent ray models could trace rays very

rapidly. Most such models used analytical solutions of the ray equations

(see Section III.A), although this was not necessary and, in retrospect,

probably set an unfortunate precedent.

It was possible and very useful in horizontally stratified

media to be able to classify rays and eigenrays according to just four

criteria: the sign of the ray launch angle (whether the ray was upgoing

or downgoing at the source), the sign of the arrival angle (whether the

ray was upgoing or downgoing at the receiver), the number of cycles, and

whether the ray reflected from the surface or bottom or had turning

points instead of relections. The launch angle intervals giving rise to

the various ray categories could be readily determined from the sound

speed profile, Snell's law, and the range. It was also possible to

determine whether there were any eigenrays belonging to a particular

classification for a receiver at a particular range. Thus, eigenrays

could be located by systematic exploration of each of the ray categories.
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It was even possible to locate an eigenray of known classification by

numerical shooting methods (see Ref. 11).

But rays in range variable environments are not periodic

functions, and Snell's law is no longer applicable. New strategies for

tracing rays and locating eigenrays in these more challenging

environments have been the subject of this report.

It is no longer sufficient in such media to perform ray trace

calculations over a half cycle; rays must be traced out in full, at

substantially greater computational cost. There are compelling reasons

for seeking numerical, rather than analytical, solutions to the ray

equations. With that in mind, the equations for the ray path trajectory

and intensity are written in terms cl differential equations in a form

proposed by Solomon and Armijo, 18 because a great variety of methods

exist for solving differential equations numerically. Chapter III

discusses the numerical alternatives in terms of the particular problem

at hand and arrives at a suitable method which, although somewhat slow,

is very accurate, flexible, simple, and reliable. The method, Kutta's

third order rule, lacks a procedure for estimating errors. An

independent means of error estimation and control is therefore developed.

Some of the ray path information, namely the path length and

travel time, can be conveniently expressed as ray path integrals and

computed numerically. An appropriate numerical integration method, based

on an Euler-Maclaurin formula, is explained.

When rays reflect from the surface or bottom, the solutions of

the ray path and intensity differential equations must be restarted at

the boundary intersection with new initial values. The reinitialization

conditions for the ray path equation are easily derived from geometrical

considerations since it is assumed that rays undergo specular reflection

from boundaries. But the effects of reflections from boundaries on ray

path spreading are more complicated. The reinitialization equations for
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ray path spreading, derived in Section II.B, correctly account for the

effects of ray path curvature, and for the curvature of the bottom when

applicable.

The solution of the ray equations is very sensitive to the

representation of the sound speed and bathymetry within the model, and

the location of eigenrays depends critically on a condign treatment of

the environment. Sound speeds and bathymetry are normally supplied to a

ray model as tables of values measured at various ranges and depths. The

ray model must fit the tabulated data with interpolating functions so

that the sound speed and bottom depth can be determined away from the

tabulated points. The interpolating functions should possess two

continuous derivatives in order to avoid propagation loss anomalies and

to ease the task of eigenray location. The functions and their

derivatives should be easy to evaluate on a computer.

Cubic splines had been proposed as suitable interpolating

functions, and had even been incorporated into some ray models. But when

the author applied cubic splines to tabulated bathymetry, it was soon

discovered that the splines would usually exhibit nonphysical

contortions. Attempts to suppress the formation of these spline

artifacts, by tediously inserting new points into the bathymetry tables,

often ended in frustration when the spline would perversely introduce new

artifacts elsewhere. Spline artifacts also appeared occasionally in

sound speed profiles.

The problem of spline artifacts was eventually solved by

abolishing the cubic splines which gave rise to them in favor of modified

splines devised by the author, called T-splines. T-splines and the

environment are discussed in Chapter IV.

One of the principal duties of a ray model is to locate

eigenrays and determine the ray path histories of the eigenrays. With

this capability, the user of a ray model can identify the paths along
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which energy is delivered to the receiver. Eigenrays are located in a
range dependent medium by interpolating between rays, traced during an
extensive ray sweep-out, which bracket a receiver in some sense. The
precise determination of when it is appropriate to make eigenray

interpolations and how to obtain eigenray path information by

interpolation are two of the major achievements discussed in this thesis
(see Chapter VI). Ray history records of sequences of hundreds of
judiciously selected events, such as bottom reflections and passage

through caustics, contain information crucial to both enterprises. The
concept of the ray history record derives, greatly elaborated, from the
ray classification scheme of range independent models, which had only
four elements. Eigenray path data interpolation methods make use of
hermite cubic interpolatory splines to fit data stored in the history
records, and are far more accurate than the first order finite difference
methods conmmonly used.

Ray models traditionally have played an important role in
underwater acoustics research, and it is anticipated that their role will
expand as their capabilities increase and new applications are found for
them. Some of the improvements and extensions likely to be undertaken
soon are described below.

It is expected that efforts to develop significantly faster ray

trace methods will be made in the near future. Success in this rather
prosaic matter would nevertheless greatly encourage the distribution and
usage of ray models.

Range dependent ray models are poised to receive a plethora of
wave theory modifications and corrections which are designed to improve
their treatment of caustics, ducts, shadow zones, and surface and bottom
interactions. Some rancii invariant ray models already contain these
improvements; it remains only to generalize them to range dependent
media.
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The MEDUSA model is, at present, restricted to cylindrically

symmetrical environments but, with minor modifications, it will be

extended to certain kinds of three-dimensional environments which possess

some form of azimuthal or translational symmetry. The preliminary

studies of propagation across idealized eddies, fronts, and seamounts,

and of oblique propagation over ridges and continental slopes can be

conducted without resort to fully three-dimensional models. For this

reason, the development of general purpose three-dimensional models may

be premature at present.

It is hoped that this report will serve to describe some of the

practical matters which must be considered when implementing or simply

using ray models (particularly the MEDUSA ray model), and to suggest

areas of further research which would extend the capabilities and

applications of ray models.
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