AD-AL37 159 BN ANALYSIS '6F APPLICATION GENERHTURS(U)nggngEITV OF 11 .

SQUTHERN CALIFORNIA LOS ANGELES DEPT OF
SCIENCE E HOROWITZ ET AL. MAR 83 TR-832-288

UNCEHSSIFIED AFOSR-TR-83-1318 AFOSR-82-8232 F/G 9/2 NL

A i

..
. W' % e .-
o Vool amptipta®

-
LAY (VSR

«

AR AR

-4,

s

L4
RPN A NN

.Ql...'t

L#H

bl 23 g 2
5 EEF]

E EEFEPITR

=

B TR

I
=

!
=
7o)
~N
=

et
e

NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART

L

R _ e e Y T LS A

AENLIN
.
-~

-

-
.
A

v

T AT RN 10 TR

#

H te [T

AFOSR-TR. 83 -.1210

AN ANALYSIS OF APPLICATION GENERATORS

by

ot w[x_’.‘_i,{_‘f;“_“_ﬂ | R A AR

Ellis Horowitz i
Alfons Kemper :
Balaji Narasimhan

TR-83-208 March 1983

COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIFORNIA 90089-0782

“ 01 10 ‘:.) Approve Zor i te rolocae;

- distrit . tionunlimitude .=

: : .:u..,\\

REPORT DOCUMENTATION PAGE. -

1.. REPOHTSECURH’Y CLASSIFICATION R S

CLASSIFIED

‘Ib. RESTRICTIVE MARKINGS .

2.. S!CUIITY CLASSIFICATION AUTHORH’V

K 20

3. DlSTRIBUTIONIAVAILABlLITY OF REPORT

ZD. DECLASSINCATIONIDOWNGRADING SCHEDUL‘ -

LA T gr‘.‘.

Approved for public release, distr:.bution
unlimited.f,‘,,_ L .

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
. TR-83-208 ‘

v . o

v

5. MONITORING O%ANIZATION REPORT NUMBER(S)

AFOSR-TR- 23.12310

Ga. NAME OF PERFORMING ORGANIZATION
Unlversity of Southern :

OFFICE SYMBOL
(If applicable)

-

7a. NAME OF MONITORING ORGANIZATION
Air ‘FoArce Officeﬁ of Scientific Research

8c. ADDRESS (City, State and ZIP Code) .
Computex_- Science Department.-
versity

r

7b. ADDRESS (City, State and ZIP Cods) ,
Directorate of Mathematical & Infomation
Sciences, Bolling AFB DC 20332)

-
_.~
-,‘~' ","l‘ - ._v,*_.

s w-'.'

1 S L,

8b. OFFICE SYMBOL
. (1f opplicable} . -

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

e iT Lt e D T T

NS A RN

heosn 20583 <

ﬁolung m oc 20332 :

10. SOURCE OF FUNDING NOS.

1. TITLE (Include Sceuril" Classification)

AN ANALYSIS OF APPLICATION GENERATORS o

. PROGRAM PROJECT TASK WORK UNIT
' ELEMENT NO. Y NO. No.
_ 61102F 2304 A2

12. PERSONAL AUTHOR(S)

Ellis Horowitz, Alfons Kemper, Bala]1 Narasi
13a. TYPE OF REPORT

13b. TIME COVERED

mhan
14. DATE OF REPORT (¥Yr., Mo., Day) 15. PAGE COUNT

Technical FROM TO __ MARCH 83
16. SUPPLEMENTARY NOTATION
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by dlock number)
FIELD GROUP SuB. GA.

such as RAMIS, NOMAD, and FOCUS.

ductivity increases in the edp environment.

for non-edp type applications.
A

\

nonprocedural programming and show how it exists in current application generators.
they analyze the possibility of extending application generators so that they may be used

. ABSTRACT (Continue on reverse if necessary and idenlify by block number)

The continuing development of higher order programming languages has not yielded major
productivity improvements in the software development process.
mechanism for achieving significant orders of improvement are application generators,

These systems have been applied to data intensive
business applications with phenomenal success.

the basic components of application generators and show why they yield such large pro-

One often mentioned

The purpose of this paper is to present

The authors investigate the meaning of
Then

20. DISTRIBLUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED B0 SAME AS ReT. ¢ oTicusens O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22e. NAME OF RESPONSIBLE INDIVIDUAL

Dr. Robert N. Buchal

220 TELEPHONE NUMBERN
{include Area Code)

(202) 767- 4939

22¢. OFFICE SYMBOL

NM

s
P

..’:vﬁz ﬁ' jﬂi_‘rf y

»

RS T 4
Lt

;Bx’

s
[P

i

*

e 5

»
Ve

R
Y
)
N g

21 ~ - -~ - w] PRE T . -~ e ® " b
SVATTARI RGN |\x.t Ly ‘I‘ e A e A -‘:-‘_ N

S, Wi AL A gk 44 3 AN LA ny GRS RN IOUEACIGIDA A A I MDA G R R NN

an analysis of application generators

Ellis Horowitz, Alfons Kemper, and Balaji Narasimhan
Computer Science Department
University of Southern California

Los Angeles, California 90089

Accession For
NTIS GRAXI B
DTIC TAB

Uniannounced |
Justification

By
Distribut 19:}/

Availability coges
" JAvail and/or
Dist | Special

-/

This work has been supported by the Air Force Office of Scientific Research under Grant no. AFOSR-
82-0232

s e e Ca e i Ay i T i e e . o
AT TR ORI R IOVINTILS (L : v
T RN iy m T e s e ey e

TR YR T T YTt

R

nurave
oiatrito .
MATTHEY J. Wi

Chief, Technicul InTormation Division

MR IRAEATS

SRREEI I T S T BN b Rl R R AR AT A RS I s DA S ASNACRACHAIMACH S LMD SRR AR A S A SR S A B

- 1

. Abstract: The continued development of higher order programming languages has not yielded
% . major productivity improvements in the software development process. One often mentioned
mechanism for achieving significant orders of improvement are application generators, such as
'RAMIS. NOMAD, and FOCUS. These systems have been applied to data intensive business
B applications with phenomenal success. The purpose of this paper is to present the basic components
of application generators and show why they yield such large productivity increases in the edp
i‘f environment. We investigate the meaning of nonprocedural programming and show how it exists in

current application generators. Then we analyze the possibility of extending application generators

80 that they may be used for non-edp type applications.

d] i

% Table of Contents
- 1. Motivation and Focus

¥4 2. Todays Application Generators

£y 2.1. Examples of Commercially Availabie Application Generators
2 2.2. The Basic Components of Application Generators

v 2.2.1. The Database Management Component

V 2.2.2. The Report Generator Component

\ ; . 2.2.3. The Graphics Package Component

2 2.2.4. The Database Manipulation Language Component
o 2.2.5. Special Purpose Components

3. A Generic Application Generator
3.1. Database Management System
3.2. Report Generator
3.3. Data Manipulation Language
3.4. Graphics Package
4. Can an AG be used for General Purpose Programming?
. 4.1. Comparison of AG's with General Purpose Programming Languages
4.2. Embedding Higher-Level Data Retrieval Constructs in Programming Languages
ii 4.3, Future Research
i

2BRAVRNSEScoN2coN~aaNn

I T T S e e P S R A A A A AN I Sl R T W S
> e -’ Lo are oo, .-.‘.'.,..", " o - -.I.QA.. q'. i.t'.‘o’ ‘(.‘f.\!'- .’

: 1. Motivation and Focus

The past quarter century has witnessed amazing improvement in our ability to fabricate

3
P

sophisticated hardware devices. The growth in the number of active elements per chip has been

doubling every few years for the past twenty five years. But this exponential growth has in no

measure been matched by productivity improvements at the software level [1]. One result of this fact

4 , is that the cost of a computer system has shifted from being almost entirely hardware refated to being
N almost entirely software related. The distribution of software cost versus hardware cost of a typical
*j system was given by Boehm [2] and is shown in the diagram of Figure 1.1,
e 100%
: J Hardware
*' Cost
&‘& 50%
b - Software
Cost

) 0%

1955 1975 1985

For a Typical Computer System

|
|
1
Figure 1.1: Distribution of Software Versus Hardware Cost I
|
1

oo As pointed out by McCracken [3], todays software developers are facing the following challenges:

»?;', 1. Increased demand for new applications

o 2. increased complexity of new applications f
" :}‘ 3. Increased cost and decreased availability of skilled people

 ,

g

it is extremely unlikely that these demands can entirely be met by the careful application of

: . conventional software engineering methodologies and tools. What we need are techniques that gain

1]
(i
| us orders of magnitude improvements in productivity. A recent JEEE meeting on software productivity
1’ X
iy
s [1] said it this way:
L Every panel observed that major increases in productivity for software engineering will
{sg come about only through elimination of the number of skilled man hours required to
W
ﬁ‘, .
—"
g™
d -
02

".‘-:."-‘_\;.‘-:.":-“-:,'-;."_.",".h"_',“- e e e e e e e R 31

Nt B . .) - : Splonag v gl - e ~ YTy v -
. Pl -".K;.\.“.n"ﬁ"ﬁ:“&"".‘\f RIS YA -..7\'.,.-__-.:_... RSO IO }T’..' AR SN 'd.". T :_"A_".' ~-?_.J' Ty

gl . B

oy produce new software. This reduction can occur by: a) reducing the cost of each step in
e’ the development/maintenance life cycle, b)eliminating need for a step in the life cycle, ¢)
,g o reducing the number of iterations back through life cycle steps, or d) reducing the cost of
' impact of change.
’a
? 3 One approach to meet these challenges, which we investigate in this paper, are application
)
3¢ 3 generators. Application generators, sometimes abbreviated AG, are software systems geared
P primarily to support data intensive application development. AG's provide a very high level, special
s
A% purpose "programming” language with a user friendly syntax. Therefore AG's can easily be applied
- L
PO
: A by the end-user, who is usually not sophisticated in computer skills.
~,_ y
:“ Conventional wisdom holds that the software development process can be viewed as a series of
,‘ 3 steps, consisting of: system specification, architectural design, detailed design, coding, testing and
V)
debugging, documentation, and maintenance. When one is using an application generator he begins
Py
:'.:: by specifying a very limited prototype of the desired application and then incrementally extends and
M
b : modifies the prototype until it meets all of the requirements. This methodology has several
N
. " implications on the conventional life-cycle process. One, there is no coding phase in the usual sense.
’.
;;.:, The software specification is literally turned into an executable program. Two, testing and
Q.‘(-‘:
";;';4 maintenance are significantly reduced because the programmer returns to the specification when
AN

' changes have to be made. This specification is expressed as an application generator program, and
as such it is at a fevel much higher than a program written in a conventional programming language.
Therefore the testing and maintenance phases are simplified. Three, documentation is aided by the
fact that the program is easily readable. Four, the high level nature of the language permits less

sobhisticated end-users to program directly. For all of these reasons people have observed that

application generators, where appropriate, offer large degrees of improvement in software

_ development time [4].

N

“:'ﬁ'; But can the success of application generators in the worid of edp be brought to other
l.’~

2 %0
environments? This sentiment was suggested recently by the DoD Software Initiative [5) which cited

application generators as one means for improved DoD software productivity. In this paper we intend

‘ -

to look closely at some of the existing application generators to see precisely what facilities they offer

and in what form. In Section 2 we will describe the basic components that most of the existing

AT

systems share. Then in Section 3 we hypothesize a generic application generator. Using this generic
system we discuss the language features it offers and write several programs as demonstrations.

“Then in Section 4 we contrast application generators to general purpose programming languages

rad 2 b e

and discuss what would have to be done to create a hybrid of these two software systems.

&

o

2. Todays Application Generators

ok

Application Generators have their origin in the early report generator systems, such as IBM's RPG
% [6]. These software packages let the user generate reports at a very high level of description,
5,: permitting him to avoid having to deal with low level issues such as page layout and data
1 representation. Todays application generators are substantial extensions of these report generators.

They address the need of the business world to have a uniform approach to data intensive

1.‘% -
- applications, i.e. database management, data manipulation, and data retrieval in the form of simple
. database queries as well as the generation of sophisticated reports. Contemporary application
: generators may aiso make use of the more recent hardware developments facilitating graphics
support. In addition some AG's include software modules for very specialized applications, such as
financial modelling or statistical analysis packages. In summary application generators typically
K consist of the following modules:
.
» 1. database management system
2. report generator
: 3. database query language
' 4. graphics package
, §. special purpose software
3
%
4
X
5
1

o

o

e
.

Tl A WA S AT . A N it A e
YA AP TN ¢ T \J,\(‘h WIS e N A

~
AP

2.1. Examples of Commaercially Available Application Generators

In order to get a better idea of the current state of application generators, we investigated the

following systems: NOMAD, RAMIS, FOCUS, ADF and dBASE Il. In this section we briefly summarize

3o their attributes.
T
3 .
J . ’ NOMAD:
s
. NOMAD [3] was developed by National CSS, starting in 1973. Recently NOMAD has been extended
% . and is now available as NOMAD2 [7]. NOMAD2 supports three kinds of database structures:
)
? - relational
W
v - hierarchical
2
- hybrid combinations of hierarchical and relational structure

The hybrid database structure incorporates both hierarchical as well as relational features. This was
done in order to combine the efficiency of the hierarchical model with the flexibility of data access of

the relational system. In order to provide efficient and fiexible data retrieval for a variety of

applications NOMAD supports a wide range of access methods such as keyed access, balanced tree
indexing, table look ups, etc. Thus NOMAD has the full capabilities of a database management

system, including data manipulation, data integrity, and data security features.

!
<
i in NOMAD the end-user can generate reports from the database using the list command. The
5 , .
i A underlying data records of the report can be sorted, screened, and totalled by applying some very
l" .
N high level language constructs such as the "select..where...” command for data screening NCSS
s :

has added high level graphics features to NOMAD2 to generate graphics reports on the screen. Most
of the scaling is done automatically by the system, but, if the user wishes, he can choose his own

scaling factors, thereby overwriting the predefined system parameters. Also the user specified

headings and legends are automatically put into place by the system.

RN FOCUS:

FOCUS (8], developed by information Buiiders,Inc., is one of the most extensive application

generators available. It is based on a hierarchical database management system and provides an

AT A Tk Ba 3k AL A e 4]
At e, P RS

PR AN e S A AL SR AL O R A AT O AL A A AR R A AN A

. ‘.‘(_;’-

-
-

T’ Rl W g

’;n": e

WX

KRS, 4,

I

interactive data entry language, called FIDEL. Besides the high level report generator and a
sophisticated terminal graphics package it has built in a wide range of special purpose software for

business applications. This covers statistical analysis functions and a financial modelling language.

For the more experienced user FOCUS has a host language interface to facilitate the access to
FOCUS files from a general purpose programming language, like FORTRAN or COBOL. Also the user

can redefine the syntax of FOCUS to suit his needs.

RAMIS:

RAMIS [9] was developed by Mathematica Products Group,Inc. RAMIS is designed specifically for
IBM mainframe computers. The RAMIS database is structured as a network of data segments, where
the segments can be in different files. in addition RAMIS supports a purely hierarchical data model.
Besides its own files RAMIS can also interface to DL1 and IMS files. The Records Management
System provides the user with a nonprocedural language for retrieving and processing data records.
The Report Preparation System of RAMIS is designed in the form of an English-like language and lets
the user retrieve, sort, calculate, and format data into tabular or graphic reports. in RAMIS the report

generator and the graphics language were designed to have a unified syntax.

dBASE Ii:

In recent years several systems for application generation have been designed for personal
computers [10). One of these systems is IJBASE 11[11], which is a relational database system for
microcomputers. it was developed by Ashton-Tate in 1980 and runs under CP/M. In addition to the
database operations such as addition, deletion, update of records that one can perform using the
data manipulation language of dBASE Il, one can also generate reports from one or more databases.
The report generation facility is very concise and consists of a set of prompts from the system to the
user, about the different aspects of the report such as report heading, column headings, totals on
columns etc. The command language of dBASE Il has the syntax of an Algo!-like tanguage. dBASE Il

also provides a full-screen editor 1o set up a screen format for use as a data entry facility. Note that

this entire system costs significantly less than $1000.

Application Development Facility (ADF):
Application Development Facility [12] was developed by IBM as an “installed user program” to be

used with their IMS database management system. Applications developed using ADF have a
4 common overall structure. Such an application is produced as a set of program modules tailored by
the applications developer to suit his specific application. The modules contain the programming
logic for the following tasks.

£ - dialog management
A
ey - data access
N
- application logic

by
JX‘,; - control of the interaction of the above moduiles
]
‘, A Transaction Driver directs the execution of the application program so ihat the menus, data

displays, and messages are joined to produce a complete application. ADF also supports non-

g T . conversational and batch mode applications.

“1

3
e - An application developer tailors the modules to suit his application by supplying a set of rules using
a simple, English-like language as input to a component of ADF, called the Rule Generator. These
N
.j‘:; rules are used internally by the transaction driver to control the functions of the modules at execution
U
. time. Where programming is required by the special nature of an application, such programming can
‘ be interfaced with the above modules.
p
% 2.2. The Basic Components of Application Generators

In this subsection we will inveatigate in detail the basic components of an application generator

Ay

) which are present in most of the commercial systems.

5

' 2.2.1. The Database Management Component

' All commercially available AG's have their own DBMS, and in addition support access to external
files as well. Typically the underlying data model! is either hierarchical or relational. A database

s usually consists of two files:

A

L

A N A R A P R e I T T 4
ClRA RO PR AP S R e e L T e T T T T e T T T T

X -:i
b . 8
\ . - the master file and

E-r - the data file

<

' The master file contains user entered data format information describing a particular database, i.e.
(3 type definition of fields, field names, relationship among different segments, etc. Creation of this
gj - "master file is usually done interactively, such that the system displays some skeleton form for the
. master file and the user, in this case the database administrator, has to fill in the blanks.

-
3‘,% The data file contains the actual data, which is entered and modified via the database query
Lo language(see section 2.5). In order to make access to this data as efficient as possible the user can
*-: specify in the corresponding master file what access method is to be used and he can also specify the
: '-' key fields of the database, if any.

%

.) 2.2.2. The Report Generator Component

' . One of the essential features of all application generators is the report generator feature. These
‘.ﬁ facilities are provided in the form of a special purpose ¢cublanguage. The language of the report
o - generator is often characterized as non-procedural. This, however, does not mean that there are no
:;.: subroutines; in section 3 we will show an example of the use of a subroutine in report generation. The
' characterization of the report generator as non-procedural is used in the sense of very high level. This
o means that the programmer has to specify only the major steps of the computation but is not
_‘ concerned about the low level details, such as data representation or the exact sequence of
:3 computation. In the literature, notably Leavenworth and Sammet [13] and Leavenworth [14], non.
é procedural languages are often characterized by the jact that the user has to specify what he wants to
S be done. But he can leave out the details of how the system is to accomplish this task. For this reason
‘ the term goal oriented language might be more appropriate to define the nature of these non-
‘ procedural languages. Sammet [13] pointed out that all these terms are relative and depend on the
f js state of the art. For example, the first high level programming languages like Fortran and Algol60 were
§2 considered as very high level with respect to assembly languages, which again were viewed as high
- level relative 1o machine languages.

e

k)
'

ey

'y .;.'4 g

TR
s SN o

-

AT

el ma 8
20,00

4
S

.LL

| TA AL

AEATARAL WX

+

A4
A,
[]
<,
W,

P IR N A SR g o NE LAY (AL AMEE RN S0 i, o Sa NN SR~ S TN IR S,

)
e) b) <open file EMPLOYEES>
for i:=1 to MaxNumOfEmpl do
begin

file EMPLOYEES
list NAME SALARY <retrieve i" data record using
some existing retrieval pathd
<extract the NAME and SALARY fields>
writeln(NAME[i],SALARY[i])

end
<close file EMPLOYEES>

Figure 2.1: Program Fragments in a) Report Generator
and b) Conventional Programming Language

To get a better understanding of the ditference between using a non-procedural language, and a
conventional general purpose programming language, let us look at the program fragments of Figure
2.1. Both programs accomplish the same task, i.e. generating a list of all employees and their
respective salary from the database EMPLOYEES. Fig. 2.1(a) shows the program as it would appear in
an Application Generator whereas the much longer version, shown in Fig. 2.1(b), outlines the basic
steps of the program written in some conventional Pascal-like programming language. Note that the
program in Fig. 2.1(a) is complete whereas Fig. 2.1(b) only shows an outline of the program to be
written. Two major low level details which are removed from the programmer’s concern when he uses
an application generator are: the specification of explicit iteration over all data records and the
specification of the retrieval paths to obtain the data fields (e.g. NAME and SALARY) from the data
records. In a report generator the user can rely on associative referencing. This is a term describing
the accessing of data based on certain characteristics associated to it, like field name or range of
possible values. This is in contrast to explicitly traversing some existing retrieval path or performing a
search over all possible elements in a certain data set, like a database relation. The user of an
application generator is not concerned with how the system is actually managing to retrieve the data.
Furthermore the details of the report layout and conversion of the data to the appropriate output
format are left to the system. In summary we can say that in a conventional programming language

one has to specify the program more in terms of how the system is supposed to do the computation.

.....

T O T W V. V0VY

L WL (WL L W T VLY e e T T e e T LY I, R R A A PN A G I S A LA

in an AG the user writes more in te'ms of what the outcome of the program should look like.

'-.'5?' The syntax of the report generator sublanguage is typically very much like natural (English)
;:;:; language. The reason for this is twofold; for one the report generator is mostly used in business
:j applications where Cobol was, and still is, the primary programming language. It was feit that the
j | English-like syntax would ease the transition from Cobol to an application generator for most
N programmers in that application domain. Another reason is that application generators were designed
E’J’ to be used by the end-user, i.e. a business person with none or very little data processing experience.
B The English-like syntax might help these users to adapt to the new system more quickly.

:':! 2.2.3. The Graphics Package Component

“i Recently application generators have begun to include a sophisticated graphics package which,

just like the report generator, interfaces to the DBMS. The graphics package is actually a special form

'3
.~

...........
......

2 of the report generator, with the distinction that a graphical report is produced rather than tabular
N -

{,. output. For ease of use the syntax of the graphics language is basically the same as for the report
4

Ld's !

- generator. The main difference is that the user has to specify in what kind of a graph he wants the

'1 ﬂ’

:\l information to be reported. Typically application generators provide the foliowing five kinds of
?}~
o graphs:

Py

- connected point graphs
N - histograms

Ly
. fl..
oy - barcharts
" - scatter diagrams

3%

L]

E - piecharts
i _

:'_,;! With the growing development of graphics hardware and software it can be foreseen that the
o . graphics soltware in an application generator will become more sophisticated. One important
h.~‘

E", development on the horizon is automatic scaling and headings for graphs. Also color graphics and 3

¢

' dimensional representation of the information is already possible. Optimally an application generator
,_, is connected to a graphics display terminal as well as a plotter to facilitate interactive output on the
7
-

s
¥ 5" *

q—

I

2

..........

screen and aiso hardcopy output. For further explanation of the graphics package with an extensive

set of examples we refer the reader to section 3.

2.2.4. The Database Manipulation Language Component

3.2
i\‘i Ideally the database manipulation language should use the same syntactical structure as the other
] modules of the AG, namely the report generator and the graphics package. The database
}; . manipulation language must provide for interactive as well as batch processing of the database
‘ ‘?; modifications to be done. It has to include functions for the following operations:
i - inserting data
v, - deleting data records
: .«, - updating data

- - retrieving and listing of data records
: \é - statement of consistency constraints

5.
;.::«‘;* - statement of authority constraints

' . if the user wants to interactively edit the database the easiest syntactical way seems to be one in
\ which the system prompts the user for the necessary information which needs to be specified for the
corresponding operation. This can be done by displaying a skeleton table of the corresponding

database and letting the user fill in the blanks or modify the existing entries. This approach was taken

“.ﬁ‘: in the design of Query-By-Example, which was developed at I1BM[15). The data manipulation
Y

‘5':";' language is mostly menu driven, i.e. the possible operations supplied by the system are being
-y

- selected via 8 menu. This eliminates the need for the user to memorize the complete syntax of the
(K]

3:\: system.

S
4

%'__ In addition to editing the data the user has also the possibility to modify the definition of the

Tt . database. In this case he has to edit the master file, i.e. the file with the type definition of the
3!

', I corresponding database. If the modification of the master file leaves the database in an inconsistent

Y

i‘_:_': state the user will subsequently be prompted to edit the data in the corresponding database.

'

4.&

&

R
q .

N

~ 4 r]

DN o, e G R R PRy e e Ty

.......

A

2

LA
¥

Ty
s

v "“t‘,'t. :
e

ook

e E

7
=
N

KK

%

AT

kY

P

| g

A KA

-

s

SR

{y

AT
NV,

E:

4.4 K . ORI 59 4 Jte AR A IS4 A D ACIAC AL S I I ACH OISR A SR OO SRS A I s S N R

2.2.5. Special Purpose Components
Many application generators include some special purpose software packages which consist of
functions that are useful in connection with the report generator and the graphics package to create

very specialized applications more easily. Like the other modules of an AG, the special purpose

- gsoftware interfaces to the DBMS. The functions of this module are very often initiated via a menu, just

like the data manipulation language.

We summarize the main features of two such packages which are most common in AG's for
business applications. They are a software package for statistical analysis and another for financial
modelling. Most application generators include some form of a statistical analysis package, which is
especially useful for business forecasting applications. The spectrum of statistical tools covers
means and standard deviation, correlation coefficients, analysis of variance, exponential smoothing
and forecasting, and the like. To make the use of these tools more user-friendly they have been
designed as interactive tools. The user selects the desired operation and then the system will
automatically prompt him for the appropriate parameters. This makes the system more suitable for

the casual user, for he does not have to memorize all the details.

The financial modelling language is an extension to the report generator with the purpose of
creating financial statements, such as balance sheets or income and expense tables. It also supports
the creation of financial models, for example projected capital needs and budget consolidation. The
financial modelling language lets the user specify in an easy way how the particular columns of a
report are to be computed. This is very much like the VisiCalc [16] package, except that, again, the
financial modelling language of application generators interfaces with the data base management

system. This enables the user to compute certain fields from data stored in the database.

13

3. A Generic Application Generator
in this section we will describe a generic application generator. This AG has essentially all the
components described in the previous section. The syntax of this generic application generator has

been chosen to be similar to the one of the AG's introduced before. We will now explain the foliowing

" modules of the AG:

1. Database Management System
2. Report Generator
3. Data Maniputation Language

4. Graphics Package

3.1.Database Managsment System

As was pointed out before, application generators are based on a database management system
(DBMS), which either employs a relational [3] or a hierarchical data model [8, 8]. in this presentation
we have chosen a relational DBMS Tables (relations) are defined by the database administrator in the

way shown in Fig. 3.1 below.

In this schema definition the three tables CUSTOMER, PRODUCT, and SALES are declared. For
each relation (table) a key is specified, which consists of one or more fields (attributes). A field is
specified by its name, its type, and its heading. In our generic application generator there are four
built-in types, which are number(an integer), money(decimal number), date(in the form mmj|ddjyy),
and (ext(character string). The system can automatically extract the month, day, and year from
attributes of type date. if, for example, the field CUSTADDR of the CUSTOMER table was used in a
report the corresponding column would automatically be assigned the heading
CUSTOMER,ADDRESS (the comma specifies the word ADDRESS to be written below CUSTOMER).
The user can define virtual fields, i.e. pointers to fields of other tables. For example in Figure 3.1 the
fields CUSTNAME of the SALES and the CUSTOMER tables are identical for those records that have

a matching CUST # field.

. .‘(A \c R ' ..-\"..:\. RS .: . ..-.. R .._‘-.‘.:.‘A..‘A I 7 ',._‘..’...- :._.-. R

schema

table CUSTOMER key(CUST#)

N field CUST# number heading'CUSTOMER, number’
%y field CUSTNAME text heading ' CUSTOMER , NAME *
R field CUSTADDR text heading'CUSTOMER,ADDRESS*
;': end table definition
table PRODUCT key(PROD#)

oy . tield PROD# number heading'PRODUCT, number’
v field PRODNAME text heading ' PRODUCT ,NAME*
«.v'; field LSTPRICE money heading'LIST,PRICE’
o field UCOST money heading ' PRODUCT ,COST"'
A, end table detinition

g table SALES key(INVOICE#,PROD#)
field INVOICE# number heading' INVOICE ,NUMBER®
B tield DATE date heading ' SALE ,DATE'
e field CUST# number heading'CUSTOMER, NUMBER"
At field PROD# number heading'PRODUCT ,NUMBER"
. tield UNITS number heading'UNITS,SOLD"

define CUSTNAME pointer CUSTNAME in table CUSTOMER key CUST#
define CUSTADDR pointer CUSTADDR in table CUSTOMER key CUST#
define PRODNAME pointer PRODNAME in table PRODUCT key PROD#
define LSTPRICE pointer LSTPRICE in table PRODUCT key PROD#

o s
PP,
-

.define UCOST pointer UCOST in table PRODUCT key PROD#
. end table definition
. end schema definition
. |
.:'.'; Figure 3.1: Database Definition

3.2. Report Generator

Let us consider a few examples of report generation over the database just defined. In Figure

3.2(b) a taL ular report is created by the AG program shown in Figure 3.2(a). The report lists all the

customers together with the respective number of units that were sold to them in the years 1880
izi through 1882. First the programmer has to specify the database on which the report is based, in this
;‘ ' case the file SALES. Later on we will see an example of a program where two data bases are
2 s. .combined in one report using the join operator,which is a standard relational database operator, see
.,-::. Date [17]. Furthermore the programmer defines a title for the report. At the very end of the program
B
he provides a screening condition, which, in this case, specifies the use of only those SALES
E:; » records whose DATE field is between 1980 and 1982. Such a screening condition can be any
X
L

PRI I IR T i T TV T I DI

R 2N L . w

R R AT TP I R TR U P S I SR YN R ¢ . R A R e T AT EIRCRPR O
AV '.‘L’:i._"i.‘;.g:“._'l.;\'.'-‘;\.:\(.‘-':p, AR SR SIS ;-‘.'nin.\ AP R AL I L PR PP b A RS -\.}‘:’-‘..1.') R S

K lal ol inrl

Fa” o

-~

N

i

ALvs

A

b~ o " p

e s N

e
IR o

e e

~

LA

o e Ku «ValaNa X N N A L T e A I S S R B N e Sy S M R L LS e

- . ave < - T'T'T',T'i"i—f‘i"‘
DA S A S

15

arbitrarily complex boolean expression over one or more fields of the database. In this example we
have used the built-in functions sum, columntotal, and rowtotal. These built-in functions

constitute the report generator special purpose commands which can be applied to any tabular report

being generated.
report
file SALES
title 'UNITS SOLD PER CUSTOMER'
list
by CUSTOMER
across YEAR
sum(UNITS)
rowtotal
columntotal
where YEAR in 1980..1982
end report
(2)
UNITS SOLD PER CUSTOMER
YEAR
1980 1981 1982
CUSTOMER UNITS UNITS UNITS TOTAL
COMP .DEVELOPMENT,LTD 23458 34563 43210 101231
ENGINEERING ASSOC. 5979 19820 0083 35782
BIGMONEY,INC. 08877 54438 78945 231260
BLACKMARKET ,LTD 23451 9983 32564 65998
SOFTTYEST ASSOC. 76590 65094 43679 185313
TOTAL 228355 183898 208381 619584
(b)

Figure 3.2: Program to Generate a Report and the Resulting Output

Figure 3.3 outlines the basic syntax of the report generator command. The user has to specify the

. file name(s) on which the report is based. Optionally a title can be specified. Possible verbs are list,
print, sort, sum, etc. The objects listed after the by clause will appear in one column of the tabular
report, those after the across clause create a new column for each different value, like YEAR in

Figure 3.2(a). An object is either a field of the database or any function (or computation) applied to

Py . i . . v a SV e W - 3 y " Y F 3| Q
i oo i SRt Bl A M O B e i e R A N N A A L T e R S A T LA ML A A e R

. one or more fields, for instance sum(UNITS) in Figure 3.2(a). The where clause provides for data
" screening such that only data records will be included in the report that fulfill the screening condition,
) which can be any boolean expression. The syntax of the screening condition is:

‘: where <(field-id> <bool-op> <test-values>

g, {and/or <field-id> <bool-o0p> <test-values>)

The possibie system functions that are usually provided are t00 numerous to list here, but they
~ . include formatting control, like page break specifications, and numerical functions, such as

computing averages, regression analysis, or simply the calculation of column and row totals.

b

report
o file <FILE NAME>
! [title <'TITLE TEXT'>)
B <VERB)
e by <OBJECT> [as <'TITLE'>] {<OBJECT> [as <'TITLE'>])
* [across <OBJECT> [as <'TITLE'>] {<OBJECT> as <'TITLE'>}]

[<SYSTEM FUNCTIONS>]

[where <SCREENING CONDITIOND>]
“g end report
"‘ Figure 3.3: The Syntax of the Report Generator Command
v,
o3 One might argue that the basic report generator statement as described in Figure 3.3 is not
;(powerful enough when more complex calculations are asked for. For this reason most AG's have
&
added some additional feature, such as the define feature which is shown in the program of Figure
o 3.4. This feature allows the user to temporarily gefine new fields (virtual fields) in the database and
¥
0
{' make use of these fields in the generation of the report. Actually we can view these fields as
<
R variables.
% Thus in Figure 3.4(a) for each SALES record the new fields DPRICE, NCOST, PROFIT, DPROFIT,
‘;:E and DIFF are computed and temporarily stored (the value of these fields depends on the number of
- units sold, if more than 200 units a special discount of 10% is granted). Note that the types of these
’ fields are extracted from the type definition in the database, i. e. the user is not concerned about this.
'y
b For example the system automatically determines the type of the new field DPRICE to be the same as
- for the field LSTPRICE, namely money. The basic syntax of the define statement is as follows:
N

~ e v Lo e, P oE L
R a5 WA ol

¥
..’I

e N

A

+y
XIS

£ Yo

¥ ,4:

i .
2 3l 4 R

-
.

)
0
POV

Syt

N

.
.

aaTe | R
*fslatat -"o - NN

g

",

il ")
A

1

1)

-

e
,._,:1
e

17

define
file SALES
if UNITS gt 200 then do
DPRICE=LSTPRICE
NCOST=UCOST
end
eise do
DPRICE=LSTPRICE * 0.9
NCOST=UCOST * 0.85
end
PROFIT=(LSTPRICE-UCOST) * UNITS
DPROFIT=(DPRICE~-NCOST) * UNITS
DIFF=DPROFIT-PROFIT
end define

report
file SALES
title *UNDISCOUNTED VERSUS DISCOUNTED PROFIT'
list
by YEAR
sum(UNITS) as °'TOTAL,UNITS®
PROFIT as ‘UNDISCOUNTED,PROFIT®
OPROFIT as 'DISCOUNTED'PROFIT'
DIFF as 'DIFFERENCE®
where YEAR in 1980..1981
end report

(a)

UNDISCOUNTED VERSUS DISCOUNTED PROFIT
TOTAL UNDISCOUNTED DISCOUNTED

YEAR UNITS PROFIT PROFIT DIFFERENCE

1980 62412 2,255,587.52 2,907 ,591.64 652,004.12

1981 87098 2,824,039.17 3,634,877.83 810,838.66
(b)

Figure 3.4: Report Involving Some More Complex Calculation

define
file <FILE NAME>

{it <SCREENING CONDITION> then <DEFINITION OF NEW FIELD(S)>
else <DEFINITION OF NEW FIELD(S)>)

[<DEFINITION OF ADDITIONAL FIELD(S)>]
end define

Note that the define program in Figure 3.4(a) contains an implicit loop since the calculation is

b

e

:‘-o‘i:

e
-
-

,.
IR

iy

ik

| crkde

| Sty

1 - ’.}W “h‘ f

LA

performed for each record in the database. This is one of the main differences between this program
and a program written in a conventional programming language. In the subsequent report generation
phase the newly defined fields can be used just like the fields physically stored in the database. In
this case the discounted profit (DPROFIT) is compared with the undiscounted profit (PROFIT) and the

difference (DIFF) is listed for the years 1980 and 1981.

Earlier in this paper it was stated that report generators are non-procedural. This, however, does
not mean that they cannot have subroutines. in Figure 3.5 we see an example of a parameterized
procedure. in this example the last two digits of the year and the PNAME (for PRODNAME) are
parameters. The program computes the total number of units sold of the product specified in the
parameter PNAME during the year YR. Note that the syntax requires us to prefix the formal
parameters by an ampersand whenever it is used in the program.

procedure SALES_CF_PROD
arguments YR:yy,PNAME: text

file SALES
title 'TOTAL UNITS SOLD OF &PNAME in 19&YR'
list

sum(UNITS) as °'TOTAL UNITS SOLD'
where YEAR is &YR
and PRODNAME is &PNAME
end procedure

This procedure can be invoked as follows:
exec SALES_OF_PROD (YR=>79,PNAME=>WORKSTATION)

Figure 3.5: Example of a Parameterized Procedure

Now let us consider an example of a report generation that combines two databases. For this
purpose in Figure 3.6 two more database tables are defined: STUDENT and PROFESSOR. Let us
-assume the user wants to list all professors of the CSC! department and the average GPA of their
advisees. This asks for a join of the two tables PROFESSOR and STUDENT. In Figure 3.7 these two
tables are joined on the fields ADVISOR and PROF_NAME. Then the program generates a listing of

all professors in the CSCI department together with the average GPA of their students. The syntax of

. EE L | T N R R . .
R e e et e e e e T e N AN S
. e

- v
A R e PRI
IR . ik R RN PR T T R c".i

the join operator is outlined as
join files (<FILE NAME>,<KFILE NAME>) matching (<FIELD>,<KFIELD>)

“t

T {matching (<FIELD>,<FIELD>)}
o Note that we can actually join two databases on more than one field. This means that the respective
; data records are only combined if they agree on all fields specified in the matching statement.
i ‘1 .
b

& schema
e table STUDENT key(STUD_NAME)

field STUD_NAME text heading 'STUDENT ,NAME'
N field ADVISOR text heading 'ADVISOR'
o~ field GPA number heading 'GRADE POINT,AVERAGE'
N N end table definition

o table PROFESSOR key(PROF._NAME)
R field PROF_NAME text heading 'PROFESSOR,NAME'
.-:f:é field DEPT text heading 'DEPARTMENT'
f:-‘f end table definition
$3

end schema definition

o

N Figure 3.6: Schema Definition of Tables STUDENT and PROFESSOR

-."‘ {
N

- report

file STUDENT
[£-.4 tile PROFESSOR

.r: join FILES (STUDENT,PROFESSOR) matching (ADVISOR,PROF_NAME)
<ol list
b2 by PROF_NAME

AVE(GPA) as 'AVERAGE,GPA'
; where DEPT is ‘CSCI'
‘:5, end report
W
} (2)
PROFESSOR AVERAGE GPA

S0 NAME OF HIS/HER STUDENTS

3-‘,:-4 -------------------------------------

g PROF. EASYGOING 3.95

& PROF. SMITH 3.25
iy PROF. TOUGHMAN 2.55

N . .

603
: | (b)

‘.
) Figure 3.7: Report Generation Using Two Tables

o

A

N
.o -

...........

3.3. Data Manipulation Language

in this section we will investigate another feature of application generators:the data manipulation

language. This language is used to maintain the data stored in the database. it enables the user to
N perform the following transactions:
_
‘:\,. (. - insert data
3v
e - update data
o - -delete data
s
£/l - perform integrity checks on the data
‘ The syntax of the data manipulation language follows closely the syntax of the report generator as far
‘ as this is possible, so that the user has to memorize as few concepts as possible. To modify a
W
?-"Hq database the user has to write a short program as illustrated in Figure 3.8. Then he has to provide the
data for this program. In our example we want to modify the database SALES. The program will take
‘
as input the INVOICE # and the PROD # and compare whether a record with these field values is
R ds
% \ already in the database. If so it updates the other fields according to the data provided in the data
- entry section (this is specified in the statements following on match do. If the record is not found in
K "l‘;
@: the database it will be inserted and the fields get the values defined in the data entry section.

The basic syntax of the data manipulation language is outiined in Figure 3.9. As usual, the first

: thing the user has to specify is the file he wants to modify. Then he has to specify the fieids of this
» " database that he wants to match with the entered data in the data entry section. Then the code for
RS
the case that the entered data matches some records in the database is given. This code is placed
\\’ after the key words on match do. This section can contain commands to update, delete, or insert
ol
3‘:' data records. Following this the code for the case that none of the records in the database matches
<7
X3 the entry is defined. This is indicated by the key word on nomatch do.
y,;;.;
e
b
‘Q..
i ‘
£
N

.......
.......

- L
o
3

o

A

KACATAY

21

modify

file SALES
match INVOICE#,PROD#
on match do

update
CUST#,UNITS,DATE

on nomatch do

. include

eond modify

Now the user has to provide the data, i.e. the fields INVOICE#,PROD¥#,

CUST#,UNITS, and DATE:

begin data
INVOICE#=1023
PROD#=132
CuST#=12
UNITS=200
DATE=11/30/79

INVOICE#=1024

on&.dau

Figure 3.8: Modification of the SALES Database

modify
file <FILE NAME)>
match <FIELD> {<FIELD>)
on match do
<CODE FOR THE MATCHING CASE>
on nomatch do
<CODE FOR THE NONMATCHING CASE>
end modify

begin data
<DATA ENTRY SECTION>
end data

Figure 3.9: Outiine of the Syntax of the Modify Statement

S T Rl e N e e T T N T S

- "ﬂ." T ey -'--'-‘-‘."-'-.. AR L)
AP, P R S WG RS SR R R SO

2

|

L L N Bet Y
A ;J\} -)‘n.}-.

kY

CXNXNKNG
B~ S

N g - am
F A A
T’ Lh e o YN

B

L]

3.4. Graphics Package

Another way to generate reports in an application generator is in the form of graphs. In this section
‘graphical report generation’ refers to report generation using the graphics package as distinct from
‘tabular report generation’ described in the Section 3.2. We will take a look at examples of graphical
reports, the language for graphical report generation, issues involved in their design and reasons for

their effectiveness as a programming tool.

Graphical reports can be of one of the following types.
- histograms
- piecharts
- barcharts
- curve plots

- scatter diagrams

All the features of the report generator, such as performing arithmetic, screening data etc. can be
used in graphical report generation. Thus one is able to produce reports having a greater visual

content with aimost the same ease.

The following examples illustrate graphical report generation. The schema definition of the
database used in the examples in this section is given in Figuré 3.10.
schema

table CARS key(CAR,COUNTRY)

field CAR text heading *NAME OF ,CAR'

field COUNTRY text heading ‘COUNTRY®

field PCOST money heading 'PRODUCTION,COST"
field SCOST money heading 'SALES,OVERHEAD"
field SALES number heading'NUMBER, SOLD"
field PRICE money heading'PRICE "

tield MPG number heading 'MILEAGE'

end tiable definition
end schema definition

Figure 3.10: Schema Definition of Table CARS

‘o e T a? q” a” " a N . -, . -
ARV SN TR P '_& AT '.\‘_ ~

‘*5&1‘-.‘-.‘-.‘;

“ Ik TRty v
7.'..'..'.'. .

PN
P

7R

4
T

-

.....

...........

23

The request in Figure 3.11 is a report in the form of a histogram of the total cost and price of the
various cars. Note that the over feature enables us to split the total cost into its components and
have them displayed one over the other in different shades; the and feature enables us to compare

the cost and price of each car by producing adjacent bars.
histogram PcosT 3 scosT BB PRice [

tile CARS 4ok

draw 'ﬂwm

PCOST over SCOST and PRICE

across CAR

where SALES gt 2000 "aok u
EOT

end

=]

TOYoTA

Figure 3.11: Histogram

AUDY M PEUs
CAR

The program in Figure 3.12 generates a barchart of the production cost and sales overhead of the
different cars. The use of the where clause screens the data, such that only cars of the specified

pcostT E4 ScosT [

CAR 10 K 20R ok 40K

.

three types are included.

barchart

file CARS 1
PCOST and SCOST
across CAR
where CAR="AUDI" M
or CAR="BMW" |
or CAR="TOYOTA"
end barchart %

JJu

ToYyoTA
Figure 3.12: Barchart

In Figure 3.13 a curve of the retail cost, dealer cost, and rpm (revolutions per minute) of the cars is

plotted against their fuel consumption.
in Figure 3.14 a piechart of the fuel consumption of the various cars is shown.

Now let us take a closer look at the language of our programs. The basic syntax for graphical

report generation is defined in Figure 3.15.

> _T“.' r—:'"“'—"'v‘c'“r';‘.v.i_‘v,.,.‘..-; Te T TR T T YT v T T

S B |

"‘ (A

-~ -
?.f') define TCO6T e PRICE --==~-
N file CARS :
o TCOST=PCOST+SCOST ox

ond define

L curve
O file CARS .
e draw ox
.- TCOST and PRICE
o across MPG
! end curve

~ ° 0 20 30 40
1‘," Figure 3.13: Curve Plot "MPG
-]
Rub]
R piechart \
; tile CARS —— TOYOTA
B draw
;: MPG
; across CAR

jj end

‘ Figure 3.14: Piechart
(,; MW ___~-

4y
} <definition partd> __ PEUGEOT
! <TYPE OF GRAPH>

N file <FILENAME>
Al [<optionsd>] CAR
¥y draw
f <DEPENDENT OBJECT> { over <DEPENDENT OBJECT>)
- { and <DEPENDENT OBJECT> { over <DEPENDENT OBJECT>})
i across CINDEPENDENT OBJECT>
where <SCREENING CONDITION)>

oA end <TYPE OF GRAPH>
2
N <DEPENDENT OBJECT> ::= <OBJ.NAME> [<OBJ.TITLE>] [<OBJ.SHADE>] [<0BJ.SCALE>]
\
'9'*9 CINDEPENDENT OBJECT> ::= <OBJ.NAME> [<TITLE>] [<OBJ.SCALE>]
g Figure 3.15: Syntax of Programs Using & Graphics Package
P

(‘
B o

tz .
b <TYPE OF GRAPH) can be histogram, piechart, barchart, scatter diagram, or curve. COEPENDENT
4 OBJECT refers to the attribute whose value is to be plotted in the graph. INDEPENDENT OBJECT>
5%
§ is the one against which the other attributes are to be plotted. Note the similarity of this syntax and the
)
4, syntax of tabular report generation. This similarity has been created deliberately to aid the users in

learning and using the application generators.

- TR w e w e
< AL AP S

—n ——— el

- 25
3 - :
.- . In addition to what is described above, it is also possible to supply optional information to the ‘
; graphics package in the form of specific titles and shades for the bars in the histograms (or ‘
" barcharts), types of lines to be used in the curve plots, and the display area in which the report is to be
/ generated. 1
- Now let us consider three very important characteristics of application generators. First, as in the
case of tabular report generators, the user need not concern himself with details of his data and its
‘ .organization and retrieval. One only needs to specify the data that one wants to see plotted.
X Secondly, it suffices to specify the desired graph at a very high level. The user does not have to
"‘ “program"” starting from graphical primitives. Finally the application generators provide a smooth
- . integration of report generation and graphics; without this integration it would be the responsibility of
ke the user to combine the two aspects of the system in his programs explicitly.
3
Ky . These three characteristics give the graphics packages of report generators considerable power
. and create a simple and convenient medium, so the user can communicate his requirements to the
) computer. However, we should not fail to note the limitations of these packages. They are not general
purpose graphics packages; they derive their power precisely by not being genera!l and being limited
By to a certain domain.
S)
4.Can an AG be used for General Purpose Programming?
3 in this section we examine the characteristics of application generators which distinguish them
) from programming languages. Then we analyse the possibility of combining the high leve! features of
é) application generators with general purpose programming languages.
i
W
g 4.1. Comparison of AG's with General Purpose Programming Languages
.‘S . Application generators are typically used in the context of a database management system. The

applications normally do not entail the use of explicit iteration or recursion in the programs. Most

often, they only involve applying the same operation on all records of a database (or all records which

3
3

v

L]

A
Y
T

s

o
g~

i
L 1.{:4,

QL oy
2P

“f
ol

obey a set of screening conditions). Hence, the application generators do not offer looping
constructs. For the same reason, application generators do not provide data structuring facilities or
typing mechanisms. They only make use of the data types occurring in the database involved in the

application.

A tabular comparison of programming languages and application generators is provided in Figure

4.1.

P EEECEttt e ettt ettt ettt ettt r ettt ettt ettt ettt ettt ettt ettt ettt tetette

Programming Languages | Application Generators

P e ol Y T S S B S e e T S e e S T

procedural; programs define
computations step by step

non-procedural; very high level
programs that state the required
results

usually non-data-intensive data-intensive

explicit iteration and loops implicit iteration
explicit typing mechanisms implicit typing mechanisms
very wide range of applications limited problem domains
detailed documentation necessary mostly self-documenting

supports fast and correct
prototyping

prototyping is usually slow and
errorprone

difficult to maintain easier to maintain

L Lt R e o R R e et S e A S o L e ot ol el o ol ol ol o Ll o o ol
Figure4.1: A Tabular Comparison of Application Generators
With General Purpose Programming Languages
In general we can say that programs written using an AG are very high level statements of the

required results. Hence those programs can be written faster, are self-documenting, and are easier to

-maintain. On the other hand general purpose programming languages have more computational

fiexibility than application generators. Programming languages gain this flexibility over application
generators by having explicit iteration constructs, data structures, such as arrays, records, pointers,

etc., and explicit typing mechanisms. All these features are presently missing in application

........
.....................

\f) ey
by zr

)

S generators.

2

™ Contemporary application generators typically provide an interface from a general purpose [
j' programming language to the database management system and to some of the high level AG
R commands. Graphically this interface can be described as in Fig. 4.2.

.;: .

) DBMS !
_j’a

general purpose
A progr. language AG
""2 commands
AG
(shared)

3 work data

A space r

!

et

3

) 1/0 device

o

S Figure 4.2: Organization of a Typical Interface Between &8 General! Purpose

. Programming Language and an AG

| 1 Fig. 4.2 shows that in those systems the application generator and the general purpose
E programming language can be viewed as two separate components. If the user wants to use some AG
N routine from within his program he has to create a (shared) work space in his program first and then
ol s

:’A‘ issue the AG command in the form of an external procedure call. Only the application generator has
E; access to the DBMS. The AG will store the resulting data in the user-provided work space, where it
& can then be accessed from within the general purpose programming language program.

A

%. The problem with this organization is that the use of the application generator commands is very
tedious. The user has to provide a workspace in form of records, arrays, or the like before he can
)

’ N execute the application generator commands. The application generator returns data and stores it in
N

?} the predefined workspace, from which the user can then retrieve it for processing. Since there is no
" real embedding of the application generator features in the general purpose programming language
f},. .

~~~~~~~ > ,'-_'- - . N .
-\A.:l -. x.-.'_ .‘-.. ot EES WA TP S . o




e g - -

)

s

| &

. - = - LRy

the user still has to explicitly iterate over the data stored in the workspace and retrieve each record
individually from there. Also the user has to know in advance the size of the resulting data in order to

reserve a sufficiently large work space.

4.2. Embedding Higher-Level Data Retrieval Constructs in Programming Languages

A more elegant way of designing languages for data intensive applications was followed in the
design of embedded data manipulation languages in general purpose programming languages, which
were summarized by Stonebraker and Rowe [18]). Examples of these are EQUEL [19], which is an
embedding of the database query language QUEL in the programming language C, THESEUS [20],
which embeds relational operators in the language Euclid. Schmidt [21] reports some work on
embedding relational constructs in Pascal by describing tuples essentially as Pascal records. Similar
work was done by Wasserman et al [22] in the form of integrating relational operators in a Pascal-like
language. But none of these efforts has gone as far as extending the high level application generator

facilities to their system.

To get a better idea of these systems let us look at an example program written in PLAIN [23]. The
program in Fig. 4.3 makes use of the external database tables CUSTOMER and SALES, similarly

defined as in section 3.

program NewYearsPresent:
external readonly {declaration of external relations)

CUSTOMER: relation[ key CUST#] of
CusT# :integer;
CUSTNAME :string;
CUSTADDR :string:

end CUSTOMER;

SALES:relation[key INVOICE#,PROD#] of
INVOICE# :integer;

DATE :string;
Cust# tinteger;
UNITS :integer;

LSTPRICE :float;
end SALES;

end external;




........

«

Tt
rd iy

procedure ComputeBonus;
imports CUSTOMER,SALES:readonly; {import of global var.)

_\‘:‘g'\' '

var

<A

~ Good_Lustomer:relation[key id] of {internal relation}

:j : id :integer;
_- total :float:
= name :string:

address:string;

by , end Good_Customer;

x

'7.: {In the following 1ines we declare two markings over SALES,CUSTMER)}
= cust:marking of CUSTOMER (CUST#,CUSTNAME,CUSTADDR):
X tempsales:marking of SALES (INVOICE#,PROD#,UNITS,LSTPRICE):

total,bonus:float;

o
. N begin

. Good._Customer:=[]:
3‘ cust:=CUSTOMER where CUSTADDR="°Los Angeles®" (select tuples and)
\ s> (CUST#,CUSTNAME ,CUSTADDR) ; {project on 3 attr.})
B foreach ¢ in cust { loop over all tuples in cust }
f‘ loop <byCustomer>
K - ¢ tempsales:=SALES where CUST#=c.CUST# and
[ DATE="*1982*" =>(INVOICE#,PROD#,UNITS,LSTPRICE):
K- ! total:=0;
p foreach t in tempseales { loop over all tuples )}
:}é loop <bySales>

§ total:=total+(t.UNITS®*t.LSTPRICE);
Pl repeat <(bySales>;

if total > 10000 then { add him to Good~Customer }
4 Good_Customer:+[<c.CUST#,total,c.CUSTNAME,c.CUSTADDR>];

:,, repeat <byCustomer>;

i

% - foreach gc in Good_Customer { loop over all tuples

AL loop <byGood_Customer>

— bonus:=gc.total/100; {generate listing of }
R writelin(gc.name,gc.address,bonus); {211 "good" customers}
) 2 repeat <byGood_Customer);

4'.‘

"‘3 ' end ComputeBonus;
—_— Computebonus; {call the procedure)

end NewYearsPresent.

AW

Figure 4.3: PLAIN Program to Compute the 1% Discount for all Customers in
L.A. Who Bought Goods for More Than $10,000 in 1982

s

2!

AR
L]

SRITICPC M N AN L LS S



| AN,
L 2L

T -
" o 53 l—’-lfl.’l_.‘

L -4 2P
- Fal

BT YN

5

!'{' ,‘ LR
2ale"a.

I
)
ba

N
3

-

Dy " LR -
g ‘1.'0‘,' q4 ey e By

*

The PLAIN program in Fig. 4.3 makes use of two external relations (e.g. SALES and CUSTOMER)
and determines all those customers in L.A. that have bought goods for more than $10,000 during the
year 1982. To do this one additiona! internal relation, Good.Customer, is declared, to which all the
“good” CUSTOMER-tuples are added. Furthermore two markings are declared in the program. A
marking is just a selection of certain tuples of the relation over which the marking was declared. For
more details we would like to refer the reader to Van De Riet [23]. The program structure is such that
for each customer in L.A., stored in the CUSTOMER relation, the program loops through the SALES
relation and sums up the value of their purchases, given by LSTPRICE*UNITS. !f this totals to more

than $10,000 the particular customer is added to the relation Good._Customer and gets printed out at

the end.

From the AG viewpoint the deficiencies of this program would be:

- tedious explicit iteration over all the records in the relation (or marking)

- low level computational details have to be specified; for example initializing the variable
total to zero in the above program

- high overhead of type and variable declarations, which are actually implicit in the
database definition

None of these deficiencies would be present in an AG based program. The above listed points are
common to all existing embedded database languages and therefore make these systems hard to use

for non-programmers.

One way of extending the power of application generators would be by following the same
approach as in embedding data manipulation languages in general purpose programming languages.
This approach consists of embedding the high level features of AG's in a programming language,

thereby achieving both, the ease of use of application generators as well as the computational

-flexibility of a conventional programming language. In such a hypothetical system the problem of

determining the "good"” customers could be solved as outlined in Fig. 4.4.

in this examplie (Fig. 4.4) we first compute the total field for each CUSTOMER tuple by implicitly

X 'P‘;l..rv.'. ..‘.$ L -".-_;.-' . .. - ;..‘:. -.: \_: ,..-._'-- .. et e ',"‘, \_~...—-~ . ..‘ -. e

-----




‘e e e &

ARCVCAR AL AL LN A SRS SN AL AR N CatiT A i .'_':'.7’ .i. Sl AR "l. Ad ...'_._‘}.‘_-" .ﬁ.“'__'."..v‘ 1-_"._‘:‘_\‘_ Y '_1

file CUSTOMER
define
totals
{ ftile SALES
sum by CUSTOMER.CUST#
LSTPRICE®UNITS
where DATE in 1982
end file SALES }
bonusstotal/100
end define

report
fist
CUSTNAME ,CUSTADDR, total,bonus
where total > 10000
and CUSTADDR in "Los Angeles”
end report
end file CUSTOMER.

Figure 4.4: Hypothetical AG Program for the "Good Customer" Problem

looping through the SALES database and summing up LSTPRICE*UNITS for identical CUST #'s.
Then the bonus is computed, again for each tuple in the CUSTOMER database, as 1% of the total.
Finally a report is generated where all the customers in L.A. whose total exceeds $10,000 are
ssiected. Comparing this with the PLAIN program in Fig. 4.3 we observe that it is definitely much
shorter and easier t0 understand since only the most relevant steps of the computation are specified.

However it is possibie that the AG program will be less efficienf.

4.3. Future Research

For the purpose of this paper we have sought to explain 1o the software engineering community
why application generators have proven so useful in the "edp world"”. As a future research area we
see the integration of application generator features in general purpose programming languages as a

.potentially powerful way to improve programmer productivity. This is the goal of our current research.

in a later paper we plan to give & more detailed presentation of such a system.




A LA LA

v

3
N
&)

10.

1".

12,

13.

14,

18.

16.
17.

18.

19.

References

Munson,J.B. and Yeh,R.T., “Report by the IEEE Software Productivity Workshop,”" San
Diego,Ca., 1881.

Boehm,B.W., “Software and its impact: A quantitative assessment,’ Datamation, May 1973, .
McCracken,D.D., A Guide To Nomad For Application Development, National CSS, 1980.

Martin,J., Application Development Without Programmers, Prentice Hall,Inc.,, Englewood
Clifts, New Jersey, 1882.

Druftel,L., Strategy for 8 DoD Software Initiative, Dept. of Defense, August 27, 1982, Volume 1
and 2

Tucker,A.B., Programming Languages, Mc Graw-Hill, Computer Science Series, 1977.
National CSS, “NOMAD 2: Reference Manual,” National CSS, Wilton, CT 06897, 1982.

Information Builders, Inc, “FOCUS Users Manual,” information Builders, Inc., 1250 Broadway,
New York, N.Y.10001, 1882,

MPG, “RAMIS 2: Users manual,” Mathematica Products Group, Inc., Princeton, N.J. 08540,
1882,

Johnson,R.C., “Automated Software Development Eliminates Application Programming,”
Electronics, June 1982, .

Ashton-Tate, “dBASE Il Users Manual,” Ashton-Tate, 3600 Wilshire, Los Angeles, Ca. 90010,
1981.

IBM, “IMS Application Development Facility (IMSADF),” IBM General Information Manual
GB21-9869-2, IBM Corporation, East Irving, Texas 75062, 1880.

Leavenworth,BM. and Sammet,Jean E., “An Overview of Nonprocedural Languages,”
Proceedings of a Symposium on Very High Level! Languages, Sigplan Notices, 1974.

Leavenworth,B.M., “Non-Procedural Data Processing,”” The Computer Journal, Jan 1876, .

Zloof,M.M., “QBE/OBE: a language for office and business automation,”” IEEE Computer, Vol.
14, No. 5, May 1981, pp. 13-23.

Williams,R.E. and King.B.L., The Power of VisiCalc, Management Information Source, 1882.
Date,C.J., An Introduction 10 Database Systems, Addison-Wesley Publishing Company, 1977.

Stonebraker,M. and Rowe.L., “Observations on Data Manipulation Languages and Their
Embedding in General Purpose Programming Languages,” Proceedings of the Third
international Conference on Very Large Data Bases, 1877, .

Stonebraker et al, “The Design and Implementation of INGRES,”” ACM-TODS, Vol. 1. No. 3,
1976, .




Ly ey T T e Y Lw, T e "C".f.".".1
|
|

- &
.-I:;:Z 20. Shopiro,J.E., “THESEUS-A Programming Language for Relational Databases,”” ACM-TODS,
e Vol. 4, No. 4, December 1979, pp. 483-517.
'}f-? 21, Schmidt, J.W., “Some High Level Language Constructs for Data of Type Relation,”
N ACM-TODS, Vol. 2, No. 3, Sept 1977, .
.
R 22. Wasserman, Al et al, “Revised Report on the Programming Language PLAIN,”
N ACM-SIGPLAN, May 1881, .
k .:\.
o 23. Van De Riet,R.P., Wasserman,A.l., Kersten M.L., and De Jonge W., “High Level Programming
Features for improving the Efficiency of a Relational Database System,"” ACM-TODS, Vol. 6,
-, No. 3, Sep 1981, ..
‘_"-:if 24. Codd.EF. “The 1881 Turing Award Lecture. Relational Database:A Practical Foundation for
o Productivity,” CACM, Vol. 25, No. 2, Feb 1982, .
25. SchmidtJW., “Type Concepts for Database Definition,” Proc. Int. Conf. on
Aot Databases:improving Usability and Responsiveness, Academic Press,New York, 1978, pp.
215-244.
o~..q
. Q‘f
'~ 26. Prywes,N.S,, Pnueli,A., and Shastry,S., “Use of a Nonprocedural Specification Language and
. Associated Program Generator in Software Development,” ACM Trans. on Progr. Lang. and
e Systems, Vol. 1, No. 2, October 1979, pp. 196-217.
;: . 27. M.Hammer,W.Howe,V.Kruskal,and I.Wladawsky, “A Very High Level Programming Language
e for Data Processing Applications,” CACM, Vol. 20, No. 11, Nov 1977, pp. 832-840.
- . 28.  Symposium on Very High Level Languages, SIGPLAN Notices, ACM, apri|'1974.
. :: 29. ZioofM. and deJong.S., “The system for business automation (SBA): programming
» language,” CACM, Vol. 20, No. 6, June 1877, pp. 385-395.
‘ 30. Wasserman,A.l, ‘A Software Engineering View of Data Base Management,” Proceedings of
the Fourth International Conference on Very Large Data Bases, 1978, .
K 31. Kersten M.L. and Wasserman A.l., “The Architecture of the PLAIN Data Base Handler,"
) Software-Practice and Experience, Vol. 11, Feb 1981, .
32.  Grochow,J.M., “Application Generators: An Introduction,” Proceedings of the 1982 National
i Computer Conference, AFIPS, Houston, Texas, Jun 1982.
o 33. Waldrop.J.H., “Application Generators: A Case Study,” Proceedings of the 1982 National

o
D‘l".’.

Computer Conference, AFIPS, Houston, Texas, Jun 1982,

.
PR ST R R B

~, 8,

Dl
"

34, Cardenas,A.F. and GraftonW.P., “Challenges and Requirements for New Application
Generators,”” Proceedings of the 1982 National Computer Conference, AFIPS, Houston,
Texas, June 1882.

35. Goodman,A., “Application Generators at IBM,” Proceedings of the 1982 National Computer
Conference, AFIPS, Houston, Texas, Jun 1882.

3
>

2PLS
} l‘l~‘~‘~.

1

[ 4

o~
oy

o

.

0, v 'I'f.;f...‘ PN A NPT R T T T e

. . v ety e e e

RV YV L(L-‘L O N T I, AP L






