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An Interpolation and Compaction

Technique for Gridded Data

by

David L. Cozart

ABSTRACT

An interpolation technique is implemented which is applicable to
terrain data defined on a rectangular grid. The technique also allows
for data compaction, i.e., effectively representing the given data using
less space than required by the raw data. The technique involves finding
bicubic polynomials which represent the terrain surface over small
subgrids. These surfaces are then pieced together to form a global

surface which is both continuous and smooth over the entire region.

. .‘--.‘ ------ ". 4'.. .-4 v. ‘, .4-‘.:: '.--.>.
.r_.u...z_ .L.a. ' q " ;_.eA,Lm '.z R % 2 S




»

o
“\‘(-' Y e
a1 s

o

" »
Vi

R

I. INTRODUCTION

The Air Force is engaged in a project to develop techniques for
out-the-window scene generation utilizing the digitized terrain
elevation data supplied by the Defense Mapping Agency. The data is to
be used to generate a terrain surface appropriate for simulation of an
out-the~window view of actual terrain as seen from a low flying aircraft.
The terrain data is defined on a rectangular grid with a grid point
separation of three seconds. A method of data compaction is sought which
1) will allow rapid access to the data, 2) will allow immediate display
of the terrain and 3) will represent actual terrain as accurately as
possible.

A technique for surface generation from DMA data has already been
congsidered by James Jancaitis7 for the U.S. Army Engineer Topographic
Laboratories. Jancaitis replaces the original data with local least-
square polynomial approximations which overlap. These local approximations
are then combined using weighting functions to produce a smooth polynomial
approximation to the initial data. The polynomial approximation may then
be used to visually display the surface. Robert Jabliﬂskes’6 has applied
this method to actual DMA data, and the results have been compared with
results obtained by using conventional matrix storage techniques. The
results of this comparison indicate that the Jancaitis method introduces
too much error into the terrain model for certain types of terrain and

that conventional matrix storage techniques work just as well in terms of

compaction and error.
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II. DESCRIPTION OF INTERPOLATION TECHNIQUE

An alternative method of data compaction and interpolation has been
implemented and tested using actual DMA terrain data. This method is
described below. The DMA terrain data consists of integer z values defined
on a rectangular grid with a grid spacing of 3 seconds. The data is
organized into manuscripts each of which covers a one degree by one degree

area. Thus the data is organized as shown below in Figure 1. Each "o

indicates the location of a z-value.

9 0 0 0 0 0 0 ©0 0 0 O
o——o—-o-—l-—o-o-o-o—-o-—c-—o
|
L o o T 0O 0o 0 0o o O o NFF = 4
0 0 0 0 0 0 0 0 0 O O
l l
o S, VU, VO, VW, VD, DR, WY, SRSV, SR, B,
|
6 0 0 0 0 0 0 0 0 O o

FIGURE 1 - ORGANIZATION OF DMA DATA

The DMA data in Figure 1 has been organized so that 4x4 = 16
terrain heights are considered as a unit for interpolation purposes.
The number of data points on a vertical or horizontal boundary of a
square subgrid is referred to as the NFF value for that subgrid. 1In
Figure 1, the NFF value for each subgrid is 4. Interpolation is performed
for NFF values of 5,6,7,8 and 9.
For a particular NFF value and a particular subgrid of size

NFF x NFF a bicubic polynomial of the form

413 Y (1)
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is obtained where all sixteen aij coefficients are integers. These bicubic

aTe a-e

" surfaces, one for each subgrid of size NFF x NFF are pieced together to form
a continuous and smooth global surface. For the derivation of this bicubic

polynomial, the gridded data in each subgrid is scaled as indicated in

Figure 2.

S 0,1 0—=—0—0—0—0 (1,1)
N o o0 o o
L Y

& o o o o o0

) o o o o] ) NFF = 6
3 p o o o o )

O e e QO O —» X
o
e (0,0) (1,0)
)
. FIGURE 2 - SCALING OF DATA
N The bicubic polynomial of Equation 1 is obtained by using the values
1

2,2y 2y5 2y AL the four corner points of the subregion in Figure 2. These
. sixteen values completely determine the f(x,y) of Equation 1. The deri-
j vation of f(x,y) proceeds as follows:
> Let H = XAY (2)
-: — -
J where HOO HlO
; g = (3)
HOL Hll
} ~ - 4
d
) e
) with z z,
X Hk = at corner point (k,m),
v " . , k =0,l and m = 0,1 .
y xy (4)
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Also,
1 0 0 O]
0 1 o0 O (s
'x = ‘Y =
1 1l 1 1
__0 1 2 3=
and a a a a
00 01 02 03
(6)
10 %11 %12 %13
A= a a a a
20 21 22 23
30 %31 %32 233
Solving Equation 2 for A, we obtain
A = x-l H(Y'l)T . 1)
where 0 0
(8
x-l = Y-l =
-3 =2 3 -1
2 1 -2 1
. -

Thus the bicubic £f(x,y) of Equation 1 is easily determined once the

values Z, 252y and 2gy are known at the four corner points of the

subregion.

The bicubic polynomial obtained above interpolates the four corner
points of the subgrid. Now consider an adjacent subgrid and the
corresponding bicubic surface over this region. 1t is easily shown
that these two surfaces over the common boundary line meet each other
in a continuous manner and that they meet in a smooth manner in the

sense that firgt partial derivatives are equal on the boundary line.
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.E;: Hence a global surface is obtained which is continuous and smooth by
;'3 piecing together the bicubic polynomials defined over each subgrid.
1:€ In order to implement the above process, the following values must
'ig be obtained:
A (1) values for Zy s 2y and Zyy 3t the corner points of each subgrid.
'Eg (2) a value for NFF. For larger NFF values, more data compaction
E{E occurs since the NFF x NFF z-values of each subgrid will be
V. represented using the 16 integer coefficients of Equation 1.
<
?;; Also as the NFF value gets larger, the bicubic polynomial of
é;i Equation 1 will not represent the actual z-values as well as
A2 for smaller NFF values. Thus the NFF value should be chosen
.E;S to be the largest value for which the corresponding error is
:3: acceptable.
.iff The Zys 2y and Zyy values are obtained in two different ways:
.Sﬁ (1) Formula method: Both three-point and five-point formulas are
i? available for approximating z and zy3- The following five-point
iﬁ formulas are applied to the DMA data:
: z,(0,0) = é}; z(-2h,0) -8z(-h,0) + 8z(h,0) -z(Zh,O)] o
-—
o 2,(0,0) = o [z(O,-Zh) -82(0,-h) +82(0,h) -z(o,zh)]
PN
g‘ﬂ The h-value in the above formulas represents the scaled distance
S
g between grid points on “le x-axis. The Zyy value is obtained
.ig using the following formula
" 2y (143) = 2349, 341 Z441,5-1 T Zi-1,5-1 T%i-1, 441 (10) |
o (ia1 7 %) Ogag Vo) |
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Least squares method: A bicubic polynomial of the form
3 3 i3
g(x,y) = = I by v (11)
i=0 j=0

is obtained using the method of least squares. The bij values
in Equation 1l are real numbers. The bicubic obtained is used

to determine zx’zy and zxy° To apply the method of least squares,

the data on each subgrid is scaled as shown in Figure 3. The NFF

value of 5 is fixed for this stage.

y
Point where z 2 and z are required

(-1,1) O 00 I (1,1) ’ =

o o o

o o o

o] o o l NFF = 5

O OO Q=P X
(-1,-1) (1,-1)

FIGURE 3 - SCALING OF DATA

The method of least squares involves finding a bicubic
polynomial as in Equation 1l which is defined over the entire
subgrid and which best approximates the given terrain data
(z=values) in the following sense: Let
' 2
52 = z (g(x,y) - z(x,y))
all (x,y) (12)
in

subgrid

where 2z(x,y) is the actual terrain height at the point (x,y).

The g(x,y) bicubic polynomial obtained is the bicubic which

minimizes the § value in Equation 12.
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The above minimization requirement leads to a set of simultaneous

normal equations which must be solved to obtain g(x,y). This system

A8
o theoretically has a solution, but the solution is difficult to obtain
\.0
SH accurately because of round-off error. Also considerable computing
X
time is required in solving such a system of equations. Hence an
Y
; 2 alternative method is used to improve our approximation of the z-
! -\
;ﬁ* . values and to reduce the amount of CPU time needed to calculate
g(x,y). The alternative method uses orthogonal polynomials and the
S
) are obtained as follows
:x Polynomials P, i = 0,1,2,3, are obtained where Pi is a polynomia
= 1>
N of a single variable of degree i. The Pi's all have a leading
f:' coefficient of 1. Set
k-~ :
i Po(x) =1 . (13)
"'
I: -
':‘
N Let NFF 2
o) s, = & [B,xp] (14)
, n=]
oy
i“ and NFF
FS; B, =| T x, S . (15)
X n=l °
- Then
L. - = - . . 1
& Pl(X) (x Bo) PO(X) (16)
C\‘
A5 . With Po’Pl already constructed, P2 is obtained by letting
5
; : NFF 2
X, 5= 1 |:P1(Xn)] (173
- n=]1
o NFF 2
oY NF [
N B, =| 5if x [P (x)] S (18)
'_:::c 1 n=] 0 1""n 1
f?
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(19)
P = (x-B )P ~-C_-pP .
2(X) (x 1) 1(X) 1 o(x) (20)
The polynomial P3(x) is obtained in a similar manner.
The set of polynomials
{Pi(x).P,(y) i=0,1,2,3; 5 =0,1,2,3}
3
then form a set of othogonal polynomials for the (x,y)-grid of
Figure 3. A bicubic g(x,y) of the form
3 3
g(x,y) = T I bj;Pi(x) P;5(y) (21)
i=0 j=0
is obtained by letting
5 5
z Z z(x_ vy ) P.(x )-P.(y)
_ r=l s=l s rr Jvs (22)
b1 5 5,
z P.(x) . % P,
r=1 1) r=1 N
where
x(r) = -1.0 + (r - 1.0)/2,
@3)

yr) = -1.0 + (r - 1.0)/2

Thus the z, zy and zxy are obtained in two ways: (1) Formula method
?

and (2) Least squares method. These two methods are compared to determine

which yields a better approximation to the terrain heights.
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The method of determining the optimal NFF value to use for a particular
manuscript is now described. As mentioned earlier, a large NFF value is
desired for compaction purposes; however the error introduced in representing
the terrain surface increases as the NFF value increases. Thus to determine
an appropriate NFF value, an error analysis is performed on each manuscript
for NFF values of 5,6,7,8 and 9. For each of these NFF values, the

following error terms are calculated over an entire manuscript:

Error (x,y) = z(x,y) - approximated z(x,y) (24)
_ . (25)
Relative Error = z(x,y) approximated z(x,y) x 100
z(X,y)
Average Error = T Error(x,y) - number of terms (26)
All (x,y)
in
Manuscript
Average absolute Error = z Error(x,y)//4£mmer of terms (27)
All (x,y)
in
manuscript
ZErrorz(x ¥) (Ave. Error)2 (28)
Standard Deviation of Error = 2 —

ffof terms

Also a histogram of error terms is generated for each NFF VALUE. Thus for
NFF values from 5 to 9, an error analysis table is generated for the
manuscript. Comparing the error analysis tables, one chooses the largest
NFF value for which the error values are acceptable. This process
associates a single NFF value with each manuscript. To compare the two
methods of obtaining the zx,zy and z values, error analysis tables

Xy
are generated for each method.
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AN
{- The results of applying the above techniques to actual DMA terrain
f:ﬁ data are described below. The manuscript used for this analysis has a
r.:-:.
Pl southwest corner point which resides at 47%north, 124° west. The two
<.
methods (Formula method and Least Squares method) for generating the
: zx,zy and zxy values are both used. The data values which fall in the
shaded region of Figure 4 are not approximated by the bicubic surface.
These values however are used in approximating derivative values for
l~ \'v
4".;'.
" ; interior points.
EaE A
Y e\~(NFF—1) rows of data
7 L7 L1
balust A1 L~
- . 1} / /
e ~ Manuscript A
ny o ~
O -
| L
;::j -
s Vs L A
L (?QFF;l) colums of data
" -;\:
N FIGURE 4 - VALUES NOT APPROXIMATED BY BICUBIC POLYNOMIAL
<‘:~
o
¥
o The error analysis tables for this manuscript are found in the
I;f Appendix. Table 1 gives the error analysis for a bicubic surface obtained
LSS
o by the method of Least Squares with NFF = 5. This surface represents
I the bicubic surface that best fits the data in the sense of Equation 12.
AR
PN
N This local surface however does not yield a global surface which is
Yoy
e continuous. Table 1 shows that this surface fits the terrain data with
;& minimal error. Table 2 gives the error analysis for NFF = 5 where the
::: Formula technique is used to generate zx,zy and Zyy Table 3 contains the
v
:‘ same error analysis except that the Least Squares method is used to obtain
f:j z ,y_and z__.
‘::_.. X"z Xy
N
s
'\’s:
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As shown by Tables 1-3, more error is introduced into the bicubic surface
in order to obtain global continuity and smoothness. Also, comparing Tables

2 and 3, it seems as though the Formula method of generating zx,zy and zxy

yields a bicubic surface which better represents the actual terrain data
than does the more complex Least Squares method.

Tables 2 and 3 show that the global bicubic surface fits the terrain
data reasonably well for NFF=5. In this case 76.17% of the error terms fall in the
interval (-10,10) for the Formula method and the corresponding value for
the Least Squares method is 60.7%. Also only .2% of the absolute value of
the error terms are larger than 100 using the Formula method.

Tables 4-6 present a similar error analysis for NFF = 6. Similar
patterns as those for NFF = 5 also appear here. The Formula method again
gives less overall error than does the Least Squares technique. However the
maximum absolute error using the Formula method (555.87) is significantly
larger than the corresponding value for the Least Squares method (356.17) .
Tables 5 and 6 show that a reasonably good functional approximation to the
terrain data is obtained for NFF = 6. For this NFF value, the percent
of terms which falls in the interval (-10,10) is 65.0% or 51.9% depending
upon whether the Formula method or the Least Squares method is used.

Tables 7-15 present the same error analysis for NFF values of 7-9.
In all cases the Formula method gives better results than does the Least
Squares method even though the maximum absolute error tends to be larger
for the Formula technique. The contents of Tables 1-15 are summarized in

Table 16.
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For compaction purposes the NFF x NFF z-values on each subgrid are
replaced with the 16 integer coefficients of the bicubic polynomial of

Equation 1. 1If

number of z-values
number of coefficients (29)

Compaction Ratio =

then for NFF = 6, the compaction ratio is 1.6 and for NFF = 7, this value
is 2.3. Thus for NFF = 6, the DMA terrain height data set is 1.6 times
as large as the data set consisting of coefficients of bicubic polynomials.

The compaction ratios for NFF = 5-9 are listed in Table 16.

Iv. ADDITIONAL RESEARCH QUESTIONS
(1) For the Least Squares method of finding z,z, and Zyy at a corner
point of a subgrid, only the points marked by '"x" below in Figure 5 are

used in this derivation.

o o T o o o

X X T X X o

X X X X X ?4""’,‘ corner point where derivatives
I v are being approximated.

X X K e W e W commms O

FIGURE 5 - POINTS USED IN METHOD OF LEAST SQUARES

Should the number of points vary as NFF changes?
(2) What effect would a weighted least squares technique for

{g?
finding zx,zy and zxy have on the error analysis?

(3) Can the technique be extended to include the points in the

shaded region of Figure 47
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< (4) A data set consisting of all 252,52, and Zyy values at corner
. . . . . 4
o points of subgrids may be used to represent the terrain surface. With this
.f set much more compaction takes place. However some compaction is lost ]

. . <
- because zx,zy and zxy are real values instead of integers. Can this problem ]

be overcome to increase the amount of compaction obtained without increasing
X
S the amount of error.
.'g o
:i (5) Does the Formula method produce better results than the Least )
3\
v Squares method over a wide range of terrain types?

x ‘

e. (6) Can the maximum absolute error using the Formula method be reduced? ]
.;.

5 (N What other formulas might be used to obtain Zy 12y and zxy?

i
\.J ]
:? Note: All programs developed for this grant are written in Pascal and 1
L% R 1
>, run on a PDP-11/44 computer system which uses the UNIX operating
' systems. !
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NG APPENDIX
o 1. Table 1: Error analysis with NFF = 5 using local bicubic surface
N obtained by method of least squares - global surface not
:3 continuous.
>y 2. Table 2: Error analysis with NFF = 5 using Formula method.
- 3. Table 3: Error analysis with NFF = 5 using Least Squares method.
;{; 4. Table 4: Error analysis with NFF = 6 using local bicubic surface
g obtained by method of least squares - global surface
- not continuous.
:§ 5. Table 5: Error analysis with NFF = 6 using Formula method.
My
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< 6. Table 6: Error analysis with NFF = 6 using Least Squares method.
>

- 7. Table 7: Error analysis with NFF = 7 using local bicubic surface

) obtained by methnd of Least Squares - global surface
AN not continuous.
{-.‘
EN 8. Table 8: Error analysis with NFF = 7 using Formula method.

N ;

‘ 9. Table 9: Error analysis with NFF = 7 using Least Squares method.
3%
'z' 10. Table 10: Error analysis with NFF = 8 using local bicubic surface
ﬁg obtained by method of least squares - global surface
O, not continuous.
‘& ..:

11. Table 11: Error analysis with NFF = 8 using Formula method.
™
4 12. Table 12: Error analysis with NFF = 8 using Least Squares method.
‘ \l
11 %
WY 13. Table 13: Error analysis with NFF = 9 using local bicubic surface
P obtained by method of Least Squares - global surace not
continuous.
}\
14. Table 14: Error analysis with NFF = 9 using Formula method.

f; 15. Table 15: Error analysis with NFF = 9 using Least Squares method.
. 16. Table 16: Summary of error analysis.
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TABLE 1

ERROR ANALYSIS USING LOCAL BICUBIC
: ) OBTAINED BY METHOD OF LEAST SQUARES
NN GLOBAL SURFACE NOT CONTINUOUS

N
e d Ve NFF = 5
3
AVERAGE ERROR = -0. 00
Y AVERAGE ABSOLUTE ERROR = 1. 04
%y MAXIMUM ABSOLUTE ERROR = 99. 51
534 STANDARD DEVIATION OF ERROR = 2.19
]
| HISTOGRAM DATA FOR ACTUAL ERRORS
R
SN # OF ERROR VALUES LESS THAN -100 = 0
Y # OF ERROR VALUES BETWEEN —100 AND -90 = 1
st # OF ERROR VALUES BETWEEN =~90 AND -80 = 0
77 # OF ERROR VALUES BETWEEN ~80 AND -70 = 0
. # OF ERROR VALUES BETWEEN =70 AND -60 = 8
o, # OF ERROR VALUES BETWEEN =60 AND -50 = 14
X # OF ERROR VALUES BETWEEN =50 AND -40 = 22
'ﬁ? # OF ERROR VALUES BETWEEN =40 AND -30 = 138
R 3 # OF ERROR VALUES BETWEEN ~30 AND -20 = 650
# OF ERROR VALUES BETWEEN =20 AND -10 = 7390
" # OF ERROR VALUES BETWEEN =~10 AND O = 1228381
B # OF ERROR VALUES BETWEEN O AND 10 = 990264
s # OF ERROR VALUES BETWEEN 10 AND 20 = 7287
N # OF ERROR VALUES BETWEEN 20 AND 30 = 668
ool # OF ERROR VALUES BETWEEN 30 AND 40 = 141
\ # OF ERROR VALUES BETWEEN 40 AND 50 = 51
£ # OF ERROR VALUES BETWEEN 30 AND 60 = 8
o # OF ERROR VALUES BETWEEN 60 AND 70 = 0
o # OF ERROR VALUES BETWEEN 70 AND 80 = 1
EN # OF ERROR VALUES BETWEEN 80 AND 90 = 0
& # OF ERROR VALUES BETWEEN 90 AND 100 = 1
' # OF ERROR VALUES ABOVE 100 = 0
e
,Za HISTOGRAM DATA FOR RELATIVE ERRORS
.~
o # OF REL. ERROR VALUES BETWEEN O AND 5 = 2204406
# OF REL. ERROR VALUES BETWEEN 5 AND 10 = 2885
% # OF REL. ERROR VALUES BETWEEN 10 AND 15 = 750
X # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 314
<3 # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 172
o # OF REL. ERROR VALUES ABOVE 25 = 667
s
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M) TABLE 2
ﬁi ERROR ANALYSIS USING FORMULA METHOD
1' NFF = S
A

o AVERAGE ERROR = 0. 00
d AVERAGE ABSOLUTE ERROR = 8. 34

) MAXIMUM ABSOLUTE ERROR = 298. 87
'i STANDARD DEVIATION OF ERROR = 16. 54
\_}
:3 HISTOGRAM DATA FOR ACTUAL ERRORS

» # OF ERROR VALUES LESS THAN -100 = 2097
P, # OF ERROR VALUES BETWEEN -100 AND -90 = 1229
S5 # OF ERROR VALUES BETWEEN -90 AND -80 = 1887
= # OF ERROR VALUES BETWEEN -80 AND -70 = 2837
%8 # OF ERROR VALUES BETWEEN =70 AND -60 = 4354

; # OF ERROR VALUES BETWEEN =60 AND -50 = 6913

: # OF ERROR VALUES BETWEEN ~-50 AND -40 = 11565
£ # OF ERROR VALUES BETWEEN =40 AND -30 = 19915
o # OF ERROR VALUES BETWEEN ~-30 AND -20 = 37724
< # OF ERROR VALUES BETWEEN =-20 AND -10 = 82563
=M # OF ERROR VALUES BETWEEN -10 AND O = 601500

# OF ERROR VALUES BETWEEN O AND 10 = 4561563
, # OF ERROR VALUES BETWEEN 10 AND 20 = 90907
e # OF ERROR VALUES BETWEEN 20 AND 30 = 40499
[ # OF ERROR VALUES BETWEEN 30 AND 40 = 20854
! # OF ERROR VALUES BETWEEN 40 AND SO = 11516
" # OF ERROR VALUES BETWEEN 50 AND &0 = 6394
# OF ERROR VALUES BETWEEN &0 AND 70 = 3807

X # OF ERROR VALUES BETWEEN 70 AND 80 = 2300
fedl # OF ERROR VALUES BETWEEN 80 AND 90 = 1359
3 # OF ERROR VALUES BETWEEN 90 AND 100 = 773
N # OF ERROR VALUES ABOVE 100 = 1165
;g HISTOGRAM DATA FOR RELATIVE ERRORS
Yy
W # OF REL. ERROR VALUES BETWEEN O AND 5 = 1288901
“l # OF REL. ERROR VALUES BETWEEN S AND 10 = 70068
N # OF REL. ERROR VALUES BETWEEN 10 AND 15 = 20072
] # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 7908
s # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 3737
o) # OF REL. ERROR VALUES ABOVE 25 = 7025
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% TABLE 3
f* ERROR ANALYSIS USING LEAST SQUARES
WITH ORTHOGONAL POLYNOMIALS
St
x NFF = 5
“
Ry
: AVERAGE ERROR = 0.16
. AVERAGE ABSOLUTE ERROR = 13. 27
q MAXIMUM ABSOLUTE ERROR = 302. 39
X STANDARD DEVIATION OF ERROR = 22. 21
[
i HISTOGRAM DATA FOR ACTUAL ERRORS
oA # OF ERROR VALUES LESS THAN -100 = 1619
o # OF ERROR VALUES BETWEEN -100 AND -90 = 1320
~ # OF ERROR VALUES BETWEEN -90 AND -80 = 2509
b # OF ERROR VALUES BETWEEN -80 AND -70 = 4758
# OF ERROR VALUES BETWEEN =70 AND -60 = 8650
S # OF ERROR VALUES BETWEEN ~&60 AND ~50 = 14800
%3 # OF ERROR VALUES BETWEEN ~50 AND =40 = 25458
' # OF ERROR VALUES BETWEEN =40 AND -30 = 42002
f§ # OF ERROR VALUES BETWEEN -30 AND -20 = 67609
2 # OF ERROR VALUES BETWEEN -20 AND -10 = 112539
# OF ERROR VALUES BETWEEN -10 AND O = 491296
y # OF ERROR VALUES BETWEEN O AND 10 = 350668
{ # OF ERROR VALUES BETWEEN 10 AND 20 = 108196
2] # OF ERROR VALUES BETWEEN 20 AND 30 = 66921
5 # OF ERROR VALUES BETWEEN 30 AND 40 = 42574
B’ # OF ERROR VALUES BETWEEN 40 AND S0 = 26301
# OF ERROR VALUES BETWEEN SO AND &0 = 15697
Yy # OF ERROR VALUES BETWEEN &0 AND 70 = 9215
b # OF ERROR VALUES BETWEEN 70 AND 80 = 5263
> # OF ERROR VALUES BETWEEN 80 AND 90 = 2834
-] # OF ERROR VALUES BETWEEN 90 AND 100 = 1630
= # OF ERROR VALUES ABOVE 100 = 2350
vy HISTOGRAM DATA FOR RELATIVE ERRORS
o
i # OF REL. ERROR VALUES BETWEEN O AND 5 = 1197347
& # OF REL. ERROR VALUES BETWEEN 5 AND 10 = 128576
# OF REL. ERROR VALUES BETWEEN 10 AND 15 = 33751
1 # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 12528
S # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 5753
3 # OF REL. ERROR VALUES ABOVE 25 = 10244
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o TABLE 4
-
o ERROR ANALYSIS USING LOCAL BICUBIC
OBTAINED BY METHOD OF LEAST SQUARES
e GLOBAL SURFACE 1S NOT CONTINUOUS
L)
" NFF = &
i
AVERAGE ERROR = -0. 00
28 AVERAGE ABSOLUTE ERROR = 1. 66
&9 MAXIMUM ABSOLUTE ERROR = 93. 76
b~ STANDARD DEVIATION OF ERROR = 3. 20
o HISTOGRAM DATA FOR ACTUAL ERRORS
- # OF ERROR VALUES LESS THAN -100 = 0
- # OF ERROR VALUES BETWEEN -100 AND -90 = 5
Q # OF ERROR VALUES BETWEEN -90 AND -80 = 1
” # OF ERROR VALUES BETWEEN -80 AND -70 = 4
- # OF ERROR VALUES BETWEEN -70 AND -40 = 8
o # OF ERROR VALUES BETWEEN -60 AND -50 = 25
2 # OF ERROR VALUES BETWEEN -50 AND -40 = 96
& # OF ERROR VALUES BETWEEN -40 AND -30 = 331
g # OF ERROR VALUES BETWEEN -30 AND -20 = 1698
# OF ERROR VALUES BETWEEN -20 AND -10 = 18323
o # OF ERROR VALUES BETWEEN =-10 AND O = 1033608
% # OF ERROR VALUES BETWEEN O AND 10 = 981851
- # OF ERROR VALUES BETWEEN 10 AND 20 = 18146
¥ # OF ERROR VALUES BETWEEN 20 AND 30 = 1761
N # OF ERROR VALUES BETWEEN 30 AND 40 = 344
# OF ERROR VALUES BETWEEN 40 AND 50 = 95
% # OF ERROR VALUES BETWEEN 30 AND &0 = 35
o # OF ERROR VALUES BETWEEN &0 AND 70 = 10
3 # OF ERROR VALUES BETWEEN 70 AND 80 = 12
N # OF ERROR VALUES BETWEEN 80 AND 90 = 3
& # OF ERROR VALUES BETWEEN 90 AND 100 = 0
# OF ERROR VALUES ABOVE 100 = 0
o
~
v HISTOGRAM DATA FOR RELATIVE ERRORS
A"'
N # OF REL. ERROR VALUES BETWEEN O AND 5 = 2023993
] # OF REL. ERROR VALUES BETWEEN 5 AND 10 = 5864
o # OF REL. ERROR VALUES BETWEEN 10 AND 15 = 1267
N # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 480
- # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 246
b # OF REL. ERROR VALUES ABOVE 25 = 1025
N
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TABLE S

ERROR ANALYSIS USING FORMULA

AVERAGE ERROR

AVERAGE ABSOLUTE ERROR
MAXIMUM ABSOLUTE ERROR
STANDARD DEVIATION OF ERROR

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERRGR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

REL.
REL.
REL.
REL.
REL.
REL.

HISTOGRAM DATA FOR

NFF é

VALUES LESS THAN -100
VALUES BETWEEN -100 AND
VALUES BETWEEN -90 AND
VALUES BETWEEN -80 AND
VALUES BETWEEN =70 AND
VALUES BETWEEN -&60 AND
VALUES BETWEEN =50 AND
VALUES BETWEEN -40 AND
VALUES BETWEEN =30 AND
VALUES BETWEEN -20 AND
VALUES BETWEEN -10 AND
VALUES BETWEEN O AND
VALUES BETWEEN 10 AND
VALUES BETWEEN 20 AND
VALUES BETWEEN 30 AND
VALUES BETWEEN 40 AND
VALUES BETWEEN SO AND
VALUES BETWEEN &0 AND
VALUES BETWEEN 70 AND
VALUES BETWEEN 80 AND
VALUES BETWEEN 90 AND
VALUES ABOGVE 100

1
S5
2

-390
=80
=70
=60
=50
=40
=30
=20
-10
o)
10
20
30
40
S0
60
70
80
90
100

HISTOGRAM DATA FOR RELATIVE

VALUES

0

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

VALUES
VALUES
VALUES
VALUES
VALUES

BETWEEN
BETWEEN
BETWEEN
BETWEEN
BETWEEN
ABOVE 25

5
10
15
20

AND
AND
AND
AND
AND

0.
4,
S.
8.

(S I O T I YO (A (IO O O (A O/ (O 1

METHOD

00
63
87
94

ACTUAL ERRORS

3
3

ERRORS

10
15
20
25

13864
4124
5495
7373

10068

14130

20503

30779

48359

88290

09062

75108

98633

53499

33348

21739

14767

10423
7301
5269
3734

10728

11734694
120716
44632
20263
10946
20575
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- TABLE 6
IR ERROR ANALYSIS USING LEAST SQUARES
- WITH ORTHOGONAL POLYNOMIALS
2 NFF = &
=y
g
Wil AVERAGE ERROR = 0. 34
AVERAGE ABSOLUTE ERROR = 20. 38
SO MAXIMUM ABSOLUTE ERROR = 356. 17
20N STANDARD DEVIATION OF ERROR = 33. 54
L
HISTOGRAM DATA FOR ACTUAL ERRORS
o # OF ERROR VALUES LESS THAN -100 = 12154
3 # OF ERROR VALUES BETWEEN ~100 AND -90 = 6554
T # OF ERROR VALUES BETWEEN =90 AND -80 = 9619
7 # OF ERROR VALUES BETWEEN =80 AND -70 = 13670
Re # OF ERROR VALUES BETWEEN =70 AND -60 = 19197
. # OF ERROR VALUES BETWEEN -40 AND -50 = 26212
o # OF ERROR VALUES BETWEEN =50 AND -40 = 35894
o # OF ERROR VALUES BETWEEN =40 AND -30 = 48707
- # OF ERROR VALUES BETWEEN =30 AND -20 = 66736
- # OF ERROR VALUES BETWEEN -20 AND -10 = 99444
# OF ERROR VALUES BETWEEN =-10 AND O = 409952
g # OF ERROR VALUES BETWEEN O AND 10 = 302879
o # OF ERROR VALUES BETWEEN 10 AND 20 = 94794
AR # OF ERROR VALUES BETWEEN 20 AND 30 = 64926
e # OF ERROR VALUES BETWEEN 30 AND 40 = 48636
L # OF ERROR VALUES BETWEEN 40 AND 50 = 36416
\ # OF ERROR VALUES BETWEEN 50 AND &0 = 27179
oy # OF ERROR VALUES BETWEEN &0 AND 70 = 19905
N # OF ERROR VALUES BETWEEN 70 AND 80 = 14525
o] # OF ERROR VALUES BETWEEN 80 AND 90 = 10119
oS # OF ERROR VALUES BETWEEN 90 AND 100 = 6942
N # OF ERROR VALUES ABOVE 100 = 14396
-‘\
-;t HISTOGRAM DATA FOR RELATIVE ERRORS
. .,,:.
o\ # OF REL. ERROR VALUES BETWEEN O AND 5 = 1051168
N # OF REL. ERROR VALUES BETWEEN S AND 10 = 194723
- # OF REL. ERROR VALUES BETWEEN 10 AND 15 = 67117
- # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 24833
R # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 12397
e # OF REL. ERROR VALUES ABOVE 25 = 21484
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i}l TABLE 7

ERROR ANALYSIS USING LOCAL BICUBIC
OBTAINED BY METHOD OF LEAST SQUARES

~ GLOBAL SURFACE NOT CONTINUOUS
o NFF = 7

» AVERAGE ERROR - ~0. 00
ey AVERAGE ABSOLUTE ERROR = 2. 23
23 MAXIMUM ABSOLUTE ERROR = 104. 71
%3 STANDARD DEVIATION OF ERROR = 4. 12

HISTOGRAM DATA FOR ACTUAL ERRORS

o0 # OF ERROR VALUES LESS THAN -100 = 1
- # OF ERROR VALUES BETWEEN —-100 AND -90 = 2
- # OF ERROR VALUES BETWEEN -90 AND -80 = 7
et # OF ERROR VALUES BETWEEN -80 AND -70 = 7

- # OF ERROR VALUES BETWEEN -70 AND —-&0 = 27
A # OF ERROR VALUES BETWEEN -60 AND -50 = 58
O # OF ERROR VALUES BETWEEN -50 AND -40 = 200
N # OF ERROR VALUES BETWEEN -40 AND -30 = 718
s # OF ERROR VALUES BETWEEN -30 AND -20 = 3498

) # OF ERROR VALUES BETWEEN -20 AND -10 = 31181
- # OF ERROR VALUES BETWEEN -10 AND O = 949126
el # OF ERROR VALUES BETWEEN O AND 10 = 920072
2 # OF ERROR VALUES BETWEEN 10 AND 20 = 30740
o # OF ERROR VALUES BETWEEN 20 AND 30 = 3701
T # OF ERROR VALUES BETWEEN 30 AND 40 = 778

i # OF ERROR VALUES BETWEEN 40 AND SO = 215
1595 # OF ERROR VALUES BETWEEN 50 AND 60 = 73
Y # OF ERROR VALUES BETWEEN &0 AND 70 = 29
o # OF ERROR VALUES BETWEEN 70 AND 80 = 11
e # OF ERROR VALUES BETWEEN 80 AND 90 = 4
o~ # OF ERROR VALUES BETWEEN 90 AND 100 = o}
- # OF ERROR VALUES ABQVE 100 = 1
e

=

ig' HISTOGRAM DATA FOR RELATIVE ERRORS

< # OF REL. ERROR VALUES BETWEEN O AND 5 = 1905147

% OF REL. ERROR VALUES BETWEEN S5 AND 10 = 9003

‘=~ # OF REL. ERROR VALUES BETWEEN 10 AND 15 = 2020
-if # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 648
o # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 366
;::; # OF REL. ERROR VALUES ABOVE 25 = 1223
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TABLE 8

ERROR ANALYSIS USING FORMULA METHOD

NFF = 7 .
. AVERAGE ERROR = -0. 15
2 AVERAGE ABSOLUTE ERROR = 22. 38
MAXIMUM ABSOLUTE ERROR = 968. 37
2 STANDARD DEVIATION OF ERROR = 43. 94

HISTOGRAM DATA FOR ACTUAL ERRORS

# OF ERROR VALUES LESS THAN -100 = 35484
# OF ERROR VALUES BETWEEN -100 AND -90 = 7509
- # OF ERROR VALUES BETWEEN -90 AND -80 = 9251
2 % OF ERROR VALUES BETWEEN -80 AND -70 = 11674 .
X % OF ERROR VALUES BETWEEN =70 AND -&0 = 14560 ;
# OF ERROR VALUES BETWEEN =60 AND -50 = 19290 :
o # OF ERROR VALUES BETWEEN =50 AND —-40 = 25497 i
2 # OF ERROR VALUES BETWEEN =40 AND -30 = 35673 :
. # OF ERROR VALUES BETWEEN -30 AND -20 = 51749 X
N # OF ERROR VALUES BETWEEN -20 AND -10 = 85903 :
# OF ERROR VALUES BETWEEN =10 AND O = 440994 :
# OF ERROR VALUES BETWEEN O AND 10 = 343866 ;
¢ # OF ERROR VALUES BETWEEN 10 AND 20 = 96796 |
‘ # OF ERROR VALUES BETWEEN 20 AND 30 = 58142 ‘
. # OF ERROR VALUES BETWEEN 30 AND 40 = 39655 ~
’ # OF ERROR VALUES BETWEEN 40 AND 50 = 28134 :
X # OF ERROR VALUES BETWEEN 50 AND &0 = 20683 -
# OF ERROR VALUES BETWEEN &0 AND 70 = 15500
% # OF ERROR VALUES BETWEEN 70 AND 80 = 11923
M # OF ERROR VALUES BETWEEN 80 AND 90 = 9335
% # OF ERROR VALUES BETWEEN 90 AND 100 = 7438
. # OF ERROR VALUES ABOVE 100 = 30433
HISTOGRAM DATA FOR RELATIVE ERRORS
# OF REL. ERROR VALUES BETWEEN O AND 5 = 1055030
# OF REL. ERROR VALUES BETWEEN 5 AND 10 = 158582
# OF REL. ERROR VALUES BETWEEN 10 AND 15 = 69310
i # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 35812
" # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 20613
: # OF REL. ERROR VALUES ABOVE 25 = 44622
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TABLE 9

i
LAY

ERROR ANALYSIS USING LEAST SQUARES

R wy

WITH ORTHOGONAL POLYNOMIALS é

b NFF = 7 1

. N
. AVERAGE ERROR = 0. 48
AVERAGE ABSOLUTE ERROR = 27. 76
5 MAXIMUM ABSOLUTE ERROR = 462. 65
o STANDARD DEVIATION OF ERROR = 45. 07

HISTOGRAM DATA FOR ACTUAL ERRORS

- # OF ERROR VALUES LESS THAN -100 = 36582
- # OF ERROR VALUES BETWEEN -100 AND -90 = 12580
o # OF ERROR VALUES BETWEEN =90 AND -80 = 15954 :
- # OF ERROR VALUES BETWEEN -80 AND -70 = 20119
= # OF ERROR VALUES BETWEEN -70 AND -60 = 24657
- # OF ERROR VALUES BETWEEN -60 AND -50 = 30527
= # OF ERROR VALUES BETWEEN -50 AND -40 = 37452 ;
L # OF ERROR VALUES BETWEEN -40 AND -30 = 48589 ;
& # OF ERROR VALUES BETWEEN =30 AND -20 = 61941 ]
% # OF ERROR VALUES BETWEEN -20 AND -10 = 88691 ;
; # OF ERROR VALUES BETWEEN =-10 AND O = 367953 i
1 # OF ERROR VALUES BETWEEN O AND 10 = 273742 .
- # OF ERROR VALUES BETWEEN 10 AND 20 = 86212 :
g # OF ERROR VALUES BETWEEN 20 AND 30 = 61159 ]
o) # OF ERROR VALUES BETWEEN 30 AND 40 = 48406 )
N % OF ERROR VALUES BETWEEN 40 AND 50 = 39029 3
# OF ERROR VALUES BETWEEN 50 AND &0 = 31000
. # OF ERROR VALUES BETWEEN &0 AND 70 = 25060 1
- # OF ERROR VALUES BETWEEN 70 AND 80 = 20377 :
- # OF ERROR VALUES BETWEEN 80 AND 90 = 16643 ;
- # OF ERROR VALUES BETWEEN 90 AND 100 = 13168 .
¥ # OF ERROR VALUES ABOVE 100 = 39648 y
o HISTOGRAM DATA FOR RELATIVE ERRORS j
' # OF REL. ERROR VALUES BETWEEN O AND 5 = 938772 1
# OF REL. ERROR VALUES BETWEEN S5 AND 10 = 238454
# OF REL. ERROR VALUES BETWEEN 10 AND 15 = 100794
- # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 46287
- # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 22596
. # OF REL. ERROR VALUES ABOVE 25 = 37066
L~
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o TABLE 10

- ERROR ANALYSIS USING LOCAL BICUBIC
‘ OBTAINED BY METHOD OF LEAST SQUARES

N GLOBAL SURFACE NOT CONTINUOUS
NG
A NFF = 8
\‘:;
" AVERAGE ERROR = -0. 00
e AVERAGE ABSOLUTE ERROR = 2.84
o MAXIMUM ABSOLUTE ERROR = 111.35
o STANDARD DEVIATION OF ERROR = 5. 06
= HISTOGRAM DATA FOR ACTUAL ERRORS
YRR
-3 # OF ERROR VALUES LESS THAN -100 = 3
L # OF ERROR VALUES BETWEEN -100 AND -90 = 4
o # OF ERROR VALUES BETWEEN -90 AND -BO = 8
- # OF ERROR VALUES BETWEEN -80 AND -70 = 18
o # OF ERROR VALUES BETWEEN -70 AND -60 = 48
v # OF ERROR VALUES BETWEEN -60 AND -50 = 115
- # OF ERROR VALUES BETWEEN -50 AND -40 = 358
e # OF ERROR VALUES BETWEEN -40 AND -30 = 1227
o # OF ERROR VALUES BETWEEN -30 AND -20 = 6364
{ # OF ERROR VALUES BETWEEN -20 AND -10 = 47003
o # OF ERROR VALUES BETWEEN -10 AND O = 887467
o # OF ERROR VALUES BETWEEN O AND 10 = 852907
- # OF ERROR VALUES BETWEEN 10 AND 20 = 45655
N # OF ERROR VALUES BETWEEN 20 AND 30 = 6426
- # OF ERROR VALUES BETWEEN 30 AND 40 = 1412
: # OF ERROR VALUES BETWEEN 40 AND S0 = 381
- # OF ERROR VALUES BETWEEN 50 AND &0 = 115
2 # OF ERROR VALUES BETWEEN &0 AND 70 = 54
e # OF ERROR VALUES BETWEEN 70 AND 80 = 22
o # OF ERROR VALUES BETWEEN 80 AND 90 = 6
2, # OF ERROR VALUES BETWEEN 90 AND 100 = 4
) # OF ERROR VALUES ABOVE 100 = 3
i HISTOCRAM DATA FOR RELATIVE ERRORS
"
'* # OF REL. ERROR VALUES BETWEEN O AND 5 = 1809789
N # OF REL. ERROR VALUES BETWEEN S5 AND 10 = 13813
w # OF REL. ERROR VALUES BETWEEN 10 AND 15 = 2845
L # OF REL. ERROR VALUES BETWEEN 15 AND 20 = 898
e # OF REL. ERROR VALUES BETWEEN 20 AND 25 = 395
=] # OF REL. ERROR VALUES ABOVE 25 = 1397
N
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TABLE 11

ERROR ANALYSIS USING FORMULA METTHQD

2 NFF = 8
7
0
Xa AVERAGE ERROR = ~0. 09
N AVERAGE ABSOLUTE ERROR = 31. 85
MAXIMUM ABSOLUTE ERROR = 1403. 64
o STANDARD DEVIATION OF ERROR = 62. 05
b HISTOGRAM DATA FOR ACTUAL ERRORS
# OF ERROR VALUES LESS THAN —100 = 62649
M # OF ERROR VALUES BETWEEN -100 AND -%0 = 9877
2 # OF ERROR VALUES BETWEEN =-90 AND -80 =