
7 D-37 108 RDAREL: A RELATIONAL EXTENSION
OF DA(U) UNIERSITY OF

/
SOUTHERN CALIFORNIA LOS ANGELES DEPT OF COMPUTER

U SI SCIENCE E HOROWITZ ET AL. 1983 AFOSR-TR-83-1309

UNCLASSIFIED RFOSR-82-0232 F/6 9/2 NmEEEEE~iEEIiEI
EEEEEEEEEIhIhE

*flflfD

%-i.m

5-W

4'..°.

4?o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

%.

4.,7%

7- 7- V' -a. V%1% . ..

AFOSR-TR- 83- 1309

0
AdaRel: A Relational Extension of Ada

Ellis Horowitz

Alfons Kemper

COMPUTER SCIENCE DEPARTMENT
C) UNIVERSITY OF SOUTHERN CALIFORNIA
ca LOS ANGELES. CALIFORNIA 90089-0782

-, 84 01 19 i' O
" t ,

. . .; % .* :; ; ? ..? ? ?¢Z ;.... ?. ... :? . : --?, ..:' :.-'?'.-:.d .:'.:. ? .i.:. A.,.

AdaRel: A Relational Extension of Ada

Ellis Horowitz

Alfons Kemper

-o n
'LI

UNCLASSIFIED V.
SECURITY CLASSIFICATION OF TIlS PAGE

* REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2&. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

________________________________ Approved for public release; distribution
2b. OECLASSIFICATION/OOWNGRADING SCHEDULE unlimited.

4. PIERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR.Mr. 1310
Ba& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

*University of Southern (If applicable) Air Force Office of Scientific Research
* ~California _______ _____________________

6c. ADDRESS (City. Stte and ZIP Cade) 7b. ADDRESS (City. State and ZIP Code.
Computer-Science Department Directorate of Mathematical & Information

j.Universiity Park, Los Angeles CA 90089-0782 Sciences, Boiling.AFE DIC 20332

III. NAME OF FUNDING/SPONSORING lb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION 11f ppliable) - =

-- FOSR>- "' M AFOSR-82-0232
ft. ADDRESS (City. State and ZIPCodue) 10. SOURCE OF FUNDING Not.

PROGRAM PROJECT TASK WORK UNIT

Bolilin& AFB DC 20332. ELEMENT NO. NO. NO. NO.

4-. 1.TTElncmeScrt daeamiu __________Rel: ARelational Extension of Ada 610F230 A2
12. PERSONAL AUTHORIS)

Ellis Horowitz and Alfons Kemper
13.. TYPE OF REPORT 13b6 TIME COVERED 114. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

Technical FROM____ TO _ 1983 45
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS8. SUBJECT TERMS (Continue on rev~erse if necesaary and identity by block number)

FIELD IGROUP I Suan.

'4 It. ABSTRACT (Continue an SWSI*FS it neceuaay and iden tify by block number)

'In this paper the authors extend Ada to facilitate the programming of data-intensive
applications. The language extensions are based upon the relational data model. The
system is interfaced to a relational database management system via a new Ada type
relation. The language includes basic operations on relations, commonly available in
database query languages, like retrieval of data, update of tuples as well as high-
level operators to combine relations to form new ones. The authors show how Ada excep-
tion handling is naturally extended to allow integrity control of the relations. In
addition the authors discuss language features that enable the sharing of data among
several users. Concluding the paper the authors give an extensive example application

P. to demonstrate the power of their proposed language extensions.

20. OISTROBUTION/AVAILASILITY OF ABSTRACT 2. ABSTRACT SECURITY CLASSIFICATION

UNCLSSIFED/NLIMITED ESAME AS NRPT. 0OTIC USERS0 NCASFE

22a, NAME OF RESPONSISLE INDIVIDUAL 22b TELEPHONE NUMB3ER 22c, OFFICE SYMBOL

4Dr. Robert N. Buchal (0) 767- 4939 NM
DD FORM 1473. 83 APR EDITION OF I JAN 73 IS OBSOLETE. -UNr1 PST PED

SECURITY CLASSIFICATION OF THIS PAGE

u-7%a.~ W.. NJ. . C~ --

AdaRel: A Relational Extension of Ada
Ellis Horowitz and Alfons Kemper

Computer Science Department

University of Southern California

Los Angeles, California 90089

Aooession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justificat to

* By

Distribution/

Availability Codes
Avail and/or

Dist Special

INPTED

This work has been supported by the Air Force Office of Scientific Research under Grant no. AFOSR-
82-0232

%. 2i

1

Abstract

In this paper we extend Ada to facilitate the programming of data-intensive applications. The language

extensions are based upon the relational data model. The system is interfaced to a relational database

management system via a new Ada type relation. The language includes basic operatioqs on relations,

commonly available in database query languages, like retrieval of data, update of tuples as well as high-

level operators to combine relations to form new ones. We show how Ada exception handling is naturally

extended to allow integrity control of the relations. In addition we discuss language features that enable

the sharing of data among several users. Concluding the paper we give an extensive example application

to demonstrate the power of our proposed language extensions.

oo

Table of Contents
1. Introduction 2
2. Designing Database Capabilities into Ada 3

2.1. Declaration and Initialization of Relations 3
2.2. Operations on Relations 5
2.3. Relational Operators to Generate New Relations 6

3. Coneurrency Control in AdaRel 9
3.1. Locking and Unlocking Relations 9
3.2. Atomic Transactions 12
3.3. Error Recovery 14

4. Exception Handling and Integrity Constraints 15
4.1. Exception Handling 15
4.2. Integrity Control 16

5. Example Applications Written in the Proposed System 18
6. Conclusions 21

4 . . ,- . .-. .. .-.- . .,.. - - .-. ; . . o • . . ., . - . .- .- , .

List of Figures
Figure 2-1: Syntax and Example of the Loop Construct 5
Figure 2-2: Syntax of the Relational Operators 7
Figure 3-1: Two Possibly Interfering AdaRel Programs Using the Same Relation 10
Figure 3-2: Example of an Accounts Relation 10
Figure 3-3: Two AdaRel Subroutines of Fig. 3-1 Rewritten Using Locks 11
Figure 3-4: Two Subroutines of Fig. 3-1 Recoded Using Atomic Transactions 13
Figure 3-5: Erroneous Specification of Atomic Transactions in Function SUMUP 14 _
Figure 3-8: Procedure to Add Interest to Accounts 14
Figure 4-1: Example Program Using the Exception SAMEKEYTWICE 16
Figure 4-2: An Example of a Constraint Definition 17
Figure 4-3: Integrity Declaration for a Relation Type 18
Figure 4-4: Usage of a Constraint Exception in an Example Program 18
Figure 5-1: A Package Definition for a Student Database 19

'.

. "X .- %o"."-2'2""* ," '_- ,' "• '°..' "'',.. ' .-. ',-' ..''',,. '', '.,, .-.°- ,./ '.'.-'-. . ,-. "- '-° "--. ,.- -". V,

2

1. Introduction
In the last decade it has been realized 14, 9, 11] that there is a growing need for providing good, user-

friendly software systems to support the development of data intensive application. This led to the design

and implementation of several database management systems like System R, Ingres 120] as well as more

high-level application generators [6, 10, 121. Application generators are high-level non-procedural

programming systems that interface to a database management system [8]. But, as we pointed out in an

earlier paper [81, application generators just like database management systems lack the computational

flexibility of general purpose programming languages, which is often required to code interactive database

applications.

Therefore, in this paper we describe AdaRel, an integration of database constructs in the general purpose

programming language Ada 11]. In addition to the flexibility of a general purpose programming language

this will gain us the expressive power of a high-level relational data manipulation language. But by no

means do we change the Ada base language. Moreover, our language extensions comply with the major

design goals of Ada, in particular strong typing. In our approach we decided to interface Ada to a

relational DBMS. This was done because it is widely agreed 121] that the relational datamodel is the most

user-friendly of the three major data models: relational, hierarchical, network. We believe that it is better

to base our design on a data model that has been readily implemented and tested rather than basing it on

an experimental data model, as was done in the design of Adaplex. Adaplex 119] is an embedding of the

functional database language Daplex 1171 in Ada. Also we think that relations are a more natural

extension of the existing Ada concepts, i.e. records, than the entities and functions of the functional data

model.

There are a few other proposals of relational extensions for other programming languages. Pascal/R

116, 15] and THESEUS [18] are embeddings of relational database features in the existing languages

Pascal and Euclid. The basic relational operators in these two languages are very similar to the ones we

incorporated in Ada. But neither of these two language proposals has addressed exception handling, data

abstraction, integrity constraint, or concurrency control issues. Plain [221 and Rigel [13] are newly

designed languages with an emphasis on database features. Since they are completely new languages, i.e.
they are not based on a widely known baselanguage, these two designs are of a rather experimental

nature.

The rest of this paper is organized as follows. We will first describe the new Ada type relation and the

basic operations on relations. Then in section 3 we discuss language features that allow the sharing of data

among several users. For this purpose we have to introduce concurrency control mechanisms in the

language which guarantee mutual exclusive access to the data stored in the database. Section 4 describes

a natural extension of the Ada exception handling for the relational operations as well as for declaration

_.

3

and enforcement of integrity constraints on relations. Finally in section 5 we present a non-trivial example

application implemented in our proposed language extension.

2. Designing Database Capabilities into Ada
In this section we will show how database features can be integrated into Ada. We will first introduce a

new data type relation. Then we describe the basic operations that are available on this new data type.

2.1. Declaration and Initialization of Relations

A relation in AdaRel is defined very similar to an Ada record. The only exceptions are:

1. A relation cannot have a variant part.

2. A relation must have specified one or more key fields which have to be unique for each tuple
in that relation, i.e. no two (different) tuples can agree on the key fields.

The syntax for type declarations of relations is as follows:

<relation-type-definition>: =
tM <rel-naze> is

relation (key <attr-naae> {(,<attr-naae>)) of
<attr-naae>:<type-naae> [:=<null-value>] ;
{(<attr-nae>:< type-name) [:=<null-value>] ; }

end relation

<rel-name> and <attr-name> have to be valid Ada identifiers. The key fields have to be defined inside

the relation declaration. The possible types of the fields are any numerical type that Ada allows,

enumerated types, and strings. Composite types, such as records and arrays, or pointer types are not

allowed. <null-value> denotes a value of the type <type-name> chosen by the programmer, such that

when a tuple is assigned to a relation, but this particular field does not have a value, the <null-value> is

automatically assigned.

A relation variable is a set of tuples (essentially records), corresponding to the rows in the relation. Each

tuple consists of the fields specified in the type declaration of that relation. Thus we could view a relation

as a multidimensional record. An example of a declaration of a relation, in this case a relation to store US

cities, is given as:

type USSTATES is (CA, ... *T); --list all states

& CITIES is
relation (key NAME) of

lAME: string;
STATE:USSTATES;
POPULATION: integer;

end ?elation

Now we can declare two relation variables of type CITIES as below:

-4,

4

CR
i*L.

ALL CITIES°BIG CITIES:CITIES;

To initialize relations we can naturally extend the Ada record assignment feature:

BIGCITIES:=<((L.A..CA, 3 000 000),(I.T.,NT.9_000_000)>;

This assignment will assign the two tuples (-L.A. ,CA,3_000 _000) and (ON.Y.0,NY,9_000_000) to the

relation variable BIG CITIES.

Access to fields of a tuple in a relation is similar to the access of fields in a record. The difference now is

that there are (possibly) more than one tuple in a relation. Therefore we have to uniquely identify the

desired tuple. This is done as shown in the example below where we assign the population of L.A. to the

integer variable SIZE.

SIZE: integer;

SIZE:=BIGCITIES[NAME= L.A. ".POPULATIOU;

This will assign 3000000 to the integer variable SIZE. The tuple selector(s) inside the square brackets

must uniquely identify one tuple. In this example we specified the key field, which must, by definition,

uniquely identify one tuple. In general we are allowed to specify any number of fields of a relation,

whether they are key fields or not, as long as they identify one unique tuple. For example we could

retrieve the name of the city that has 9 million inhabitants and is located in the state NY as:

BIG CITIES[STATE=NT,POPULATIOI=9000000] .NAME

If more than one tuple satisfies the specification inside the square brackets the predefined exception

AMBIGUOUS _TUPLE SELECTOR will be raised. For a discussion of exception handling in the

context of relations see section 4. In the next subsection we will show how to retrieve more than one tuple

at a time from a relation by specifying selection criteria that are satisfied by a subset of the tuples in the

relation.

Since we want to be able to read and modify existing external relations we need to provide an interface

between Ada and a database management system. For this we introduce the predefined function

EXTERNALREL. This lets the programmer associate an externally stored relation with an internally

declared relation, i.e. the system will look up this particular relation in the corresponding DBMS. Of

course, this relation must have been defined there prior to the use of it in the Ada program. Also the

fields of the relation have to agree with the type definition given in the Ada program. As an example let's

say the programmer wants to make use of an external database of all US cities that is stored in the DBMS

in the relation US CITIES. In the program one would declare this relation as follows:

CITYREL:CITIES:=EXTERIAL REL(US CITIES');

This means that CITYREL is now a relation variable of type CITIES. During elaboration of the

declaration the value of this variable becomes all the tuples that are stored in the corresponding relation

USCITIES in the DBMS. Of course the tuples needn't get physically copied, rather a pointer to the

%' I" I

external relation is maintained.

2.2. Operations on Relations

In order to retrieve one tuple at a time one has to define a record which is of the type of the underlying

relation. Thus one might define:

&" ONECITY is record of
NAME: sntring;
POPULATION: integer;
STATE: string;

end record

In order to avoid unnecessary repetition a new keyword recordtype is introduced. Using ti can define

the type ONECITY as shown below:

type ONE CITY is recordtipe CITIES;

This declaration is equivalent to the complete declaration where we have to spell out all the fields of the

correponding relation. Now we can assign to a variable LA of type ONE_CITY one whole tuple from the

corresponding relation as follows:

LA:M0E_CITY;

U:=BIGCITIES [NAhME=L.A. 0];

and to retrieve som field from this record we merely write

SIZE: =LA. POPULATION;

Frequently we need to traverse through all the tuples in a relation that fulfill a certain boolean

expression. This can be done with the explicit loop construct which has the form described in Fig. 2-1.

for (record-var> in (rel-naae> [where (screening-cond>]

loop

end loop

An example of the usage is given as:

ONE BY ONE:ONE CITY;

for ONE BY ONE in BIG-CITIES where ONE BY ONE.STATE=IT

loop
... --fields in record ONE BY ONE
... --can now be accessed
end Lo

Figure 2-1: Syntax and Example of the Loop Construct

The <screening-cond > following the keyword where can be any boolean expression whose scope includes

the fields of the relation. For each tuple of the relation in turn, this boolean expression is evaluated. If it

j.% -am~ h°
"

. % _% -% ".. ,% ', " , " "..• . ". % " .', . , .% ',-% ". ", ", -. ", , "-. ".I - - -. - -, ." - -, . .,

6

evaluates to true the -'rrcsponding tuple is assigned to the record <record-var> and, subsequently, can

be accessed inside the loop ... end loop delimiters. In the above example in Fig. 2-1 all the tuples of the

relation BIG CITIES whose STATE field equals NY are assigned to the record ONE B'YONlH and are

then processed within the loop delimiters.

Surely we need to be able to update existing relations, i.e. change values of fields of certain tuples. One

way to do this is by explicitly assigning the new value, e.g.

<rel-naae>' ['<tuple-selector> '] .<attr-nae>:=<value>

An example of such an update is given below:

BIGCITIESNfAME=L.A.].population:=2 000 000;

If more than one field is to be changed it might be more appropriate to use the following language feature

that makes use of a record <rec-name> whose type corresponds to the relation <rel-nanie>.

update <rel-naae>' ['<tuple-selector>']' to <rec-naae>;

Thus if we had a record, say NEW_LA of type ONE-CITY, with the updated value for population we

could write:

update BIG_CITIES[IAIIE=9L.A.'] to NEWLA;

If we have to update the information in all tuples that fulfill a certa'n screening condition we can make

use of the loop construct. Let's say we want to make the update of increasing the ptpulation of all cities

in California by 10 percent. This can be done as follows:

for OIE_BYONE in USCITIES where OIE BY ONE.STATE=CA
loop

USCITIESOlIE BYOIEJ.POPULATIDI:=OiE BYONE.POPULATION*1.i;

end loop

In this case the record ONEBYONE is used as the tuple selector inside the square brackets.

2.3. Relational Operators to Generate New Relations

In order to generate new relations from existing ones we introduce the following traditional relational

operators: select, project, join, union, difference, intersect. The syntax of these operators is described in

Fig. 2-2. The screening condition (for the select operator) is some boolean expression over the fields of the

relation. Its semantics is the same as for the loop statement which was de;cribed in Fig. 2-1. Note that

for the union operator it is possible to have a record as an argument. This provides for insertion of new

tuples into a relation. Of course, the record has to be of the type corresponding to the relation. Also the

difference operator can have a record variable as a second argument to allow deletion of tuples from a

relation.

In this ease the square brackets are part or the language feature and do not denote an alternative choiee in th |INF.

This i indicated by the single quote.

-6I

7

$1 select:
-<rel-naze>: select <rel-naze> where <screening condition>

project:
. <rel-naze): project <rel-naue> on (<attr-naze>{,<attr-naae})

join:
<rel-name> :J oin (<rel-naze>,<rel-nane>) on

(<attr-naae> bool-op <attr-naze> {;(attr-nae> bool-op <attr-nae)})
union:

<rel-nane> : <rel-naae>J<rec-naae> union <rel-naae>J<rec-nane>
difference:

<rel-nane> : <rel-naae> difference <rel-naze>1<rec-naae>
intersect:

<rel-naze> : <rel-naae> intersect <rel-naze>

Figure 2-2: Syntax of the Relational Operators

The use of the operators select, union, difference, and intersect results in a new relation which is of the

same type as the relations to which the operator is applied. But the operators rect and join result in a

new relation type. Since one of the design principles of Ada is strong typing we have to declare each

relation before it can be used in the program. It would be too tedious for the programmer to give the

complete table definition of a relation that is generated by one of the two operators join or project. For

this reason we introduce the jointype and projecttype features which are analogous to the earlier

introduced recordtype construct. The syntax is:

type <rel-naze) is Jointype (<rel-nane>.<rel-nae>)
on (<attr-naze> ,<attr-naae> (; <attr-naae> 0<attr-nane})

and

te <rel-nane> is projecttype <reluaae>

on (<attr-nae>{, <attr-naze>})

These features let the programmer define a new relation type which is derived from previously defined

relation types and the respective operation on them, i.e. join or project. The system will automatically

determine the attribute names and types from the relation types over which jointype respectively

projecttype is defined.

Now let us give some examples of the use of these relational operators. The assignment

BIG CITIES:=select US CITIES where POPULATION > 1000000;

assigns all those tuples of the relation USCITIES to the relation BIGCITIES that have a population of

more than one million. We note that BIGCITIES and USCITIES are of the same type.

If we want to create a (temporary) relation that contains just the names of the big cities we can use the

pect operator as follows:

JUSTCITY _AMES:projecttype CITIES on (lAME);

'I.o,

. . .-. * . L- -~

8

JUST_CITYIAMES:=project BIG_CITIES on (NAME);

Now JUST- CITY_ NAMES is a relation with just one field, namely NAME. The type of the relation

JUST_ CITY_ NAMES can be deduced from the project operation, therefore it has been declared using

projecttype. For efficiency reasons, the system will not necessarily physically construct this relation but

rather maintain pointers to the appropriate fields in the BIG CITIES relation. This means that

JUSTCITYNAMES is a view of the relation BIGCITIES in the sense that all fields are logically

blanked out except for the ONAME' field.

The union operator can be used to create one relation that contains all the tuples of the two relations on

which this operator is applied. Let SMALL CITIES as well as ALLCITIES be declared as a relation of

type CITIES. Then

ALL CITIES:fBIGCITIES union SMALL CITIES;

results in a relation ALLCITIES which contains the tuples for small cities as well as for large cities. A

problem arises if both relations contain a tuple with identical key fields, in this case NAME. If that

happens the system will have to raise an exception. Exception handling will be discussed in a later section

of this paper.

Let us now declare a new relation type to demonstrate the use of the join operator.

tye DENSITY INFO is
relation (key NAME) of

lAN1E: utring;
DENSITT:float;

end relation

Let CITYDENSITY be a relation of type DENSITY_ INFO i.e.

CITYDENSITY:DENSITY IIFO;

dA If we w.nt to have all the information about the cities in one relation with the fields NAME, STATE,

POPULATION, and DENSITY we have to join the two relations on identical NAME fields.

ILL IlFO:Jointype (USCITIES,CITY DENSITY) on (IAME,NAME);

ALL INFO:=Join (US CITIES,CITT DENSITY) on (IAME=NAME);

In this case the two relations happen to be joined on the key fields of both of them. But this is not

required as any fields are allowed as long as they are of compatible types.

The semantics of the difference and intersect operators is obvious.

We feel that relations provide an elegant means to handle large amounts of data in a program. Storing

information in relations frees the user from deciding and/or knowing the physical representation of the

data that he wants to access or modify. All the programmer has to do is specify, via appropriate tuple

.4o4

"p

i-" .'- -" .. , * '.'..'5 "- '- .-L. -.-.. ." .'> :- -,'- -'.: .,'. , , ." .- ... ',.-.- .,. .-'-. .. -- .,". - .

9

selectors, which tuples he wants to access. Then it is up to the system to find a way to physically retrieve

- the tuple. This makes the writing of programs substantially easier. For the same reason we feel that the

readability of programs is enhanced if the data is stored in relational form.

3. Concurrency Control in AdaRel

Usually databases are accessed and modified by more than one user (or application program). An

example of this is an airline reservation system where the database of available seats can be accessed by

all connected travel agencies. Another example is a computerized banking system where the account of a

particular customer can be accessed from all different branches of that bank. This necessitates the

concurrent access to the data stored in a centralized database. But the uncontrolled simultaneous access

and modification of data by two different (or two parallel executions of the same) programs may generate

undesired results. For example it could happen that the same airline seat gets sold twice by two different

travel agencies who happen to access the database simultaneously and both find that the particular seat is

still available.

Figure 3-1 shows an example of two AdaRel program fragments that could possibly run concurrently in

-' a banking system. If these programs were run concurrently without any concurrency control such as

locking the databases involved the result of the function SUMUP could be wrong. Consider an example of

an account relation as in Figure 3-1. As indicated by the name the procedure transfer handles (very

simplified) transfers of money between accounts within the same bank (relation). The amount to be

transfered gets first deducted from A's account and is then added to the BALANCE of B's account.

Consider the example relation LA ACCTS of type ACCOUNTS as illustrated in Figure 3-1. Assume

the procedure TRANSFER is called as TRANSFER(aSMITHO,aMAYER', 50,LA_ACCTS) and the

execution of this procedure is parallel to the execution of the function SUMUP. The function SUMUP

totals the amount of money in the bank, i.e. the sum of all BALANCEs of all accounts. Thus the call

SUMUP(LAACCTS) should return the amount of money in all accounts in this relation. But if

SUMLRP(LAACCTS) is executed at time T1, i.e. in the middle of the transfer transaction the returned

result will be wrong. At time TI the procedure TRANSFER has deducted $50.00 from SMITH's account

but not yet increased the BALANCE of MAYER's account. Therefore the result of SUMUP is $550.00

instead of the correct $600.00.

3.1. Locking and Unlocking Relations

In a distributed database system we need to assure that no two processes access the same two data

items concurrently. In existing distributed database systems this is usually achieved by "locking' all the

data items that are involved in a transaction and then "unlocking' them after the transaction has been

* successfully completed. If we included language constructs to lock and unlock relations in AdaRel we

4'

_,. 'x , ,. , ,,,,,,, €,,.,, ," .. ., .,',..;......................,...,... ./............... ,........... ;. :.

..,": ~ ~ww. .77~

10

l MONET is delta 0.01 range -10E8..*10E8;

tp ACCOUNTS in relation(ker NAME) of

]AME:s rin(2o);
BALAICE: MONET;
STATUS: (savings.checking);

BRANCH:string(20);

end relation;

PI:

procedure TRANSFER(A.B: 8trin[(20) .AfT:MOIET; nout ACCT:ACCOUTS) is;

begin

ACCT [lAME-A!. BALANCE: =ACCT [NAME=A]. BALANCE-ANT;

I/Time TI ---)

ACCT IAMEB] BALANCE: =ACCT [NAMEB BALAICE AhMT;

end procedure;

P2:

function SUMUP(ACCT:ACCOUNTS) return MONET In
SUr:MONET:=0.OO;

begin

for A in ACCT loop I/A appropriately declared
SUM:=SUWfA.BALANCE; //au record elsewhere

end loop;
return SUM;

end function;

Figure 3-1: Two Possibly !ntertering AdaRel Programs Using the Same Relation

LAACCTS I NAME I BALANCE I STATUS I BRANCH I

ISNTTH I 100.00 I ... I ... I
I ILLER I 200.00 I ... I ... I
IMATER I 300.00 I ... I ... I
I I I I I

Figure 3-2: Example of an Accounts Relation

would rewrite the two subroutines of Figure 3-1 as illustrated in Figure 3-3.

4 ."4.," * - " " * " ." -" * ' 7 ',, € " " " " """" "" * * - " " . . " - " - " t

11

procedure TRANSFER(A. B:tring(20) .AMT:MNET; nout ACCT:ACCOUNTS) in;
begin
lock relation ACCT;

ACCT [NAIE=A] . BALANCE: =ACCT [IAVEA]. BALAiCE-ATM;

ACCT [AE=B]. BALANCE: =ACCT [NAME=B]. BALAICE*AMT;

unlock relation ACCT;

end procedure;

function SUNUP (ACCT:ACCOUNTS) return MONET in
SUM: MONET: =0.00;

begin
lock relation ACCT;

for A in ACCT loop

SUM:=SUM.A.BALNCE;

end loop;
return SUM;

unlock relation ACCT;

end function;

Figure 3-3: Two AdaRel Subroutines of Fig. 3-1 Rewritten Using Locks

This approach suffers from several drawbacks:

* The locking and unlocking of relations explicitly in the program is very clumsy. It should be
automated. The programmer should be able to just specify where a transaction begins that
cannot be interrupted and then the system should automatically lock (and then unlock) all

relations involved in the transaction.

, We should provide different locks for reading data and writing data because it is legitimate to

have more than one reader process at a time accessing the data. But a writer process needs to

v have an exclusive lock on the data. This provides a possibly higher degree of parallelism.

* It is not always efficient to lock a complete relation. If a transaction consists of merely
updating one record of a large relation it is more appropriate to just lock this one record so
that other application programs can still access the rest of the relation.

In conclusion the locking and unlocking of data items should not be explicitly done by the user.

Chamberlain et al. pointed out that the locking protocol should be invisible to the programmer [31. The

- system should provide a so called "locking managerm which automates this task.

-.0

p:,; , - --, ,,
• 4- °- _,'° ' " , "

" " • ' % ' "
. -' " " % , - , -"." " , :°

12

3.2. Atomic Transactions

Ullman 1211 defines a transaction as one execution of a particular database program. But for our

purposes it is not feasible to view a whole program as one non-interruptable transaction for which the

"locking manager' would aquire locks on the data involved. This would, for most applications, outrule any

parallelism and therefore make sharing of data impossible. Consider for example the following loop

(fragment) which might very well be the skeleton of an airline reservation system:

while input A 'end of daym loop

". process input using
... II the airline reservation

a... // ba

end loop

If we considered this program as an uninterruptable processing unit we could not have more than one

program running simultaneously. The locking manager would once and for all aquire locks for the data in

the airline reservation database and not release it before the program reads the input Mend of day'.

This led to the notion of watomic transaction' in database languages, such as SEQUEL 121 and Adaplex

[191. A single program can now consist of several atomic transactions. An atomic transaction is the

processing unit that cannot be interrupted by parallel processes which need access to the same data items.

The extent of an atomic transaction is explicitly defined by the programmer. In AdaRel we will introduce

the keywords

atomic transaction

end atomic transaction

to delimit the extent of an atomic processing unit. The (system) default, i.e. if the programmer doesn't

specify anything, is that each statement in a AdaRel program is an atomic transaction by itself. Now the

above program fragment of an airline reservation system would typically have the form

while input / 'end of day' loop
atomic transaction
... I/ process input using

.. the airline reservation
II database

end atomic transaction
end loo

-' " This means that the processing of each new input is treated as an atomic transaction. After a particular

input is processed all locks on data items are automatically released by the locking manager such that

other processes can access and modify the same set of data.

Using the notion of atomic transaction the subroutine TRANSFER and SUMUP are coded as shown in

Figure .3-4 We note that the Jautomatic) locking manager has to obtain just read-only locks for the

'a'. :. ' , , _, ,.. . .,, :-..-. .-. : . .: , .. .,.,, , . . , ,. . .

13

procedure TRASFER(.B:string(20).AMT:MONET;inout ACCT:ACCOUNTS) is;

begin

atomic transaction

ACCT [NAMEA] . BALANCE: =ACCT [NAME=A]. BALAICE-AhT;

ACCT [NAME=B. BALANCE: =ACCT [AME-B] . BALAICE*AMT;

end atomic transaction

end procedure;

function SUMUP(ACCT:ACCOUNTS) return MONEY in

SUM:MONET: =O. 00;
begin

A.o

atonic transaction
for A in ACCT loop I/A appropriately declared

SUM:=SUM+A.BALANCE; //as record elsewhere

end loop;
end atomic transaction

return SUM;

.4.

end function;

Figure 3-4: Two Subroutines of Fig. 3-1 Recoded Using Atomic
Transactions

SUMUP function.

It would have been wrong to code the function SUMUP as in Figure 3-5. This would lead to the same

error described for the subroutines given in Figure 3-1. Furthermore this version of the function SUMUP

would have been terribly inefficient. The locking manager would have to acquire a lock for the relation

ACCT every time the body of the loop is executed, i.e. for each tuple in the relation and then release this

lock each time. For a sufficiently large relation ACCT the overhead for this would be quite high.

We conclude that even though the programmer does not have to explicitly lock the relations involved in

a database transaction he still has the responsibility to identify the atomic transactions of the program in

a correct and hopefully efficient way.

• °

14

function SUKUP(ACCY:ACCOUITS) return MONET is
.9 SUM:MOIM: =O.00;

begin

for A in ACCT loop //A appropriately declared

atomic transaction

SUM:=SUM*A.BALAICE; //as record elsewhere

end atomic transaction
end loop;
return SUM;

end function;

Figure 3-6s Erroneous Specification of Atomic Transactions in Function SUMUP

3.3. Error Recovery

In this subsection we will consider the issue of error recovery, i.e. restoring the database to a consistent

state after a program crash. To demonstrate that this issue does not just involve implementation details

consider the following AdaRel example program in Figure 3-6.

procedure ADD_INTEREST (RATE: float; tout ACCTS :ACCOUITS) is
begin

atomic transaction
for A in ACCTS where DALAICE > 0.0 loop

I.A.BALANCE := A.BALAICE * (iRATE);
sad loop

*ad atomic transaction
end procedure

Flgue 3-6: Procedure to Add Interest to Accounts

If the procedure crashes for some (unknown) reason in the middle of the execution of the loop the data in

the relation ACCTS will be left in an inconsistent state. Even worse, the data is in a state from which it is

not possible to restore it to the state it was in at the beginning of the transaction. For some accounts the

interest has already been added to the balance, for others it hasn't. But there is no way of knowing since

the AdaRel loop does not make any assumptions on the order in which the data in the relation is

processed.

The atomic traneaction concept can be used for error recovery resulting from situations as

demonstrated above. We require that all data modifications within an atomic transaction are first done on

a U,.-k-up copy of the database. Thus the original data is left in the same state it was in at the beginning

of the atomic transaction. The changes to the data become permanent only after the atomic transaction

has been succesfully terminated. If it abnormally terminates the exception ATOMICERROR is raised

and the data is left in the original state so that the user can restart the transaction starting from the

initial state.

4. Exception Handling and Integrity Constraints

In this section we will discuss exception handling and integrity control in the context of operations on

relations. As we will see both concepts are natural extensions of the already available exception handling

mechanism of Ada.

4.1. Exception Handling

In this subsection we will investigate how the Ada exception handling facility can naturally be extended

to deal with the incorporated database and application generator facilities. In addition to the existing

built-in Ada exceptions we add the following predefined exceptions to the language:

SAMEKEYTWICE
this exception will be raised if the programmer attempts to have two different tuples in
a database relation with identical key field(s).

AMBIGUOUSTUPLE SELECTOR
whenever the specified tuple selector (used to access some particular tuple) does not
uniquely identify one tuple in the relation this exception is raised.

NOSUCHTUPLE
is raised whenever the access to a tuple fails because the relation in question does not
contain any tuple of the particular form.

KEYFIELDUNSPECIFIED

raised when the user tries to insert some tuple into a relation for which one (or more of
the) key field(s) are unspecified.

DIFFERENTTYPE JOIN
if a join is attempted on fields whose types are not compatible this exception will be
raised.

INTEGRITY VIOLATION
this predefined exception is used to declare integrity constraints on relations. The use of
this will be explained in the next subsection.

In adition to the predefined exceptions the programmer can declare his/her own exceptions just like in

conventional Ada [1.

In Fig. 4-1 we show an example program that makes use of the built-in exception

SAMEKEYTWICE. This interactive program first determines what kind of operation the user wishes

to perform, i.e. insertion, deletion, ... We merely provide the implementation for insertion of a new tuple

in the relation. The new city record is read in and then appended to the relation BIGCITIES via the

union statement. This is done inside an atomic transaction block. If it turns out that the particular city

i :;,.. , ,,.-..-" - - ,, .- .. . -. • -"- • - ". .-. • .. . - - - .

16

begin
declare EW CITY:ONE CITY; --OE CITY wau declared earlier

loo

PROMPT(USERREQUEST); --function to read new request
case USERREQUEST is

when DONE --
exit; --finished for the day

when DELETE =>
... --code for deletion of tuple

when INSERT =>
begin

atomic transaction
READI1(1EVCITY); --reads in a new record

BIG CITIES:=BIG CITIES union NEW CITY;
end atomic transaction
exception

when SAME KEY TWICE =
update BIGCITIES[AME=WEW CITY.IAMEJ
to WEVCITY;

' end --INSERT

end loop;
end

Figure 4-1t Example Program Using the Exception SAMEKEYTWICE

existed already in the relation the program would automatically exit from the atomic transaction block

and raise the exception SAMEKEYTWICE after restoring the relation BIGCITIES to its consistent

state prior to the execution of the atomic transaction, in this case prior to the union statement. The

exception handler that we provided specifies that instead of the union operation an update on the relation

is to be performed, i.e. the existing tuple for the particular city becomes updated to the fields of the new

city record NEW__CITY. This example program demonstrates how the atomic transaction concept

together with the extended Ada exception handling facility can help to keep the database relations in a

consistent state.

4.2. Integrity Control

Integrity constraints are programmer defined predicates on relations which have to be satisfied at all

times. An example of such a construct might be that 'the sum of the population of all cities in the

relation USCITIES cannot exceed the total population of the United States'. If at some point in time

this constraint is violated, due to insertions and/or updates of the relation, the system will raise the

a L

17

exception INTEGRITYVIOLATION. Integrity constraints can be defined for types of relations as well

as relation variables. If an integrity constraint is defined for a relation type this constraint will be enforced

for all variables of that type. In the case that the constraint is defined for a relation variable it will be

enforced only for that variable and not for other variables of the same type. Integrity constraints can be
*4

declared at any place where a variable or subroutine declaration can take place in Ada. The usual

visibility rules of Ada apply to integrity declarations, that is an integrity constraint will be checked for as

long as it is visible in the program block.

The syntax of integrity declarations is outlined below:

integrity <constraint-name> (<para-list) is
<declarative part>
begin

<constraint body>
end integrity

The <param-list> contains the list of relation variables and/or relation types for which this integrity

constraint has to be checked. An example of such a declaration is given in Fig. 4-2. In this example the

predefined exception INTEGRITY-_VIOLATION is raised whenever the sum of the population of all cities

in one particular state exceeds the total population of that state.

type USSTATES is (CA,MAoIC If)

integrity POPULATION CHECK(USCITIES:CITIES) is
TOTAL:integer;
TEMP:CITIES;

for ST in US STATES'FIRST..USSTATES'LAST loop
TEMP:=select US CITIES where STATE=ST;
TOTAL:-POP SUU(TEMP), --assume this function
case ST is

when CA =>if TOTAL>20000000 then
raise INTEGRITYVIOLATION;

when NT =)if TOTAL>40000000 then

raise INTEGRITYVIOLATION;
end case;

end loop;
end --POPULATION CHECK

Figure 4-2: An Example of a Constraint Definition
.4

.1 The integrity constraint in Fig. 4-2 is defined for the variable US CITIES. An example of an integrity

declaration for a relation type is given in Figure USPOP. Now whenever the relation variable

US-CITIES is altered via updates or insertions the integrity constraint POPULATION_ CHECK is

checked. In addition the integrity constraint USPOPCHECK is enforced on USCITIES since this

L % ' : ""L "'" . .""""' '' " "% ' ' ' ""'"""" "" """ """ ' ' ' """"" """ '" ,". --" ". .•,".

integrity US POP CHECK(CITIES:relation) is

fo__r C in CITIES loop

SUM:-SUM * C.POPULATIOI;
end loop;
if SUM > 225 000 000 then

raise INTEGRITTVIOLATION;

end

Figure 4-3: Integrity Declaration for a Relation Type

relation is of type CITIES. If this results in an integrity violation the violating operation on this relation

is aborted and the exception INTEGRITY_VIOLATION is raised in the corresponding program block.

Thus integrity constraints serve as background processes that are automatically activated by the system

without explicit programmer defined intervention. Each time some alteration of a relation is done in the

program the system scans the list of integrity constraints applicable to that relation. A usage of these

constraints in a program is demonstrated in Fig. 4-4.

atomic transaction
while not EN OF FILE(INPUT FILE) loop

READ IN(NEICITY);
USCITIES:fUS CITIES union NEWCITY;

end loop;
end atomic transaction
when IikEGRITY VIOLATION >

PRINT(Overpopulation! ");

Figure 4-4: Usage of a Constraint Exception in an Example Program

The use of integrity constraints can seriously degrade a programs efficiency. It is possible to suppress

certain integrity checks within a program block by using the conventional Ada pragma feature. If we want

to suppress the checking of the constraint US _POPCHECK on the relation BIG CITIES we could do

so by specifying:

pragna SUPPRESS__ITEGRIT (US POP CHECKon>BIG CITIES)

5. Example Applications Written in the Proposed System
In this section we will work out in detail a relatively complex example application written in our

proposed language. In this example we make use of the Ada data abstraction facility, namely packages.

This allows us to have a clear separation of the relation and procedure declarations from the actual code

of the implementation.

Figure 5-1 defines a package for a typical university database that processes the grades -f students. In

this particular example we want to screen the students into two groups. Those whose - is lest 3.5 get

179 7- -777 F -17 Z,

package GRADES in

tze! STUDENTRELATION in
relation (key STUDENT_10) of

STUDENTNO:inteer
lAME: string;
ADVISOR: string;

.4 end relation

ape COURSERELATION in
relation (ke COURSE_10) of

COURSE O:string;
UNITS:O. .12;
PROFESSOR: string;

end relation

ay MNOLL_-RELATION in

% relation (key STUDENT_10 *COURSEN0) of
-~~ COURSENO:string

STUDENTIO:integer;
GRADE: (A..A,A-,DB,B-,C.,C,C-.D.D,D-,F);

- TERM:string;
end relation

j.Z2 STUDENTGRADES in
relation (key STUDENTN10) of

STUDENTN:integer;
NAME:string;
GPA:O.O. .4.0;

.41 end relation

STUDENT:STUDETREATlO:=EXTEREALRE(STUDENT); -- These relations
COURSE:COURSERELATION:EXTERNALREL(COURSE);; -- exist externally

* ENROLL:ENOLLRELATION:=EXTERNALRELC'ENOLLN);; -- in the DBMS

GOODDAD:STUDEITGRADES;

procedure SCREENING (out GOOD,*BAD: STUDENTGRADES);

procedure NOTIFY~in GOODBAD:STUDENTGRADES);

procedure SEMESTEREND;

possibly more procedure declarations

end package;

Figure 5-1: A Package Definition for a Student Database

20

Figure 5-1. continued

package body GRADES is

COURSE ENROLL is jointype (COURSE Rl.ATIONEXROLL RELATION)

on (COURSE _O,COURSE_NO);

procedure SCREEZING(out GOOD.BAD :STUDENTGRADES) is

TOTGRADE: float;

TOTUNITS: integer;

GPA:O.0..4.0;

CE_REl.:COURSE ENROLL;

CE: recordtype COURSEENROLL;
S:recordtype STUDENT R.LATION;

begin
CERE1:=Join (COURSE.ENROLL) on (COURSENO=COURSENO);
for S in STUDENT loop

for CE in CEREL where S.STUDENTNO=CE.STUDENTNO

case CE.GRADE is

when A =

TOTGRADE:=TOTGRADE+4.0;

when A- t>

TOTGRADE: =TOTGR.ADE •.7;

when D z)

TOTGRADE:=TOTGRADE1.0;

when D- a)

TOTGRADE: =OIGRADE+0.7;

end case;
TOTUUITS:=TOTUNITS+CE.UXITS;

end loop;
GPA: =TOTGRADE/TOTUN ITS;

if GPA >= 3.5 then
GOOD:=GOOD union (S.STUDENTNO.S.NA' CPA);

also

BAD:=BAD union (S.STUDENTNOS.NAME,GPA);

end loop;
end procedure SCREENING;

procedure NOTIFY(in GOOD,BAD:STUDENTGRADES) iw

S: recordtype STUDENT GRADES;

begin
PRINTTITLE(6Stdents allowed to go on for Ph.D.:*)

for S in GOOD loop
PRINTSTUDENT(S.NANfE,S.STUDENTNO,S.GPA);

end loop;

PRINTTITLE(Students not allowed to go on for Ph.D.:*)

for S in BAD loop

p PRINTSTUDENT(S.NANE,S.STUDENT_NOS.GPA);
end loop;

end --NOTIFY

procedure SEMESTEREND is

* begin
SCREENING(GOODBAD);
NOTIFY (GOODBAD);

end procedure SEMESTER END;

4".4 end package body

.r.

.%"

21

stored in the relation GOOD, the others will be stored in the relation BAD. Subsequently they will be

printed in two different output tables. The program makes use of the three external relations STUDENT,

COURSE, and ENROLL. The explicit type definitions of these relations as well as of the relation type

STUDENT _GRADES is given in the package declaration.

We will now describe the implementation of the procedure SCREENING which generates the two

relations GOOD and BAD, which can subsequently be used for further processing in the package. But

since these two relations are not external they do not get stored permanently in the DBMS. The package

body shows the actual code for this procedure. First we create one relation CE-REL which is the join of

the two relations COURSE and ENROLL on identical COURSE NO fields. Thus CE REL has the six

fields COURSENO, UNITS, PROFESSOR, STUDENTNO, GRADE, and TERM. Then we loop

through the STUDENT relation and determine for each student in turn the values TOTGRADE and

TOTUNITS by looping through the tuples of the relation CE REL which have that particular value for

the STUDENTNO field. Subsequently the GPA is computed. Depending on the value of the gpa a new

tuple is appended (via union) to the relation GOOD or BAD.

The procedure NOTIFY then makes use of the two relations GOOD and BAD in order to generate an

output listing of the two groups of students, in this case those who can continue for a Ph.D. degree and

those who cannot. In this procedure we make use of the two output functions PRINT TITLE and

PRINTSTUDENT which we assume to be defined elsewhere (Their implementation is straightforward

and does not illustrate any aspects of the relational capabilities of AdaRel. Therefore it is omitted here.).

The procedure SEMESTEREND merely calls the two procedures SCREENING and NOTIFY with the

appropriate parameters. Thus the whole process can get started by calling GRADES.SEMESTER END

from outside the package. It results in an output listing of the good and bad students.

6. Conclusions

This paper is concerned with the insertion of relations, relational operators, concurrency control,

exception handling for database programming, and integrity control into Ada. For matter of presentation

we have described these features at the user level and have avoided detailed descriptions of each feature.

Our goal is twofold: (i) to give an appreciation of the added power of a programming language when such

features are included; and (ii) to show that the new programming language, AdaRel, can incorporate such

features without requiring any changes in Ada's underlying semantics. Further issues remain which we do

not discuss here. One major issue is the question of implementation. In a later paper we will show how
these features can be translated into Ada making only reasonable assumptions on the Ada compiler and

the associated DBMS. This approach was taken by Stonebraker et.al. in implementing Equel 1201. Another

issue is efficiency. Ultimately this issue cannot be decided until a prototype is actually constructed.

I

22

Ada is already a big and comprehensive programming language. However, it is still very much an

imperative programming language in the tradition of Pascal and Algol60. Our attempt to inject relations

and relational language constructs raises the expressive power of Ada in a major way. Though several

relational data manipulation have been implemented without an underlying general purpose programming

language, this has lead to a lack of flexibility and an inability to gain program efficiency. The coupling of

Ada and a DBMS through the definition of relation types and relational operators achieves a highly

expressive tool which can increase programmer productivity substantially.

..

.'d

-'.4

..

i.

23

References

[1] United States Department of Defense.
Reference Manual for the Ada Programming Language.
1980.

[2 Astrahan,M.M. et al.
System R: Relational Approach to Database Management.
ACA-TODS 1(2):97-137, June, 1976.

131 Chamberlain,D.D., Gray,J.N., and Traiger,.L.
Views, Authorization, and Locking in a Relational Database System.In Proceedings of the National Computer Conference, pages 425-430. AFIPS, 1975.

141 Codd,E.F.
The 1981 Turing Award Lecture. Relational Database:A Practical Foundation for Productivity.
CACM 25(2), Feb, 1982.

151 Date,C.J.
An Introduction to Database Systems.
Addison-Wesley Publishing Company, 1977.

161 Information Builders, Inc.
FOCUS Users Manual.
Information Builders, Inc. 1250 Broadway, New York, N.Y.10001, 1982.

17] M.Hammer,W.Howe,V.Kruskal,and I.Wladawsky.
A Very High Level Programming Language for Data Processing Applications.
CACM 20(11):832-840, Nov, 1977.

[81 Horowitz,E., Kemper,A., and Narasimhan,B.
An Analysis of Application Generators.
Technical Report TR-83-208, USC, March, 1983.
submitted for publication to IEEE Transaction on Software Engineering.

191 Martin,J.
Application Development Without Programmers.
Prentice Hall,Inc., Englewood Cliffs, New Jersey, 1982.

1101 McCracken,D.D.
A Guide To Nomad For Application Development.
National CSS, 1980.

[11I National CSS.
NOMAD 2: Reference Manual.
National CSS. Wilton, CT 06897, 1982.

1121 MPG.
RAMIS 2: Users manual.
Mathematica Products Group, Inc. Princeton, N.J. 08540, 1982.

1131 Rowe,L.A. and Shoens,K.A.
Data Abstractions, Views and Updates in Rigel.
In Bernstein,P.A. (editor), Proceedings International Conference on Alanagcment of Data, pages

71-81. ACM-SIGMOD, May, 1979.
Nl

*4,1

-'.4

• .-,,,',', ,' , .t, , .,-,f . .. -,,-.-,. , _ - -,-, . , . . , . , .% . ', '. - ., .. . - -

24

* .1141 Rowe,L.A. and Shoens,K.A.
Programming Language Constructs for Screen Definition.
IEEE Transact ions on Softuware Engineering SE-9(1):31-39, Jan, 83.

115] Schmnidt,J.W.
-. Some High Level Language Constructs for Data of Type Relation.

ACAf-TODS 2(3), Sept, 1977.

1161 Schmidt,J.W.
* Type Concepts for Database Definition.

In Pr oc. Int. Conf. on Databases:lmproving Usability and Responsiveness, pages 215-'244.
Academic Press,New York, 1978.

% 1171 Shipman,D.
The Functional Data Model and the Data Language DAPLEX.
AC~vf-TODS 6(l): 140-173, March, 1981.

1181 Shopiro,J.E.
THIESEUS-A Programming Language for Relational Databases.

ACAI-TODS 4(4):493-517, December, 1979.

1191 Smith,J., Fox,S. and Landers,T.
Refcrence Manual for ADAPLEX.
Computer Corporation of America, 1981.

1201 Stonebraker,M., et al.
The Design and Implementation of ingres.
TODS 1(3), Sep, 1976.

1211 Ullman,J.
Principles of Database Syst ems.
Computer Science Press, Potomac, Maryland, 1980.

1221 Wasserman, A.I. et al.
Revised Report on the Programming Language PLAIN.
ACM-SIGPLAN, May, 1981.

