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AN AZIMUTH RATE INERTIAL NAVIGATION SYSTEM

Ren Sicong (Northwestern Polytechnical University) and
Zhao Yongkang (Baocheng Instruments Factory)

Abstract

This paper proposes a new inertial navigation system com-

bining the platform type and strap-down type inertial

navigation systems. In this system, the azimuth rate platform

without azimuth stabilized loop, azimuth coordinate resolver

and synchronizer are used. The azimuth angles of the platform

and vehicle are obtained by an integrator from azimuth rate

signals measured by an azimuth gyroscope supported on a hori-

zontalgimbal. This type of inertial navigation system is

suitable for vehicles without large angle pitching maneuvers

such as transports, aerodynamic and ballistic missiles etc.

This paper discusses the operational principles of the azimuth

rate platform, mechanization equations, distinguishing features

of initial alignment, and the calibration and compensation for

drifts of gyroscopes; at the same time, error propagation

characteristics caused by various major error sources for navi-

gation positioning, velocity and attitude are simulated on a

computer. In the conclusion, we point out that the simplicity

of the platform structure, smail volume and weight, high relia-

bility, and the possibility of calibration and compensation for

drifts of the azimuth gyroscope are the outstanding advantages

of this inertial navigation system. Furthermore, if we use a

special optical system coordinated with known azimuth angles

and latitudes of land marks, it is not only possible to realize

fast alignment but also the calibration and compensation of

horizontal gyroscopes.

I. Putting Forward the Problem and Brief Introduction of the
Platform Structure



1Q Ia. Z . - .A . F -7 -7 77- 7 17 .7

Even though there are presently many types of inertial

navigation and guidance systems widely used in aeronautics,

marine navigation as well as aerodynamic guided missiles, yet

they can basically be summed up in the two large categories of

the platform type and strap-down type.

The basic distinguishing features of the platform type

system are that it uses a stabilized loop to separate the move-

ments of the inertial device passing the gimbal and the vehicle

thus causing them to be in an excellent operating environment

and their dynamic ranges to be relatively small. It especially

causes the influence of the gravitational acceleration to de-

crease to minimum when the semi-analytic type system is operating

in a horizontal coordinate system. At the same time, the com-

puted relationship is also relatively simple which proves the

high accuracy of the system. However, the major drawbacks of the

system are that the structure of the system is complex, manu-

facturing costs are very high, the volume and weight are rela-

tively large and at the same time, the number of gimbals and

slip rings are quite numerous so that the reliability is somewhat

affected etc.

The inertial device of the strap-down system is directly

strapped on the vehicle and thus its major advantages are its

structure is simple, reliability good and the attitude information

which does not require an electromechanical component for switch-

ing over has relatively high precision; however, the operating

environment of the inertial device is adverse especially when the

vehicle carries out sharp maneuvers as well as for their dynamic

range which must be very wide and the extremely harsh require-

ments for the gyroscope. Furthermore, because the direction of

the inertial device facing the gravitational field is constantly

changing, the compensation technique for its errors and gravita-

tional force is quite complex; requirements for the word length,

speed and storage capacity of the computer are relatively high.

2
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Therefore, we encounter very large difficulties in guaranteeing

the operating precision of the strap-down system.

For a large number of vehicles, because of structural,

mechanical and other specific reasons, when maneuvering, the

angular rate difference of the roll and yaw movements is very

far. For example, for common aircraft, when the roll angular

rate can reach or exceed 360 degrees per second, the yaw angular

rate is commonly only 2-3 degrees per second. The maximum cannot

exceed 10 degrees per second. In this way, if we say we want to

use a conventional inertial gyroscope to accurately measure the

maximum angular rate of 10 degrees per second and not be able to

have very great difficulties, it will be very difficult to use

it to measure angular rates above 360 degrees per second. For

just this reason, in order to fully bring into play the advan-

tageous points of the platform and strap-down inertial naviga-

tion system, we propose a new azimuth rate inertial navigation

system which can simplify the platform, lower the manufacturing

costs and raise reliability. The platform which it uses elimin-

ated the azimuth stabilized loop, azimuth coordinate resolver

and azimuth synchronizer of the common three axis platform. The

azimuth angles of the platform and vehicle are derived by an

integrator from azimuth rate signals measured by an azimuth rate

gyroscope supported on a horizontal gimbal.

When this type of system was first brought forth in 1978,

it was called the "strap-down azimuth inertial navigation system"

or the "semi-strap-down type inertial navigation system."

Generally speaking, in order to simplify the platform, we can

also have a "strap-down pitching system" and even an "azimuth

and pitching strap-down system" which only has a roll stable

axis. Howevdr, when we consider applying this system, it is

most advantageous in a horizontal coordinate semi-analytical

inertial navigation system with a not very large azimuth angle

rate; it is basically the same as the "rotating azimuth',

3



"free azimuth", "drifting azimuth" and other systems. Further,

when the platform has attitude errors, the azimuth gyroscope is

also not completely "strapped" with the vehicle. In order to

lose the meaning of "strapped-down" we therefore further changed
the name to "azimuth rate" or "analytical azimuth" inertial

navigation system.

The configuration of the azimuth rate platform is shown in

Fig. 1. It can use two dual degrees of freedom gyroscopes or

one single degree of freedom gyroscope. It can also be composed

of one single degree of freedom angular rate and two single

degree of freedom integrating gyroscopes.

• . .1.

Fig. 1 Configuration of the azimuth rate platform.

Sto\

Fig. 2 Scheme of the azimuth rate platform.

Fig. 2 shows the principle of the azimuth rate platform

4
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composed from two dual degrees of freedom gyroscopes. We can

see from the figure that the two dual degrees of freedom gyro-

scopes 2 and 6 and the three accelerometers 10, 11 and 15

installed on platform 9 form the inertial measuring component

supported by horizontal gimbal 17 and that the horizontal gimbal

is supported by the stand strapped together with vehicle 1. The

main axis of gyroscope 2 is in the plumb state during normal

operations and it uses corresponding amplifiers 3 and 14 as well

as stabilized electric machines 16 and 13 to realize stabiliza-

tion of the platform's pitch axis and roll axis; the main axis

of gyroscope 6 crosses with gyroscope 2 and uses amplifiers 5

and 8 to realize feedback self-locking and operates in a rate

condition. Because the feedback current of the passage surround-

ing the azimuth axis is the measurement of the azimuth angle

changing rate, integrator 4 can compute the azimuth angle.

Because the supporting axis line of the horizontal gimbal and

the longitudinal axis of the vehicle are parallel to eachother,

angular transucer 7 can put out roll attitude signals; cor-

respondingly, we obtain the pitch attitude signals from angular

transducer 12. It is very clear that this type of structure

simplifies the platform into a simple device which aside from the

azimuth gyroscope only has a horizontal gimbal similar to that of

the vertical gyroscope. However, when in pitch angles larger

than 60 degrees, the maneuvering movements of the vehicle pos-

sibly influence the normal operation of the platform. In order

to adapt to this type of situation, it is necessary to increase

the external rolling ring and corresponding stabilizing loop.

If the azimuth rate inertial navigation system is not used

for vehicles which make complete degree of freedom rolling and

pitching movements, the entire platform need not use the conduct-

ing slip ring but completely use the soft lead wire. This not

only simplifies the structure of the platform and makes main-

tenance convenient but even more important it can also raise

reliability.

-
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Because the operating state of the azimuth rate gyroscope

is similar to that of the strap-down system, when compared with

the azimuth gyroscope of the common platform, its calibration

system errors and nonlinearity are possibly enlarged because

the dynamic range is relatively large; however, because tne

vibration isolation of the horizontal gimbal and the platform are

basically in horizontal states, the gravitational effects are

relatively small and it is easy to guarantee the operat.nz pre-

cision of the azimuth gyroscope. When we use the pulse rebal-

ance loop, this can also avoid the additional swlt-:hng err-rs.

II. Mechanization Equations and Structural Block Diagram

We select the north, west and vector geographical coordinate

system NWV. As shown in Fig. 3, ideal platform system XTYT ZT

follows the vehcile rotating around vertical axis V and the

included angle of the XT relative meridian N is platform azimuth

angle A.

Z. Z, N

'0

tP

Fig. 3 Coordinate system.

Based on the specific power equation, we determine the

velocity of the platform relative to the earth from the following

differential equations:

6
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*9 v,=fy-(MQzb -1Qzb)Vz+(2Qx+Q~x)Vz()

In the equations, f. is the specific power measured by 1,

corresponding axis accelerometer; 2.is the earth's c non-

ent; 6> . is the angular velocity component of the platf n

relative to the earth's rotation; g is the gravitationi

acceleration; and symbol b respresents the angular velo,..ty of

* the platform driven by the vehicle.

In order to carry out navigation computations, we can use

the relationship of the directional cosine matrix (C) formed

from longitude A.,latitude L and azimTuth angle a2-between the

* platform and earth system and its change rate, and the 6Z.

CJC)C 0)) (2)

In the formula

[sin2'X sas sin X csa cos Lcos X
C)--cosXsina -csXcsa coL sin X (3)

-sin Lsin Xcos a sin Lsin Xsin a s
*cos Lcos a-coLsia snL

0 ~ - D1

It is very clear that 4D and 6) Yare derived based on Y

and Vand the earth's curvature is computed by computer and

7
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bringing pre-sure on the gyroscope causes the platform to main-

tain a control quantity of a horizontal state. Thus, CO
ZZb

requires that QZb be deleted from azimuth rate gyroscope

feedback control angular rate WoZb' that is

Further, when we consider the independent mixed attitude

system formed from the atmospheric pressure altitude information

and vertical accelerometer information, we can show the mechan-

ization relaticnship of the azimuth rate inertial navi3ation

system in the block diagram of Fig*. 4.

Ax

44-

I ____

Fig. 4 Block diagram of the azimuth rate inertial navigation
system.
Ai and G. are the accelerometer and gyroscope of the

corresponding axis; ha is the z-tmospheric pressure
altitude information: ep and OR are the pitch and
roll state information; 40 and Lo are the initial
longitude and latitude; is the rotation angle rate
of the earth.

III. Special Features of the Initial Alignment of the Azimuth
Rate Platform

If we do not consider the structural errors, the azimuth of

the ideal platform system is also the parking position. For

just this reason, when we refer to the runway's middle line or

8
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the special aircraft parking markers placed on the aircraft

parking area to determine the parking position of the aircraft,

we not only possibly realize fast speed alignment but can also

carry out calibration and compensation of the drifts of the

gyroscopes. In order to conveniently explain the problem, we

must first establish the attitude error equation. it is consid-

ered that when the attitude error angle is small in number we

can obtain

* ~ (6)

In the equation, is the attitude error angle vector;

")T= Z ] T is the angular rate vector of the ideal

platform system;

0 1 0 P

is the attitude error matrix; 6) CP= 0+ , -+E is the angular
c ZPP

rate vector of the platform system's rotation and

c= (4Xc 4Yc ]T is the control added to the platform;
OZb[0 0 GZ'p].=[0) P X- 0 T 2+ Z ] T is the angular

rate of the vehicle with platform rotation; E=[E E 0 1 T is the
rais

shift angular rate of the platform.

By substituting the corresponding relationship into formula

(6) we obtain

Ox - O~xo-Q=sL cos a + PCsin L +'-E,

CO,-.-cPQsin L + QCos L sin a +EY (7)

0 =Qz,-cPTQcosLcosa +QcosL sin a - QsinL

This formula shows that when the azimuth rate platform is in

initial alignment, the azimuth attitude errors do not produce

any changes. It also clearly reflects the basic special features

of this system's initial alignment. We can display formula (7)

as the block diagram shown in Fig. 5. In it, coefficients

9
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K1,K 2 and K3 directly determine the dynamic characteristics of

the leveling process. We shou±a rationally make a selection

based on the transient time and the basic requirements of anti-

interference.

Under stable conditions, from formula (7) we obtain

a)..(o)E. - cos L coJsa
(8)

(o-,.() =E, + Qws sisn

From this, we can find the azimuth angle

=t~g" --0.o)~m .,QcosLsn a +E,
C0.(oo) tg QcoscosaE (9)

It is very clear that the platform drift has direct influence on
the calculation precision of the azimuth angle. Assuming
ac=a+Aa, and letting ) (oo)= QcosLcosa and 'yc= 2cosLsina

ac Xc Yc c
from formula (8) we can obtain

OaLsinaAa=E.
(10)

0oos L cosaAa= ET

If we separately multiply this formula by sina and cosa and add

them to eachother, we then find the calculation error of the

azimuth angle is

Esin a+Ecosa = El, (0)
QcosL 0cosL

In the formula, Ew=Ex sina+Eycosa is the equivalent western drift

of the platform. This conclusion is completely identical to

other systems.

In order to calculate the compensation quantity of the drift,

we can use the angular rate to calculate the earth's rotation

and carry out compensation. Afterwards, we can find the

10
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equivalent northern shift to be

EN. - ( )Sa+ .(')s" . Ercma. - Eysin,. (12)

We then project it on a corresponding axis and obtain the com-

pensation quantity of the shift

&nEx.,sa. , ~~~j n awa.

,, E&,- - E .s .Evsin'a. - E,=csa.sin a.

The errors after we use the above mentioned method to carry

out compensation are

&Ex~kx-Ez-(Esna.-Ecsa.)sina. (4
(14)

bEz - EY -(E, s a. + E,,cma.)coa,

The compensated errors are related to the equivalent western

drift which cannot be measured.

After the leveling of the platform, 2Zb= 9 sinL is a

known quantity. When the gyroscope's precision coefficient KG is

known, based on the balance relationship I(oo)=KG Qzb-E of the

control current and azimuth angle rate, we can obtain the compen-

sation quantity of the platform's azimuth drift.

&z=KGQsiaL -(o (15)

When we determine the accurate position of the runway or

other land marks beforehand, by using a level viewing device,

sighter or other special optical systems, we can determine the

vehicle's longitudinal axis or the azimuth angle of the platform.

In this way, we cannot only carry out fast speed alignment but

the possibility also exists of calibrating the drift of the plat-

form along the horizontal axis. In reality, when we assume the

azimuth angle measured and introduced by computer is a c , !rom

s i1

"I,,,,',' " ' ; ' "..;. -;",:"-:" ::"- '-"'"'" 222/',:. -:."2. * .;''".; ,:..-.-i::. . .'.- .',2.,;.2



wT T_.,, . ° ,,.

formula (8) we can then obtain

jxax.(o)+QcosLcas a - O2cosLoosas
(16)

It is very clear that if there are no errors in the azimuth

angle, the control value of the balanced state is equal to the

drift of the platform. When the position error is A a, we can

obtain the compensation error of the drift quantity by using

the relationship of a =a+ 4 a
c

bix Q- aL naAa
(17)

69Y - Qn L cosa.Aa

V: .
Naturally, when the precision of the moment device is very high

and the structural errors of the platform are very small, the

compensation quantity is equal to the drift of the gyroscope.

It is very obvious that the precision of the platform's position

and drift compensation are mainly determined by the measuring

precision of the vehicle's longitudinal axis opposite the runway

or land mark position as well as the measurement precision of

the runway or the position of the land mark itself and the

installation precision of the platform opposite the vehicle. It

can be seen from formula (17) that when a=0, 5EX=0; when a=90",

Ey=0. This is completely the same as when carrying out

calibration of common platforms. Further, the precision of the

latitudes introduced by the computer is also related to the pre-

cision of compensation. For example, in overlooking the latitude

errors, when L=a=450 , in order to cause (Ex and 6E to not be

larger than 0.02 0 /hour, it is necessary to guarantee that azimuth

error 6a < 12'. This data shows that only if the distance of

the runway or land mark is not very short and the assembling

12
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precision of the platform on the vehicle is also relatively high

will this method have certain significance. Naturally, when

we use optical methods and are able to cause the measurement

precision of the azimuth angle to reach about 6', we can
compensate the platform's drift close to 0.010 /hour.

tyt

S 7

7Z _______I

Fig. 5 Block diagram of initial alignment loops.

IV. Analogue Computations of Navigation Errors

In order to obtain an even more concrete understanding of

the operating performance of the azimuth rate inertial naviga-

tion system, based on the fundamental relationship of formulas

(1) and (2) as well as the corresponding error relationship,
the calibration coefficient error of the gyroscope and

accelerometer is A K G= ZAK a=ixl0- 4; structural error t =20";

gyroscope drift A X= y=0.01 0 /hour and (Z=0.02 0 /hour; the

accelerometer's zero position deviation 7 = 17.=lxlO-4
x Y

initial velocity VxoVyo=0; initial state error 1XO= Tyo=

5x10 4 radian; the theoretical position's initial value

L =400051, /1 =1160361, a =450001; and when the computation

position's initial value L =400071 /1 =116'381, a 43031,

we assume that the flight locus can be described by the

following parameters:

13
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(1) (2) (3) ()

3.3 0 < f <30 0.0 0<f<60

2.0 30< t <60 1.5 60< f -240

ax 1.0 60< t <200 zb 0.0 240< 4170
I0.0 200< 1 4284I -1.5 4170< t <4290
-1.0 4284< t <4464 0.0 4290< 1 <4500

-3.3 4464< t <4500
(7) (8)(5) (6)( /,) ( )

C (*/*, ) (#) 0.0 0 < t <30

0.0 0< f <60 Vxtg3.5" 30< t <60

CIzbVX 60< f <240 Vxtgl.0' 60< t <490
i0.0 240< t <4170 0.0 490< 1 <2970

cox 4170< f 4290 -Vztgl, 2970< t <4248

0.0 4290< 1 <4500 -,tg3" 4248< t <4464

'0.0 4464< 1 <4500

Key: (1) Meters/second ; (2) Seconds; 3) Degrees/
second; (4) Seconds; (5) Meters/second ; (6) Seconds;
(7) Meters/second; (8) Seconds.

The main computation results obtained are shown in Figs.

6-10.

47

(2.)

i 46.5

4 I
41

0.05
LW3

54 us 111 -12? .7(
(2)

Fig. 6 Flight course.

Key: (1) Degrees; (2) Degrees.
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Fig. 7 The time history of position errors.

Key: (1) Degrees; (2) Seconds.

10 200O000 400 t(i

i. O04

Fig. 8 The time history of attitude errors.

Key: (1) Degrees; (2) Seconds.

I0.00 O

9.qFig. 9 The time history of azimuth errors.

Key: (1) Degrees; (2) Seconds.
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4 - 0 1000 200 3000 40

Fig. 10 The time history of felocity errors.

Key: (1) Meters/second; (2) Seconds.

Fig. 6 shows the flight loci of aircraft taking off

from an airfield runway, spiral climb, cruising, final return-

ing and landing as well as other corresponding calculation

values. It is very clear that the errors between the calcula-

tion and theoretical values change with the different courses

and distances.

'9 Fig. 7 gives the relational curve of the time history of

position errors. We can see that basically they oscillate using

the Schuler period; at the same time, the range of longitudinal

error 64 is larger than latitudinal error AL. This is because

when increasing with the latitude, the longitudinal value cor-

responding to the same type of distance error must be large.

Fig. 8 gives the relational curve of the time history of the

platform's attitude errors. It can be clearly seen that because

of the maneuvering flight of takeoff and landing, the attitude

errors of the platform produce relatively intense changes with

the different azimuth angles yet the maximum value is still

within the allowable range. During the Linear rate cruising

stage, its law of oscillation coincides with the Schuler period.

The relationship of the time history of the azimuth angle

16
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errors is shown in Fig. 9. It can be seen that the changes of

the azimuth angle errors are quite slow and their maximum value

does not exceed 0.06 degrees; when we consider that the initial

error is 3', the real change value is even smaller. When the

latitude is relatively high, the change quantity of the errors

is somewhat larger. This also tallies with the common laws.

To sum up, the output power here must be higher than when using

synchronizers and other electric machine transforming devices.

This also explains well the conclusion that the attitude errors
of the strap-down system must be smaller than when using the

output of the electric machine device for the platform system.

Fig. 10 gives the relational curve of the time history of

the velocity errors. We can see from the figure that during

takeoff and landing, because the velocity error is related to

the spiral angular rate, the changes are relatively intense.

However, calculating from the error changing curve of the

cruising stage, its period also coincides with the Schuler period.

V. Concluding Remarks

Based on the preceding discussion, we can see that the

azimuth rate inertial navigation system is relatively suitable

for vehicles with not very large changes in pitch and yaw atti-

tudes. It combines quite well the advantages of the platform

type and strap-down type inertial navigation systems and avoids

certain of their individual drawbacks. This type of platform

structure not only has few components, is simple in structure,

light in weight, has good reliability but moreover can provide

angular rate signals of the pilot's course damping channel.

Thus, it omits a course damping gyroscope and it can also give

course information with relatively high precision.

During each alignment, we can carry out calibration and com-

pensation of the azimuth drift of the platform. This is another

17
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special advantage of this system. Moreover, if we use a known

runway or land mark position and draw support from the level

viewing device or other optical systems, we can also possibly

realize fast speed alignment and the calibration and compensa-

tion of the horizontal drift. This is an area worthy of serious

attention.

Because the azimuth angular rates of most vehicles are close

to the angular rates of platform rotation in present rotating

azimuth inertial navigation systems, there are no special condi-

tions proposed for the requirements of the system's computer.

Naturally, the software system is also close to the common semi-

analytical inertial navigation system.

Finally, it should be pointed out that, relatively speaking,

the drawbacks of the azimuth rate inertial navigation system

are that it is not very suitable for fighters which perform

stunt flying; because the platform itself does not have a degree

of freedom around the azimuth axis, it is thus not convenient

to carry out calibration and alignment of double positions but

can only carry out single position alignment.
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OPTIMAL GUIDANCE LAWS FOR MISSILES WITH SECOND ORDER LINKS

Li Zhongying

Beijing Institute of Aeronautics and Astronautics

Abstract

This paper studies the optimal guidance laws for missiles

with second order links aimed at targets. It uses the prin-

ciple of the minimum to separately research: 1) when the target

miss quantity is zero, the optimal guidance laws of the

minimum control energy index; 2) when the final state is a zero

control intercept curved surface, the optimal guidance laws of

the minimum energy index. Finally, we obtained results similar

to those for missiles with first order delay links.

Main Symbols

X 1  relative position vector of missile and target

Xf relative velocity vector of missile and target

x 3  relative acceleration vector of missile and target

X rate of change of relative acceleration vector
4

u the missile control vector

* U the missile's optimal control vector

the missile ' s relative damping coefficient

6) the missile body's intrinsic frequency

A.; conjugate state vector of state system

v,k Lagrange multiplier, undetermined constant vector

toltf separately the opening and final times

. T time to reach the zero control intercept curved surface

AS time from reaching the zero control intercept curved
surface to hitting the target

angular velocity of line of sight between the missile
and target

rate of change of angular velocity of line of sight

real numbers selected according to requirements
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There has been a great deal of research [1,3,4,5] done

both domestically and abroad on the optimal guidance laws for

missiles. A great many beneficial results have been obtained

which have had very good effects on realizing accurate guid-

ance. However, the selected missile mathematical models have

been too simple and generally all of them use particles with

instantaneous response for processing. Reference [1] re-

searched the optimal guidance laws of missiles with first order

delay links. The results were composed of proportion guidance

with a variable coefficient and correction items related to

rate of change CO of the line of sight angular velocity and

acceleration a. However, the actual missile has non-

instantaneous response particles and is not a first order delay

link-. The aim of this paper is to study the optimal guidance

laws of missiles with second order links. Because its mathe-

matical model is close to the real thing, the obtained results

are beneficial for raising the guidance precision of the
missile.

I. Formulation of the Problem

The relative motion dynamics model of the missile and target

is

i 'X X, ( t o) , °

X,-( X.20) 4 , ( 0 ) 0

The performance index is

. 2 t),

Key: (1) u indicates the transition position.
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In the formula, ueR and tf were given in advance. We

assume the target group is

I g, C ( ),(:,)..(t,), X'(0) 0

g,<x,(I,)x(,) x,(,)) o

The present problem of finding the optimal control laws of

dynamic system (1) so that the system is guided from the given

initial state to final state (3) and moreover cause perform-

ance index (2) to adopt a very small value.

Below, we will seek the optimal guidance laws for two dif-

ferent types of target groups.

II. The Zero Miss Minimum Energy Guidance Law

The target group is

x I (tf) =0

The other parameters of the terminal are free.

Based on the principle of the maximum [2], the problem's

Hamiltonian function H is:

H =.. .u+ X[' x, +X-. x,+ X"r.x, r+ r(- xs-2 Cox, +Cu) (4)

In the formula, A- I , Aand /b are the conjugate statein th1'rua 2 3 4
vectors the dynamic system (1).

,,.A ) ) '. ( :) ( )

Their cross section cond'ions are

r94 
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I A.,)= o

Based on the principle of the minimum, the optimal control laws

and corresponding conjugate state parameters should cause the

H function to take the minimum value and from

aH
= 0au

we obtain

,( t - t )(7)

We can see from formula (7) that to determine the optimal

control laws, we must determine conjugate state vector 4 (t).

From the first two equations in equation group (5) and the

corresponding boundary conditions, we can solve

t )= "

x.( t)= (i.- e)

Therefore, we have

: )=- ( it,- t )+i 1 ( ) ((8D)

We then seek a derivative of the fourth equation of equation

group (5) and obtain

w" e substitute in formula (8) we obtain

,.' j( t )-2 (t )+c'.( = ,J, (9 )
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We can know from formula (7) that to find the optimal control

laws it is only necessary to solve 24(t). In equation (9)

we let

=t -t
f

and therefore equation (9) becomes

When Z=0, t=tf has A-1 0)=0 and moreover we suppose

/4 (0)=0. Formula (9)' is a second order non-homogeneous

linear differential equation with a constant coefficient. We

can find its solution by using the Laplace transformation:

V 2Ev ve' , r I
[ntcos (1 sLLi - (0

In the formula,

By substituting formula (10) into formula (7), we can obtain

the optimal control law:

2t
+ -e 2+ cos Q (f,- f

= ~ 3~-CIO CL)

241 1

For the final determination of the optimal control law, we

must determine constant vector v and for this reason we must

substitute formula (11) into the system's state equation group

(1) to solve the state parameters.

From the third equation in equation group (1) we have

x3 (t) =x4 (t)
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When we substitute the fourth equation in equation group (1)

into the above equation, we obtain
(.)-2,Ox,( t )+c'i( )

We then substitute the third equation in equation group (1)

into the above equation and obtain

.4:-.-,-

We substitute formula (11) into this equation and obtain

+93+ - "-x ,- +t )--- +1 .°(it) 2tcosQ(fl- t)U CD CO

+ sinQ(it -  (1)

This is also a non-homogeneous linear differential equation

with a second order constant coefficient which can still be

solved by the Laplace transformation. Finally, we obtain

.4J! - (I )'"e (!C't + D!+ , - Is

. )+X3 + Uet'"os(Q1+',) (13)

4MIn the formula

401 1

4.-

'.'-;
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a, i%=~u tg -;I - ( I. - ) "I
2 '- 1--1

a.. -4uL 1+

(b +;.) Q,%b-=4 .CD( 1 - a.)'"

They are all the missile body's known characteristic parameters

and ) as well as the function terminal time tf. When tf

is given, it is an unchanging constant.

Based on the first equation in equation group (1) and its

initial conditions, by substituting in formula (13) and inte-
grating we can obtain

S- X29+ 1 e,'"c°sM(Qf, + €. + f) -e'"cos(Q1 + *, + *))

+ ""+ 42)( 1 _,)I .sin( (i,- t )+sin- (,'

4 (02( --1)1°'zSM (Q ft -  t Z W ( I -- )

Iti, (14)

In the formula
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i ON' "- --- n 'Q' + 4+ "I

(+ b") * + (t + 1 4)- 4 C( F ,&eC.DeSn C Q (i,- t,)

% ,1' " ~+ 4,- "14 3 -'""°'si [ (1,-1o) + ,, + ,, -4 '''~r ,q

+ *1 + *4, "

Based on the first equation in equation group (1) and its

initial conditions, we substitute in formula (14), integrate

on- -* -d obtain

COx, ( --- t°)+ + $0 +,i ~~~~ 6" 1(Q¢ +d-i (of +-*)+ +*

' ")[ O,J
___________4C_ . ( I t~

4"(1 -4tC0,4Qt )l +O+ 0Q (b, - I + 'P 4

-t;, t +C1(f, t tog P) + Nts- - )+C.QI, to, t. (0) (15)

In the formula

S4 _(Q ,, .+0. 1 /2 e 080

C o(01 o . -C (1 , 1 0, f9 , Co )10+ ta + ) ]

x [Q0* , 2 34(a: +b)'"
q x sin (-Of, + 204 , + Co.) e' OS(Q10 + + ' )

"-)0 - (.1." r

I4C(1 - Si)' siC Q (,t- to) + o-24,) + 1 .,,sinCQ (O,-I) h + .

, <; e' (11"10)

4 (0( 1 - l ) C Q( t-1) + 4, + 2*4j
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From xl(tf)=O we can determine constant vector v.
1 V.

x, .+x.o(ff,-t) + i's g. _ :)..-.,_o (0 1 o + + o i,)

- Cos (of + + 2,) +--CO(Qt, + , + x O - )X

s i(. n(2,+ ,+2*,) (a+b) ".

w '3 " 1 tQil

x S(,+ ,)+ C ,Ut-I,, t, Q)) + C (ft,, , (Ow) ,- (16)

We substitute the v value into formula (11) and obtain

i( ),_ + 0 to

[e- O+2-0,-1,s(0+ i. )
Ca ,°+a) (. ( - )

t: e'
II3 ~ + 2~

__ O__ 1 -_sin__J__

LettingF (, _ t) = - ,- , _ 7

40)( C.)

x os(*+.+2.)+ C,4(t, , c),+C.( , .S ) (17)

Letting

F (49 let 0 i, +)_- _ ,z-_,+2 + b!) I/

A x e-"( '+ 2'O + )+ C + ' stag,"sin(*-2)-)
C4O3' 0 U tU(

+C.(O , . (0)

When tf is given, F(t,,to, ' , C ) is a constant quantity

determined by the missile body's parameters , , C and time to .

In this way, formula (17) can be simplified into
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%( t )=, x..x.(,-t.) + + 2 [ed,) (t+ + ,

" 2coS (it- t )+( 1 - )- "
CD CD '( 1 . 3 lb 'Q

S(c,,)3 + F, t,,, ca) (c8)

'hen t=t , the optimal guidance law is

OC

.,A - + +ox,(f,-0.) + AC (+ -- [to)(+ , + ,s ( t + - -I x- (t)

-. + ) ,,OQ -n ( ,-O°)1" C ×

+ (-it,, S. )) (19)

We let

KQt,,t, , ( ). ,(i( _ 1 ) CD( C" Ce' ...t" ,)S1
n( . 1 -- 5"Q(/-f° u)]

(it,, ° to, e )

L (it, , , CD) - ( 1 -( ())

CDJ

+ eS*Qf" 3)+*,-t)' + F(,, t, tS, C))CA)eC t--= V, 3

In this way, formula (19) is simplified into

,(o)--K(t, tog t, c)Cjo+x.,o(,-t,)] - L (if, to, t.c)XI, (20)

The guidance law shown by formula (20) can use the appro-

priate selection time tf-t which can change it into proportional

guidance with a variable coefficient (in proportion to the line

of vision angular velocity) and the guidance law (1] composed of
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correction items with one item related to the acceleration and

line of vision angular acceleration.

When 4 o, the dynamic response process of the missile

is lost, that is, the response of the system is without oscilla-

tion as well as without delay. At this time, F(tfft o f, 4,''W)-O.

3

: (1,, 1., 4, O) 0

Therefore

- 3 Cxo+±x.(1-1a)) (21)(t,(i -- i.-t) _

This is the optimal guidance law of the instantaneous response

particles. After selecting the different tf-t values, we can

obtain the proportional guidance law of the various different

systems [3].

III. Guidance Laws of the Target Group as a Zero Control
Intercept Curved Surface

When dynamic system (1) is guided towards zero control

intercept curved surface L, its target groups is [1,2]:

X(T)+9x(T)=0, IL>,O (22),x(T)= 022

It is assumed that the introduced time T of the zero control

intercept curved surface L is already selected; time ,U from
entering the zero control intercept curved surface to hitting the

target is undetermined.

The main reason why x3 (T)=O is necessary is because it is

29
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required that we cause the system to be able to be maintained

within this curved surface after bringing the system into the

zero control intercept curved surface.

The performance index is still formula (2) and at this time

Haniltonian function H of the system does not change. Thus,

the conjugate state set of equations of dynamic system (1) is

still described by formula (5). However, the cross section

conditions change to

i rX,(T)=-

{ ()= v, (23)
b ~X 3(T)= k

X,(T)= 0

In the formula, v and k are Lagrange multipliers which are

undetermined constant vectors. Based on these boundary condi-

tions solving conjugate state set of equations (5), we obtain:

k,( t ) V

a2( )=- v(T+ - )+oX4( )

I%4 .( t )=~ i(t) X(t )+ v (T + - )

Based on the results in Section II, we obtain

X4 (I in-(T + L )-+e '2cosQ (T+ 9 -t
2!'- -1

+ (1 _ ,-,smQ(T+ - t)] (24)

When we substitute 4 (t) into formula (7), we obtain the
optimal guidance law

v ( T I Lv)- -m s-flQ(T+ ) - t ) (25)
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When we substitute formula (25) into dynamic system (1),

just as in Section II we can solve x3 (t), x (t) and x (t).
3 ~21

4 +)(l),1(Q(T + -T ) + J-(a-+b 1 )"e

4tw. ~ e tOe(2 -(26
X(.. + ,) .(- )+ + e- 4)+ *

+ 4 T + • - T )+ 02-+ e tas(Q - +.) +4)

{I [ +] ' "I'-

+1 )=~ e~ )1COS(Q.
- ) 4c -' 0

+ (*" _e ".bto .... - t)

xsin(Q(T+ IL- I )+1,-13 4 C"(e I-)-nCQ(T+ '- ++

+ C( I+L - t ) + 1+ * 4 J [T + I.)1- A2

+C,( T + A, CO, (27)

-X-1 XI( t )=X.+X 10 ( t -to)+ " [e-;"( t -t°)cs(Q ° +,l,,)

-" CM (f, + 1. + 2+,) + - c,ce( + +42 ,) J
,V (T+ ,.)' 0-- 1':° e'te-+ *'1 ,. .

- (T+ 2L~' 6)-~JLT ii)' j COn(1

(a-+ ~ ~ ~ Ci (1) 1/--MtY'..,
-"s{in(Q+ I *3 + In(I + ) -

___________~ -/ -t, ( T+ 1]

x sin( + A - + ) 2-2)( 4O (-1_1) ,,sin Q(T + * + +2*4

%' ~ ~~Qe-t<,' ,

i ~ ~~ ~ ++(+ h L A) + ( 1)
+C, + A t, 0) + - - +C,(T+ L to, c) (28)

From formula (28), letting tfT we can obtain

,(r)- t~ ((- {(-,,)' + '(T-+) }
'+" 2 +i:(T, P , , )} (29)
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In the formula

, x.T)X,..+x.(T T _ 4,oe(Q4 + re + ,)

X,(=, w) IT-t + + T+(- e'

(a ' e'+ 2) cs(QT+*'+*,)+ 4oS( 1 - ).

e'-too,x Sir (Q L+,0 *.4o ir,,4 2

+ 4 Q e -1 -- I ' c s ( Q u ° 2  'j + C , T +  9'f 7* '  W T

4Ca (T + , ., )

FTrom formula (27), letting t=T, we can obtain

X(T) =A(T)- v{ (T) + L (T -1,) +AX.(T, 9, , (30)

In the formula

AM (1. 3 Ce-'"cos(Qf + 4. + 0,) - e-,'rcos(QT+ J, -

i -t7

Ax..(. IL '49co) + (' ;<(T.L g) + 1)z I " i Q +* 4

( a ' .; b ') I l e -. , .,
+ e, cos(QT+'3+C,)+ 4cl( 1 -y)-

X~" " , si=n C O P + *0 
+ -
, , t l

+- ) 'CD~( 1 '~U)Oe-Les

4

Because the system should reach the target group when t=T,

it should satisfy

x (T) + Z4x2 (T) =0

From Formulas (29) and (30), we can obtain
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x,(T)+4.xO(T)- v{ T I) + (T ,) - -,+A ( , o)
3

+I.&X,(T, II, ., 0)}

We can find v from this formula.
x',(T) +4x?(T)

V (T- e L (T t)+ ,T ) AX C,,. ) X..(T, L . cD)
3

(31)

When we substitute formula (31) into formul i ,

obtain the optimal control law:

x2tcosQ(T + I Q(T- - t (T-)

+ t* T- , , + X-(T , (1 cD);

(32)

Wien t=to, the optical guidance law is

(,)--Cx,(T)+. Ag( T){ T + .- ,) L + (D 1.,,,e,,.,,

.I L(T- f)' L)'

+,AX,(r, z=)+ LAX,(T, , ca')! (33)

The above formula can be rewritten as

(,-K,( T, i, C, )x, + x-o T +
-t) - , IL , . x, (34)

In the formula
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K +(T, (, , ''c a

- 1-I

. K, (r, , .,0)={ T + to _cosL ( Qi,' .+., ,+

I--
+ LL(,(T , D), 1, ) *e..'X(T +* t, L

1 .,

l-e" ~'(Qf1 - *1 + 2'tP4 + -Le- cos(C2T+ ib \~

(D +24.

.. +.AX,( T, , - , t Q) + AX.( T, c ,o)

The it Y3' a, b and the tf in this section should all be

4.. replaced by T tsm.
. .

In optimal control law formula (33) or (34), the AU- is

still undetermined. Only when the /,f is determined can we cal-

culate and completely determine the optimal control law. For

this reason, we used the condition of x (T)=0. Although this

condition has already been considered in the limit value con-

ditions, yet because it is established in the optimal control

process, this optimal control law is unrelated to AL3 and there-

fore the condition of x3 (T)=0 is still not really used. In
order to guarantee not separating from this curved surface again

after introducing the system into the zero control intercept

curved surface, we must select the UA in this way so that

x3 (T)=0 . From formula (26), letting t=T, we can obtain:

-. 3

.* S

4.',

o4 
3
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C - . - - -(T T- "

in . . . WO

x -O (QT+ 2) - ( .- '(T--s'"

) I - IV + 0e

By substituting in formula (31), we can obtain

-Cx,( T)+4x4()] {-(T+. LI);+('e-T+s)--I);V,'

,to( : -- ),sin (g.L + o) -( + ge ' ":''osQ ,

4ci( I 4to~ +

X (T - ) + T_- i),+P'( T -Y,)-AX,(T, 9, Zco
x( 3

+.AX.(T, , 0,); + e - o(QT+ o (35)

This is a high order transcendental equation which can use a

numerical sol tion to solve ,U. There are possibly many L-e&

values to satisfy equation (35). At this time, we should take

the smallest one among the )V which is larger than zero.

Naturally, it is also possible that no ,U- exists which can

satisfy equation (35). Under these conditions, the system is

guided to the zero control irtercept curved surface, yet it

cannot cause the system to be maintained in this curved surface.

At this time, it loses significance for the guidance of the zero

control intercept curved surface. However, physically, control

to cause the relative acceleration be zero exists and therefore

the equation should have a solution.

When 4.)--0, the characteristic loss of the missile's

second order link becomes particles with instantaneous response.

At this time, KL(T,A-, Z) anc L (T,, C) of formula (34)
L L

become
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3

L .(T, i , 'S (0)= 0

Optimal guidance law u(t ) changes to

f X X( T 0(T -- I (36)

3

This is -he result obtained by guiding the instantaneous re-

sponse particles toward zero control intercept curved surface

L [3].

IV. Concluding Remarks

Above, we obtained the optimal guidance laws of formulas

(20) and (34) for missiles with second order characteristics

for two types of target groups. These two formulas are sim-

ilar in form. If the missile's acceleration is expressed by

the rate of change of the line of sight rotation angular vel-

ocity and angular velocity, and we let

Ox..
~.4 " xj0(ax,,+8xo)

then formulas (20) and (34) can be expressed as [1]:

36
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=-L,(x ,, x,, a, C, , , , , -

X1(x, L. (x, .,, a ,),,o .

2

x x fx of~0  +
(a x., x . x(,, .,

X xf3(axo0 X.a) 0j+iOxVa (37)

In the formula, 6. and CO are separately the angular velocity

of the line of sight and the angular acceleration; a and

are real numbers and can be selected according to requirements.

It can be seen from formula (37) that the optimal guidance

law for missiles with second order characteristics is composed

of proportional guidance with a variable coefficient and a

correction item related to the acceleration and line of sight

angular acceleration under specified transit time conditions.

Naturally, to realize this type of guidance law, aside from

needing to measure the angular velocity of the line of sight, it

is also necessary to measure the rate of change and acceleration

of the line of sight angular velocity. Although the computation

of its coefficient is relatively complex, yet they are already

known functions of xl0, x2 0 , a, 4, ) , ) and k-. We believe

they are not difficult to complete in today's flourishing of

electronic technology. Because the mathematical models selected

for the missiles went a step further than the mathematical

models provided by the listed references, we will thus have even
higher guidance precision.
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