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I. SUMARY

The research performed under the contract during the period

1 November 1981 through 30 April 1982 can be divided into two

main topics; coupling of surface waves in laterally inhomogeneous

source regions to teleseismic propagation paths, and a review of

the theory and application of synthetic seismograms.

In Section II, the dimensions of the cylindrical source

region and its linear gradient transition zone were varied in

order to determine their effect on the generation of teleseismic

Rayleigh waves. By comparing amplitudes from a source region

with sharp boundaries at the sides and bottom with those from a

region bounded by various combinations of sharp and transition

boundaries, it was determined that for these source dimensions

at the periods of interest, the more the body wave energy that

lea-ts the source region as downgoing waves, the larger the

fundamental mode Rayleigh wave.

In Section III, a review on the theory and application of

synthetic seismograms is presented. The emphasis is on body

phase wave forms at teleseismic, regional, and local epicentral

distances. At teleseismic distances, it was shown that long

period body phases from shallow earthquakes are coherent at

neighboring stations and that the observed waveform could be

decomposed in a manner that allows determination of faulting

parameters. By modeling both long and short period body waveforms

S.. . ....... .... - - . .
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? 4using distributed point sources it is found that most earthquakes

are indeed complex and that high frequency strong motions appear

to be more strongly controlled by the jumps in the source time

history than by the overall duration. At ranges less than 30,

body wave arrivals become multi-valued and some care needs to be

taken to remove propagation features from source phenomenon.
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I. SUMMARY

The research performed under the contract during the period

1 November 1981 through 30 April 1982 can be divided into two

main top c4A-coupling of surface waves in laterally inhomogeneous,J; .. * o-

source regions to teleseismic propagation paths and a review of
A //

the theory and application of synthetic seismograms.

In Section II, the-dimensions of the cylindrical source

region and its linear gradient transition zone were varied in

order to determine their effect on Wek generation of teleseismic

Rayleigh waves. By comparing amplitudes from a source region

with sharp boundaries at the sides and bottom with those from a

region bounded by various combinations of sharp and transition

boundaries, it was determined thatfor these source dimensions

at the periods of interest, the more the body wave energy that

leaves the source region as downgoing waves, the larger the

fundamental mode Rayleigh wave.

In Section III, a review on the theory and application of

synthetic seismograms e--preseted.---The, emphasis js on body

phase wave forms at teleseismic, regional, and local epicentral

distances. At teleseismic distances, it was shown that long

period body phases from shallow earthquakes are coherent at

neighboring stations and that the observed waveform could be

decomposed in a manner that allows determination of faulting

parameters. By modeling both long and short period body waveforms

4% .. . °. . °... .. . : .° . . . ... . ° .... .. . . . . .. . .: . .
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using distributed point sources it is found that most earthquakes

are indeed complex and that high frequency strong motions appear

to be more strongly controlled by the jumps in the source time

history than by the overall duration. 7 At ranges less than 30,

-. body wave arrivals become multi-valued and some care needs to be

taken to remove propagation features from source phenomenon.
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Representation Theorem Modeling of Rayleigh
Waves from Laterally Inhomogeneous Source Regions

by

Peter Glover and David C. Harkrider

INTRODUCTION.

During the past year, we have examined the effectiveness of two

mixed-path vurface wave algorithms previously used to couple various

source region models to a common propagation path. Rayleigh waves

generated by the two algorithms were compared to the more numerically

accurate Representation Theorem technique of modeling which couples

finite element code results of a source in a laterally inhomogeneous

region to the laterally homogeneous propagation path. The principal

advantage of the two approximations is that they are computationally

economic and require only trivial modifications to existing Rayleigh

wave codes. On the other hand, the RT technique is relatively expensive

depending on the frequencies or wavelengths desired from the finite

element/finite difference code modeling the transition zone. Since

I'N changing the source region structure and radius for each case of

interest would require further FE/FD code calculations, we had hoped

that at least one of the two mixed path techniques would be adequate for

- obtaining Green's functions for Rayleigh waves generated in complex

source regions.

In our semi-annual report for November, 1981 we showed that for the

case where the propagation medium was a uniform halfspace, the

*%1* * **--. .I'" ." , -"% '. " " " "* ". ". ' '. - , -' " , ' . '" -. . . . . - - " - '
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Conservation of Lateral Energy Flux (CLEF) method gave better agreement

with the RT result than the Unit Transmission Coefficient (UTC) method

when the source region was modeled by a cylinder of radius 1.8 km and

height 1.8 km embedded in the propagation medium. The material

properties of this cylinder where chosen to closely approximate those of

two typical NTS source media, Climax Stock granite and Yucca Flat tuff

(see Table 1). These results are reproduced in Figure 1. Figure 2

shows a similar calculation for the case where the propagation medium

was CIT109, a model frequently used to calculate surface wave

propagation in the western U.S. Together, these figures show that for

the Climax Stock model, where the source/receiver rigidity ratio is 0.6,

both approximations agree with the RT results. However, for the Yucca

Flat model, where the rigidity ratio is 0.1, the CLEF method is the

better approximation.

The results given in Figures I and 2 are for a sharp boundary. In

this report we examine the effects of gradational boundaries, keeping

essentially the same source region geometry and using a vertical

point-force source at a depth of 0.4 km. For the Yucca Flat tuff source

region model, we find that a gradational boundary on the bottom of the

cannister gives the largest Rayleigh waves. However, the maximum

peak-to-peak amplitude is 6.0 x 10**-21 cm compared to 3.5 x 10*-21 cm

for a similar force of 1 dyne in the laterally homogeneous model CITI09.

EFFECTS OF GRADATIONAL BOUNDARIES.

Figure 3a shows the RT and CLEF results for the sharp 1.8 x 1.8 km
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Yucca model plotted on a common scale. The maximum peak-to-peak

amplitude is 3.9 x 10**-21 cm for the CLEF method compared to 4.0 x

10 *-21 ca for the RT method. The associated periods are 15 and 12

seconds respectively. The CLEF approximation underestimates the

amplitudes at 25 second periods. At 3 to 5 second periods, the two

methods disagree in both amplitude and phase. Nevertheless, overall the

CLEF approximation is in good agreement with the RT result.

The underlying assumption of the CLEF method is that the horizontal

energy flux transported in the fundamental mode Rayleigh wave on the

left of the boundary is equal to that in the fundamental mode Rayleigh

wave on the right of the boundary. That is, there is no energy loss due

to mode conversions, or reflections. This is not true for the finite

element calculations of the forcing functions. ISES was deliberately

chosen to be in the propagation region in order to monitor the change in

wavefield between the source region and the the propagation medium. For

- the high impedance contrast Yucca model, the outgoing wavefield should

experience significant reflections and conversions on encountering the

sharp boundary of the cannister. Therefore, we would expect the CLEF

approximation to give an even closer agreement with a RT model

I1 incorporating an impedance gradient.

To investigate this effect, we introduced a series of stepwise

*increases in velocity and density across the 3 columns/rows of elements

forming the RES/bottom of the plug. The radius/height was also

increased to 2.0 km to accomodate this gradient. However, XSES was

maintained at r - 2.1 kin, z - 2.1 km through these runs. Figure 3b

t.,--. -.. .. ,- .- 2



6

shows the results for a "uniform" gradient across the RHS of the plug

compared to the CLEF result for the sharp 1.8 x 1.8 km plug. In this

case, the RT results have a peak-to-peak amplitude of 3.3 x 10**-21 cm,

compared to 3.9 x 10**-21 cm for the CLEF results. The minimum value in

the CLEF result is delayed by approximately 3 seconds with respect to

the RT result. However, the two methods give nearly the same result at

the longer periods. This is not due to the presence of the :ent

reducing the effective radius of the sharp boundary, as can be st from

Figure 3c. In fact, when we compare the effect of plug radiu , the

results using the RT method alone (Figure 4a), it is clear tha such

small perturbations have no measurable effect. Therefore, the presence

of the gradient must be diminishing the signal amplitudes by suppressing

reflections from the side of the plug. This is further demonstrated in

Figure 4c, where the RT result for the gradient model shows smaller

amplitudes at all frequencies than the RT result for the sharp boundary,

.' '-. and an 18 percent decrease in the maximum peak-to-peak value.

Using a plug of height 2.0 km and radius 1.8 km, we incorporated

the same velocity and density gradient across the bottom of the

cannister. Figure 4b shows the new result compared to the RT method for

the sharp plug. The gradient gives larger amplitudes at all but the

shortest periods and the peak-to-peak maximum is 6.0 x 10**21 cm or 50

percent larger than the sharp boundary. Moreover, there is little

- difference in phase between the two results.

We also computed the Rayleigh wave for a gradient on both the

.- bottom and the side of the plug. These results are shown in Figure 5.

-pJo

4, ' '." .'"." .'."" .""-"" '" • "' ,' ''." " •"- ."-" " " ," . "', , .&. ". ,"L - "~ - .-,-; ' "
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In this case, the peak-to-peak amplitude is 5.2 x 10**-21 cm, somewhat

smaller than that of the bottom only gradient, but still significantly

larger than for the sharp boundary. At other periods, the sharp vs

gradational results are in good agreement. Finally, Figures 5b and Sc

compare the totally surrounded plug with the previous cases. The

important thing to note is that the gradient across the bottom of the

plug has the largest effect on the peak-to-peak amplitude of the

computed Rayleigh wave signatures.

DISCUSSION.

The observation that the maximum amplitudes come from the source

region model with velocity gradient at depth can be explained as

follows. The effect of the sharp boundary on the sile of the cannister

is to reflect rays at non-normal angles of incidence so that they

eventually impinge on the bottom surface of the cannister. Here the

contributions due to the normal stresses are a factor of 2 larger than

those for the side. This implies that, for the periods of interest

here, the more body wave energy that leaves the source region as

downgoing waves, the larger the fundamental mode Rayleigh wave. The

gradient itself acts so as to minimize reflections from the bottom of

the cannister. The results from the gradient on both bottom and side

are consistent in that the peak amplitudes are somewhat less than the

case of the gradient across the bottom, but greater than those for the

sharp case. When the gradient occurs only on the side, the results are

smaller than for the sharp boundary, which is consistent. Moreover, the

. .. .. . .. . . . .
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results for this case most nearly match the CLEF results, although at

the distances involved the energy is being transported across the

impedance contrast as body waves and static deformations, rather than as

fundamental mode surface waves (see Harkrider, 1981 for a derivation of

the CLEF approximation).

So, although our results with these spatially limited source

regions clearly indicate that, when observed with a long-period

LRSM-type instrument, effects of lateral heterogeneity can be modeled to

first order using the CLEF approximation, we cannot offer a detailed

4 explanation as to why.

REFERENCE

Harkrider, D. G., Coupling near source phenomena into surface wave

generation; Identification of Seismic Sources - Earthquake or

Underground Explosion, ed. E. S. Husebye and S. Mykkeltveit, D.

Reidel Publishing Co., Boston, pp. 277-326, 1981.
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Table 1

Layer parameters for the Climax Stock and Yucca Flat models

a P

Yucca Flat Tuff 2.35 1.3 1.86 3.14

Climax Stock Granite 5.33 2.78 2.67 20.63

CIT109 (Upper 14 Im) 6.2 3.511 2.736 33.73

'o

ft..

ftv j,, -.. .' . -'.. . t.f -f... ft
° .
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FIGURE CAPTIONS.

Figure 1. Comparison of mixed path results at 1200 km; source medium

1.8 z 1.8 km right cylinder, sharp boundaries; propagation

medium uniform halfspace a - 6.2 km/sec, 0 - 3.5 km/sec, p -

2.7 gm/cc. Both approximations overestimate high

frequencies.

Figure 2. Similar calculations for layered propagation medium. UTC

result for Yucca Flat tuff still dominated by high

frequencies.

Figure 3. From top to bottom, RT results for a) sharp boundaries, b)

/ gradational boundary on side, c) sharp boundaries but

reduced radius, superimposed on CLEF result with maximum and

minimum amplitudes of 2.0 and -2.2 x 10**-21 cm.

Figure 4. RT results for a) source region radius 1.6 km, b) gradational

boundary across bottom, c) across side, superimposed on RT

result for sharp 1.8 z 1.8 km source region, peak-to-peak

%- .,amplitude 4.0 x 10**-21 cm.

Figure 5. RT results for a) sharp 1.8 x 1.8 km source region, b)

gradational boundary across side, c) across bottom, compared

to totally gradational case, peak-to-peak amplitude 5.2 x

10**-21 cm.

I 0
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YUCCA CIT109 (LP. LRSM)

a) I8m

:L8 km

- R.T.
1.41 CLEF

b) 1.8

!2.0

-i 20 sec
1.6

c ) 1.8

R=1200 km

Figure 3

,
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a) .1.8 km

1. 8 -- 0scm
I

I

U1. ,) 1.8I I
U........

ILB

R=1200 km
"""""Figure 4



"5 , ,15

538 km

) I.8km

1.4 1. ' - - - -t

'2.0

-*120 secl"'-

IA 2.0

-LE
b)1.1 . .A

2.08
I

*-%-Moe

-pc) IA4 2.0-

, e R 1200 km

Figure 5

- . . --- .. . .-- .. ., - -. -. - , •S , - - ". . - • . . ,



rrrr.,. ._. .,-. s-- -. ' . . . . .- . . -.. - . - ,. . . :. ,:..-. - -...-- .- . . . ... " •,.

I" "16

III
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1. Introduction

In the past decade, our understanding of earthquakes and earth

structure has increased significantly based on our improvedabilityt to-

Interpret seismograms. Numerous formalisms have been developed whereby

synthetic seismograms can be computed at positions on the earth for

comparisons with observed seismograms. The various processes that

affect the motion at some field point such as the seismic source, earth

model response, attenuation and recording equipment are all combined

Into the synthetic convolution operators. Since these effects can be

treated as linear operators to first order it becomes simple to test the

significance of changes in the synthetics caused by varying the

operators separately. By comparing the synthetic with observed

seismograms we can apply Iterative techniques to determine earth

structure or source model, or perhaps some properties of each depending

on the circumstances. Applications of this procedure to body waves have

proven quite effective In determining the source properties of shallow

earthquakes. We shall review these studies In some detail in this set

of notes.

There are four basic operators which are generally included In the

generation of synthetics. These represent the seismic instrumental

response, I(t), the attenuation operator, A(t), the source operator,

S(t), and a wave propagation operator or Green's function, (t). The

synthetic seismogram, SS(t), Is computed by the triple convolution

SS(t) - I(t) At) *(t) *S(t)

, ..
V.
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where the first of these is generally well known.

We will be primarily interested in events recorded by the World

Wide Seismic System Network (WWSSN). This global network of stations Is

displayed in Figure 1.1. Each station records three components of

motion, namely vertical, north-south, and east-west, on photographic

paper. Because the earth Is particularly noisy at about 4 sec, it is

convenient to record each component In two pass-bands, short period (SP)

and long period (LP). The gains or amplifications of (SP's) are

normally between 25 to 200 thousand while the (LP's) run at 750 to 3000.

The attenuation operator does not introduce any structure into the

waveforms in most problems of interest but only smooths the results.

The operator which Is most commonly used could be more properly written

A(t,t*) where t* I ds/Q where Q is the quality factor and the

Integration is performed along the path of the ray, see Carpenter (1967)

Aand Futterman (1962). Most recent estimates of t* are near 1 for

P-waves and 4 or larger for shear waves assuming shallow ev-nts. The

effects of the attenuation operator convolved with the Instrumental

responses are displayed in Figure 1.2. Note that for a t* of (4) the

short periods are greatly reduced. Thus, we should not expect to see

short-period shear waves from shallow sources which is generally true.

There is considerable evidence for a frequency dependent attenuation operator,

particularly at the high frequences (say 3 3 hz), see Minster (1978).

We will be primarily interested In the long-period seismograms and will

apply the A(t*et) for simplicity.

Calculating M(t) can be quite simple or complex depending on

circumstances and epicentral distances. At teleseismic distances, 300

4./~ * ( 6 e # . ' * q " , , " . j e , . . . . • , • " q " .q t q % e . % " . _ • " '
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Fig 1.2 - The first column displays A(tt*) I(t). SPi I t 3F

A(t~t*) as a function of t* assum-
ing 0.5, 1.0, 1.5, and 4, from ..37
top to bottom. The middle column
displays the convolution of
A(t,t* with the short period
instrumental response, and 0o.
similarly for the long period
on the right. The relative
amplitudes are indicated by the
numbers above each trace.

-- \.O..- 0.lxr i

.- '.:.2 .o1 20 Sec g,

.-

Regional 0Ipper ' tadl>
7"ruckes V/a/ Oo,;le #/,/s Orovilk //7S

CDR i.AD; MziI? PFC AI2A ,AzoL A;tE i73;Az 2 .JW

"' t: !Fig 1.3 -Example observations and synthetics at ranges where
., the earth appears 0simple^(> 30 ), slightly complicated (upper-
;- 'A mantle ranges, 30 v to 140), and quite complicated (less than 140).

Ob.s°. * 1' . .
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to 900, we can assume that 1(t) Is a delta function and the only

remaining complexity is due to surface reflections, see Figure 1.3.

From about 120 to 300 , the earth's upper-mantle triplications introduce

additional frequency dependent arrivals making 1(t) more interesting.

At smaller ranges, the crust plays a more Important role and the guided

waves following the P-wave prove quite useful. Methods for generating

1(t) abound and their descriptions are covered in great detail In any of

the recent textbooks. In this set of notes, we will apply generalized

ry theory, GRT, and the Cagniard-de Hoop formalism since the author is

the most familiar with this technique and it can be used effectively at

all ranges.

2. Source descriptions and generalized ray theory

The seismic radiation field produced by earthquakes can be

represented by several means. Following the stress relaxation approach,

one assumes the initirl stress and frictional conditions and performs

the proper dynamics using analytical or numerical techniques to obtain

.- the displacements, see for example adariaga (1976). Another

particularly useful approach is due to Haskell (1964), called the

shear-dislocation model. Following this approach one does not attempt

to understand the detailed mechanics Involved In the actual fault zone

but simply states that slip occurs on a specified surface, referred to

as a di sl ocation.

However, before getting into the substantial complexities Involved

In the shear dislocation formalism it appears useful to review-a much

simpler spherically symmetric source or an idealized point source
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explosion.

a) Synmetric Point Source

We assume a homogeneous fluid with cylindrical coordinates r and

z. see Figure 2.1. This choice of coordinates will prove advantageous

for studying a layered earth in later considerations. We will, also,

take this opportunity to develop some mathematical tools which will
hi.

prove useful. The wave equation In cylindrical coordinates with no

azimuthal dependence Is

r

h (a) Jm(p)(b

Source

Re erve r rAl-.- Re(p)

Fig 2.1 - Source-receiver geometry (a) and complex (p) plane (b)
with branch cut starting at (l/V) and running out along the real
(p) axis.

(2.1) d2*/dr 2 + 2/r d#/dr + d 2/dz2 - i/o2 d2*/dt 2 - 0

where (o) is the displacement potential and (a) the compressional

velocity. Taking the Laplace transform of (2.1) yields

(2.2) d27/dr2 + 1/r d;/dr + d2 /dz2 - 52/a 2 ; 0

where (s) is the Laplace transform variable. A solution of (2.2) which
Is easily demonstrated by substitution Is

S.

,(2.3) i(r',:,s) - .o(kjl)5 ±VZ

.9,
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where (k) is the horizontal wave number, v- (k s2/a2)1/2, and Jo

the zero order Bessel function. A more general expression Is

(2.4) *(~~)-f(e) J jo(kr)[A(k)e Jdk
0

where we take the positive square root of (N) and consider the solution

which converges for large z. The functions Alk) and ?s) are arbitrary

with respect to the operations in (2.2).

In the vicinity of the source the displacement potential must

satisfy the known behavior of a spherical wave which is

0 t RI/a

(2.5)
li/t f(t - R/*) t :PR/

Taking the Laplace transform of (2.5) yields

(2.6) To(R,s) - ,-(&/)R Is)

The question now is can we find a way to match this condition (2.6) with

the wave solution (2.4) in terms of *(r,z,s). This can be accomplished

by using a trick originated by Lamb (1904). The needed identity is

1,.. __
f ( -v zb dk

which is easily proven with the aid of the Fourier-Bessel theorem. This

S. equation is sometimes referred to as the Sommerfeld Integral

. .* - --
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representation. Thus, the solution In cylindrical coordinates for an

aribtrary time history. f(s). becomes

(kr) dk
(2.8) 0

Of course, the Inverse Laplace transform of (2.8) ust yield the (2.5)

description. We will produce this result by performing the so-called

Cagniard-de Hoop transformation, a technique that proves useful in the

layered earth model. We make a change of variable k s-isp which

transforms Bessel functions to modified Bessel functions, namely

(2.9) Jo(-,Lspr) - 1/v K (,pr) - 1/w K. (-spr)
0

The solution becomes, after Strick (1959).

41-+8

(2.10) *(":") " -1 - J %c(p) . - ..
-$'4"4

where vi. (1/2 p2)1/20

This expression can be further simplified by noting the symmetry

* across the real (p) axis (Schwarz principle of reflection) obtaining
C.°'

-~ .<) F -rjjz-bI p 2.(:,os) - f(s) ,) Im ! %(,pr) -n

Equation 2.11 can be solved exactly but there are some useful

.* 4
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approximations to discuss. Using the asymptotic expansion (9.7.2

Abramowitz and Stegun) we have

(w1/2 [ ,1 uI(-) ..

(2.12) K0(x) - eij.+ V 8x 2(84 ) + +

where V- 4n2. Keeping the first term only we obtain

2L 1L i f~ .(pr+wilz-ht)d

(2.13) 

oW2s

For simplicity suppose we assume that f(s) a 1/s or that the

original source time history is a step function. The delta function

response can be determined later by taking a time derivative and the

response for an arbitrary source by convolution. The type of integral

occurring In (2.13) occurs often in generalized ray theory and it

appears worthwhile to discuss a rather ingenious trick for obtaining its

* solution, see de Hoop (1960). From line source theory we have

(2.14) f(,:,s) , m J *-s(pr4'uIs hi)

0

Note that this integral looks much like the formal definition of the

* * Laplace transform, namely

- "-) J "et g(t)dt

0

This identification leads one to the following change of variable,

(1t - P + (1/o2 _ P2)% IzhI

Solving for p(t) by applying the quadratic formula we obtain

!-p

::.::) :. .: , ::.: ..... ,. .. : .. ... .:: .::: :..: :::::: :::: :: : : :': :: ..: : : ... , ::. .,..:..". .: : .. .. :. ...... ., , .,,N -- * ,-.: ::
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i°

p ( IR 2 )w - (t(2/2 / t2) I I-hi/R 2

(2.16) (t R /h)

n -I:-hI/R 2  2 + (R2/a2 t2) r/R2

aand

2 t 2 _ R2/2 2 ~u~
p -@r/R )t + i(=2 - 2/2)  -=_l/R2

(2.17) (t R/a)

- h [t/R2 _ s(,2 -2/ 2)  r/R2

Taking the derivative of (2.16) we obtain

r -22 i-btI
(2.18) d " + 1 ( 2  R Ii 2dt~~~t IT"t-6)

and, similarly, from (2.17)

(2.19) + (R2 t2 1 -

d R19 21

We no perform the integration In the wp* plane such that "t" will be

positive and real. Such a path is given in Figure 2.lb. The contour

(C) that runs, say along the imaginary axis slightly to right of the

origin, from (0) to (I- ) is deformed by analytic continuation to the

above contour r. The contribution from the arc at (-) is zero and there

are no enclosed poles. Thus,

2: (r.,,) - mf *-,(pr~riiz-bI

C
(2.20)

• -" ". . - . .4* . '. . - ' " , ..-. ;,.. ' "
4". , " .. "." , . . ' . ."' . " •""" ' 4 " " .,." . ' ' '. - " " . , , '"""
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, .st I Am d

and 0

H (t - R/Ca
n - t2 R 2

*a 
" 1 [ 2

where H(t) indicates the step function.

Returning to (2.13), with f(s) a 1/s. we obtain

1

(2.21) *(r.zt) - -'21r ; [i * (t)]

where

and we have used

The convolution operation Indicated In (2.21) can be written

f (t -TA J(r) dr

.J~. 0

which can be evaluated either analytically or numerically, depending on

the complexity of J(t). In this simple case, we can use the

first-motion approximation (Knopoff and Gilbert 1959) and obtain

( r) q (. 2 - Z2/cg2T' 11-r- i)

rr7- '2 1 -,"LR
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and

tf t- 1") 1'-R/)7 di - w(t - R/)

Thus, equation (2.21) reduces to

1*(r,z,t) - I (t - Rio)

as it must; see Strick (1959) for more details. This operation is

easily visualized by performting the convolution by graphical means, see

Figure 2.2. Note that one simply multiplies the two functions together

and sums from (0) to t). The answer remains zero until (t) reaches

(t a R/o) where the two square root singularities overlap and generate a

step.

( (t)

" " 
1 1" R - 1/ 2 '"

_4 .

t R/a T

Fig 2.2 - Schematic diagram explaining the convolution operation by
graphical means. We reverse the direction of the square-root operation
and perform the multiplication of the two functions for values of
r from (0) to t) and sum. The results are zero until the two
functions overlap.

".

°. .. "- .
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The solutions for more complicated models can be easily obtained

with this technique. For Instance, suppose we generate the step

response appropriate for the interface problem (see Figure 2.3). There

will be two generalized rays in the upper halfspace required to solve

the boundary conditions, see for instance Spencer (1960) or HeImberger

(1968). There will be a direct generalized ray which is identical to

the response Just discussed plus a generalized ray that describes the

response returning from the interface. The latter response can be

written

(2.22) *(r,z.t) - M [liI/* 3(t)]

where

t - ic)+ ( Z+ U)  
2 P 2 1/2

R(P) - (02%] - p1T'2 )/(p,2 T' + p 1 2 )

and (dp/dt) is the derivative along the r contour, namely

11 I(R2/o*2 -t2) 1 /2  t<Ro

I I t /dt
in /l(t2 - R2/a2) 1 / 2  t * l/M1

".- " - - - -.-. -"**.".- " *. "" " .... . ..-" "" " "". .--" . . . . . . . ..... . . . ." " 4:
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Source Receiver

~ I7a'sC 6.2. p, -2.?,
lsa 32

I2 p8 1-4

I0.4 X 10- 2

20 _.2
0.6

40

600.

~ 100

120

* 140

* 4 160

2002

.J 2t) Step-Response

Fig 2.3 - The responses of J(t) and 4(t) as a function of source-
receiver separation. Note that the graphical convolution operator
at the larger ranges has two parts: before t - R/a, the square-root
singularities are congruent and produce a log similarity at
t -R/;; the second part corresponds to a weighted step response
as in gure 2.2.

- o . .. . . .

A•*- o
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Where R - ((z 4 h)2 • r 2)1/2 which corresponds to the distance traveled

along a Snell's law reflected path.

If u2 3 %, there will be a critical angle and a head wave. In

this case 3(t) will start before t -R/a, since q2 becomes complex at

p = 1/2 and tc(p - 1/*2) becomes

t C + l--7- (z(+11/
a2

Evaluating (2.22) numerically, we obtain the step responses displayed In

Figure 2.3. Physically, this technique computes the response by summing

over all possible ray parameters (p) that interact with the boundary.

p. b) Shear dislocation (double-couple) source

In this section we will examine some relatively simple dislocation

models. Starting with Haskell's representation for shear faulting It is

relatively easy to devise the displacements for double couples in an

Infinite medium, see Harkrider (1976). The solution for a strike-slip

fault becomes

Fig 2.4 - Coordinate system for the
dislocation formulation where (e)
indicates the strike, (a) thedip 
of the hanging wall, and (A) the
motion of the hanging wall relative X
to the footwall.

.- • ... -- -.... . " .- .. . . , . .,
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-w 
.

V~r~z32) 1 i- sin 20

(2.23) r Br L0 8r]- A *k ~C32

~(~zw -K[ ~a ( 2A A) 2 sin 20
where W, V and Q are the displacements in the vertical, azimuthal and

radial coordinates. The parameters are

R R

A e7 e a
R R

I - *. a 'I 4

where R •distance between the source and receiver; aB c compressional

and shear velocities, and K a source strength. The spatial derivatives

are introduced because of the double-couple nature of the source, and

the A and 8 are simple point source representations as before. Using

the Sommrfeld Integral, (2.7), and performing the appropriate algebra

(see Heluberger 1974) we can express the displacements along the

vertical, tangential, and radial coordinates as:

13:2

* (2.24) IxI.i.... 2 a~
r 0 spr Ube- 3r

Dr ;p- 133 TB

-.-
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where z, r and 0 are the vertical, radial, polar angle coordinates

respectively. The P wave potential (f), the SY wave potential ()*and

the SH wave potential (x) are expressed by:

P-wave:

+0 ;C() P X(B Ujz-ij)K,(spr)dpA(8)X.6)
Twop I %

C

4vp v Ti

4wp 6

* C

4 SY-waves:

-+ r- -a i SV1(P) WT- S azb),srd-,9X6
sI fBT

C

+ To I. f SV2(p) jP-exp(-s11ijz-hI)K1 (mpr)dp-A2
I BI

+1+ Bm .41p) m* 1x9 z-hl )K,(spr)dpA3

C

S14-waves:

+C

no 2 
I+. f SH (P)L ex(-On It;-hjKupr)dpA

C

"o241+

(2.25)
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where
s a Laplace transform variable

p a ray parameter

v- (1/v2 - p2)1/2

h " depth of source

s compressional velocity

1 - shear velocity

p density

No - seismic moment

with the orientation constants given by:

Al(e.x,8) a sin 2e cos a sin 6 + 1/2 cos 2e sin x sin 26

A2(e,,a) a cos e cos x cos 6 - sine sin1 cos 28

A3(OA,6) a 1/2 sin A sin 26

A4(e,1,) = cos 28 cos X sin 6 - 1/2 sin 20 sin W sin 26

AS(S.1 ,6) a -sin 8 cos 1 cos 6 - cos 0 sin x cos 26

(2.26)

where

* * strike from the end of the fault plane

. - rake angle

6 * dip angle

The vertical radiation patterns, as will become apparent shortly,

are defined by

*6

". ', \''"'' ''",'-" m " " ", .', ."''"" ,". """, '""./ '..""" "." ","' " '-" .." '.. . ..... .. , .. . .. ". ., 1 "".,
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C, -_p 2  SVi -- cpl SH 1

(2.27) C2 - 2.pin Sv2 0 - SH2  - -. P

:C3 - (p2 - 2) Sv 3

+1 zhwhere £ - {- zch

The displacement field for any orientation of a double couple, see

Figure 2.4, is the sum of displacement fields of three particular

orientations of the double couple, corresponding to the strike-slip

0 0~ o
fault (A a 0 or 1800, 6 900), normal dip-slip fault (90 ° , 90 ), and

the dip-slip fault with a 45 dip (450, 900). see Burridge et aL,

(1964).

The Index (n) In the expression (2.27) corresponds to

(1) strike-slip. (2) dip-slip, and (3) 450 dip-slip.

The integrals expressed in (2.25) can be transformed back Into the

time domain by the application of the Cagniard-de Hoop technique, see

Gilbert and Helmberger (1972) and Harkrider and Helmberger (1977). For

example, the field function defined by

2 f M LK (spr) e "onv z - h l dp

(2.28) € C r

becomes

(2.29)

, . In(rzt) - I-p(T) dr
" at J (t-T)1/2 (t-T + 2pr) 1 /2  dT

0

.

!. " , .-" -,, ..". ,". •, ." -" -.... ,." - ." ". -. ." . " : :::::i::-.,: _;:i :;:: :I
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where

c 3trp)-Cosh ncosh1l

The geometry Is given in Figure 2.1a and the de Hoop contour in

Figure 2.1b, see de Hoop (1960). The various functions of p are to be

evaluated along r defined by choosing those values of p which make (t)

real and Increasing where

r (p) pr + zl,-hI.

The transformation of "p" to *t" follows from the algebra

discussed in the last section.

In this simple case we have a closed form solution for various

values of n since the equivalent form back in the (wk) domain has been

evaluted by Harkrider (1976). For example.

where the near-field contribution appears in terms of r. However, since

we need to evaluate integrals similar to (2.25) with complicated complex

integrands later It should be noted that (2.29) can be evaluated for

various values of (t) after a change of variable as discussed earlier.

A relatively fast evaluation of this type of Integral is by nonuniform

quadrature techniques where the point spacing Is determined by the rate

of change of the integrand. The accuracy of such techniques are

discussed In Helaberger and Harkrider (1978). We will examine some

4..," : . . - , . - . . -- , . . . ' - .- .. . . . -.--.S- 
.- .. . .-,q. -- . .:',.,,, ....-. ;

.'S-. ,, •. . . , . , '- . . . - - . - . , - . . . . . . . . . . - .. - , '- - - - - ,, :, - ," r ." . ,, ,
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useful approximations by expanding the integrand of (2.29) in terms of

(t - TO-. Note that I (Y 2-1)1/2)2n +: 1

where

y - (t - r + pr)/pr
and CU(t,O,p) 1

(t - T + 2pr) ilp

to first order. Thus. we can approximate (2.29) by
t

(2~ a 1 1dC. m (t-'O 1 / 2  dt

(2.30)

This expression was obtained earlier by using the first term of

the asymptotic form of the modified Bessel function. With this degree

of accuracy, called the high-frequency solution, the expressions (2.25)

can be greatly simplified. We obtain

3+-
0 , (.A( .O8,6) Im f C 1 (l2spr) x [exp(-s(pr+najz-hI)dpl
* 

no

- ifj .u~(,X. ) S1. fP rv(-w/2spr) x exp(-s(pr+n8 1z-hI))dp]
i-i 0

2-

x'- A ( ..8) IM f " -P- '('/2mpr) x[exp(-s(pr+nz-h))d. A~(.J+3)(x,) ISH n
J-1 o

(2.31)

...............................................
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-.'

where we are essentially assuming that the source duration, T, is

T '(2 p r.

We still further approximate (2.30) by assuming

dp/dt-

(t tR (

where tR = R/V and p p0 and (2.30) reduces to

-5-.- 6(t-t R )/R

called the first motion approximation. This approximation is valid at

teleseismic distances where the ratio of travel time to duration is of

the order of 100 or greater and has proven quite useful in modeling

shallow earthquakes, see Langston and Helmberger (1975).

Transforming the expressions (2.31) into the time domain we

.- * obtain:

3 

(-

A - (RX)CR

(2.32) - E X1 e.)vi R

.H t -- (RIB))
x -~ A ~(e.1.8)SH~

J-1
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Thus, the potentials contain the classical vertical radiation patterns

in terms of the C (p), SV (p), and SH.(p) and the horizontal pattern in

terms of the A 'S. We will use these expressions in discussing the

teleseismic results later.

c) Response of a layer/halfspace: Digression

-" .rUsing the concepts of generalized ray theory and retaining only

the first term of the asymptotic solution, we can construct the (SH)

solution on a free surface, namely

(2.33) V(r,.0.o,t) t (t) 2.
0I.. L- 3 )

where

IIZ

Vj (t) - 2Ir Ia. -P Tm (Pn() -i Qt

D(t) - dislocation history

i(t) - far-field time function.-

B1(t) a product of the transmission and reflection coefficients

Z - sumation over contributing rays

For the case of a pure strike-slip dislocation embedded in a homogeneous

half space

".-.: ... ... . . . . .. ... . . ... . . .
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3
(2.34) . V1 , (2 sni/ )H(t - tR)/R

where (1) Is the angle of incidence, see Figure (2.1a). Substituting (2.34)

into (2.331 we obtain

(2.35) V- (Mo/4iYpo)(2F 0 inl/8 )cos 20 D(t t R )/YR

where the amplitude is given in centimeters with Fo - 10-20 for unit

conversion, and the various parameters expressed as Mo(ergs). 0o(g/cm3),

B(km/sec), R(km) and

Y .f D(t)dt - D(-)

A factor of 2 has been Introduced in the solution (2.35) by the SH

free surface receiver coefficient. The far-field step function response

for a pure strike-slip event, V (t), is given in Figure 2.5, where the

model Is included as an inset for various values of source depth. The

corresponding half-space response is the simple step displayed on each

trace. Comparing the response with the source situated just above (d

3.5) and below (d a 4.5). one finds that the long-period behavior Is

nearly the same. The classical type of Love wave dispersion is

developed when the layer contains the source and is well understood in

terms of ray interference. When the source Is located below the layer,

the Interpretation is more difficult but can be studied by examining the

various rays. The ray descriptions become:

b.4
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tI = pr + n2 (d-h) + TIP

t2 - pr + "2 (d-h) + n I(3h)

tn - pr + n2 (d-h) + ni(2n-1)h

21 (P

12 - T21 (p) R12 (p)fl-" T(p)

' - R • I 21)

dz3.
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2.0 -

de Hoop Contoursi
L5 .

0.2

I0 dI2 km d/-
0 d-68

CL100.8d45

0.5 0.25

t0.5

0-

o25 0.30 0.35 0.40 OA5 0.50

Fig 2.6 - Contours of Im versus Re(p) for the direct rays
shown in Figure 2.5. The branch cuts run along the ge(p)
coordinate, starting at 1/02 and 1/Bi, respectively. The
parameter time is marked along each contour.

*.,

w where the Index (1) refers to the layer parameters and (2) to the bottom

half space.

The coefficients are:

R:,2 (P) - (V -1 212N/(. + 021l)

and
T2 1 (p) - (2u2n2 )l(Ul 1 + U2'i 2)

where 2 2
uIl - 'l , 2 - P282

. . . . . . . .. .... . . . . . .. . -. . . .. . . ;. ,-.-.--;.-....-:. < .:2 .. --. :. :... :-:-2... :.-
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I I

Each ray in the solution must be evaluated along its own contour

which Is determined by inverting these polynomial equations,

P(tn),where t is positive real and increasing from 0 to -. The contours

used to compute the direct rays, (ti), for the responses in Figure 2.5

are shown In Figure 2.6. The parameter (t) Is, also, plotted along

these contours and it is easy to see that abrupt increases in ;m(dp/dt)

lead to arrivals in Figure 2.5.

Note that Im(dp/dt) always starts with the square-root

singularity. This singularity yields the geometric ray arrival. For

large source depths, the contour is near vertical and the synthetic

waveform closely resembles the geometric ray response. The first motion

approximation is actually equivalent to the saddle point approximation

which assumes that the contour goes straight up to (-). Thus, the first

motion approximation is useful for teleseismic studies. An example

application of this technique of earthquake modeling is given in

Figure 2.7. The observed displacement is from a simple strike-slip

earthquake occurring In the Imperial Valley, California. The only

unknown parameters in this particular situation were the depth and slip

history, D(t). After a diligent search, the source depth of 7 km and a

i(t) specified by triangular pulse with duration 1.5 sec was determined

(see Heaton and Helmberger 1978). Similar studies have been conducted

by Heaton. and Helmberger (1977) and Helmberger and Malone (1975). A

rather common observation in modeling multi-bounce phases is that they

tend to change their character relatively rapidly. For instance, many

times the first few bounces will appear nearly identical at neighboring

".' :.. . ... .. : . . ... .. , . . . . . . . . . ... . ..
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Depth(kin) Model
0 ,6=0.88 km/sec p 1.80 g/cc0.95 l  T3 3

2.1

2.4 2.6

5.9

Source 3.7 2.8

-2 IVC 6=33 km
-mm

0

Moergsxl0 23)

" - ,-
J ID. I

0 5 I0 15 20'sec 25

Fig 2.7 - Comparison of a synthetic with a strong
motion recording, IVC, of an earthquake occurring
at Brawley, California, in November 1976. The
model parameters expressing the known structure
are given at the top of the figure with the source

-at a depth of 6.9 km. The three most important
rays are indicated schematically.
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stations as predicted for flat layers. However, the next bounce will

suddenly be missing or too large at these same stations. Another common

feature is a sudden change in frequency content of the multiples. Such

effects could be caused by lateral variation in the low-velocity

waveguide near the surface. A simulation of the effects of a simple

dipping interface Is displayed in Figure 2.8 (see Hong and Helmberger

1977). In this particular case, the rays can go beyond critical angle

after bouncing and thus, produce high frequency reflections. Some

progress on treating smoothly varying 3-dimensional structure is

presented by Hong and Helnmerger (1977).

d) Full Cagniard Solution

The high frequency solutions given by (2.31) have many advantages

in model studies as Just discussed. However, for small values of (spr),

one must use the full solution by applying the transformation given in

expression (2.29). The displacements are obtained by substituting

expressions (2.25) Into (2.24) and performing the Cagniard-de Hoop

technique. The results are complicated because of the near-field terms.

The tangential motions become:

4'n dt
0

at

V1rfOt - F_-Im J a(2) SjBRT( dt
2 rrt

+( O 2J g (2) 2 dr dt

ft RPT~r

t 2
4 .; TmJJ *(2) sV1RsT(r) dr dt

F'd .. **. * . . *1 ..
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Point strike - slip dislocation

Term Tangential Radi Vertical

8.76 _k 1__.79 3.01

8.5

8.59 2.15 63

7.89 2.83
.7.89 2.564 S

.P , . 2.79 P.

Fig 2.9 - Comparison of the various components of
motion for a strike-slip orientation at A - 16 km
for a t-hole space. The top four rows contain the
asymptotic summation after 1,2,4, and 12 items. The,
full solution is displayed on the bottom.

where

RK P - , 1 S - -rp./p for hol, space

and
4n _TIO -2n (n - p21

RT 2p RT ST- v R j B'
P2R(P) ST 1 (p)

for a receiver on the free surface. The dip-slip result is similar with

n * 1 and where the factor In parentheses Is reduced by two.

No

% - -
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An evaluation of this expression for a whole space is given in

figure 2.9, where the near-field contributions are apparent. The

asymptotic solution is included for comparison. These computations are

expensive and their applications to data complicated, see for instance

Helmberger and Harkrider (1978) and Heaton and HeImberger (1979). Thus,

we will limit our discussion to the more useful approximations where

near-field terms can be neglected.

3. Modeling at Teleseismic Distances

Synthetic seismograms can be constructed for comparison with

teleseismic observations by putting together the various sub-operations

discussed in the previous sections. We will be primarily interested in

shallow events where independent information is many times available.

Thus, we must correct for the free surface. The simplest correction for

this situation is to assume ideal elastic interaction and include the

reflected phases, namely pP, and sP (see Figure 3.1). Using the

expressions (2.24) and (2.32) and the concepts of GRT (see Appendix A)

Fig 3.1 - Schematic representation
of the phases P,pP, and sP.

4, 4

-So

P P
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we can approximate the vertical response at the receiver,

-'..i W 4V° (PO) 6(t) + Cj (Po)Rt (pO)86(t - At

0

(3.-1
(3.1) w C( 0 6t+~p) p)

,I R I (PO)
+ SVj (p.) -R (p) (t -At2 )

where

At1 . 2H%5 , time lag of pP

At2 M H(%a +,) time lag of sP

H - source depth

D(t) - 6(t), delta function

The expression in brackets can be represented by three spikes with

various strengths, depending on the source orientation, referred to as

stick diagrams, see Figure 3.2. The diagram given in the first column

displays this Information, alang with the timing of the three

interacting phases, P, pP, and sP, for the three fundamental faults.

Crustal layering Is easily incorporated by applying ray summations as

discussed in the previous section. We assume t- a 1 and that the (1/R)

geometric spreading term in the homogeneous case can be replaced by the

effective "l/R" from Figure 3.3. The synthetics In Figure 3.2 were

produced by performing the various convolutions assuming different

source durations.

The waveshapes are seriously distorted by the interferences with

each fault orientation having its own characteristics. Thus, we can

compare these synthetics with observed waveshapes such as those given In
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Figures 3.4, 3.5 and 3.6 to determine the fault parameters; namely,

strike, dip, slip vector, fault depth, moment, and 6t's (source time

history). Note that for observations near nodes such as BOG and BHP

(Figure 3.4) one finds difficulty in determining the polarity of the

direct P since it is nearly zero. In cases where 6 0 900 we expect sP

to still contribute as at BOG since the dip-slip component is strong.

Note the strong differences in amplitudes displayed in Figure 3.2 which

are caused by the position of the radiation loops.

Considerable ringing occurs for those events situated in some

basins and in oceanic environments (see Figure 3.6 and Langston and

Blum, 1977, for examples of multi-pathing or situations where many rays

are involved in generating the response).

Synthetics for normal and thrust faults are not very interesting

since they are nearly identical at all azimuths. As probably suspected,

T Fig 3.3 - Graph of the effective
E /R decay in a Jeffreys-Bullen

spherical earth.

I
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Fig 3.4 - Observed (top) and Borrego Mtn
synthetic (bottom) long period P s
waveforms at 14 WWSS stations.
The P-first motion plot is rep- COL

resented by the equal area OGD
stereographic projection of the
lower half of the focal sphere. M,

Black dots indicate compression 00
(upward breaking P) and open circles
indicate dilatation (downward ,
breaking P). The heavy solid lines
denote the nodal planes used inE
determining the fault orientation,
e (strike), 6(dip), ,(slip direction).
Modified after Burdick and Mellman
(1976).

:-% o Z--480

25 sec A
.- --

Fig 3.5 - Focal mechanism
plot showing the P-first AL J OTT
motions for the Oroville
earthquake, August 1, 1975.
The observed P waveforms r
are given on the top and
synthetic results on the
bottom. Modified after bS

4. Langston and Butler (1976).
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Fig 3.6 - Focal mechanism plot showing the P-first motions for the
Bermuda earthquake, March 24, 1978. Observed (upper) and synthetic
(lower) P wave traces from the vertical long-period WWSSN seismograms
for stations shown in Figure 1. Note an initil simple event
followed by more complicated water reverberations (After Stewart
and Helmberger, 1981).

this uniformity in waveshape leads to a lack of resolution in fault

orientation. We require samples of the energy release at other

quadrants, in particular at regional distances. At these distances the

earth's mantle structure produces more complicated responses and the

1/1 8(t-"lR) correction is no longer appropriate.

4. Modeling Regional lody-waves

The regional phases can be subdivided into two groups, those less

than and those beyond about 120. At the smaller ranges the response is

controlled largely by the crustal waveguide and at larger ranges by the

upper-mantle discontinuities, see Helmberger and Engen (1980).
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a) Crustal waveguide

We begin by discussing the effects of the crustal waveguide on the

P-waves, actually all the energy that travels faster than the S-waves. This
.

portion of the seismogram is commonly referred to as Pn' PL, and Pt. We

assume a point shear dislocation, as before, and that the earth can be

treated by a single layer (crust) over a half-space (mantle), see Table 1.

Both of these assumptions are obvious oversimplifications but as we

will see, worth consideration as viable models at long periods. The

vertical displacement, assuming the high-frequency solution, becomes

K r 3
( 4.1) in,.) o  [6=t

5, where
"5. .5

5..'..!

+ r'2 r IM m(-rSVj(P)IZ(P)I(P)' -)

where Rz(p) indicates the appropriate receiver function for either

P(N-P) or S(N-S) waves arriving at the station, respectively. The radial

displacements, Qi, are obtained by replacing Rpz and RPR with RSZ and RSRO

see Appendix A for definitions of these receiver functions. The

summation is over contributing rays where ni1(p) defines the product

of all the reflection coefficients encountered along the ray path from

the source to the receiver, similar to the SH-case considered earlier.

,, ,, , .-.,.-..-..-,.°,.-...-,. .-'.. e. ,.". . *.-~ ~t..* . . . .. .2.t.. . - .. .., , . .", , . _
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Constructing the solution by summing the rays as described by (4.2) is

tedious in that many rays are required to produce reliable synthetics.

To ensure stability, ray files containing Increasing numbers of

multiples are computed sequentially where the output can be monitored

per multiple. An example calculation Is displayed in Figure 4.1. Since

STRIKE- SLIP DIP-SLIP S
S S

R Roy Summation R

"* z c)J

,Af#\v-~(48)

~ (192)

Fig 4.1 Vertical components of motion as a function
of ray summation assuming a trapezoidal time function
described by 0.5, 0.5, 0.5, for pure strike-slip and
dip-slip orientations at a 1000 Ion.

(494

-I
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the strengths and polarities of the various rays are strongly influenced

by the vertical radiation patterns, C (p) and SV (p), we have included

these patterns above each column. Note that due to our limited time

window we do not include the direct S pulse. The second pulse arriving

in the direct ray response is actually a diffracted arrival, essentially

the pulse that travels to the surfaces as an S-wave and along the

surface as a P-head wave. The first set of multi-bounce rays produce

head waves along the top of the mantle. There are 12 rays in this set,

namely

22 + 23 * 12

considering the various possible mode changes. The responses in the

bottom row were generated by summing all (4,094) rays as a check against

a much smaller ray set which takes advantage of the kinematic and dynamic

redundancies. For instance, only 304 rays are needed to compute the

response for the fifth bounce since most of the rays in the complete set

have the same times and amplitudes (see Hron and Kanasewich 1971 or

Helmberger 1968 for details).

Another strategy for understanding these motions Is to split these
','

ray contributions into those starting upward as opposed to downward (see

Figure 4.2). Changing the source depth shifts the upgoing trace

relative to the downgoing trace producing a dramatic effect on the

dip-slip case as displayed In Figure 4.3. In fact, a good approximate

seismogram for h a 4 and 16 can be obtained by simply shifting the h a 8

traces without recomputing the rays. Partial derivatives with respect

*.** * 44 . 4. 4 ,% **** . .. .... . . . . ...-
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STRIKE-SLIP DIP-SLIP

UP

t-3Osa-4

Fig 4.2 - Radial components of motion at A - 1000 km in terns
of upgoing, downgoing, and summed for trapezoidal time
history (0.5, 0.5, 0.5 sec).

DEPTH(h) DEPENDENCE
hw4 huB h-16

~Bd 44 .49~V At% fr.

Fig 4.3 - Motions of all three types of faults at A - 1000 km
as a function of source depth. The numbers above each trace
indicate the zero to peak amplitude in centimeters assuming
1 = 4vo x 1020 dyne-cm and trapezoidal time history

i* 8(.s, oN, 0.5 sec.

4,.
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to changes In velocities or changes in the waveguide can be approximated

by stretching or compressing individual ray responses (see Wallace and

00 Helmberger 1982).

For the purpose of studying source mechanisms we can apparently do

reasonably well by assuming that comon shallow earthquakes occur at a

depth of 8 km. Profiles of responses for a dislocation located at this

* depth are presented in Figure 4.4. Preliminary comparisons of

STRIKE-SLIP DIP-SLIP 4?* DIP-SLIP

a.M 10a.i

400 4W-14 &1 4M0 7.

UvhLe bgoo.WJIs .
600 LS~4~h

.M' AAMN*iR....U

.J.w

Fig 4.4 -Profiles of the vertical displacements for the three
fundamental faults. The numbers above each trace indicate the
zero to peak amplitude in centimeters assumi ng M - 4vp X 1020
dyne-an and trapezoidal time history (0.5, 0.5,08.5 sec?. This
time history was convolved with the delta function response to
reduce the high-frequency spikes created by the post-critical
reflections so that the longer periods become more apparent
(After Wallace et al., 1981a).
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synthetics generated from these responses (see Wallace et al., 1981),

indicate that these results are useful on a global scale if the high

frequencies are removed. Thus, we will filter these responses and the

corresponding observations by convolving with a triangle which has a

2 sec rise and fall. Convolving these filtered Green's functions with a

trapezoid source with I sec intervals followed by the long-period WWSSN

instrumental response yields the synthetics given in Figure 4.5. This

time history is expected for events in the 5 to 6 magnitude class, the

size commonly recorded by the network. We propose to model shallow

earthquakes at these ranges by simply forming a linear combination of

these three fundamental synthetics. The relative strengths of each

colum is used to fix the fault orientation, namely the strike, dip and

slip vector. Some example comparisons of observations and corresponding

synthetics are displayed In Figures 4.6, 4.7 and 4.8. These results

Fig 4.5 - Theoretical displace- ZSS ZDS Z
ment profiles for the verticalcomponent. The Green's functions 4.5 4.5A

were computed from the model A,
presented in Table 1 and have 5. 5
been convolved with a source V V""
time function represented by a deg'
trapezoid (t1l, t2-1, t3-1), 6.3 63 w
a triangular filter (2 second VV
rise and fall), and a WWSSN
long-period instrument. 7.2 7.2

#VV AV. a-0-kV%
tIVX~rI 9 JV~AM. 9.9 fAf~

xP"'\ A sv\ Q 10.8

uvV. VI

. '7

,-4.. .d* . . . . .. . . . . . . . .-o .
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Truckee earthquake

IsN BOZ s.29
* 7LON 8.8 4lI7A* Az "43o

Az• 351 2.1 -i n-4 .1341,
-4. .55.

5.6" 2.5 AZ80* 4.6
Azk6 3.3 4i

4z33 9* AzzW1 I

4-9A A,336"

.76

TUC jo9 ALO .56
10.4* 11.8"
Az 1300 AzxI08a

Fig 4.6 - The vertical P waveforms of the 1966 Truckee earthquake.
The star denotes the epicinter. The data is the top trace at each
station and the trace below is the synthetic fit. The strike-slip
mechanism has two nodal planes which project through TUC and BOZ.
To the right of each trace Ii the observed or gredlcted amplitude

4 ,. (on the basis of Nom .8 x 105 dyne-an) in 10-  n.

... ,



61

Fig 4.7- Filtered data and

synthetics from the Oroville OROVILLE (INVERSION)
earthquake. At all the 66

stations except GOL both 2,2&

the vertical (the first
trace pair) and radial LON MSO
components are shown. A.8 . 4 ,"

Ar346' ' GOL
4012.S

MS Av'IL2

PAS
£A. 520

rig 4.8 - Location of the TURKEYTUKY6/1" 15
Turkey event (star) and the 8,13
recording stations. The 886r
filtered data and synthetics &as

for both the vertical and 2o"
radial components are shown ATU "ST
(After Wallace and Helmberger, A .s - _ 2
1982).Vet

"L""P,

1 

, ,

. . . . . . R.
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were found by applying a least squares waveform inversion technique.

The method involves an iterative scheme which makes use of an error

function determined by the cross-correlation of the observed seismogram

and a synthetic. Since only three parameters are involved, the scheme

proves very effective. The moments are determined by simply comparing

the amplitudes of the data with the synthetic and taking the average

value. In general, the inversion yields results that are in good

agreement with the literature. We will briefly discuss the Truckee

event as an example.

The Truckee earthquake was a strike-slip event at 10 km depth

which produced excellent regional records but very few teleseismic body

wave records as typical of moderate size strike-slip events. The

Truckee earthquake (mb = 5.7) has been studied by several authors (Tsai

and Akf, 1970, and Burdfck, 1977) making It a good test case. Tsai and

Ak (1970), from first motion studies and modeling of the surface waves,

determined this event to be pure strike-slip on a fault plane striking

N440E and dipping 80°SE. The surface wave moment was determined to be

0.83 x 1025 dyne-cm. Figure 4.6 shows the location of the epicenter,

recording stations and filtered data for Truckee. Also shown are the

synthetics determined from the inversion results. Note that BOZ and TUC

are very nearly nodal. The inversion yields a mechanism which Is very

similar to Tsai and Aki's (1970); a strike of N43°E, a dip of 7.6oSE and

a rake of -11. The only significant difference Is the slight dip-slip

component in our solution, which Is also acceptable on the basis of the

first motion data. The moment determined from the Pt waveforms is 0.87

x 025 yne-cm, which is in agreement with Tsai and Aki (1970).

; V-, .. : , , ' :' :, ,.:' ; , : - . , * . , . - , . . ," , " ." ., , . - . : . ,
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The results for the Oroville earthquake are particularly

interesting in that the observations are nearly all positive as opposed

to those observed teleseismlcally, see Figure 3.5. We will discuss this

event later after including the waveform observations In the 
120 to 300

range.

b) Upper-mantle responses

At distances larger than about 12 the mantle ePu wave begins to

emerge. This feature is displayed in Figure 4.9. Near 1000 km the

beginning portion of the seismogram is dominated by Pn, that is, a P

head wave traveling along the top of the mantle as a head wave. Since

this earthquake is nearly a pure strike-slip event we can interpret the

first upswing as Pn followed by Pn and. SPn Beyond about 120 this

combination of arrivals becomes much sharper since they are no longer

head waves. Short-period waves from explosions fired at the Nevada Test

Site increase in amplitude by nearly two orders of magnitude near this

range, for example see HeImberger (1973). These features can be

generally explained by the tectonic model presented in Figure 4.10.

This smooth model is broken into homogeneous layers suitable for the

applications of GRT. Essentially, the generalized rays returning from

the interfaces In the mantle are added to the rays discussed earlier

(see Figure 4.4). Synthetics appropriate for a strike-slip event are

presented In Figure 4.11. The recording at the nearest ranges are

essentially the same as displayed in Figure 4.5. The pattern of (P. pP

and sP) going from head waves to diving waves is quite apparent.

Comparing these results with Figure 4.9 it would appear that the lid

*
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Fig 4.9 - Profile of strike-slip observations from
P to P. Recordings at DUG, ALQ, and LUB are from
td' 22 December 1964 event of northern Baja Call-
fornia; the others are of the Truckee event

,discussed earlier.
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I-. 1Shield
Tectonic

200 T 7

E
/- g 400-

CL

600-

800 -Velocity a-Velocity
800

4 6 8 10 12
Velocity, km/Sec

Fig 4.10 - Velocity depth functions for T7
(Burdick and Heimberger, 1978) and two recent
shear-wave models (Grand and HeImberger, 1982).
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(o) STRIKE- SUP (b) DIP-SLIP

i.gXIO-5  A4 £X 10-6 .8X1- x1-

km060

8300 -.',\.- --....>- 600 -- v A
., 100 7

-1400
- 100 20 20

.434

~ 1300

*.4 140 5~% ~ - - i 0 -%w 2

30__ ___ ___ rOse

Fig 4.11 - (a) Strike-slip excitation going
from Pnt domination to P and long-period synthetics.
(b) Dip-slip excitation going from Pnt domination
to P and long-period synthetics.

thickness (the high-velocity layers between the crust and the

low-velocity zone) may be too thin in the T7 model. Actually, the

crossover distance between P. to P shows considerable lateral variation.

For Instance, short-period P. in shield regions are observed to much

larger distances than in other regions. However, since earthquakes

rarely occur In shield regions, we will restrict our discussion to model

() which appears to be quite useful in simulating earthquake

-. observations in active regions, see for example Burdick (1980).

.%°.
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Nevertheless, we propose omitting records at ranges 12°to 140 as being

too regional or structurally dependent to be useful in source modeling

In most situations.

The response of the earth models at ranges beyond 150 can be

obtained by simply summing primary rays. That is

(4.3) m(o - 47. J(t

where

J-2

and

2 12

13 T R T , etc.S 12 23 21

The tem "primary" refers to rays that undergo one reflection only. The

(a/sinA) factor is a correction for spherical spreading, see Gilbert and

Helmberger (1972).

Near 300, M(t) approximates a step with amplitude predicted by the

curve in Figure 3.3. Actually, the amplitudes in Figure 3.3 were generated

using expression (4.3) assuming the JB model. Similar results are obtained

from the geometric formula, Bullen (1965), p. 126:

A -r of 0i d 1/2
Ir\r cog I (u g )

[,(o} --o gi ,, = ,a
'p.
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T is the travel time
where

A is the epicentral distance in degrees

:o is the angle of incidence

vo is the velocity at the surface

ro is the radius of the earth

Because the ray summation has omitted multiples, it appears

necessary to document these responses by comparison with other methods.

This was done recently by Burdick and Orcutt (1978) with a comparison

of GRT and reflectivity results given in Figure 4.12. These same

Generorized Roy vs Reflectivity EDM Z A,20.20
9 +"15° Results for Model T7

RxI.05 RaO99 Ral.06 R 403 RaO9 v
SI4A Z a38

ATL Z A26.?

A a 20 21 6.2?* .27 PO 240
4,R.IDO Ra.14 R&UOI RnO.99 RaI.0O

4.., A"" 1
LAAM Z h.27.10

6.2?* LAW gis A S26* _______
RO.9 RI.OO RO.83 Rao 94 ,BLA Z 29.40

4-

Fig 4.12 - (a) The slightly smoothed delta function responses
from a reflectivity calculation (bottom) are compared to those
from a generalized ray (top) for model T7. (b) First column
contains the predicted waveshape due to the source only;
second column is the delta function response of the model T7;
third column is the convolution of the first two columns.
The observed waveforms from the Borrego Mountain earthquake

4- are on the top for comparison.

., 4,
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responses were generated by "Full Wave Theory" (see Cormier and Choy,

1981), with similar waveforms.

The vertical response for a dislocation source can be generated

from M(t) by assuming that the vertical radiation functions C (Po) etc.,

are nearly constant over the (p's) involved, accordingly

Mo~ d 10- A (0. 8,X) Cj (po)R,,(po)1(t)

(4.5) W O -- * A
0 3u

Similar approximations can be applied to generated pP. sP. and crustal

multiples. With this approximation, the procedure becomes Identical to

the teleseismic expression (3.1 ) where the factor (1/R) is replaced

with a convolution of H(t) followed by a derivative. Synthetics

appropriate for the three fundamental faults are displayed In Figure

4.13. A synthetic seismogram appropriate for any arbitraryorientation

can then be formed by taking a linear combination of these three as

discussed earlier.

We can change the order of operations and generate the synthetic

seismograms as if the M(t) were a delta function as under the

teleseismic assumption. The first column of Figure 4.12b corresponds to

this order of operations. Convolving with the M(t) produces the proper

synthetic as given on the right of Figure 4.1Zb. The latter order of

operations Is generally used for studying upper-mantle structure since

M(t) Is isolated from the other operations.

"j
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ZSS (xiO-7) ZDS Z45

1500 -Vr 2. 1 0.94 -A3.,1 .- 2.42 - 7.03 -' 3.53- 2.65 0.90 - 3.05 -jr-2.A -K .82 - 3.&48
--238 1.04, .2.96 - m2.53 6 .93 -. i3.t7,

3.26 L24 AV 2.93 -v2.08 5.73 3.28

" "-2.82 L 181 4.80 - 4.46 "-JPk. 8.52 J ,5.25

2000 3.24 -JK2Do if-8.40 6-'r-6.98 1--,4.o fV8.79
175 1.98 9.36 -I-.7 2 1-5-,.4 ,-1o.o119 1 ' .74 5-67 -IV-53 R8 - -' -7.2

km --. 02 - .98 -6.58 - 5.3 -A-,- 10.,1  -AI-5.92
L80 " 3 6 -A(-4.38 -VV4.14 -A,^- 7.32 -A,A5.18

2500 --- 2A.I4 0.99 -V-^-5.49 - 4.68 -' 8.85 ,,. - 6.45

- 2.14 0.80 -A'"6.09 - 4.8 - 9.04 6.4 8
L67 0.78 -A '5.34 - 4.42 -,-7.97 4 V 5.T3ON 0.50 .2.o.9 4 , -'p-2 5J.0.4 -k-.87

7 .4 . 134 7 I, - .A.

3000 yPO, 0.66 -qtY 0.34 1.16 ']. 0.94 -AJV.2.I3 -IV 1%..30

,0 51  0.19 L12 0.9 9 2.0 0 1.68

"-- 0.55 0.21 4 1.18 .218 2 l  L7 7

3 500 S52  0.21 L20 1/l.03 "rv2.08-JK.64

30 sec

Fig 4.13 - Upper-mantle synthetics without and with instrument for the three
fundamental orientations assuming a source depth of 8 km, t*=l, and 6t, a 6t2 * 6tal
for the source time history.
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5. Discussion

In this review, we have presented a procedure for generating

synthetic waveforms for body phases. For convenience, we divided the

epicentral distances Into teleseismic, regional, and local. At

teleseismic distances, we showed that long period body phases from

shallow earthquakes are coherent at neighboring stations and that the

observed waveform could be decomposed in a manner that allows

determination of faulting parameters. It appears that many events in

4! Borrego Mountain Earthquake (SP)

7 nc IES KE

. ..

-., ICONl m

C J

'lop

Fig 5.1 - Short-period P waveforms recorded at WSSN stations. Note
~the coherence of the first several seconds of thie waveforms from

stations at similar azimuths. The star denotes the location of the
earthquake (After Ebel and Heimberger, 1982).
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the magnitude class 5.5 to 6.5 can be easily modeled at long periods by

assuming point sources. This result should not be surprising since the

signal wavelengths are long compared to the fault dimensions. On the

other hand, the corresponding comparison between short period records at

neighboring stations is much less coherent and complicated, see for

example figure 5.1. Some success at explaining these records has been

presented recently by Ebel and Heimberger (1982) by introducing complex

faulting.

To model shorter periods requires that we generalize our point

source procedures to treat finite faults as distributed point sources,

see for example Langston (1978) and Heaton (1982). Following the latter

technique we simply simulate rupturing on a fault plane by summing point

sources with the proper timing, see figure 5.2. The procedure is made

somewhat complicated by the presence of the free surface which requires

summing pP, etc. Thus, teleseismic signals can show considerable

variation with azimuth. Note that the long period records prove quite

insensitive to the rupture properties In this simple case compared with

the short peiriods. Conceptionally, we should be able to determine the

time structure of the rupture process by simply matching short period

waveform patterns and, indeed, this subject is being pursued vigorously.

Unfortunately, at these periods the many idealistic assumptions

Involving the homogeneity of the mantle, simple flat layering near the

source and receivers, planar fault planes, to name a few, begin to break

down. Thus, the pattern recognition Is not so obvious.

A simpler approach is to suppose that the rupture process can be

simulated with some small number of point sources where each source has
Its particular time history. By modeling the long and short periods

'p.
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:BA3 2 0 6 A m36Y3 CAR 55.6 1MBCo32 OGDA: 3 C AR655 MBC OGD CAR

AzO.8 Aza68.9 OAz3.8"C

so01464~I.8

V,2 OOn/m
T-(0.25. 0,QMc

V,. 2.8 km/a
Te(OMM0.025usec

0 4 22 
O D 

0.1 2O

V, 2D km/
T.(.25,O,25.u)

Tu(OOD. O=uc

Fig 5.2 - Comparison of the short-period and long-period synthetics
at the teleseismic stations for various fault models. The numbers
are the amplitudes in micrometers calculated for the seismic moment
of .5 x 1024 dyne-cm. The top row corresponds to a particular
distribution of faulting appropriate for the Coyote earthquake
where the dislocation is largest at the center and tapers down at
the edges. The Ul, U2, U3, and U4 models show uniform slip
histories but with different rupture speeds (After Liu and
Helmberger, 1982).

simultaneously with these few parameters, we can look for sub-structure.

Such a procedure was tried recently by Wallace eL al (1981b) -on the Santa

Barbara earthquake of 1978, see figure 5.3.These results Indicate that

on a smaller scale most earthquakes are indeed complex as suggested by

Kanamori and Stewart (1978). The sharp Jumps indicated in the time

history of figure 5.3 are obviously Important with respect to

.- :.
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Smu~tonemu Tione Function

"'S

SfnuMoneous Short-/Long Period Model sec
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Fig 5.3 -Modelling experience obtained from studying the near- and far-
field records of the 1978 Santa Barbara earthquake. a) displays the
far-field time history for an effective point source; b) displays the fit

of the long-period synthetics and data; c) displays the short period fit.
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Fig 5.4 - Comparison of synthetics with waveform data at
regional distances where the preferred model produces a(es 480 , x 00, and a * 790)(After Yao et al., 1982).
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A - -72°A and 6 - 4601, 10 upper-mantle ranges exclusively are:
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understanding the faulting mechanism, but their existence is

particularly significant in estimating earthquake hazards. That is, the

high frequency strong motions appear to be more strongly controlled by

the Jumps in the time history than by the overall duration (see Wallace

et al., 1981b; Ebel and Helmberger, 1982).

At ranges less than about 300, we found that the body wave

arrivals become multi-valued and some care needs to be taken to remove

propagational features from source phenomenom. Some progress in

achieving this separation can be seen In figures 5.4 and 5.5 where we

show that consistent estimates of the source orientation can be obtained

at nearly any range. Note that there are no teleseismic waveforms for

the Truckee event compared with the Oroville event, even though they are

roughly the same strength. The reason is due to the difference in

vertical radiation pattern as discussed earlier (see figure 3.2). How

successful this analysis will be for other regions is not known but

initial results look promising.
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Appendix A. Generalized Ray Theory

The method of generalized ray theory allows one to construct

the solution of a seismic boundary value problem by inspection. The

method was first introduced to the seismic community by Spencer (1960).

The idea can be easily understood by working through a simple example,

namely the sandwiched fluid layer problem (see figure Al). The solution

Source Receiver

Fig Al - Schematic of the
geometric setup with a h 4, P, I t
sandwiched fluid layer.

Th #2' P2C' a 2

* 03' P 3 9 a 3

in terms of potentials assuming the asymptotic form becomes

1 ir'( r ' z '.) - / ( it - s (pr+ l  Ih)+ A s(pr) a dp
wrs 1

* (r,:.as) " Tm (-&-. ~s-(pr+11 (l+h))edp

a 'irs i

S(i ,z,) - ,T -(pr+n (h)) +n Z

i =- 1  1 [D(p)e I I dp

vith the simple boundary conditions on continuity of vertical stress and

displacement across the interfaces, that Is

1 01 2 42 2 42 3 4
Z-O z- -Th

dz da dz ds

4.\

q4 "4" , . . ,' . - , . ' ' ' . • ". " " " " . - •" i, , .

t"4u " ,
% . " " " " "k
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These four equations are used to solve for the four unknowns A, 3, C,

and 0. Substituting the '. into the boundary conditions, we obtain

A R12 23 a-2Tb an 2

1 + 12R3 *-2Th s4

where

2 - 1 , and R23-03 n2 -p2n3
R12+p1~ p 3-+ 2 ~

-4 Note that as Th + P +
SA- P3 '41 P - 1 3

03 % + 01 T3

and asTh.. - A=R 1 2. as expected.

Next, we use the identity

m(- 1 ), X
1+1

and expand A to obtain a series solution

A =R12+ (_-I 1R23 R2 (1-R22)e2Thsn2

U-1

Rewriting T (r,z,s) as

1 4direct + *eflectee #a

We have

/=2 'RI('r'z(1s) 2 0 -s (Pr" I (z+h) -2Thn 2 n dp'--,.

'. or
.~(r.,,s) - PT ,.( i ,n()e(P 4 1(P)) !

oa Mp
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with

f (P) R 2~2 (~R2)()~

- nL(z+h) + 27.Ti

Each value of (n) corresponds to a particular ray, for example

with n - we obtain

fL(P) - R23-(._.)(-2 ) - T12 R2 372 1

1 (p) - 2Thn + q (I Wh)

where the Identity (1-t 2 ) - T:TL was used,

T 2 lp and - 2n202

021n + P12 21 0271 + Jn

and, slnilarily, for a - 2 we obtain

f 2 (p) - Tj 2R 2 3 2 1 123 2 1

92(P) - 4Tbn 2  + .;(Z+h)-

Thus, the solution is built-up by adding up the various rays which can

be determined by Inspection.

We can check our solution and resulting code by generating the

step response of a sandwiched layer in the limit of small thickness and

compare the results with the solution with no layer, see figure A2.

*Next, we examine the case where we go beyond critical angle so that the

receiver is In the geometric shadow and Investigate tunneling. In this

case, the layer is too thin to support a head wave and, thus, the strong

dinterference effects introduced by the multiples. The solution can be

written

i .
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~~~t Cr:. 1 Is.f/ - (pr+ ~~iTh+n3 1
( ro 

e; ; J

h - distance from the layer to receiver
where

H a distance from the layer to source

Th a layer thickness

D-C12 T23)1(1 + '12223)

expanding D in a series yields the ray expansion and the multiples

displayed in figure A2. When the layer is too thin to support head

waves, we can obtain a useful approximation by noting that

Limit D IT 13 1T"h -e- 0

Thus, the only effect of the layer on the solution is in the contour

t W Pr+I(h +b1)+T,T

-. ,

Essentially, the contour moves off of the real p-axis at p- 1/2

and, thus, no longer will there be a square-root singularity at the

direct arrival time but slightly smoothed depending on the thickness.

That is, the height of the steps given In figure A2 corresponds to the

same amplitude of the steps with no layer. However, the rise-time of

" these steps are no longer sharp. Thus, when these step responses are

used to generate synthetics, they filter out the high-frequencies or

short periods. The effect is nearly identical to the Q-operators

j4

V
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discussed earlier.
The technique of constructing a solution by simply adding up

rays that have traversed the various layers with some specified mode of

propagation is called the method of "Generalized Reflection and

Transmission Coefficients.0 The coefficients for the solid/solid

interface are somewhat more complicated because of the possible mode

changes from P to SV, etc., but the procedure is basically the same.

The generalized reflection and transmission coefficients used in this

paper are given by Helmberger (1968).
Another concept commonly used In GRT Is that of receiver

functions. Note that we have been working with potentials throughout

these notes. Essentially, we start with a source potential and

propagate it to some location by applying the proper product of T and R

coefficients. At the receiver we need to convert this potential into a

displacement or some measurable quantity. In a whole space, the

displacements can be obtained by simply performing the derivatives

defined by equation (2.24). On a free surface the conversion from

potential to displacement becomes more complicated, see figure A3. The

:4 proper way to satisfy the boundary conditions is to take the limit as Z

goes to zero and sum the three arrivals since the travel paths coincide

and label the results 'receiver functions." The results for incoming

P-waves are:

In - 2n -80 _ p2)1l0 2D(p)

a -4r, 0,p/iI2D(p)

where

D(p) - (0162- p2) + 4p2 in ii

% - .. * . • - -. .* s5 .. . . - - -. . .
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b
Sq

Fig A3 - Schematic 2
showing the interaction
of the three arrivals
that form the receiver Receiver
function.

I -direct P
2 - reflected P
3- reflected SV

The second subscript indicates component, namely Z for vertical and R

for radial. The results for Incoming SV-waves are:

S isz- 4Pna A/0
2 D(p)

RSR * 2n$ (n02_ p2)/ 02 D(p)

Table I
Crustal model

.-

PVEL SVEL Density Layer Thickness

6.2 3.5 2.7 32.0

8.2 4.5 3.4

2.

*~ .... . ..


