
-FD-Ai7 159 AN ANALYSIS OF APPLICATION GENERATORS(U) UNIVERSITY OF i/i
SOUTHERN CALIFORNIA LOS ANGELES DEPT OF COMPUTER

L SCIENCE E HOROWITZ ET AL. MAR 83 TR-83-288
UNCLASSIFIED AFOSR-TR-83-131 RFOSR 82-0232 F/G 9/2 NLllEEEEEEEEllE
EEEEEEEEEEEEEE
*llllllmllum



LIA IL-2.

A - FA

i o~ i . . . . " . . . ._. , . . ..

* 15 1.4 1. 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

I.

'1 I 1 " " " - " " = " ... . . "' ' " " . .. . . . . . . ... . . . .. - - -" " " " " " " " " ;
: u- ¥ .,,,.Tr ,,-. ,- ,,,.. . . A -, . •/ .'- , .. : ", - .- .- . . ,. ... ,. ., *,-.. • ....., ' , .-.



-~1 7.1 .7 7 7. V ~~*~

S " AFOSR-TR- R 3 a 4

AN ANALYSIS OF APPLICATION GENERATORS

by

Ellis Horowitz
Alfons Kemper

Balaji Narasimhan

TR-83-208 March 1983

-CL

COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF SOUTHERN CALIFORNIAc.)
LOS ANGELES, (;AI. IFORNIA 90089-0782

LJ

01 Appr,,ve~')-' r:,ljao;
tdi.tri i

M E M E iL < ..o -. * * . .. . -



REPORT DOCUMENTATION PAGE.
la REPORT sECUnITY CLASSIFICATION,, lb. RESTRICTIVE MARKINGS

UNCLASSIFIED-
2.. SECURITY CLASSIFICATION AUTHORITY 3. OISTRISBUTION/AVAI LABILITY OF REPORT

_________________________________Approved for public release; distribution
2b. OECLASSIFICATION/DOWNGRADING SCHEDULE ulmtd

4. PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING OVPZANIZATION REPORT NUMBER(S)

TR8308 - - AOSR.TR. p,3-i jwn
L.NAME OF PERFORMING ORGANIZATION b. OFFICE SYM13OL 7&. NAME OF MONITORING ORGANIZATION

Uniersty f Suthrn lf~pil~kJ Air Force Office of Scientific Research
-Cal Iforna ________.

G&. ADDRESS (City, State and ZIP Code) .:* --.. . 7b. ADDRESS (City. Stabt and ZIP Code).
-.Computer 'Science Dart *t - L7_ ,'-_ teaii nomto

. .. i 1 eplmen . Directorate *.ofMteaia nomto
tVniVpriitI Par, Los Snee CA909Q8 ciences, Boili ng AFB.DC- 20332-

I&. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION-,, -. ( applicaba).- , - .-

* .*-AFOSR NM" AFOSA-.82 -02i2

ft. ADDRESS (City. Stair ad ZIP Code) - . ;... . ,10. SOURCE OF FUNDING NOS,

PRGA PROJECT TASK WORK UNIT.
Bolling AFB DC 20332 ELEMENT NO. NO. NO. NO.

11. TITLE lilude Security Ctanificatio.)

AN ANALYSIS-OF APPLICATION GEN ERATORS 61102F 2304 A2
12. PERSONAL AUTHOR(S)

Ellis Horowitz. Alfos Kemper. Balali Narasimha
13&. TYPE OF REPORT 13b. TIME COVEREDj 14. OATE OF REPORT MY.. 24o.. Day) 1. PAGE COUNT

Technical FROM___ TO T MAC%8 35
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 168. SUBJECT TERMS (Continue on reverse if neceuary and Idmntify by block numberi

FIELD GROUP sun. OR.

1 . ASTRACT (Continue on reverse if nectasary and identify by block nunaber)

-The continuing development of higher order programming languages has not yielded major
productivity improvements in the software development process. One often mentioned
mechanism for achieving significant orders of improvement are application generators,
such as RAMIS", NOMAD, and FOCUS. These systems have been applied to data intensive
business applications with phenomenal success. The purpose of this paper is to present
the basic components of application generators and show why they yield such large pro-
ductivity increases in the edp environment. The authors investigate the meaning of
nonprocedural programming and show how it exists in current application generators. Then
they analyze the possibility of extending application generators so that they may be used
for non-edp type applications.

2&. DISTRMOSLTION/AVAI LABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

'UNCLASSIFIED/UNLIMITED 9)SAME AS RIPT. 0OTIC USERS 03 UNCLASSIFIED

22aL NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
(inciude A #*a Codel

Dr. Robert N. Buchal 1(202) 767- 4939 14M



b

an analysis of application generators

Ellis Horowitz, Allons Kemper, and Balai Narasimhan

Computer Science Department

University of Southern California

Los Angeles, California 90089

Aooession For

NITIS GRA&I
DTIC TAB
Uannounced 5
Justificatio

By
Distribut ion/

Availability Codes

lAvail an=d/or
Dist Special

This work has been supported by the Air Force Office of Scientific Research under Grant no. AFOSR-
82-0232

%(k TTASi j. K ,

Chief, Technic-.i In1"ormntion Division

li . ' . ,. € -"-". " -.....' " . - . . . - . . . .



Abstract: The continued development of higher order programming languages has not yielded

major productivity improvements in the software development process. One often mentioned

mechanism for achieving significant orders of improvement are application generators, such as

RAMIS, NOMAD, and FOCUS. These systems have been applied to data intensive business

applications with phenomenal success. The purpose of this paper is to present the basic components

of application generators and show why they yield such large productivity increases in the edp

environment. We investigate the meaning of nonprocedurai programming and show how it exists in

current application generators. Then we analyze the possibility of extending application generators

so that they may be used for non-edp type applications.

* 
.



Table of Contents
1. Motivation and Focus 2
2. Todays Application Generators 4

2.1. Examples of Commercially Available Application Generators 5
2.2. The Basic Components of Application Generators 7

2.2.1. The Database Management Component 7
2.2.2. The Report Generator Component a
2.2.3. The Graphics Package Component 10
2.2.4. The Database Manipulation Language Component 11
2.2.5. Special Purpose Components 12

3. A Generic Application Generator 13
3.. Database Management System 13
3.. Report Generator 14
3.3. Data Manipulation Language 20
3.4. Graphics Package 22

4. Can an AG be used for General Purpose Programming? 25
4.1. Comparison of AG's with General Purpose Programming Languages 25
4.2. Embedding Higher-Level Data Retrieval Constructs in Programming Languages 28
4.3. Future Research 31



7.I4.7 7 -W. -

2

1. Motivation and Focus
The past quarter century has witnessed amazing improvement in our ability to fabricate

sophisticated hardware devices. The growth in the number of active elements per chip has been

doubling every few years for the past twenty five years. But this exponential growth has in no

measure been matched by productivity improvements at the software level [1]. One result of this fact

is that the cost of a computer system has shifted from being almost entirely hardware related to being

* almost entirely software related. The distribution of software cost versus hardware cost of a typical

system was given by Boehm [23 and is shown in the diagram of Figure 1.1.

1002

Hardware

Cost

Software

Cost

1955 1975 1985

Figure 1.1: Distribution of Software Versus hardware Cost
For a Typical Computer System

As pointed out by McCracken [3], todays software developers are facing the following challenges:

1. Increased demand for new applications

2. Increased complexity of new applications

3. Increased cost and decreased availability of skilled people

it is extremely unlikely that these demands can entirely be met by the careful application of

Sconventional software engineering methodologies and tools. What we need are techniques that gain

us orders of magnitude improvements in productivity. A recent IEEE meeting on software productivity

*[11IsaidIt this way-

Every panel observed that major increases in productivity for software engineering will
come about only through elimination of the number of skilled man hours required to



3

produce new software. This reduction can occur by: a) reducing the cost of each step in
%! the development/maintenance life cycle, b)eliminating need for a step in the life cycle, c)

I. reducing the number of iterations back through life cycle steps, or d) reducing the cost of
impact of change.

One approach to meet these challenges, which we investigate in this paper, are application

generators. Application generators, sometimes abbreviated AG, are software systems geared

primarily to support data intensive application development. AG's provide a very high level, special

purpose "programming" language with a user friendly syntax. Therefore AG's can easily be applied

* by the end-user, who is usually not sophisticated in computer skills.

Conventional wisdom holds that the software development process can be viewed as a series of

steps, consisting of: system specification, architectural design, detailed design, coding, testing and

debugging, documentation, and maintenance. When one is using an application generator he begins

S. by specifying a very limited prototype of the desired application and then incrementally extends and

modifies the prototype until it meets all of the requirements. This methodology has several

* Implications on the conventional life-cycle process. One, there is no coding phase in the usual sense.

eN The software specification is literally turned into an executable program. Two, testing and

maintenance are significantly reduced because the programmer returns to the specification when

changes have to be made. This specification is expressed as an application generator program, and

as such it is at a level much higher than a program written in a conventional programming language.

Therefore the testing and maintenance phases are simplified. Three, documentation is aided by the

fact that the program is easily readable. Four, the high level nature of the language permits less

sophisticated end-users to program directly. For all of these reasons people have observed that

application generators, where appropriate, offer large degrees of improvement in software

deveb'opment time [4].

* *.,~'But can the success of application generators in the world of edp be brought to other

environments? This sentiment was suggested recently by the DoD Software Initiative [5] which cited

application generators as one means for improved DoD software productivity. In this paper we intend



to look closely at some of the existing application generators to see precisely what facilities they offer

and In what form. In Section 2 we will describe the basic components that most of the existing

systems share. Then In Section 3 we hypothesize a generic application generator. Using this generic

system we discuss the language features it offers and write several programs as demonstrations.

*. Then in Section 4 we contrast application generators to general purpose programming languages

and discuss what would have to be done to create a hybrid of these two software systems.

2. Todays Application Generators
Application Generators have their origin in the early report generator systems, such as IBM's RPG

[6J. These software packages let the user generate reports at a very high level of description,

permitting him to avoid having to deal with low level issues such as page layout and data

representation. Todays application generators are substantial extensions of these report generators.

They address the need of the business world to have a uniform approach to data intensive

applications, i.e. database management, data manipulation, and data retrieval in the form of simple

database queries as well as the generation of sophisticated reports. Contemporary application

generators may also make use of the more recent hardware developments facilitating graphics

support. In addition some AG's include software modules for very specialized applications, such as

financial modelling or statistical analysis packages. In summary application generators typically

consist of the following modules:

1. database management system

2. report generator

3. database query language

4. graphics package

6. special purpose software



5

2.1. Examples of Commercially Available Application Generators

In order to get a better idea of the current state of application generators, we investigated the

following systems: NOMAD, RAMIS, FOCUS, ADF and dBASE 1i. In this section we briefly summarize

thir attributes.

* NOMAD:

NOMAD [3] was developed by National CSS, starting in 1973. Recently NOMAD has been extended

and is now available as NOMAD2 [7]. NOMAD2 supports three kinds of database structures:

- relational

-hierarchical

- hybrid combinations of hierarchical and relational structure

The hybrid database structure incorporates both hierarchical as well as relational features. This was

done in order to combine the efficiency of the hierarchical model with the flexibility of data access of

the relational sysem. In order to provide efficient and flexible data retrieval for a variety of

applications NOMAD supports a wide range of access methods such as keyed access, balanced tree

indexing, table look ups, etc. Thus NOMAD has the full capabilities of a database management

system, Including data manipulation, data integrity, and data security features.

In NOMAD the end-user can generate reports from the database using the list command. The

4 underlying data records of the report can be sorted, screened, and totalled by applying some very

high level language constructs such as the "select ... where..." command for data screening NCSS

has added high level graphics features to NOMAD2 to generate graphics reports on the screen. Most

of the scaling is done automatically by the system, but, if the user wishes, he can choose his own

scaling factors, thereby overwriting the predefined system parameters. Also the user specified

headings and legends are automatically put into place by the system.

FOCUS:

FOCUS [8), developed by Information Builders,lnc., is one of the most extensive application

generators available. It is based on a hierarchical database management system and provides an



94- - . . . ""-' '

inteactive data entry language, called FIDEL. Besides the high level report generator and a

*ophisticated terminal graphics package it has built in a wide range of special purpose software for

business applications. This covers statistical analysis functions and a financial modelling language.

For the more experienced user FOCUS has a host language interface to facilitate the access to

FOCUS files from a general purpose programming language, like FORTRAN or COBOL. Also the user

can redefine the syntax of FOCUS to suit his needs.

RAMIS:

RAMIS [9] was developed by Mathematics Products Group,lnc. RAMIS is designed specifically for

IBM mainframe computers. The RAMIS database is structured as a network of data segments, where

the segments can be in different files. In addition RAMIS supports a purely hierarchical data model.

Besides Its own files RAMIS can also Interface to DL1 and IMS files. The Records Management

System provides the user with a nonprocedural language for retrieving and processing data records.

The Report Preparation System of RAMIS is designed in the form of an English-like language and lets

the user retrieve, sort, calculate, and format data into tabular or graphic reports. In RAMIS the report

generator and the graphics language were designed to have a unified syntax.

dBASE 1l:

In recent years several systems for application generation have been designed for personal

computers [10]. One of these systems is dBASE II [11], which is a relational database system for

microcomputers. It was developed by Ashton-Tate in 1980 and runs under CP/M. In addition to the

database operations such as addition, deletion, update of records that one can perform using the

data manipulation language of dBASE I!, one can also generate reports from one or more databases.

The report generation facility is very concise and consists of a set of prompts from the system to the

user, about the different aspects of the report such as report heading, column headings, totals on

columns etc. The command language of dBASE If has the syntax of an Algol.like language. dBASE II

also provides a full.screen editor to set up a screen format for use as a data entry facility. Note that

this entire system costs significantly less than $1000.

. .. ...- - S- , - -. . . .. ..-.. - .- ,. ... ...-. .. . .... ... ...-... .-.



7

Application Development Facility (ADF):

Application Development Facility [12] was developed by IBM as an "installed user program" to be

used with their IMS database management system. Applications developed using ADF have a

common overall structure. Such an application is produced as a set of program modules tailored by

the applications developer to suit his specific application. The modules contain the programming

logic for the following tasks.

- dialog management

- data access

- application logic

- control of the interaction of the above modules

A Transaction Driver directs the execution of the application program so mat the menus, data

displays, and messages are joined to produce a complete application. ADF also supports non-

conversational and batch mode applications.

An application developer tailors the modules to suit his application by supplying a set of rules using

a simple, English-like language as input to a component of ADF, called the Rule Generator. These

rules are used internally by the transaction driver to control the functions of the modules at execution

time. Where programming is required by the special nature of an application, such programming can

be interfaced with the above modules.

2.2. The Basic Components of Application Generators

In this subsection we will inveatigate in detail the basic components of an application generator

which are present in most of the commercial systems.

2.2.1. The Database Management Component

All commercially available AG's have their own DBMS, and in addition support access to external

files as well. Typically the underlying data model is either hierarchical or relational. A database

usually consists of two files:

* . ., ' -',% - ,., ' .- .. - .. - -. - .. - - - .. - .,. .. - . - ..- - - . .,. .. , - - .....- . . -,, , . . . . .



the master file and

-*the data file

The master file contains user entered data format information describing a particular database, i.e.

type definition of fields, field names, relationship among different segments, etc. Creation of this

* master file is usually done interactively, such that the system displays some skeleton form for the

master file arnd the user, in this case the database administrator, has to fill in the blanks.

The data file contains the actual data, which is entered and modified via the database query

language(see section 2.5). In order to make access to this data as efficient as possible the user can

specify in the corresponding master file what access method is to be used and he can also specify the

key fields of the database, if any.

2.2.2. The Report Generator Component

One of the essential features of all application generators is the report generator feature. These

facilities are provided in the form of a special purpose r'iblanguage. The language of the report

generator is often characterized as non-procedural. This, however, does not mean that there are no

subroutines; in section 3 we will show an example of the use of a subroutine in report generation. The

characterization of the report generator as non-procedural is used in the sense of very high level. This

means that the programmer has to specify only the major steps of the computation but is not

concerned about the low level details, such as data representation or the exact sequence of

computation. In the literature, notably Leavenworth and Sammet [13] and Leavenworth (14], non-

procedural languages are often characterized by the fact that the user has to specify what he wants to

be done. But he can leave out the details of how the system is to accomplish this task. For this reason

* the term goal oriented language might be more appropriate to define the nature of these non-

procedural languages. Sammet [13] pointed out that all these terms are relative and depend on the

state of the art. For example, the first high level programming languages like Fortran and Algol6O were

considered as very high level with respect to assembly languages, which again were viewed as high

level relative to machine languages.

.,4 .



a) b) (open file EMPLOYEES>
for i:sl to MaxNumOfEmp1 do

begin
file EMPLOYEES
list NAME SALARY (retrieve it data record using

some existing retrieval path>
* <extract the NAME and SALARY fields>

writeln (NAME[l i ]SALARY[ i)

end
<close file EMPLOYEES>

Figure 2.1: Program Fragments in a) Report Generator
and b) Conventional Programming Language

To get a better understanding of the difference between using a non-procedural language, and a

conventional general purpose programming language, let us look at the program fragments of Figure

2.1. Both programs accomplish the same task, i.e. generating a list of all employees and their

4. respective salary from the database EMPLOYEES. Fig. 2.1 (a) shows the program as it would appear in

an Application Generator whereas the much longer version, shown in Fig. 2.1 (b), outlines the basic

steps of the program written in some conventional Pascal-like programming language. Note that the

* program in Fig. 2.1(a) is complete whereas Fig. 2.1(b) only shows an outline of the program to be

written. Two major low level details which are removed from the programmer's concern when he uses

an application generator are: the specification of explicit iteration over all data records and the

specification of the retrieval paths to obtain the data fields (e.g. NAME and SALARY) from the data

records. In a report generator the user can rely on associative referencing. This is a term describing

- the accessing of data based on certain characteristics associated to it, like field name or range of

possible values. This is in contrast to explicitly traversing some existing retrieval path or performing a

mearch over all possible elements in a certain data set, like a database relation. The user of an

application generator is not concerned with how the system is actually managing to retrieve the data.

* Furthermore the details of the report layout and conversion of the data to the appropriate output

* format are left to the system. In summary we can say that in a conventional programming language

one has to specify the program more in terms of how the system is supposed to do the computation.

Lb!



10

In an AG the user wites more in te'qns of what the outcome of the program should look like.

The syntax of the report generator sublanguage is typically very much like natural (English)

language. The reason for this Is twofold; for one the report generator is mostly used in business

applications where Cobol was, and still is, the primary programming language. It was felt that the

English-like syntax would ease the transition from Cobol to an application generator for most

programmers in that application domain. Another reason is that application generators were designed

to be used by the end-user, i.e. a business person with none or very little data processing experience.

The English-lIke syntax might help these users to adapt to the new system more quickl.

2.2.3. The Graphics Package Component

Recently application generators have begun to include a sophisticated graphics package which,

Just like the report generator, interfaces to the DBMS. The graphics package Is actually a special form

of the report generator, with the distinction that a graphical report is produced rather than tabular

* output. For ease of use the syntax of the graphics language is basically the same as for the report

- generator. The main difference is that the user has to specify in what kind of a graph he wants the

information to be reported. Typically application generators provide the following five kinds of

graphs:

-connected point graphs

N - histograms

- barcharts

-scatter diagrams

-piecharts

With the growing development of graphics hardware and software it can be foreseen that the

. graphics software in an application generator will become more sophisticated. One important

development on the horizon is automatic scaling and headings for graphs. Also color graphics and 3

dimensional representation of the information is already possible. Optimally an application generator

is connected to agraphics display terminal as well aaplotter tofacilitate interactive output on the

4.,



screen and also hardcopy output. For further explanation of the graphics package with an extensive

set of examples we refer the reader to section 3

2.2.4. The Database Manipulation Language Component

Ideally the database manipulation language should use the same syntactical structure as the other

U modules of the AG, namely the report generator and the graphics package. The database

.manipulation language must provide for interactive as well as batch processing of the database

modifications to be done. It has to include functions for the following operations:

- inserting data

-deleting data records

- updating data

- retrieving and listing of data records

-statement of consistency constraints

- statement of authority constraints

Hf the user wants to interactively edit the database the easiest syntactical way seems to be one in

which the system prompts the user for the necessary information which needs to be specified for the

corresponding operation. This can be done by displaying a skeleton table of the corresponding

database and letting the user fill in the blanks or modify the existing entries. This approach was taken

4, in the design of Ouery-By- Example, which was developed at IBM [15]. The data manipulation

language is mostly menu driven, i.e. the possible operations supplied by the system are being

selected via a menu. This eliminates the need for the user to memorize the complete syntax of the

system.

In addition to editing the data the user has also the possibility to modify the definition of the

database. In this case he has to edit the master file, i.e. the file with the type definition of the

corresponding database. If the modification of the master file leaves the database in an inconsistent

state the user will subsequently be prompted to edit the data in the corresponding database.



'p.,.12

2.2.5. Special Purpose Components

Many application generators include some special purpose software packages which consist of

functions that are useful In connection with the report generator and the graphics package to create

very specialized applications more easily. Like the other modules of an AG, the special purpose

~I software interfaces to the DBMS. The functions of this module are very often initiated via a menu, just

like the data manipulation language.

We summarize the main features of two such packages which are most common in AG's for

business applications. They are a software package for statistical analysis and another for financial

modelling. Most application generators include some form of a statistical analysis package, which is

especially useful for business forecasting applications. The spectrum of statistical tools covers

means and standard deviation, correlation coefficients, analysis of variance, exponential smoothing

and forecasting, and the like. To make the use of these tools more user-friendly they have been

designed as interactive tools. The user selects the desired operation and then the system will

automatically prompt him for the appropriate parameters. This makes the system more suitable for

the casual user, for he does not have to memorize all the details.

The financial modelling language is an extension to the report generator with the purpose of

creating financial statements, such as balance sheets or income and expense tables. It also supports

the creation of financial models, for example projected capital needs and budget consolidation. The

financial modelling language lets the user specify in an easy way how the particular columns of a

report are to be computed. This is very much like the VisiCalc [16] package, except that, again, the

financial modelling language of application generators interfaces with the data base management

system. This enables the user to compute certain fields from data stored in the database.

A



13

* •3. A Generic Application Generator

In this section we will describe a generic application generator. This AG has essentially all the

components described In the previous section. The syntax of this generic application generator has

been chosen to be similar to the one of the AG's introduced before. We will now explain the following

modules of the AG:

1. Database Management System

2. Report Generator

& Data Manipulation Language

4. Graphics Package

3.1. Database Management System

As was pointed out before, application generators are based on a database management system

(DBMS), which either employs a relational [3] or a hierarchical data model [8, 9]. In this presentation

we have chosen a relational DBMS Tables (relations) are defined by the database administrator in the

way shown In Fig. 3.1 below.

In this schema definition the three tables CUSTOMER, PRODUCT, and SALES are declared. For

each relation (table) a key is specified, which consists of one or more fields (attributes). A field is

*specified by its name, its type, and its heading. In our generic application generator there are four

built-in types, which are number(an integer), money(decimal number), date(in the form mmlddlyy),

and text(character string). The system can automatically extract the month, day, and year from

attributes of type date. If, for example, the field CUSTADDR of the CUSTOMER table was used in a

report the corresponding column would automatically be assigned the heading

CUSTOMER,ADDRESS (the comma specifies the word ADDRESS to be written below CUSTOMER).
$, The user can define virtual fields, I.e. pointers to fields of other tables. For example in Figure 3.1 the

fields CUSTNAME of the SALES and the CUSTOMER tables are identical for those records that have

a matching CUST # field.

~ ~. V~~<.*'..*.~ t;.:.



14

schema

table CUSTOMER key(CUST#)
field CUST# number heading'CUSTOMER, number'
field CUSTNAME text heading'CUSTOMER. NAME
field CUSTADDR text heading'CUSTOME R. ADDRESS'

40 end table definition

table PRODUCT key(PROD#)
field PROD number heading'PRODUCT, number'
field PRODNAME text heading'PRODUCTNAME'
field LSTPRICE money heading'LIST.PRICE'
field UCOST money heading'PRODUCTCOST'

end table definition

table SALES key(INVOICE#,PROD#)
field INVOICE# number heading' INVOICE.NUMBER'
field DATE date heading 'SALE.DATE'
field CUST# number heading 'CUSTOMER, NUMBER'
field PROD number heading' PRODUCT, NUMBER'
field UNITS number heading'UNITS, SOLD'
define CUSTNAME pointer CUSTNAME in table CUSTOMER key CUST#
define CUSTADDR pointer CUSTADDR in table CUSTOMER key CUST#

- define PRODNAME pointer PRODNAME in table PRODUCT key PROD
define LSTPRICE pointer LSTPRICE in table PRODUCT key PROD#
define UCOST pointer UCOST in table PRODUCT key PROD#

* -end table definition
end schema definition

Figure3.1: Database Definition

3.2. Report Generator

Let us consider a few examples of report generation over the database just defined. In Figure

3.2(b) a taLular report is created by the AG program shown in Figure 3.2(a). The report lists all the

customers together with the respective number of units that were sold to them in the years 1980

through 1982. First the programmer has to specify the database on which the report is based, in this

case the file SALES. Later on we will see an example of a program where two data bases are

.combined in one report using the join operator,which is a standard relational database operator, see

Date [17]. Furthermore the programmer defines a title for the report. At the very end of the program

he provides a screening condition, which, in this case, specifies the use of only those SALES

records whose DATE field is between 1980 and 1982. Such a screening condition can be any

S -'P''''' ¢ " " ' -' "" " -. " • " . " " -''.

n. m. . % -q ~ * .



15

arbitrarily complex boolean expression over one or more fields of the database. In this example we

have used the built-in functions sum, columntotal, and rowtotal. These built-in functions

constitute the report generator special purpose commands which can be applied to any tabular report

being generated.

report
file SALES
title 'UNITS SOLD PER CUSTOMER'

list
by CUSTOMER
across YEAR
sum(UNITS)
rowtotal
columntotal

where YEAR in 980..1982
end report

(a)

UNITS SOLD PER CUSTOMER

YEAR
1980 1981 1982

CUSTOMER UNITS UNITS UNITS TOTAL

CO4P.DEVELOPMENT,LTD 23458 34563 43210 101231
ENGINEERING ASSOC. 5979 19820 9983 35782
BIGMONEYINC. 98877 54438 78945 231260
BLACKMARKET.LTD 23451 9983 32564 65998
SOFTTEST ASSOC. 76590 65094 43679 185313

TOTAL 228355 183898 208381 619584

(b)

Figure3.2: Program to Generate a Report and the Resulting Output

Figure 3.3 outlines the basic syntax of the report generator command. The user has to specify the

file name(s) on which the report is based. Optionally a title can be specified. Possible verbs are list,

print, sort, sum, etc. The objects listed after the by clause will appear in one column of the tabular

report, those after the across clause create a new column for each different value, like YEAR in

Figure 3.2(a). An object is either a field of the database or any function (or computation) applied to

-'t U . '. ~ . .
-- * \ \; ;..: . q %. :% . ., - , , o:.,','''- .'''... .. ", " '*,"...i ...



. 16

one or more fields, for instance sum(UNITS) in Figure 3.2(a). The where clause provides for data

screening such that only data records will be included in the report that fulfill the screening condition,

which can be any boolean expression. The syntax of the screening condition is:

where (field-Id) (bool-op> (test-values>
(and/or (field-Id> (bool-op> (test-values>)

The possible system functions that are usually provided are too numerous to list here, but they

include formatting control, like page break specifications, and numerical functions, such as

computing averages, regression analysis, or simply the calculation of column and row totals.

report
file (FILE NAME>

[ title <'TITLE TEXT'>]
(VERB>

by (OBJECT> [as ('TITLE'>] ((OBJECT> [as ('TITLE')])
[across (OBJECT> [as ('TITLE'>] ((OBJECT> as ('TITLE'>)]
[(SYSTEM FUNCTIONS>]

[where (SCREENING CONDITION>]
end report

Figure 3.3: The Syntax of the Report Generator Command

One might argue that the basic report generator statement as described in Figure 3.3 is not

powerful enough when more complex calculations are asked for. For this reason most AG's have

added some additional feature, such as the define feature which is shown in the program of Figure

3.4. This feature allows the user to temporarily define new fields (virtual fields) in the database and

make use of these fields in the generation of the report. Actually we can view these fields as

variables.

Thus in Figure 3.4(a) for each SALES record the new fields DPRICE, NCOST, PROFIT, DPROFIT,

and DIFF are computed and temporarily stored (the value of these fields depends on the number of

units sold, if more than 200 units a special discount of 10% is granted). Note that the types of these

fields are extracted from the type definition in the database, i. e. the user is not concerned about this,

For example the system automatically determines the type of the new field DPRICE to be the same as

for the field LSTPRICE, namely money. The basic syntax of the define statement is as follows:



define
file SALES

if UNITS gt 200 then do
DPRICEwLSTPRICE
NCOSTuUCOST

end
* else do

DPRICE-LSTPRICE 0 0.g
NCOST=UCOST * 0.85

end
PROFXT-(LSTPRICE-UCOST) *UNITS
DPROFIT=(DPRICE-NCOST) *UNITS
DIFF=DPROF IT-PROF IT

end define

report
file SALES
tIteUNDISCOUNTED VERSUS DISCOUNTED PROFIT'

'U list
* by YEAR

sum(UNITS) as ITOTAL,UNITS'
PROFIT as 'UNDISCOUNTED.PROFIT'
DPROFIT as 'DISCOUNTED'PROFIT'
DIFF as 'DIFFERENCE'

'' * where YEAR In 1980..1981
end report

(a)

UNDISCOUNTED VERSUS DISCOUNTED PROFIT

TOTAL UNDISCOUNTED DISCOUNTED
YEAR UNITS PROFIT PROFIT DIFFERENCE

1980 62412 2.255,587.52 2,907.591.64 652.004.12
1981 87098 2.824.039.17 3.634.877.83 810.838.66

(b)

Figure 3.4: Report Involving Some More Complex Calculation

4 define
file (FILE NAME>

(if (SCREENING CONDITION> then (DEFINITION OF NEW FIELD(S)>
else (DEFINITION OF NEW FIELD(S)>)

[(DEFINITION OF ADDITIONAL FIELD(S)>)
end define

Note that the define program in Figure 3.4(a) contains an implicit loop since the calculation is

r



_ 18

performed for each record In the database. This is one of the main differences between this program

and a program written in a conventional programming language. In the subsequent report generation

phase the newly defined fields can be used just like the fields physically stored in the database. In

this case the discounted profit (DPROFIT) is compared with the undiscounted profit (PROFIT) and the

difference (DIFF) is listed for the years 1980 and 1981.

Earlier in this paper It was stated that report generators are non-procedural. This, however, does

not mean that they cannot have subroutines. In Figure 3.5 we see an example of a parameterized

procedure. In this example the last two digits of the year and the PNAME (for PRODNAME) are

parameters. The program computes the total number of units sold of the product specified in the

parameter PNAME during the year YR. Note that the syntax requires us to prefix the formal

parameters by an ampersand whenever it is used in the program.

procedure SALES-OFPROD
arguments YR:yyPNAME: text
file SALES
title 'TOTAL UNITS SOLD OF &PNAME in 19&YR'

list
sum(UNITS) as 'TOTAL UNITS SOLD'

where YEAR is &YR
and PRODNAME Is &PNAME

end procedure

This procedure can be Invoked as follows:

exec SALES.OF-PROD (YR->79,PNAME-)WORKSTATION)

Figure3.5: Example of a Parameterized Procedure

Now let us consider an example of a report generation that combines two databases. For this

purpose in Figure 3.6 two more database tables are defined: STUDENT and PROFESSOR. Let us

'assume the user wants to list all professors of the CSCI department and the average GPA of their

advisees. This asks for a join of the two tables PROFESSOR and STUDENT. In Figure 3.7 these two

tables are joined on the fields ADVISOR and PROF..NAME. Then the program generates a listing of

all professors in the CSCI department together with the average GPA of their students. The syntax of

,..4



..-.. . - -°-

- , .',19

the join operator is outlined as

join files ((FILE NAME>.<FILE NAME>) matching ((FIELD>.(FIELD>)j(matching (<FIELD>.(FIELD>))

Note that we can actually join two databases on more than one field. This means that the respective

data records are only combined if they agree on all fields specified in the matching statement.

schema

table STUDENT key(STUL-NAME)
. field STUD-NAME text heading 'STUDENTNAME'

field ADVISOR text heading 'ADVISOR'
field GPA number heading 'GRADE POINTAVERAGE'

end table definition

table PROFESSOR key(PROF,,NAME)
field PROF..NAME text heading 'PROFESSORNAME'
field DEPT text heading 'DEPARTMENT'

end table definition

end schema definition

Figure3.6: Schema Definition of Tables STUDENT and PROFESSOR

/

report
file STUDENT
file PROFESSOR
join FILES (STUDENTPROFESSOR) matching (ADVISORPROF-NAME)

list
by PROF..NAME

AVE(GPA) as 'AVERAGE,GPA'
where DEPT is 'CSCI'

end report

(a)

PROFESSOR AVERAGE GPA
NAME OF HIS/HER STUDENTS

PROF. EASYGOING 3.95
PROF. SMITH 3.25
PROF. TOUGHMAN 2.55

(b)

Figure3.7: Report Generation Using Two Tables



4 - -.- . -- *-. ** - .. *... * ., - -. * .. .- -

20

3.3. Data Manipulation Language

In this section we wilt investigate another feature of application generators:the data manipulation

' '~ language. This language is used to maintain the data stored in the database. It enables the user to

perform the following transactions:

- insert data

.update data

-delete data

-perform integrity checks on the data

The syntax of the data manipulation language follows closely the syntax of the report generator as far

as this Is possible, so that the user has to memorize as few concepts as possible. To modify a

database the user has to write a short program as illustrated in Figure 3.8. Then he has to provide the

data for this program. In our example we want to modify the database SALES. The program will take

as input the INVOICE#A and the PROD#A and compare whether a record with these field values is

already in the database. If so It updates the other fields according to the data provided in the data

- entry section (this is specified in the statements following on match do. If the record is not found in

the database it will be inserted and the fields get the values defined in the data entry section.

The basic syntax of the data manipulation language is outlined in Figure 3.9. As usual, the first

thing the user has to specify is the file he wants to modify. Then he has to specify the fields of this

database that he wants to match with the entered data in the data entry section. Then the code for

the case that the entered data matches some records in the database is given. This code is placed

after the key words on match do. This section can contain commands to update, delete, or insert

data records. Following this the code for the case that none of the records in the database matches

the entry is defined. This is indicated by the key word on nomatch do.



* 21

modify
file SALES

--- match INVOICE#.,PROD#
on match do

- update
CUST#.UNITS.DATE

on nomatch do
*- Include
end modify

Now the user has to provide the data. i.e. the fields INVOICE#.PROD#,
CUSTC.UNITS. and DATE:

begin data
INVOICE01023
PROD#-132
CUST#u12
UNITS-200
DATE-11/30/79

INVOICE#-1024

end data

Figure 3.8: Modification of the SALES Database

modify
file (FILE NAME>
match (FIELD> ((FIELD>)
on match do

<CODE FOR THE MATCHING CASE>
on nomatch do

<CODE FOR THE NONMATCHING CASE>
end modify

begin data

<DATA ENTRY SECTION>

end data

Figure3.9: Outline of the Syntax of the Modify Statement

4 4t



.4. 22

3,4. Graphics Package

-Another way to generate reports in an application generator is in the form of graphs. In this section

'graphical report generation' refers to report generation using the graphics package as distinct from

'tabular report generation' described in the Section 3.2. We will take a look at examples of graphical

reports, the language for graphical report generation, issues involved in their design and reasons for

their effectiveness as a programming tool.

Graphical reports can be of one of the following types.

-histograms

- piecharts

-barcharts

-curve plots

% -scatter diagrams

All the features of the report generator, such as performing arithmetic, screening data etc. can be

used in graphical report generation. Thus one is able to produce reports having a greater visual

* content with almost the same ease.

The following examples illustrate graphical report generation. The schema definition of the

database used in the examples in this section is given in Figure 3.10.

schema

table CARS key(CAR,COUNTRY)
field CAR text heading'NAME OF,CAR'
field COUNTRY text heading'COUNTRY'
field PCOST money heading'PRODUCT ION, COST'
field SCOST money heading'SALES, OVERHEAD'
field SALES number heading'NUMBER, SOLD'
field PRICE money heading'PRICE'

4 field MPG number heading'MILEAGE'
end table definition
end schema definition

Figure3.10: Schema Definition of Table CARS

",.

Z 4Z e



23

N - The request in Figure 3.11 is a report in the form of a histogram of the total cost and price of the

various car. Note that the over feature enables us to split the total cost into its components and
have them displayed one over the other in different shades; the and feature enables us to compare

the cost and price of each car by producing adjacent bars.

"histogram OsT 0 SCOST PRICE
file CARS
draw
PCOST over SCOST and PRICE
across CAR
where SALES gt 2000

Figur*3.11: Histogram W ill_________
hV AUDI BMWN P11EOr OYoIA

CAR
- The program in Figure 3.12 generates a barchart of the production cost and sales overhead of the

different cars. The use of the where clause screens the data, such that only cars of the specified

three types are included. PCosT O GCOST

b a rc h a rt C__ _o_

file CARS
draw AUDI
PCOST and SCOST
across CAR

, where CARs"AUDI" BMW
ior CAR-"BMW"

or CAR-"TOYOTA"
end barchart

'TOYOTA
Figure 3.12: Barchart

In Figure 3.13 a curve of the retail cost, dealer cost, and rpm (revolutions per minute) of the cars is
plotted against their fuel consumption.

In Figure 3.14 a piechart of the fuel consumption of the various cars is shown.

Now let us take a closer look at the language of our programs. The basic syntax for graphical

report generation is defined in Figure 3.15.

'p



24

defineT06PRC
filie CARS46
TCOST-PCOST4.SCOST

end def In*
curve * S

file CARS o
draw
TCOST and PRICE -

across MPG
end curve __________________

0 so 20 30 j
Figure 3.13: Curve Plot MPG

piec her 
AUD

file CARS TYT
draw

MPG
across CAR

-~ end

Figure 3.14: Piechart

(definition part> N...PEUGSLOT
(TYPE OF GRAPH>

file <FILENAME>
[ (options> JCAR
draw

<DEPENDENT OBJECT)> over (DEPENDENT OBJECT>)
(and <DEPENDENT OBJECT> { over <DEPENDENT OBJECT>))

across <INDEPENDENT OBJECT>
where (SCREENING CONDITION>

end <TYPE OF GRAPH>

<DEPENDENT OBJECT) ::a (OBJ.NAME> [<OBJ.TITLE)) [<OBJ.SHADE)J [<OBJ.SCALE)J

(INDEPENDENT OBJECT> ::- <OBJ.NAME> [(TITLE>) [<OBJ.SCALE>)

Figure3.15: Syntax of Programs Using a Graphics Package

(TYPE OF GRAPH) can be histogram, piechart, barchart, scatter diagram, or curve. (DEPENDENT

OBJECT> refers to the attribute whose value is to be plotted in the graph. <INDEPENDENT OBJECT>

is the one against which the other attributes are to be plotted. Note the similarity of this syntax and the

syntax of tabular report generation. This similarity has been created deliberately to aid the users in

* learning and using the application generators.



* 25

* In addition to what is described above, it is also possible to supply optional information to the

graphics package In the form Of Specific titles and shades for the bars in the histograms (or

barcharts), types of lines to be used in the curve plots, and the display area in which the report is to be

generated.

Now let us consider three very important characteristics of application generators. First, as in the

case of tabular report generators, the user need not concern himself with details of his data and its

organization and retrieval. One only needs to specify the data that one wants to see plotted.

Secondly, It suffices to specify the desired graph at a very high level. The user does not have to

Uprogram" starting from graphical primitives. Finally the application generators provide a smooth

integration of report generation and graphics; without this integration it would be the responsibility of

the user to combine the two aspects of the system In his programs explicitly.

* These three characteristics give the graphics packages of report generators considerable power

and create a simple and convenient medium, so the user can communicate his requirements to the

computer. However, we should not fail to note the limitations of these packages. They are not general

purpose graphics packages; they derive their power precisely by not being general and being limited

to a certain domain.

4- Can an AG be used for General Purpose Programming?
In this section we examine the characteristics of application generators which distinguish them

from programming languages. Then we analyse the possibility of combining the high level features of

application generators with general purpose programming languages.

4.1. Comparison of AG's with General Purpose Programming Languages

Application generators are typically used in the context of a database management system. The

applications normally do not entail the use of explicit iteration or recursion in the programs. Most

often, they only involve applying the same operation on all records of a database (or all records which

-&



- - .- - - - , . . ... ..;.7 , '.. .

26

obey a se of screening conditions). Hence, the application generators do not offer looping

constructs. For the same reason, application generators do not provide data structuring facilities or

typing mechanisms. They only make use of the data types occurring in the database involved in the

application.

A tabular comparison of programming languages and application generators is provided in Figure

4.1.

Programming Languages Application Generators

procedural: programs define non-procedural; very high level

computations step by step programs that state the required
results

usually non-data-Intensive data-intensive

explicit iteration and loops implicit iteration

explicit typing mechanisms implicit typing mechanisms

very wide range of applications limited problem domains

detailed documentation necessary mostly self-documenting

prototyping is usually slow and supports fast and correct

errorprone prototyping

difficult to maintain easier to maintain

Figure4.1: A Tabular Comparison of Application Generators
With General Purpose Programming Languages

In general we can say that programs written using an AG are very high level statements of the

required results. Hence those programs can be written faster, are self-documenting, and are easier to

maintain. On the other hand general purpose programming languages have more computational

flexibility than application generators. Programming languages gain this flexibility over application

generators by having explicit iteration constructs, data structures, such as arrays, records, pointers,

etc., and explicit typing mechanisms. All these features are presently missing in application

- :-:...: :... ,...'.* ,-.:,,.



2?

,,, generatos.

Contemporary application generators typically provide an interface from a general purpose

programming language to the database management system and to some of the high level AG

commands. Graphically this Interface can be described as in Fig. 4.2.

DBMS

general purpose
progr. language AG

(Shared~l commands A

work . data.
space

a.,,.

Figure4.2: Organization of a Typical Interface Between a General Purpose
Programming Language and an AG

Fig. 4.2 shows that in those systems the application generator and the general purpose

programming language can be viewed as two separate components. If the user wants to use some AG

routine from within his program he has to create a (shared) work space in his program first and then

Issue the AG command in the form of an external procedure call. Only the application generator has

access to the DBMS. The AG will store the resulting data in the user-provided work space, where it

can then be accessed from within the general purpose programming language program.

The problem with this organization is that the use of the application generator commands is very

tedious. The user has to provide a workspace in form of records, arrays, or the like before he can

execute the application generator commands. The application generator returns data and stores it in

the predefined workspace, from which the user can then retrieve it for processing. Since there is no

real embedding of the application generator features in the general purpose programming language



28

_ the user still has to explicitly Iterate over the data stored in the workspace and retrieve each record

Individually from there. Also the user has to know in advance the size of the resulting data in order to

reserve a sufficiently large work space.

4.2. Embedding Higher-Level Data Retrieval Constructs In Programming Languages

A more elegant way of designing languages for data intensive applications was followed in the

design of embedded data manipulation languages in general purpose programming languages, which

were summarized by Stonebraker and Rowe [18]. Examples of these are EQUEL [19], which is an

embedding of the database query language OUEL in the programming language C, THESEUS [20],

which embeds relational operators in the language Euclid. Schmidt [21] reports some work on

embedding relational constructs in Pascal by describing tuples essentially as Pascal records. Similar

work was done by Wasserman et al [22] in the form of integrating relational operators in a Pascal-like

language. But none of these efforts has gone as far as extending the high level application generator

facilities to their system.

To get a better idea of these systems let us look at an example program written in PLAIN [23]. The

program in Fig. 4.3 makes use of the external database tables CUSTOMER and SALES, similarly

defined as in section 3.

program NewYearsPresent;

external readonly (declaration of external relations)

CUSTOMER: relation[key CUST#] of
CUST# :Integer;
CUSTNAME :string;
CUSTADDR :string;

end CUSTOMER;

SALES:relation[key INVOICE#.PROD#] of
INVOICE# :Integer;
DATE : string:
CUST# :integer;
UNITS :Integer;
LSTPRICE :float;

end SALES;

end external;



'-.

procedure ComputeBonus;

Imports CUSTOMER.SALES:roadonly; (import of global var.)

var

Good._Xustomer:relation[key id] of (internal relation)
id :Integer;
total :float;
name : string:
address: string;

end GoodCustomer;

{In the following lines we declare two markings over SALESCUSTMER)
cust:marking of CUSTOMER (CUST#.CUSTNAME.CUSTADDR):
tempsales: marking of SALES (INVOICE#, PROD#, UNITS, LSTPRICE);
total bonus: float;

begin
U, Good.Customer:w[]:

cust:=CUSTOMER where CUSTADDR=.0Los Angeles* " (select tuples and)
•)(CUST#,CUSTNAME.CUSTADDR); (project on 3 attr.)

foreach c In cust ( loop over all tuples in cust)

loop (byCustomer>
tempsales:-SALES where CUST#=c.CUST# and

DATEa*019820" u>(INVOICE#,PROD#.UNITSLSTPRICE);
total :-O;

foreach t In tempseles ( loop over all tuples )
loop <bySales>

total :utotal+(t.UNITS*t.LSTPRICE);
repeat (bySales>;

If total > 10000 then { add him to Good-Customer )
Good.;.Customer: [<c.CUST#,total,c.CUSTNAME,c.CUSTADDR>];

repeat <byCustomer>;

foreach gc in Good.Customer ( loop over all tuples
loop <byGoodCustomer>

bonus:agc.total/l00; (generate listing of }
writeln(gc.name,gc.addressbonus); (all "good" customers)

repeat (byGood.-Cus tome r>:

end ComputeBonus;

Computebonus; (call the procedure)

end NewYearsPresent.

Figure4.3: PLAIN Program to Compute the 1% Discount for all Customers in
L.A. Who Bought Goods for More Than $10,000 in 1982

'I.



The PLAIN program in Fig. 4.3 makes use of two external relations (e.g. SALES and CUSTOMER)

and determines all those customers in L.A. that have bought goods for more than $10,000 during the

yer 1982. To do this one additional internal relation, Good,.Customer, is declared, to which all the

Wgood" CUSTOMER-tuples are added. Furthermore two markings are declared in the program. A

marking is just a selection of certain tuples of the relation over which the marking was declared. For

more details we would like to refer the reader to Van Do Riet [23]. The program structure is such that

for each customer in L.A., stored in the CUSTOMER relation, the program loops through the SALES

relation and sums up the value of their purchases, given by LSTPRICEOUNITS. If this totals to more

tha $10,000 the particular customer is added to the relation Good-Customer and gets printed out at

the end.

From the AG viewpoint the deficiencies of this program would be:

- tedious explicit iteration over all the records in the relation (or marking)

-low level computational details have to be specified; for example initializing the variable
total to zero in the above program

-high overhead of type and variable declarations, which are actually implicit in the
database definition

None of these deficiencies would be present in an AG based program. The above listed points are

common to all existing embedded database languages and therefore make these systems hard to use

for non-programmers.

One way of extending the power of application generators would be by following the same

approach as in embedding data manipulation languages in general purpose programming languages.

This approach consists of embedding the high level features of AG's in a programming language,

thereby achieving both, the ease of use of application generators as well as the computational

-flexibility of a conventional programming language. In such a hypothetical system the problem of

determining the "good" customers could be solved as outlined in Fig. 4.4.

In this example (Fig. 4.4) we first compute the total field for each CUSTOMER tuple by implicitly



.. 31

file CUSTOMER

define
totals

( file SALES
sum by CUSTOMER.CUSTI

LSTPRICEOUNITS
where DATE In 1982

end file SALES )
bonus-total/100

end define

report
list

CUSTNAME, CUSTADDR.total ,bonus
where total > 10000

and CUSTADDR in "Los Angeles"
end report

end file CUSTOMER.

Figure 4.4: Hypothetical AG Program for the "Good Customer" Problem

* .,I looping through the SALES database and summing up LSTPRICEOUNITS for identical CUST#'s.

Then the bonus is computed, again for each tuple in the CUSTOMER database, as 1% of the total.

Finally a report is generated where all the customers in L.A. whose total exceeds $10,000 are

selected. Comparing this with the PLAIN program in Fig. 4.3 we observe that it is definitely much

shorter and easier to understand since only the most relevant steps of the computation are specified.

However it is possible that the AG program will be less efficient.

4.3. Future Research

For the purpose of this paper we have sought to explain to the software engineering community

why application generators have proven so useful in the "edp world". As a future research area we

see the integration of application generator features in general purpose programming languages as a

potentially powerful way to improve programmer productivity. This is the goal of our current research.

In a later paper we plan to give a more detailed presentation of such a system.

i. "

_ . , : • ; IA ., .- , .. -,- .. *.,,* -. .,, .. ,..-. .. '-.' - ... -.. ... . . - -. ,-



* - 32

* •References

1. Munson,J.B. and Yeh,R.T., "Report by the IEEE Software Productivity Workshop," San
DiegoCa., 1981.

2. BoehmB.W., "Software and its impact: A quantitative assessment," Datamation, May 1973,.

3. McCracken,D.D., A Guide To Nomad For Application Development, National CSS, 1980.

4. Martin,J., Application Development Without Programmers, Prentice Hall,Inc., Englewood
Cliffs, New Jersey, 1982.

5. Druffel,L., Strategy for a DoD Software Initiative, Dept. of Defense, August 27, 1982, Volume 1
and2

6. Tucker,A.B., Programming Languages, Mc Graw-Hill, Computer Science Series, 1977.

7. National CSS, "NOMAD 2: Reference Manual," National CSS, Wilton, CT 06897, 1982.

8. Information Builders, Inc, "FOCUS Users Manual," Information Builders, Inc., 1250 Broadway,
New York, N.Y.1 0001, 1982.

9. MPG, "RAMIS 2: Users manual," Mathematica Products Group, Inc., Princeton, N.J. 08540,
1982.

4b

10. Johnson,R.C., "Automated Software Development Eliminates Application Programming,"
Electronics, June 1982,.

11. Ashton-Tate, "dBASE II Users Manual," Ashton-Tate, 3600 Wilshire, Los Angeles, Ca. 90010,
1981.

12. IBM, "IMS Application Development Facility (IMSADF)," IBM General Information Manual
GB21-9869-2, IBM Corporation, East Irving, Texas 75062, 1980.

13. Leavenworth,B.M. and Sammet,Jean E., "An Overview of Nonprocedural Languages,"
Proceedings of a Symposium on Very High Level Languages, Sigplan Notices, 1974.

14. LeavenworthB.M., "Non.Procedural Data Processing," The Computer Journal, Jan 1976,.

15. Zloof,M.M., "OBE/OBE: a language for office and business automation," IEEE Computer, Vol.
14, No. 5, May 1981, pp. 13-23.

16. Williams,R.E. and King.B.L., The Power of VisiCaIc, Management Information Source, 1982.

17. Date,C.J., An Introduction to Database Systems, Addison.Wesley Publishing Company, 1977.

18. StonebrakerM. and Rowe.L., "Observations on Data Manipulation Languages and Their
Embedding in General Purpose Programming Languages," Proceedings of the Third
International Conference on Very Large Data Bases, 1977,.

19. Stonebraker et al, "The Design and Implementation of INGRES," ACM-TODS, Vol. 1. No. 3,
1976,.



33
£

20. Shopiro,J.E., "THESEUS-A Programming Language for Relational Databases," ACM-TODS,
Vol. 4, No. 4, December 1979, pp. 493.517.

21. Schmidt,J.W., "Some High Level Language Constructs for Data of Type Relation,"
ACM-TODS, Vol. 2, No. 3, Sept 1977,.

22. Wasserman, A.I. et l, "Revised Report on the Programming Language PLAIN,"
ACM-SIGPLAN, May 1981,.

23. Van Do Riet,R.P., Wasserman,A.I., Kersten,M.L., and De Jonge,W., "High Level Programming
Features for Improving the Efficiency of a Relational Database System," ACM-TODS, Vol. 6,
No. 3, Sep 1981,.

24. Codd,E.F., "The 1981 Turing Award Lecture. Relational Database:A Practical Foundation for
Productivity," CACM, Vol. 25, No. 2, Feb 1982,.

25. SchmidtJ.W., "Type Concepts for Database Definition," Proc. Int. Conf. on
Databases:Improving Usability and Responsiveness, Academic PressNew York, 1978, pp.215-244.

26. Prywes,N.S., Pnueli,A., and Shastry,S., "Use of a Nonprocedural Specification Language and

Associated Program Generator in Software Development," ACM Trans. on Progr. Lang. and
Systems, Vol. 1, No. 2, October 1979, pp. 196.217.

27. M.Hammer,W.Howe,V.Kruskal,and I.Wladawsky, "A Very High Level Programming Language
for Data Processing Applications," CACM Vol. 20, No. 11, Nov 1977, pp. 832-840.

28. Symposium on Very High Level Languages, SIGPLAN Notices, ACM, april 1974.

29. Zloof,M. and deJong,S., "The system for business automation (SBA): programming
language," CACM, Vol. 20, No. 6, June 1977, pp. 385.395.

30. Wasserman,A.l., "A Software Engineering View of Data Base Management," Proceedings of
the Fourth International Conference on Very Large Data Bases, 1978,.

31. Kersten,M.L. and Wasserman,A.l., "The Architecture of the PLAIN Data Base Handler,"
Software-Practice and Experience, Vol. 11, Feb 1981,.

32. Grochow,J.M., "Application Generators: An Introduction," Proceedings of the 1982 National
Computer Conference, AFIPS, Houston, Texas, Jun 1982.

33. Waldrop.J.H., "Application Generators: A Case Study," Proceedings of the 1982 National
Computer Conference, AFIPS, Houston, Texas, Jun 1982.

34. Cardenas,A.F. and Grafton,W.P., "Challenges and Requirements for New Application
Generators," Proceedings of the 1982 National Computer Conference. AFIPS, Houston,
Texas, June 1982.

35. Goodman,A., "Application Generators at IBM," Proceedings of the 1982 National Computer
Conference. AFIPS, Houston, Texas, Jun 1982.

Jb




