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; I. SUMMARY

ﬂgﬁ The research performed under the contract during the period

- 1 November 1981 through 30 April 1982 can be divided into two

N

main topics; coupling of surface waves in laterally inhomogeneous

soyrce regions to teleseismic propagation paths, and a review of

.;E : the theory and application of synthetic seismograms.
n In Section II, the dimensions of the cylindrical source
-é: region and 1its linear gradient transition zone were varied in
ES order to determine their effect on the generation of teleseismic
;i Rayleigh wav;s. By comparing amplitudes from a source region
EE: with sharp boundaries at the sides and bottom with those from a
{E: region bounded by various combinations of sharp and transition

. boundaries, it was determined that for these source dimensions
i&; at the periods of interest, the more the body wave energy that
EE leares the source region as downgoing waves, the larger the
Lx. fundamental mode Rayleigh wave.
izg In Section III, a review on the.theory and application of
;EE synthetic seismograms is presented. The emphasis is on body

- phase wvave forms at teleseismic, regional, and local epicentral
iiﬁ distances. At teleseismic distances, it was shown that long
}3? period body phases from shallow earthquakes are coherent at
f neighboring stations and that the observed waveform could be

is decomposed in a manner that allows determination of faulting

$§ parameters. By modeling both long and short period body waveforms
-
% BT
Z:




A [ 34320 ”(g'r' r
| :’:3 P h.ﬁU\\. ik Eot\* A ®x20o
- Nostrast AFOSR-TR- ©3.1315

- - oa . ¥y - e T8
AR A e AL B AL AL N A A e A AL AL L

e

E?-} using distributed point sources it is found that most earthquakes
::-‘ are indeed complex and that high frequency strong motions appear
*' to be more strongly controlled by the jumps in the source time
.E;? history than by the overall duration. At ranges less than 30°,
-3

body wave arrivals become multi-~valued and some care needs to be

taken to remove propagation features from source phenomenon.
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I. SUMMARY
The research performed under the contract during the period
1 November 1981 through 30 April 1982 can be divided into two

main topics}%boupling of surface waves in laterally inhomogeneous
N 29 "f‘l’Y/P o -

source regions to teleseismic propagation paths’ "and a review of
the theory and application of synthetic seismograms.

In Section II, the?élmensions of the cylindrical source
region and its linear gradient transition zone were varied in
order to determine their effect on ;hélgeneration of teleseismic
Rayleigh waves. By comparing amplitudes from a source region
with sharp boundaries at the sides and bottom with those from a
region bounded by various combinations of sharp and transition
boundaries, it was determined that,for these source dimensions
at the periods of interest, the more the body wave energy that
leayes the source region as downgoing waves, the larger the
fundamental mode Rayleigh wav?;)

In Section III, a review on the theory and application of
synthetic seismograms ié;ér;g;;t;d éﬂThg/emphasis }s on body
phase wave forms at teleseismic, regional, and local epicentral
distances. At teleseismic distances, it was shown that long
period body phases from shallow earthquakes are coherent at
neighboring stations and that the observed waveform could be

decomposed in a manner that allows determination of faulting

parameters. By modeling both long and short period body waveforms
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using distributed point sources it is found that most earthquakes
are indeed complex and that high frequency strong motions appear
to be more strongly controlled by the jumps in the source time
history than by the overall duration.” At raﬂgééuieéslthan 30°,

body wave arrivals become multi-valued and some care needs to be

taken to remove propagation features from source phenomenon.
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A I T

} Representation Theorem Modeling of Rayleigh

'.:', . Waves from Laterally Inhomogeneous Source Regions
23 by

~J
N Peter Glover and David G. Harkrider
e
344 INTRODUCTION.

:f During the past year, we have examined the effectiveness of two
2 mixed-path surface wave algorithms previously used to couple various
{‘: source region models to a common propagation path. Rayleigh waves
E‘ generated by the two algorithms were compared to the more numerically
5 accurate Representation Theorem technique of modeling which couples
:: finite element code results of a source in a laterally inhomogeneous
: region to the laterally homogeneous propagation path. The principal
‘ advantage of the two approximations 1s that they are computationally
1': economic and require only trivial modifications to existing Rayleigh
::‘;.. wave codes. On the other hand, the RT technique is relatively expensive
N depending on the frequencies or wavelengths desired from the finite
" element/finite difference code modeling the transition zome. Since
:-::' changing the source region structure and radius for each case of '
interest would require further FE/FD code calculations, we had hoped
that at least one of the two mixed path techniques would be adequate for
:::. obtaining Green’s functions for Rayleigh waves gererated in complex
\ source regions.

* In our semi-annual report for November, 1981 we showed that for the
.:,E case wvhere the propagation medium was a uniform halfspacé, the
i
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. Conservation of Lateral Energy Flux (CLEF) method gave better agreement
; with the RT result than the Unit Transmission Coefficient (UTC) method
:: when the source region was modeled by a cylinder of radius 1.8 km and
. height 1.8 km embedded in the propagation medium. The material
;f properties of this cylinder where chosen to closely approximate those of
.

.

. two typical NTS source media, Climax Stock granite and Yucca Flat tuff
;4

(see Table 1). These results are reproduced in Figure 1. Figure 2
shows a similar calculation for the case where the propagation medium
vas CIT109, a model frequently used to calculate surface wave
propagation in the western U.S. Together, these figures show that for
the Climax Stock model, where the source/receiver rigidity ratio is 0.6,

both approximations agree with the RT results. However, for the Yucca

Flat model, where the rigidity ratio 1s 0.1, the CLEF method is the

better approximation.

.
o
«

{

.

The results given in Figures 1 and 2 are for a sharp boundary. In

XA s e

this report we examine the effects of gradational boundaries, keeping
essentially the same source region geometry and using a vertical
point-force source at a depth of 0.4 km. For the Yucca Flat tuff gource

region model, we find that a gradational boundary on the bottom of the

v AR e Y_c Yt L0, 0

cannister gives the largest Rayleigh waves. However, the maximum

peak-to-peak amplitude 18 6.0 x 10*%*-21 cm compared to 3.5 x 10%*-21 cm

LA . s

for a similar force of 1 dyne in the laterally homogeneous model CIT109.

EFFECTS OF GRADATIONAL BOUNDARIES.

Figure 3a shows the RT and CLEF results for the sharp 1.8 x 1.8 km |
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I : Yucca model plotted on a common scale. The maximum peak-to-peak
amplitude is 3.9 x 10#*-21 cm for the CLEF method compared to 4.0 x

10%#%-2] cm for the RT method. The associated periods are 15 and 12

seconds respectively. The CLEF approximation wunderestimates the

oy amplitudes at 25 second periods. At 3 to 5 second periods, the two
;2} methods disagree in both amplitude and phase. Nevertheless, overall the
& CLEF approximatioa is i{n good agreement with the RT result,

+ The underlying assumption of the CLEF method is that the horizontal
;§: energy flux transported in the fundamental mode Rayleigh wave on the
N left of the boundary is equal to that in the fundamental mode Rayleigh

wvave on the right of the boundary. That is, there is no energy loss due

ks I
Latala s
La A 4,
‘l»‘ »

LN
.
s e N

to mode conversions, or reflections. This 18 not true for the finite

;:- element calculations of the forcing functions. ZSES was deliberately
N chosen to be in the propagation region in order to monitor the change in
Eﬁ wavefield between the source region and the the propagation medium. For
:? the high impedance contrast Yucca model, the outgoing wavefield should
b - experience significant reflections and conversions on encountering the
:é sharp boundary of the cannister. Therefore, we would expect the CLEF
ﬁ approximation to give an even closer agreement with a RT model
a3 incorporating an impedance gradient.
’€ To investigate this effect, we introduced a series of stepwise
;: increases in velocity and density across the 3 columns/rows of elements
i;d forming the RHS/bottom of the plug. The radius/height was also
TE‘ increased to 2.0 km to accomodate this gradient. However, ZSES was
] maintained at r = 2.1 km, z = 2.1 km through these runs. Figure 3b
&

¥ |
2




shows the results for a "uniform” gradient across the RHS of the plug

compared to the CLEF result for the sharp 1.8 x 1.8 km plug. In this
case, the RT results have a peak-to-peak amplitude of 3.3 x 10%*-2]1 cm,
compared to 3.9 x 10%%-21 cm for the CLEF results. The minimum value in
the CLEF result is delayed by approximately 3 seconds with respect to
the RT result. However, the two methods give nearly the same result at
the longer periods. This is not due to the presence of the : [ lent
reducing the effective radius of the sharp boundary, as can be st from
Figure 3c. In fact, when we compare the effect of plug radiu - the
results using the RT method alone (Figure 4a), it is clear tha such
small perturbations have no measurable effect. Therefore, the presence
of the gradient must be diminishing the signal amplitudes by suppressing
reflections from the side of the plug. This is further demonstrated in
Figure 4c, where the RT result for the gradient model shows smaller
amplitudes at all frequencies than the RT result for the sharp boundary,
and an 18 percent decrease in the maximum peak-to-peak value.

Using a plug of height 2.0 km and radi{us 1.8 km, we incorporated
the same velocity and density gradient across the bottom of the
cannister. Figure 4b shows the new result compared to the RT method for
the sharp plug. The gradient gives larger amplitudes at all but the
shortest periods and the peak-to-peak maximum 1s 6.0 x 10**-2]1 em or 50
percent larger than the sharp boundary. Moreover, there {8 1little
difference in phase between the two results.

We also computed the Rayleigh wave for a gradient on both the

bottom and the side of the plug. These results are shown in Figure 5.
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In this case, the peak-to-peak amplitude 18 5.2 x 10%*-21 cm, somewhat
smaller than that of the bottom only gradient, but still significantly
larger than for the sharp boundary. At other periods, the sharp wvs
gradational results are {n good agreement. Finally, Figures 5b and 5¢
compare the totally surrounded plug with the previous cases. The
important thing to note 18 that the gradient across the bottom of the
plug has the largest effect on the peak-to-peak amplitude of the

computed Rayleigh wave signatures.

DISCUSSION.

The observation that the maximum amplitudes come from the source
region model with welocity gradient at depth can be explained as
follows. The effect of the sharp boundary on the sile of the cannister
is to reflect rays at non-normal angles of incidence so that they
eventually impinge on the bottom surface of the cannister. Here the
contributions due to the normal stresses are a factor of 2 larger than
those for the side. This implies that, for the periods of interest
here, the more body wave energy that 1leaves the source region as
downgoing waves, the larger the fundamental wode Rayleigh wave. The
gradient itself acts 8o as to minimize reflections from the bottom of
the cannister. The results from the gradient on both bottom and side
are consistent 1in that the peak amplitudes are somewhat less than the
cagse of the gradient across the bottom, but greater than those for the

sharp case. When the gradient occurs only on the side, the results are

smaller than for the sharp boundary, which is consistent. Moreover, the
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33 results for this case most nearly match the CLEF results, although at

;é the distances 1involved the energy 1s being transported across the

'3 | impedance contrast as body waves and static deformations, rather than as

f fundamental mode surface waves (see Harkrider, 1981 for a derivation of

. the CLEF approximationm).

%; So, although our results with these spatially 1imited source

i? regions clearly indicate that, when observed with a long-period

X LRSM-type instrument, effects of lateral heterogeneity can be modeled to

,‘g first order using the CLEF approximation, we cannot offer a detailed

E explanation as to why.

i}

,i; .
\ REFERENCE y
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33 Harkrider, D. G., Coupling near source phenomena 1into surface wave ?
;S generation; Identification of Seismic Sources - Earthquake or i
- Underground Explosion, ed. E. S. Husebye and S. Mykkeltveit, D.

‘» , Reidel Publishing Co., Boston, pp. 277-326, 1981. *
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Table 1

Layer parameters for the Climax Stock and Yucca Flat models

a B P M
Yucca Flat Tuff 2.35 1.3 1.86 3.14

Climax Stock Granite 5.33 2.78 2.67 20.63

CIT109 (Upper 14 km) 6.2 3.511 2.736 33.73
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.
NN FIGURE CAPTIONS.
APy

Figure 1. Comparison of mixed path results at 1200 km; source medium
1.8 x 1.8 km right cylinder, sharp boundaries; propagation
medium uniform halfspace a = 6.2 km/sec, 8 = 3.5 km/sec, p =
2.7 gm/cc. Both approximations overestimate high
frequencies.

Figure 2. Similar calculations for layered propagation wmedium. UTC
result for Yucca Flat tuff still dominated by high
frequencies.

Figure 3. From top to bottom, RT results for a) sharp boundaries, b)
gradational boundary on side, ¢) sharp boundaries but
reduced radius, superimposed on CLEF result with maximum and
ninimum amplitudes of 2.0 and -2.2 x 10%**-21 cm.

Figure 4. RT results for a) source region radius 1.6 km, b) gradational
boundary across bottom, c¢) across side, superimposed on RT
result for sgharp 1.8 x 1.8 km source region, peak-to-peak

amplitude 4.0 x 10%*-2]1 cm.

Figure 5. RT results for a) sharp 1.8 x 1.8 km source region, b)
gradational boundary across side, c) across bottom, compared

to totally gradational case, peak-to-peak amplitude 5.2 x

10#%%-21 cm.
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YUCCA CITIOS (LP. LRSM)
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1. Introduction

In ig; past decade, our understanding of earthquakes and earth
structure has increased sfgnificantly based on our improved ability to-
{nterpret seismograms. WNumerous formalisms have been developed whereby
synthetic seismograms can be computed at positions on the earth for
comparisons with observed se{smograms. The various processes that
affect the motion at some field point such as the seismic source, earth
model response, attenuation and recording equipment are all combined
into the synthetic convolution operators. Since these effects can be
treated as linear operators to first order 4t becomes simple to test the
significance of changes {n the synthetfcs caused by varying the
operators separately. By comparing the synthetic with observed
sefsmograms we can apply iterative techniques to determine earth
structure or source wodel, or perhaps some properties of each depending
on the circumstances. Applications of this procedure to body waves have
proven quite effective 1n determining the source properties of shallow
earthquakes. We shall review these studies fn some detafl in this set
of notes.

There are four basic operators which are generally included in the
generation of synthetics. These represent the sefsmic {nstrumental
response, 1{t), the attenuation operator, A(t), the source operator,
S(t), and a wave propagation operator or Green's function, M(t). The
synthetic sefsmogram, SS(t), is computed by the triple convolution

SS(t) = I(t)* A(t) *M(t) *S(t)

............
.......................

A AN et ks
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72 where the first of these 1s generally well known. 3
We will be primarily interested {n events recorded by the World i
Wide Sefsmic System Network (WWSSN). This global network of statfons {s
displayed in Figure 1.1. Each statfon records three components of
motfon, namely verticﬂ, north-south, and east-west, on photographic
paper. Because the earth {s particularly noisy at about 4 sec, it 1s ]

convenfent to record each component fn two pass-bands, short perfod (SP)

and Tong period (LP). The gains or amplifications of (SP's) are
| normally between 25 to 200 thousand while the (LP's) run at 750 to 3000.

*"} The attenuation operator does not introduce any structure {nto the '
' waveforms in most problems of {nterest but only smooths the results. |
- The operator which §s most commonly used could be more properly written
- A(t,t*) where t* = S ds/Q where Q §s the quality factor and the
{ntegration is performed along the patﬁ of the ray, see Carpenter (1967)
o and Futterman (1962). Most recent estimates of t* are near 1 for
‘f:‘-: P-waves and 4 or larger for shear waves assuming shallow events. The
e effects of the attenuation operator convolved with the {nstrumental
‘;’.;: responses are displayed fn Figure 1.2. Note that for a t* of (4) the
"::; short periods are greatly reduced. Thus, we should not expect to see :;
° short-per{od shear waves from shallow sources which {s generally true. i
;:-', There s considerable evidence for a frequency depe_ndent attenuation operator, ‘
7 particularly at the high frequences (say > 3 hz), see Minster (1978).
7 We will be primarily {nterested {n the long-perfod seismograms and will
L apply the A(t*,t) for simplicity.
Calculating M(t) can be quite simple or complex depending on
“‘ circumstances and epicentral distances. At teleseismic dfstances, 30°
~
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Fig 1.2 - The first column displays Ale,e®) [ 1(t), SP J1(e), LF
A(t,t*) as a function of t* assum-

ing 0.5, 1.0, 1.5, and 4, from L3 0.52 037
top to bottom. The middle column

displays the convolution of

A(t,t*) with the short period
instrumental response, and A os?
similarly for the long period

on the right. The relative
amplitudes are indicated by the

numbers above each trace.
: 0.38

Regional Upper Mentle >30°
Truckee 8/2fes Oroville 8/ifrs Oroville 8/if7s
COR Ac80; Az=337° FFC Ae208, Aze36°  ARE 8073, Az+130°

Syn
0bs. 30 sec P
P- el

Fig 1.3 - Example observationsoand synthetics at ranges where
the earth appearsosimp]eo(> 30°), slightly complicated (upper- 0
mantle ranges, 30 to 14"), and quite complicated (less than 14°).
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o to 90°, we can assume that M(t) s a delta functfon and the only

i' remaining complexfty Is due to surface reflections, see Figure 1.3.

E% From about 12° to 30°. the earth's upper-mantle triplicatfons introduce

additional frequency dependent arrivals making M(t) more {nteresting.

At smaller ranges, the.crust plays a wore fmportant role and the guided
waves following the P-wave prove quite useful. Methods for generating
M(t) abound and their descriptions are covered {n great detail {n any of
the recent textbooks. 1In this set of notes, we will apply generalized
ray theory, GRT, and the Cagniard-de Hoop formalism since the author is
the most familfar with this technique and 1t can be used effectively at

211 ranges.

2. Source descriptions and generalized ray theory

The seismic radiation field produced by earthquakes can be
represented by several means. Following the stress relaxatfon approach,
one assumes the infticl stress and frictional conditfons and performs
the proper dynamics using analytical or numerical techniques to obtain
the displacements, see for example Madarfaga (1976). Another
particularly useful approach fs due to Haskell (1964), called the
shear-distocation model. Following this approach one does not attempt
to understand the detailed mechanics {nvolved in the actual fault zone
but simply states that s1{p occurs on a specified surface, referred to
as a disiocatfon.

However, before getting fnto the substantial complexities fnvolved

ifn the shear dislocation formalism 1t appears useful to review.a much

simpler spherically symmetric source or an {dealfzed point source

------
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explosion.

a) Symmetric Point Source

We assume a homogeneous fluid with cylindrical coordinates r and
z, see Figure 2.1. This choice of coordinates will prove advantageous
for studying a layered earth in later considerations. We will, also,

take this opportunity to develop some mathematical tools which will

Attt AR ANURLILA RS L

prove useful. The wave equation in cylindrical coordinates with no

azimuthal dependence 1s

r
rmandin

h (a) Im(p)} (b)

Source

>R
i
Receiver ! v Re(p)

2 | po v

Fig 2.1 - Source-receiver geometry (a) and complex (p) plane (b)
71;.!1 branch cut starting at (1/V) and running out along the real
p) axis.

(2.1) a2¢/ar? + 1/r deldr + a%¢/d2? - 1702 a%/at? = 0
where (¢) 1s the displacement potential and (a) the compressional .i
velocity. Taking the Laplace transform of (2.1) yfelds
2=,, 2 J

(2.2) a“¢/ax® + 1/r d¥/dr + 6%5/d22 - 827025 = a
N

where (s) §s the Laplace transform varfable. A solutfon of (2.2) which -
fs easily demonstrated by substitution §s
(2.3) ¢(x,z,8) = Jo(kr)c"t"' "
2
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where (k) s the horizontal wave number, v = (k2 + $2/a2)1/2, and J,

the zero order Bessel function. A more general expression is

- - - -Vz
(2.4) ¢(r,2,8) « £(8) f Jo(kr)[A(k)c ]dk
-]

where we take the positive square root of (v} and consider the solution
which converges for large z. The functfons A(k) and fls) are arbitrary
with respect to the operations in (2.2).

In the vicinity of the source the displacement potential must
satisfy the known behavior of a spherical wave which {s

0 t < R/a

(2.5) 4
1/n £(t - R/a) t>R/s

Taking the Laplace transform of (2.5) yfelds

(2.6) 3,(R,8) = 1/ o (8/0)R g gy

The question now fs can we find 8 way to match this condition (2.6) with
the wave solution (2.4) in terms of ¢(r,z,s). This can be accomplished
by using a trick originated by Lamb (1904). The needed identity 1s

-2z -

5 -vz-b] X
e s - f 3 (kx) @ S dk
(2.7) °

which fs easily proven with the aid of the Four{er-Bessel theorem. This

equation 1s sometimes referred to as the Sommerfeld {ntegral
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representation. Thus, the solutfon in cylindrical coordinates for an

aribtrary time history, f(s), becomes

;(f.!.l) = £(s) f.Jo(kt) .’“lt'hl %dk
(2.8) J

Of course, the {nverse Laplace transform of (2.8) must yfeld the (2.5)
description. We will produce this result by performing the so-called
Cagniard-de Hoop transformation, a technique that proves useful in the
layered earth model. We make 8 change of varfable k =-{sp which

transforms Bessel functions to modified Bessel functions, namely

(2.9) Jo(-ispr) - 4i/n K, (spr) - 1/w K, (-spr)

The solution becomes, after Strick (1959),

+i=+5 | I
< - o4 £(s)8 -snjz-h d
(2.10) ¢(r,2,8) = =1 == f K, (spr) ¢ BE

where n = (1/a2 = p?)1/2,
This expression can be further simplified by noting the symmetry

across the real (p) axis (Schwarz principle of reflection) obtaining

b Lo ]
#(z,2,8) = £(s) %(l) Im f K, (spr) ."“l"'h| pdp
(2.11) A n

Equation 2.11 can be solved exactly but there are some useful
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................
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approximations to discuss. Using the asymptotic expansion (9.7.2

Abramowitz and Stegun) we have

U2 _ N e
@y %K@ -(F) ¢ x[“ Gt + L2 ]

where u = 4n2, Keeping the first term only we obtain

e '
- Vo _=s(pr+nlz-h)])
¢(r,2,8) = \'1}—25 J-f.')lm f -% o ST dp
(2.13) °

For simplicity suppose we assume that f(s) = 1/s or that the
original source time history is a step functfon. The delta function
response can be determined later by taking a time derivative and the
response for an arbitrary scurce by convolution. The type of integral
occurring 1n (2.13) occurs often 1n generalized ray theory and it
appears worthwhile to discuss a rather ingenious trick for obtaining 1ts

solutfon, see de Hoop (1960). From 1ine source theory we have

b L)
(2.14) ;(t.:.s) - Imf ."(P"‘"\ll'hl) 5!'_'2

A i
Note that this integral looks much 1ike the formal definition of the

Laplace transform, namely

3(s) = f e %t g(t)ae
[}

This identification Jeads one to the following change of variable,
(2.15) t =pr+ (/a? - p2)¥ |z-n

Solving for p(t) by applying the quadratic formula we obtain




e RSN

p=6/RDt - R%/a? < £ [z-n|/m2
(2.16) (t <R/a)
ne= Iz-hl/l?.z t + ®Y6? - t?) % n?

p =@/t + 1(t% - B2/a®) ¥ |z-n|/ml
(2.17) (¢ > R/a)
ne pehfe/n? - 1e? - 32762 ¥ pp2

Taking the derfvative of (2.16) we obtain

-1/2
d 2 lz-nle _ in
e - e (o-F) L (2 92
a

and, similarly, from (2.17)

-1/2
2.19 ¢ ., I R2 _ z) z-hlt
(2.19) £ .5, (;, . .l_n,_l_

- (‘1(1‘ -“t;)]_ﬁ
a

We now perform the integration in the "p" plane such that "t" will be

positive and real. Such a path is gfven in Figure 2.1b. The contour X
(C) that runs, say along the imaginary axis slightly to right of the g
orfgin, from (0) to (= ) s deformed by analytic contfnuation to the :
above contour T. The contributfon from the arc at (=) is zero and there

are no enclosed poles. Thus, ,

vir,z,s) = 7"'_[ .-s(pr-l'nl:-hl &p
[ L} “
c
(2.20) !

3
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- et ) e
and °

o - 1 dp\ _, _E(t-R/a
- V(r.et) = Im(S % zt_z_n?yﬁ'z'
o -2z

where H(t) {ndicates the step function.
Returning to (2.13), with f(s) = 1/s, we obtain

(2.21) _ ¢(r,z.t) = I 3 LT 3(0))
R
%; where
X B d
sern (2= &2)
o
.§; and we have used
'~
‘: «Qit) = Al
iﬁ The convolution operation indicated in (2.21) can be written
AY
"::' t
f (c-1%  3(x) ar
M
3 ° 1
\:: i
2; which can be evaluated e{ther analytically or numerically, depending on \
the complexity of J(t). In this simple case, we can use the |
N
SQ : first-motion approximation (Knopoff and G{lbert 1959) and obtain
)
= J(1) = 5 (12-R2/a27% B(1-R/0)
.t§
4 - A77 3 (1-R/a)
-
'.:\',




aee e A St ‘S S Site e i S S - - S - .- .
e gerg T wy . it Bt B S At Rt W d SRR NI et P SRR N4 - . h A N .
- e .

R R ) P S T o e

~ and

L 4
f -0 (c-Ray¥ dr = wE(t - R/0) .

- Thus, equatfon (2.21) reduces to
| .
{ , ¢(r,2,t) = ¢ E(t - R/a)

as 1t must; see Strick (1959) for more details. This operation is
easily visualized by performing the convolution by graphical means, see
Figure 2.2. Note that one simply multiplies the two functions together
snd sums from (0) to (t). The answer remains zero until (t) reaches

(t = R/c) where the two square root singularities overlap and generate a

step.

$(nt

(t-7)v2 ( _|_§_)"'/2 |

o)
e
T

t R/a

$(t) —H(t-2)

Fig 2.2 - Schematic diagram explaining the convolution operation by
graphical means. We reverse the direction of the square-root operation
and perform the multiplication of the two functions for values of

v from (0) to (t) and sum. The results are zero untfl the two
functions overlap.
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The solutions for more complicated models can be easily obtained
with this technique. For instance, suppose we generate the step
response appropriate for the interface problem (see Figure 2.3). There
will be two generalized rays in the upper halfspace required to solve
the boundary conditions, see for instance Spencer (1960) or Helmberger
(1968). There will be a direct generalfzed ray which s {dentical to
the response just discussed plus a general{zed ray that describes the
response returning from the interface. The latter response can be

written
(2.22) ¢(r,z,0) = ITE 3 [/ * 3(0))

where

1 1/2
t=gpr+ nz(z-o-n) » Ny - (ﬁ- Pz)
J(t) = Im(-"-% R(p) %%

R(p) = (pn; = 0,My)/ (00 + £yny)

and (dp/dt) {s the derivative along the T contour, namely

nll(R’laf - tz)u2 t < R/a,

g .
dat

in /(22 - nzlag)“ 2 ., R/a,

i
q
E]
4
i
i
i
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Receiver
Source A

‘*\/‘o 262 p=2,
Ta=32

a.- 8.2, p'- 3.4

=i 255 ta— A.m o'4X|0-2
i 5
0.
- w0 J

L i P 0.6
1 . f— 12
1 . A— 1.4
y 2 J- 1.4
- wo A —
—-Jﬁ 160 M
Jf 180 A2

| Ll
200

rJ (1) Step-Response

Fig 2.3 - The responses of J(t) and ¢(t) as a function of source-
receiver separation. Note that the graphical convolution operator
at the larger ranges has two parts: before t = R/a, the square-root
singularities are congruent and produce a log similarity at

t = R/a,; the second part corresponds to a weighted step response
igure 2.2.
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;:33 where R = {(z ¢+ h)2 + !:2).1/2 which corresponds to the distance traveled
along a Snell's law reflected path.
If a, > ay, there will be a critical angle and a head wave. In
this case J(t) will start before t = R/a, since n, becomes complex at

p=1ls, and tc(p = 1/u2) becomes

1/2
t = °Lz + ('a!f-;%) (z+h) .

Evaluating (2.22) numerically, we obtain the step responses displayed {n
Figure 2.3. Physfcally, this technique computes the response by summing
over all possible ray parameters (p) that interact with the boundary.

b) Shear dislocation (double-couple) source

In this section we will examine some relatively simple dislocation
models. Starting with Haskell's representatfon for shear faulting it is
relatively easy to devise the displacements for double couples in an
infinite medium, see Harkrider (1976). The solutfon for 8 strike-slip
fault becomes

Fig 2.4 - Coordinate system for the

dislocation formulation where (8) , —eX,
indicates the strike, (&) the dip 1% /]

of the hanging wall, and (1) the

motion of the hanging wall relative r

to the footwall. v 0
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- i 224 1 3A
W(r,z,w) = K % (-3_1:7 -T -a—r)] sin 20
L
- (2 (324 1 aa B
(2.23) V(r,z,w) = K % (-é—tz -z 3;) + kg ‘E] cos 20
2 [32a

+ kg g—:—] sin 20

"~
{4

Qr,z,w) = K T (3: -

where W, ¥ and Q are the displacements in the vertical, azimuthal and

radial coordinates. The parameters are

[ ] |
A-"Bn-."cl
R R
| ]
l-c.tt

where R = distance between the source and receiver; a,8 = compressional
and shear velocities, and K = source strength. The spatial derivatives
are introduced because of the double-couple nature of the source, and
the A and B are simple point source representations as before. Using
the Sommerfeld integral, (2.7), and performing the appropriate algebra
(see Helmberger 1974) we can express the displacements along the

vertical, tangential, and radial coordinates as:

i-%}‘!-opn
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LY where 2z, v and © are the vertical, radfal, polar angle coordinates
oo
- respectively. The P wave potential (¢), the SV wave potential (R), and
L
i the SH wave potential (x) are expressed by:
o P-wave:
M +{=ic
¢ =+ T:_p .3. Im f c, (@ -'f; exp(-snclz-hl)Kz(SPt)dP’AI(9.1.5)
Cc
» +Hete
o 2 » - - .
=2im f ;@) 7 e sn, |z-h[)K, (spr)dp-A,(8,1,8)
(3
" +i=ic
e a
SV-waves:
% +iwic
=+ T'% -3- Im f sV, (p) -‘f; exp(—snslz-hl)xz(spr)dP'A1(9.1.5)
[
.H $iwic
+ s 2 in f sV, (p) 'nz; exp(-sng|z-h|)K, (spr)dp-A,
[
" +istc
43_5; .3. Im f sV, (p) -nla» exp(-snslz-h])xo(spt)dp'53 F
c \
SH-waves:
¥ +ie4c
x=+ -5-'% % Im f sH, (p) -"26- exp(-cnalz-hlxztvr)dw&.,
c
" +imie
o 2 .
* T 3 Im f SH, () f; exp(-snalz-hl)Kl(SPr)dP A
c

(2.23)
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where
s = Laplace transform variable
p = ray parameter
Ty = (1/v2 - p2)1/2
h = depth of source
a = compressional velocity
8 = shear velocity

¢ = density

"o = sefsmic moment

with the orientation constants given by:

M(6,1,8) = sin 20 cos A sin & + 1/2 cos 26 sin 2 sin 25
A2(6,1,8) = cos © cos A cos & - sin 6 sin A cos 26
A3(8,1,8 = 1/2 sin 2 sin 28

Aa(8,2,2) = cos 28 cos A sin & - 1/2 sin 20 sin A sin 25

As(8,1,6) = -sin e cos A cos § - cos 6 sin A cos 28
(2.26)

where

® = strike from the end of the fault plane

A = rake angle

é = dip angle

The vertical radfation patterns, as will become apparent shortly,
are defined by

. P T e T e
L PP U
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1
- -p2 SV, = - SH, = —
€= 1 7 TEPg 1 82 ;
2 2 e 8 1
2.27) C, = 2cpn, SV, = (n - P%) SH, = 37 5 '.J
c, = (p2 - 2n2) SV, = 3epn, i
g
41 2h 4
vhere = {7 .\ d
y

The displacement field for any orfentation of a double couple, see
Figure 2.4, 1s the sum of displacement fields of three particular
orientatfons of the double couple, corresponding to the strike-siip i
fault (A = 0 or 180°, & . 90°%), normal dip-s1ip fault (90° 90°), and

the dip-s11p fault with a 45° dip (45° 90°), see Burridge et al,,
(1964).

The index (n) in the expression (2.27) corresponds to
(1) strike-s1ip, (2) dip-siip, and (3) 4s° dip-s11p. _
The integrals expressed fn (2.25) can be transformed back into the ﬂ
time domain by the application of the Cagnfard-de Hoop technique, see

Gilbert and Helmberger (1972) and Harkrider and Helmberger (1977). For
example, the field function defined by \

f=ic | |
T 2 -gn,|z-h

(2.28) T (r,z,8) =38 Im f -{: K, (spr) e T dp
1
becomes ql
(2.29) 1
t '

2 ? en(t") !.2) (1

4 oZ2,8) = o 3T Im f ( P Z dt ,
a(TeZst) = T 3¢ ) (t_t)llz(t_‘.’_zpr)],/z dar) n,

.......



where

cn(t.t(v)) - cosh_ (n cosh™} (t;f‘;—:;ri))

The geometry is given in Figure 2.1a and the de Hoop contour in
Figure 2.1b, see de Hoop (1960). The various functions of p are to be
evaluated along T defined by choosing those values of p which make (t)

real and increasing where
<(p) = pr + 'l,h'hl-

The transformation of ®p® to "t" follows from the algebra
discussed in the last section.

In this simple case we have a closed form solutfon for various
values of n since the equivalent form back in the (w,k) domain has been

evaluted by Harkrider (1976). For example, b
? 1 6 2v R R
Ca(ra2t) = g I [E * ("v)]ﬂ(t'v)f

where the near-field contributfon appears fn terms of r. However, since
we need to evaluate {ntegrals similar to (2.25) with complfcated complex
integrands later 1t should be noted that (2.29) can be evaluated for
various values of (t) after a change of variable as discussed earlier.
A relatively fast evaluation of this type of integral {s by nonuniform
quadrature techniques where the point spacing 1s determined by the rate
of change of the integrand. The accuracy of such techniques are

discussed in Helmberger and Harkrider (1978). We will examine some

36
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i useful approximations by expanding the integrand of (2.29) in terms of
¢
N (t - 1)7% Note that
{ ~. 1 [y+(y2-1)1/2)2n+1

a(EsTsP) = 3 172yn

W G+ 2177

N where

T y=(t-1+pr)/pr

7 and cy(t47,P) 1
> ~

:‘_;: (t=-1+ 2]:1')]'/2 v2pr
o to first order. Thus. we can approximate (2.29) by

t

- 2 9 1 1 dp P

Q) Zot) = = =— 1Im f dr

::: ;n(v z, ) ¥ ot » ’-—zpr (t-t)llz dt %
e
w3 (2.30)

.4 [ aE L B &
at [7{”’"(2‘ T dt]

. This expression was obtained earlier by using the first term of
( the asymptotic form of the modified Bessel function. With this degree
: of accuracy, called the high-frequency solution, the expressions (2.25)
N
{ can be greatly simplified. We obtain N
&
WY

e w 3 =

.'_. P ° 2

. e Z A,(8,0,8) S Im f ¢y -,% Y(x72spr) x [exp(-s(pr+n_|z-h])dp]
- =1 °
o M O He
- - ) 2 B I ey e
: Q ol vy ZAJ(O,X.G) 5 Im f svj ng (%/28pr) x [exp(-s(pr+n8|z-hl))dp]
- =1 o
Z:: 2 e
o 3 Agezy@ert 2 In s8, 2 /(#7Zep7) x[exp(-s(prn|z-h|))d
o X" T 2.0 00 5 3 g pr) x[exp(-s(preng|z-h|)
Ny =1 °
v (2.31)
(SR
s'{:
\.,‘

.




where we are essentially assuming that the source duration, T, is
T<<2pr.

We still further approximate (2.30) by assuming

1nv
% ]

dp/dt =

where tp = R/V and p = p, and (2.30) reduces to

Cn(toz t) = c(t'tn) /R

called the first motion approximation. This approximation 1s valid at
telesefsmic distances where the ratio of travel time to duration is of
the order of 100 or greater and has proven quite useful in modeling
shallow earthquakes, see Langston and Helmberger (1975).

Transforming the expressfions (2.31) fnto the time domain we

obtain:
3
" Bt - (R/0))
(3 t - (R/a
i=1
3
(-] B!t-(R/B“

M
o H]t- (R/B“
X1 Z Ayy3(80h,8)sH,

R
b
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1;:; Thus, the potehtials'contain the classical vertical radiation patterns

h in terms of the Cj(p). svj(p). and SHj(p) and the horizontal pattern in

r

X terms of the Aj's. We will use these expressions in discussing the

A

:

teleseismic results later.

" ¢) Response of a layer/halfspace: Digression

Using the concepts of generalized ray theory and retaining only
the first term of the asymptotic solutfon, we can construct the (SH)

solution on a free surface, namely

2
M .
(2.33) V(r,0,8,t) = r- 3‘-’;[»(:) * E A43(8:3,8) vj(t)] .
-]
=1

where

n
1] Z P dp
vj(t) = 2/r 5 [-I_E * c Im ( —E—B- SBJ(P)n(p)p dt)]

D(t) = dislocation history
6(t) = far-field time function-:
n(t) = product of the transmissfon and reflection coefficients

I = gummation over contributing rays

For the case of a pure strike-si{p dislocatfon embedded in a homogeneous

halfspace

\
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...................
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(2.34) ERALNE s1n1/8%)H(e - £ ) /R

where (1) Is the angle of incidence, see Figure (2.12) . Substituting (2.34)

into (2.33) we obtain

(2.35) V = (M /im0 ) (2F s1n1/8%)cos 26 D(t - t) /TR

where the amplitude is given in centimeters with F = 10'20 for unit
conversion, and the varfous parameters expressed as My(ergs), Po(g/em?),
8(km/sec), R(km) and

Y -f D(t)dt = D(=)

A factor of 2 has been introduced {n the solutfon (2.35) by the SH
free surface receiver coefficient. The far-field step function response
for a pure strike-s11p event, V,(t), is given in Figure 2.5, where the
model s included as an fnset for varfous values of source depth. The
corresponding half-space response is the simple step displayed on each
trace. Comparing the response with the source situated just above (d =
3.5) and below (d = 4.5), one finds that the Tong-perfod behavior {s
nearly the same. The classical type of Love wave dispersfon {s
developed when the layer contains the source and s well understood in
terms of ray interference. When the source {s located below the layer,

the {nterpretation is more difficult but can be studied by examining the

varfous rays. The ray descriptions become:
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ty = pr +my (a-h) + n, (30)
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Fig 2.5 - SH step responses at the surface
assuming a point strike-s1ip dislocation
situated at various depths. The amplitudes
are scaled relative to the top trace with the
step response for a homogeneous half-space
(bottom properties) displayed for comparison.

41




————e - D g T ¥ .. v,V cLT
_F_-.\_..-~.‘~.‘-‘A A

s 42
<
;: 2-°-f| LB DA B N L B B S l'IleT LN
-. i de Hoop Contours 9 i
al L -
o LS - Q -
5?35 o~ N b Ny
Q) - = " o -
oy o [ d=12 km 46 .
| * I |a-28 ]
e ainl- 0 ' —
2o S0 1o T d=4.5
i3 E [ 7
o » r R .
_ < i
05 e - -0.2 p
r -
_ j
o B 178, N
R RN R P
Q25 030 035 040 045 0.50
d: (p)

Fig 2.6 - Contours of Im versus Re(p) for the direct rays
shown in Figure 2.5. The branch cuts run along the Re(p)

coordinate, starting at 1/8, and 1/8,, respectively. The
parameter time is marked along each contour.

where the index (1) refers to the Yayer parameters and (2) to the bottom
halfspace.

The coefficients are:

312(9) = (yyn - uznz)/(u1n1_+ uyny)
and
Ty, (P) = (2u2n2)l(u1n1 + uyn,)

where 2 - 0.8 2
u1 - 91.1 * “'2 92 pd
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5;_ Each ray in the solution must be evaluated along 1ts own contour
S19

%ﬁ which 1s determined by inverting these polynomial equations,

P(th)swhere t fs positive real and {ncreasing from 0 to =. The contours
used to compute the direct rays, (t;), for the responses in Figure 2.5

are shown {n Figure 2.6. The parameter (t) fs, also, plotted along |
these contours and 1t {s easy to see that abrupt increases in Im{dp/dt) |
Jead to arrivals in Figure 2.5.

Note that Im(dp/dt) always starts with the square-root

g
XA

“l‘- a B %

singularity. This singularity yields the geometric ray arrival. For

large source depths, the contour is near vertical and the synthetic

R -

waveform closely resembles the geometric ray response. The first motion

. 4
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approximatifon 1s actually equivalent to the saddle point approximation

i which assumes that the contour goes straight up to (=). Thus, the first

‘A .D -
J
P

wotion approximation {s useful for telesefsmic studies. An example

PR

“¢ application of this technique of earthquake modeling {s given in
Figure 2.7. The observed displacement is from a simple str;ke-s1ip
earthquake occurring fn the Imperial Valley, California. The only
unknown parameters in this particular situation were the depth and slip
history, D(t). After a diligent search, the source depth of 7 km and 2
D(t) specified by triangular pulse with duration 1.5 sec was determined
‘3: (see Heaton and Helmberger 1978). Similar studies have been conducted
= by Heaton and Helmberger (1977) and Helmberger and Malone (1975). A

rather common observation {n modeling multi-bounce phases §s that they

P &

tend to change their character relatively rapidly. For fnstance, many
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times the first few bounces will appear nearly fdentical at neighboring
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Fig 2.7 - Comparison of a synthetic with a strong
motion recording, IVC, of an earthquake occurring
at Brawley, California, in November 1976. The
model parameters expressing the known structure
are given at the top of the figure with the source
at a depth of 6.9 km. The three most important
rays are indicated schematically.
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statfons as predicted for flat layers. However, the next bounce will
suddenly be missing or %too large at these same statfons. Another common
feature is a sudden change {n frequency content of the multiples. Such
effects could be caused by lateral variation 1n the low-velocity
wavegufde near the surface. A simulatfon of the effects of a simple

dipping fnterface {s displayed fn Figure 2.8 (see Hong and Helmberger

PN 4

1977). 1In this particular case, the rays can go beyond critical angle

after bouncing and thus, produce high frequency reflections. Some
progress on treating smoothly varying 3-dimensfonal structure is

presented by Hong and Helmberger (1977).

LRSS N

- d) Full Cagnfard Solution

The high frequency solutions given by (2.31) have many advantages

in model studies as just discussed. However, for small values of (spr),

RS - U

L]
&

one must use the full solution by applying the transformation given in

)'J.‘.If"l'-

expressfon (2.29). The displacements are obtained by substituting
expressfons (2.25) into (2.24) and performing the Cagniard-de Hoop

technique. The results are complicated because of the near-field terms.

Ty . s T 3 . " A

The tangential motfons become:
M
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Fig 2.9 - Comparison of the various components of
motion for a strike-slip orientation at A = 16 lm
for a hole space. The top four rows contain the
asymptotic summation after 1,2,4, and 12 items. The
full solution is displayed on the bottom.

where

‘T -p, RPT -1, RST - -"Blp for whole space

and
ényng | ) -2ng (ng - p?)

RT-ZP' RPT._——

B2R(p) % P g°Rep)

for a recefver on the free surface. The dip-siip result §s similar with

n = 1 and where the factor n parentheses 1s reduced by two.
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An evaluation of this expression for a whole space is given in
figure 2.9, where the near-field contributions are apparent. The
asymptotic solution is included for comparison. These computations are
expensive and their applications to data complicated, see for instance
Helmberger and Harkrider (1978) and Heaton and Helmberger (1979). Thus,
we will 1imit our discussfon to the more useful approximations where

near-field terms can be neglected.

3. Modeling at Telesefsmic Distances

Synthetic sefsmograms can be constructed for comparison with
teleseismic observations by putting together the varfous sub-operatfons
discussed in the previous sections. We will be primarily interested in
shallow events where independent information {s many times available.
Thus, we must correct for the free surface. The simplest correction for
this situation fs to assume {deal elastic interactfon and §nclude the
reflected phases, namely pP, and sP (see Figure 3.1). Using the
expressfons (2.24) and (2.32) and the concepts of GRT (see Appendix A)

Fig 3.1 - Schematic representation

of the phases P,pP, and sP.
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we can approximate the vertical response at the receiver,
3

M
[-]
VT T, ; [cj (pg)8(t) +Cy(p IR, (p )8( -4t ))
(3.1)
n, | R|pz| (B,)
+ SV, (p,) “_B Rp(P8(t-2t))| A, —5—
where

“1 = 2Hn°. time lag of pP
at, = H(n, + “B)' time lag of sP
H = source depth

l.)(t) = §(t), delta function

The expressfon in brackets can be represented by three spikes with
varfous strengths, depending on the source orientation, referred to as
stick diagrams, see Figure 3.2. The diagram given in the first column
displays this information, along with the timing of the thre\e
{nteracting phases, P, pP, and sP, for the three fundamental faults.
Crustal layering 1s easily incorporated by applying ray summations as
discussed in the previous section. We assume t% = 1 and that the (1/R)
geometric spreading term {n the homogeneous case can be replaced by the
effective "1/R" from Figure 3.3. The synthetics in Figure 3.2 were
produced by performing the varfous convolutions assuming different
source durations.

The waveshapes are serfously distorted by the interferences with
each fault orientation having 1ts own characteristics. Thus, we can

compare these synthetics with observed waveshapes such as those given in
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Figures 3.4, 3.5 and 3.6 to determine the fault parameters; namely,
strike, dip, s1fp vector, fault depth, moment, and &t's (source time
history). Note that for observations near nodes such as BOG and BHP
(Figure 3.4) one finds difficulty in determining the polarity of the
direct P since it {s nearly zero. In cases where & ¢ 90° we expect sP
to stil1l contribute as at BOG since the dip-s1{ip component {s strong.
Note the strong differences i1n ampl{tudes displayed in Figure 3.2 which
are caused by the position of the radiation loops.

Considerable ringing occurs for those events situated {n some
basfns and in oceanic environments (see Figure 3.6 and Langston and
Blum, 1977, for examples of multi-pathing or situations where many rays
are involved in generating the response).

Synthetics for normal and thrust faults are not very interesting

since they are nearly {dentical at all azimuths. As probably suspected,

Fig 3.3 - Graph ot the effective
= 1/R decay in a Jeffreys-Bullen
spherical earth. :
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synthetic (bottom) long period P
waveforms at 14 WWSS stations.

The P-first motion plot is rep-
resented by the equal area
stereographic projection of the
lower half of the focal sphere.
Black dots indicate compression
(upward breaking P) and open circles
indicate dilatation (downward
breaking P). The heavy solid lines
denote the nodal planes used in
determining the fault orientation,

8 (strike), &(dip), r(sVip direction).
Modified after Burdick and Mellman
(1976).

Fig 3.4 - Observed (top) and Borrego Min. .\/\\

Fig 3.5 - Focal mechanism
plot showing the P-first ALE

motions for the Oroville :J\;g} ST
earthquake, August 1, 1975.

The observed P waveforms
are given on the top and
synthetic results on the SHK
bottom. Modified after :A{,”.:
Langston and Butler (1976).
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Fig 3.6 - Focal mechanism plot showing the P-first motions for the
Bermuda earthquake, March 24, 1978, Observed (upper) and synthetic
(Tower) P wave traces from the vertical long-period WWSSN seismograms
for stations shown in Figure 1. Note an initial simple event
followed by more complicated water reverberations (After Stewart

and Helmberger, 1981g

this uniformity {n waveshape leads to a lack of resolution {n fault

orientation. We requfre samples of the energy release at other

quadrants, in particular at regional distances. At these distances the

earth's mantle structure produces more complicated responses and the

1/R 8(t-tg) correction 1s no longer appropriate.

4. Modeling Regfonal Body-waves

The regional phases can be subdivided into two groups, those less
than and those beyond about 12°, At the smaller ranges the response is
controlled largely by the crustal waveguide and at larger ranges by the
upper-mantle discontinuities, see Helmberger and Engen (1980).
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! a) Crustal waveguide

We begin by discussing the effects of the crustal waveguide on the

{ P-waves, actually all the energy that travels faster than the S-waves. This
-:::_. portion of the seismogram is commonly referred to as Pn' PL, and PM. We

‘ assume a point shear dislocation, as before, and that the earth can be
treated by a single layer (crust) over a half-space (mantie), see Table 1.

Both of these assumptions are obvious oversimplifications but as we

will see, worth consideration as viable models at long periods. The
vertical displacement, assuming the high-frequency solution, becomes

N
s
Y
s . o
(6.1 w(r,0,6,t) T, Ty [D(t) * Z (9,1.6)!3(1:)]
i 3=1
.'.’;«.: l
s where
".
254 @2  w @ =/aF L. z m (2 ¢, R, ) SB)
"}'& . 3 . T o Ny 3 Z i*F7 de
Ppr."
:-:-.' b | 1 /- N

J - = dp

‘ + 2/t - [',t_ *i; Im (_% SVJ(P)RNZ(P)ni(P)a?)]

ax i=
o where RNZ(p) indicates the appropriate receiver function for either
-
:2:'_’. P(N=P) or S(N=S) waves arriving at the station, respectively. The radial
o displacements, Q;, are obtained by replacing Rp; and Rpp with Rg, and Rep,
.,, see Appendix A for definitions of these receiver functions. The
:,'E:" summation is over contributing rays where ni(p) defines the product
s
'f;-f. of all the reflection coefficients encountered along the ray path from
the source to the receiver, similar to the SH-case considered earlier.
N
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-':h:‘

\x‘ Constructing the solutfon by summing the rays as described by (4.2) {s
.‘j‘: tedious fn that many rays are required to produce reliable synthetics.
(" To ensure stability, ray files containing {ncreasing numbers of

E\ multiples are computed sequentially where the output can be monitored
1' per multiple. An example calculation is displayed in Figure 4.1, Since
\::E:;

i

NN STRIKE-SLIP

o

Ny R Roy Summation

:is

3 &S _

-] (2)

=30sec—
P, S
(12)

\/V\d
W"""\/ J\/WM

y ‘.- "- "; g

e
+J OISR

(3072)
Total (4094)

¢ { ""'-"- »
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DRSS

Fig 4.1 - Vertical components of motion as a function
of ray summation assuming a trapezoidal time function
described by 0.5, 0.5, 0.5, for pure strike-slip and
dip-slip orientations at 4 = 1000 k.
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the strengths and polarfties of the varfous rays are strongly {nfluenced
by the vertical radfatfon patterns, Cj(p) and svj(p). we have fncluded
these patterns above each column. Note that due to our Timited time
window we do not include the direct S pulse. The second pulse arriving
in the direct ray response is actually a diffracted arrival, essentfally
the pulse that travels to the surfaces as an S-wave and along the
surface as a P-head wave. The first set of multi-bounce rays produce
head waves along the top of the mantle. There are 12 rays in this set,

namely
22 + 23 =12

considering the varfous possible mode changes. The responses in the
bottom row were generated by summing all (4,094) rays as a check against
8 much smaller ray set which takes advantage of the kinematic and dynamic
redundancies. For fnstance, only 304 rays are needed to compute the
response for the fifth bounce since most of the rays fn the complete set
have the same times and amplftudes (see Hron and Kanasewich i971 or
Helmberger 1968 for details).

Another strategy for understanding these motfons §s to split these
ray contributions into those'starting upward as opposed to downward (see

Figure 4.2). Changing the source depth shifts the upgoing trace
relative to the downgoing trace producing a dramatic effect on the
dip-s1ip case as displayed in Figure 4.3. In fact, a good approximate
sefsmogram for h = 4 and 16 can be obtained by simply shifting the h = 8
traces without recomputing the rays. Part{al der{vatives with respect
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Fig 4.2 - Radial components of motion at A = 1000 km in terms
of upgoing, downgoing, and summed for trapezoidal time
history (0.5, 0.5, 0.5 sec).
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Fig 4.3 - Motions of all three types of faults at A = 1000 km
as a function of source depth. The numbers above each trace
indicate the zero to peak amplitude in centimeters assuming
Mo= 4mp, X 1020 dyne-cm and trapezoidal time history

(8.5, 0%, 0.5 sec).
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to changes in velocities or changes in the wavegufde can be approximated

by stretching or compressing Individual ray responses (see Wallace and
Helmberger 1982).

For the purpose of studying source mechanisms we can apparently do
reasonably well by assuming that common shallow earthquakes occur at a
depth of 8 km. Profiles of responses for a dislocation located at this
depth are presented in Figure 4.4. Preliminary comparisons of

STRIKE-SLIP DIP-SLIP 45° DIP-SLIP

Fig 4.4 - Profiles of the vertical displacements for the three
fundamental faults. The numbers above each trace indicate the
zero to peak amplitude in centimeters assuming M, = 4np, x 1020
dyne-cm and trapezoidal time history (0.5, 0.5, 8.5 sec?. This

time history was convolved with the delta function response to
reduce the high-frequency spikes created by the post-critical
reflections so that the longer periods become more apparent
(After Wallace et al., 1981a).
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synthetfcs generated from these responses (see Wallace et al., 1981),

a4

indicate that these results are useful on a global scale {f the high
frequencies are removed. Thus, we will filter these responses and the

corresponding observations by convolving with a triangle which has a

ST |

2 sec rise and fall. Convolving these filtered Green's functfons with a
trapezoid source with 1 sec intervals followed by the Tong-period WWSSN
{nstrumental response yields the synthetics given in Figure 4.5. This

TP | )

time history 1s expected for events in the 5 to 6 magnitude class, the

size commonly recorded by the network. We propose to model shallow
earthquakes at these ranges by simply forming a 1i{near combination of
these three fundamental synthetics. The relative strengths of each
column §s used to fix the fault orfentatfon, namely the strike, dip and
slip vector. Some example comparisons of observations and corresponding

synthetics are displayed in Figures 4.6, 4.7 and 4.8. These results

Fig 4.5 - Theoretical displace- Z2SS Z2DS 7245
ment profiles for the vertical

component. The Green's functions 45 45

were computed from the model 4,

presented in Table 1 and have 54
been convolved with a source :

time function represented by a
trapezoid (ty=1, tz=1, t3=1),

a triangular filter (2 second

rise and fall), and a WWSSN
long-period instrument. '\f'\/\/ "-Z‘WJW"V\ ZZW\




60
Truckee earthquake
LON 15 ggg 29
T4° Az:43°
Azs35° 21 imin Wls
54
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56° Az:80° a6
A2:336°
33
GOL Ll
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Az=130° Az:i08°
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Fig 4.6 - The vertical P_, waveforms of the 1966 Truckee earthquake.
9£nter. The data is the top trace at each

The star denotes the epi
station and the trace below is the synthetic

(on the basis of Mo~ -8 x 10

fit.

The strike-slip
mechanism has two nodal planes which project through TUC and BOZ.
To the right of each trace 1§5the observed or

gredicted amplitude
dyne-cm) in 10 .




Fig 4.7 - Filtered data and
synthetics from the Oroville

earthquake. At all the
stations except GOL both
the vertical (the first
trace pair) and radial
components are shown.
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were found by applying a least squares waveform {nversfon technique.
The method involves an fterative scheme which makes use of an error
function determined by the cross-correlation of the observed seismogram
and a synthetic. Since only three parameters are fnvolved, the scheme
proves very effective. The moments are determined by simply comparing
the amplitudes of the data with the synthetic and taking the average
value. In general, the {nversion y{elds results that are in good
agreement with the 1{terature. We will briefly discuss the Truckee
event as an example.

The Truckee earthquake was a strike-slip event at 10 km depth
which produced excellent regional records but very few teleseismic body
wave records as typical of moderate sfze strike-s1ip events. The
Truckee earthquake (my « 5.7) has been studfed by several authors (Tsaf
and Akf, 1970, and Burdick, 1977) making 1t a good test case. Tsai and
Ak{ (1970), from first motfon studies and modeling of the surface waves,
determined this event to be pure strike-s1{p on a fault plane striking
N44°E and dipping 80°SE. The surface wave moment was deter;nined to be
0.83 x 1025 dyne-cm. Figure 4.6shows the location of the epicenter,
recording stations and filtered data for Truckee. Also shown are the
synthetics determined from the {nversion results. Note that BOZ and TUC
are very nearly nodal. The {nversion yields a mechanism which {s very
similar to Tsat and Aki’'s (1970); a strike of N83%E, 2 dip of 76°SE and
a rake of -11% The only significant difference fs the slight dip-siip
component in our solution, which is also acceptable on the basis of the
first motion data. The moment determined from the P, waveforms is 0.87
xlozs dyne-cm, which {s in agreement with Tsai and Ak{ (1970).
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[ ' The results for the Oroville earthquake are particularly

;$§ interesting fn that the observations are nearly all positive as opposed
¢

f(: to those observed teleseismically, see Figure 3.5. We will discuss this

event later after fncluding the waveform observations {n the 12° to 30°

,:;' range.

&

& b) Upper-mantle responses

; At distances larger than about 12o the mantle "P" wave begins to

%\5 emerge. This feature {s displayed in Figure 4.9. Near 1000 km the

'5? beginning portion of the sei{smogram {s dominated by Pn, that s, a P

il head wave traveling along the top of the mantle as a2 head wave. Since
this earthquake is nearly a pure strike-slip event we can interpret the

v first upswing IS.P“ followed by an and.sPn. Beyond about 12° this

éjT; combination of arrivals becomes much sharper since they are no longer

2; head waves. Short-period waves from explosions fired at the Nevada Test

‘{\ S{te increase {n ampl{tude by nearly two orders of magnitude near this

l:j range, for example see Helmberger (1973). These features can be

ésg generally explained by the tectonic model presented in Figure 4.10.

X This smooth model §s broken {nto homogeneous layers suitable for the

o applications of GRT. Essentially, the generalized rays returning from

%; the interfaces in the mantle are added to the rays discussed earlfer

A (see Figure 4.4). Synthetics appropriate for a strike-s1ip event are

i; presented in Figure 4.11. The recording at the nearest ranges are

Eg essentially the same as displayed fn Figure 4.5. The pattern of (P, pP

f§} and sP) going from head waves to diving waves {s quite apparent.

7i§ Comparing these results with Figure 4.9 1t would appear that the 11d

<
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Fig 4.9 - Profile of strike-slip observations from
P .y to P. Recordings at DUG, ALQ, and LUB ar¢ from
tﬂ‘g 22 December 1964 event of northern Baja Caij-
fornia; the others are of the Truckee event
discussed earlier.
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Fig 4.11 - (a) Strike-s1ip excitation going
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(b) Dip-slip excitation going from Pne domination
to P and long-period synthetics.
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thickness (the high-velocity layers between the crust and the
Tow-velocity zone) may be too thin fn the T7 model. Actually, the
crossover distance between P, to P shows considerable lateral variation.
For instance, short-period Pa in shield regions are observed to much
larger distances than {n other regfons. However, since earthquakes
rarely occur in shield regfions, we will restrict our discussfon to model
(T?7) which appears to be quite useful {n simulating earthquake

observations {n active fegions. see for example Burdick (1980).
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i:,,. Nevertheless, we propose omitting records at ranges 12%o0 14° as being

o too regfonal or structurally dependent to be useful in source modeling f
:: in most situations.

J: The response of the earth models at ranges beyond 15° can be J
- obtained by slmp1y'summdng primary rays. That {s ,

. 1/2
- .l—' A _1. “
(4.3) M(t) = V27r £ (sinA) [.’E * J(t)] a
where E
a - i

- Yp_ (8

- Yo (A (@) yan)
j-z 1 j {
and
n = R
2 12

1 =T R T , etc.
3 12 23 21

~

The term “primary” refers to rays that undergo one refiection only. The

(a/sina) factor is a correction for spherical spreading, see Gilbert and

Helmberger (1972). ' i
Near 30°. M(t) approximates a step with amplitude predicted by the |

curve in Figure 3.3. Actually, the amplitudes in Figure 3.3 were generated

using expression (4.3) assuming the JB model. Similar results are obtained

from the geometric formula, Bullen (1965), p. 126:

. 1 v tan 1° 1 427 1/2
(6.4) A [¥ ('t:) cos 1 \sind/ da<
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where T {s the travel time
2 is the epicentral distance {n degrees
10 is the angle of incidence
Yo is the velocity at the surface
o is the radius of the earth
Because the ray summation has omitted multiples, 1t appears
necessary to document these responses by comparison with other methods.
This was done recently by Burdick and Orcutt (1978) with a comparison

of GRT and reflectivity results given in Figure 4.12. These same

Generalized Ray vs. Reflectivity EOM Z 4-202°
Results for Model T7
a=is° 8s16° N AsIT® ] A8 Ae 190 J\/ 4&—
”R-n.os R:099 RR+106 [JRs103 [R:099
SHA Z As238°
I I, A ﬂ%
ATL Z A=265%°

8s200 | as2r | 8e220 [asz>  [ae2ee
Rei00 jJRsla f Rl |R099 |Rei0O -‘L JV
W
ABM Z 8e2T.1°

4=2%° 4+26° 427" { A=20° 4/ U
R=097 [l R=100 R=0.83 | R+0.94

— Gereraired BLA Z A:29.4°
Roy
I ——Reflectivity Jﬂ/ -L_
J lr'" 50 =

Fig 4.12 - (a) The slightly smoothed delta function responses
from a reflectivity calculation (bottom) are compared to those
from a generalized ray (top) for model T7.  (b) First column
contains the predicted waveshape due to the source only;
second column 1s the delta function response of the model T7;
third column is the convolution of the first two columns.

The observed waveforms from the Borrego Mountain earthquake
are on the top for comparison.
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responses were generated by "Full Wave Theory” (see Cormier and Choy,

~ 1981), with similar waveforms.
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The vertical response for a dislocation source can be generated

from M(t) by assuming that the vertical radiation functions CJ(Po) etc.,
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Similar approximations can be applied to generated pP, sP, and crustal
sultiples. With this approximation, the procedure becomes identical to
the teleseismic expressidﬁ (3.1 ) where the factor (1/R) 1s replaced
with a convolutfon of M(t) followed by a derivative. Synthetics
appropriate for the three fundamental faults are displayed in Figure
4.13. A synthetic sefsmogram appropriate for any arbitrary orientation

can then be formed by taking a Vinear combination of these three as

discussed earlfer.
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We can change the order of operations and generate the synthetic

:
seismograms as 1f the M(t) were a delta function as under the 2
telesefsmic assumption. The first column of Figure 4.12b corresponds to 3
this order of operations. Convolving with the M(t) produces the proper é

synthetic as given on the right of Figure 4.12b. The latter order of

operations 1s generally used for studying upper-mantle structure since

M(t) 1s isolated from the other operations.
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Fig 4.13 - Upper-mantle synthetics without and with instrument for the three
fundamental orientations assuming a source depth of 8 km, t*=1, and §t; = &ty = &ty=]
for the source time history.
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5. Discussion
In this review, we have presented a procedure for generating
synthetic waveforms for body phases. For convenience, we divided the
epicentral distances Into teleseismic, regfonal, and local. At
teleseismic distances, we showed that long perfod body phases from
shallow earthquakes are coherent at nefghboring statfons and that the

observed waveform could be decomposed {n a manner that allows

determination of faulting parameters. It appears that many events in

Borrego Mountain Eorthquake (SP)
w ol ol e
m
-\ﬂJH"’“\ﬂ’ K16
; uounnh hhﬂ r
m ""m
""“JU\NUH‘ GO\ \X WE
K00 \
N —M/\MM
H o ;-Q;\v‘“—*‘ TWWM
ﬁﬂhm MAT ﬂ“ : \\~
X
e

~Hhir | \-=
b ~ e

Fig 5.1 - Short-period P waveforms recorded at WWSSN stations. Note
the coherence of the first several seconds of tie waveforms from

stations at similar azimuths. The star denotes the location of the
earthquake (After Ebel and Helmberger, 1982).
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the magnitude class 5.5 to 6.5 can be easily modeled at Yong perfods by
assuming point sources. This result should not be surprising since the
signal wavelengths are Tong compared to the fault dimensfons. On the
other hand, the corresponding comparison between short period records at
neighboring statfons 1s much less coherent and complicated, see for
example figure 5.1. Some success at explaining these records has been
presented recently by Ebel and Helmberger (1982) by {introducing complex
faulting.

To model shorter periods requires that we generalize our point
source procedures to treat finite faults as distributed point sources,
see for example Langston (1978) and Heaton (1982). Following the Jatter
technique we simply simulate rupturing on a fault plane by summing point
sources with the proper timing, see figure 5.2. The procedure 1s made
somewhat complicated by the presence of the free surface which requires
summing pP, etc. Thus, teleseismic signals can show considerable
variation with azimuth. Note that *he long period records prove quite
fnsensitive to the rupture properties {n this simple case compared with
the short peirfods. Conceptionally, we should be able to determine the
time structure of the rupture process by simply matching short perfod
waveform patterns and, {ndeed, this subject {s being pursued vigorously.
Unfortunately, at these perfods the many fdealistic assumptions
{nvolving the homogeneity of the mantle, simple flat layering near the
source and recefvers, planar fault planes, to name a few, begin to break
down. Thus, the pattern recognition {s not so obvious.

A simpler approach 1s to suppose that the rupture process can be
simulated with some small number of point sources where each source has

{ts particular time history. By modeling the long and short periods

N
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Fig 5.2 - Comparison of the short-period and long-period synthetics
at the teleseismic stations for various fault models. The numbers
are the amglitudes in micrometers calculated for the seismic moment
of .5 x 102“ dyne-cm. The top row corresponds to a particular
distribution of faulting appropriate for the Coyote earthquake
where the dislocation is largest at the center and tapers down at
the edges. The U1, U2, U3, and U4 models show uniform slip
histories but with different rupture speeds (After Liu and
Helmberger, 1982).

simultaneously with these few parameters, we can look for sub-structure.
Such a procedure was tried recently by Wallace et al (1981b) on the Santa
Barbara earthquake of 1978, see figure 5.3.These results {ndicate that
on a smaller scale most earthquakes are indeed complex as suggested by

Kanamor{ and Stewart (1978). The sharp jumps indicated in the time
history of figure 5.3 are obvfously important with respect to




(Q) Simwitaneous Time Function

Simulioneous Short-/Long Period Mode!

(b)

Fig 5.3 - Model1ing experfence obtained from studying the near- and far-
field records of the 1978 Santa Barbara earthquake. a) displays the

far-field time history for an effective point source; b) displays the fit
of the long-period synthetics and data; c) displays the short period fit.
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Fig 5.4 - Comparison of synthetics with waveform data at
regionaﬂ distances where the preferred model produces a

(e= 48°, A = 0%, and & = 79°)(After Yao et al., 1982).

75

Aadeg b d

ol Lk &k £ A

P T

)l S




......

d
O

» .v.
‘. L]
TRV A

- AL N

OROVILLE 8/1/75

]
2*: " Regional Upper Mantle A>30°
3 P:0 Mg:1.4x10%° 13 Figsl7x102>  1":10 WMgr1.7x10%°
s MSO YKC AAM MAT SJG
e 85 23 3 7850 .
2 Mgz 2.5, ar3 19 305° Rig
TUC SES OxF NNA | BLA
1Le 3 -y g6 32
iy LI 28 13 25
PAS FCC SHA ARE WES
3 & 12 3 :
LY 12 3 2 i
COR FFC - DAL LPB
. 200 o) .
o 1 23 :?’
LON LHC JeT BHP .
. 23% Hoe P
Ll 023 s 1ge
L7 i3

Fig 5.5 - Comparison of synthgtics withowaveform data at all ranges
with preferred model (8 = 215°, A = -65°, and § = 48°). Inversion
results; with the 5 P,y records exclusively are: (o = 195°,

A = -72°, and & = 46°), 10 upper-mantle ranges exclusively are:

(o = 197°, A = -63°, and & = 58°), 8 teleseismic waveforms exclusively
are: (o = 221°, A = -82°, and § = 44°) (After Yao et al., 1982).
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understanding the faulting mechanism, but their existence {s
particularly significant in estimating earthquake hazards. That {s, the
high frequency strong motions appear to be more strongly controlled by
the jumps in the time history than by the overall duratfon (see Wallace
et al., 1981b; Ebel and Helmberger, 1982).

. At ranges less than about 30°. we found that the body wave
arrivals become mult{-valued and some care needs to be taken to remove
propagational features from source phenomenom. Some progress in
achieving this separation can be seen In figures 5.4 and 5.5 where we
show that consistent estimates of the source orientation can be obtained
at nearly any range. Note that there are no teleseismic waveforms for
the Truckee event compared with the Oroville event, even though they are
roughly the same strength. The reason {s due to the difference in
vertical radiation pattern as discussed earlier (see figure 3.2). How

successful this analysis will be for other regions is not known but
fnitial results Yook promising.
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Appendix A. Generalized Ray Theory
The method of generalized ray theory allows one to construct
‘ the solutfon of a sefsmic boundary value problem by inspectfon. The
2 method was first {ntroduced to the seismic community by Spencer (1960).
The fdea can be easily understood by working through a simple example,
namely the sandwiched fluid layer problem (see figure Al). The solution
'_ Source Receiver
2 Fig A ; Schenat'lsi: gf the * ©
geometric setup with a h
P sandwiched fluid layer. ¢ P
3 Th 2 p2e @y
. ¢30 Psv 03
L5
~.$ fn terms of potentials assuming the asymptotic form becomes
DY _
1 ,—— -l(pt+n [z-h|) -s(pm (z+h)
,_ ::: . (F.2.8) = wrs "- ! + A(ple dp
N "
\:.'!
x4 -8 (pr+n, (z+h))
o(r.z-)-J_ 1,,._@ (B "“’+c£‘""’]dp
TS
3: -8 (prén (241)) 451 2
9 0 (£,2,8) =V _2_ "- @ [D(p)e 31 dp
e n
1
: with the simple boundary conditfons on continuity of vertical stress and
o
= displacement across the interfaces, that {is .
\_,
l'i ’x‘x - ’z’z °z’z ps’s
z=0 z= -Th
g a & do. 4%
o - .—J-
o - "= = @
R
.
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S o
Ei?’ . These four equatfons are used to solve for the four unknowns A, 8, C,
v%‘.

Ef; . and D. Substituting the 3} into the boundary conditions, we obtain
)
=2Th sn
pe P2 Pt
<2Th sn
1+RR3 @ 2

where

R, - P2 M ~P1 "2 . amd R,y = p3 12 =02 n3
o2 M tP My Py My + 9y N3

Note that as Th+0

TPy M P My
P3 ™M 4+ 73

as expected.

A=

and Th L] = .
as - A Rlz

Next, we use the identity

- S
14X

and expand A to obtain a series solution

- (_1')1: x®

o+l n -1
A = Ryt 2; (1) Ry Ry (R, T)eTIEND
as
Rewriting 71 (r.z,s) as

‘1 = $airect * *reflected’ *a

We have

on(r.:.o) - 7 ;i_. Im f ,%-1 [ (_1)n+]123n712n—1 (1_‘122)] e—c(prﬁ-nl(zﬂ:)-zrhnzn) dp [
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Al
. with .
Y : - 2, n-1 L2y, 4y0H1
& f20) = Ry By o (-R, D
8,(P) = ny(z+h) + 2Thnn,
SN
.- Each value of (n) corresponds to a particular ray, for example

with n= 1 we obtain
2
£1() = RyuQA-RHICL) = ToRyTy
Il(P) - Zthnz + n‘ (z+h)

where the ddentity (I-Ruz) - 1‘121'21 was used,

2n.0 .
T2 - p—nLt—-“— and T, - 2n.0,
21+712 PoM 4 P3Ny

and, similarily, for n = 2 we obtain

£,(0) = TyoRp3RR3TH
lz(p) - lo'nmz + nl(z-!-h)-

N

Thus, the solution 1s built-up by adding up the varfous rays which can
be determined by fnspection.

We can check our solution and resulting code by generating the
step response of a sandwiched layer in the 1imit of small thickness and
compare the results with the solutfon with no layer, see figure A2.
Next, we examine the case where we go beyond critical angle so that the
recefver is in the geometric shadow and investigate tunneling. In this
case, the layer is too thin to support a head wave and, thus, the strong
interference effects introduced by the multiples. The solution can be
urit.tcn




‘] T (28 = V. 2 Im|[/2 o8 (Pr+n hin, Thin H) Ddp
p-‘! ‘ L =T n
;:j where h = distance from the layer to receiver

R = distance from the layer to source
Th = layer thickness

—Z'I'hnzl'
D= (T T3)/ A+ RypRoy e )

expanding D in a series yfelds the ray expansion and the multiples
displayed in figure A2. When the layer s too thin to support head

waves, we can obtain a useful spproximation by noting that

linit D = T

= 1
Th + 0 13

Thus, the only effect of the layer on the solution is in the contour

t = pthl(h-bn)«'-rhnz

Essentially, the contour moves off of the real p-axis at p = 1/u2

and, thus, no longer will there be 8 square-root singularity at the
direct arrival time but slightly smoothed depending on the thickness.
That §s, the hefght of the steps given in figure A2 corresponds to the
same amplitude of the steps with no layer. However, the rise-time of
these steps are no longer sharp. Thus, when these step responses are
used to generate synthetics, they filter out the high-frequencies or
short perfods. The effect {s nearly {dentical to the Q-operators
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TUNNELING EFFECT
N . RECEIVERS
i B #
’—'7 = — ’—’ Bz. z
n-0 ﬁ )e (4 1
. nel
s SOURCE “«
%Y STRIKE-SLIP DIP-SLIP
&

ne0
28x 107 _\/T,m-z

. ne4

—Jm
i Sm
_J=

T n-10

130 n-1 Jm

Fig A2 - Numerical step response of tunneling.
The source depth is 3 km with a 20 km source-

o recefver separation. Seismic parameters are
i‘a p1= 2.3 gn/cm3, 8) = 2.02 km/sec, and pp= 2.4
") gm/cm3, B8,= 2.31 km/sec, with a barrier
3 thickness of 10 meters. Relative peak

amplitudes are given for each case. n indicates
the number of rays included in the sum.
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discussed earlier.

The technique of constructing a solution by simply adding up
rays that have traversed the varfous layers with some specified mode of
propagation {s called the method of “Generalfzed Reflectfon and
Transmissfon Coefficients.® The coefficients for the solid/solid
interface are somewhat more complicated because of the possible mode
changes from P to SV, etc., but the procedure s basically the same.
The generalized reflection and transmission coefficients used in this
paper are given by Helmberger (1968).

Another concept comm6h1y used in GRT 1s that of receiver
functions. Note that we have been working with potentials throughout
these notes. Essentially, we start with & source potential and
propagate it to some Jocation by applying the proper product of T and R
coefficients. At the receiver we need to convert this potential into a
displacement or some measurable quantity. In a whole space, the
displacements can be obtained by simply performing the derivatives

defined by equatfon (2.%4). On a free surface the conversion from

potential to displacement becomes more complicated, see figure A3. The
proper way to satisfy the boundary conditions §s to take the limit as Z
goes to zero and sum the three arrivals since the travel paths coincide
and label the results “receiver functions.® The results for incoming

P-waves are:

Ry, * 2%‘“32 - 92)/82D(p)
Rpp = ~4ngngp/8%D(p)

vhere

D(p) = (ng2- p?) + 4pPn;n,
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Fig A3 - Schematic 25 j
showing the interaction
of the three arrivals
that form the receiver h Receiver
function. |
| - direct P
2 - reflected P
Source 3 -reflected SV

The second subscript indicates component, namely Z for vertical and R

for radial. The results for incoming SV-waves are:

R, = 4pn¢n5183 D(p)

Rgz = 2ng(ng>- p2)/ 82 D(p)

Table 1 9
Crustal Mode) -

PyEL SVEL Density Layer Thickness :

6.2 3.5 2.7 32.0 -j

8.2 4.5 3.4 :
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