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Abstract

m;;An experimental investigation of air flow in an annular
inlet and diffuser was conducted using a photon-correlating La-
ser ngpler Anemometer. The inlet has an inside wall radius of
22.9 €éntims£ef$é(9.0 in) and a cross-sectional area of 0.0426
sq méter§V20.4583 sq ft). The diffuser walls have a divergence
half-angle of . seven deg?ees.s Flow rates in the vicinity of 0.25
kg/sec (O.SS,ibé/séc) were studied. The Reynolds number in the
annular inlet was 18300. Theiflow in the annulus was turbulent
and thé boundary layer growth was approximately 207 less than
that predicted using flat plate boundary layer assumptions. The
laser anemometer measurements are compared to hot film anemometer
measurements. Good comparison was obtained except in the annular
inlet. The difference is probably due to the differing boundary
layer growth rates between the laser and hot film anemometer
tests since they were conducted with different mass flow rates.
The photon-correlating Laser Déppler Anemometer is evaluated in
this application. The flexibility of a laser anemometer system
in measuring’égr;%-dimensional, internal flows is determined by
two factors: the system's frequency shifting capability and the
geometry of its optics. Reflected background light is inherent
in measuring internal flows. Without a means of reducing the
signal caused by this light, long measurement times are neces-

sary for each data point. -«

‘o, 6 0 8 @
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A STUDY OF ANNULAR DIFFUSER FLOW
USING
A PHOTON-CORRELATING LASER C"PPLER ANEMOMETER

I. Introduction

Turbine engine designers are constantly striving to
achieve more efficient engines. To realize higher performance,
improvements must be made in the engine components themselves.
One of these components is the pre-diffuser between the compres-
sor and combustor. It accomplishes the important task of dif-
fusing high velocity discharge air from the compressor to low
velocities suitable for the combustor. Additionally, the dif-
fusion must occur in as short a length as possible.

A great deal of information is available on the perform-
ance of two-dimensional diffusers. While this has some applica-
tion to three-dimensional geometries, little experimental data
on annular diffusers can be found. This research project is in-
tended to increase the base of experimental knowledge of annular
diffusers, particularly with regard to velocity profiles and

turbulence intensity.

Background

The initial studies in this project were done by Kelley
(reference 1) in 1981. An annular flow handling apparatus was

designed and pitot and hot wire anemometer probes used to investi-

gate the diffuser flow. The initial data revealed irregular flow
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in the test sections. The research was continued in 1982 by
Moore (reference 2), who modified the flow handling apparatus

and incorporated a Laser Doppler Velocimeter (LDV) as the primary
instrumentation system. The modified flow handling apparatus be-
came part of the Annular Diffuser Research Facility (ADRF). Pre-
liminary data was collected; however, it only consisted of veloc-
ity measurements because of the limited data acquisition capabil-
ity of the LDV system. Turbulence intensity data could not be

obtained.

Objectives
| The following are the objectives of the third phase of
this study:

(1) Obtain velocity and turbulence intensity profiles
in the annular inlet and diffuser of the ADRF flow
handling apparatus using a photon-correlating Laser
Doppler Anemometer.

(2) Evaluate the capabilities of the photon-correlating
Laser Doppler Anemometer to measure internal fluid

flows in similar applications.

Overview
The remainder of the report discusses this phase of the
research effort. The topics include:
(1) Internal fluid dynamics, boundary layer theory and
the principles of the photon-correlating Laser Dop-

pler Anemometer.
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(2)

(3)

(4)
(5)

A description of the experimental apparatus and in-
strumentation.

The procedures used to collect the data and reduce

The results of the study.
The conclusions drawn and recommendations for fur-

ther research.




..,
R

|

' PO

-

4

-
bt S

r -,
-
- 2.4

.r;-'.-"

P

. »

Y
&
VX

.

«
AUV o WL L Y

IT. Theory

Yo% BRI ]

Boundary layer theory and internal fluid dynamics rele-

vant to the annular diffuser will be discussed. Since the La-

Kl
)
3
j

ser Doppler Anemometer (LDA) was a significant element in this
research effort, a discussion of its principles of operation is

also included.

Internal Fluid Dynamics and Boundary Layer Growth

The flow in a pipe may be laminar or turbulent depending
on the Reynolds number and wall roughness. The ‘Reynolds number

for a pipe is defined by Eq (1)

4r. oV

_ h
Repipe = — (1)

where p is the absolute viscosity of the fluid, p is the fluid
density, V is the velocity and r, is the hydraulic radius (3:63).
The hydraulic radius is defined by Eq (2)
AL
r = L (2)

h Aw

where A, is the cross-sectional area of the pipe, L is the pipe
length, and Aw is the total wetted area (3:64). The critical
Reynolds number for the transition from laminar to turbulent

flow for a pipe with a sharp-edged entrance is approximately

2300; however, the critical Reynolds number may exceed 10,000

for a system which is exceptionally free from disturbances (4:39).

It is also a fact that at Reynolds numbers below 2000, flow in a
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e pipe will remain laminar even in the presence of strong disturb-
N -
e & .
he ’ te e
ORI ances (4:451).
o Boundary layer growth in a pipe begins at the entrance.
by This is also true of an annulus. While this boundary layer may
AN
-y . . s s
g be laminar even though the flow outside of it is turbulent,

roughness on the walls and turbulence in the flow outside of the

2.%

boundary layer would hasten the transition from laminar to tur-

A'.‘

it Jatie Yous g
‘.-”/" el .
’ .

bulent. To approximate the growth of a boundary layer on the
&3 wall of an annulus, one may use the results of boundary layer
growth on a flat plate in a uniform flow. The thickness of a

laminar boundary layer on a flat plate is given by Eq (3)

.ﬁé § = 5 (%5)0.5 (3)
S )

7 c;a where x is the distance from the leading edge of the plate, U_
‘ﬁg ‘ is the free stream velocity and v is the kinematic viscosity

 §- _ (4:140). On the other hand, the thickness of a turbulent bound-

h ary layer on a flat plate is determined by Eq (4) (4:638).

.;3 _ U,x =0.2
::‘i . § = 0.37x (T-) (4)
el

While the flat plate approximation is very useful for estimating

jké the boundary layer growth in an annulus, the three-dimensional

';? nature -of the flow channel will also affect boundary layer growth.
f: The boundary layer on the inner wall will be thinner than on the
ég outer wall because the shear work from the inner wall to the flow
:;2 is diffused over an increasing area as the distance from the wall
T increases. On the outer wall, the shear work is diffused over a
5o

2 s
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decreasing area (2:5). The smaller the ratio of inner wall to
outer wall radius, the smaller the ratio of inner wall boundary
layer thickness to outer wall thickness.

As the boupdary layer in a pipe, or ‘annulus, grows, it
will eventually cover the entire flow channel. Even after this
occurs, the velocit9 profile will continue to develop until it
reaches a point downstream where there is no further change. The
flow is then called "fully-developed" and the distance from the

entrance of the pipe to this point is the inlet length. Experi-

ments have been conducted to determine the inlet length of a cir-

cular pipe. For laminar flow, the inlet length is approximately

1 = (0.03d) Re (5)

pipe
where d is the pipe diameter (4:596). For Reynolds numbers from
1500 to 2000, it ranges from 45 to 60 pipe diameters. The inlet
length for turbulent flows is typically shorter than for laminar
flows. Kirsten measured its length to be about 50 to 100 diameters
while Nikuradse measured an inlet length of 25 to 40 diameters

(4:596).

Laser Velocimetry

Over the last two decades, several types of laser velocim-
eters and various methods of signal processing have been developed.
One combination, and the system used for this research, is a Laser
Doppler Anemometer (LDA) using a photon-correlating signal proces-

sor. It is this particular system which will be discussed here.
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The Laser Doppler Anemometer (LDA) is based on the principle
of the Doppler shift of light scattered by a moving particle. 1If
the velocity of a moving particle is represented by V, the inci-

dent light beam by Eo’ and the scattered light beam by Es where

[k | = |k | = 2n/A(X is the wavelength of the incident light),
» then the Doppler shift of the scattered light is given by Eq (6)
-~ (5:249).
2
<s
Av = (Es- Eo) Y (6)
g: Thus, measuring the frequency of the scattered light indirectly
g determines the velocity of the particle which caused the scatter-
’ ing. However, it is impractical, in most situations, to measure
;; the Doppler shifts inherent in low speed flows. This problem can
i - be avoided by using two incident light beams, k,, and k,,, of the
= ‘:; same wavelength (5:250). Now, the Doppler shifts of light, from
§ each beam, scattered by the moving particle are
-~
Av = (Es - E§1) .V (7)
’ .'4
4 —_ K
3 and av, = (k, -k ,) ¥ (8) ]
. When the scattered light is detected, the Doppler shift will be i
: 2
2 Av. ~av =(k -k )-V=K, -7V (9) >
- 1 2 02 01 3
- i
= where the geometry is shown in Figure 1 (5:249). This is known !
i as the Doppler Difference Effect. Eq (9) can be written
.
:: 4mu 8
- Av = Av = — sin ('2') (10)
1 2
. Nw

]
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o where u is the component of V in the direction of K,. A signifi-

:‘;\" :'::'. cant aspect of Eq (10) and the Doppler Difference Effect is that

}& the Doppler-shifted frequency is independent of the scattering

'EE direction. So regardless of where the scattered light is detected,

-~

VE the result is the same.

R While the theory of the Doppler Difference Effect from the

;f: classical physics standpoint is important in understanding the LDA,

i: the theory can also be explained using a model commonly referred

- to as the "fringe model". Even though it is not technically ap-

;;é propriate in all respects, it does yield identical velocity and

;: turbulence intensity results.

PR In the Doppler difference laser anemometer, the incident

&g laser beams cross at some point in space. The intersection of the

if ; two, finite-size beams forms an ellipsoidal volume termed the meas-

o cia uring volume, the region in which the fluid flow is measured. With

:;; the fringe model, the intersection of the monochromatic, coherent

o laser beams forms a classical interference pattern of bright and

:i‘ dark, planar fringes in the measuring volume. These fringe planes

Ezz are perpendicular to the plane formed by the two incident beams

3% as depicted in Figure 2. The distance between like fringes can

o be calculated using Eq (l1) (6:6-1).

% A

X de = m) (11)

;zj As a particle, moving with the fluid, passes through the measuring

ﬁ{ volume, it scatters a "burst" of light every time it moves through
P a bright fringe so the frequency of the light bursts is related to

QIR

3 .

e 9

o
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3

v;ﬁ; _ the particle's velocity by Eq (12).

SRS

,$§ F = %f (12)
ésé The frequency of light bursts from the interference pattern is
e identical to the Doppler-shifted frequency (A\)l - sz) of photons

E;S scattered by the particle as it moves through the "classical"

%%3 measuring volume (7:97). Hence, each light "burst" scattered by
i a particle in the fringe model is similar to a photon scattered

tgf in the classical sense. The fringe model is also useful in under-

3%% standing the principles of the remaining LDA components.

. Photon correlation was used in this study to analyze the

g?ﬁ scattered light from the measuring volume. The particles, moving

z:és with the fluid, will have an ordered motion which éauses the scat-
1 1{, tered light to have an order about it. The scattered light inten-

‘i; sity varies with time as the particles move through the fringes.

::§ By determining the time correlation of the intensity, the velocity
f. and turbulence of the flow can be calculated.

gg The time correlation of the light is represented by the

;:; intensity autocorrelation function defined by Eq (13)

o ¢ (1) = 1im LT () I(t 4 1) at (13)

7 e

ﬁﬁ

where I is the light intensity, t is time, T is the time interval

over which the intensity is monitored (experiment time), and T

AL 0%

Ry YA

¢ is the correlator delay time (8:16). The autocorrelation function
-t
T is determined as a function of T after the intensity is determined
2o —
SO
.-;.- -
o,
N 10
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in the time domain. Light intensities of a random nature will re-

o

e tatatate e e
v
.
P

R sult in a constant autocorrelation function as T approaches infin-

N
o AT .l.

ity. However, intensities of an ordered, periodic nature will re-

0

M i
-, -.f v_sfs' p~

sult in a periodic autocorrelation function due to the multiplica-
tion of the intensity function and time-delayed intensity function.
2 As a result, this method of signal processing can separate the

. signal of interest from large amounts of background noise. Addi-
:; tionally, the nature of the method makes photon correlation sensi-

Ry tive at low scattering particle densities (9:439).
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55 : III. Apparatus and Instrumentation

zq This research included the integration of a photon-correlat-
;§ ing LDA system to the Annular Diffuser Research Facility (ADRF)

1 flow handling apparatus designed and fabricated by Kelley (ref-
ﬁ erence 1) and Moore (reference 2). A Hewlett-Packard data acqui-
% sition system was used to control the LDA system and process the
N data. A hot-film anemometer was also used with the ADRF flow

o handling apparatus. The following is a discussion of this equip-
,; ment.

N

z ADRF Flow Handling Apparatus

Ej The ADRF Flow Handling Apparatus (Figure 3) consists of .a
E} . stilling chamber, a particle seeder, an annular interface, an in-
. ﬁ let guide vane section, an annular inlet test section, an annular

diffuser test section, and a dump section. Air is supplied to
4 the stilling chamber by two Worthington Corporation compressors

through a 7.6 centimeter (3 in) diameter pipe. These compressors

‘l‘.l"l._‘_'

EE are capable of steadily supplying 0.36 kg/sec (0.80 lbm/sec) of
% air to the flow handling apparatus. As the air enters the stilling :
j; chamber, it passes through two paper filters held in place by an !
;E aluminum holder. This filter is a recent addition to the flow ;
j? handling apparatus due to the contamination of the air supply by

3

o particulate matter. The contaminate mostly consists of rust par-

ticles from the inner surfaces of the pipes. The filter allows

v e s

better control over the size and types of particles in the air
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. flow since this is the basis for LDA measurements. The filter y

;: " also prevents abrasion of the test section windows by the contam- %

'j inates suspended in the flow. ;

’g The filtered air next enters a perforated cylinder which 5

% allows the air to exit radially through eighty-one, three milli- i
meter (0.125 in) diameter holes while also reducing the pressure. 1
The air is turned back to the axial direction and passed through A

N four smoothing screens. After the screens, seed particles are

: introduced into the flow through two, six millimeter (0.25 in)

;S diameter tubes supplied by a 9.5 millimeter (0.375 in) diameter :

2 tube which protrudes through the stilling chamber wall. A par-

f ticle generator is connected to the supply tube which is contained

S inside a streamlined shroud to minimize flow disturbances. The

% 'tb particles are injected in the direction of the flow.

i~ A TSI Model 9306 Six Jet Atomizer was used to provide a

% glycerin (propylene glycol) aerosol for £low seeding. The volume

- output of the atomizer can be varied by using from one to six of -

3 the available jets and by adjusting the input pressure of the unit. :

§ The particle concentration of the glycerin aerosol is constant at .
2(10®%) particles per liter. The sizes of the particles vary from i

/ 0.5 to 4.0 um (.00002 to .00016 in).

y The seeded air is accelerated in an annular nozzle contained

j within the stilling chamber. The nozzle leads to a constant area

Y annular interface (see Figure 3). The inner and outer radii of

E the annulus are nominally 22.9 centimeters (9.0 in) and 25.4 cen-

- timeters (10.0 in) respectively. At the end of the annular inter- :

14




Tl face is a row of sixty-six equally spaced inlet guide vanes (IGV)
mounted radially between the inner and outer walls of the annulus.

The IGVs are NACA 0012 airfoils with a chord of 19.1 millimeters

;z (0.75 in) giving them an aspect ratio of 1.33.

55 The annular inlet test section which follows the inlet

?il guide vanes allows flow studies in a constant area annulus (see
;;3 Figure 4). Optical access for flow measurements is gained through
,:E a glass window. It measures 102 millimeters (4.0 in) in the axial
o direction and 19.1 millimeters (0.75 in) in the circumferential
igﬁ direction. The inner wall of the annulus is a wooden centerbody
‘f§ which is painted flat black. On the portion of the centerbody op~
iéf posite the outer access window, another optical glass window is

EE installed. It measures 8.0 millimeters (0.32 in) in the circum-
/Eﬁ C;) ferential direction and 105 millimeters (4.1 in) in the axial

1;3? ’ direction. This window, as well as a similar one in the annular
ié diffuser test section, allows the laser beams to pass through the
i?‘ inner wall of the annulus to the inside of the centerbody. This
.Ei greatly reduces thé amount of laser light reflected from the wall.
.ﬁﬁ LDA measurements can then be made at points closer to the wall than
o would be possible against the centerbody's black surface. More a-
ﬂ;‘ bout the effects of the centerbody windows will be discussed in a
P

gi later section.

= The annular diffuser test section follows the annular inlet
fﬁ : (see Figure 4). The flow from the inlet is diffused in this 10.2
Eﬁ centimeter (4.0 in) long section by walls which are set at a nom-
o inal diffusion half-angle of seven degrees. Like the inlet test
5
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section, optical access to the diffuser is gained through a gzlass
window. This window measures 76 millimeters (3.0 in) axially by
19.1 millimeters (0.75 in) circumferentially. Another window
which measures 8.0 millimeters (0.32 in) circumferentially and

76 millimeters (3.0 in) axially is installed in the test section
centerbody to accomplish the same purpose as the centerbody win-
dow in the inlet test section.

The flow enters an annular dump section after exiting the
diffuser. This section is designed to minimize laboratory effects
on the flow in the test sections. More detailed information on
any section of the ADRF Flow Handling Apparatus may be found in

references 1 and 2.

Instrumentation

Two systems, a Laser Doppler Anemometer and a hot-film
anemometer, were used to make flow measurements in the test sec-
tions. The LDA system is supported by a mini-computer (primarily
used for data acquisition and reduction), an oscilliscope, and a
universal counter. The hot-film anemometer system is supported
by a micro-computer, an analog-to-digital converter and a root-
mean-square (RMS) voltmeter. Both anemometer systems are support-
ed by a square-edged orifice plate and mercury manometer flow
measuring system. A static pressure probe was used to make pres-
sure measurements in the inlet and diffuser.

Laser Doppler Anemometer. The LDA system consists of four

major components:

17
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1) A helium-neon laser.

2) Transmitting optics.
3) Collecting optics.
4) A photon-correlating signal processor.

A Laser. The first component is a Spectra Physics Model 124A
fifteen milliwatt, helium-neon laser which emits a single, mono-
chromatic beam of 6328 Angstroms wavelength. The beam has a 1/e?
radius of 0.55 mm (0.022 in) and a divergence angle of 1.0 milli-
radians. The laser is powered by a Spectra Physics Model 255 power
supply which operates on 115 volt, single-phase current.

Transmitting Optics. The first element of the transmit-

ting optics is a Malvern Instruments, Ltd. Type RF307 beamsplit-
ter which is attached directly to the laser exit. Through a com-
bination of partially and totally reflective mirrors, the beamsplit~
ter divides the single beam into two, equal-intensity beams. It

can be adjusted to alter the divergence or convergence angle be-
tween the two beams and their separation.

The two laser beams are directed into a Malvern Type K9023
phase modulator. The unit is designed to accept parallel beams
with a separation of twenty millimeters (0.79 in). The beams pass
through a pair of crystals which, when excited, modulate the phase
of the beams through the Pockels electro-optic effect, changing
the frequency of one beam relative to the other (10:L36). The re-
sult is a change in the Doppler-shifted frequency of light scat-

tered by particles moving through the measuring volume. In terms

18
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of the fringe model, phase modulation imparts a uniform transla-

tion to the fringes in a direction perpendicular to the fringe

‘planes. The phase modulator crystals are excited by a separate

drive unit which uses a sawtooth waveform for the driving func-
tion. The drive unit can be set to shift the Doppler frequency
by fixed amounts of 20, 50, 100, 200, 500, or 1,000 KHz, or con-
tinuously between 50 KHz and 1 MHz. The "fringe velocity" im-
parted by the phase modulator tan be determined by using Eq (12)
and replacing F with AF, the phase modulator frequency shift.
The result is Eq (14).

Fringe Velocity = AF x df (14)

The sense of the fringe motion can be changed by the DRIVE/IN-
VERT switch on the drive unit, thus increasing or decreasing
the Doppler-shifted frequency by the set amount. The output of
the drive unit was monitored with a Hewlett-Packard (HP) 5325B
Universal Counter.

The use of a phase modulator in a LDA system increases its
flexibility. Frequency shifting is used to aid in determining
the direction of flow, making measurements in highly turbulent
or high speed flows, and in increasing the velocity resolution
of the system. Velocity resolution will be discussed later.

The laser/beamsplitter and phase modulator are mounted on
a 12.7 centimeter (5.0 in) wide steel channel which allows these
units to be used as a single assembly. Once they are aligned

with respect to each other on the channel, the entire assembly

19
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i? can be moved to align the laser beams with the remaining optics.

_ﬁ? E The two laser beams which exit the phase modulator are

{4 directed by two, front-silvered plane mirrors through a periscope
i? to a lens which focuses and crosses the beams to form the measur-
'i ing volume (see Figure 5). The fringe spacing can be determined

5% using Eq (11) and the focusing geometry. When parallel beams are
;% transmitted through the focusing lens in the configuration shown
= in Figure 6, Eq (15) can be used to calculate the fringe spacing.
o

o 0

‘j' In the above equation, f is the focal length of the focusing lens,

*& D is the parallel beam separation, and uo is the refractive index

1§ of the medium where the measuring volume is located (uo = 1.0 for

8 ‘:9 air) (6:6-2). 1In all of the tests conducted with the LDA system,
:i - a 250 mm focal length focusing lens and 20 mm beam separation were
= used. The resulting fringe spacing is 7.91 ym (0.00031 in).

= Collecting Optics. The velocity and turbulence intensity
;{ of the flow are measured by analyzing the frequency content of the

:% light scattered from the measuring volume. This is done by con-

> verting the light, through the photomultiplier effect, into an

-25 electrical signal to be analyzed by a signal processor. In using

G§ the fringe model, each light "burst" (instead of a photon in the

%F classical sense) absorbed by the photosensitive material causes

e the emission of an electron or electrons which comprise the elec-

'éi trical signal.

2
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The collecting optics consist of a Tamron 105 mm telephoto
lens and a Malvern Type RF313 photomultiplier (PM) assembly using
an EMI 9863 KB/100 type photomultiplier tube. The laser light
collected by the telephoto lens is focused on a 100 um (0.00394
in) aperture just before the light enters the photon detection
portion of the PM assembly. A 2.5, 6.5, or 9.0 cm spacer may be
placed between the PM assembly and telephoto lens to allow light
gathering at various distances from the measuring volume. The
lens equation, Eq (16), governs the distance from the measuring
volume at which the collecting optics must be set to focus the

scattered light on the aperture.

1
I

(16)

el I
+
NaRio

In the lens equation, f' is the focal length of the collecting
lens, p is the distance from the lens system reference plane to
the image on the aperture, and q is the distance from the reference
plane to the measuring volume (see Figure 7).

The PM assembly was set to collect the scattered light,
in backscatter, at an angle of 16.9 degrees off the optical axis
defined by the bisector of the crossed laser beams. While the
transmitting optics determine the actual measuring volume size
(to the 1/e’ contour), the collecting optics geometry and aper-
ture size determine the effective measuring volume size since the
PM tube may only receive light from a portion of the actual meas-

uring volume. Appendix A contains the actual and effective meas-

uring volume sizes as well as the method used to determine them.

23
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The periscope, focusing lens, and PM assembly are mounted
on an optical platform which can be raised or lowered (see Figure
8). This platform can also be translated along an axis perpendic-
ular to the test section centerbody axis. The optical platform
was originally designed and used by Walterick (reference 11).
With proper optical alignment, the two axis system allows the
measuring volume to be positioned in the test section and traverse
the annulus in the radial direction. A vernier scale is attached
to the translating base to determine the measuring volume's radial
position to within 0.25 mm (0.0l in). The laser and optics are
mounted on a laboratory bench which rests on rollers guided by
two parallel rails. A chain-and-sprocket drive system, attached
to the rails and bench, turns two 3/4 x 10 threaded rods which
move the bench along the rails. A mechanical counter is connectéd
to a gear on one of the drive rods. Through the gear ratio in the
counter itself, angular displacement of the drive rods is displayed
to within 0.1 revolutions. Thus, the measuring volume can be moved
in the axial direction and its position determined to within_d.ZS
mm (0.01 in).

Signal Processor. The heart of the LDA system is the Mal-

vern Type K7023 digital correlator which analyzes the signal from
the PM assembly. The correlator monitors the signal for a pre-
determined sample time (ts), which can be set from 50 nsec to

0.995 sec, and counts the number of pulses caused by light "bursts"
(fringe model) or photon detections (classical). This results in

a digitized version of the intensity function I(t) discussed in

24
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Laser Velocimetry Theory. Electronically, the correlator also

takes the function I(t + t), where T varies from zero to 95 times

tg in integer increments, to develop the intensity autocorrelation
function. The experiment time (T) can be set for 10 to 10° samples,
in powers of 10, or for any time interval by simply starting and
stopping the correlator when desired. The autocorrelation function,
G(z)(r), is in a digital form represented by 96 channels (the 96
values of T mentioned earlier). The correlator will display the i

entire function on an X-Y display or the numeric value of each

channel on a digital display.

Oscilloscope. A Tektronix 465 M oscilloscope was used as

an X-Y display to graphically view the correlation function on a

.

real-time basis.

.

Mini-computer. A HP 3052A data acquisition system was used i
to control the digital correlator and process the data received
from it. The interfaces and software were developed by Neyland
(reference 12) in 1981 for his Master's thesis. The system was

originally used with the Air Force Institute of Technology Smoke

sabadob oI 6 L b ofaces

Tunnel; however, the interfaces and software were modified to 4

satisfy the needs of this research. A summary of the interfacing
and software is contained below. A more detailed description may
be found in reference 12.

The LDA and data acquisition systems were not collocated
so cables had to be run to connect them. Two 22.9 meter (75 ft)
lengths of Belden 8773 cable were used. Each cable contains 27

twisted, shielded pairs of conductors. Forty pairs were used for i
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signal transmission: six computer-to-correlator control lines

and thirty-four correlator-to-computer data lines. The second

conductor in each pair was connected to ground; however,

the shields

were not grounded. The unused, twisted pairs were left unconnected.

The software used to control the correlator and process the

data is contained in a program titled DARLA MOD1. A program titled

DARLA (Data Acquisition And Reduction of Laser Anemometry), which

was written by Neyland, is the basis of DARLA MODl1. The software

performs the following functions:

1) Run the correlator for a specified period of time to

develop the intensity autocorrelation function.

2) Transfer the correlation function values to the HP

3052A.

3) Store the correlation function and other test informa-

tion on a flexible disk.

4) Process the data to calculate velocities and turbu-

lence intensities.

5) Plot the velocity and turbulence intensity profiles

on a HP 9872S plotter.

6) Print a summary of the data in tabular form on a

HP 9871A printer.

Both DARLA and DARLA MOD1 may be found at the Air Force Institute

of Technology, Schcol of Engineering, Wright-Patterson AFB, Ohio

45433.

Hot-film Anemometer. A TSI Model 1050 Constant Tempera-

ture Anemometer and TSI Model 1051-6 Monitor and Power Supply were
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used with a TSI Model 1214-20 hot-film sensor to gather additional
N velocity and turbulence information in the annular inlet and dif-
fuser. The probe was mounted to the dump section sidewall and in-
serted upstream into the inlet and diffuser test sections. It is
adjustable in both the radial and axial directions. The anemometer
bridge output was connected to a HP 3400A RMS voltmeter and an
Alpha Product Co. eight bit, analog-to-digital converter. The
RMS voltage was read from the voltmeter to get turbulence intensity
information. A Radio Shack TRS-80 Model III micro-computer was
used to sample the output of the analog-to-digital converter and
average the samples to obtain an average DC voltage. The sampling
rate of the TRS-80 is approximately 50 Hertz.

Flow Meter. A Meriam Instrument Co. square-edged orifice

G;a plate, a Meriam U-tube mercury manometer, and a Bourdon tube pres-
Ed

inside a 7.6 centimeter (3.0 in) pipe. Flange taps were used for
the pressure measurements. The pressure measurement upstream of
the orifice has an accuracy of *6890 N/sq meter (1.0 psig). The
measurement of the pressure drop across the orifice has an accur-
acy of £ 1.3 millimeters (0.05 in) of mercury. The air tempera-
ture was measured in the dump section with a mercury thermometer
to an accuracy of *0.5 degrees Fahrenheit. Since low velocities
are involved, this temperature measurement is representative of
the static air temperature at the orifice plate to within 0.75

degrees Fahrenheit.

sure gage were used to measure the air flow rate into the flow hand-

ling apparatus. The orifice is 2.5 centimeters (1.0 in) in diameter
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s
?? Static Pressure Probe. A locally-built static pressure
s L
'Qi probe was used to measure the pressure in the annular inlet and
g;< diffuser (see Figure 9). The probe was mounted to the dump section
a
%ﬁ sidewall in the same manner as the hot-film anemometer probe and |
-
e inserted upstream into the test sections. The pressure was indi- |
o cated by a Meriam Instrument Co. water micro-manometer. The am-
A
E% bient air pressure was measured with a Fortin-type, mercury baro-
:;5 meter.
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IV. Experimental Procedure

The procedure used to collect and reduce the data will be
discussed in this section. It can be divided into four segments:
laser and optical alignment, LDA measurements and data reduction,
hot film anemometer measurements and data reduction, and static

pressure measurements.

LDA Optical Alignment

A critical step in making flow measurements with an LDA
system is the alignment of the laser and optics. The alignment

of the LDA system used in this research meets the following cri-

teria:
1) As the optical platform translates, the measuring
volume moves only in the radial direction of the flow

handling apparatus.

'.'A'AL.L'..H DUV o

2) As the laboratory bench translates, the measuring
volume moves only in the axial direction.

3) The measuring volume always remains fixed in space
with respect to the PM assembly so the two will re-
main aligned as the optical platform is translated.

The alignment procedure is decribed in Appendix B.

LDA Flow Measurements

LDA measurements were collected with the digital corre-~
lator in the single-clipped autocorrelation mode (without clip-

ping). Each test consists of a traverse of the flow channel at
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one axial position. For each test, all room lighting was extin-
guished because of its detrimental effect on data collection. The
reason for this will be evident later in this section. The air
flow through the flow handling apparatus was allowed to reach a
steady state before the tests began since there is no active con-
trol of the flow rate.

The goal of each LDA measurement is a smooth correlation
function with three peaks and valleys, similar to Figure 10, in
the shortest possible time. After positioning the measuring vol-
ume at the desired point in the flow, the aperture on the collect-
ing lens is set. A smaller aperture requires a longer correlator
run time (correlation time) to develop the same correlation func-
tion. The frequency shift (AF) and sample time (ts) should be
set, based on Eq (17) if the approximate velocity being measured

is known.

u =(Féff§7+ AF(dg) (17)

If the velocity (u) cannot be estimated, different combinations
of AF and t, must be tried to obtain the desired correlation func-
tion. Frequency shifts in the INVERT mode reduce the damping of
the correlation function and are useful in high turbulence flow
regions to obtain more distinct peaks and valleys. In the DRIVE
mode, frequency shifts increase damping and are normally used only
in laminar and low turbulence flows (n<25%).

The correlator is run for a specified period of time to

obtain the correlation function for the flow measurement. If a

32
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real-time display on the oscilloscope is desired, the correlator
can be operated from the unit itself using the START and STOP but-
tons. Correlator data cannot be transferred to the HP 3052A while
the oscilloscope display is active. If the HP 3052A is used to
control the correlator through the program DARLA MOD1, the corre-

lation time is input after which the computer will immediately

Py

start the correlator and stop it after the specified time ‘has !
elapsed. The correlator channel contents are transferred to the )
computer and the correlation function is displayed on the computer's i
video display. If the function is smooth and has at least three
peaks and valleys, the data is kept in the computer memory for

subsequent transfer to flexible disk. If the correlation function

ol B b,

is not smooth or has fewer than three peaks and valleys, the data

is rejected by the experimenter and a new correlation function ob-
tained.
The most significant factor determining the correlation

time needed to obtain a smooth correlation function is the amount

DRBNFT T RPATARRVSOW Y Ve R

of background light which enters the PM assembly. There are two
sources of this background light. The phase modulator and peri-
scope mirrors, the first source, diffuse a large amount of laser
light and create stray beams which are then transmitted through

the focusing l<ns and projected on the outer surface of the test

L3 A.A_J_-A.‘-'.-Lu

section access windows (see Figure lla). This light reflects off

it

the windows into the PM assembly. The second source is the portion
of each primary laser beam which is reflected by the test section

centerbody window surfaces each time the beam crosses a surface ;

.« e g
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(see Figure 1llb). The reflected beams cross the flow channel. '
: fﬁf If these beams which reflect into the flow channel are in the
ii_ vicinity of the collecting axis, the scattered light from them
E? will tend to mask the light from the measuring volume. This results
>y
tﬂ in points in the flow channel, away from the walls, which have large
o amounts of background light. Because of the centerbody and collect-
é% ing optics geometry, this is a particular problem in the diffuser
:ﬁ test section.
N Bright background light has several detrimental effects on
.f LDA flow measurement. It may be so bright that it saturates the j
E: PM tube and the correlation function fails to develop at all. Us-
E: ing a smaller collecting lens aperture will normally solve this
; problem. However, the amount of light may be great enough that
- ‘jﬁ even if the correlation function develops, it cannot develop eneugh
:? ' to distinguish the peaks and valleys. 1In some situations when the
X effective measuring volume is near, but not on a wall, the domin-
- ant signal may be a reflection of the actual measuring volume
:: which gives a zero velocity measurement. This usually occurs in
EE the diffuser test section as much as 1.0 millimeters (0.04 in)
% from the inner wall. Flow measurements cannot be made in these
% situations. On the other hand, if a correlation function de-
33 velops to a point where peaks and valleys are distinguishable
i: (as in Figure 12), a longer correlation time will improve the
f: function. 3
Ei The amount of background light reaching the PM assembly 1
" is controlled in several ways. A paper mask was placed over the ‘
¥ i |
N ‘ 4
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Efj focusing lens which allowed only the two parallel laser beams to
?E; j% pass. When near the inner wall of the annulus, the test section
i*. centerbody windows reflect much less light than the black, painted
iﬁs surface. However, when the measuring volume is more than three to
353 five millimeters from the inner wall, the centerbody is rotated to
o move the windows out of the beam paths. This avoids the problem
gﬁg caused by the reflected beams passing through the flow channel.
fig Tests were run at the following axial positions (see Fig-
o ure 13):
fé 34.3 mm (1.35 in) from the IGV trailing edges
;*:;; 48.8 mm (1.92 in) " "o " "
o 110.0 mm (4.33 in) " " " " "
é; 215.4 mm (8.48 in) " "toon " "
= 240.0 mm (9.45 in) " " " " "
(" (53 262.4 mm (10.33 in) " "o " "
?; Data points were taken every 0.5 millimeters (0.02 in) across the
'Tﬂ flow channel except when prohibited by excessive background light.
}é Points to within 0.5 mm of the inlet walls were obtained. In the
iﬁ diffuser, data points were obtained to within 2.5 mm of the inner
:g wall and 1.0 mm of the outer wall.

For all of the tests, atomized glycerin was used to '"seed"

the flow. The seeder output ranged from 22.8 to 26.4 liters per

i minute with 2(10°) particles per liter. The particles varied in
f?- size from 0.5 to 4.0 uym (.00002 to .00016 in). Correlation times
'ég in the annular inlet ranged from 30-45 sec away from the walls to
N 90-120 sec near the walls. In the diffuser test section, corre-
R
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lation times were 60-90 sec away from the walls to 180-420 sec near »

W s e sl

RS the walls. For the tests on 20 SEP 83 and thereafter, the air sup- N
ply mass flow was measured at periodic intervals during the tests 3
; using the square-edged orifice plate. After reaching a steady- :4

state, the mass flow was constant so only periodic measurements

were necessary to ensure gross fluctuations in the flow rate did

-, not occur during a test.

LDA Data Reduction

1
] The data was reduced using the program DARLA MOD1 on the
ﬁ HP 3052A data acquisition system. The method is described in

Appendix C. The velocity and turbuience intensity data was plot-

series of rectangles whose width is the distance between adjacent

: ted to provide a visual representation of the profiles. A separate

: ) program was used to integrate the velocity profiles of each test

‘ ‘:’ to calculate the mass flow through the annulus. The integration

A was carried out by estimating the area under the profiles by a ;
> 3

data points and height is the average of the velocities at the >

two points.

PN NN Y

Hot Film Anemometer Measurements

Flow measurements were also made with the hot film anemom-

eter. As before, the air flow was allowed to reach a steady state

LYC

before the test began. These tests were not made in conjunction

L 4

with the LDA tests because the glycerin particles would alter
the heat transfer on the sensor and introduce an unknown amount

of error into the data.
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The hot film tests were made at the same axial positions
as the LDA tests except for the 34.3 mm position. The laser was
used to determine the position of the sensor by focusing the beams
on the probe and reading the position on the optical platform's
vernier scale. Data points were taken at intervals from one to
two millimeters across the flow channel. At each point, the TRS-
80 computer calculated the aQerage DC voltage of the bridge output
by averaging 500 samples. During this time, the RMS voltmeter was
visually monitored and the average RMS voltage of the bridge out-

put was estimated.

Hot Film Anemometer Data Reduction

The bridge voltages and sensor calibration curve points
were input into the HP 3052A to reduce the data. A program which
compared the voltages and calibration curve was used to calculate
the average velocity and turbulence intensity. The average veloc-
ity is derived from the DC voltage, while the turbulence intensity
is derived from the RMS voltage. The hot film data was also plot-
ted to give a visual representation of the profiles. The veloc-
ity profiles were integrated, using the method described earlier,

to calculate the mass flow.

Static Pressure Measurements

The static pressure in the annular inlet and diffuser was
measured at various axial positions with a static pressure probe

and water micro-manometer. The air flow was allowed to reach a

steady~-state before measurements were taken. The laser was used
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to position the static pressure port in the axial direction by
focusing the beams on the pressure port. The position was deter~
mined by the reading on the mechanical counter of the laboratory
bench translating system. Measurements were taken at 19 mm (0.75
in) intervals in the axial direction in the inlet and at 13 mm

(0.50 in) intervals in the diffuser.
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V. Results

A total of twelve tests were run with the LDA system. A
test was conducted at each of the following axial positions: 34.3,
48.8, 110, 215.4, 240, 262.4 mm. Three additional tests were made
at both the 48.8 and 110 mm positions to establish the repeatabil-
ity of the system. Five tests were run with the hot film anemom-
eter: one at each axial position used with the LDA except the 34.3
mm position. A profile of the static pressure in the axial direc-
tion of the annulus was made with pressure measurements in the in-
let and diffuser. This section discusses the results of the flow

investigation and evaluation of the LDA system.

Flow Characteristics

The velocity profiles acquired with the LDA at each of the
six axial positions used for testing are shown in Figures 14
through 19. The dotted lines on the plots represent the test
section walls with the channel width indicated on the abscissa.
The mass flows were obtained by integrating the profiles over the
annulus using the method described in the previous section. The
calculated mass flows were within 57 of the values measured with
the orifice plate flow meter. As expected, the profiles in Fig-
ures 16 through 19 show a thinner boundary layer on the inner an-
nulus wall than on the outer wall. This effect is more pronounced
in the annular diffuser where the ratio of the inner to outer wall

radii is smaller (see Figures 17 through 19). The turbulence in-
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tensity profiles corresponding to these velocity profiles are
shown in Figures 20 through 25. The turbulence intensity is
defined as the standard deviation of the velocity at each rad-
ial position divided by the average velocity at that position.
The flow in the annulus, outside the boundary layers, is tur-
bulent. This is consistent with the pipe Reynolds number of
18300 calculated with Eq (1). The turbulence intensity is ap-
proximately 87 in the inlet and 10% in the diffuser. The bound-
ary layers are also turbulent. This is consistent with the
theoretical predictions using a Reynolds number in the annular
inlet of 3.42 (10°%) and the fact that the freestream flow is tur-
bulent throughout the annular interface. A disturbance along
the outer wall in the annular inlet is noticeable in the tur-
bulence intensity profiles of Figures 20 through 22, This is
caused by a step discontinuity in the outer wall between the

IGV section and annular inlet test section. The step increases
the width of the flow channel in this region by about two milli-
meters (0.08 inches). A summary of the data for these velocity

and turbulence profiles is contained in Appendix D.

Flow Development

The development of the velocity and turbulence intensity

profiles in the annular inlet are shown in Figures 26 and 27 re-

. . .. - e LA

spectively. The velocity profiles are nondimensionalized using

oy
F;; a reference velocity determined with Eq (18)
! v =0 (18)
E?-' :: ref  PAjnlet
i
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where m is the mass flow calculated from the integrated velocity

profile, p is the density of the air, and A, is the annular

inlet
inlet area of 0.0426 sq meters (0.4583 sq ft) based on the meas-
ured flow channel width of 27.9 millimeters (1.10 in). From Fig-
ure 26, it appears that the inner and outer wall boundary layers
have not merged until the vicinity of the 110 mm axial position.
Near the centerline of the flow channel at the 110 mm axial posi-
tion, the velocity profile has a more parabolic shape representa-
tive of merged boundary layers. On the other hand, the velocity
profile at the 48.8 mm position shows a region of uniform flow
near the center of the channel. Flat plate boundary layer predic-
tions of a turbulent boundary layer growing from the beginning of
the annular interface estimate the thickness to be 15.2 mm (0.60
in) at the 34.3 mm axial position. The calculation is based on
the reference velocity and the distance from the start of the an-
nular interface to the axial position of interest. This would
indicate the boundary layegs should just cover the entire flow
channel. Due to differences in the flow over a flat plate and
internal flow, this estimate is only an approximation. Addition-
ally, scatter in the data points and insufficient velocity resolu-
tion (0.15 m/sec) near the center of the flow do not allow a con-
clusive determination of whether or not the boundary layers have
merged at the 34.3 or 48.8 mm axial positions. At the 110 mm
position, however, the velocity profile shows the effects of merged
boundary layers (see Figure 26). As the flow velocities near the

centerline have decreased from the values upstream, the velocities
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S

3

»g in the boundary layers have increased in order to satisfy contin-

l% fﬁ&' uity. Figure 27 shows that the turbulence in the annular inlet

{: gradually increases in the center of the flow but decreases near ’

Es the walls. Also, the disturbance caused by the wall discontinuity

i is seen to decrease as well as move away from the outer wall. ;

- The boundary layers cover the entire flow channel at the ;

% 110 mm position but the velocity profile continues to develop as 3

a‘ the flow moves downstream. The inlet length may be estimated us- ;
ing the results of Kirsten or Nikuradse discussed in the Theory !
section. In the case of an annulus, the channel width would be ;

~ an appropriate characteristic dimension to use in determining the :

& inlet length, since it is analogous to the diameter of a circular

g pipe when considering boundary layer growth. Based on Kirsten's

y . work, the inlet length is at least 127 cm (50 inches) from the

N ‘:i entrance to the annular interface. The minimum inlet length based :

;: on Nikuradse's results is 63 cm (25 inches). The entrance to the E

) annular diffuser is 60 c¢m (23.5 inches) from the annular inter- 3

} face entrance. §

1; The velocity profile development in the annular diffuser §

. is shown in Figure 28. It shows the degree to which the veloci- .

i ties decrease as the flow channel increases in area. The movement g

i; of the peak velocities toward the inner wall due to its smaller E

EE boundary layer is also evident. Figure 29 shows the development é

i; of the turbulence intensity profile. There is no marked change in ?

é turbulence intensities although they are slightly less near the 3

8 walls as the flow travels through the diffuser. These profiles, like

"
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the velocity profiles, are skewed toward the inner wall because

the turbulence intensity is calculated using the average velocity

at each point.

LDA Repeatabiiity

.Figures 30 through 33 show the results of multiple tests
at the 48.8 and 110 mm axial positions. The repeatability of the
LDA measurements in the flow handling apparatus is quite good.
Scatter in the data points on the velocity profiles can be due
to the finite corrglation time used to measure the flow. The
resultant average velocity may be different than the true average
obtained if the correlation time were allowed to approach infinity.
Another cause for velocity point scatter, particularly near the
center of the flow, is a velocity resolution which is approximately
the same value as the velocity change between adjacent data points.
Due to the digital nature of the correlation function, a velocity
change of this amount may or may not be detected by the LDA system.
For a development of the velocity resolution for this LDA systenm,
see Appendix E.

The single biggest reason for scatter in turbulence inten-
sity measurements is inadequate correlation times in high background
light environments. Large amounts of background light and short
correlation times at points in the outer half of the annulus at
the 110 mm position caused the scatter in the points of Figure 33
between the 2.0 and 9.0 mm radial positions.' A highly skewed and

damped correlation function will also cause inaccurate, scattered
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éa turbulence measurements because the data reduction method to un-
.2: %E: skew the function cannot do it as accurately as if an unskewed or
kq, slightly skewed function were generated from the start.

)

52 LDA and Hot Film Anemometer Comparison

o The velocity measurements with the hot film anemometer are
;ﬁ compared to the LDA measurements in Figures 34 through 38. The

E; profiles agree closely except in the annular inlet test section

= (see Figures 34 and 35). The hot film velocities are higher near
g; the center of the channel but close to the LDA measurements near
ﬁg the walls. A possible cause for this is the growth of thicker

'_‘ boundary layers in the hot film anemometer tests. The mass flow
‘gﬁ for the hot film tests was significantly lower than that of the

gg LDA tests. This would result in more rapid boundary layer growth
- (;D and a more rapid acceleration of the flow in the center of the

i: channel as the flow progresses axially. After the boundary layers
lgj merge and the flow continues to develop in the inlet, the air en-
- ters the diffuser where the effect of the more rapid boundary layer
E; growth is unnoticeable (see Figures 36 through 38).

_;: The turbulence intensity profiles taken with the hot film
fTA anemometer are compared to the LDA data in Figures 39 through 43.
éi The shapes of the hot film profiles are similar to the LDA profiles
‘g except in the annular inlet (see Figures 39 and 40). This differ-
f: ence seems to be related to the wall discontinuity. The turbulence
éé from the discontinuity could move away from the wall more rapidly
E; because of the quicker growth of the boundary layer in the hot

-t‘ - film tests as compared to the LDA tests. Not including the wall

. E ‘:: \
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discontinuity disturbance, the turbulence intensities of the hot

[4

a_»
MA

) .'"f';.-.f{:’ “.’I."
s

film tests are consistently lower than the LDA tests. This dif-
{
ference is probably due to the fact that seed particles were in- :

jected into the flow during the LDA measurements, but not during

LLWLLIALNG

%

the hot film measurements. When the particle generator is operat-

ing, it injects the particles into the flow through the two 6.3

IRt RN

millimeter diameter orifices at jet velocities from 6.00 m/sec

v -B 4 Y
4 A Wl ‘-.'.

(19.7 ft/sec) to 6.94 m/sec (22.8 ft/sec), depending on the volume

']
e

S output of the unit. The local velocity of the main air flow is
approximately 0.6 m/sec (2 ft/sec) at the point where the seed

particles are introduced. The turbulence created by the mixing

(3

of these two streams would be carried downstream through the an-

nular inlet and diffuser test sections.

h
b
N
-

0 Static Pressure Profile

2 The results of the static pressure measurements are con-

:i tained in Table 1. The mass flow throuéh the annulus was measured
with the orifice plate flow meter and was 0.23 kg/sec (0.50 lbm/

y sec). The pressure recovery coefficient, Ap/q, is defined as the

- static pressure rise from the pressure measured at the 29 mm axial

. position divided by the average dynamic pressure at the 29 mm posi-

;f tion. (Figure 13 shows the relative positions of the data points
in the test sections.) The average dynamic pressure was calculated
using the air density at the 29 mm position and the continuity

equation, m = pAV. The pressure recovery coefficient, as expected,

is constant in the annular inlet. In the diffuser, it steadily in-
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X Table I
; Static Pressure Profile
*J"
S
=C§ Axial Position Static Pressure Rise
:g (mm) from 29mm position
: (N/sq m)
o 29 (INLET) 0

;1 48 " 0.479
67 " 0.479
o) 86 " 0.479
5}

% 105 " 0.479
Wi
200 " 0.479

: 211 (DIFFUSER) 0.958
§ 224 " 2.394
i 6 237 " 3.830
2*’ 249 " 5.267
| 262 " 5.746

- 275 " 6.224
L4
2 295 " 6.703
380 (DUMP SECTION) 7.182
-]
\j

-
“

3]
:“é

\4’!
A e

-ﬂ J'\.:.v

% B

%

2 80
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Pressure Recov-
ery Coefficient

.039
.039
.039
.039
.039
.078
.196
.314
.431
471
.510
.549
.588
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;ﬁ creases, although most of the pressure recovery occurs in the )
3‘3 S first half of the diffuser. This data indicates a well-behaved 1
;? diffuser with no separated regions causing jet flow. !
3 i
fg: Photon-correlating LDA.Evalua:ion 1
o The above discussions have alluded to some of the advan-
:EE tages and disadvantages of the photon-correlating LDA system.
fj These will now be covered in more detail.
-~ The photon-correlating LDA provides a non-intrusive
means of measuring fluid flow in small flow channels and regions
;5 close to boundary surfaces. With good optical access, the LDA
'1 can measure internal flows where it would be difficult or impos-
éi sible to insert a pitot or hot film probe. Good resolution is
§ possible in low velocity flows as is evident in the velocity and
'Ea turbulence profiles discussed earlier. The low light capabili-
ties of the photon-correlating LDA make it ideal for low scatter-
ﬁ‘ ing particle densities and low-power lasers.
~¢ Laser anemometer systems also have their drawbacks. With-
% out a method of filtering (he signal caused by high background
N
f§ light levels, the long correlation times of a photon-correlating
N LDA mean long test times to obtain the same amount of data when
;g compared with other flow measuring systems. Long correlation
2 :
;ﬁ times eliminate any capabilitv to make measurements of a dynamic
;; fluid flow. Good optical access is an absolute requirement. Ad-
5 ditionally, the laser light reflections inherent in measuring in- A
i? ternal flows must be controlled or avoided so they do not mask
g W z
}ﬁ ;
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the data completely or cause unnecessarily long correlation times.
In high background light caused by these reflections, the correla-
tion time necessary to acquire an accurate measurement cannot be
predetermined. This requires a high degree of monitoring and
control by the experimenter if correlation times are to be kept

as short as possible. Thus, it becomes difficult to automate the
flow measuring process.

The particular LDA system used in this research has limited
flexibility in measuring the flow through the ADRF flow handling
apparatus. The reason is a lack of phase modulator frequency
shifts above one megahertz (positive or negative)l. Two advantages
of frequency shifting are the capabilities it provides to measure
flows with high turbulence intensity and to measure with high ve-
locity resolution. While frequency shifts for the low velocities
(1 to 7 m/sec) encountered in this research were adequate, they
become inadequate at higher velori-ies. At velocities of 20 m/sec,
the system can measure the flow with 0.94 m/sec resolution and
turbulence intensities up to 467. At velocities of 50 m/sec, these
numbers change to 11.25 m/sec and 35%. These two figures can be
improved by using larger fringe spacing with a longer focal length
lens. However, the collecting optics now become the critical fac-
tor. If they are kept on the same platform as the focusing lens,
the effective measuring volume becomes so large that the LDA ro
longer makes measurements at a "point'". In this case, the effec-
tive length would be 2 mm (0.08 in) for a 500 mm focal length fo-

cusing lens and 7 mm (0.28 in) for a 1000 mm lens. The effective
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measuring volume length can be reduced by larger off-axis collec-
tion angles or by keeping the collecting optics close to the test
section. However, difficulties arise in keeping the collecting
optics aligned with the measuring volume due to the larger dis-
tances between the focusing lens and collecting optics. Note:

A short effective measuring volume, while important in measuring

three-dimensional flows, is not of concern in two-dimensional

flows.
83

- T



D-A137 819 A STUDY OF ANNULAR DIFFUSER FLOW USING A

PHOTON-CORRELATING LASER DOPPLER. . (U) AIR FORCE INST OF

ECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI

N T ..
UNCLASSIFIED J M DIERKSEN DEC 83 AFIT/GAE/AA/83D-6 F/G 28/4




. - . . . . N - i B oAl PP -

-_- e a
o.-. '-~-'
) L

m;éé

12

2
e

4 |lis

FFEEER
EEEE

]
—
.
£
IrEE

Fr

i

E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

KA
L 4
&

N

ARE.

Sl

- -4
Cd
TYV B A

P e 3 SELER S A VK TN IR T U TR I N T SR AT DA SR
> . ) PPV LY AT PO



AY
A%
>

. )
ICRCR ]

P

9
aTata% S alal

I3

‘ el s ‘l‘ &4

23RN

¢
3

y
.
[

VI. Conclusions

Well-defined velocity and turbulence intensity profiles

for the flow in.an annular inlet and diffuser were obtained with .

a photon-correlating Laser Doppler Anemometer. While the exact
point of boundary layer merging cannot be determined, the
boundary layers do merge before the flow enters the diffuser.
Nevertheless, the flow entering the diffuser is still not fully-
developed. Flat plate, turbulent boundary layer predictions
over-estimated the actual thickness by approximately 207%. The
velocity profiles and static pressure measurements in the dif-
fuser indicate flow which is not separated from the walls.

A non-dimensional velocity may be used to compare pro-
files of tests which were run at different mass flows. While
this method is useful, it does not completely substitute for
the comparison of tests at the same mass flow which have the
same boundary layer growth rate.

The photon-correlating Laser Doppler Anemometer used
in this research is well-suited to study the flow in the ADRF
flow handling apparatus. The system, however, has three factors
which limit its flexibility in measuring three-dimensional, in-
ternal flows. Its limited frequency shifting capability com-
bined with the need to place the collecting optics close to the
measuring volume limit it to the measurement of low speed flows.

Without a means of filtering the signal caused by background
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light, the LDA system is limited to steady flow situations and

requires long correlation times for each data point.
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WORSS VII. Recommendations

o N

i‘ The following recommendations are made for further stud-
A8
:2: ies using the ADRF flow handling apparatus:
L ".\:

N 1) Make flow studies using different diffuser geometries
e and higher mass flows, within the limitations of the
\",T

s LDA system.

Qg

N 2) Incorporate an active system to control the mass flow
qé of the air supply.

(R}

:ﬁ; 3) Modify the optical platform to allow the PM assembly
‘\.“""1

,f to be mounted on the opposite side of the focusing
*ﬁ lens. This would allow the collecting optics to

")
‘Qﬁ avoid laser beam reflections in the diffuser to ob-
S

R cib tain data points closer to the inner wall.

A 4) Use test section windows which have an anti-reflec-
-ig tive coating for the helium-neon laser wavelength.
B 5) Incorporate a means of filtering the PM assembly

R signal to reduce or eliminate the effects of back-
Yo

:y ground light.

B 6) Add a computer-controlled traversing mechanism to
¥ the optical platform to move it in the radial direc-
.

N

~% tion. This would significantly reduce test times

">

< compared to tests requiring manual movement of the
N measuring volume.

~.
W, .
f} 7) Increase the range of phase modulator frequency

N

3 shifting.
SN

v
=
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8)

Investigate the effects on turbulence intensity of

the method of flow seeding used in this study.
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Appendix A:

Measuring Volume Size

The actual size of the measuring volume is defined by
the 1/e*® intensity contour and may be calculated using Eqs (19)

and (20)

dm - Zlf 5 (19)
Tr COS (7)
[+
L = 20 £ (20)
m

. 8
mr_ sin (7)

where dm is the measuring volume diameter, 1m is the measuring
volume length along the major axis of the ellipsoid, and r is
the unfocused 1/e*® beam radius (7:97). The number of fringes
in the measuring volume can be calculated using Eq (21).
N = g (21)
f
The collecting optics, however, determine the effective measur-
ing volume size because they may only collect scattered light
from a portion of the actual measuring volume. The geometry
of the collecting optics is shown in Figure 44. This figure
shows the collecting optics to be in the same plane as the two
laser beams, but this does not have to be the case. The effec-

tive measuring volume length can be calculated using Eq (22)
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29
,:\‘
N .
5: . Ly d, P sin o (22)
N
- where a is the angle between the optical axis and the collec-
3. tion axis (7:98). The effective measuring volume length will
::j be the lesser of ]'m and lm' since it can never be larger than
lm. A similar method can be used to calculate the effective
"': vertical dimension of the measuring volume by replacing sin o
with the cosine of the angle (8) between the collection axis ;
and the plane of the two intersecting beams.
X
‘l
N ' = -9
2: dy da p cos B (23)
X
i}:: Likewise, the effective vertical dimension will be the lesser
N R
‘ of dm and dm'. Lastly, the effective horizontal dimension ;:
: n (perpendicular to the fringe planes) will be the lesser of dm i
B TN . . h
-§‘ and dm" where dm" is defined by Eq (24). :
£ " o q ;
dm da p cos a (24) 3
The following are the applicable dimensions for the {
- optical geometry of the LDA system used in this research. ;
N A = 6328 (10 n D = 205 mm
> f = 250 mm q = 211 mm
r, = 0.55 mm ) = 16.9°
i o6 = 4.58° B =1.7°
v - v
§ dm 183 um 1m = 354 um
BN . .
< 1m 4581 Um d. 103 Hm L
._; s d =100 um d." =108 um X
y 92 X
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, 2O
i - LDA Optical Alignment Procedure
1$i; The first step in the procedure involves mounting and
":: aligning the laser/beamsplitter and phase modulator on the
NN steel mounting channel. When the laser is on during the align-
,Ef? ment procedure, protective goggles should be worn, not only for
SURE
o safety reasons, but because they reduce the reflected laser
’gi light from surfaces and give a more accurate indication of the
E% beam center. The beamsplitter is adjusted so the two laser
’Qﬁ ‘beams are parallel and 20 mm apart. The laser is mounted to
é;: the steel mounting channel so the plane of the beams is parallel
.éf‘ to the mounting surface and at the correct height for the phase
™ j{: modulator. After the beams and phase modulator are aligned as
f:ﬁ - specified in the system operating manual (reference 6), the
zié final adjustment of the beamsplitter is made to ensure the beams
1T4 are parallel and 20 mm apart. This is done to correct for any
ﬁ% possible flaws in the phase modulator optics which could affect
ag the parallel nature or 20 mm separation of the beams. The laser,
ﬂf‘ beamsplitter, and phase modulator can now be treated as a single
‘;ﬁl unit which can be aligned with the remaining optics using the
ﬁ;; four adjustable legs on the mounting channel.
bl The second unit in the alignment process is the optical
:%i platform which contains the remainder of the transmitting and
:3; collecting optics. The optical platform is mounted on the lab-
- .
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oratory bench so it translates in a direction perpendicular to
the bench rails and is leveled in the horizontal plane. The
beams are then aligned on the lower periscope mirror so as the
optical platform is translated, the beams always project to the
same points on a screen fixed to the platform. With the beams
projecting on a screen attached to the annular inlet test sec-
tion window, the periscope mirrors are adjusted to keep the

beam projections stationary as the platform is translated. " :
focusing lens is placed in its holder and an alignment mask i -
serted into the lens. The mask is an aluminum disk which sm
slides into one side of the lens. It has two 0.75 millimeter
(0.03 in) diameter holes, each 10 millimeters (0.39 in) from the
center along the same diameter. Scribe marks on the mask are
aligned with marks on the lens holder to ensure the alignment
holes are horizontal. The focusing lens can then be positioned
so the beams pass through the alignment holes. This aligns the
center of the lens with the optical axis. As the platform is
translated, the beams can be rechecked to ensure they always

pass through the alignment mask holes. The beams are then fo-
cused on the test section centerbody and the PM assembly pos-
itioned so the image is centered and focused on the aperture.
Gross focusing adjustments are made by moving the PM assembly on
the optical platform while fine focusing is done with the collect-
ing lens. The PM assembly is aligned with the laser beams focused
on the test section centerbody to account for the effects of beam

refraction through the test section windows. The optical plat-
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form is positioned in the vertical direction to place the meas-
uring volume in the horizontal plane passing through the test
section centerbody axis. This plane is centered between two
IGV blades upstream of the annular inlet test section. Finally,
with the beams focused on the centerbody, the laboratory bench

is positioned so the beams remain focused as the bench is trans-
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Appendix C:

LDA Velocity and Turbulence Calculations

TN

The velocity and turbulence measurements of the photon-
correlating LDA are based on the intensity autocorrelation

function. This function is simply a time correlation of the

wbedede bl I Rkt an

scattered light intensity which highlights the periodic nature 1

of the signal. The periodicity is due to the ordered motion

of the particles transiting the measuring volume. In other
words, most particles are moving in the same direction with the
same velocity. For these reasons, the time between t = 0 and
the value of T where the next peak of the autocorrelation func-
tion occurs is a measure of the average time it takes the parti-
cles to travel a -pecified distance. This distance, using the
fringe model, is the fringe spacing and the velocity may be cal-

culated with Eq (25)

d
£
N ¢V ) B (25)

where Pk2 is the channel number (value of t) at which the auto-
correlation function reaches its first peak after the first
valley (see Figure 45) (6:6-5).

Turbulence in the flow is indicated by damping of the
correlation function. Due to flow turbulence, the velocity of
every particle is a function of time so some of the particles

in a fringe at any specified time will not reach the next fringe
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at the same time in the future as the other particles. This re-
sults in less time correlation in the signal for increasing
values of t. The result is a damped autocorrelation function.
The turbulence intensity may be calculated from the correlation

function using Eqs (26) and (27)

g - 8

R=g e (26)
2 3
n =1 QR+ 2 (27)

where gl, gz, and g are the values of the correlation function
at the first valleyi the next peak, and the second valley re-
spectively (see Figure 45) (6:6-6). Also, N is the number of
fringes in the 1/e? radius of the measuring volume and n is the
turbulence intensity.

The correlation function may be skewed due to an insuf-
ficient number of fringes in the control volume or the detection
of background light (see Figure 46) (13:91). This skewedness
must be removed from the correlation function before the informa-
tion for velocity and turbulence calculations is extracted. The
method used to do this is described by Stephens (reference 13).
A brief summary is included here.

A mean line from which the correlation function can be
unskewed must first be determined. A least-squares polynomial

curvefit through the local maxima (peaks) and another curvefit

through the local minima (valleys) is determined. A mean line
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is then calculated at each correlator channel by averaging the
value of the two curves at that channel. The unskewed corre-
lation function is the difference between the skewed function
and the mean function. It is from the unskewed correlation
function that the values of g1 8, g, and Pk2 are taken.

The equations discussed earlier are strictly for use
when phase modulation of the laser beams is not employed. They
are, however, the basis of the equations used to calculate av-
erage velocity and turbulence intensity when phase modulation
is in use. Figure 47 shows the effects of phase modulation
(frequency shifting) on the correlation function in measuring
the same point in a flow. With positive frequency shifting
(DRIVE mode), the fringes move in the direction of the flow
component being measured. On the other hand, the fringes move
in the opposite direction with negative frequency shifting (IN-
VERT mode). Thus, the correlation function contains velocity
and turbulence information of the particles with respect to the
reference frame of the fringes. To calculate the particle veloc-

ity with respect to the laboratory reference frame, Eq (28) is

used,

u = u*+AF(df) (28)

In this equation, u" is the velocity of the particle with re-
spect to the fringes and is calculated from the unskewed corre-
lation function. A velocity is first calculated from the un-
skewed correlation function and then adjusted for frequency

shifting.
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The equation for calculating the turbulence intensity
with frequency shifting is also slightly different than Eq
(27) and may be developed in the following way. The turbu-

lence intensity is defined by Eq (29)

where ug is the instantaneous absolute velocity, u is the

average absolute velocity, and n is the number of velocity

samples taken. Eq (30) may be inferred from Eq (28)
Q u;p = oug 4 ;F(df) (30)
X where ui' is the instantaneous velocity of the particle with

respect to the fringes. Substituting Eqs (28) and (30) into
Eq (29) yields

u (31)

The turbulence intensity of the particles with respect to the

fringes (r*) may be defined by Ig (32).
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noo= n_ (32)

Eq (33) results from the combination of Egqs (31) and (32).

AU o= on u’ (33)

n = r‘,” % (34)

Eq (34) is the equation needed to calculate the absolute tur-
bulence intensity of the flow when frequency shifting is used.

Note: Eq (25) is used to calculate u* and Eq (27) is used

oo

for n . Without frequency shifting, u equals u and hence

n equals n .
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RN Appendix E:

Velocity Resolution of Photon-correlating LDA Measurements

The autocorrelation function determined by a digital

correlator, such as the Malvern Type K7023, is defined only at i
5. discrete values of t, the correlator time delay. These values ]
a of T are represented by the correlator channels. Since the ]
- velocity measurements are a function of the peak channel num-
Y ber, Pk2, and since Pk2 has discrete values, the velocity will
3 also have discrete values. In comparing a continuous correla-
o

tion function with its digital representation, it is evident

. that a peak of the continuous function may occur anywhere within
N . . o . .
L, a t% channel interval of the peak of its digital form. While
%

“

& the value of t at which a peak occurs can be estimated from a

&
v A {

digital correlation function (i.e. estimating fractional chan-

o %

nels), the estimated peak will vary among experimenters so that

ol
Y atatelala

(W
]

the *% channel interval is still a useful means of determining

i: the range of velocities represented by a photon-correlating LDA

f measurement.

’l

The absolute velocity can be calculated using Eq (35).

4

2 U= Tt AF dg (35)

. s

\

S The rate of change in velocity with respect to a change in the

4 :
N peak channel number, Pk2, is given by Eq (36). A
B
Py

A

N 118
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3 -d

du_ . L (36)
. mEZS (Pk2-3)* ts

Si Two more useful forms of Eq (36) are Egqs (37) and (38).

N

-\.:'. - *y2

7 du - (U ) tS (37)

d(Pk2) dg

s.:{:

‘ du -(u -aFdg)® tg (38)

e d(PkZ) df

:ﬁg The absolute value of du/d(Pk2) is the velocity resolution of

o the LDA system in measuring a given flow. Bear in mind that u,

23 AF, ts and df cannot assume any combination of values because

7

o

the correlator is limited by the number of channels used to
represent the correlation function. The value of Pk2 is limited

to the raunge of 5 to 99 by the Malvern K7023; however, in prac-

. 3 P A
* 2 l. « 4. .
ol et et
2oy 0 PRl PN R

tical applications, it should be limited to the range of 10 to

95. Thus, combinations of the variables in Eqs (37) and (38) may

AP S
A gy Ay 4

be checked for reasonableness by using Eq (35) and the above lim-

(3
24 . .
‘ itation on Pk2.
- The value of du/d(Pk2) is also a measure of the accuracy
:j of the digital representation of the correlation function. Since
SN

LS
.7 an actual peak of the function occurs within a *¥ channel inter-
i: val of the digital representation's peak, the accuracy of the

)

N measurement will be *%|du/d(Pk2)].

N

. T- :‘ ‘
N '
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