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Chapter 1

INTRODUCTION

In various fields like physical chemistry, chemical engineering, and
fluid mechanics, surface and interfacial tension have long been
interesting subjects. They have proven to be of fundamental importance
in studies of the properties of solutions, intermolecular forces,
molecular orientation on liquid surfaces, colloid phenomena,
capillarity, phase transitions, and numerous aspects of theoretical and
industrial chemistry. Various methods of measurement have been
developed and numerous results of the surface and interfacial tensions
of different liquids have been reported in the literature. On the other
hand, for the situations where one liquid is in metastable state, say
superheated, the traditional methods for measuring interfacial tension
are unsuitable and data are unavailable. Also, none of the existing
theories has been proved universally applicable in predicting
interfacial tensions in various circumstances. In this work we study an
experimental technique for measuring interfacial tension and apply it to
determine the interfacial tensions between water and each of three
superheated liquids. Another bulk property, the compressibility, of the

three superheated liquids is also studied using a similar technique.
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. When a liquid touches another fluid, a boundary forms and a transitional -
-
ij region is established. Generally, we call the contact region an
¢ .
r interface if the other fluid is a liquid, or a surface if the other
-

’ component is a gas. Interfacial and surface tension are natural -
N

o consequences of the differential attraction force across the
"

' transitional region. For example, let us first consider the simpler ’
! one, surface tension. In each bulk phase, the molecules are, on the ..
'i average, subject to a spherically symmetric attractive force field. The -
S force is much stronger in the liquid phase than it is in the vapor or va
[ J

- gas phase. Because of the difference in forces, the molecules in the )

- T
j interfacial region are subject to an asymmetric intermolecular w0
.‘I

o attraction. Therefore, work must be done against the attractive forces “a i
| within the interior of the liquid to bring molecules to the surface .
B )
J‘, ".-‘ L
$~ region. This work is called the free surface energy and can be defined o
- :

\ as the work required to increase a unit surface area at constant "
) temperature. The commonly used dimension of free surface energy or 7

\

. surface tension is ergs per square centimeter or, in SI units, newtons .
< .
"4 . . , . “
: per meter. The potential energy decreases and the stability increases
). as the surface area decreases. This implies the tendency for the -
x|
': surface to attain a minimum area; this is essentially where the term .
'. i)

< ~
- surface "tension" came from. The transitional region is estimated to be <
ot about two molecules thick [1]. Compared with most interesting ~
;: dimensions in fluid mechanics and certainly in this work, this thickness )
Y

..0 _'- A
b is so small that the transitional region can be treated as a ';
N discontinuity. '
N :
)
-
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The origin of interfacial tension is the same as that of surface

tension, except that it is concerned with both cohesional forces between

similar molecular species, and adhesional forces between two different

M NEN . .
N3 2: species. The magnitude of the cohesion and adhesion could be
4.?'- <
-,
= . comparable. It is reasonable to expect that the interfacial tension %ap
T between liquids A and B will be no more than % + g where % and Og

are the surface tensions against their vapors of liquids A and B. o.

will equal oy t o if adhesion is negligible. Therefore, in general,

. >

ﬂ:-:: the increase of similarity in structure between two liquid species i
iz reflected in a smaller value of interfacial tension and a greater

%\ §3 tendency for mutual molecular dispersion, that is, miscibility. The
%SE;; interfacial tension must be positive for the stable existence of an
,5 - interface.

YA

.ilk; 1.2 Traditional Methods for Interfacial Tension Measurements
-

’ !! The methods of measuring surface and interfacial tension may be

ig . generally divided into two classes, dynamic and static. In the dynamic
:_E‘? methods, the interface periodically expands and contracts, and the
._‘!! interfacial tension operates to restore the interface to a minimum area.
S

By measuring the parameters of the periodic motion, such as the

[

'. ._.‘:.'u
l'-l"

frequency, the interfacial tension can be calculated. The ones

i mentioned in the literature involve the method of oscillating jets,
DRI
:53 B oscillating drops, and ripples [1]. 1In the static methods, quiescent

-3 5; interfaces are involved, and the interfacial tension plays the role of

N = balancing other forces on tihe interface due to either the gravitational

MY
DN |
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:fﬂ field or the pressure differential across the interface. The
J .:.‘
capillary-height method, the ring detachment method, and the drop-weight fi
f:{ method are three examples [1].
- In general, dynamic methods do not give results as reproducible and »
:d consistent as static methods. Also, the results obtained by dynamic
N
o
5% methods do not generally agree with those obtained by static methods.
This discrepancy is especially significant when either of the two
.f: liquids is a solution of surface active solutes. When a solution is in =
k:: equilibrium, the composition in the interfacial region is different from -
5 ~
g that in the bulk phase. The true interfacial tension can be obtained -
XY
~ only when all involved liquids are in equilibrium. Therefore, if the -
v\.‘ . . . -
‘\j time required by the diffusion of the solute molecules ‘o establish the
£5
state of equilibrium is significant compared to the time scale of o
L]
I‘ [3 . . . .
<, measurement, dynamic methods can not give the true interfacial tension
N (2] [1]-
> o
Ly |
x::
Xt | .
M 1.3 Superheated Liquids R
- At atmospheric pressure, 100°C is referred to as the normal boiling ‘
~ b
;j point of water. It is also known that, under the same pressure, there )
-
& are circumstances in which water can be heated beyond 100°C without -
. boiling; we call water in this state "superheated". A superheated
}:.
. liquid is one particular instance of a metastable state of matter. 1In
" thermodynamics, the stable states of matter are separated by equilibrium ;-‘
:E lines in pressure-temperature coordinates. Matter that starts from a b
o ]
:J . 4
Q.) 9
Q.J L |
o {
4
4
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stable state and transgresses an equilibrium line without phase

conversion enters a metastable state. How far the state deviates from
equilibrium is characterized by the depth of penetration--the
corresponding temperature or pressure difference. A metastable state
can survive for a very long time even under large variations in the
thermodynamic parameters. On the other hand, the metastable state may
revert to a stable phase if that phase (like vapor bubbles in the above
example of superheated water) is introduced in some way into the

metastable state.

Generally, phase transitions can b2 either of two types. The first
type is homogeneous nucleation. This happens if the nucleus of the new
phase arises spontaneously due to thermal fluctuations and
intermolecular interactions. But usually the phase transition starts at
the walls of the container or on foreign inclusions. This type of
process, called heterogeneous nucleation, requires a much lower degree
of superheat [3]. Therefore, one expects that a difficulty in
experimental studies of superheated liquids is the prevention of
heterogeneous nucleation. Metastable liquids are of interest in fields
like molecular physics and in problems such as the study of the initial
stage of phase transition, where the interfacial or surface tension is a
very important parameter. The vaporization of superheated liquids may
be explosive in character. One of the motivations for this work is that
tﬁe unintentional contact of a cold liquid, like liquified natural gas

(LNG), with a much warmer stable liquid, like water, may cause dramatic

vapor explosions [4]. The interfacial tension may be needed in modeling
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this phenomenon if the superheat mechanism is assumed to be the

initiator of the physical explosion.

1.4 Acoustic Levitation

To measure the interfacial tension between water and a superheated
liquid; most of the commonly used techniques have to be ruled out
because of the involvement of solid surfaces which would trigger the
vaporization of the superheated liquid. The idea of oscillating drops
seems to be the natural choice. If we can put a drop of a superheated
liquid (say a hydrocarbon) into an immiscible "host" liquid (say water),
then the host will act as a very smooth and clean container for the
drop, thereby reducing the probability of the presence of solid
heterogeneous nucleation sites. If a hydrocarbon drop oscillates in
water, then the interfacial tension which provides the restoring force
in the interfacial disturbances could be inferred from some measurements

of thg oscillation.

The method which we use to introduce a superheated hydrocarbon drop
into water will be described in chapter 4. But, how do we excite the
drop into oscillation and take measurement of the oscillation? Acoustic
levitation is a very appropriate technique for this situation [5]). A
strong acoustic standing wave can be established in a host liquid, water
in this work, and produce an acoustic force on an immersed drop. By
adjusting this force to balance the gravitational force on the drop,

acoustic levitation is achieved. Several features of acoustic
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_ﬁ} levitation are particularly useful in this experiment. First of all,
.’:\
2 ‘ll the host water is a very good container for the superheated drop as
{
3?: mentioned above. Secondly, the drop can be held in water very steadily
i‘.‘\ .
‘SRS . , L I : .
AN ;- in a certain position. In the traditional method of oscillating drops,
s
' n measurements have to be made while the drops are rising or falling. So
}J"E acoustic levitation allows accurate measurements of the drop's size and
}3 r oscillation frequency with comparative ease. Furthermore, another
NN
PR P

acoustic wave can be coupled into the system, providing a means to

excite the drop into oscillations without touching the drop with any

o e
42 2 4 A

”

solid object.

00, 8 gy
ettt s a
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:éf ;: The acoustic force exerted on a levitated drop is a known function
;:; h of the densities and compressibilities of the drop and host liquids. By
f“'ii a simple technique of comparing the voltages needed to levitate two
%; -~ drops of different liquids, one as a reference and the other one as an

. s
tﬁ ;: unknown, at the same position, the parameter '"compressadensity' of the
by

unknown liquid can be obtained providing that the preperties (density

|
‘
N ]

and compressibility) of both the reference and host liquids are known

-~

;§:5§ [5]. Compressadensity is a known function of density and adiabatic

= - compressibility as expressed in Eq. (60), therefore, if we know the

Eﬁ ;? density, then the compressibility can be calculated. This

SE 3 compressadensity of a superheated liquid can also be obtained when the
iif interfacial tension is measured. 1It, too, is difficult to measure by
i; tk other methods and provides additional thermodynamic data in temperature
2% regimes where little data exist (e.g. [6]).

- '».7' q-._~. . . l.".~ ~ -“ ;-' ." .‘ '~.‘ 4\' .'_-- o '_. '. - u‘ T
.1.;;;:1;g;1;3;;L3Lm;k;x;\4hnh}x;A-g.s-%;xﬁai



A ow -

o
5
4

3 :

!

ti 1.5 Oscillations of a Spherical Drop

. To evaluate the interfacial tension between a levitated drop and its

55 ) host liquid, we need a model relating the interfacial tension with other

"

:; parameters, such as the oscillation frequency, the size of the drop and

. the densities and viscosities of the drop and host liquids. The

E equilibrium shape of the drop should be approximately spherical, since

,E the gravitational and acoustical forces in this experiment are

. insignificant compared to the interfacial forces. For the frequencies

:: and the drop deformations in this work, the drops behave incompressibly.

‘ﬁ Therefore, the disturbance of the interface is accompanied by the drop's i; ;

-

¥ shape oscillation about a spherical shape without volume change. The i
J RN
?‘ quadrupole mode (alternatively prolate and oblate), which is the N ;
"1 simplest mode of shape oscillation, is studied in this experiment.

2

§ The small oscillations of a liquid mass about its spherical

'; equilibrium shape was derived by Rayleigh [7]. Lamb generalized the

>y problem by supposing that the liquid drop was surrounded by an infinite

"

? mass of another liquid [8]. The liquids were assumed inviscid by both
;; authors so that viscosity did not enter their expressions for the

- oscillation frequency. Lamb also discussed the effect of small

i viscosity on the small oscillations of a mass of liquid about the

2 spherical form; no host liquid was included in this calculation [8].

ﬁ Miller and Scriven [9] did an analysis of small oscillations of a

Q viscous fluid droplet immersed in another viscous fluid. The frequency

j and rate of damping of free oscillations were derived for arbitrary

E values of the physical properties of the fluids as well as interfacial

.
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viscosity and elasticity coefficients. Marston [10] independently

derived the same general results for free oscillations, and found a new
term to correct the decay time. The phase-frequency relation for forced
oscillation was also established for the first time in this work of

Marston.

On the experimental side, Marston and Apfel have measured the
interfacial tension between water and p-xylene [11]. The p-xylene drops
were levitated in water and excited into quadrupole shape oscillations
by acoustic forces. The oscillations were detected by a rainbow
photometry technique which utilized light scattered by a drop at the
scattering angle normally associated with the rainbow. The interfacial
tension obtained was 4% lower than static measurements with an
uncertainty of about 10%. Trinh, Zwern, and Wang [12] have done
experimental studies of drop oscillations with emphasis on the
frequencies of the first few modes and the damping constant for the
fundamental (quadrupole) mode. They used a slit and the shadow of the

uniformly illuminated drop to detect the oscillation.

Viscosity, which causes energy dissipation, should relate to the
damping of the drop oscillation. In his theory, Marston gave a relatien
between a measured damping constant and the viscosities of the two
liquids, though the experiment data for p-xylene drops in water did not

show very good agreement with it [11].
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I 1.6 Fowkes' Equation for Interfacial Tension
FN
&0V
There is a need for a theory that predicts the interfacial tension iﬂ
1:2 between two liquids based on some other properties such as the surface -}
i o S
S tensions of each liquid against its vapor. Unfortunately, there has not
S been a theory that can be satisfactorily applied to all different cases. !?
s
DS Here, we briefly introduce a semi-empirical model developed by Fowkes
o -3
e -4
e [13] for water-hydrocarbon interfaces. Fowkes' model has been widely nd
2 used, though it is also criticized by some people (e.g. [14]). -
133
&
& .,: ..
% The interfacial tension OaB between liquid A and B is the work :3
:ép needed to expand one unit area of the interface by bringing molecules A
2
:}q and B from the interior to the interface. It may be regarded as the sum
% of the work for overcoming the cohesion between similar molecules of “aq
e each liquid minus the work done by adhesion between the two different
~
‘.'f: K
:? species across the interfacial region. So 2
~ -
,',,:_: - + -
) %8 - % * 9% W - v
A where W, is the work done per unit area by the adhesion or, W
<-. ’
ﬂﬁﬁ equivalently, the increase in free surface energy upon separating the _j
T -~
W interface AB. There are different kinds of intermolecular forces such
. as the London dispersion force, dipole-dipole force, and hydrogen N
s
" bonding. For the water-hydrocarbon system, Fowkes assumed that the
L)
N A -
N interaction between water and hydrocarbon molecules is only due to the n
o dispersion force, since the hydrocarbon molecules are non-polar. The :
P geometric mean was applied to give W ., so that "
o
=0, + o, 20,0 0" (1)
. %H - % T % "% ° %H -
‘a,:.
.::\.: -
s
*
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- where the subscripts W and H represent water and hydrocarbon K
,'-’v .:
. Il respectively, and the superscript d stands for dispersion part of the i
i'. -
ot
- intermolecular force, For hydrocarbons oHd = oy- For water Oy = owh +
5
A
.
» - owd where the superscript h denotes the intermolecular force due to q
'ﬁ -: d ?
g hydrogen bond. The value of oy Was given as 21.8%0.7 dyne/cm according i
Y ;
o " to Fowkes' calculation based on the literature data of the interfacial
3 g] tensions between water and each of eight kinds of hydrocarbons.

S H

<

¢ L.
ﬁ'j% The data obtained in the experiments described in this manuscript

- will provide additional tests of the applicability of different theories

\-f‘ ‘::
P " of interfacial tension, such as Fowkes'. It should supplement the

’x

existing interfacial tension data in a region never before investigated,

>

and could in the future be useful in the development of more accurate

;3 models of liquid-liquid interfaces.

. 1.7 Purpose and Scope

- The purpose of this study is to obtain experimentally the interfacial
q A tension between water and each of three superheated liquids, butane,
a $Q isobutane, and propane, at room temperature and atmc::heric pressure.
"B The data and method of this work may have applications in different
-; areas. For example, as discussed before, they may be important in
ﬂ .. modeling the early stage of the phase transition (vapor explosion) of
d ‘o
L these superheated liquids in contact with water. Also the data may be
! 5“ useful in testing or developing models on interfacial tension. 1In

P

addition to interfacial tension, measurements of the compressibilities
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ifﬁ of the superheated liquids will be reported, thereby providing data on
this thermodynamic property previously unavailable in the literature. :i
>
X
5 The technique developed for this experiment is based on the shape
0 \)
oscillations of one liquid drop in another liquid--the host. The method -
i: developed by Marston and Apfel [11] has been modified to fit this
‘.
ﬂ: special circumstance and to improve the accuracy. The detection of the .
drop's oscillation is adapted from the work of Trinh, Zwern, and Wang
~% ':
r.d -~
B A simplified model for the quadrupole oscillation of a drop in =
s .
.f- another liquid will be presented in chapter 2. The purpose is to reveal T
X the physical nature of the problem more explicitly while appealing to
less sophisticated mathematics. The simplified model will also be [
>
e Y
i: . . compared with the previous theories.
xY
In the next chapter, we begin with a review of the previous i-
.is theories on the shape oscillation of a drop. A simplified model is then
S e
J developed. This chapter ends with the equations needed for the -2
ie
el
‘ compressadensity measurement employing the established acoustic -
:% levitation technique. In chapter 3 and 4 we describe the experimental -
:¥ equipment and procedures respectively. Then we present and discuss the }2
-_ experimental results in chapter 5. Finally, chapter 6 will include a
summary and conclusions of this work.
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3 !g interfacial tension can be simplified and described as a drop, which is
! immersed in another fluid and has a spherical equilibrium shape,
.I "-
b -, undergoes shape oscillation with small amplitude, under the following
. assumptions:
\‘:
-V 1) The gravitational force and the levitational acoustic force on
3 the drop balance each other, and their effects on the equilibrium shape
3 of the drop are negligible compared with the interfacial tension.
o q:'
¢ .\'
. 4
l
. i - 13 -
o
RN AN T TN L AL S e e e i e e e la e e e e
L] A L4 > A * v - PP I T P I I IR D TP AL TR ST I L S SV S

.,
L

RN
AR

Chapter 2

THEORY

In this chapter we discuss the theoretical model which we use, in
conjunction with experimental measurements, to determine interfacial
tension. We first describe the problem and basic assumptions. We then
review several previous theories for the oscillation of a drop in
another fluid. Most of this chapter is devoted to the derivation of a
simplified model which we developed for computing the damping of a
freely oscillating drop and the phase-frequency relation of the forced
oscillation of a drop in its quadrupole mode (section 2.3). The chapter
ends with a brief review of equations used in the acoustic levitation

technique for measuring compressadensity.

2.1 Problem and Basic Assumptions

The physical phenomena of the method of oscillating drops for measuring
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Therefore, the drop has no steady motion relative to the host fluid, and
the drop is spherical at equilibrium.

2) The drop behaves incompressibly; thus there is no volume change
but only shape change accompanies the oscillation.

3) The interface is free from surface active contaminants, and the
interfacial tension is a constant, uniform value.

4) The amplitude of the shape oscillation is so small that the
response of the drop-host system is linear with the driving force.

5) The liquids of the drop and the host are immiscible, so that
there is negligible mass transport across the interface. The interface
is so thin (see section 1.1) that it may be considered as a
two-dimensional discontinuity; the physical properties of the fluids on

each side of the interface are uniform.

2.2 Previous Theories for Shape Oscillations of a Drop

For analyzing the above problem of an oscillating drop in a host,
several previcus theories are relevant and are briefly reviewed in this
section. We first review some theories in which both the drop and host
liquids were assumed inviscid. We then review some theories in which

small viscosity of both the liquids were assumed.

2.2.1 Drop and Host Liquid of Negligible Viscosity

2.2.1.1 Resonance Frequency
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Rayleigh [7] investigated small oscillations of a liquid mass about its
spherical shape of equilibrium, and obtained the resonance frequency
m(n-1)(n+2)o 1%

.
w =] | . (2)
L pR3 4

where w is the angular frequency, n is the mode, ¢ is the surface
tension, p is the density of the liquid, and R is the radius of the drop
at equilibrium. The host medium and viscosity were not considered, which
may be an acceptable approxim;tion in studying, say, a water drop in

air.

Lamb [8] later discussed the small oscillations of a liquid drop
about its spherical form, and generalized the question by supposing that
the drop is surrounded by an infinite mass of another liquid. He
obtained the following resonance frequency:

r n(n+tl)(n-1)(n+2)o 1%

w* = | I (3)
L {(n‘l'l)pi + npo}R3 4

where w* is the angular frequency, n is the mode, o is the interfacial
tension, Py and Py are the densities of the inner (drop) and outer
(host) liquid respectively, and R is the mean radius of the drop. When
Po is negligible compared with Py Eq. (3) is equivalent to Egq. (2).

The viscosities of the two liquids were ignored in the derivation of Eq.
(3). The calculated values of w* are higher than the measured resonance
frequency, for example, by about 10% for a p-xylene drop of mm size in

water [11], where both liquids are similar in density and in viscosity.
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5 2.2.1.2 Damping
~ -
- Lamb [8] also discussed the effect of small viscosity on the small -4
A osaillation of a liquid drop. Assuming that the motion is irrotaticnal
:i and the velocity potential of inviscid flow is applicable, he calculated
- the energy dissipation and gave the damping constant: ;?
:‘: . R
o 1 R
3 - , (4)
b s (n-1)(2n+l) v
v where s is the damping constant and v is the kinematic viscosity of the B
o liquid of the drop. The damping constant is defined in such a way that -
5)
:} if A is the amplitude of a damped oscillation, t is the time, then A « -
-
x: e-ts. Eq. (4) ignores the host medium, which is reasonable if the host .
I‘ ‘n.
:: is a gas of negligible density and viscosity. "
o
. o
> Lamb also derived the damping for a spherical bubble in a liquid "
B .
. with viscosity v by a similar method:
AN
-~
Y 1 R2
-= . (5)
- s (n+t2)(2n+l) v !!
‘%3 For a quadropole mode, n=2, this equation gives an s that is four times _
4 .
- the s of Eq.(4). 7
T e
ot 2.2.2 Drop and Host of Viscous Liquids :;
.\‘ -‘
"{b Miller and Scriven [9] gave a rather comprehensive analysis of a viscous 2
- ] --'
3 drop immersed in another viscous fluid, by which the frequency and rate
~ <.
- of damping of free oscillations can be calculated for arbitrary values af
o
s i
A Y
’
‘s
T
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A

- of drop size, physical properties of the fluids, and interfacial

,n". "
a s’

~
..

' viscosity and elasticity coefficients.

Marston [10] independently derived similar results for free

a oscillation of a drop for a situation in which both drop and host

:
?
!
’1
y
i
|

liquids have small viscosity so that the "viscous wavelength" at each

side of the interface is much smaller than the radius of the drop. He

N
found a new term to correct the decay time for free oscillation. Also,

>
O for the first time, Marston derived the phase-frequency relation for
i "
)!
‘o forced oscillation of a drop immersed in another fluid. In his theory,
N

- the damping constant for free oscillation is given as
A .
! s = (41)w*” + %Y - he? . (6)
s
o For forced oscillation, the phase-frequency is given as

3/2 3

- l tan = (aw /2 4 1)/ (w2 - aw’? - w?) . (7)
1‘ ~. Here,
QIR
o 1
A 2
N (2n+1)2(u u pip,)

- a = . (8)
"“J. a 55 11 + l"z
:.:. 2 RI‘[(ulpl) (uopo) ]
.:_: -
Y 2. 2 2 - (n-
- . . = (2n+1){2(n 1)'|,1i Py * 2n(n+2)uo Py * uiuo[(n+2)pi (n 1)p°]}
i ~ (9)
K~ -~ L 1

0 2 % 212
: r. RT[(uyp )" + (up ']
2 and
] .p:

“ =
i - r (n+1)pi +np . (10)
. In the above equations,
1500
‘: > s = damping constant of the free oscillation (see Eq.(4)),
P
LIRS
s a w* = Lamb's natural frequency, as given in Eq. (3),
j Z = the phase of the displacement relative to the

4
d S,
‘j < driving force in the forced oscillation,
4
L] =

the frequency associated with phase %,

'ﬁ w
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n = the mode,

p; = the density of the inner (drop) fluid,

Po = the density of the outer (host) fluid,

uy = the dynamic visc;sity of the inner (drop) fluid,

u, = the dynamic viscosity of the outer (host) fluid, and

R = the radius of the drop in spherical form.
Marston further approximated Eq. (7) by applying Newton's method of
iteration and obtained the following expressions:

w(909) = u* - (a/2)u*? + a2/4 (11)

= w* -5 ,
w( &) = w(90%) - s/tanf + «2/(2tang)? (12)

= »(909) - s/tang
Egs. (11) and (12) were used directly in calculating the interfacial
tension in the experimental work done bf Marston and Apfel [11] in the
following way (also see section 5.2). The damping constant s was given
by Eq. (12) with measured w(£) and w(909), and w* was then obtained via»
Eg. (11). With this w* substituted in Eq. (3), the interfacial tension g

was obtained.

2.3 A Simplified Model for Shape Oscillation of a Drop

Egs. (2) and (3), though straightforward in derivation, can not
accurately describe the oscillation of a ligquid drop in another host
liquid due to the neglect of viscosity. On the other hand, Eqs. (6) and
(7) show much better agreement with exXperiments, but the derivation is

rather lengthy and complicated. With the purpose of revealing the
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physical nature of this problem more explicitly and appealing to less
sophisticated mathematics, we developed a simplified model. The basic

idea and the derivation are described in this section.

2.3.1 Analogy with the Basic Mass and Spring System

Although the motion of the small oscillation of a drop in a host fluid
in a certain mode is three-dimensional, there is only one degree of
freedom. Let us compare this drop-host system with a basic mass-spring

system.

2.3.1.1 Resonance Frequency of a Mass and Spring System

For an object of mass m acted on by a spring of spring constant k,
without driving force, the equation of motion is
d2x
m— + kx =0 ,
dt2

where the x is the displacement of the mass relative to its equilibrium

position. The natural frequency is then

w = (k/m)%. (13)

When this mass-spring system is subject to a resistive force,
proportional to velocity, and is driven by a force F cos(wt), the

equation of motion becomes:

d2x dx
m— + b— + kx = F cosut. (14)
dt2 dt
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( - angle, has the same form as that given in Eq. (13): ;j
o »
e w(90%) = (k/m)* . (15)
.-: Notice that the damping term b does not appear in Eq. (15), therefore, -
O P =
e
the spring constant k can be obtained by knowing only (90°) and m. The
-':.‘:-:: phase-frequency relation may be illustrated more explicitly by an q
e
schematic impedance diagram shown in Fig. 2.1(b), accompanied by a -
<o -
- vector representation of Eq. (14) in Fig. 2.1(a), and with a typical
n\ - . . Y . T
A phase-frequency diagram in Fig. 2.1(c) {15]. In Fig. 2.1(b), the -:]
o |
::-j- component due to damping, jwb, has a phase angle of 90%; this fact is .
responsible for the resonance frequency, w(90%), being independent of J
f:::'.;j the damping coefficient b. I
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Geometrical representation of Eg. (14).
Impedance diagram for the system described by Eq. (14).

Phase vs. frequency for the system described by Eqg. (14);
w(90%) is given by Eq. (15).

Schematic impedance diagram for the shape oscillation
of a drop in another liquid.
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Rods 2.3.1.2 The Shape Oscillation of a Drop in Another Liquid R

%j . Let us consider the analogy between a mass-spring system and a drop-host Ei

system. The interfacial tension, which we want to measure in the

i}?; experiment, is equivalent to the spring, providing the restoring force.
r\Q: The equivalent mass of the drop-host system should be a function of the
:f:‘ densities of the two fluids and the size of the drop. The damping is
;;js due to the viscous dissipation in tpe drop and host fluid.

e For the free oscillation of a drop-host system without damping, the
oy

;Eﬁ natural frequency is given by Eq. (3). For the quadrupole mode, n=2, we
'ji% have

.'. r 240 1%

o ot = | ———— | . (16)
i Egs. (16) and (13) show clearly the analogy between the drop-host system ii

o
&t
el

and the mass-spring system. However, when the viscosity of the two

l’l
8 4y
e
PRART RN
T

fluids is non-negligible, due to the nature of the viscous damping in

£ '~‘ 3
- sl
Yl

S

PN

liquid, the resonance frequency w(90°) is no longer the same as the u*

oy
l.‘.
e |

o in Eq. (16). The w(90%) is not only a function of stiffness k and mass

Sty
'
AN
Tty

m, but also a function of viscosity,

S N

s w(90%) = function (k, m, viscosity). -

- 1':. ‘:-‘

::: The above function has to be derived, which is the essential goal of our )

'&ti simplified model. The impedance diagram for a drop-host system may be -

something like the one shown in Fig. 2.1(d).
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2.3.2 Velocity Profile for an Inviscid Drop in an Inviscid Host

For simplicity, all the following expressions are for ovscillations in
the quadrupole mode only. Nevertheless, the method can be applied
similarly to other modes. Spherical coordinates with polar angle 6 and
radius r are used to describe the motion. Due to the symmetry with
respect to the vertical axis through the center of the spherical drop,

expressions are independent of the azimuthal angle.

For small quadrupole oscillation about a spherical form, the radial

position of the interface, r, at any instant may be given as [8] [7]:

r = Ry + e¥,(8)sin(wt). (17)
where
r = the radial position of the interface relative to the center
of the equilibrium sphere,
R = the equilibrium radius,

Ry = a value close to but not equal to the equilibrium radius R

r 4:2 1‘1
=R |1+ | (18)
L SR2 4
¢ = the amplitude of the oscillation,
w = the angular frequency,

Y,(8)= spherical harmonic function of order 2
= 3cos2g-1.
The spherical harmonic function of order n satisfies the
Laplace equation in the following way:

2,0 - 2 -n-1 -
va(r Yn) 0, v23(r Yn) 0.

T T T8 TYTE TS T W T w “w T w o= g —,1
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f:' Assuming the flow is inviscid, we have the velocity potential which
Qg\'-
LR .
i is determined by the boundary condition in Eq. (17), at the internal -ii
N points [8],
.3§
;:}: wR r?
% $; = - — — & ¥,(8) cos(ut) , (19)
A 2 R2 ?;
T R
f.'l *
5 and, at the external points,
2 WR R3 S
, i ¢, = — — £ ¥(8) cos(ut) , (20) )
fﬁ 3 r3 =
_%; We use subscripts i and o to denote the terms related to the inner ‘
- (drop) and the outer (host) flow, respectively. =
e,
N 5
'q"’\.‘ :
Y g
o The corresponding velocity distribution is readily obtained from
\ .
the velocity potential, ii
.
' T=use +usd = -y (21)
fg 4T e 88 o -
W where the subscripts r 'and 6 denote the components in the direction of r
53 and 0 respectively. From Egs. (19), (20), and (21), the radial and i\
2j; tangential component of the flow velocity in the inner and outer region ‘-
s -
N are:
_w -
) u., = (1/R)swr(3cos2p-1)cos(ut) , (22) ?i
o
j: uei = (=3/2R)ewrsin(20)cos(wt) , (23)
-
:{ U = (R/r)%sw(3cos29-1)cos(wt) , and (24) 15
2:5' ‘
v Uge = (R/r)*eusin(28)cos(ut) . (25) .
8
:f Fig. 2.2 shows a schematic diagram of the streamlines at a certain
?ﬁ instant when the drop is moving from a spherical shape toward a prolate
;:‘,
[~ shape. -
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‘;I*f For very small amplitude s, the velocity at the interface may be
e . considered as the value of the above functions evaluated at r=R. Notice
!
..'.,_ L4 . . . . .
A that the radial velocity is continuous across the interface as expected,
l\ . ’
DA
S | .
-‘-\] — = = = 2q-

| Uri Uro sw(3cos2g-1)cos(uwt) , (26)
" at|r=R
A
‘?: - where U ., and U are the values of u ., and u evaluated at r=R
e o ri ro ri ro
RS
. respectively. But the tangential velocities at the two sides of the
R .
SOy interface are opposite in direction and have their magnitudes related
git__ as:
= a8
. == (3 -

e Uel ( /2)Ueo (27)

A
.

Y
“
‘e
It
[]

= (3/2)swsin(28)cos(wt) ,

where U . and U are the values of u.., and u evaluated at r=R
61 go 61 8o

| o

A.‘J
o respectively.
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Figure 2.2: Schematic stream line pattern resulting from gquadrupole !‘
oscillation of a drop in an host; inviscid flow was assumed.
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2.3.3 A Modified Velocity Distribution with Small Viscosity

The velocity distribution predicted by the velocity potential of
inviscid flow, as shown in Fig. 2.2, is found to agree with the outcome
of a qualitative photographic study done by Trinh, Zwern, and Wang [12].
On the other hand, the discontinuity of the tangential velocity across
the interface can not be true physically. This velocity "jump'" has to

be smoothed out by viscosity.

We assume the viscosities of both inner and outer fluid are small,
so that the boundary layer thickness (or viscous wavelength) at each
side of the interface is smaller than, say,.l/lo of the radius of the
drop. Then we may model the flow distribution in an ad hoc way by

combining a thin boundary layer at each side of the interface with the

potential flow, derived on the inviscid assumption, at all points other

than the boundary layer. Based on this approximate flow distribution,

we compute the damping rate and the phase-frequency relation.

To consider the flow in the boundary layer around the interface, we

take a rather simple approach. We first estimate the tangential
velocity of the interface, u, and then consider the boundary layer at

each side of the interface separately as a consequence of an enforced

oscillation of a solid boundary.

2.3.3.1 Tangential Component of the Interfacial Velocity

|
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>
,Cj If we assume that there is no pure rotation associated with this
{;' oscillation, then the interface should oscillate in phase with the —
1 ,‘
> R
N potential flow, as does us--the tangential component of the velocity of
:.'; N
. )
~ the interface. Physically, we know that the amplitude of US must be in
g between U_. and U, . The ratio U /U_ . or U_/U__ should be determined by
- 01 go s’ 81 s’ "go
: the following two factors: 1) The momentum carried by the "external
stream", which is a function of the density and velocity. 2) The
:; diffusivity of momentum, that is, the viscosity.
b
Y Assume that for the tangential velocity in the boundary layer the
A\
= gradient in radial direction is much greater than the gradient in
$Q
~O
" tangential direction. 1In other words, the boundary layer thickness is
- much smaller than, say, a quarter of the circumference of the space.
-,
:j Then, locally, we may approximate the flow in the boundary layer as a
.4
~ stream of viscous, incompressible fluid over a parallel stream of
- different density and viscosity. Also, to a first approximation, we may
o
- use Uei and er as the "external stream velocities". Under these
o
approximation, the results of the work " The Velocity Distribution in
ﬁ: the Laminar Boundary Layer between Parallel Stream" done by Lock [16]
- can be applied to compute the U_ as follows:
)
U, A+ (8/u)
c:— = (28)
. +
Ug; 1 (8/u)

(29)

RIAFYOR (YN AND

§ ¢ 1.425\ + 0.858 %
|
1

i L 2.283\pu

4
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er 2 6o Po Yo
where \ = — = - - (see Eq. (27)), &=—, p=—, y=— ,
Upi 3 5 pp oW
§ denotes boundary layer thickness, p denotes density, and y denotes
dynamic viscosity. The value c given in Eq. (28) depends upon the
. velocity, density, ard viscosity of the two parallel streams, as
ou! . . .
- - expected®. With a given Us' the boundary layer at each side of the
I
interface can be modeled as the flow over an oscillating boundary, as
A
- ::3' described in the next subsection.
AN
N
i 2.3.4 Damping of Free Oscillation
»-‘.j::, - In this subsection we discuss the damping rate of the free oscillation
.- of a drop immersed in another fluid, making use of the flow distribution
i l described in section 2.3.3. The resultant damping rate is expressed in
DA
:.‘,j :ﬁ: terms of known parameters including the inner and outer density, Pi and
! Po ’ the inner and outer viscosity, uy and Uy the radius of the drop
‘:::: o R; and the oscillation frequency w. The result will be used in the
” derivation of phase-frequency relation.
Y
X
* ®* We give two extreme cases as examples for Eq. (28)
- . . - _ . -5
LT a) For a water drop in air, \=-(2/3), pu-(pouo)/(piui)-ZXlo ,
:.:. i (8/u)>>1, then c=1.0, which means that Us is very close to Uei' the
E" ;f-' tangential velocity of the water surface.
|
b) For an opposite case of an air bubble in water, A\=-(2/3), pu=6x104,
'-:j :.'< (8/u)<<1l, c=\=-(2/3), which means that U, is very close to er, the
-~
-:} “~ tangential velocity of the surface of the water host.
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:'.-:~'_< The damping rate is a function of the instantaneous total energy of
PN
™ the system and the rate of dissipation at that instant, as governed by —.-.
" :: the following expression: .
N d =
o — (total energy) = (rate of dissipation) 8
dt

)
:::'_- In the problem of an oscillatory drop in a host, the total energy T.E.

.:,:

o is the sum of the instantaneous potential energy P.E. and kinetic energy
>N

K.E. The potential energy is a function of the interfacial tension, and
'.‘:.-“:j the change of the interfacial area. The kinetic energy is a function of
_l:-j: the density and the flow distribution. The energy dissipation is due to .

"- '..

- -
- the viscous dissipation in the boundary layer near the interface and in -
.",(.'j-: the potential flow at the other points. ;

X :
I
Y
o’ -y

The viscous dissipation may be considered as the sum of the o
o following four parts: .
X
‘;, 1) the dissipation in the inner irrotational flow, A
Py !‘

\ 2) the dissipation in the outer irrotational flow, |
::::: 3) the dissipation in the inner boundary layer, and
AN

::{ 4) the dissipation in the outer boundary layer. N

- -
.::::: 2.3.4.1 Dissipation in the Inner Irrotational Flow ol
-_ The dissipation in a spherical mass of fluid with radius r, calculated ___
— on the assumption that the motion is irrotational, is, by art. 355 of

(el.

A u? 3 -
.. u JJ— r2dQ = yr2 — 1 u2dq , (30) -
:-:.: ar ar
i &~
< y
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) .
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. where u2=ur2+uez, Q denotes the solid angle, and dQ=27singdf. Velocity

u can be expressed in terms of velocity potential ¢, and the following

AR relation is applied,
T 1a 3¢
| JfuddQ = — —/f¢—r2dQ . (31)
N r2 ar  ar
.::\.
" - We substitute Egs. (19) and (31) in Eq. (30), take the time average over
AN
E AN
WOR one period 2n/w, which yields for the cos2(yt) term a result of %, then
s evaluate Eq. (30) at r = R. The result is
N
~:: - W 2n/w 3u?
A — dt p/f—r2dQ = 8mu e?Ru? . (32)
~ 29 t=0 ar
::;:: _\ The above expression gives the dissipation in the irrotational flow in
~.::, the drop, on the assumption that the amplitude of oscillation and the
L . boundary layer thickness are much smaller than the radius of the drop.
';'J
'.\- \E
I
':.::','_ - 2.3.4.2 Dissipation in the Outer Irrotational Flow
':::‘ The same method can be applied to the irrotational flow outside the drop
e
'_-:‘ " and gives the rate of dissipation, averaged over one period 27/y as:
f::- T
2R2
o - (64/3)1ru°s Rwé . (33)
,;'.:f' _“:: 2.3.4.3 Dissipation in the Inner Boundary Layer
2
:-':‘ - In an oscillatory boundary layer, the time average, over one cycle, of
:;:;: ’ the rate of dissipation in the boundary layer per unit area of the
-:‘:ﬁ -
4 ‘2 surface (boundary) is, as given in [.7],
.<: . uu2
KORS , (34)
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where U is the amplitude of the oscillatory velocity of the irrotational
flow outside the boundary layer (external stream velocity), and § is the
boundary layer thickness. The boundary layer thickness goes up with the
viscosity (diffusivity of momentum) and with the time that the diff;sion
of momentum takes place. We approximate the boundary layer thickness
as: ¢S=(2\‘»/m)!E [17]. Suppose the boundary layer thickness is much

smaller than the radius of the drop, so Eq. (34) is applicable and the

amplitude of the "external stream velocity' may be approximated by

u .-US. US is the tangential velocity of the interface and Us=cU

8i (see

fi
Eq. (28)). On making use of Eqs. (23), (28), and (34), integrati .g over
the interface r=R, we have the rate of dissipation in the inner boundary
layer as:
2 i 2 2, c2p2,>!2
u(l-c)2[(3/2)swsin(20)] 12m(1-c)2y, £2R%y
17 da = . (35)

1 1

% %

2(2v,/u) 5(2v;)

2.3.4.4 Dissipation in the Outer Boundary Layer

Again, assuming that the outer boundary layer is much thinner than the

radius of the drop and the amplitude of the external stream velocity may

be approximated by U -Us, making use of Egs. (25), (27), (28), and

6o
(34), we apply the same method as that in the above paragraph and obtain
the time averaged rate of dissipation in the outer boundary layer
2.2,2(g1 2, £2R2,0/2
u°(1+1.5c) £2w2{(sin2g)? 16w7(1l+1.5¢c) M E Ry
I da =

(36)
2(2\)i/w)’2 15(2\4»0)/2

N

.
»
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2.3.4.5 The Total Energy of the Oscillation

‘;u .! The total energy at any instant is_the sum of the instantaneous

‘;3 - potential and kinetic energy. The kinetic energy reaches its maximum
JN value, while the potential energy is (set) zero (see section 2.3.5.2),
_:f !! at, say, t=0 in Eq. (17). We take this maximum kinetic energy as the
fﬂi - total energy of the drop-host system in oscillation. Kinetic energy is

a function of velocity and, therefore, is a function of velocity
!

F- . potential [17], j
ool |
[+ K.E. = %p [[¢UeRdA

,:-."; ':_ .

l—'-' - = /2p ,[,[¢UrdA .
"'!
FSQ Q' The velocity potential with an assumed amplitude is given in Eqs. (19)
i:g and (20). Based on the same velocity potential, we calculated the rate
A
¢ l' of dissipation in the previous section. Assuming that the interface is
:i:fﬁ approximated by r=R, and substituting Eqs. (19) and (20) in the above

‘g Y

d - ,
b 3 equation, we have
)

" . = 2R3 2

...‘.z . K'E')inner,max (4/5)me2R piws - (37)
‘-_,,,
Y3 -
o A Similarly, we have
1 g :\

> = 2R3 2

N - K'E')outer,max (8/15)we?R3p _w? . (38)
;{; ' Therefoce, the total energy is
e
.;z ‘.

ol T.E.) = (4/15)ﬂ€2R3(3pi + zpo)wz . (39)
L |
‘4 2.3.4.6 Damping Constant
":'T‘i E
i{ If the total energy T.E. = peg?, and the rate of di:sipation is gg2, then
5

N d
-F: ",a _(pez) = - qsz
N - de.
—

by This reduces to
e

R TG K S e S
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. = sue('%)(Q/p)t,

where g, represents the amplitude at the time t=0, and ¢ represents the
amplitude at the time t. If we define damping constant S in such a way

that ¢
S

gne-l when t=1/S, then
(%) (a/p) . (40)

By using the total energy and the rate of dissipation obtained

above, together with the Eq. (40), we have the damping constant S as:

S=8 +S, +5 ., (41)
where
e
(20)) » l/z 1/2
= — - 2
Sb [2.25(1-c) (uipi) + (1+1.5¢c) (uopo) ].
RT
15ui
S. = ,
i
R2T
40u°
S = ;
o
R2T

I =3p, + 2,

where the subscripts b denotes the contribution of dissipation from the
boundary layer, i denotes the contribution from the inner irrotational

flow, and o denotes the contribution from the outer irrotational flow.

Comparing this expression with Lamb's formula, we see that the Si is

equivalent to the s in Eq. (4), and the S° is equivalent to the s in Eq.

(s).
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2.3.4.7 Examples and Comparison with the Previous Theories

We take three examples to illustrate the calculation and to compare the
~ results with that obtained by previous theories and with one set of

experimental data from previous work.

4
i
i
*

N W
s 1) For an air bubble of radius 0.1 cm in water, pi=0.0012 g/cm3,
s ui=0.018 cp, po=0.997 g/cm3, u°=0.894 cp, 0=72 dyne/cm.
(a) By Marston's theory,(see table 1 and 2 of [10])
.h
w*/2m = 148.03 Hz (by Eq. (3)) ,
5 w /2n = 147.9 Hz (by Eq. (11)) ,
::~ L
s = haw*® + %Y - %a?

i = 0.6 + 17.75 - 0.0008

= 18.35 Hz .
5j (b) By Lamb's formula (Eq. (5)),
] v =1y /p, = 0.897 cSt

s = 17.94 Hz .

(c) By this simplified model:
- w /27 = 147.9 Hz (a given value)
= 4
. (pou,)/ (pyuy) = 4.1x10
;; = 0.6667 u U
= : (Ug = eo)

S = Sb + Si + So

& = 0.627 + 0.135 + 17.898

18.66 Hz.

The damping constants obtained by both models are very close, and the

ST X

'''''''
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! simplified model gives a little higher value. The dominant term is due “
to the dissipation in the outer irrotational flow, as should be ’]
: v‘\i' -
Sy expected.
“-'l
I
‘ 2) For a water drop of radius 0.1 cm in air,
_‘".i;.': (a) By Marston's theory,
U
)
o w*/2m = 120.87 Hz (by Eq. (3))
w /2% = 120.81 Hz (by Eq. (11))
e L
T s = hau*® + %Y - %a?
L = 0.376 + 4.498 - 0.00035
—_ = 4.87 Hz
MY 4
N
e (b) By Lamb's formula (Eq. (4))
)
A = u./p. = 0.897 cSt
:_". v = u/py 50U c
s = 4.49 Hz
oo
s (c) By this simplified model,
\.-‘, '
) .‘ .
:-:‘:-’ w/2m = 120.81 Hz (a given value)
-"‘b = 2 4 0-5
'-:I_ (Pouo)/(Plul) = .4x1
2% R
'.; c=1.0 (uS = uei) N
*ﬁ: S = Sb + Sl + S0
e = 0.378 + 4.480 + 0.241
'-'.-' i;
i = 5.10 Hz
:’-::': Again, the calculated damping constant obtained by this simplified model
-, "
(:::: is close to and a little higher than -he calculated value by Marston's
“ theory. The dominant term is due to the dissipation in the inner ®
o
:.Nl -\
Ny
5 'y
. ®
p
2
S S
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R
'Sﬂ:': irrotational flow, as one expects.
{: l' 3) Trinh, Zwern, and Wang did some experimental work on the free
'ﬂj oscillation of a drop in another liquid [12]. One set of their data for
:}i':* phenetole drops in a mixture of water and methanol was compared with the
= theoretical predictions given by Marston's theory and the simplified
.\.': T
A b model, the result is shown in Fig. 2.3. It shows good agreement between
;:ﬁ:ﬂ the data and the calculated values based on both models. This set of
data is chosen because of the small viscosity of the inner liquid, for
~L S
‘:;: ) which R/6i ~ 10. Good agreement is also found between other sets of
’!
\V: :\'I
-~ data and the simplified model even when R/Gi ~ 5, although the
R
SN discrepancy grows as the ratio R/Gi decreases, as we expect. For
-‘\-:
'.'-'i example, in the experiments with drops of mixture consisting of silicon
N . . .
:{h . 0il and CCl, in water host, done by Trinh et al, pi=0.999 g/cm3,
IR '
‘:}: p°=0.997 g/cm3, ui=16.5 cp, u°=0.89 cp, R~0.5 cm, the calculation using

our simplified model gives R/Gi~3, and the predicted damping constant is

o about 40% higher than their measured value.
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. Figure 2.3: The ratio of the experimental to the predicted damping as a
- function of drop radius. The experimental data were taken

52 from the work by Trinh et al. The predictions are given by
" the simplified model and Marston's theory respectively.
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ol 2.3.5 Phase-Frequency Relation in Forced Oscillation
P. As mentioned in section 2.2.1, the phase-frequency relation for forced
tﬁ oscillation is readily obtained if we know each component (both
magnitude and phase) of the impedance corresponding to stiffness,
" : . : : . :
e inertia, and damping, respectively. Here, the impedance is defined as:
;? p driving pressure (associated with quadrupole mode)
e impedance = — = .
A displacement (of quadrupole mode) (42)
N
N :3 Thus, the phase of the displacement is relative to the driving pressure.
- We compute each component of the impedance separately by the
o
M following approach. First, the phase angle is determined by physical
AN
3 reasoning. We then compute, by energy balance or force balance, the
" driving pressure associated with the quadrupole displacement described
<4
P, by r = R + ¢Y,(8)sin(wt) (see Eq. (17)).
| 2.3.5.1 Driving Force
AV,
o
“
: < In experiments described in this manuscript, the drop is driven into
™ oscilletion by a modulated acoustic wave (see section 3.1). Detailed
-
N - analysis of the acoustic radiation force, which is a time averaged
NRE
» second order effect [18], exerted on the interface would require the
o first order pressure distribution of the incident wave in the specific
o configuration of this experiment, and the scattered wave incorporated
v - , . ,
v with the boundary condition at the interface of the drop and the host.
és The normal and tangential component of the resultant iadiation stress

may be obtained by radial and tangential projection; further expansion




N
:::E: of the radiation stress in terms of spherical harmonic functions will
A
ﬁ give the normal and tangential component of the radiation stress a
*:_: ‘ responsible for the quadrupole oscillation [10] [19]. '
L
Yosioka and Kawasima [20] derived the acoustical radiation force on ®
::‘, a compressible sphere, the tangential radiation stress is vanished in
}é their derivation due to the inviscid assumption. Some experiments for
8 measuring "compressadensity" using acoustical levitation technique is
-:: based on their theory, and the results of measurement show very good
‘_“- agreement with the theory [5]. Herrey [21] has shown that the ’
o tangential radiation stress is much smaller than the normal stress at a :3
:E: highly reflecting metallic surface in water induced by a sound beam. 0
}‘ For a liquid-liquid interface, the boundary is relatively "free'" to move .
8 compared with the boundary of liquid-solid interface; hence the velocity i
::;E gradient and the stress at the liquid-liquid boundary would be expected »
S‘.S even smaller. Also, the viscosities of both inner and outer liquids in T
- our experiments are small. In the following calculation, we assume that v
:,.: the tangential component of the radiation stress is much smaller than
" :
-.:E-. the normal component, and the power input due to the tangential ;j;
A -
radiation stress is negligible compared with the contribution of normal -
_:‘ radiation stress. ‘
3
. 2.3.5.2 Impedance Due to Stiffness -
N -
... The displacement of a component of pure stiffness subject to a driving
f force is in phase with this driving force, that is, § = 0. 1In the R
L
problem of an oscillating drop, stiffness is due to the interfacial

- N "-»' . .-"‘n".n" - T —--'----.a~~‘\‘4‘-¥'. ‘Y ‘\"- '.-"- ‘-~‘. -_"-"...“ ." "o ‘-
I WP B B I I . L I R R N "} N T R .‘_.i
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tension, as assumed in section 2.1. We derive the impedance due to
stiffness, denoted by K, in two different ways which employ force
balance and energy balance, respectively, as follows:

1) The fluid pressure is discontinuous at a curved surface of
separation; the pressure differential is
_ -1 -1
P; =P, =0(Ry "+ R ") . (43)

This is Laplace's formula, where R; and R, are the principal radii.

Since we are only interested in the pressure variation accompanying the

quadrupole oscillation, let us set P, = 0 at equilibrium (the ambient

pressure). Then, P; = o(2/R) at equilibrium. The inner pressure P

will not vary with the shape oscillation, since there is no volume
change and there is no mass involved in this discussion. The interface
is described as (see Eq. (17))

r =R + gY¥,(8)sin(wt) ,
which gives [8]

1/R, + 1/R, = 2/R + (4/R2)eY¥,(8)sin(ut) . (44)
Therefore, the variation of P, accompanying the shape oscillation due to
the interfacial tension is, from Eqs. (43) and (44),

P. = - (4/R?)ge¥,(B)sin(uwt) , (45)

o]
where the minus sign indicates that the outer pressure at the two poles
reaches a maximum when the drop is in an oblate shape with maximum
displacement. For this reason, we define the displacement A in the
following way, so that the displacement is in phase with the driving
pressure for a pure stiffness,

A = R-r = - g¥,(08)sin(wt) . (46)
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Since P; is constant, P, equals the driving pressure p. Thus the
component of the impedance due to stiffness is '!
P 40
K= —=— . (47)
A R2
'.!
2) The potential energy, set zero when the drop is in a spherical
shape at equilibrium, equals the product of the interfacial tension and o
the change of the interfacial area. For a small quadrupole displacement
with an amplitude ¢, as in Eq. 17 with t=71/(2w), the potential energy is
(32/5)0e2 [7]. The driving pressure on the interface responsible for ;é
the quadrupole displacement can be assumed to be p = -PY,(8)sin(uwt),
where P is the amplitude, and the minus sign is assigned to give the
correct phase angle as discussed previously (see Eq. (45)). The s

instantaneous power input per unit area is therefore
da o
p — = PY,2(8)ewsin(ut)cos(ut) - (48) -
dt
The integration of the above expression over the interface r=R, and over

the period from t=0 to t=g¢/(2y) is found to be (8w/5)PgR2, which should ~

equal the potential energy, (32w/5)ce?, corresponding to the

=2

displacement A = -¢Y,(8) at t=n/(2w). Hence P = 4gg¢/R2. We therefore -
have

p 4o AN

K:..:__'

A R2 .

which is identical with that obtained via force balance, in Eg. (47). :
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2.3.5.3 Impedance Due to Inertia

The acceleration of a mass is in phase with its driving force, so the
displacement lags by 180" the driving force; § = 180%. Here we compute
the pressure on the interface required to drive a spherical liquid mass
into the oscillation described as r = R + ¢Y,(8)sin(wt). The
calculation is first carried via force balance and then via energy

balance.

1) With the inviscid assumption, the velocity potential is
determined by the boundary condition, as given in Egs. (19) and (20).
Then the pressure variation at both sides of the interface accompany

this potential flow is

3¢, |
= —_— = 2 {
P; T prj | (1/2)p;Ru?e¥,(8)sin(ut) ,
3t |r=R
3¢, |
= —_— = - 2 1
Py ¥ Po | (1/3)p°Rw €Y, (8)sin(wt)
a3t |r=R

The required driving pressure is p = p,

i po, and

P = P;

i~ P = (1/6)Rw?(3p,+2p )e¥,(0)sin(ut) . (49)

Thus the component of the impedance due to inertia, denoted by M, is,

from Eqs. (42), (46), and (49),

o

M=--= jz(l/e)sz(3pi+2po) ' (50)

[~

L
where j is (-1)°.
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It is worth noticing that K + M = 0 when the driving force has a
frequency w that
240 ‘
w? = —_—, (51)
R3(3pi+2p°)

which is the quadrupole resonance frequency for the inviscid situation,

as in Eq. (3).

2) The kinetic energy reaches its maximum value
(411/15)u2R3(3pi+2p0)g2 (see Eq. (39)), when t = 0, and it is zero when

t = 7/(2w). The driving pressure may be written as: p = PY,(8)sin(wt),
so that the acceleration, d2A/dt2 = gw2Y,(0)sin(wt), is in phase with
the driving pressure. For instance, when t = 1/(2w), the driving
pressure is positive and maximum at the two poles, while the
acceleration at the two poles are inward and maximum. Then, during this
period, from t = 0 to t = 7/(2w), the power "input'" is -(8n/5)PegR2 (see

Egs. (46) and (48)). This power input should equal the maximum kinetic
energy, thus -(8n/5)PgR2 = '(4ﬂ/15)w2£2R3(3pi+2p°). We obtain an

expression for P and therefore
w2R
= = 42 —
A 6

o

which is identical with that obtained via force balance as in Eq. (S0).

2.3.5.4 Impedance Due to Viscosity

The question of what is the impedance due to viscosity is equivalent to
the question of what is the driving pressure on the interface needed to

supply the energy dissipation in the motion r = R + £¥,(68)sin(wt).
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1) Lat us first look at the irrotational flow. In the irrotational

F . flow associated with the oscillatory drop, the velocity at every point
is oscillating in phase, since the fluids behave incompressibly. The

viscous stress, which is proportional to the spatial gradient of

» velocity distribution, is therefore in phase with the potential

\_; velocity. Hence, the driving pressure on the interface is in phase with

L)

[

\-'$ the potential velocity and has a phase lead of 90° over the displacement
A = -g¥,(08)sin(wt)

: .I’ lw‘

"“.-:: > The radial velocity of the interface is

gﬁ

NN da

S o — = -gwY¥,(B)cos(wt)

s dt

:.'-_, ,-_" The driving pressure, which is in phase with the velocity, is assumed in

o~ the form

, . p = -PY,(8)cos(wt)

~

:.f: Then the instantaneous power input by the driving pressure acting on the

:n.‘ﬂ "1

o)

o t interface is

t

s da

e A Jip—dA = (16m/5)ewR2Pcos?(wt) (52)

AL dt

\'.i

2o W

e which should equal the rate of energy dissipation. (a) In the inner

i - irrotational flow, the rate of dissipation has been obtained (see Eq.

T

S (32)) as:

P 16my, e 2Rw2cos?(ut)

:-::_ By equating this rate of dissipation with the power input (Eq. (52)), we

Tl

o get an expression for P, P = Suie/R, which leads to B i the component

".-. o

S SATK

o 5 of impedance due to viscous dissipation in the inner irrotational flow,

,_n:') .

o P Puju

. Bpl = — =] (53)

. .
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(b) In the outer irrotational flow, the instantaneous rate of
dissipation is (see Eq. (33)) —_
.
(128/3)1mosszzcosz(wt)
By equating the power input (Eq. (52)) and this rate of dissipation, we
. . e )
have Bpo’ the component of the impedance due to the viscous dissipation -
in the outer irrotational flow,
Bpo = 3(40/3R)u°w . . (54) .
2) Now we consider the energy dissipation only in the boundary <
-3
L)
layer, and compute the associated impedance. The velocity distribution
in the boundary layer may be described as [17]: ;}
iwt . .-
v(y,t) = Ue”™""(1-exp[-(1+j)y/8]) . ;
where Uel""t is the external stream velocity, y is the coordinate normal ’

and relative to the boundary. The frictional stress at the boundary is
the real part of the following expression [17]:

du | U

u— | = u(1eh)— e*¥t
Iy |y=0 6

so this skin friction has a phase lead of n/4 over the external stream
velocity Uei“t. In this problem of an oscillating drop, the external
stream velocity is in phase with the potential velocity, as discussed in
section 2.3.3.1. The tangential component of the acoustic radiation
stress, which is the driving force, though small, has to be in phase
with the skin friction, in considering the balance of tangential stress
on the interface. Therefore the phase of the radiation stress is n/4

ahead of the potential velocity and is 3m/4 ahead of the interfacial

displacement, that is, Z=135%. For the motion r=R+eY,(8)sin(wt), we

I oy
Tl
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T have (see Eq. (46)) g
7 | da ,‘4
S — = -guw¥,(0)cos(wt) -
::l dt -
2 i
SARAY Writing ¢
::n ;q
» p = -PY,(8)cos(wt + n/4) , ﬁ
< the power input averaged over one cycle along the whole interface is ]
L~ P
}f ;f then ?
N P
2n/w da !
- D L :
I (w/2m) ! dt JJ p— dA = (4712°%/5)eR2yP , (55) d
Y S, ~
3 t=0 dt 5
< g
',1 '--_ 4
“,;i where the contribution of the power input due to the tangential :
t radiation stress has been neglected.
oy
Ly
i }f
‘. In considering the rate of dissipation, we assume the tangential
- radiation stress is much smaller than the normal component, so that the
Pl
SIS
.q.x model of the flow distribution developed in section 2.3.3 is still a
A
' ‘II' good approximation for the flow in the forced oscillation. We then have
?rf‘ the time averaged rate of dissipation in the boundary layer as given in
}3-}: Egs. (35) and (36). By equating this time averaged rate of dissipation
ot
3" with the above time averaged power input in Eq. (55), we have an
o
\f-Q expression for P and thus obtain the component of impedance (see Eg. .
N
i - (42)) due to viscous dissipation in boundary layer, B, . as: .
= (5 3/2 2 % 2 % 4
ol B, = [(3-1)/v2](2/3)w ' “[2.25(1~c)2(u.p;)* + (1+1.5¢)2(u p ) ?].  (%6) )
o e b ifi ofo 1
s J
s 5
2 3
"IN 2.3.5.5 Total Impedance J

’

L
Pl APl MR
a
.

¢ - 14

.

The total impedance is the vector sum of these components given in Egs.

.
Ll

A\l

A\l

1

'

(47), (50), (53), (54), and (56).
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et impedance = K + M + Bp + B, (57)

8|

0]
w
+
w

where B
P

3/R) [Suy + (40/3)u,] -

4g/R? o

4
X
~
0

73
=
I

(jz/ﬁ)wZR(3pi + 2po) , : o

b = [G-D/21@23)0* P 12.25(1-0)2 (upp ) + (1 #1502 )% - &

1€
o
[}

. A schematic vector diagram of the four components is shown in Fig. 2.4. e
N

- We obtain, finally, the phase~frequency relation as the following

. tang = (B + B, /v2)/(K-M-B /v2) . (58)

-'J
“vl
D
oy |
)\1 ol
] i
D) e
‘. -
Lt Y
-’\ -
=
- T
3 _.\-'\ "
0
e
o T
.‘:‘.‘
R
s
At
_\-.‘
"4
. " .
oy .
i .
. -
...

Y

a o
* l ;’f.'{ [ O

a4
-':\
e
. * .
I A R P T N N L NN

! NTREILTS R WSS P ST T e R e T e R R L R O S L D T KRR
~ T T L L T T L e e e N e e e e




ow°

~
¥-R
90°

45°

VipwV?
Ro°

Schematic impedance diagram for the gquadrupole oscillation

of a drop-host system.

~pW2R

Figure 2.4

oy BT  RERLLA - T AN SRS RSP |, NP A |

FELL AT N -.ﬁ..n--vl'“\-' TV, v, T e AT R P CeelN N, T N w QPSPPI
PP O SO s PN AR - Y0 .-.. . AN A LA R f
IR DOl  SORSINE ~ LARARARE ¢u¢..:3_ f?::n:ﬁx,.kykhbﬁ?



<* i

o i

w “
e 50 .
.‘.-‘,.‘: -4
b 2.3.5.6 Comparison with the Theory by Marston
ps —itd
( . Eq. (7) is the phase-frequency relation derived in the work done by w
)

:C«.:: Marston. We change the form of Eq. (7) by multiplying each term with -
b j
o (3pi+2po)R/6 to get the "equivalent components of the impedance" as
"

follows:
::‘i"_ K' = 40/R2 ,
R M' = 32(1/6)u?R(3p,+2p ) | (59) :
s .
et
r o -
o j 2,, + 2, + - =3
= ISwlu; ey (8/3)11o Po (1/6)uiu°(4pi ) 3
:-:_ B ' = ,
.}":: p -
Ok E % N

2 »
% RU(uip;)* + (ugey) ]
g™ ‘J
Bee : 3/2 1/2 “
A (3-1)25w (ujugpieg)

oA N
Qq.'l‘. B 1 = »
- v, b
2%6 (130" + (ugpg) ]

HiPy YoPo ]

'.::j ‘.
"\
.::-'_‘ Compared with the impedance obtained in the simplified model, they have
LI ] .
555 0
sz, components of similar dependence upon parameters like density,

- viscosity, and frequency at the same phase angles. The components due ~
AN
N -
- \

:"‘ to stiffness and inertia are identical. For both inner and outer

LN

J liquids of small viscosity, the value of Bb is close to the value of -
'.::-: Bb' , whereas the value of Bp is much greater than that of Bp' . Two g
o examples in the following show the typical numerical values of impedance

-
O due to damping:
-
_'o?"- >
e
1y ’ '!
] \':' ~
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a) For a hexane drop in water, pi=0.655 g/cm3, ui=0.29 cp, p0=0.997

g/cm3, p°=0.89 cp. On making use of Eqs. (28) and (29), we have

G 5/y=0.114, c=-0.5, therefore, B_=0.156/2, B '=0.134°/%, whereas
"N
e B,=0.13u/R, B,'=0.07u/R.
e ‘
ad
i.: o b) For a p-xylene drop in water, pi=0.857 g/cm3, ui=0.614 cp. Egs. (28)
S d i = = heref =0.224>/2
Y and (29) give §/p4=0.19, and c=-0.4. Therefore, Bb—O. w ,
}-‘ LN
-y
AR Ve 3/2 _ ,_
R b =0.17w ; B =0.15w/R, and B_'=0.05w/R.
S P P
XS Fig. 2.5 illustrates the phase-frequency relation for a hexane drop in
;:'-: N water predicted by Marston's theory and the simplified model 1
&N 4
= i respectively with given drop size and properties of the liquids
- (interfacial tension, density, and viscosity) as listed in Table 1. i
':‘ ::',: This figure is meant to be representative, and good agreememt between
o . the simplified model and Marston's theory is shown.
A S
4 e
:_.
.
N .:;
i, T
ndhed
~
-
\.:f o
v
L]
SN e
I ¢ ‘
N &
5
-

e'a

'I
>
4




-
]

o> 7 2. Y

o

‘wd §280°0 ‘snrpea doap !Iuexay ‘doap
f193em ‘3soy a0z aydwexzy :4yaarioadsaa Kioayz s,uolsaely
pue Tapow patyriduts ayiy Aq uaarb sasnano Aouanbaajy °sa aseyq

52

1g°z @anbrg

AJN3ND3NS

T N

LI<Phw <ZOJuWw

Kioayy s,uojsaey Ag

Topou patryrrdurs g —— — ———

Yoo VoYY,
XN

FIRRIAK |

PRI



.
o
o
o
f
A

T TR T

gy o > AP i ~ . . e L, v v A - .-
P A 40k Al A A S e A e I B e e R A I R N . Tt A R SUI S I T

.‘
.
»
»
»
4
.
.

.
BN
-
5 53
4N
f ~ 2.4 Compressadensity Measurement
_ . The droplet-levitation formula is given by [5]
)
M, dp 2pg  B* %
:: P—=-_G(_l —) ’
1. dz Bs B p
R [1-p*/p|
g ’ G H N ’ (60)
.- % - *o X4
2% B*/Bg = (5p*-2p)/(2p p)
N | , | ]
e where P(Z) is the acoustic pressure amplitude of the standing wave along
N ;_
. i
the vertical axis (Z), g is the gravitational constant, BS* and Bs are .
. 4
13 3
“; T the adiabatic compressibility of droplet and host, respectively, and p* ::
‘ .
3.* and p are the densities of droplet and host liquid, respectively. The i
o nondimensional function G is called the '"compressadensity" function. 1
: K
‘. - .
:j i The above expression is independent of the size of the drop, based on ;
"¢ «
W the assumption that the acoustic wavelength is much greater than the
..! drop's diameter. On the other hand, adiabatic compressibility is used
R o when the thermal wavelength is much smaller than the diameter of the
W
‘ droplet. These assumptions hold in our experiment where the levitation
]
29 :.:f frequency is about 52 kHz and the radii of drops are smaller than 1 mm.
N
i
i3
L We may extract information about a liquid by using a method of
3; s comparison and without measuring the acoustic field [5]. A drop of a
4
'j "reference" liquid with known compressibility and densit:s is first
i “w
¥ a levitated at a position Z=Z, with a levitation voltage V',6 and then a
q ) drop of an "unknown' liquid is levitated at the same position with a
-
K, &
‘SN
: v voltage V*, The pressure amplitude P(Z,) and pressure gradient (dP/dZ)zu
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are assumed each proportional to the levitation voltage, so we have the
result:

P'(dp/dz)' Va2 G(BS'/BS, p'/p)

- -
= — =

PA(dP/dZ)* WA G(B_*/B,, p*/p)

(61)

where the superscript ' denotes the reference liquid, and the .
superscript * denotes the unknown liquid. Egs. (61) and (60) give us a

al
the compressadensity function of the unknown liquid providing that p, . !l

Bs' p', BS' are known, and that V' as well as V* are measured. If we -

know p*, then B* can be calculated from Eq. (60), (and vice versa).
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Chapter 3

APPARATUS

In this chapter, we focus on the equipment used for size and
phase-frequency measurements. A schematic diagram of the equipment is
shown in Fig. 3.1. We briefly mention some standard instruments used

for measuring sound speed and density in the last section.

The equipment in Fig. 3.1 may be described in four parts. The
first part is the apparatus used to levitate a drop in water and to
drive the drop into shape oscillations. The second optically detects
the drop's shape oscillations and converts the oscillations into
electric signals. These signals are processed by the third part, and
the frequencies corresponding to several phase angles are measured. The
forth part takes pictures of the drop and some calibrated reference
objects. These pictures are used to measure the size of the drop. One
section of the following will be devoted to describing each of the four

parts of the apparatus.
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& B 3.1 Levitation and Shape Oscillation

- .' The levitation cell, which holds the host liquid and transducer, is a
“»
“ . . ,
«‘.; box with a cross section of 5.4 cm square and a height of 11 cm. The
™ ! -",,

vl box is made of Lucite plates, 3.18 mm in thickness for the walls and
‘jg! 6.35 mm for the bottom, and it is open at the top. This cell sits on a
-

.. lab jack which adjusts the vertical position. The transducer, which
s

" ..f

e converts electric energy into mechanical motion and generates waves in

the host water, is a Channel Industries (Santa Barbara, CA) 5400, Lead

Zirconate Titanate piezoelectric ceramic disk with a diameter of 3.9 cm

L T
[ 2V 3P

'
(S 8
[ (AN

and a thickness of 1.3 cm. The transducer is immersed in water and sits

on the bottom plate of the cell.

At a selected height of the water in the cell, and with an input to

the transducer at certain frequencies (e.g., two frequencies used in our

work ére about 52 kHz and 510 kHz), the transducer-water-cell system

[l .':L‘.\ b
)

Y

resonates and generates standing waves in the water column (see section

-,

‘i '~ 4.1). A drop of a liquid other than water in this standing wave field
.§ 35 is subject to an acoustic radiation force, which is a time averaged (dc)

K]
By - second order effect of the wave. This force tends to drive the immersed
; ?s drop toward a position of maximum pressure if the drop is more

. compressible than the water "host", while gravity tends to push the drop
2 '.‘
:435 up or to pull it down depending on the densities of the drop and the &
2 N host. If the drop can find a position where the acoustic radiation 2
7 > force counterbalances the gravitational force, it is acoustically j
b ;s levitated at that position. The radial pressure distribution (maximum ]

at the center) forces the drop to the center of the water column if the
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;i drop is more compressible than the host. Also, the local pressure

-

{ . distribution affects the shape of the drop, while the interfacial

U

oy tension tends to keep it spherical.

N7

a3

i An input voltage at about 52 kHz is used to levitate drops. At

A,

N this frequency and a proper water level, drops can be levitated at an

(v input of only a few volts for all the test liquids in this work. At

.‘.'
this frequency, the wavelength is much longer than the diameter of a

-."

'?3 test drop (less than 2 mm mostly), so that Egs. (60) and (6l) are

: applicable for calculating compressadensity, and the equilibrium shape

d of the drop does not deviate from sphericity much.

K,

fi At about 510 kHz, the wavelength is comparable with the diameter of
the drop, the radiation force is stronger 10}, and the deformation of

X

> the drop is greater. We can further enhance the deformation by turning

‘ﬂ this signal on and off at a frequency matching a resonance frequency of
the drop; this can be done by modulating this high frequency signal (see

g Fig. 4.2).

-

¥

i Therefore, three sinusoidal electric signals are combined in such a

Sﬁ way to give Ve driving the transducer, that is

4

-~

- Ve TV1 P Ve * Vn

> s

- According to their functions, we call these signals the levitation

L 7.

;: signal (~52 kHz), the carrier signal (~510 kHz), and the modulation

’l

- signal (~50 Hz), associated with subscripts 1, ¢, and m respectively.

e

k; The circuits for multiplication, using a MC 1595L linear four-quadrant
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multiplier, and for summation, using a ML 318S integrated circuit, was
built by Marston in previous work [11] (see Fig. 3.1).

1The levitation signal is generated by a versatile circuit built by
Baxter, Apfel, and Marston (22]. This circuit has features that are
very useful in tuning the acoustic levitation system. We can manually
scan the resonances of the acoustic levitation system and view the
resonances on a storage oscilloscope (Tektronix Model 5103N). The
ordinate is a dc manifestation of the current through the transducer,
and the abscissa is linear in the frequency. A Tektronix P6016 current
probe senses the current through the transducer and produces a voltage
signal, which is then converted by the versatile circuit to the dc

manifestation.

The carrier signal is generated by a Krohn-Hite Model 4300
generator. A Krohn-Hite Model 1000 generator and a Kepco Model FG100A
ramp generator are used for the modulation sigﬁal. The Model 1000
generator operates in an external frequency control mode and is driven
by the ramp generator, thereby providing easy manipulation of sweeping

rate and direction.

The combined signals v, are fed into a Krohn-Hite Model 7500

amplifier before going into the transducer. After amplification, the

rms value of vl is about 4 V or less. The rms value of vt is about 5 V

or less. A Data Precision Model 5740 freguency counter (also period
meter) and a Data Precision Model 3500 digital voltmeter are used in

monitoring the system.

A
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_}: 3.2 Detection of Shape Oscillation
3
- In this work, we study small amplitude (in the order of 10 ym) shape
o
C.? oscillations of a drop (radius in the order of 1 mm) which can not be e
=
‘: touched with any solid object. These two features suggest the use of
&1
. light to detect the shape oscillation. We use a technique adapted from
‘j& an experimental work done by Trinh, Zwern, and Wang [12]. o
.{2 .
e .
jN We use a microscope illuminator as a light source, which has a Es
At .
i? Sylvania 1493, 6V, 20 W bulb with a short filament and a lens with a .
'LQ short focal length to give an approximately parallel beam. A dc power "
- supply is used for the lamp. The light beam passes horizontally through Ei
ol the levitation cell, then is enlarged by a lens and is projected onto a
iﬁ plate with a slit on it. The slit is vertical with a width about 1 mm o
- ..
¥
and a height about 5 cm. The light through the slit is focused onto the -
f;g sensing surface of a photomultiplier (ENI type 9798B). The shadow of a w
LI
\{ levitated drop centers across the slit and blocks part of the light -~
-\‘,.' :~
. going through the slit. When the drop oscillates in its quadrupole
E{ mode, the amount of light going through the slit changes accordingly, e
~
“
:j therefore, an ac voltage signal coherent with the drop's oscillation is
:? obtained. The sensitivity of the photomultiplier is a function of the X
i: power supply. We use a Pacific Photometric Instruments Model 227 high
J3
.
N voltage power supply at 1000 to 1200 V for the photomultiplier.
'y o
- o
o~ :
£ '. . .
e >
- '
-
4
- O R O TP T e
- R AR
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The shadow of the drop usually is not a uniformly dark circle, but

(: lI has a bright area in the center part. If the refraction index of the
;Ji drop liquid is very close to that of water, as the index of refraction
‘E;ksg of butane is, the shadow logks like a ring of a very thin band.

. ] Therefore, we use a adjustable stop to block the light inside the circle
{ij.;‘ of the shadow. Also, we use an iris diaphragm, which is concentric with
é;f i the shadow and opened a little bigger than the shadow, yielding a "halo"

outside the shadow. The stop and the iris diaphragm reduce the light
going through the slit and result in two advantages. First, the

photomultiplier can operate at a higher sensitivity to give a stronger

D ac signal for a given amplitude of a drop's oscillations. Secondly, the
-4

\dni

ﬂy . noise due to light scattering by particles in the path of the light beam
bl N

e is reduced.

'-\
. ~
o0 L
N 3.3 Frequeiacy and Phase Measurements
1
ff~3 We need to measure the frequencies corresponding to 90° and some other
NN
N
i:fq phase angles (of the drop's oscillation relative to its driving force)
N
ALY
ol around the quadrupole resonance of the drop. This is accomplished

mainly by the aid of a lock-in amplifier, which is a Princeton Applied

- Research Model 5101 lock-in amplifier with a common mode rejection

DN typically 85 dB at 1 kHz.

:i: - Lock-in amplifiers have an output channel and two input channels,
oY

Y L

g e one channel for reference and the other channel for signals to be

o measured. The signal is compared with the reference, and only those
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25 signal components which are synchronous with the reference yield a net

5‘ dc output. Noise and other non-synchronous signals do not contribute a

N net dc output, but only ac fluctuations which can be reduced to very

\? small value by time averaging (filtering). There is a phase control on

L a lock-in amplifier which allows the phase of the reference drive to the

;3 internal circuit of phase sensitive detector to be set at any angle .

75 relative to the input reference signal. For example, a sinusoidal 3':
X - o
i signal, say vrcos(anrt) is used as reference, signals to be measured ~i

3 ]
} have a synchronous component vicos(anrt + %), and the phase control is 2

set at A. Then the output of the lock-in amplifier is a dc voltage a

EE proportional to the time average of the folldwing product: R
N

> vrcos(Zufrt + A) o vicos(anrt + %)

i This dc output reaches maximum when A=f ; it is zero when A=Z+900. It -

% is easier to take measurement at zero-output than to take measurement at :S

RN

1 maximum-output. In this experiment, by setting the phase dial A=§+90°¢, N

and sweeping the modulation frequency, we get the frequency f(f) which

i

a%s"a a2

nulls the output of the lock-in amplifier. This process of sweeping is

»

W viewed on the storage oscilloscope with the output of the lock-in

- amplifier as the ordinate and the sweeping frequency as the abscissa.

; We use the Data Precision Model 5740 counter to measure the period of
the modulation signal, then take the reciprocal of the period to get the

' frequency, because it is easier to measure period than frequency in the

1

:: low frequency regicn (on the order of 100 Hz).

it

-i When the Model 5101 lock-in amplifier operates in the region of
about 100 Hz, the true phase shift A is different from the set value on

é

'\"-"-- 4 ‘-..i'. o ‘e ~

DL e
W AN AT A,

BRI ‘,\\"‘\-'

T TR e e T T T T e e e o
EAP AN RAR N SO . WV R AN AR A U PR




l‘
R
$
R

{

L

J
K

]

4

r

4

L
.
)Y

o

4

L

N

A,

-
e o
a’a

> g
) b
N 63 A
~ -
b T -
N the dial. So we calibrate this Model 5101 lock-in amplifier. The -
N ".
’ . calibration is carried out by applying two in-phase signals into the .
f reference and signal channel, followed by adjusting the phase control
A% . .
3:;' for zero output. Comparing this phase reading with the true value

" (90%), we obtain the error in the phase reading at this frequency. The
;o calibration covers the frequency range from 40 Hz to 140 Hz, the signal
:: :7_:: level from 0.0l to 0.3 V, and concludes that:

N the phase reading from the dial + 40° = the true phase ,.
: :‘ with error less than 0.2? in phase angle. Hereafter, the phase set on
L ¢
S the lock-in amplifier mentioned in this manuscript is the corrected

o phase.
R
!
\ For better phase accuracy, the amplitude of the reference signal is

. set to 1 V rms as suggested in the manual, in both the actual
A measurements and the calibration.

4
1'.{,

.' When the reference signal sweeps, the internal reference circuit of
AL
; " the lock-in amplifier automatically tracks but with some delay. A
MR
) relation between the slewing rate df/dt and the phase error § stated in
. the manual is df/dt = 310 efe8. In this experiment, £~100 Hz, df/dt <
vl 1/30 Hz/sec, so the error in phase angle introduced by sweeping is less
: :',:: than 0.19,
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3.4 Size Measurement

As shown in Eq. (3), the interfacial tension goes with the cube of the
drop's radius. For a drop with 1 mm radius, an acceptable error of 1%
in radius will cause an unacceptable error of 3% in interfacial tension.
The size measurement was the most significant factor of the experimental

uncertainty in the work of Marston and Apfel [11].

In this experiment, we take pictures of a levitated drop and some
reference objects, then enlarge the pictures and obtain the size of the
drop. We use a Polaroid #545 film holder loaded with a Polaroid Type
55/Positive-Negative 4x5 land film positioned right in front of the slit
and facing the light beam. By turning the toggle switch of the power
supply for the lamp on and off for a duration about half second, we get
an exposure of the shadoQ of the drop. The shadow is about ten times
larger than the drop. The negative is then further enlarged yielding a
positive print which is about 75 times the size of the drop. A truss is
built to support the film holder firmly, and two tracks on the truss

enable the film holder to slide in and out the optical path.

We take pictures of a drop before and after the frequency-phase
measurement. Then we take pictures of the following reference objects:
three precision plug gauges of diameters 1.395, 1.614, and 2.018 mm
(from Zero-Check Inc.). When we take the picture, the gauge is located
through the position where the drop was levitated. Care is exercised to
enlarge these negatives by the same factor. The average of the

enlargement ratios (between the shadow on the final positive print and

. .
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e
.

YA

v




A iie D ac i ST e AR A et MaCp e g Sran i Aaciie S S0u Tte inCAecies o A NC e Say i Jiin e e i St S A

ol
N
. oty

(%]

;:\:'. 65
.:"_: the gauge itself) of the three gauges is used to evaluate the drop's
o
;’ . diameter. The consistency of the three ratios indicates the accuracy of
T
S the size measurement. Generally, they are good to within 0.15%.

S .
&

"

n When we take a picture of each gauge, it is important to have the
::i:: gauge located through the position where the drop was levitated. A
AN

LXTIR . . s . .
:::-. 3 filar telescope with magnification of 20 and a ruler horizontally
‘ affixed to the plate with the slit on it serve to mark the position of
I 2 the levitated drop in three dimensions.
", .
b
e i
SN
f:‘_-:," - 3.5 Measurement of Sound Speed and Density
(..:: Y4
1. We use standard laboratory equipment to measure some properties, sound
" speed and density, of the non-superheated liquid samples. Since these
2N n
:’: :" techniques are well known, we will not discuss these methods in detail.
AT
X9 . The values obtained are incorporated into the calculation for
4 T interfacial tension or compressibility.
Zud
::,\: ..
It
L
o We measure the sound speed in hexane, pentane, and heptane by using
- . . , .
SRR a Nusonics sonic solution monitor Model 6105 (manufactured by Mapco
ERGERT]
'::j'.' Inc., Tulsa Oklahoma) (referred to Table 10). The container for the
NGy
= ultrasonic probe and the sample liquid is placed in a water bath which
::f:. maintains a constant temperature with variations less than 0.1°C. The
u"" -
-::;-f sound speeds obtained using this technique are good to within 0.1%.
PRI
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For measuring density, a Mettler/Parr DMA-40 densitometer is used. -
- The chamber for the test liquid is also in a water bath to maintain a

- constant temperature. The uncertainty of this measurement is less than

. 0.1%.
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Chapter 4

PROCEDURE

The procedure for measuring interfacial tension in this experiment is as
follows: We first set and tune the levitation system to get a strong
acoustic standing wave in the water "host". Then we put a drop of the
liquid to be measured into the water. While the drop rises up due to
buoyancy, the acoustic field traps the drop and levitates it at a
certain position. We take pictures of the enlarged shadow of the drop
for measuring the drop's size. Then we drive the drop into quadrupole
shape oscillation. Around the resonance, several frequencies
corresponding to different phase angles of the oscillation relative to
its driving force are measured. Details of the above procedure are

described in the following sections.

Some other parameters, such as density and viscosity, are either
measured by other techniques (see section 3.5) or obtained from the
literature. The procedure for measuring compressadensity by the

acoustic levitation technique is described in the last section.
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4.1 Drop Levitation

The host liquid in the levitation cell is water for all experiments in
this study. Surface active contaminants, even in trace amount, may
change the surface or interfacial tension significantly. Therefore, we
are very careful in keeping the host water and the apparatus components
in contact with the host water clean. Distilled water is fed into a
Barnstead Nanopure-A 4-holder system, and circulates through the system
to reach a resistivity, which indicates the purity, of 17.7 - 17.9
megohm/cm. The levitation cell, the transducer, and others like
syringes and needles are kept away from dirt and are flushed a few times
with the clean water before an experiment is conducted. The clean water
is degassed and then slowly poured into the levitation cell. Then we
place the transducer at the center of the bottom of the cell. There are

no bubbles visible in the cell when an experiment is performed.

We tune the levitation system as follows: To find a configuration
at which the transducer-water-cell system resonates, we adjust the water
level and sweep the levitation frequency, while monitoring the current
going through the transducer. The carrier and modulation voltage are
zero at this stage. The level of the water is changed by taking out or
injecting in small quantities of water with a syringe. The frequency is
swept manually. At the same time, we view the resonances of the
levitation system on the storage oscilloscope with the display of
current versus frequency (see section 3.1). There are several
configurations of water level and freque:ncy vhich give sharp peaks on

the current-frequency display. Each configuration requires a different

\ \' $1'.~¢ < _‘-;\.’\-;_..‘__.', S e,
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Sj minimum voltage to trap a drop of a certain kind of liquid, and
. levitates the drop at a different position with this minimum trapping
” voltage. The water level (about 8.3 cm from the top of the bottom
ﬁ} plate) and the levitation frequency (about 52 kHz) that we chose provide
; stable levitation at low voltage (about 4 V for hexane drops). The
:j volume of water in the cell is about 220 cm3®. The levitation position
e is about at the middle of the height of the water column.
?: To levitate a drop, we put it into the bottom part of the cell
N

{details described in section 4.2) and trap it as it rises (all the

&

liquids to be measured in this study are less dense than water) by

turning on the levitation voltage. After tuning the levitation system,

-\'
A we levitate a hexane drop which serves for checking the tuning and for
a aligning the optical system. A stable levitation condition at about ¢ V
B for a hexane drop indicates good tuning of this levitation system. The
3: positions of the cell and the enlarger lens are adjusted to project a
sharp shadow onto the film plane and to center across the slit. Then we
- use the filar telescope and the ruler to mark the position of the drop
Eﬁ in three dimensions (see section 3.4).
) After finishing these procedure for preparation , we release the
:2 hexane drop for alignment and levitafé a drop of the liquid to be
o3 measured at the same position as that of the hexane drop for alignment.
E: The.size and frequency-phase measurements are then conducted. fb
. ]
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:{' 4.2 Drop Making and Transportation
- For non-superheated liquids like hexane and pentane, we use a threaded 4
5
:ﬁ plunger syringe and a needle (from Hamilton company) to transport the -
S "..
:’ liquid. A drop that adheres to the tip of the needle can be detached by <

a little disturbance; then the drop rises up and is trapped by the :!
’i acoustic field.

.' *

" -
; Introducing superheated drops is somewhat complicated compared to -

N .
‘:- non-superheated drops. The process is shown in Fig. 4.1. The test -
-~
20 liquid is contained in a lecture bottle and is in equilibrium with its ;:

) -
. vapor at room temperature. Some of the liquid is drawn into a threaded

o 5
W plunger syringe with a miniature inert valve (from Hamilton Company) A
o
> fitted on the tip of the syringe. The threaded plunger and the valve “
A can take pressure so as to keep the liquid in equilibrium (not .'
~§ superheated) (referred to Fié. 4.1(a)). The syringe is precooled for ?5
N working with propane. A glass tube of 5 mm i.d. has been filled with
o gel and cooled in a freezer. The gel is composed of (by weight) 1 part 2!
{5
.S of water, 1 parts of glycerine, and 1.25 parts of water soluble o
) L '_.-
b Aquasonic 100 ultrasound transmission gel (from Packer Laboratories, -
o Inc., NJ), mixed uniformly and centrifuged to remove gas bubbles. We ?:
2 >
;: put this glass tube into a pressure vessel, pressurize it with nitrogen
' A
¥y gas at a pressure a little over the vapor pressure of this liquid at o
N room temperature. Then we push the needle of the syringe containing the
‘:.'

'ﬂ liquid through a septum, open the miniature valve, and inject the liquid .:
Ad \ L
o .
- into the gel forming liquid drops (referred Fig. 4.1(b)). After o
- ol
5: releasing the pressure, we get '"superheated" drops in the gel. The
W1

‘

‘s

.

Mol & s a s s a8 o e
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viscosity of the gel retards the drops's moving, and the smoothness of
the gel prevents the drops from vaporization. This technique has been
adapted from a technique developed by Apfel for producing neutron

detectors based on superheated drops in a gel [23].

The next step (referred to Fig. 4.1(c)) is to get a cluster of the
gel containing one superheated drop into the host water by squeezing a
rubber bulb fitted to the glass tube. This cluster of gel sinks and
sits on the top surface of the transducer. The gel gradually dissolves
in water, then the drop floats up and is trapped by the acoustic field
(referred to Fig. 4.1(d)). The amount of the gel going into water with
the drop is no more than 0.1 g, which is no more than 0.05% of the
amount of host water. It takes about 20 minutes for the gel to dissolve

before the drop is released.

A1l the apparatus, such as the syringe, needle, and glass tube,
used to transport the liquid are cleaned very carefully before being
used, usually flushed by acetone followed by methanol then air dried.
We always use the liquid directly from the bottle and conduct

measurements immediately to reduce the possibility of contamination.




- oM e gy o i dite B¢ Sma et iy e 4l B Bl o0 B s Bow 6 0e e Sita e DA Tiite 240 MM St WA AR AL diibadt S sash Ml it sagie
e e
L
\p.
L
s
: ,
hd g
— ™

9|

. .

4

o 72 .

S -

TR -
RO

i.‘.‘

.

e ‘
i‘ .

5t —

1‘1:{'. . * :
1 -~

: ML

3 [High | =
o Press

(a) (b)

P ;
> J').'f'"‘(

ety
.
a

4 .

g \ b

o

IN A

o N
+! E

Lo ¢ .

P

-. (]
P
.
o, <
e -
. ..
br 4 -
7.4 g
?
\‘:J .
~ o
N
[+ .
. o
\_ﬁ .
A —-

]
(c) (d)

PLLS,SA
'.\'.‘n\‘l.

‘- Figure 4.1: Procedure for introducing superheated liquid drops into the
host water in the levitation cell.
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' 4.3 Procedure for the Size Measurements
'.-
e .
l By observing the drop through the telescope and by adjusting the
~ levitation voltage, we can align the drop to be measured at the same
v
o
position as that of the hexane drop. We then load the film holder and
W .-_ shoot a picture of the drop's shadow. After the frequency-phase
~4 -
!
. - measurement (section 4.4), we null the modulated carrier signal, adjust
e
_\. L!' + « . . . .
- L the levitation voltage to move the drop back to the original position,
N IRXY and then shoot another picture of the shadow. Then we release the drop,
A
NS
;3 put one reference gauge into the cell and through the position where the
. 3
<9 .".' " N . P
& drop was levitated, and take a picture of the shadow of the gauge. Two ]
. other reference gauges are used following the same procedure. It is ]
ey e 1
: ] essential for accurate size measurement to position the reference gauge
o h
“.- through the levitation position. Very good stability of the levitated 1
K~ drop is required for taking good pictures. Therefore, we fine-tune the A
J\ . 1
Y RS R . . . . K.
:« levitation frequency before exposures of the drop. These negatives are 4
S ' J
)
N - then processed for measuring the size of the drop, as mentioned in i
o section 3.4. 4
$: ~ j
b 1
-
_— 4.4 Procedure for the Phase-Frequency Measurement
o
~
v After taking a picture of the levitated drop, we slide the film holder
J e
4 i
away from the light beam and adjust the stop and iris diaphragm, as
Be™ ™
R W7, . . , . . , ,
A mentioned in section 3.2. The light going through the slit is only two
s .
5:3 bright spots immediately outside the shadow of the drop. We turn on the
) [
- carrier and modulation signal, drive the drop into shape oscillation,
:'.:. then perform the frequency-phase measurement.
N -
“

- b
.
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4.4.1 Tuning of the Carrier Frequency

To get appreciable amplitude of this shape oscillation, the carrier
frequency should match a resonance frequency of the levitation system so
that enough power can be fed into the transducer to generate strong
standing waves therefore to give a strong radiation force on the drop;
the modulation frequency should match the quadrupole resonance frequency
of the drop to enhance the motion. The drop's quadrupole resonance
frequency can be estimated from the apparent size of the drop and a
priori interfacial tension. The carrier frequency can be tuned by

monitoring the response of the drop in the following way:

We display two signals on a Tektronix T922 oscilloscope (referred
to Fig. 3.}), one is the square of the modulation signal (vmz) as
reference, which represents the driving force (explained later in this
subsection), the other one is the signal (vp) coming from the

photomultiplier, which represents the drop's response. By varying the
modulation frequency around the estimated quadrupole resonance frequency

of the drop while sweeping the carrier frequency (around 510 KHz), and

observing the two traces of signals (vm2 and vp) on the oscilloscope, we

can get a signal vp that appears synchronous with the reference vmz. e

fix the carrier frequency at the value where the synchronous sigral

appears to be strongest for a certain modulation frequency. The signal
vp includes noise in addition to this synchronous component. A low-pass

filter (Krohn-Hite Model 3202 filter) helps us visualize this
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‘.-::_'-_ synchronous component when the output of the photomultiplier is too
2y
Ea . noisy (see Fig. 3.1).
) -
o
.§j: ‘- We confirm by the following observations that (the synchronous
. N component of) the signal Vp corresponds to the drop's oscillation in its
.:‘::: quadrupole mode. 1) The signal has the same frequency as that of sz'
o
) 2) The amplitude of the signal goes up or down in phase with either the
S5
N ‘.-5 carrier or the modulation voltage. 3) The phase and amplitude of the
e €
A
A o signal vary with modulation frequency as in a regular resonance
P
P
- - (referred to Fig. 2 .1(c)). 4) By blocking the upper or lower half part
f._f-', o of the light beam with a piece of card board, we observe that the
.:'f:: amplitude of the signal reduces to about half, and the phase of the
; ' signal shows no change.
-""
o)
-\:_4 .-.'l X
Bt N
:{:; The frequency of the forced oscillation of a drop is the same as
.
that of the exciting force (assuming the drop is a linear system), but
‘.‘: r,‘
_'.:5 it is twice the modulation frequency. This factor of 2 comes from the
4
o fact that acoustic radiation pressure is a time averaged, second-order
\
- - effect. A schematic diagram, Fig. 4.2, illustrates this frequency
f::- relation. Therefore, the signal vm2 with an amplitude 1V in rms with
~- 4 respect to its mean is fed into the reference channel of the lock-in
. amplifier (see section 3.3 and Fig. 3.1); it is also displaved on the
',:j- Tektronix T922 oscilloscope to help in tuning the carrier and modulation
-,
" frequencies (see Fig. 3.1). The square of the signal v is obtained by
”.
SO feeding Vo through a circuit with an MC 1495L linear, four-quadrant
e
4
' S multiplier.
A
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Figure 4.2: Schematic drawing showing the time variations of (a) the &

{j carrier signal (~500 kHz), (b) the modulation signal (~50 Se
o Hz), (c¢) the modulated input (vC X v_) responsible for the CL
L drop's shape oscillation, (d) acoustic radiation pressure, -
K. and (e) the displacement of the drop with a phase assumed to I
- be 909,
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N - 4. ase-Frequency Measurement
,. . After tuning the carrier frequency to get an appreciable amplitude of
‘: . the drop's oscillation, we feed the output of the photomultiplier into
) the signal channel of the lock-in amplifier, apply the vm2 signal to the
o
4 reference channel, and set the phase control A at §+90%, where £ is one
: . of several selected phase angles. The dc output of the lock-in

amplifier is displayed on the storage oscilloscope as the ordinate,

‘:d': whereas the control voltage output of the modulation signal (a voltage
::' - proportional to its frequency) is the abscissa. Then we sweep the
“ n modulation frequency about the quadrupole resonance frequency of the
‘-:_:';l: drop, and obtain the f(%) as the frequency where the dc output of the
S RY
; ‘J lock-in amplifier crosses zero (see section 3.3). We sweep the
‘ modulation signal very slowly, especially when the trace is close to the
_;', zero-crossing point. Also we sweep the frequency in both directions to
j:;:: make sure that the sweeping rate is slow enough that sweeping up §r down
' P makes negligible difference in measured f(Z).
3 .:-; We repeat the process for several different phase angles: 559,
- - 67.59, 909, 112.59, and 1259, which are centered at 90% and chosen
v: - arbitrarily. The £(90?%) is measured at least three times, because it is
\
'.. ::.: the most significant in calculating interfacial tension. A drop of
o < either superheated or non-superheated liquid can be acoustically
levitated for more than two hours. But a levitated drop tends to be
1 - unstable in position as time goes on, possibly because that small
l | variations in temperature or in the level of the host water de-tune the
q ~ levitation system a little, or because small particles or bubbles are
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78 N

introduced into the water in some way. Usually, we complete the

frequency-phase measurement in 30 minutes.

4.5 Procedure for the Compressadensity Measurement

The measurement of compressadensity may be either incorporated in the
interfacial tension measurement or as a separate measurement. We first
levitate a drop of liquid A, adjust the input voltage close to the
minimum trapping voltage. We record the input voltage and mark the
drop's center position by using the filar telescope. Then we release
drop A and levitate a drop of liquid B. We vary the input voltage to
bring drop B to the same position as was drop A, recording this input
voltage. One of the two liquids A and B is considered the ‘'reference"
with known density and compressibility. By applying Egs. (60) and (61)
we can calculate the compressadensity of the other "unknown' liquid.
The host liquid is water for all tests. The diameters of the drops,
which need not be the same size [5], are much smaller than the acoustic

wavelength.
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Chapter 5

RESULTS AND DISCUSSION

In this chapter we present the results of the quadrupole oscillation

‘-‘A'.":;m'.l' I o ) "‘ Ao

experiments described in chapter 4. 1In section 5.1 we list some
relevant physical properties of two common liquids (non-superheated) for
which we performed experiments in order to test the accuracy of our
measurements for interfacial tension. An approximate method for
reducing data used in a previous work is reviewed in section 5.2. Some
observations and problems associated with experiments involving gel are
discussed in section 5.3. A method for inferring interfacial tension
from data employing a least-squares principle is presented in section
5.4. Section 5.5 deals with the results and discussion for
non-superheated liquids. 1In section 5.6 we present the results for
superheated liquids. The last section is devoted to the results of the

compressadensity measurements for three superheated liquids.

S.1 Non-superheated Sample Liquids

A number of quadrupole oscillation experiments were performed for two
common liquids in order to test the accuracy of our technique for
measuring interfacial tension and to establish the method for data
reduction. N-hexane and n-pentane were chosen; the interfacial tensions

between water and each of them are known to within +0.4% (see Table 1),

- 179 -




and they are saturated hydrocarbon compounds similar to the superheated

liquids studied in this work. —

The liquid samples were from Aldrich Chemical Company, Inc.:
n-hexane with 99+% purity, catalog #13938-6; n-pentane with 99+% purity,

catalog #15495-4. Some relevant properties of these two liquids and

aa

water are listed in Table 1. In this table, the densities of n-hexane

O
U

and n-pentane were measured using the Mettler/Parr density meter, and ‘ i
the measured values agree with literature values (e.g. [25]) very well. T

< The viscosity was taken from literatures [25], as was the density of 3

water [26]. The interfacial tension was taken from the literature [27]
[28] and is compared with our measurements. In this article, wherever
hexane and pentane are mentioned, they are abbreviations for n-hexane

and n-pentane.
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Some physical properties of two sample liquids and the host.

Liquid Temperature Density Viscosity Interfacial Tension
x102 with water
deg C g/ml poise dyne/cm
n-hexane 20 0.6594 0.326 51.1 £ 0.2
(CHy (CH, ) ,CH;) 25 0.6548 0.294
n-pentane 20 0.6262 0.240 49.0
(CHz (CH, ) 3CH;) 25 0.6213 0.230
water 20 0.9982 1.002
(H,0) 25 0.9971 0.955
J

Note: for water-hexane interface, do/dt
interfacial tension and t denotes

.....

= =0.026 dyne/cm 8C, where g denotes

temperature [24].
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) ‘-i i
aﬂ‘ 5.2 Approximation by Newton's Iteration
CAR)
i 5.2.1 Approximation Method -
.;-. ’ )
o Our experiments for measuring interfacial tension may be described "
b .-_' l\'
! . . . . . . n
™ briefly as follows: We drive a levitated drop into forced oscillation at
o frequencies around its quadrupole resonance and measure the frequencies i!
AW
2¢
:j associated with several phase angles; we then compute the interfacial
A :
)
;ﬁ tension based on the resonance properties or, more specifically, the
. phase-frequency measurements. This phase-frequency relation ..
] )
ii incorporated with interfacial tension may be expressed by the following -
':.\ ot
- equation, according to the model derived by Marston (see Eq. (7)), =
- ke
AL 3/2 3/2
T = (a2 + 1)/ (02 - aa®'? - W2) (62)
,:. where w* is the inviscid resonance frequency and is related directly to
\:,
24 the interfacial tension to be measured as in Eq. (16), T = tanf, ¥ is -
|
N the phase angle of the drop's displacement with respect to its driving h
‘:i force, w is the frequency of the forced oscillation, ¢ and ¥ are ::
~ ~
o
A functions of the drop's size and of the properties (density and
w
! viscosity) of the host as well as the drop liquid (see Egs. (8), (9), K
e
;: and (10)). The phase-frequency relation given by the simplified model
\ derived in chapter 2 can also be expressed in the same form as Eq. (62),
& though o« and ¥ will then represent different functions of the size and f:
:: the properties from that given by Egs. (8) and (9) (see Eg. (58)).
=
- In the work done by Marston and Apfel [11] Eq. (62) was ..
:: approximated in the following way and then employed with data for o
S
<. . . . . . . c
Ly deducing interfacial tension. First, Eq (62) may be rewritten as a "
. ol
0y function of g,
.."- ~
b " :\‘
:& f(w) = T2 + a(1+T)w3/2 + ¥w - Tw*2 =0 . (63) )
N |
u‘ - '
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By applying Newton's method of iteration, and using w* as an initial
approximation, w can be expressed as a function of T [24] [10],
f(w*)

K - o (64)
£' (w*)

€
n
€

1 1
= (w* - Yaw*® + 3/842) - 1/T (Yaw* ® - 3/4a2 + %)

Therefore,
1
w(90%) = u* - Hauk? + (3/8)a2 , (65)
and
“ 1
W(E) = w(90%) - 1/T[%aw*® - (3/4)a2 + %¥] . (66)

If we define s as
s = [w(§) - w(90°)] (-T) , (67)

then from Eq. (66), we have

1
s = You*® - (3/4)a? + %Y . (68)
The damping constant s can be obtained experimentally by substituting

the data of phase-frequency measurements into Eq. (67), and Se is used

to denote it in this article. For an interface composed of two liquids
with known density, viscosity, and interfacial tension, o« (from Eg.

(8)), ¥ (from Eq. (9)), and w* (from Eq. (16)) can be calculated, and a

theoretical prediction of the damping constant, denoted by S¢ps Can be

obtained via Eq. (68). From Eqs. (65) and (68) we have

*

14

w(909) + "zaw*52 - (3/8)a2 ,
w(909) + s + (3/8)a2 - 4y . (69)

(]

Furthermore, by neglecting the last two terms of Eq. (69), we have

w* = w(90%) + s . (70)
Eq. (70) was used to infer interfacial tensions from measurements in the
work done by Marston and Apfel (11]. In this way, o« and ¥ were not

involved in the calculation for interfacial tension.
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By using artificial data (that is, a phase-frequency relation given 'G
j_ by Eq. (62) and known radius as well as properties of liquids), we can )
Ay .
:. show that Eq. (69) is a very good approximation for calculating :
"‘
. interfacial tension, and Eq. (70) gives higher w* than Eq. (69) does by -
;:: about 0.7% which introduces about +1.5% error in the interfacial 8
" " tension. For our measurements with hexane or pentane drops in water
™ (those marked with * in Table 5), the theoretical values given by Egs.
:}‘j (8) and (9) are probably good approximations for « and ¥, judging from :
\Y
o the fact that the measured damping constant Se is very close to the -
¥ -
=]
:-j theoretical value Sth’ Therefore, we estimate that the error in deduced
.'1 1':: .
1 o interfacial tension introduced by using the approximate model as in Eq.
A T
(70) is about 1.5% too high. !
.J .
1 5
= -
- 5.2.2 Examples .
=
-, As an example of this procedure of calculation, we list the data for one
};ﬁ hexane drop in Table 2. To deduce the interfacial tension from these
] {.
‘_ data, we first apply Eq. (70) and have .
-, w* = (113.69+4.80)27 = 744.50 , —:
_::' then from Eq. (16),
‘ 0, = w*2R3T/24 = 51.5 dyne/cm , _,
'~ where o, is used to represent interfacial tension obtained by using Eg.
-’ :-
5 (70). With the literature values listed in Table 1, the theory by
A " '.'. :
= Marston gives Sth=27'64 (Eq. (63)), ath=1.76 (Eq. (8)), and xth=13.97 ol
4
e o
:.: (Eq. (9)). The experimentally determined damping constant Se (30.14) 1is .
s S
- close to the theoretical prediction Seh (27.64). If we us Eq. (69) with o §

4
AN WA 'J"w-.._ At T Tl L A o P A




)

> el F S

[ A

o 4
&

)

s 4 %
»

.
»"a
[ S

"‘.11{4-“.

1
a%¢tat
s,

»
‘l
lAl

'€3-

»
-

.}:.f

NRRN
e

12

-
['S

N

.
LAt

)
L}

>
v
.'P'

85

the data in Table 2 and the above q«,, and ¥ we get the corrected

th th’
interfacial tension, denoted by ¢,, as 50.6 dyne/cm. This set of data
is also shown in Fig. 5.1. 1In this figure, triangle circular symbols
represents the data points, and the dashed line represents the
theoretical prediction based on Marston's theory (Egs. (62), (8), (9),
and (16)) with physical properties of hexane and water given in Table 1

as well as the known radius of the drop. The data points follow the

slope of the theoretical line closely, which indicates agreement between
Se and Sth The measured frequencies associated with 90° and other

phase angles are less than the theoretical prediction, which indicates
that the measured interfacial tension is less than the literature value
used for the theoretical prediction. The meaning of the solid line will
be discussed in section 5.4.2. This is a typical example of our
measurements; more data and discussion are presented in section 5.5 (see

Table 5).




TABLE 2

Data for one gquadrupole oscillation experiment.

|

Host R=0.0825cm |
Droplet: n-hexane t=220C |
—

Phase(}) Frequency(£(%)) |
| Deg. Hz |
|

1

90.0 113.64 |
90.0 113.70 |
90.0 113.72 |
— I

:113.69 | |

] |

! I

| calculation for Sq |

]

T=tan(f) | [£(E)-£(900)](-T) |

|

-

110.08 1.42815 5.15 |

110.24 1.42315 4.92 [

111.66 2.41421 4.89 |

115.58 -2.41421 4.57 |

116.80 -1.42815 4.45 |

— I

ave:4.80 |

|

5,=(4.80)27=30.14
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5.3 Gel Effect

As described in section 4.2, our superheated drops was first formed in
gel and then transported into the water host. It is a convenient method
for introducing superheated drops into host water; other possible
alternative methods wculd require pressurizing the whole levitation
cell--up to 10 atm for propane drops or lower pressure with some cooling
mechanism; technically, it is much more complicated and difficult.
However, because of the contact of the test drop with the gel in the
process of transport and the dissolution of gel in the host water, one
must ask whether the drop's surface is contaminated and whether the
interfacial tension is ci.anged. We have done several tests to explore

this issue.

First, we measured the surface tension of water against air, then
put some gel (about 0.2% by volume) into the water and measured the
surface tension again after the gel was dissolved in the water. A
Fisher Surface Tensiometer, Model 20 (from Fisher Scientific Company),
employing the ring detachment method, was used in th¢ measurements.
There was no detectable difference in the measured surface tension (72.1
t 0.1% dyne/cm) due to the introduction of gel. Secondly, we performed
several quadrupole oscillation experiments for hexane and pentane (those
marked with ** in Table 5); the host water had gel dissolved in it
(about 0.1 % in volume); the test drop was injected into water directly
from a syringe. The measured interfacial tension agrees well with other
data which were taken with clean host water, and the measured damping

constant agrees well with the theoretical prediction (see Table 5).
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Therefore, it seems that the gel is not surface active in water-hexane
II and water-pentane interfaces: that is, there is no tendency for the gel
to pack into or to migrate away from the interface and to change the

e interfacial tension by any detectable amount [29].

On the other hand, for the experiments of hexane and pentane which
had the test drop first formed in gel (following the same procedure as
in Fig. 4.1 but without pressurization), the oscillation of the drop
- exhibited much greater damping; the measured frequencies at selected

phase angles showed significant difference with the theoretical

.:.:

& prediction: the frequencies associated with 909 phase, ©(90%), were
-*'ﬁ: lower than theoretical prediction by about 5%, and the values of s, were
‘i' higher than the theoretical value Sth by a factor about 2. The results
. of these experiments are marked with *** in Table 5. One example is
- shown in Fig. 5.2; the circles denote data points, and the dashed line
.l' represents theoretical prediction as mentioned in the end of section

-\.

5.2. The solid line will be discussed in the next section.” These
observations suggest that there might be some residue of gel on the
drop's surface while the measurements were taken, though it could not be
seen from the pictures of the drops. These observations also raise
several questions about how to analyze the measurements which have gel
involved: First of all, is Eq. (62) still a good model for the motion?
If it is, then what is an appropriate way to obtain interfacial tension
from the measurements of resonance properties? The values of ¢ and ¥
need to be estimated in order to employ Eq. (69) or to assess the
validity of Eq.

(70). The fact that the values of »(90°%) were lower and




the values of s, were higher than theoretical values indicates that «

might be greater than and ¥ might be different from the theoretical v

i
values given by Egs. (8) and (9) (see Eq. (62)). Therefore, we need a }:1
new scheme to analyze data. We have developed a method employing i

least-squares principle to estimate o ,¥, and interfacial tension.

Details are discussed in sections 5.4 and 5.5 and the Appendix A and B.
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5.4 Data Reduction by the Method of Least-squares

5.4.1 Model and Procedure

Several methods have been considered for computing interfacial tension
from data of a drop's quadrupole resonance properties (see Appendix A);
the one we chose is presented here. The basic idea is that we assume
Eq. (62) is an appropriate model for the motion but leave g, ¥, and w*
all as unknown and then fit this model to data. We evaluate the model
by evaluating how well the fitting is and compute the best fitted w*, q,

and ¥ in the least-squares sense [31].

The procedure is described as follows: We partition the data of
one drop into two parts and consider them separately. First we consider
only the measurements associated with 909 phase angle. For § = 900, we

have (from Eq. (62))

WA - (909)2 - q4(900)3/2 = ¢ |
or in another form,
alw(900)]3/2 = yxz - [4(900)]2 . (71)

By assuming an @* or, equivalently, by assuming a ¢ (see Eq. (16)) and
plugging the measured w(90%) into the above equation, we obtain several
equations for one variable--q. We can find an "optimum" o which fits

these equations the best in the least-squares sense.

The next step is to consider the measurements where £ # 90%. From

Eq. (62), we have

w = T(w*2-42) - cx(1+T)m3/2 . (72)

B X

A
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By assuming the pair (g, a) obtained in the first step as known (fixed)
values and several measured y at different or the same phase angles, we

obtain several equations for one variable--¥, whose optimum value is

then determined by least-squares method. Therefore, for each assumed g,

n we find associated ¢ and ¥. An "optimum" g or w* is chosen based on the
:tj" overall performance of the fitting. The estimate for o and ¥ are
F '
;q.g- obtained along with it. A general linear model (GLM) in a computer
e

system for data analysis named SAS (stands for Statistical Analysis

..
1N
e hﬁ System) supported by Yale Computer Center was used for the least-squares
ALERS regression.
AR

-

5.4.2 Examples

As an example, this fitting process for the data listed in Table 2 with
assumed 0=50.5 dyne/cm is shown in Appendix B. The result of the

fitting for this set of data is shown in Table 3 and Fig. 5.3 (Fig. 5.3

N shows only the fitting for K): The GLM printout (Appendix B) contains
:§53§ some information other than the estimated parameters (g and ¥). The
;f; § information includes several statistical quantities that were used

L :: together to assess the fitting: the square of the correlation function
lfi_:; (sometimes called the coefficient of determination) (R2), the

;5';3 coefficient of variation (C.V.), and the significance probability

3; a (PR>|T]).

;:: =

The square of the correlation coefficient, denoted R2 in Table 3

.
| (A

- and R in Fig. 5.3, measures how much variation in the dependent variable

(4

¢
N
>Pr
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can be accounted for by the model. The value of the right hand part of
Eq. (71) or (72) obtained by employing experimental data is called the
observed value. The value calculated by using the fitted parameters (a
or ¥) and data to the left hand part of Eq. (71) or (72) is called the
fitted or predicted value of the dependent variables. The difference
between the observed and fitted value is called the residual or error.
The parameter R2 is defined as the sum of squares of the predicted
values divided by the sum of squares of the observed values. R2 ranges
from 0 to 1; the larger the value of R2, the better the model's fit (see

Appendix B and [30}]).

In Fig. 5.3 and Table 3 the symbol "P" represents significance
probability. The significance probability is the probability that the
observed data would occur if a certain Null Hypothesis were true; here,
the Null Hypothesis is that the parameter to be estimated (a or ¥) is
zero [32] [30]. The significance probability ranges from 0 to 1; a
small value of P indicates that the Null Hypothesis is unlikedly to be

true or, in other words, the model is significant.

The symbol CV in Table 3 and the symbol ¢ in Fig. 5.3 denote the
coefficient of variation (C.V.) which is used to describe the amount of
variation in the dependent variable (the right hand side of Eq. (71) or
(72)). It is equal to the standard deviation of the dependent variable
(after adjusting for the mean) divided by the mean of the dependent
variable times 100. The values of C.V. shown in Fig. 5.3 is normalized
so can fit into the scale between 0 and 1. Some general observations of

the fitting are discussed below,
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It can be seen in Table 3 that for ¢ around its "optimum" value,
the fitting for o is generally much better than the fitting for ¥, which
should be expected because the measurements for (90%) are generally
much better than the measurements for other phase angles in terms of
repeatability. It also shows that for different assumed values of g the
higher the ¢ is, the better the fitting for « is ; on the other hand,
the higher the ¢ is, the poorer the fitting for ¥ is, and the fitting
for ¥ degenerates first gradually then dramatically (that is, the R?2
decreases, while the C.V. and P increases sharply) as ¢ reaches certain

value (Fig. 5.3 shows an example).

Considering the fact that the measurement:s of (90?) are the best
measurements we have, and observing the fitting for both o and ¥, we
choose the ¢ beyond which the fitting for ¥ degenerates very quickly as
.the optimum value. For most experiments, at the value of "optimum" g,
the fitting for ¥ has a R2 about 0.9. The value of C.V. and P for
different test liquids could be very different, because they are
dependent on the mean of the dependent variable which is a function of
interfacial tension and other parameters. However, the variation of
C.V. and P with assumed g for individual experiment is clear. The
significance probability of the fitting for ¥ associated with the
optimum ¢ is usually no greater than 0.01, which is the significance

level usually referred to as "highly significant" in statistics.
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: The optimum ¢ we chose for the above example (data listed in Table :t
;ﬂ: 2) is 50.5, and the associated o and ¥ are 1.9 and 13.6 (see Table 3, ;i
’:é Fig. 5.3, and Table 5). Employing the above ¢, ¥, and ¢ obtained from k
x:§ least-squares fitting, we can reconstruct the phase-frequency relation

S by the aid of Eq. (62). The result is shown as the solid line in Fig. -
:ﬁ 5.1. The same procedure was applied to another set of data which is L
2§ shown in Fig. 5.2. The results of the fitting for this set of data are &:
= summarized in Table 4 and Fig. 5.4. The solid line shown in Fig. 5.2 N
;EE was reconstructed based on these "best fitted" parameters.

)

19 -
p From the results of the fitting for the two examples mentioned o
Aot

el

above, we may assess the validity of the model of Eq. (62), especially

R

for describing the oscillation of the drop which is formed in gel.

Judged from the values of R2(¥), P(¥), and C.V.(¥) listed in Tables 3

4
&

N and 4, it appeared that the model fitted the data well, even if the test
at drop was formed in gel initially. We found that this was generally true
for our experiments for hexane and pentane. The summary and discussion ]

of our results for hexane and pentane are presented in the next section.
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TABLE 3
Fitting for one water-hexane experiment (droplet radius 0.825 mm)

) 1

| o RZ2(a) P(a) V(a) « RZ(Y) P(%) cv(7) ¥ {

|

i

| 48.0 0.9979 0.0010 5.60 0.35 0.994 0.0001 8.88 51.55 |

| I

:2 D 49.0 | 0.9997 0.0002 2.19 0.92 0.987 0.0001 12.96 34.48 |

7 ]

’;3 . 50.0 | 0.9999 0.0001 1.38 1.48 | 0.962 0.0005  21.94 23.41 |

RN I I

- ) . 50.5 | 0.9999 0.0001 1.16 1.76 0.919 0.0025 32.84 16.47 |

.. | I

ML | 50.7 | 0.9999 0.0001 1.10 1.88 | 0.889 0.0048  39.15 13.56 |

by I I I

\:: ' 51.0 | 0.9999 0.0001 1.01 2.05 0.786 0.0185 57.59 9.34 |

ORI | |

= =) 51.5 | 0.9999 0.0001 0.90 2.33 0.176 0.4080 230.15 2.31 |

o I I

e L 1 1
IR
J'.-o _-'.

", .
Cex

f;'.i
2ol
AR

D E e ™

4.8 4.5 Ly 4.5 sa.8 8.5 5.8 5.5 5.8
INTERFACIAL TENSION (DYNE/Q

R Square of the correction coefficient
C The coefficient of variance (normalized)
P The significance probability

Figure 5.3: Some statistics for the least-squares fitting for ¥:
Example for host, water; drop, hexane; drop radius, 0.0825
cm (referred to figure 5.1 and Table 3).
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TABLE 4

Fitting for one water-hexane experiment (droplet radius 0.766 mm)

1 B I

| o | R%(a) P(a) cV(a) « | R2(Y) P(¥) Cv(y) ¥

| | I

H ! }

| 48.0 | 0.9960 0.0001 6.96 2.68 | 0.973 0.0001 21.33  63.74

| | I

| 49.0 | 0.9970 0.0001 5.72 3.31 | 0.949 0.0004 29.40 48.46

I I i

| 50.0 | 0.9980 0.0001 4.88 .94 | 0.928 0.0030 41.80 33.18

| I I

| 50.5 | 0.9983 0.0001 4.55 4.26 | 0.892 0.0122 52.90 21.30

I I I

| 51.0 | 0.9985 0.0001 4.27 4.58 | 0.614 0.0370 88.58 13.57

I I I

| 51.5 | 0.9987 0.0001 4.02 4.89 | 0.329 0.1785 148.64 10.11

| | |

| 52.0 | 0.9990 0.0001 3.80 5.21 | 0.030 0.7280 541.43 2.41
N I

XXt d =t

4.8 48.5 48.9 4.5 se.e Sa.5 51.8 51.5 5.0

INTERFACIAL TENSION @YNE/CM

Square of the correction coefficient
The coefficient of variance (normalized)
The significance probability

v x

Figure 5.4: Some statistics for the least-squares fitting for ¥:
Example for host, water; drop, hexane; drop radius, 0.0766
cm (referred to figure 5.2 and Table 4).
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- 5.5 Measurements for Non-superheated Liquids b
' 5.5.1 Interfacial Tension .
| J
R
a. . A summary of our interfacial tension measurements for water-hexane and 1
A':- f{
ot water-pentane interfaces is presented in Table 5. Parameters with -3
- : : . .
- subscript "th" are theoretical values; Sep 1S calculated using Eq. (68)
}; (assuming the interfacial tension is known and the value is taken from
e
N Table 1), LI is calculated by using Eq. (8), and LI is calcu- ed by
2
using Eq. (9). Subscript "f" denotes parameters obtained usinc e
'i; least-squares method. S, is the experimental damping constant
calculated from data and Eq. (67). o¢; is the approximate interfacial
tension calculated via Eq. (70). o, is the corrected interfacial
. tension calculated using Eq. (6%9) with @ and xth'
For experiments which had the drops formed in water (even the water
o had some gel dissolved in it), it appeared that the experimental damping
f] constant Se agreed with the theoretical value Sth well, also do the -
y
Tf fitted ag and Kf with LTeN and xth' For these measurements of drops !?
. which were first formed in gel, the s, were much greater than Sth’ the
N
o ]
., fitted ag 1s several times greater than @ while xf is close to LI
<

This effect is expected because the potential (bulk) flow (both inside

R

and outside the drop) and the bulk viscosity are not changed much due to
the presence of gel; on the other hand, the flow in the boundary layer

. is affected very significantly due to some residue of gel on the drop's

el S

surface enhancing the damping of the drop's motion.
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For interfacial tension, the of corresponded closely to the

corrected interfacial tension o,. The data in Table 5 also demonstrate
that, within the uncertainty of our measurement, the measured
interfacial tension of the drops which were first formed in gel was not
different from the measured value of the drops which were injected
directly into host water. Considering the similarity in chemical
structure between the superheated and non-superheated sample liquids
used in our experiments, though without direct justification, we presume
that the interfacial tension between water and the superheated liquids
was not significantly changed by the gel involved in the transport

process.

The average measured interfacial tension (of) was 50.7 dyne/cm for

water-hexane interface and 48.6 dyne/cm for water-pentane interface,
which were about 0.8% lower than the literature values. The total
uncertainty of our interfacial tension measurement is estimated at
$0.75%. This total uncertainty is computed as the square root of the
sum of the square of each following error:
1. #0.1% uncertainty in the frequency measurement, which corresponds
to *#0.2% uncertainty in the measur«. interfacial tension.
2. $0.2% uncertainty in the droplet size measurement, which
corresponds to *0.6% uncertainty in the measured interfacial
tension.

3. $#0.1% uncertainty in the density measurement, which corresponds to

$+0.1% uncertainty in the measured interfacial tension.

L I8
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» 4. *0.4% uncertainty in the determination of the optimum of based on X
,' the least-squares method. .‘.
Y .
p - 5.5.2 Damping and Viscosity .{
- 3
: 3
. In our experiments of the quadrupole oscillation of a drop in water, the j:
damping of the motion is due to the viscous dissipation. Theoretically,
A
:1:f we should be able to deduce information on the viscosity of either the
:_\ drop or the host from the measured damping constant. Table 6
- -\'
- illustrates the variation of the theoretical damping constant
C corresponding to several arbitrarily assumed values of viscosity. For
very significant (up to 30%) change in inner or outer viscosity, the
'l corresponding variation of the S, appears comparable with the typical
: fluctuation of the ratio se/sth (about 15%) (see Table 5). Therefore,
| with the precision of our experiment, it is not practical to get any
d significant information about the viscosity of either the inner or the
- outer fluid from the measurements. The viscosity of 0.5% glycerol in
- water solution is 1% higher than the viscosity of pure water [26]. For
experiments marked with ** in Table 5, the host water had no more than
L 0.1% gel dissolved in it. From the above example, the change of
L

viscosity of host water due to this amount of gel is too small to show

up in the measured damping constant, as it is the case we observed in

L D )
.‘

Table 5.

NN For experiments denoted *** in Table 5, if we assume that near the

interface the viscosity was changed locally, then we can estimate (by

- et et et e e e e e .- et e o P e e L.
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_’_\'jj Eq. (8)) what would be the average viscosity associated with the T
{ interface boundary to give t} > value ac. An example is shown in Table o
".j:' 7, the value of 0.03 poise is equivalent to the viscosity of a 35%
::;::: glycerol in water solution [26]. The above calculation suggests the
g existance of gel residue on the interface for the experiments denoted
:j:: *** in Table 5, as we discussed in section 5.4. '
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e TABLE 5

; . Measurements for non-superheated liquids.

‘\:::‘ .

R py ; 7 T T ,

e radius| £(90°) | s, o, o2 | o ae e | sy @y Yy | remer
mm Hz ra./sec| dyne/cm | | |

! —l 1 A
b water-hexane interface
e

.« 1 1
E;':: 0.749 | 130.63 | 38.3 51.3 50.4 | 50.5 2.3 16.4 | 32.8 1.8 17.0 | *
.J\: .

0.766 | 122.14 | 64.5 51.4 50.5 4.3 21.3 | 31.5 - 1.8 16.2 | ***
) : 0.787 | 121.63 | 33.8 51.3 50.5 | 50.5 2.0 15.8 | 30.0 1.8 15.4 | *
ot ’ |

. I

0.825 | 113.69 | 30.1 51.5 50.6 | 50.7 1.9 13.6 | 27.6 1.8 14.0 | *
|

. 1
~ K 0.895 | 100.23 | 28.1 51.3 50.5 | 50.7 2.0 10.1 | 23.9 1.5 11.9 | **

l

. 1
?Qﬁ - 0.905 94.01 | 57.5 51.5 51.1 4.7 16.5 | 23.4 1.5 11.6 | ***

LY
AU
‘;% 0.985 87.20 | 22.4 51.4 50.6 | S0.5 1.5 11.8 | 20.1 1.4 9.8 | **

II 1.061 77.47 | 23.4 51.4 50.7 | S0.7 1.8 8.3 | 17.6 1.3 8.5 | *

1
;§f - water-pentane interface : .
‘::.T -.':‘ T T _+
el 0.801 | 118.08 | 30.5 | 49.4 48.5 | 48.5 1.7 16.5 | 28.1 1.6 16.5 | *
5 J

I

au 0.905 95.50 | 44.51 | 49.6 48.8 | 49.0 3.4 14.7 | 22.6 1.4 12.9 | ***

SR ]

. - I

A 10.710 | 141.18 | 38.9 49.5 48.5 | 48.5 2.0 20.9 | 35.0 1.8 20.9 | **
-\"’t\ e :

b? - 0.770 | 118.51 | 74.0 49.3 48.4 | 48.7 5.3 25.0 | 30.2 1.6 17.8 | ***
1. -

- 0.791 120.66 | 29.3 49.5 48.5 | 48.5 1.6 17.5 | 28.8 1.6 16.9 | *
TN t L
T 1 ]
S 0.944 92.83 | 20.7 49.5 48.6 | 48.5 1.2 12.5 ] 20.9 1.3 11.8 | **
-..' l
LR 1
S |1.047 | 79.51 | 17.7 | 49.5 48.7 | 48.7 1.2 9.4 | 17.4 1.2 9.6 | *
- :&‘ L 1

Note: 1) The ramark * denotes that the drop was injected directly into water from a
dispenser and there was no gel dissolved in the water.
: . 2) The remark ** denotes that the drop was injected directly into water from a
T dispenser and there was gel dissolved in the water.
3) The remark *** denotes that the drop was formed first in gel then transported
into water with the gel.

4) The ag th

dimension of (radian/second).

s" '\I

1
and q have a dimension of (radian/second)’. The zf and xt have a
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Variation of damping with viscosity (I).

TABLE 6

R=0.0825 cm po=0.9978 g/ml
0=51.0 dyne/cm pi=0.6576 g/ml
u°=0.009548 poise

L ®th %eh Sth

L

poise (rad/sec)™ rad/sec rad/sec
0.00313 1.67 13.97 27.64
0.002 1.43 15.52 25.66
0.004 1.82 13.20 28.84
ui=0.00313 poise

1 ®th Pth th
0.009548 1.67 13.97 27.64
0.007 1.59 9.54 24.49
0.012 1.78 18.53 30.59

TABLE 7
Variation of damping with viscosity (II).
R=0.0766 cm p°=0.9978 g/ml ¢=51.0 dyne/cm
pi=0.6576 g/ml
i ¥o %th Yth Sth
L

poise poise (rad/sec)™ rad/sec rad/sec
0.00313 0.009548 1.80 16.21 31.59
0.01 0.01 2.60 14.12 39.43
0.02 28.25 56.93
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A L
RS 5.6 Measurements for Superheated Liquids .
AN
N 5.6.1 Test Liquid
N - In this section we report measurements for butane, isobutane, and
83
N propane. Some physical properties of these three compounds are listed
in Table 8. The experiments were all conducted at the condition of room
q‘ "c .
j :j temperature and atmospheric pressure, and the compounds were all in
)
: - liquid state; therefore, they were superheated at a degree from 209C to
By 0
o over 609C. The boiling point at a pressure of 760 mmHg and the vapor
, pressure at 209C are taken from literature [25]. The density in Table 8
was based on the density at 21°C and equilibrium pressure {25] and then
. . corrected by using the isothermal compressibility which is extrapolated
from the available data at the equilibrium state. The surface tension
against its vapor listed in Table 8 is taken from a line which
!' extrapolates the data at the equilibrium state and connects the point of
ot "'
$ zero surface tension at the critical temperature (which should be good
) I
5 - far from the critical temperature) (for example, Fig. 5.5). The
- viscosity listed in Table 8 was extrapolated from the data at the
DA
- equilibrium state. For these values in Table 8, the uncertainty is
I
g T estimated to be +0.2% for the density, *1% for the surface tension and
; G . .
. 3% for the viscosity. *
. |
5~
-
+
4
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Some physical properties of three superheated liquids,

.....

TABLE 8

PARANARANAAASLS LM AN S B ENL AR L DM A

106

b At St SO aide et ey

T 1B LI 1 1 1 L]
Liquid | Structure | Boiling Pt. |Vapor Press.| Degree of |Density |Surf. Tens.| Visc. |
at 760mmH at 209C Superheat| at 21°C| at 21°C | 21%Cc |

+ ——

' bar oC g/ml dyne/cm | cp |

} %

| I I

Butane | -c-c-c-c- | -0.50 2.07 22 0.577 12.6 0.17 |
l |

I\ I I ]

T T : j

Iso- ¢ -11.73 2.98 33 0.556 10.6 0.18 |
butane -c-c-c- | | |
l l I

d

i

Propane| -c-c-c- -42.07 8.40 63 0.502 | 8.0 0.093 |
S 1 Jl !
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E{ 5.6.2 Measurements for Butane and Isobutane
‘\ Test drops of butane and isobutane were formed in gel under pressure and :’
N '
N
o then transported into water. The index of refraction of butane (1.3326) o
N, -
’:{ is so close to that of water (1.3333) [26] that the butane drops could l
- barely be seen by eyes while levitated in water, and its shadow looked :‘
4 .
iﬁ: like a ring with very thin band. Therefore,very stable levitation and
A2 e
. fine adjustment of the stopper (see Fig. 3.1) were required to take .
A measurements; the signals from photomultiplier for butane drops were R
o g
1N
:R noisier than the signals for drops of other liquids.
: ;Z:
N -
— (™)
ff The results of quadrupole oscillation experiments for butane and
N isobutane are listed in Table 9. As mentioned in the previous section, -

for the interfacial tension deduced from data, g¢,, denotes a first

S approximation calculated using Eq. (70), and Of is obtained using
" :_')

-.'J‘

< least-squares fittings. As shown in Table 9, oF is lower than g, by an

| n
(% , , -
\g: average of 1.6%. One can also see that s, 1s two to three times Sth xf
L .
\} -
Qy is close to xth (within a factor of two), and ag is much greater than :
- ==
.;j T (by a factor about four); this behavior similarly exhibited in our '
=~

;- data for hexane and pentane drops which were formed in gel.

3: From our measurements, the average interfacial tension for

<,

&, . . .

;. water-butane interface is 53.1 dyne/cm, and that for water-isobutane

- interface is 54.3 dyne/cm. Similar to the discussion in Section 5.5, we -8
)

) estimate that the uncertainty for our measurements of the

~

< . . .

:: water-isobutane interfacia’ tension is *0.8% with *0.2% uncertainty in

v

the estimated density:; the uncertainty of our measurement for the " |

-
.

“
.'

.
o, v
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water-butane interfacial tension is #0.9% with greater (%0.2%)

' uncertainty in the frequency measur:ment due to the noisiness of the
output signal from the photomu:ltiplier.
R -
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5.6.3 Measurements for Propane

Propane has the highest degree of superheating among our test liquids.
Some special phenomena were observed in the measurements for propane:
the frequency associated with a given phase angle increased with time,
while the size of the drop decreased with time, as can be seen in Figs.
5.6, 5.7, 5.9, 5.10, 5.12, and 5.13. The propane drops dissolved
significantly after being levitated in water for a couple of hours.

This fact makes it impractical to apply the least-squares method, as
described in section 5.4, to the data of propane with water, because the
size and frequencies were drifting with time and the measurements were

not taken at the same instant.

Our approach for analyzing the data is first to get averaged
variation of each measurement (e.g., the frequency associated with
certain phase or the size of ;he drop) with respect to time by fitting a
line to the data plotted as a function of time, as shown in Figs. 5.6,
5.7, 5.9, 5.10, 5.12, and 5.13. Then we can arbitrarily choose an
instant, read the size and frequencies from the fitted lines, and
calculate the ¢, associated with this particular instant (using Eq.
(70)). The parameters ¢ and ¥ can be estimated by employing Egqs. (71)

and (72) with the g,, R, w(90?%), and w(§) at a certain instant.

It was found that the interfacial tension between water and propane
obtained in this way was also time depends:.~; it decreased with time, as
shown in Figs. 5.8, 5.11, and 5.14. This :ecrease of interfacial

tension with time is presumably due to ti.- dissolution of propane in

T T T I

N _Jou

e
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water; the concentration of propane in water near the interface
increased with time, reducing the differential attraction force between

molecules across the interface.

The assumption that the concentration of propane in the water near
the interface increased with time is supported by the following
argument: If the diffusivity, k, of propane into water (molecules/unit
time/unit area) is constant, then the rate of change of the drop's
radius should be inversely proportional to the cube of the radius, that
is, dr/dt ~ -K/R3. But, as shown in Figs 5.7, 5.10, and 5.13, the slope
of the data line is very different from cubic; the rate of decrease of
the radius was much less than a cubic relation would predict.

Therefore, we presume that the ¢ was not a constant but decreased with
time, as would occur if the concentration of propane in water near the

interface increased.

Assuming that the true interfacial tention is 1.6% lower than g,,
as observed in ﬁrevious data, then the interfacial tension between water
and propane was about 58 dyne/cm when a propane drop has contacted with
water for about 10 minutes and continuocusly decreased to about 54.5
dyne/cm when the propane drop had remained in water for two hours. We

estimate the uncertainty of this measurement to be *1% which is of the

'same order as that of measurements for butane.
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Host: water, Droplet: propane.
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Figure 5.8: Variation of frequency with time for three selected
phase angles, experiment 40409.
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Host: water, Droplet: propane
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Host: water, Droplet: propane.

: Phase ¢=112.5

0 2 4 e 108 128 140 168 168

TINE QHINUTD

Figure 5.9: Variation of frequency with time for three selected
phase angles, experiment #0411.
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Host: water, Droplet: propane R .
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Fig. 5.11: Variation of the interfacial tension between water and
propane with time for experiment §0411.
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e Host: water, Droplet: propane.
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5.6.4 Comparison with Fowkes Theory

The results of our measurements for interfacial tension are summarized
in Fig 5.15. 1In this figure, the square symbols represent data froé the
literature; the circles represent data from this work; the curve
represents the calculated value given by Fowkes' equation (referred to
Eq. (1)). Those literature data of several hydrocarbons with water
denoted by squares in Fig. 5.15 (except that of pentane) were used by
Fowkes to calcul&te the part of the surface tension of water due to
dispersion force, which he obtained was 21.8%0.7 dyne/cm (referred to
section 1.6 and [13]). The surface tension of the superheated liquids
are taken from Table 8. The interfacial tension between water and
propane shown in this figure is 58 dyne/cm which corresponds to the
measurements taken at an "early stage" in the period of measurement
(refer to section 5.6.3). Fig. 5.15 demonstrates that for the three
superheated liquids, the agreement between our data and Fowkes' theory
is fair, similar to that between the data of pentane with water and
Fowkes' prediction; the trend of increasing interfacial tension with
decreasing surface tension in this region of lower surface tension is

clearly shown in both data and Fowkes' theory.
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Figure 5.15: Comparison between daota and Fowkes theory.
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i
et 5.7 Measurements for Compressadensity
g

o
N, -
(i I! Applying the established acoustic levitation technique, we measured the
j._n:;

'ﬁk'\ compressadensity, which is a bulk property, of the three superheated
..-.“ “\

n Al ’ . » » . [ . 0
oo liquids. The procedure is outlined in section 4.5, and the calculation
., is based on Eqs. (60) and (61).

=
\::::' -

AR 5.7.1 Control Experiment
‘_\:‘ ...'

;: As a test of the accuracy of the levitation technique for measuring

S e
-~ o adiabatic compressibility (B) (assuming the density is known), control
’!-'.;
ﬁt}:;: experiments were performed in which one of the two liquids, n-heptane
SR
'}j and n-pentane, was considered an unknown, and the other liquid a

"4

reference. The sound speed (C) in the "unknown" liquid was measured by

ENE
f{j. a direct method (see section 3.5). Making use of the relation C2 =

-f:.il .
< 1/pB, we can compare the results obtained from levitation technique with
~

. ll that obtained from the direct method. The results are summarized in
- A
AN Table 10. The densities of n-heptane and n-pentane in Table 10 were
"c,\ -

LA , . . ,
‘{::;" measured using the Mettler/Parr density meter. The density of water is
oy 4

- taker. from the literature (e.g. [26]). The sound speeds in the three
Cﬁi ~ liquids were measured using Nusonics sonic solution monitor (see section
;ET'N- 3.5).
<o

2y
R Our data show that the precision of our measurements for
${j . compressibility is about 1%, and for sound speed is about 0.5%. The
SN,

L overall uncertainty of this measurement is composed of the following
=

AN errors [5]:

EAR
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x
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:E 1. $0.2% uncertainty in the voltage measurement, which 1is
- attributable to the precision of the digital ac voltmeter and the
; deviation of the actual experimental condition from the assumpt:on
N
X
~ that the pressure of the incident waves for both the unkncwn and
reference drops is proportional to the input voltage to the
:: t~ .nsducer.
N |
N 2. $0.002cm uncertainty in droplet position monitoring, which
corresponds to *0.2% uncertainty in voltage measurement.
~ . . .
E-. 3. $0.1% uncertainty in density measurement.
ff 4. $0.1% uncertainty in sound speed measurement for host and
reference liquid.
2 The compressibility and sound speed measured using the levitation
»
;: technique agreed well with that obtained using traditional technique,
K
with the difference within the uncertainty of our levitation
\j measurements.
“~
N
~
N
e~ L
k~ 5.7.2 Compressadensity of Superheated Liquids
i -
< The same procedure was applied to butane, isobutane, and propane liquid, e
a which were superheated, to measure their adiabatic compressibility and
‘:; sound speed. Two references, n-heptane and n-pentane, were used in all ;if
4
¢ measurements. The densities of the superheated liquids are taken from e
P E
’* o
+ Table 8. The results are listed in Table 10. We estimate the total T
<
< -~
"4 uncertainty to be about 1% for sound speed and 2% for compressibility. A
- o
i: The results shown in Table 10 demonstrate that the results for the two -
A o
1 ) ~.'A. -
y
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different references are consistent with each other, the difference
being within the uncertainty of this measurement. Since the
compressibility and sound speed are bulk properties of liquids, we
judged that the data should not be affected by the presence of little
amound of residuce of gel on the interface. There are no other data
available for the results of the superheated liquids listed in Table 10
to compare with. However, the trend that the liquid of higher degree
superheating behaves closer to being in gaseous state (greater

compressibility and lower sound speed) is clear.
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TABLE 10 g i
Results of levitation technique for compressadensity measurement. ;-i
R
n .1
(assuming density is known) ]
2
— o
TEMP. LIQUIDS DENSITY(p) SOUND SPEED(C) COMPRESSIBILITY(B)x109 | .
ic g/ml m/s m2/N | h
|
T 1
"UNKNOWN" OF TRADITIONAL| LEVITATION TRADITIONAL| LEVITATION |
and "UNKNOWN" TECHNIQUE TECHNIQUE TECHNIQUE TECHNIQUE |
(REFERENCE) C2=1/p8 B=1/pC2 |
l }
T L}
22 Heptane 0.6819 1142 1146 | 1.125 1.117
(Pentane) |
22 | Pentane 0.6242 1019 1015 1.543 1.556 |
(Heptane) |
21 Butane 0.577 883 2.22
(Heptane)
1
1
21 Butane | 0.577 888 2.20
| (Pentane)
+ —
22 Isobutane 0.556 803 2.79 |
(Heptane) | |
|
. |
22 Isobutane 0.556 807 2.76 -
(Pentane) 1
e
21 Propane 0.502 695 4.12 T
(Heptane) N3
1
1
21 Propane 0.502 700 4.06 - *
(Pentane) -]
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Chapter 6

SUMMARY AND CONCLUSIONS

In this work, we have studied a technique for measuring the interfacial
tension between two liquids and applied it to the interfaces between
water and each of three superheated liquids. The method of measurement
is based on the resonance properties of a drop which is levitated in
another liquid (the host) and also driven into quadrupole shape
oscillation by an acoustic :iorce. The shape oscillation technique
described here has the special advantage that the host liquid provides a
very smooth and clean container for the levitated drop, thereby greatly

improving its time of survival in the superheated state.

We have developed a simplified model to describe the motion of a
drop oscillating in a quadrupole mode in a host liquid. 1In this model,
the flow field is partitioned into several parts: the potential (bulk)
flow in the outer (host) and inner (drop) fluid as well as the boundary
layer in the outer and inner fluid contiguous to the interface; they are
superimposed in an ad hoc manner to describe the whole flow. The
phase-frequency relation deduced from this simplified model agrees well
with that given by previous theories (e.g. Marston's) which were derived
in an exact approach. This simplified model reveals the physical nature
of the problem more explicitly. Though the derivation of this
simplified model was specified to the quadrupole mode, the procedure

should be applicable to oscillations of higher modes.

- 125 -




The apparatus of this experiment is similar to that of some

previous work, with some modifications. The accuracy of the size
measurement has been improved and it contributes significantly to the
precision of our measurements for interfacial tension. Our results for
the interfaces between water and each of two common liquids were lower
than the literature values by about 0.8%. The uncertainty of the
measurements was estimated to be #0.75%. Though the damping of the
drop's oscillation is due to viscous dissipation, it appeared that,
within the precision of our experiment, it is impractical to get any
significant information about the viscosity of either the drop or the

host liquid from the measurements.

We developed a process for introducing a liquid drop into water by

the aid of a gel which is immiscible with the drop but soluble in water.

It is a convenient way to handle superheated liquids. However, test
drops that underwent this process éxhibited much greater damping in
their shape oscillation and this fact raised questions as to whether we
could infer the interfacial tension from measurements by using the
approximation m=thod used in a previous work. We therefore developed a
method based on the least-squares principle for estimating interfacial
tension and damping parameters. The results of this least-squares
method for two common liquids demonstrate that the interfacial tension
and the viscous dissipation in the bulk flow were not affected by
detectable amounts due to the presence of the gel, while the viscous

dissipation in the boundary layer increased very significantly.
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Measurements of interfacial tension were reported for the

interfaces between water and butane, isobutane, as well as propane.
These three compounds were in the superheated liquid state under our
experimental condition (room temperature and atmospheric pressure). The
uncertainty of the measurements was estimated to be *1%. The size of
propane drops decreased gradually over a two hour period in water; the
interfacial tension decreased with time due to the increase of propane
concentration in water near the interface. Our results show fair

agreement with the prediction given by Fowkes' theory.

We have reported the sound speed and compressibility of those three
superheated liquids which were measured using an established acoustic
levitation technique. The uncertainty is estimated at +1% for the sound
speed measurement and at *2% for the compressibility measurement. Our
results show that the sound speed decreases and the compressibility

increases as the degree of superheat increases, as one should expect.

This vork, as one among others, demonstrates that the acoustic
levitation technique is a useful tool for studying either surface
properties (e.g. interfacial tension) or bulk properties (e.g. sound
speed and compressibility) of fluids with a special advantage in dealing
with metastable liquids. This work reports data which were previously
unavailable for the interfacial tension and compressibility of three
superheated liquids and may have applications in various fields
(referred to page 1, 5, and 11). Though we judged that the measured

interfacial tensions were not affected by the presence of gel, any
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uncertainty on this point can only be removed by conducting experiments v

without using gel or other material in the preparatory steps prior to —

aa’ala ¢ & sobim B a s 0

:Q the actual interfacial tension measurements.

\. ‘.
- Some future work relating to this technique is desirable. The

- approach of the simplified analytical model may be extented to some

'%: special situations in which the exact approach may have difficulty due
a to the geometry, such as when the equilibrium shape of the drop is

. non-spherical. It is also possible to superimpose terms such as

} interfacial viscosity and interfacial elasticity into this simplified
- model for describing some situations such as when there is a

. surface-active film or membrane between the two fluids; with this

-5 modification in the analytical model and by performing measurements as
{‘ described in this manuscript, we should have a sensitive method of

:‘

) characterizing the surface layer.
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APPENDIX A

Methods for Data Reduction

The model that we used to describe the motion of an oscillating drop in

a liquid host is expressed in Eq. (62),

. . 2 3/2
A Ctang = (a2 4 )02 - P - 02) (62)
\:E:_ where Z and @ are measured in our experiments (see section 5.2.1). By
‘:ﬁ {f measuring three frequencies (w) associated with three different phase
T angles (%), and by substituting them into the above equation, we get a
-_S‘ '-j:
A system of three linear equations and, theoretically, we can solve the
T
a:-i three unknowns: o, ¥, and w*2 (or g) by direct methods such as Cramer's
—
el rule or Gauss elimination. However, it appears that the system of
T
153 - equations mentioned above is "ill-conditioned", and the direct methods
::ﬁ L) are of very little use for inferring interfacial tension from the
;
oy phase-frequency measurements with the precision we can achieve in our
:;::3 measurements. An ekample is shown below in two steps:
e
. !! (i). Making use of Eq. (16), we may rewrite Eq.(62) in the
U |
o0 - following form:
AN ‘
‘..J '-‘ 3 3/2 p— 2
[(T+24)/(R3T)]o - (w)¥ - [(1+T)w ' "]a = Tw? . (73)
O 1? Assuming R=0.0825 cm, o=1.88, ¥=13.56, ¢=50.7 (dyne/cm) (see Table 5),
XS
'xj . p°=0.9978, pi=0.6576 (see Table 1), and employing Eq. (62), we may get a
-3 ::
N set of "artificial data", such as:
R £(H,) £(deg.)
T 111.729 68.257
N 3 114.081 95.180
) 117.609 128.363
e -
S I
=i
~ .
S
o i
i
v
Q'. -----------

......
.......
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Substituting this set of artificial data into Eq. (73), we get a system
of linear equations [A] [X] = [B]}, where -i‘
T y
[X] = 6 ¥ «] :
) r 27005.89 -702.02 -65238.534 -
[a] = |-118809.38 -716.79 192502.12| (74)
L -13606.97 -738.95 5290.334 -
and
. r 1235708.00,
: [B] = |-5667649.00]
o L -689871.874 g
' Employing Cramer's rule, we solve the unknown matrix,
T S
[X] = [50.71 13.50 1.91]", o2
which is very close to the original assumed values. .
ﬁ
: (ii) If we make a small change in the artificial data, say, one of
: the frequency from 117.609 to 117.800, then it produces "small" changes
in the coefficients: 'j
r 27005.89 -702.01 -65238.534
) [A] = |-118809.37 -716.79 192502.12]| :
) L -13606.97 -740.15 5303.224
r 1235708.004 L |
N [B] = |-5667649.00] "
e L -692114.564
But the corresponding changes of the solution are very '"large". \
o [X] = [60.67 -126.41 7.54]7T. -
A -
_:t The performance of direct methods can be predicted by a theory in -
numerical analysis (e.g. [33]) which provides an estimate of the -
:4':' relative error: _,’
1oIax, - Bl X, - x| |ax, - Bj .
-1 (™ ]
1 < < Jal1a
laf 1a=j I8 1%, 1 1B
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where || denotes a matrix norm, subscript c denotes the computed value,
subscript t denotes the true value, and all variables are matrix. The

term uAﬂ-ﬂA-lﬂ is usually called the condition number and its size is a

measure of how good a solution we can expect direct methods to generate.

The condition number satisfies the inequality "A"o“A-lu 2 1. Following

a specific definition of the matrix norm{33], we can calculate the

condition number for the above example (referred to Eq. (74)), such as:

afly "3_1"1 1.6 x 104 > 1

LY

3.6 x 104 >»> 1

The above calculation indicates that, with the precision we can achieve
in our measurements, if we use direct methods to solve [X], the relative

error could be unacceptably large.

The problem can also be demonstrated by the following observations.
First, the typical magnitudes of the terms in Eq. (62) are very

different, as shown in the following vector diagram which is drawn
approximately to scale for the above example with f = 114.081 Hz and § =

95.180 degree,

a2z

4
wl - %,

*2

where ¢*2 = 546062, w2 = 513791, ¥w = 9720, and a(w3/2)/2 = 51023.

Secondly, the dependence on w of the two damping terms (¥w and aw3/2) is

rather close, and the variation in frequency is rather small for the

range of phase angles covered in our measurements.

.
[l
.t
«
‘

[ 1Y%

N
il

:
51
a

i

R - RS

B - AP

Y




132

The idea of our approach to analyze the data is formed by the
following reasoning. To avoid the difficulty in direct methods and to
use all the data we have for one experiment (usually more than three
phase-frequency measurements), we employ a least-squares principle to
fit the model in Eq. (62) to our data. To give greater emphasis

372y,

relatively to the terms ¥w and a(w we assume that y* is known by

guessing a value for the interfacial tension. Then the terms w*2 and 2
almost cancel out each other. In the remaining two unknowns, ¥ and «,
only o affects the value of £(90") (see Eq. (71)); also, our
measurements for f(90°) are usually much better than f(f), where £#90°,
in terms of repeatability. Therefore, we first employ the least-squares
method and only the data of £(90°) to get the best fitted ¢. We then
use the assumed w*, fitted o, and the data of f(£#90°) to obtain the
best fitted ¥. The assumed y* which is the closest to the “true" value
should lead to the best fitting (referred to section 5.4). Details of

the procedure are described in section 5.4 and Appendix B.
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_ APPENDIX B
.‘ . An Example for the Least-squares Fitting
N |
:-:: \ This appendix provides an example for the process of least-squares
YO
o ) fitting that we employed to analyze our data. The first part of the
3 ' attached printout is the data set used in this example (see Table 2).
S~ p p
:'-'.’ . The remaining part of this printout is the GLM printout (see section
f_') A .
- 5.4). Relevant terms are marked with numbers and are explained as
AR follows:
D]
:.ﬁ (1). the data used in this example (see Table 2)
34 2 . . :
A G (2). the assumed interfacial tension.

(3). the coefficient of o in .the left hand part of Eq. (71).

s
-

'l 'l

,.':‘ (4). the right hand part of Eq. (71).
: s (5). the sum of squares for the dependent variable in (4).
.- (6). the sum of squares for the predicted dependent variable in (10).
\::3 ": . (7). R2, the ratio produced by dividing (6) by (S).
: (8). the difference between (4) and (10).
. 1' ' (9). the sum of squares of (8).
4 _.\ (10). the value obtained by employing the estimated parameter (15) into
_ Eq. (71).
- .
*.::j * (11). (9) divided by the DF (degree of freedom).
353 - (12). the square root of (11).
:. (13). the mean value of (4).
T & (14). (12) divided by (13), then times 100, (the coefficient of variation).
3 - (15). the estimated parameter based on minimizing (9).
‘:‘ é (16). the value for testing the null hypothesis that the parameter
-: . equals zero, which equals
N
X

-
1

b

s |




(17).
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(13)-0.0

(12)/vn
where n is the number of observations (n=3 in this example) [32].
Th}s value answers the questions, "If the parameter is really
equal to zero, what is the probability of getting a larger value
of (16)?" Based on the assumption that the dependent variable has
a normal distribution with mean zero and estimated standard
deviation obtained from n observations (the term (12)), the value

of (17) is then the probability to get a greater value of (16) or,

equivalently, a greater value of (13) [30] [32].

Ll ater aeg ot o0 |
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e 1 -
 f xxkkkgubstitute the data in Table 2 into Eq. (71), -
assume the interfacial tension to be 50.5 dyne/cm, and -

! invoke SAS GLM program to fit alfa: (2) -
)

STATISTICAL ANALYSIS SYSTEM 4

; OBS ALFA  INER -:

(3) (4) ;

1 190.795 340.816 3
" 2 190.946 335.434 N
3 190.996 333.641 1
- STATISTICAL ANALYSIS SYSTEM K

GENERAL LINEAR MODELS PROCEDURE

i; DEPENDENT VARIABLE: INER
a
SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE
e
s 6
& MODEL 1 ( )339956.84381956 339956.84381956 22129.25
. ERROR 2 (9) 30.72466672 (11)15.36233336 PR > F
B UNCORRECTED TOTAL 3 (5)339987.56848628 0.0001
.! R-SQUARE c.v. STD DEV INER MEAN
‘ 12
(7) (14) (12) (13)

. 0.999910 1.1643 3.91948126 336.63020000

,. SOURCE DF TYPE I SS F VALUE PR > F
. ALFA 1 339956.84381956 22129.25 0.0001

STATISTICAL ANALYSIS SYSTEMNM

GENERAL LINEAR MODELS PROCEDURE

-
o DEPENDENT VARIABLE: INER
" K
e SOURCE DF TYPE IV SS F VALUE PR > F
¢ ALFA 1 339956.84381956 22129.25  0.0001
Y
.\'
SH T FOR HO: PR > |T| STD ERROR OF
y PARAMETER ESTIMATE PARAMETER=0 ESTIMATE

o (15) (16) (17)
i ALFA 1.76326420 148.76 0.0001 0.01185316

. C e R L R .
.o, S B A AN o [ SN -
3 RS - - . . et e T e L K R
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N OBSERVATION OBSERVED PREDICTED RESIDUAL
* (4) VALUE (10) vaLue (8)
S
L AN
- 1 340.81640000 336.42146348 4.39493652
R 2 335.43360000 * 336.68806903 -1.25446903
e 3 333.64060000 336.77676122 -3.13616122
e STATISTICAL ANALYSIS SYSTEM
,': GENERAL LINEAR MODELS PROCEDURE
e
e DEPENDENT VARIABLE: INER
A SUM OF RESIDUALS ) 0.00430626
254 SUM OF SQUARED RESIDUALS 30.72466672
Fdy SUM OF SQUARED RESIDUALS - ERROR SS -0.00000000
2:; FIRST ORDER AUTOCORRELATION -0.05139501
(e DURBIN-WATSON D 1.15400921
g **kx%x*x The end of SAS GLM output.
.r::.;
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e
ol
2
ety o
e
N
4o
Ly
o
A
"I
L~
*l
.",'\‘
.ﬂ:
\l
¥
-
1 30
A e
} Q.-
)
%3
4
”

&
b

L}

L X

'
‘\-’

K]
a




_-.‘h PR RN AR 2 B MR RA B AR S A AR R A L L I RISy S e L T L T T S
L
S
>
I
Ty 137
'(: <
"
xe REFERENCES
AN
TN 1. Jasper, J.J.
. Measurement of Surface and Interfacial Tension
:33 pe in Treatise on Analytical Chemistry, ed. Kolthoff I.M. and Elving
! P.J.
f - John Wiley & Sons, New York, part 1, vol. 7, chap. 82, 1967.
ALY
M 2, Adamson, A.W.

Physical Chemistry of Surfaces, 4th ed

R John Wiley & Sons, New York, 1982.

SR

o 3. skripov, V.P.

O Metastable Liquids

, - John Wiley & Sons, New York, 1974.

.'-f:, e 4, Apfel, R.E.

A ~$; Vapor Nucleation at a Liquid-Liquid Interface
fj 4 J. Chem. Phys., 54, p. 62, 1971.

<

&
‘v

S. Apfel, R.E.
Technique for measuring the adiabatic compressibility, density, and
< sound speed of submicroliter liquid samples

¥1 2 J. Acoust. Soc. Am., 59(2), pp. 339-343, 1976.
o —_
l.‘ N
i‘:.: 6. Baidakov, V.G., Kaverin, A.M., and Skripov V.P.
- Measurement of Ultrasonic Speed in Stable and Metastable Liquid
e ! Methane
.._? o J. Chem. Thermodynamics, vol. 14, pp. 1003-1010, 1982.
'.\.
';? - 7. Rayleigh, J.W.S.

< - Theory of Sound
Dover, New York, sect. 364, 1945.

ol

SN 8. Lamb, H.
_'-3 Hydrodynamics
;:; % Dover, New York, sect. 275, 355, 1945.
Ca \J'
v 9. Miller, C.A., and Scriven, L.E.

; The Oscillations of a Fluid Droplet Immersed in Another Fluid
;<.§; J. Fluid Mech., vol. 32, part 3, pp. 417-435, 1968.

B e

10. Marston, P.L.
Shape Oscillation and Static Deformation of Drops and Bubbles
a Driven by Modulated Radiation Stresses--Theory
J. Acoust. Soc. Am., 67(l), pp. 15-26, 1980.

NG Eh i
b ':I L2 ) v,
lalatels

".:

LR S L I

SN L AN T T T e T T A A N L L e e e e e e
X a! s N y

o Y .. R I T
'Y a ™t a™ e e VR LA TR S



, Byt

LU RTINS

s Vg~ e~
Il."‘

--------

.....

11.

12.

13.

14,

15,

lé.

17.

18.

19.

20.

21.

138 ’ i

Marston, P.L., and Apfel, R.E.

Quadrupole Resonance of Drops Driven by Modulated Acoustic
Radiation Pressure--Experimental Properties

J. Acoust. Soc. Am., 67(1), pp. 27-37, 1980.

Trinh, E., Zwern, A., and Wang, T.G.

An Experimental Study of Small-amplitude Drop Oscjllations in
Immiscible Liquid System

J. Fluid Mech., vol. 115, pp. 453-474, 1982.

Fowkes, F.M.
Attractive Forces at Interfaces
Ind. Eng. Chem., vol. 56(12), pp. 40-52, 1964.

Bikerman, J.J.
On a Theory of Interfacial Tension .
J. Adhesion, vol. 3, pp. 19-22, 1971.

French, A.P.
Vibration and Waves

W.W. Norton & Company Inc., New York, 1971.

Lock, R.C.

The velocity Distribution in the Laminar Boundary Layer between o
Parallel Streams e
Quart. Journ. Mech. and Applied Math., Vol. IV, Pt. 1, 1951. 4

Batchelor, G.K. :i
An Introduction to Fluid Dynamics
Cambridge University Press, London, 1967.

- S

Chu, B.T., and Apfel, R.E.

Acoustic Radiation Pressure Produced by a Beam of Sound

Review and Tutorial [10}, J. Acoust. Soc. Am., Vol. 72, No. 6.,
1982.

. ‘ﬁj . 0
NN ] - ¥ Ry

Marston P.L., Goosby S.G., Langley D.S., and LoPorto-Arione S.E. R
Resonances, Radiation Pressure, and Optical Scattering Phenomena of B
Drops and Bubbles

Proceeding of the Second International Colloguium on Drops and
Bubbles - _ _‘
Monterey, California, November 19-21, 1981, ed. LeCroissette D.H.,
JPL Publication 82-7.

VPSP - - PN
Y W Y Y K

Yosioka, K., and Kawasima, Y.
Acoustic Radiation Pressure on a Compressible Sphere
Acustica, Vol. 5, 1955.

Herrey, E.M.J.
Experimental Studies on Acoustic Radiation Pressure
J. Acoust. Soc. Am., 27(5), 1955.

- . DAY . . .t . -
. ~ . N
. A A L N A P, L T S ST



-

XAA

s,

22.

23.

24.

25,

26.

27.

28.

29.

30.

31.

32.

33.

139

Baxter, K., Apfel, R.E., and Marston, P.L.

Versatile Resonance-Tracking Circuit for Acoustic Levitation
Experiments

Rev. Sci. Instrum. 49(2), 1978.

apfel, R.E.
Detector and Dosimeter for Neutrons and Other Radiation
U.S. pat. 4, 143, 274.

Uspensky, J.V.
Theory of Equations
McGraw-Hill, New York, pp. 174-177, 1948.

Vargaftik, N.B.

Tables on the Thermophysical properties of Ligquids and Gases, 2nd
ed.
Hemisphere Publishing Corp., Washington, D.C. 1975.

Weast, R.C., and Astle, M.J.
CRC Handbook of Chemistry ggg Physics, 59th ed.
CRC press, Inc., Florida, 1978-1979.

Harkins, W.D., Clark, G.L., and Roberts, L.E.
in Internation Critical Tables, ed. E.W. Washburn
Mcbraw-Hill, New York, vol. 4, pp. 436-437, 1928.

Girifalco, L.A., and Good, R.J.
A Theory for the Estimation of Surface and Interfacial Energies
J. Phys. Chem., vol. 61, pp. 904-909, 1957.

Shaw-D.J.
Introduction to Colloid and Surface Chemistry, 2nd ed.
Butterworth, Boston, 1970.

Helwig, J.T.
SAS Introductory Guide
SAS Institute Inc. North Carolina

Daniel, C.T., and Wood, F.S.
Fitting Equations to Data
John Wiley & Sons, Inc., New York, 1971.

Davies, O0.L.
Statistical Methods ig Research and Prcduction
Imperial Chemical Industries Ltd., London, 1957.

Johnson, L.W., and Riess, R.D.
Numerical Analysis
Addision-Wesley Publishing Company, Massachusetts, 1977.

A A s

Yo e e
e ~'!l.'- S,
A s 2 S S

.
A_A_

! R
. .
. \
M k’n';

K
¥

1 8. v
PR N
faa'ni’s

A

Tata e




...............

P At Rt L AL A S L L IS T T it i . R Cat e, SN T e .

February 1983

L REPORTS DISTRIBUTION LIST FOR ONR PHYSICS DIVISION OFFICE
- UNCLASSIFIED CONTRACTS

Director 3 eopies
Defense Advanced Research Projects Agency

Attn: Technical Library

1400 Wilson Blvd.

Arlington, Virginia 22209

Office of Naval Research 3 copies
Physics Division Office (Code 412)

800 North Quincy Street

Arlington, Virginia 22217

Office of Kaval Research 1 copy
Director, Technology (Code 200)

e 800 North Quincy Street
;;; Arlington, Virginia 22217
o Nava) Research Laboratory 3 copies
P Department of the Navy
o Attn: Technical Library
ij Washington, DC 20375
e
- Office of the Director of Defense 3 copies
~ Research and Engineering
N Information Office Library Branch
oY The Pentagon
o Washington, DC 20301
N
: U.S. Arwy Research Office 2 coples
o Box 1211
N Research Triangle Park
[~ Nor~h Carolina 27709
N
DA Defense Technical Information Center 12 copies
Cameron Station
f3 Alexandria, Virginia 22314
)
- Director, National Bureau of Standards 1 copy
ard Attn: Technical Library
J-rad Washington, DC 20234
- Commanding Officer 3 coples
ot Office of Naval Pesearch Western Detachment Office
e 1030 East Green Street
- Pasadena, California 91101
708 Commanding Officer 3 copinzs
:ﬁ~ Office of Naval Research
X Eastern/Central Detachment Office
s 495 Summer Street
:: Besten, Massachusetts 02210

i

A 19




........

<y v

[AX

E::o ‘f: Director 1 copy
- U.S. Army Engineering Research
D and Development Laboratories
. Attn: Technical Documents Center
;, Fort Belvoir, Virginia 22060
1
tﬁ;%ﬁ ODDRAE Advisory Group on Electron Devices 3 copies
o

201 Varick Street
New York, New York 10014

Air Force Office of Scientific Research 1 copy
Department of the Air Force
Rolling AFB, DC 22209

Ailr Force Weapons Laboratory 1 copy
Technical Library

Kirtland Air Force Base

Albiquerque, New Mexico 87117

- Air Ferce Avionics Laboratory 1 copy
Air Force Systems Comwmand
Tecknical Library
Wright-Patterson Air Force Base
Daytcen, Ohio 45433

Lawrence Livermore Laboratory 1 copy
Attn: Dr. W. F. Krupke

University of Califormia

P.0. Box 808 .

Livermore, Califormia 94550

Harry Diamond Laboratories 1 copy
Technical Library

2800 Powder Mill Poad

Adelphd, Maryland 247823

Naval Air Development Center 1 copy
Attn: Technical Llibrary

- - Jehneville

Wercinster, Pennsylvania 18¢74

Naval Weaporns Center !l ccpy
Technical Library (Code 753)
China Lake, California 93555

Naval Training Equipment Center 1 cop¥
Technical Library
Orlardo, Florida 32813

[

Kaval Underwvater Systems Center
Technical Center
new Lernden, Connecticut C€320

copy

IV D - AP SIS NSO NPT ) WSS NPSCSLINCNE) > SRS Iny - X

¢S .t



..............................

Comxandant of the Marine Corps
Scientific Advisor (Cocde RD-1)
Washington, DC 20380

Naval Ordonance Station
Technical Library
Indian Head, Maryland 20640

Naval Postgraduate School
Technical Library (Code 0212)
Monterey, California 93940

Naval Missile Center
Technical Library (Code 5632.2)
Point Mugu, Califormia 93010

- Naval Ordnance Station
NN Techmical Library
:‘: Louisville, Kentucky 40214
RS

= Commanding Officer

R Naval Ocean Research & Development Activity
N Technical Library
s NSTL Station, Mississippi 39529
“n
N Naval Explosive Ordnance Dispcsal Facility

Technical Library

R Indian Head, Maryland 20640
2
3@1 .Naval Ocean Systems Center
-;f Technical Library :

- San Diego, California 92152

3 Naval Surface Weapons Center

- Technical Librawy
jié Silver Spring, Maryland 20910
i Naval Ship Research and Cevelopment Center
e Central Library (Code L42 and L&3)
AN Bethesda, Maryland 20084
2;: Naval Avionics Facility
ot Technical Library

Indianapolis, Indiana 46218

',
24
P
.5&;4-

Ld
a7,
3
-
%
"N
2

LW Y '.'s‘ NN -.'s;:.:,'-' T N T T T '.~;.~"\.*‘;.-_'~‘,'z\"-,'_;..:

1 copy

1 eopy

1 copy

1 copy

1 copy

! copy

1 copy

1 copy

1 copy

1 copy

1 copy

-------

&l

\,.}

B!




.
s

L e s
fl".‘

‘ ‘ o‘.' l’

ADDITIONAL DISTRIBUTION LIST

Professor L. Crum

Physics Department
University of Mississippi
Oxford, MS 38677

Professor Philip L. Marston
Physics Department
Washington State University
Pullman, WA 99164

Professor Floyd Dunn
Bioacoustics Research Lab.
University of Illinois
1406 W. Green Street
Urbana, IL 61820

Professor Steven Garrett
Physics Department
Naval Postgraduate School
Monterey, CA 93940

Professor Joseph Katz

Dept. of Chemical Engineering
The Johns Hopkins University
Charles and 34th Streets
Baltimore, MD 21218

Dr. Eugene Trinh

MS 183-901

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103

(1 copv each)

Dr. I. Rudnick

Physics Department
University of California
Los Angeles, CA 90024 °

Dr. M. Greenspan

Institute for Basic Standards
National Bureau of Standards
Washington, D.C. 20234

Dr. C.F. Quate
Physics Department
Stanford University
Stanford, CA 94305

Dr. D.T. Blackstock
Applied Research Lab.
University of Texas
Austin, Texas 78712

Dr. F. Fisher

Marine Physical Lab.

UCSD, Scripps Oceanog. Institute
San Diego, CA 92152

Dr. D. Turnbull

Div. of Engineering & Applied
Physics

Pierce Hall

Harvard University

Cambridge, MA 02138




-
.

B R
; D N Y

. T ey
. JPIPCIRE VL )
. e
.‘t.'.xsn, By

U v

Y

\

¢
a Wi

red

f-\‘;'

\

3
. ¥
43




