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Ideas about the mechanism of the metal-catalyzed metathesis of olefinsl
suggested that isolable metal-carbenes might initiate such reactions, as
indeed turned out to be true, Casey's pentacarbonyl(diphenylmerhylene)t:ungst:en2
() initiating metatheses of a variety of olefins3 and Fischer's pentacarbonyl-
(ne:hoxyphenylncthylene):ungstena (@) initiating those of olefins whose double
bonds are scraineds’s' Similar ideas about the metal-catalyzed metatheses of

la,1l

acetylenes in turn suggested that isolable metal-carbynes might initiate

acetylene metatheses, but as is seen below, the archetypical metal-carbyne of
12
i

E.O. Fischer trans[btono:etracarbonyl(phenyimethylidyne)tungsten] 3, s

not effective in doing this. Schrock's tri-t-butoxy(neopentylidyne)tungsten
(4) however is,13 and this discovery, spectacular when viewed in almost any
way, is interesting to consider in its contrast to this background.

The Fischer metal-carbyne 3 and related derivatives do not however leave

" acetylenes unchanged. As demonstrated below, they cause acetylenes, to poly-

merize, giving soluble, structurally homogeneous polymers in accord with
equation 1. And they do this not only to various simple monosubstituted

C. HS COHS
~ ~
- C = w(CO)

CoH W(CO), CHy0” S

1 2

CgHsC = W(CO),Br (CHy)scC=w(loCiCHy), ],
3 -
R R R

CeHsC =W(CO)4Br )\\/K/l\
RCmCH e NN Ny, D)

acetylenes whose polymerization can be brought about by a number of initiators,

l4-16

but also to acetylenes polymerized previously by only few or no initiators: disub-
stituted ncetylenos,ls unsubstituted scetylene (regretably in this case giving,
as do all other effective initiators, only insoluble polymers),la.’15’19'zo and




3=
acetylenes with functional éroups remote from the triple bond. (Polymers of
these last materials had not previously been prepared.)
4
If we suppose that the acetylenme polymerization is an olefin metathesisl7’23’2
——=that 1s, that it involves the formal transformation summarized in equation

2-— then the ability of a metal-derivative to initiate the reaction should | {
It would mean that the metal-

signify its ability to generate metal-carbenes.
carbynes that initiate polymerizations of acetylenes might also cause olefins
to metathesize, and experiments demonstrating this too are recorded below. The .
theory also suggests that if metal-carbynes are sources of metal-carbenes, ' ‘
related metal-carbynes and -carbenes should induce their substrates to give
products that are identical, in particular in stereochemistry. Experiments

]

testing these notions are also described. r
\

R

H/ +H\R——.=€)—F>%:_ 2)
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Resulcs
Bolymerizations of Acetvlepes, Table 1 summarizes experiments testing how

effective metal-carbyne 3 is as an initiator of acetylene polymerization. For

the terminal and internal unfunctionalized acetylenes in lines 1-8 of the table

it acts much like the Casey and Fischer metal-carbenes (L and 3).17 Thus the '

polymerizations are slow, but they do work well, even when the concentration

of the initiator is low. The resulting polymers are tractable, dissolving

easily in CHC132§: 0.5-5 h, except for the polymer ggbz-bucyne, which digsolves

only partially. The molecular weights are high. I g
‘The structures of the polymers are also clearly defined. 1

The "H NMR
spectrum of the-polypropyne is similar to that of the published spectrum of a
17 Their IR spectra are also similar.

sample whogse formation was initiated by l.

(See the supplementary material for the IR gpectrum, which is also the same as

that of material whose formation was Initiated by 2.) The lH NMR spectrum of y

poly(l-hnxyn¢)17 and the 18 and 13C NMR spectra of poly(2-hexyne)26 and poly(t-
. ]

butylacetylene) (see Figure 5 in the supplementary material for the lH NMR

1
spectrum) match those published. 6a, 27,28 They contain no extraneous unidentified

[
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peaks. The 1H NMR spectrum of the polyphenylacetylene formed using the metal-
carbyne ] as the initiator (see figure 3b below) resembles one reported recently
by Simionescu and Percec for a sample prepared using the initiator Co(acetyl-
acetonate)3 plus (CZHS)3A1.298 However the spectrum of the analogue deuterated
in the benzene ring (recorded in the supplementary material in figure 7b) is
cleaner than the corresponding one published by Simionescu and Percec,29b for
it shows no peak at & 6.85. The absorption around 6§ 3.5 seen in some of the
spectra in figure 7 as well as in the spectra of Simionescu and Percec3l is
absent in figure 7b and also in the full spectrum, which is not displayed,

of the undeuterated analogue; The implication (discussed further in the
section below on stereochemistry) is that the metal-carbyne induces the forma-
tion of polyphenylacetylené that is structurally purer than that reported
before and whose structural and stereochemical purity is exceeded omnly by that
of the sample formed by MbClS, whose spectrum is displayed in figure 3a.32

The metal-carbyne alsa initiates the polymerization of unsubstituted acetylene
{line 9 of Table 1), and it does this where the Fischer metal-carbene fails

and the Casey metal-carbene is much less effective.33 The product, a black
solid, is, like all previously prepared samples of polyacetylene, insoluble

in all solvents tested.19’2° It was characterized, however, by its 13C NMR
spectrum (figure 6 in the supplementary material), measured on the solid
spinning at the magic angle and enhanced by proton-carbon cross polarization.34
The intense resonance at 138 ppm is characteristic of E;gggfpolyacetylene,Ss
while smaller peaks at 22 ppm and between 42 and 50 ppm are attributable to
saturated impurities.

The metal-carbyne also polymerizes the functionalized acetylenes in lines
10-12 in Table 1, the first examples of acetylenes polymerizing when these
contain functional groups not conjugated with the triple bonds. Propiolic acid
and its ester and nitrile derivatives and propargyl alcohol and its derivatives
have been polymerized before,z1 but acetylenes in which functional groups are
removed from the triple bond have not. In part the reason mav be that other
initiators have not been tried. Indeed in subsequent research, which will be
reported septrately,36 we found other ways to make these pol;mers, but we also
found :hat‘otgfr initiators effective for acetylenic hydrocarbons fail with
acetylenes that are functionalized. For example, as described in the experi-
mental section below, che Fischer metal-carbene Z could not substitute for
the metal-carbyne in bringing about the polymerization of the ester in line 1l
of Table 1. After 4 days at 45 °C no polymer whatever was obtained.
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The new polymers have been characterized by their fﬁc NMR spectra, which
are summarized in Table 7 in the Experimental Section. To indicate the struc-~
tural purity of these materials, Figure 1 displays the spectrum of the nitrile,
which like the spectra of the other functionalized polymers exhibits small
resonances around 32 ppm, possibly attributable to stereoisomeric impurities,
but which otherwise shows only the peaks required. (The other 13C NMR spectra
are displayed in :h§ supplementary material along with the ln NMR spectrum and
the IR spectrum of the nitrile.) The functionalized polymers dissolve slowly

(ca. 10 h) in THF and CHCIB. The nitrile polymer dissolves much more quickly

and well in CH3CN.

To test a hypothesis described in the Discussion Section below that the
effectiveness of the metal-carbyne initiator is associated with the mobility
of the halogen atom, the cyclopentadiecaly-capped metal-carbyne 2?7 wvas tested
to see if it failed to induce polymerization, which it does. Thus substituting
this derivative for the bromine derivative J in the experiment in line 1 of
Table 1 and increasing the reaction time 24 fold (to 3 days) gave at most a
1.6% yield of polymer. In a similar pair of experiments, where the bromo
derivative in 6 h gave a 24% yield of polymer, the cyclopentadienyl derivative
in 30 days gave at most a 3% yield. Thus 3 is not an effective initiator.

CgHsC = W(CO), (7°=CqHy) CHaC = W(CO),Br
5 6
= =

Other halocarbynes related to J, however, do initiate the polymerizatioms,
the methylbromocarbyne §,38 for example, inducing propyne to polymerize. (When
combined with 333 equivalents of the acetylene for 1l days at -15 °C ——the
methylcarbyne is notably unstable--- this metal-carbyne gave an 117 yield of
polymer.) '

Analyses relating to the stgrebchemistries of the polymers are described
later in this paper. ’

Relvmarizations of Cvclic Olefing. The acetylene polymerizations described
above, although induced by ametal-carbynes, are, according to the mechanistic
hypothesis we have been pursuing, reactions characteristic of metal-carbenes.
Accordingly experiments described below were carried out to see whether metal-
carbynes also induce the more characteristic reaction of metal-carbenes, the
metathesis of olefins.
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" Fischer and Wagner reported a number of yeats39 ago that the combination
methylcarbyne § plus titanium tetrachloride is a very efficient initiator for

cyclopentene's polymerization, yielding trans-polypentenamer, and Kobayashi
and Uejima have patented procedures in which the carbyne 3} plus diethylaluminum

chloride efficiently polymerizes norbornenes, even those like 4-cyanonorbornene
that are substituted by functionmal groups.ao However the experiments reported
here are the only ones in which metal-carbynes without additional co-catalysts
have been studied. '

Table 2 records results of some of the experiments, in which two metal-
carbyne initiators, 3 and 1,41 were used. The first line of the table shows

c c .
cl C=W(CO),Br

ad o I

that 3} initiates norbornene's metathesis, and while this is not surprising in
the sense that norbormene is a highly reactive olefin that even dull tungsten
compounds can cause to netathesize,s’42 not all tungsten compounds do in fact
succeed. In particular when norbornene is combined with the cyclopentadienyl-
capped metal-carbyne J under the same conditions used in experiment 1 in Table
2, no polymer was isolable even after 3 days.

The other cyclic olefins in Table 2 are very much less reactive than
norbornene, and the polymer yields obtained with the unsubstituted metal carbyme
3 are poor for cyclopentene and miserable for cyclooctene. The problem in part
is that since metal-carbyne J is not thermally stable, the yield can not be
raised by extending the reaction time or by raising the temperature, because
the initiator decomposes. This is why the pentachloro-analogue ] was studied,
as it is known to be more thermally stable.41 As the table shows, it is, as
was hoped, a more effective initiator, giving fair yields of the polymers,
ca. 3 to 9 times as much as the unsubstituted metal-carbyne. Experiments
described below using the metal-carbyne § also accord with this trend, for
under reaction conditions similar to those in the table, this thermally less
stable metal—carbyne38 is seen to be a bad initiator for cyclopentene's
polymerization.

Table 3, however, records results that were unanticipated; it shows that

the poor ylelds obtained when the reaction mixtures are thoroughly degassed can
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be raised to very good yields by simply dispensing with the degassing! The
table also shows that the active agent in the air is oxygen, not water.

Although oxygen has been found to co-catalyze a number of olefin meta-
theses,44 oxygen inhibits similar reactions initiated by isolable metal-carbenes
related to the metal-carbymes studied here. For example, when one mole of
oxygen per mole of metal-carbene ] is present, the yield of polypentenamer
obtained when cyclopentene is incubated with 1/150 mole of L for 24 h at 44 °C
falls to zero from 84% in the absence of oxygen.

While the presence or absence of oxygen has a major effect on yields,
replacing the bromine atom in the halo-metal-carbyne with chlérine38 does not.
(Replacement with iodine,38 however, decreases the yields from the less active
alkenes.) Table 4 summarizes relevant data. This replaceménc of bromine by
chlorine is also without effect if the reactions are performed in a vacuum
rather than in the atmosphere (although the yields are less). Thus after
3 days at ambient temperature the chloro analogue of 3 .(1/163 mole) polymerized
cyclopentene to an extent of 52 (71% cis according to IR or 13C NMR analysis),
whereas ] itself (1/172 mole) gave a 5.7% yield. (In a related experiment the
% cis vas measured as 74% by IR analysis and J1 : 3% by 1°C MMR.)

However if the bromine atom in 3 (and 2 carbon monoxides) is replaced by
a cyclopentadienyl unit, giving j, this material, just as in the experiment
with norbornene described above, has no measureable initiating ability in
similar experiments. For example under conditions like those in Table 4, after
96 h cycloheptene (74 moles) I;-the atmosphere gave no polymer, and neither did
cyclopentene (170 moles).

Stereochemistries. The data presented in this section appear to show that
the stereochemistries of the polymers produced by the metal-carbyne initiator
J and by the related metal-carbenes 2 and ) are similar.
Stersoregularity of Polv(c-bytviacetvylepe). Figure 2 compares the methyl

13C nuclear magnetic resomnances and the olefim lH nuclear magnetic resonances
(a full spectrum is in figure 5 in the supplementary material) of samples of
poly(t-butylacetylene) that had been prepared using bromocarbyne 3 and Fischer
carbene 2 .s intitiators. If the assignment by Masuda et al of the carbon
resonances at 32.5 and 31.4 ppm to Z ("trans") gnd E ("cis") unicswa’27 is
correct, the intensities of the resonances in figures 4a and b imply that

82.3 ¢ 1% of the double bonds in both polymers have the E configuration. The

1
H NMR spectrum supports these measurements by displaying two olefin resonances,
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one that is sharp and intense at & 6.20 and one that is broad and weaker at

5§ 5.95. The former peak accounts for 75 * 5% of the intemnsity in the case of

the polymer prepared using the Fischer carbene as the initiator, and 64 + 5%

of the intensity in the case in which bromocarbyne 3 was the initiator. The .

presumption is that if the assignment of the 130 resonances is correct, the

low field proton resonance is associated with E olefin units. .
Stezeoregularity of Polvphenviacetvlene. The 14 MR and infrared spectra

of samples of polyphenylacetylene prepared using J as the initiator are compared

in figures 3 and 4 with the spectra of samples prepared using other initiators.

If as had been supposed24’25 the peaks in the infrared spectra at 740 and 890 cm‘l

measure the concentration of E ("cis") units, the fraction of the double bonds

having this configuration decreases as the initiator is changed as follows:

bromocarbyne () = MoCl. = Fischer carbene (2) > Casey carbeme (J) > WCl

30,31, 45 3 6

Simionescu also assigned the peak at 5.8 ppm in the lH NMR spectrum to
the olefin resonance of units with the E configuration, and following this
assignment and the measured intensities, the fraction of the double bonds that
are cis is calculated to be 91 * 157 for polymer made using bromocarbyne (),
and 75 * 10% for polymer made using Fischer carbene (2). The sample made using
WCI6 exhibited no peak at § 5.8 ppm, and accordingly the double bonds are

<13 £ 10Z cis. The lH NMR and infrared spectra of samples of poly(penta-

deuteriophenyl-acetylene) prepared using bromocarbyne 3 and other initiators
were also compared. (See figures 7 and 8 in the supplementary material.)
Simionescu and Percec recently reported that in these deuterated polymers
olefin protons in E and Z configurations resonate at § 5.8 and 6.8 ppm
respeccively,3l and accordingly the sharp peaks at § 5.8 and the apparent
absence of peaks at 6.8 ppm in the spectra of materials made using MoClS, 2,
or J imply that the double bonds in these samples almost all have the E
configuration. In contrast the spectrum of a sample made with WCl,  looks like

6
that published of a structurally and stereochemically impure polymer.46

The infrared spectra (displayed in figure 8 in the supplementary material)
provicde support. Those of samples made using MoCls, 2, or J exhibit peaks
at 970 and 740 cm-l, which have been assigned to units with the E_configuration.ZA’3o’45 1{

The spectra are similar to that of poly(pentadeuteriophenyl-~acetvlene) that
seems to have been made using ferrous dimethylglyoximate.2-pvridine plus
(CZHS)BAl as the 1nitiator.a7 In contrast the spectrum of polymer made using

WCl, as initiator exhibits no apparent absorption at 740 em™ L,
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Stercoxegularity of the Polvalkepamers. The fraction of the double bonds

that are cis in the various polyalkenamers was measured by infrared and 13C NMR
spectroscopy.3a’5’43 For the polynorbornenamer in the first line of Table 2,

whose formation was initiated by the bromo-metal-carbyne 3, the values are:

according to the IR analysis 67% cis; and accordingly to 13C NMR analysis

80 * 62 cis. The average is 73.5 * 6. This is remarkably similar to the

75.7 ¢+ 5% average measured for samples of ﬁolynorbornenamer whose “nrmation was

initiated. by the Fischer metal-carbene 1,5 The published values . 752 and

682 cis for two samples, and was 84%Z cis (IR analysis) for anothe -epared in

an unpublished experiment.48 .

The stereochemistries of many of the polyalkenamer samples p : d here

are listed in Tables 3 and 4. Table 5 supplements these data witi. .casurements

made un samples that are similar to those in Table 2. Table 6 summarizes the

stereochemistries measured for all the samples prepared in this work ahd compares
- them with stereochemistries of samples prepared using related initiators. The

comparisons show that the metal-carbyne initiator induces fairly high stereo-

selectivity, somewhat higher than that induced by the combination WC16 + C6H5CECH,

but not as high as that induced by the halogen-free metal-carbene of Casey,

compound 1,3a or by the combination of the Fischer metal-carbene 2 and phenyl-

acetylene.23b

The 130 NMR spectra of the cycloalkene polymers discussed here in connection
with the polymer stereochemistries also demonstrate that the structures of
these materials are those of the polyaikenamers. All of the spectra show only
the required peaks and none attributable to impurities, in particular saturated
impurities that would result if double bonds condensed.

Riscusaion

The experiments above demonstrate that metal-carbenes like J initiate
polymerizations of acetylenes, and they do this not only with acetylenes that
are monosubstituted, but with unsubstituted, disubstituted, and functionalized
examples that have rarely or never been polymerized before. The observation is
especially remarkable because the ideas presented in Ehe introduction about the
mechanism of acetylene metathesis would have metal-carbynes inducing acetylenes
to metathesize, not polymerize. If the theory about the mechanism of the
acetylene polymerization at least 1s correct, the observation would mean that
the metal-carbyne is a source of metal-carbenes, and of ones that are reactive
initiators of metathesis reactions.

23d
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Although we do not know at this point how the metal-carbyne generates
metal-carbenes (if that is what it is doing), we speculate that a possible way

might be by essentially reversing the reaction (equation 3) by which the metal-

carbyne is prepared.lz’49 Thus Fischer and Fischer have repeatedly demonstrated

CeH BBr, CeH , |,
= w(C0)g —2= © SCTWRCO —= CHgCSW=Br
/ S Cts %X q (3)
CH30 CHi?
BB8r—=Br

that the isolable metal-carbenes § spontaneously rearrange as in equation 4,
examples including those with ¥=Cl,Br,I,SeC_H., TeC_H., Sn(C_H.),, and

50 65" 5ob0cf,g,n 0 2 3
Pb(C6H5)3. The kinetics of the rearrangements” ’ ’ ’®*" are in accord with
the mechanism of equation 5, and supposing this mechanism to be correct, if

C=Cr(CO)lg— trans = (C,Hg);NC =Cr(CO) X + CO “

X 8 9

=

step 2 is not too exothermic, the reverse of the reaction might yield coordina-

Ky ] =Cr(CO) __53_. Q g
8 —oo CO + [(CHg) N (X) € =Cr(CO), 557~ 2 (s)

tively unsaturated metal-carbenes faster than step 1. Transposing these thoughts
to metal-carbyne 3 suggests that equation 6 might plausibly yield the coordina-
tively unsaturated metal-carbene 10 and might require a smaller free energy

barrier to be surmounted than the 24.5 - 28.0 kcal/mole required for ] or 2 to

CeHsn

9 .
Br
lg
CgHs CeHs
SC=W(C0)y ——=  ~ SC=W(CO), +CO
x” X )
X=C'6H5 (;) (L”
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lose CO (equation 7).51 There is not auch evidence supporting this thought,

but the similar stereochemistries of the acetylene polymers produced by the
initiators 2 and 3, demonstrated in figures 2,3,4,7, and 8, accord with the

idea, for the initiating species should be 1Q and L1 (X-OCH3), which are

similar in structure. The similarities in the stereochemistries of the poly-
norbornenamers produced by 2 and 3 (Table 6) plausibly reflect this same similaricty.

The observation that the metal-carbynes also induce olefins to metathesize
and that the cyclopentadienyl-capped metal-carbyne J induces neither acetylenes
nor cyclic olefins to polymerize also agrees with the hypothesis.

The idea also accounts for why Schrock's metal-carbyme, i; metathesizes
acetylenes whereas the Fischer metal-carbyne J polymerizes them, for the
Schrock metal-carbyne is coordinatively unsaturated while Fischer's is not.

If this unsaturation is required for reaction to occur, the Schrock compound
can react directly, but the Fischer metal-carbyne has to lose a ligand from
the metal. If that ligand is the halogen, and if it rearranges to the adjacent
carbon, the coordinative unsaturation is produced, but at the expense of the
metal-carbyne transforming into a metal-carbene.

Whether this hypothesis is correct or not, the essential theoretical point
implied by the experiments is that metal-carbyhes like } appear to pe sources
of metal-carbenes.

Experipencal Section

The IR spectra in Figure 4 and 8 were recorded using a Perkin-Elmer model
1420 spectrometer, and the others using a JASCO IRA-l. The vapor phase chroma-
tography (VPC) column was a 1/8" x 9' column of 3% carbowax 20 4 on 100-200 mesh
acid-washed and dimethylchlorosilylated chromosorb W or, when specified, a
30 m x 0.316 mm capillary column coated with 0.25 um carbowax 20 M. The
ingstrument was a Varian 3700 with flame ionization detector. Gel-permeation
chromatograms were measured using tetrahydrofuran (THF) solutions, five u-styragel
columns (106, 105, 104, 103, and 500 K) from Waters Associates, and a refractive
index monitor.

Exeparation and purdfication of mopomers. Acecvienes. Phenylacetylene
(Aldrich 98%) was distilled through a spinning-band column, and a fraction that
was 99.9% pure (VPC analysis) was collected, distilled from CaH, at reduced

2

pressure, and stored at -15 °C in a N, atmosfihere. Propyne (from ‘atheson

2
Gas Co.) was passed from a lecture bottle through a 31 ¢m x 3 cm tube packed

half with a )1 molecular sieves and half with 8-14 mesh basic Alzo3 from MCB

=
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chemicals. Tertiary-butylacetylene (99.6% pure), 2-hexyne, and 5—chlor6-1-pentyne_

(all from Farchan Labs) were distilled through a short column. The latter two
were then 99.6% and 99.8% pure (VPC). 2-Butyne was dried over sodium and it
and l-hexyne (Farchan) were distilled through the spinning-band still. Their
purities were then 99.9% and 99.7% (VPC). Methyl propiolate (Aldrich 99%) and
methyl propargyl ether (Aldrich 987%) were used as received. 5-Cyano-l-pentyme
was prepared from 5-chloro-l-pentyne according to the method for the preparation
of capronitrile52 and distilled at 30 mm Hg (bp 85 °C). The yield of materials
that was 95-98.5% pure (VPC) was 53%Z. A fraction that was 98.3% pure was used
in the polymerization experiments. 13C NMR 118.5 (CN), 81.4 (CS)’ 70.1 (C6),
24.1 (C3), 17.3 (Cz), 15.8 (Ca) ppm. Refluxing the 95% pure materials (8.3 g,
89 mmol) and NaOH (700 mmol) in H20 (400 mL) for 10 h, acidifying with aqueous
HCl, extracting with ether, and distilling (110-111 °C at 20 mm Hg) gave a 70%
yield of the carboxylic acid. Refluxing (6.5 g, 57 mmol) the carboxylic acid
in CH30H (60 mL) and 0.2 mL concd 52504 for 4 h extracting (ether), washing,
drying (MgSOa) and distilling (82-83 °C, 43 mm Hg) gave 5.5 g (76% yield) of
the ester. This was redistilled to give 98% pure (VPC) methyl 5-hexynoate.
Pentadeuteriophenylacetylene was prepared from pentadeuterioacetophenone,
which itself was prepared according to the literatute53 with some modifications
as follows. Acetyl chloride (19.6 g, 0.23 mol) was added during 30 min to a
mixture of AlCl3 (33.3 g, 0.25 mol) and C6D6 (99% D, 21 g, 0.25 mol) cooled by
a cold~water bath (ca. 5 °C). (The mixture suddenly solidified.) After 30 min
reflux with 120 mlL n~pentane, the solid was broken into small pieces, trans-
ferred to a beaker containing 300 g ice, extracted with 200 mL pentane, washed
(water, aqueous NaOH, water), dried (MgSOa), distilled through a short column
(no rotovap!), finally at ca. 91°/23 mm, giving 21 g (67% yield). (The 1H NMR
spectrum shows only methyl protons, at § 2.6). The acetylene was then prepared
by the method of Casanova et 81’56 and purified by distillation through a short
Vigreaux column (57 °C/35 mm). The overall yield from the acetophenone was
17%. VPC analysis showed the material to be 98.57 phenylacetylene, 0.57% styrene.
The only IH NMR resonance observed was that of the acetylene proton, at § 2.9.
Cvcloalkenes. Cyclopentene (from Aldrich Chemical Co.) was distilled
through a spinning band column and redistilled from CaHz. The purity (VPC,
capillary column) was 99.7%. Cycloheptene (Aldrich, 99.6+Z purity) was
refluxed with and distilled from Na. Cyclooctene (from Eastman Kodak Co.;
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96.2%) was partially hydrogenated over 10% Pd/C. The catalyst was filtered,
and the hydrocarbon was distilled througﬁ a Vigreau; column. It was then
refluxed over Na and distilled again. VPC analysis (capillary) showed the
material to be 92.7% cyclooctene and 7.3% cyclooctane.

Metal-Carbvnes. Trans-[bromotetracarbonyl(phenylmethylidyne)tungsten] (3)
was prepared essentially as described by Fischer gg_gl.lzc After flash chroma-
tography on silica gel at =25 °C, eluting with pentane—CHZCI2 (6:1), recry-
stallization from pentane-CH2C12 at -100 °C, washing with cold pentane, and
drying in a vacuum at -20 °C for 3 h, the yield of yellow needles was 67X.

IR (hexamne, vco) 2125(m), 2050(vs), 1975(m); reportedl2c 2125(m), 2040 cm.l(Vs).

The 13C NMR spectrum in CDZCl at -20 °C exhibited the reported resonance838 and

2
none that were extraneous.
38

The chloro- and iodo- analogues were prepared essentially as described,
but at somewhat different reaction temperatures. Thus BCl3 was added at -5 °C
during 15 min and the reaction mixture was then warmed to 5 °C for 30 min. BI3
in pentane solution was added in 5 min at O °C, and the reaction mixture was
warmed to 7 °C for 40 min. The metal-carbynes were flash chromatographed on
silica gel at -25 °C, eluting impurities with pentane-CH2C12 (5:1) and then the
metal-carbynes with CH2012. They were recrystallized from pentane-CHZCI2 at
-100 °C, washed with cold pentane, and dried in a vacuum at ~20 °C for ca. 5 h.
The yields of the chloro- and iodo- compounds were 59% and 23%, both yellow

13C NMR spectra in CD201 at =20 °C exhibited the reported

needles. Their 2

resonances and no extraneous ones.

The cyclopentadienyl metal-carbyne 3 was prepared from J according to the
method of Fischer.37 The yield was 12%Z. After purification by flash chromato-
graphy on silica gel, eluting with pentane—CHZCI2 (5:1), and recrystallization
from pentane (at -78 °C) its IH NMR spectrum (room temperature, CDC13, 90 MHz)
exhibited peaks at & 7.35 (5.1 H) and 5.70 ppm (4.9 H) (literature®’ 7.51 and
5.80 in CD2C12 at -20 °C) and its IR- spectrum (thin film, room temperature) at
1995 and 1900 cm™ - (Literature®’ 1984, 1905 em ™, in CH,CL,).

Trans-{bromotetracarbonyl (pentachlorophenylmethylidyne)tungsten], ], was
prepared as described previously,55’56 but the solid pentachlorophenyllithium
was not isolated during the preparation of the metal—carbene.56 Thus the cold
(-78 °C) ether solution of this organolithium, prepared from 1.15 g (4.0 mmol)
of hexachlorobenzene, was transferred by cannula to a flask containing 1.41 g
(4.0 mmol) H(CO)6 in 500 mL ether at -70 °C. Before the treatment with

(CH3)30+BFQ-, insoluble material was removed by filtration through a coarse
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; sintered glass frit. The orange-red solid residue remaining when the ether was
f : stripped was flash chromatographed on silica gel, eluting with n-pentane. After
!

: a colorless forerun, a red fraction gave, after the solvent had been stripped.
! ? - 0.3 g (12% yield) of red crystals, mp 126~127 °C (Lit56: yield 29.5%, mp 129 °C).
Our IR data match that published. The 1H MMR in CDCL,, § 3.3, compares with |
the published § 3.6.56 The mass spectrum exhibited the required parent peaks.

This metal-carbene (0.18 g, 0.292 mmol) was added under N2 to a solution
of AlBr3 (0.15 g, 0.57 mmol) in CH2C12 (5 mL, distilled from PZOS)' During 1 h

stirring at -78 °C the color changed from orange-red to yellow green. Solvent

was removed at -60 °C by reducing the pressure until 1 mL remained (ca. 2 h),
and CH OH (2.5 mL) then precipitated the yellow product. After 10 min at -78 °C,

3T
solvent was syringed away, and the residue after three more washings with 2.5 mL i
CH,OH was finally filtered, giving 0.125 g L (67% yield) after drying in a ’

vacuum of ca. 1 mm Hg for 1 h. IR peaks in CHZCI2 were at 2056(vs) and 2136(w) cm_l;
reported:55 2052(vs), 2137(w). The molecular weight (mass spectrum) was that {
required. 5
All metal-carbynes were stored under N, at -78 °C. ’
Belvmerizacion Procedures. Subscituced Acetvleges. Propyne (1.3 g, 33 mmol)
was condensed, degassed at ca. 10-5 mm, and distilled onto the initiator (40 mg)
in a 20 mm glass tube. Other acetylenes (ca. 2 mL) were passed through short
columns of 80-200 mesh basic A1203, dehydrated over CaHZ, degassed on the vacuum
line, and distilled onto the initiator in 13 mm glass tubes. No solvents were
used. The glass tubes were evacuated and sealed. Reactions were effected at
room temperature. Polymers were isolated by stirring the contents of the tubes
briefly (ca. 20 min) with CHCl3 (ca. 10 mL) and precipitating with methanol
(ca. 100 mL). The supernatants were decanted and the polymers dried in a vacuum
(ca. 0.5 mm gg) for»gg, 15 h. . . ) o ‘ o
Polyphenylaéetylené was dark red-orange, soluble in CBC13, CHzclz, benzene,
and THF. The gel permeation chromatogram showed a long tail at low molecular
weights. It was analyzed as‘though there were one major peak whose characteris~
tics are recorded in Table 1 and a minor one (whose area on the recording of
refractive index was 1/8 as large) with "ﬁw"-45x103, "ﬁn"-4x103.

Polypropyne was orange, soluble in CHCla, CH2012, and THF. Its infrared

v spectrum appears below in the supplementary material. Its 1H NMR spectrum in
o CDCl, (80 MHz) is like that published: & 5.9 (broad) and 1.7, with much smaller
} ‘ peaks at 0.9, 2.2, and 2.6 ppm.
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Poly(t-butylacetylene) was a white powder, soluble in THF and CHCl3 Its
C NMR spectrum was like that published with olefin resonances at 144.6 (C )
and 128.1 ppm (C ) and_methyl resonances exhibited in figure 4. IR (thin film)
2960-2880 (-CH CH ), 1600 (weak and broad, C=C), 1480, 1460 (sh), 1390, 1360,
1240, 1200 cm (in agreement with a spectrum displayed by Masuda et al. Loa for
a sample prepared using HCl6 in CCl4 as the initiator, although in their spectrum
peaks at 1200 and 1240 cm"1 were not resolved). Poly(l-hexyne) was a red-orange
polymer, soluble in CHCl3 and THF. IR (thin film): 1620 (broad and weak) and
prominently 2840-2960 (CH), 1460, 1380, 1100, 930, 900 cm™t. 1H MR (in oo,
80 MHz): § 5.8 (0.8 H, Hl)’ 2.2 (2.0 H, Hz), 1.3 (4.1 H, HA)' 0.9 ppm (3.1 H, Hs).
Poly(2~-hexyne) was a white powder, soluble in benzene, THF, CHCl3, and
CH,CL,. Tts 13: m®, 15 MR, and IR spectra match those published.2® I MR
in CDC1, st 300 MHz: § 2.1 (R)), 1.7 (8,), 1.4 (H), and 0.9 (H) ppm. ' °C NMR:
138.0 (C3), 131.9 (Cz), 36.7 (ca), 21.4 (CS,Cl), 14.7 (C6) ppm. IR (thin film:
1650 (very weak, C=C), 2940 (s), 2880 (s), 2935 (sh), 1470 (m), 1455 (m), 1380 (m),
1105 (m), 1060 (sh), 1000 (w). [n]spc' 2.34 + 0.04 in toluene at 30.1 °Ci
Poly(2-butyne) was a white powder, partially soluble in CHC13. Its "H NMR
spectrum in CDCl3 (80 MBz), like that published exhibits the CH3 resonance at

§ 1.6 ppm and no olefin resonance.

13

The polymers of 5-chloro- and S5-cyano-l-pentyne are orange, that of methyl
13

5-hexyndate is reddish brown. All are soluble in THF and CHC13. Their “°C NMR
spectra, displayed in figure 1 and in the supplementary material, exhibit the
peaks summarized in Table 7. The IR spectrum of poly(5-cyano-l-pentyne) as a
thin film has peaks at 2940 (s), 2880 (m), 2250 (s, CN), 1690 (w), 1455 (m),
and 1425 cm-l(m). The 1H NMR spectrum of the polymer at 200 MHz consists of
three peaks: § 5.92 (0.72 #), 2.40 (3.89 H), and 2.40 ppm (2.40 H). These IR
and 1H NMR spectra are displayed in the supplementary material.

ALEsaRe Lo Polvmerize Methvl Sc-Hexvnogte with 2. The ester (1.4 g, 11.1 mmol),
which had been passed through basic alumina, was degassed and distilled from
Caﬂz onto 2 (40 mg, 0.090 mmol) contained in an evacuated glass tube. The tube
was then sealed. After 4 days at 45 °C no polymer was obtained.

Acetylene. Metal-carbyne J (33.5 mg, 0.072 mmol) was placed in a 250 mL
round bottomed flask containing a teflon stirring bar and connected by a fused
length of 8 mm o.d. glass tubing to a vacuum manifold. The flask was evacuated
to a pressure of 1.5:10‘5 mm Hg. This flask and the other glassware used in

the experiment had been dried in an oven at 110 °C for at least 10 h., Meta-xylene
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(5 mL), which had passed through a short column of basic alumina directly into
a 25 mL flask containing a small amount of CaHz, was degassed on the manifold
in three freeze-thaw cycles and transferred through the manifold to the flask
containing 3. This flask was then evacuated again and cooled in liquid Nz.
Meanwhile acetylene, obtained from Matheson Gas Co. in acetone solution,
was purified by passing it through a train, initially evacuated, consisting
of these components: a trap cooled in dry-ice/acetone; an stoa-filled trap;
an empty trap; a columm of KOH; a columm of crushed basic alumina; a columm
of 5 A molecular sieves. The acetylene gtream was allowed to flow through the
vacuuﬁ manifold system while the flask containing the initiator and solvent
was isolated and cooled. One gram of the gas was measured into the reaction
vessel by noting the pressure drop in the sealed manifold when the reaction
flask was opened to the system. Residual acetylene was evacuatea. The flask
was evacuated again and then sealed with a torch.
The reaction took place while the flask was stirred at room temperature
for 92 h. The flask was then brokenm open in a glove bag, and the black polymer
coating the walls was scrapped off, washed with distilled n-pentane, and
filtered through a coarse ground glass frit in a Schlenk tube. After drying
in a vacuum for 24 h, the yield was measured as 339 mg (34% yield). The
elemental analysis (C, 85.93; H, 7.16; O, 3.66) showed carbon and nydrogen atoms
to be present in the ratio 1.007 and small amounts of oxygen-containing impuri-
ties to be present too. (The ratio of oxygens and carbons was 0.03.) Figure
6 displays the 13C NMR spectrum of this sample.
¢vcloalkenes. (a) Io a Vacuyum. Each cycloalkene was passed through a
column of basic alumina. Then a sample of ca. 1.5 g over CaH, was degassed by
three freeze-thaw cycles in a vacuum of < 10.5 mm and distilled in the vacuum
onto the initiator contained in a glass tube. The tube was melted shut and
stored at room temperature. The polymer was isolated by dissolving the reaction
nixture in CBC13, precipitating with methanol, decanting the solvent, and drying

in a vacuum (ca. 0.5 mm) for 12 h.

Lp) In the atmosphere. The cycloalkenes were passed through alumina and

ca. 1.5 g samples were simply combined with the initiator in a flask that was

then sealed with a serum bottle cap.
(c) Under N,. Reactions were effected in small flasks that were repeatedly

evacuated and filled with Nz. In the example with metal-carbyne § and cyclopentene
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was present equal to that of

a volume of CHZCIZ, freshly distilled from PZOS’

the cyclopentene. Otherwise no solvents were used.

£d) _In che presence of oxyegen. Metal-carbyne 3 (40 mg, 0.086 mmol) was
placed in a glass tube whose volume (3.3 mL) when sealed by a teflon valve was
the sum of the required volume of cycloalkene and oxygen. This tube was connected
by ground glass joints to another containing cyclopentene (1.3 mL, 1.0 g, 14.7 mmol)
over CaH,, and both tubes were connected to a source of high vacuum. The cyclo-
pentene was degassed and distilled onto the metal-carbyne, oxygen (0.082 mmol)
was allowed to fill the apparatus, and the teflon valve was closed. The experi~
ments with cycloheptene and cyclooctene were similar.

{e) In the presence of H,0. The required amount of water was added to
cyclopentene, and a weighed portion was degassed and distilled onto the initiator.
Nerbornene. A solution of norbornene (1.5 g, Aldrich 99%, refluxed with

and distilled from Na just before) in toluene (0.5 mL, previously washed with
32804, NaOH, dried with CaClz, and distilled from Na) was degassed and distilled
onto the initiator. The contents of the sealed reaction tube which solidified

5 min after warming to room temperature, were stirred with 6 mL CH2C12 for
ca. 20 min and poured into ca. 15 wl Cﬁsoﬂ.

Solubilities of the Polvimers. Polypent-, hept-, and ozt-enamers were
completely soluble in CHC13, tetrahydrofuran, benzene, and CHZCIZ. Polyhept-
and oct-enamers dissolved in CHCl3 quickly (ca. 20 min) while polypentenamer
dissolved slowly (3 h). Polynorbornenamer was only partially soluble in CHC13.

Attegpts to Use 5 as an Jndtistor. Phenylacetyleme (0.93 g, 9.1 mmol) that
was distilled through a spinning band column and redistilled from CaH2 (99.47
pure, 0.6% styrene, according to VPC analysis) was passed through a column of
80-200 mesh basic alumina, dried over CaHz, degassed, and distilled onto the
initiator (20 mg, 0.043 mmol) contained in an evacuated glass tube. The tube
was sealed and, after 3 days at room temperature, was cracked open. Pouring
into methanol (10 mL), centrifuging, washing with methanol, and drying (vacuum,
24 h) gave only 1.5 mg (1.6% yield) of orange powder,

Norbornene (0.75 g, 8.0 mmol, the sample used above, freshly distilled)
in toluene (1 mL, the same as above, just passed through a short column of
basic alumina) was dried and degassed over CaH2 in three freeze-thaw cycles
in a high vacuum. After distillation onto the initiator (14.0 mg, 0,030 mmol)
and sealing in a vacuum, the mixture was warmed to room temperature. The color

p—
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turned from orange to brown in 3 days. Pouring into ca. 10 mL methanol gave

no precipitate.
Effect of Ozon Polymerization of Cyclopentene by 1.

14.6 mmol, refluxed over CaH2 and distilled just before) was passed through a
column of basic alumina. Using the apparatus described above in the experiment
with 3 and 02, it was dried and degassed over CaH2 (three freeze-thaw cycles

in a high vacuum) and distilled onto 1 (48 mg, 0.098 mmol). Oxygen (0.1 mmol)
After ca. 1 h the

Cyclopentene (1.4 mL,

was admitted, and the tube was then warmed at 43-45 °C.
After ca. 24 h the reaction mixture was still

original purple color had faded.
OH at this point precipitated

not noticeably viscous. Pouring into ca. 10 mlL CH3
no polymer.

~ The same experiment was conducted simultaneously without oxygen.
evacuated tube was simply sealed after the cycl~pentene had been distilled
The reaction muxture solidified in 3 h and after 24 h

and precipitated with CH30H. After drying in

(The

onto the initiator.)
.was dissolved in ca. 3 mL CHCl3
a vacuum for 12 h, the yield was 0.835 g (84%).
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Supplementary Material Available: H MMR spectrum of poly(t-butylacetylene)
13

prepared in experiment 4 of Table 1; C NMR spectrum of polyacetylene (experi-
ment 9 in Table 1); 1H NMR and IR spectra of 4 samples of poly(pentadeuterio-

phenyl-acetylene); IR spectrum of poly(propyne) prepared in experiment 3,

Table 1; 13C NMR spectra of poly(methyl 5-hexynoate) and poly(5-chloro-l-pentyme)

prepared in experiments 10 and 11 in Table 1l; and lﬂ NMR and IR spectra of

poly(5-cyano-l-pentyne), prepared by repeating experiment 12 in Table 1 on a

larger scale (l. pages). Ordering information is given on any current mast-~

head page.
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Elgure Captions

Elgure 1. 13C NMR spectrum (5000 scans) of poly(5-cyano-l-hexyne) in CD3CN.

The sample was prepared as in experiment 12, Table 1.

Figuyre 2. Methyl 13C and olefin 1H resonances in poly(t-butylacetylene).

(a) 75 MHz 13 3
prepared using pentacarbonyl (methoxyphenylmethylene)tungsten (2, 0.01 moles

C NMR spectrum of a sample in CDCl, of poly(t-butylacetylene)
per mole of the acetylene) at 40 °C for 36 h and at 60 °C for 6 h (see
reference 17). (b) 75 MHz 13C NMR spectrum of a sample (No. 4 in Table 1)
in CDCl3 of poly(t-butylacetylene) prepared using the bromocarbyne 3 as the
iniciator. (c) 200 MHz 1H NMR spectrum in CDCl3
figure 4a. (d) 200 MHz lH NMR gpectrum in CDCl3 of the same sample as in
figure 4b. '

Figure 3. lH ¥MR spectra of polyphenylacetylenes (in CDC13, at 300 MHz for

b and ¢, and at 200 MHz for a and d). (a) Polymer made using MoCl

of the same sample as in

5 (references

16c and 24) in benzene (ca. 22 °C, 2 h), monomer concentration ([M])=2.2 M,

initiator concentration ([1])-4.4x10'2

M; (B) Polymer made using bromocarbyme

3 as initiator (Table 1, Sample 1); (c) Polymer made using Fischer carbene

(2) as initiator (reference 17), no solvent, [M]/[I]=125, 50 °C, 3 h; (d) Polymer
made using Casey's metal-carbene (1) as initiator, no solvent, [M]}/[I]=100,

50 °C, 4 h; (e) polymer made using WCl6 (references 1l6¢c and 24) as initiator

and CHZCl2 as solvent (ca. 22 °C, 2% h), [M]=0.9M, [I]=0.9x10M.

Eigyre 4. Infrared spectra of polyphenylacetylene films. The arrows indicate
the position of peaks at 890 and 740 cm-l, which are supposed to be character-
istic of units with the E configuration. The samples were prepared as described
in the caption to figure 5 using (a) MoCls, (®) 3, () 2, (@) L, (e) WC16.
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Polymerizations of Acetylenes and
C Indu —C

Ihomas J. XKagz, Thod Huu Ho
Neng-Yan h =Chi

and Van I.W, Stuart

Department of Chemistry, Columbia
University, New York, NY 10027

Figure 5. lH NMR spectrum of poly(t-butylacetylene) (sample 4 in Table 1) in
CDC13. The resonance frequency is 200 MHz and 260 scans are averaged. Chemical
shifts are displayed below the peaks and intensities above.

Figure 6. 13C NMR spectrum of solid polyacetylene (experiment 9 in Table 1).

The spin rate is 2655 revolutions per second, the cross polarizatibn time 1 msec,
and the numbar of scans averaged is 63,464, The peaks marked ssb are spinning
side-bands. The peaks around 22 and 44 ppm are caused by impurities.

Figuge 7. IH NMR spectra of polypentadeuteriophenylacetylenes (in CDCl3, at

200 MHz, 20 °C). (a) polymer made using as the imitiator MoClS, in benzene

(ca. 22 °C, 2k h), monomer concentration ([M])=10 M, initiator concentration
([1])=0.2 M; (b) polymer made using as the initiator bromocarbyne }, no solvent,
[M]/[1]=100 (ca. 22 °C, 6 h); (c) polymer made using as the intiator Figcher
carbene as an initiator, no solvent, [M]/[I]=100, 50 °C, 6% h; (d) polymer

made using as the initiator wCl, im CH,Cl, (ca. 22 °C, 2% h), [M]=10 M,

6 2772
[1]=0.2 M,
Figure 8. IR spectra of polypentadeuteriophenylacetylene. The arrows indicate

the positions of the peaks at 890 and 740 cm-1 that are supposed to be charac-
teristic of the E configuration. The polymers were prepared as described in
the captiun to figure 7 using as initiators (a) 3, (b) MoClS, (cl 2, and

(4) ?016.
Eigure 9. IR spectrum of a film of poly(propyne) prepared in experiment 3,
Table 1.
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s

13C NMR spectrum (75 MHz, 6000 scans) of poly(methyl S-hexynoate),

experiment 1l in Table 1, in CDCl3.
13C NMR spectrum (75 MHz, 5600 scans) of poly(5-chloro-l-pentyne),

experiment 10 in Table 1, in CDC13.

lH NMR spectrum (200 MHz, 176 scans) of poly(5-cyamo-l-pentyme),

repeating experiment 12 in Table 1 on a larger scale, in CD,CN.

3
IR spectrum of poly(5-cyano-l-pentyne) as a thin film. The sample

as the one used for figure 1.
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