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l. OVERVIEW

1.1 Introduction

This annual report describes the work performed during the
§ past year in an ongoing effort to design and implement a system
that performs phonetic recognition of continuous speech. The
general approach used is to develop a Hidden Markov Model (HMM)
of speech parameter movements, which can be used to distinguish
- among the different phonemes. The resulting phoneme models
1'1 incorporate the contextual effects of neighboring phonemes. One
major aspect of this research is to incorporate both spectral
. parameters and acoustic-phonetic features into the HMM formalism.

27

Previous work on using acoustic-phonetic rules has yielded
average phonetic recognition rates of 60-78%. We estimate that a

(XA

minimum recognition rate of 80% is needed for a high-performance L
" g speech understanding system. We believe that the information
53 - needed tc achieve the higher recognition accuracy is available in
3 jﬁ the speech signal, manifested in the form of spectral parameter
by sequences, as well as in the more global acoustic-phonetic
-~ features that are on the order of a phoneme. Current recognition
&‘: systems make use of one or the other type of information. We

believe that in order to achieve the level of performance that we
desire, the recognition system must make use of both kinds of
information in a coherent way.
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R -
) 1.2 Progress

X

g * During this past year, we completed a major milestone of the
Y 2 project, namely, the design and implementation of an initial
f Eé phonetic recognition system on the VAX 11/780. Specifically, the

_ following tasks were performed:

l. Designed and implemented a data structure to represent
spectral probability densities and acoustic-phonetic
features within the same formalism, and to allow
extensive use of context-dependent phoneme models.
Special attention has been paid to space/computation
tradeoffs.

mf_i

A g

2. Designed and implemented a phonetic recognition system,
referred to as the stack decoder. This program takes
as input the acoustic representation of an unknown
utterance and attempts to find the most likely phoneme
sequence using a best-first search strategy.

¥

a2

Designed and implemented a system parameter training
program, referred to as the forward-backward algorithm.
Much effort has been spent on debugging and speeding up
this program.

EE%s %5ty st
e
L%
W
L ]

8

-

Developed software tools to debug the system
interactively.

| iy o
-

5. Carefully hand-labeled 118 utterances with phonetic
~ transcriptions and phoneme segment boundaries.
o~ Upgraded and improved the 1labeling program to
facilitate the 1labeling process. Recorded 250 new
utterances for future use.

N
“Qt
4
&
A

i 6. Performed an experiment with 110 utterances (5 minutes
of speech) and obtained some initial recognition ‘
] performance results. :
*3 K

§
Y
§
P
%

In the following sections, we describe these tasks in
%% greater detail. 1In Section 2, we present our basic system design
and the underlying concepts. Details of our initial system
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DI R

implementation are given in Section 3. 1In Section 4, we describe
an initial experiment that was performed to test the first
implementation of the system, and conclusions are made to guide
our research plans for the coming year.
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2. SYSTEM DESIGN

In this section we describe the motivation for the approach
we have taken to phonetic recognition. We also rev'ew the
methods used and how they will fit together in ¢t} final
recognition system.

2.1 Combination of Methods

Phonetic récognition algorithms generally fall into one of
two types. The first type, which we call rule-based algorithms,
uses a set of heuristic acoustic-phonetic rules to segment speech
into phoneme-sized units and then assigns phoneme labels to these
segments. The second common type of phonetic recognition
algorithms, which we call network-decoding algorithms, is usually
based on a single parametric representation of speech sounds
compiled into a network that represents alternate realizations of
phonetic units. Given some input speech, the algorithm uses a
dynamic programming search that attempts to find the optimal path
through the network, based on a distance metric or a
probabilistic error criterion. The advantages and disadvantages
of each of the two types of algorithms are presented below.

2.1.1 Rule-Based Algorithms

Typically, the rules in a rule-based system are
hierarchical. For example, the speech is first divided into
sonorant and obstruent regions based on gross features, such as
the amount of low-frequency or high-frequency energy. Then,

-------------------

.......



WLWELAY. ¥ . 2

- L A NENTS LY B

PRe S d

[ A Al

I A e sy

4 A

S0 AR

"l ‘t. ; o

e

2 B

[

"4
.
LIS

2

(S

kP

N

SN
A

Padon it AR VA G h it A R Sl A RN et e " cet e LI C M

Aedian Bl

Bolt Beranek and Newman Inc. Report No. 5485

within each of these regions, context-dependent rules are used to
further subdivide the speech. These rules are most often based
on explicit knowledge of the relation of certain acoustic-
phonetic features to a particular articulatory gesture.

2.1.2 Network-Decoding Algorithms

Several phonetic recognition programs have been based on a
network representation of speech (often known as a Hidden Markov
Model) . These methods do not segment the speech into phonetic
units before labeling. Instead, they use a dynamic programming
algorithm that considers all possible segmentations of the input.
Associated with each segmentation is a be~t labeling and a
corresponding score. The algorithm then chooses the segmentation
and labeling that together result in the best score.

2.1.3 Comparison of Methods

The rule-based phonetic recognition system explicitly models
the salient features of different phonemes by using those
features that are best at making each phonetic distinction. By
segmenting the speech before labeling, these algorithms avoid the
expensive computation associated with dynamic programming. They
can also make use of more global acoustic-phonetic features of
phonemes that are difficult to represent in single-frame models.
The primary drawback of these rule-based algorithms is that if
decisions made in an early stage of the hierarchical analysis are
incorrect (as they must be occasionally), decisions made in later
stages are often not meaningful. While the processes that use
the results of the phonetic recognition (such as a word matcher)

M P SR R
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can hypothesize various errors, they do not have the ability to
score those errors accurately. Rather, they must rely on average
confusion statistics to score these unlikely errors. Thus, a
severe error in segmentation or labeling is quite likely. Such
errors were found té- be gquite devastating in our speech
understanding system. J

In contrast, the hypothesize-and-test paradigm used by
network-decoding algorithms typically computes detailed acoustic
scores for a wider range of alternatives. While the correct
phoneme will not always receive the highest score, it will at
least always be considered, and will receive a score that is
comparable to other scores assigned to other theories. Another
way to describe such systems 1is that, by considering all
reasonable alternatives, they degrade gracefully. Experience has
shown that this feature is essential to a speech understanding
system that combines many theories spanning different periods of
input speech. A second very important feature of the network
decoding algorithms is their capability for automatic training of
the network model. The training method used is based on a
bootstrapping technique. The training method used is based on a
bootstrapping technique. A known sentence is given to the system
along with a phonetic transcription. The system first finds the
best alignment of the known input to the network. Then it uses
the aligned input speech to update the network models, either by
changing probability densities or by adding alternate paths in
the network. In this way, large amounts of training speech can
be incorporated into the network with relatively little effort.

The primary disadvantage of the network-decoding algorithms
to date is that they use a uniform representation and metric for
all frames of all phonemes in all contexts. The spectral
parameters in a single frame are also not ideal because they are:
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o
f o4 a. a high dimensional space
P
q b. highly dependent on the speaker
N c. do not include more global effects on the order of a
s - phoneme.
Bl

Thus they do not directly model the known differences between
i phonemes. A second disadvantage associated with network decoding
t:\ algorithms is that they typically require large amounts of
computation.

= w W
'
g,

2.1.4 Properties of a Unified Approach

-
ol -

i & :
A
'§ As a result of our experience with various phonetic %
' - recognition methods, we have compiled a 1list of desired i
: capabilities or properties for a phonetic recognition system that
» I combines the advantages of the two basic methods. At this point -3
s pY we postulate that the performance of a phonetic recognition .'_:
i . program is determined primarily by how well it models the '
<, acoustic realizations of different phoneme sequences. Below we
list properties of a recognition algorithm which we feel will
LY
::36 help achieve the goal of estimating models that are both complete
) and accurate.
1 w1
< l. The phonetic recognition algorithm chooses the phoneme
P sequence that is most likely, given the entire input
LIRS specch signal. When used as a word matcher, it
_ é computes the score of the best alignment of the
- hypothesized words against the input speech.
F: 2. The speech model incorporates both a spectral sequence
S model and the acoustic-phonetic features typically used
;‘ in rule-based systems within the same formalism.
A
i & 3. The system is able to be trained automatically with
. little human effort.
S
IR
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The system is amenable to retraining to a new speaker,
or t:od multiple speakers, with only a short training
period.

The system can be made to run faster by constraining
the search significantly without degrading performance.
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e 2.1.5 Block Diagram
"
3 S Figure 1 illustrates the overall block diagram for the
f: .. recognition system. The system can be divided into two major
f; §j sections: the training component and the recognition component.
The division between these sections 1is indicated by the
ho! 5& horizontal dotted 1line. The training component uses two data
s ¥ bases. First, a small data base of carefully labeled speech is
; k3 used to produce initial estimates of probability densities for
d & spectral parameters and for acoustic-phonetic features (discussed
P further below). Then, a 1larger data base of phonetically
:§ transcribed (but not time-aligned) speech is used by the training
algorithm to automatically improve the pdf estimates. The

knowledge sources shown provide the training system with a model
for the variability of speech parameters, and the effect of
phonetic context, and a set of acoustic-phonetic feature
definitions that have been found to be useful for making fine
phonetic distinctions. These features are initially suggested by
our experience with spectrum reading experiments. They are then
further developed using our Acoustic-Phonetic Experiment Facility
(APEF) [l] on a data base of phonetically labelled speech. These
sources of human knowledge constrain the system along a smaller
set of dimensions for modelling speech. The sources of knowledge
are specifically not used to set thresholds or determine rules,
but rather are used only as a structure on which the training
system can build further knowledge.

i< :j The training system produces two sets of probability density
) 4 functions (pdf's), for spectral parameters as a function of each
§ - frame in the phoneme, and for acoustic-phonetic features that are
: ﬁ defined globally over a whole phoneme. These two sets of pdf's

are then used by the network decoder to determine the most likely
phoneme sequence corresponding to an input speech utterance.
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FIG. 1. Block Diagram of phonetic-recognition system.
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) ‘-2 Each of these components will be discussed further in
¢

n Section 3. 1In the remainder of this section, we outline briefly 3
- the basic methods and the major advances with respect to
previously implemented network decoding algorithms.

2.2 Hidden Markov Model

The basic model of a phoneme that we use is a Hidden Markov

Model (HMM) of spectral parameters as a function of time within

.; I the phoneme. 1In this subsection, we define the HMM and explain
DY how it is used for the problem of phonetic recognition.
sf 5

i 2.2.1 Definition
3 N A simple example of a HMM is shown in Fig. 2. The HMM N
L consists of a set of states in a Markov Chain. The probability b
% . of proceeding from any state to another state is given by a
) transition probability matrix. However, unlike the normal Markov
f—:: Chain, which associates only one output symbol with each state,
K each state also has associated with it a probability for each

- output symbol or -~ in general - a probability density for the
j’ :I:.i output. Assuming that the probability densities of the different
Y. states overlap, it is not possible to determine absolutely the
; ;_",3 sequence of states that produced a particular output sequence -
| (thus the term "hidden"). A
15,7 bo; In the example shown, there is a nonzero probability of
¥ - proceeding between any two states, and the pdf's associated with g
- a' the states are assumed to be independent. In modelling the W
2: . acoustic realization of a phoneme, we can apply some reasonable :
g 3 s
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FIG. 2. Simple Hidden Markov Model.

()

PIG. 3. Hidden Markov Model constrained to proceed from left
to right.

constraints to the model that will allow its parameters
(transition matrix and pdf's) to be more easily estimated.
Pigure 3 shows a simple example of a HMM in which the states are
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assumed to “flow"™ from left to right. That is, it is not
possible to go from a later part of a phoneme to an earlier part
of the same phoneme. The model does allow the deletion of the
state at the center, under the assumption that if the person is
speaking quickly, the target at the center of the phoneme may
never be attained. The loops from a state back to itself (self-
loops) allow for variable duration for any particular part of the
phonenme. Finally, the pdf's associated with some of the
transitions are "tied" together. This constraint allows the
system to more easily estimate the fewer number of pdf's, while
providing the flexibility to change the transition probabilities
as needed.

2.2.2 Automated Training

The HMM structure affords a very powerful model for the
parameters of speech as a function of time within a phoneme.
However, it is also very important that the parameters of the HMM
be easily estimated using a sufficient amount of speech such that
the parameter estimates will be robust. First, using a small
amount of carefully labeled speech (about 100 sentences), we
determine an initial estimate of the spectral pdf's for each of
the models for each phoneme. Injitially, the pdf's are assumed to
the same everywhere within a phoneme, and the transition matrix
is assumed to be the same for all phonemes.

A large data base of phonetically transcribed speech is then
used to estimate the pdf's, transition matrices, and the effect
of phonetic context on these models more accurately. The
algorithm used (termed the "Forward-Backward" or Baum [2]
algorithm) first computes the probability of each possible




Bolt Beranek and Newman Inc. Report No. 5485

alignment of the training speech given the model so far. Then,

a the new speech is used to update the model parameters in
SR proportion to how well the particular alignment scored. This
EEH algorithm can be shown to determine the set of model parameters
'E.a E} that maximizes the estimated probability of all of the training
’ ‘ data. However, the maximum achieved is only guaranteed to be a
R4 local maximum - not a global maximum.
ey
i
I 2.2.3 Network Decoder
i &
ayg Once this model has been sufficiently trained, another

algorithm (similar to but not the same as the Viterbi algorithm)
can be used to compute the probability of any sequence of
phonemes, given a particular sequence of speech spectra. A
search strategy is then used to find the most likely sequence of

'S

)- phonemes.
; s 2.3 Pprhonetic Context
I‘_i
L s One of the major factors affecting the acoustic realization
. - of a phoneme is the phonetic context. As a result, there have
:‘3 - been many suggestions to model the acoustics of units larger than
u‘ - phonemes, such as diphones, demisyllables, syllables, etc. The
.' Q larger the acoustic unit used, the more its acoustic realization
will be independent of any neighboring units. However, even when
VD the acoustic unit is the syllable or the whole word, both ends
[N

are still affected considerably by neighboring phonemes. All
that can be said is that most of the interior parts (far from
neighboring phonetic contexts) are unaffected. Each such
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proposed unit also has its own associated problems. For
instance, if the unit is the syllable, a very significant problem
is that in English there are about 190,000 different syllables,
and therefore, it is impossible to gather detailed statistics
about the likely acoustic realizations of each of them from a
reasonable sized data base.

; :E The different acoustic models proposed are, in fact, just
o trying to model the coarticulation effects of adjacent phonemes
‘ j on each other, There 1is not necessarily any significant
. importance in the unit itself. Therefore we have chosen to
S return to a model of the acoustics of each phoneme, but to take
Ry into account the phonetic corntext in which it appears.

R

2.3.1 Triphone Model

Y .

v-' As an approximation to modeling the phoneme in all possible
> n phonetic contexts, we have decided to take into account the
‘. immediately preceding and following phonemes. We call this a
"'g , triphone model, although it really only models the middle phoneme
$‘ f: of three as a function of the two adjacent phonemes. It is
— expected that this model should account for almost all acoustic
- ?ﬁ effects that are due to phonetic context. However, as discussed
oy = in the preceding section, using a larger unit results in a severe
:\ :; training problem, since there are many such larger units, and
L NN therefore no longer enough of each to develop a robust acoustic
» model. Due to the uneven distribution of any such units,
i ';’, however, there are enough samples of the more commonly occurring

_.!.

triphones. Por those triphone contexts that have not occurred a
sufficient number of times, we could use the model for the
phoneme that depends on the phoneme to the left ("left diphone

S
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model®) combined with the model that depends on the phoneme to
the right ("right diphone model®). For those diphone contexts
that have not occurred, we can use the model for the phoneme that
is independent of context.

The method automatically uses information about adjacent
phonemes only to the extent that it has seen examples of that
context, and combines this information with less context-specific
models for the phoneme in an optimal way. The
specificity/robustness tradeoff is not eliminated, but |is
controlled by varying the amount of context used and the
robustness to optimize performance.

2.3.2 1Interpolated Estimation

One solution to the the problem of how to decide between the
highly conditioned models and the general models with more
training is a procedure called "Interpolated Estimation" [3].
Interpolated Estimation combires the individual pdf's obtained in
the different contexts by taking a weighted average. The weights
are set to reflect the importance of the different pdf's to the
whole model and the degree of confidence one has in each pdf
estimate based on the number of observations of that context.

2.4 PDF Estimation

The crucial step, then, is to estimate the conditional
probability densities (pdf's) for the spectrum for each phoneme
or phoneme sequence.
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There are many methods available for estimating pdf's, but
the method used most frequently is to assume a multivariate
normal distribution. If we assume that each phoneme class can be
represented by a normal distribution, and that all the covariance
matrices are diagonal with all the variances equal (within each
class and across all classes), then the Euclidean distance to
each class is proportional to the log of the probability density
for that class. Of course these assumptions are not all true.
The distributions have different variances, and some features are
much more useful than others. Therefore, some systems use a
different covariance matrix for each class. Again, the tradeoff
between specificity and robustness arises. Since there are fewer
samples of each phoneme than of all phonemes, estimating a
separate covariance matrix for each phoneme either requires more
data, or will result in less robust pdf estimates. Taking this
issue one step further, we note that most feature distributions
are not typically Gaussian. Several systems, therefore, use non-
parametric pdf estimates [4, 5, 6]. Two such estimators are
described below.

Given many samples of each distribution in several
dimensions, and a feature vector x from an unknown class, the
prcblem is to estimate the probability density p(xIPhy) at x.
The simplest method entails first dividing the space into
discrete bins -- typically by the use of a clustering algorithm.
Then, for each class, the fraction of samples that fall into each
bin determines the probability. Por these probability estimates
to be robust, we need several samples for each bin that is
somewhat - likely (the very unlikely bins, which correspond to
other phonemes, are usually assigned an arbitrary low probability
by padding them with one sample).

'''''''''''''''''''''''''
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This discrete non-parametr.: pdf estimate has two major
advantages: First, the pdf is not assumed to be Gaussian.
Second, the computation needed to compute the probability density
of a feature vector given all classes requires only that we f£ind
the nearest bin to the feature vector once. (This can be done
quickly with a binary search if desired.) Then, the identity of
the nearest bin is used as an index into the vector of
precomputed probabilities for each class. This method requires

several orders of magnitude less computation than a Gaussian
probability computation.

There is one major problem with this approach. If the
number of bins used to represent the space of feature vectors is
small, then the pdf will not have enough resolution. For
reference, consider the space of LPC vectors divided into 64
clusters. Speech that has been coded to 64 clusters (6 bits) is
only barely intelligible. We must conclude that the fine
phonetic distinctions have been eliminated. The pdf for any
particular phoneme would span only 3 or 4 of the 64 clusters.
If, on the other hand, we use about 1980 clusters (as indicated
from our experience with coders) we now have a severe robustness
problem. We could not hope to have enough data to estimate the
probability of each of the 1888 bins for each phoneme. We can
pad the bins carefully with an optimal number of fake samples
(determined by a deleted estimation procedure), but this won't
change the fact that our estimates are still, at best, poor.

Another non-parametric pdf estimation method uses all of the
training data directly. Given an unknown X, we compute the
probability density directly from the data. This can be done
using a Parzen window to compute the contribution of each
training sample at the unknown, or more robustly, using a k-
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nearest neighbor (KNN) window. First, we find the K nearest data
points. (K is typically made proportional to the square root of
the number of training samples in the class.) Then, the
probability is computed from the volume of the resulting window
and the distribution of the neighbors within the window.

Since the number of points within the windows is kept fixed,
the variance of the probability estimates is also fixed. The
resolution then varies according to the amount of training data
in each region. This method does not eliminate the trade-off
between specificity and robustness, but at least it controls it
in a definable way.

These non-parametric pdf estimators are more sensitive to
the amount of training data than the Gaussian pdf estimator. But
this sensitivity can be offset by the greater flexibility in the
model. The major disadvantage of the more robust KNN pdf
approach is the vast amount of storage and computation resources
required to compute the distance to all of the training points in
each distribution.

The solution that we have adopted takes the best of each
method and combines them. The pdf is represented by a vector of
probabilities - one for each of a large number of bins. However,
the probability at each bin is estimated from as many samples as
is deemed necessary to make the estimate robust -- rather than
the very small number of samples that happen to fall within the
particular bin. The pdf estimator used can be the Gaussian, the
KNN estimator, or any other robust estimator. The storage and
computation are also minimized.
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o 2.4.1 Acoustic-Phonetic Features

There is often a distinction made between speech recognition
systems that use detailed knowledge of the characteristics of

‘-: speech sounds in order to recognize them, and systems that use
only minimal specific information, but rather just measure the
o speech short term spectrum as a function of time and "grind out"
B numbers.
é At BBN we have been trying to develop experience in using
probabilistic methods combined with a detailed understanding of
\ the nature of the variability of phonemes in order to improve the
-~ . performance of phoneme recognition. In particular, we are
. attempting to determine the ways in which different phonemes vary
. in order to guide the probabilistic algorithms to find the
. optimal pattern recognition strategies. That is, to the extent
:‘:: that knowledge about the nature of speech exists, it can be used
- in the very powerful formalisms afforded by probabilistic
! methods. One key element in this effort is that we will be using

acoustic~-phonetic features, which have been heuristically
o developed over the years by speech researchers in a probabilistic
formalism. We feel that this step is essential to the good

- performance of probabilistic pattern recognition methods. For 1
;I:-; example, a complete representation of the speech waveform or the -_Z_
) power spectrum contains most of the information that is present i
;: in the speech. Theoretically, a probabilistic system, with '«_&
- sufficient training, should be able to develop optimal )
& recognition algorithms. However, the dimensionality of the power :
be spectrum is too high for accurate estimation of probability \
o densities without an unreasonable amount of training data. On ‘.

the other hand, by identifying a few acoustic-phonetic features, ‘j
] of the type typically used for reading spectrograms, most of the :‘;_3
&

a 20 .
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information contained in the speech spectrum can be represented
in a2 much smaller number of dimensions, thus making it possible
to develop accurate probabilistic models with a tractable amount
of training data. In addition, there is some evidence that

features of this type may vary less from speaker to speaker and
thus result in systems that are closer to speaker independent.

Below we present the procedure for using acoustic-phonetic
features in the recognition process.

1. 1Identify those phonetic confusions that are most common
in the network decoder using the spectral parameters.

2. Using the Acoustic-Phonetic Experiment Facility (APEF),
we will determine a set of features that seems to
distinguish those phonemes well. These experiments are
carried out on a modest sized data base of carefully
labeled speech. This would be the same subset of the
data base used to derive the initial statistics for the
spectral parameter HMM's.

3. The specification of the most useful features are
inserted into the network by associating them with the
phonemes that are to be distinguished. The probability
densities derived using APEF are also inserted as the
initial pdf's for these features.

4. The forward backward algorithm is used to jointly train
both the spectral pdf's and the new acoustic-phonetic
feature pdf's. The feature pdf's can also be made to
depend on phonetic context in the same way as the
spectral pdf's.

5. Using a procedure similar to that used to the one that
determines the weights between different context models
(interpolated estimation), determine the optimal
weights to use to combine the probabilities computed
from spectral parameters and from acoustic-phonetic
features.

In the decoder, the feature pdf's will be used in a somewhat
different manner than the spectral pdf's. When a phoneme is
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proposed (during the search for the best phoneme sequence), the
decoder first scores the new phoneme using the context-dependent
spectral parameter model. Then the newly scored theory is placed
back on the stack according to its score. When this theory comes
to the top of the stack again it is rescored using the feature
pdf's, and again put on the stack. By using this two step
procedure, we avoid computing scores due to the feature pdf's
unless they will be necessary.



U

!.\
by
(%)

AN

B T

R N Yo

S Ny Yo g0

L4 4

':'_;(2

AR S
v_::J .,

Bolt Beranek and Newman Inc. Report No. 5485

3. SYSTEM IMPLEMENTATION

In this section, we describe in detail our implementation of
the system for phonetic recognition of continuous speech. Major
topics of interest include data structure design, the training
program for automatic estimation of speech parameters, the
recognition front end that finds the optimal or near-optimal
phoneme sequence for an unknown utterance, and the many software
tools developed for debugging and data examination. Various
practical issues relating to implementation, including those of
computation and storage, are also discussed. Fig. 4 shows the
system configuration. Here, the forward-backward algorithm takes
training speech (including speech parameters and phonetic
transcription) and estimates new system parameters. These
parameters are then used by the stack decoder to produce an
"optimal”™ phoneme sequence from an unknown utterance.

3.1 Data Structure

As mentioned earlier, one of the major goals of this
research is to incorporate both spectral parameters and acoustic-
phonetic features in the Hidden Markov Model (HMM) formalism in
our speech recognition system. To this end, we have designed and
implemented a HMM data structure that we believe is powerful
enough for this purpose. It also has the flexibility to allow us
to model phoneme contextual effects.

In Section 2.2 we presented a short introduction to the
theory of Markov chains. Here, we will discuss in detail the
structure of the specific phonetic HMM that was implemented.
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Figure 5 shows the model that is actually used in our current
system. This model is uniform (has the same structure) across
all phonemes. We believe that this same structure is adequate to
represent distinct phonemes that differ in both temporal and
acoustic characteristics, and yet powerful enough to model the
often rapid acoustic transitions within a specific phoneme.

Now let us take a closer look at the model structure. This
Markov model, like all Markov chains, is made up of a finite
number of nodes (corresponding to states) and arcs (corresponding
to transitions). Associated with each state is a probability
density function (pdf) for spectral parameters (usually
represented by an alphabet of a set of prototypical spectra).
The arcs are transitions to and from other states (representing
other pdf's). Associated with each transition is a transition
probability. Together, these states and the transitions
represent a stochastic process that characterizes the acoustic
phenomena of a phoneme.

Figure 6 shows the data structure for the Markov model that
is implemented. 1In this implementation of the Markov model, each
node contains the following information: an index to a specific
pdf (pdf number) associating a probability density function to
the node, a list of nodes that can follow this node, and a list
of transitions to use in getting to those nodes. As an example,
consider node 1. Node 1 is tied to pdf #1, and can be followed
by itself (self 1loop) using transition 3. It can also be
followed by node 2, using transition 4, and node 3, using
transition 5. Node 2 is tied to pdf #1 (the same pdf as that of
node 1), and node 3 is tied to pdf #2. This means that in going
to node 2, pdf #1 is used, and to node 3, pdf #2 is used. A node
that is tied to pdf #6 (for example, node 10) means that no input




" . it . S e PARENE NS ; .
PR R ) R R R s N R -!, II. AL L R

*pojuswaTdutr AT3uUsxINO [OSPOW AOYIRK UDPPTY Duwouoyd

°S

*OI14a

SNS GSE e N W o BT )

T |

26




’
1
.
I}
'
]
N
'
.
)
e
v
’
]
f
’
¢
.
)
.
B
»
N
.
.
.
.
;
v
.
«
4
.
.
'
.
]
.
L]
L
. 2 st
P o’ SN
hor A8 PO X8

MRNIONT) | RN NN st AT - XA

*2INn30N13s WWH adwduoyd ay3z jo uotriejuswatdur

|14

2T

LKA

Al

4

61

TT

8T

?H 8

O
s
-- l- IP

..

A i

‘9 "91d

T

4
‘ ']

AR

A

91

cl

.
=

let

(Al

|~ N

m_mcoﬁuamcmuu

1 |s®@3eas buipasanons

*ou ypd

~| ~] N| -

*Ou 9jels

M
e

M IN| =] O

JMU-

v~ vy

’
. .-n-.. ..s

Sy

R

L A8 ool
n;- -\hck

)

N ]| M) o~




R
g’a

TR
* e At

#
L L

At A0 | AR

>

AR

PRI
L I
Tala—n

' d

LN

e

Bolt Beranek and Newman Inc. Report No. 5485

spectrum is used in going to that node. The fact that there are
a total of 3 pdf's is rather arbitrary: we can have as many (or
as few) as we like. However with too many pdf's one would run
into the problem of not having enough training, and with too few
the Markov model would in general not be powerful enough to model
the acoustic variations within a phoneme. Using three pdf's is a
reasonable first try since, in general, each phoneme can be
thought of as having 3 parts, the beginning, the middle, and the
end. Each pdf can be thought of as modelling each of those
parts. Also, the fact that states are tied together (different
states use the same pdf) allows us enough flexibility to model
pdf durations.

The above structure defines a Markov chain that models the
duration of a spectral pdf by having successive states tied
together (have the same spectral pdf), and by using self-loops (a
state can follow itself). Although this may be powerful enough
in most cases to model spectral duration, it does place some
constraint on the shape of the duration pdf that is estimated.
We have designed our data structure for a Markov model node to
allow us to model duration explicitly by using pdf's of duration.
Each node, then, has a duration pdf associated with it. To
reduce computation and storage, we have chosen to use self-loops
for duration, for the time being.

This completes our HMM structure definition. Associated
with each of the definition for a phoneme is a probability
structure for the pdf's of spectral parameters and transition
probabilities. This probability structure is defined in our
program to be a single entity that can be referenced by the name
of a phoneme. This structure is declared with the following
fields:

...................................
................
.......

........




F v as. o8

PR

e TN

s

AT )
)

1A

»
13

&

.........
.........

Bolt Beranek and Mewman Inc. Report No. 5485

l, Nocc: number of occurrences of a particular phoneme.

2. Pdf: pdf of spectral parameters referenced by a pdf
number (there are a total of 3 such pdf's)

3. Transprob: an array of transition probabilities
referenced by a transition number.
It is worthwhile to remember that while there are many such
probability structures (one for each phoneme), there is only one
Markov model. The HMM defines the structure of the finite state
automaton whereas the probability structure provides the
parameter values of this automaton.

with the above Markov model and probability structure
definitions for a phoneme, we can generalize the structure to
that of a triphone, i.e., a phoneme in the context of a
particular left phoneme and right phoneme. In our system, a
triphone, then, <can include many different models that
incorporate various 1levels of <context information. In
particular, in our current implementation, we have models for (1)
phoneme (unconditioned on context), (2) left diphone (phoneme in
the context of a left phone), (3) right diphone (phoneme in the
context of a right phone), (4) left class (phoneme in the context
of a class of phonemes to the left), (5) right class (phoneme in
the context of a class of phonemes to the right), (6) left~right
class (phoneme in context of a class of phonemes on both sides),
and (7) triphone (phoneme in context of a particular left and
right phoneme). 1Identical models of different triphones are tied
together. This means that only one copy of a particular context
model exists in physical memory. For example, the triphones
P[IY]L (for "peel®™) and P[IY]R (for "peer") all reference the
same diphone model for P{IY], and the same phoneme model for
[IY], although these are two different triphones. We will

..............................

PR

— e . A

ATA 4 A A LSERAL -k B BERIA Dbl ot Bsa®,

AT N EERRL Al e %e la ‘m A MM A e

mum a W & e

ol




B

3

5

%

! LA
AR

v“jf
el

T

o,
*
-l

.
DA

N
S,

=
ped 2o

LK

DO 1557

P

FUUN _ ¥

Py 8 |

vaha

o |
P

S

Bolt Beranek and Newman Inc. Report No. 5485

describe how these different context models can be combined in
some optimal way for scoring in a later section.

3.2 Markov Model Definitions

In this section, we formulate a mathematical definition for
the hidden Markov Model (HMM). We shall assume that the
underlying Markov chain has N states q;, qy,...Qy and the
observations are drawn from an alphabet, S, of M prototypical
spectra, 8y,...,8y.

The underlying Markov chain can then be specified with a
parameter set (I, A, B), where:

I = (Hl, nz, ooy HN) (1)
is an initial state distribution,
A= [aij] ’ 1<1, jKN (2)

is a state transition matrix, with ajj being the probability of
transiting to state 95 given current state g;, that is,

aj4y = prob(qj at t+l | q; at t) (3)
and
B = [bjk]' 1<j<N, 1<k<M (4)

is an output symbol probability matrix, with bjk being the
probability of observing symbol s, given current state a5 that
is,

..............................................
........
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Hence, a hidden Markov model, M, is identified with the parameter
set (I, A, B).

To use hidden Markov models to perform speech recognition we
must solve two specific problems: (i) computing the probability
of an observation sequence, which is used to decode an utterance
for recognition purposes, and (ii) estimating the model
parameters, for training the models. Both problems are based on
a sequence, X of observations X3r Xs...,Xp Where each x, for
1<t<T is some syeS.

The training problem is simply that of determining the model
parameters A,B, given a training sequence Xx such that the
probability prob(x|M) (probability of X given the model) is
maximized. The recognition problem is the following: given the
HMM parameters (A, B) and an observation sequence X, we want to
determine the model M (phoneme sequence) such that the
probability Prob(M|X) is maximized.

3.3 Training Program

The theory of speech parameter training with a hidden markov
chain as the underlying model using forward-backward algorithm
was first proposed by Baum, and it is known as the Baum-Welch
algorithm, Whereas dynamic programming finds the single most
likely path through the model network with global consideration
of all possible states, the forward-backward algorithm determines
the probabilities of all the state sequences that are possible
within a given time frame (sum over all paths).

palincnlcsdiomfiunsfine AR St
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:Z One major advantage in modeling a speech signal as a

probabilistic function of a hidden Markov chain is that the HMM {
allows for automatic training of its parameters. The training
method used is based on a bootstrapping technique. A known
sentence is given to the system along with a phonetic
transcription. The system first aligns the known input speech in
o) all possible ways to the network. Then it uses these alignments
J to update the network models by changing probability densities.
N A major advantage of this technique is that the training could be
done automatically without human interference, and that it allows
the network to be trained on large amounts of speech with -
relatively little effort. A drawback of this type of algorithms
is that they typically require large amounts of computation.
2 However, computation is becoming increasingly faster and cheaper,
'I while human 1labor is becoming more and more expensive and
unavailable. Therefore we still prefer computer-intensive to
labor intensive methods. ;

N R

3.3.1 Porwara-backward Algorithm for Markov Model Parameter 5

Estimation )

3 =
As mentioned in the previous section, the training problem

t: is that of determining the HMM parameters A, B, given a training f

- sequence X such that prob(x[|M' is maximized. :

% One could, in principle, compute prob(xiM) by computing the F

* joint probability prob(x,tIM) for each state sequence t of length 2

2; T, and summing over all state sequences. This would be ;

* computationally intractable. Instead there is an efficient E
- method for computing prob(x|M). We can define a function oy (1)
- ﬁ for 1<t<T as prob(xj;x,...X;, and at state q; IM). And we have the

? following recursive relationship for the "forward probabilities”. N
]
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N
0,,1(3) = [ 2 a (i)a.j] bi(x lst=sT

)
. t i t+1
i=1 (6)
bi(xt-i-l) = bik iff X1 = Sk

Similarly, we define another function B (j) = prob(x,+l,

xt+2,...,xthj at t, M). We set By (j)= 1 and then use the
backward recursion

Bt(j) = I a,.b.(x

j=1 1373 t+l)Bt+l(j) (7)

to compute the "backward probabilities.™ Then,
N N
Prob(x|M) = iil jil at(l)aijbj (X 41) Beyp ()

for any t, 1Kt<T-l. Equation (6) and (7) formulate what is known
as the forward-backward algorithm.

= aT(N) (8)

The problem of training a model, that is, finding a global
maximum for Prob(x|M), does not have a simple solution. However,
Prob(x|M) can be locally maximized. Global maximization involves
searching for all local maxima over the entire search space and
finding the maximum, whereas a local maximum is any one of those
local maxima. We can use the forward and backward probabilicies
to formulate a solution to the problem of training (finding a
local maximum) by parameter estimation. Given some estimates of i
the parameter values we can compute the expected number of !
transitions Yij' from q; to qyr conditioned on the observation A
sequence an it is just ]

T ‘

15 = til ap (1)a; by(x, 1) 8, (3)/a,(N) (9) ]
Then, the expected number of transitions Yj, out of qj, given X,
is

] 13 1
at(l)Bt(l)/aT(N) (109)

<
]
[ 3]
n
"
3

1
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Y4
The ratio Y5 is then an estimate of the probability of state
Q qjr given that the previous state was dj. This ratio may be taken
. as a new estimate,aij, of ajje That is
- H (11)
= I a_(i)a,.b.(x,_, )8, . (3)
NS 3 . Yiq _t=l t 1373 7+l T+l
i3 T . .
z Gt(l) Bt(l)
t=1
Likewise, we can get a new estimate of bjk as the frequency of
-j:i occurrence of sy in 93 relative to the frequency of occurrence of
- any symbol in state q5- Stated in terms of the forward and
o backward probabilities, we have
i z a, (3)B_(3)/ an(N) X a, (3)8,_(3)
£, t:x _=s t ¢ T t:x =g t t (12)
£ o T a,(3) B, (3)/ ag) I oa,(3) B (9)
a, (3 3 ) a, ] J
t=l t t T £=1 t t

;:".2 Both Yij and gij are what we'll refer to as probabilistic counts.
n In reality, instead of a single observation sequence x,

we'll have many sequences (corresponding to many distinct
utterances)gc_(l), 5(2)...._{(“ that make up the training set.

A :~j Then (2)
' 0 T e (ayb, e, 5/ ol m
. Yig T o2 TeTRITI el el T (13)
a,l(.,u (N) = Prob(gw) |M)
- for output sequence 5(1'), and for the entire training set,
L
= (£) (14

’

u

and

<M
.

.
as
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N
Ay
2D L (2
I Loy, 15)
) T = Jij  g=1 13 ‘
" o oY
A t=1 1
NI . .
AN Likewise,
ATt
L L
xS s e@ 2 T 1z e (8 (/e ] (16)
P &4 jk t=l tix =s. © t T
_:'( S £=1 = 'xt k
7
DI and
e e % E(L)
jk
i b,, = 221 - - (17)
NI ik L
S UMY (2)
§ o zzlYi
i‘ .
~ n The forward-backward reestimation procedure is as follows:
2 B l. Given some initial parameter values.
AN BTN
}\} ~ 2. Use PH(phonetic transcription) - X(observation
sequence) pairs to obtain new counts from current
q parameter values. Do this on all of the training data.
:: o 3. Estimate new parameter values from the accumulated
-f_-'.} - counts. Replace current parameter values with new
PR parameter values.
AR
. 4. If parameter values have converged - stop, otherwise
o } continue with step 2.
v .
e * Figure 7 provides an illustration of the system training
,'.‘_ i procedure.
SRS
::;:j ~ 3.3.2 Deleted Estimation
7
" i In the previous sections we discussed using HMM's of

§ phonemes in context as the basis of our recognition/training
—
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Ny
-. algorithm. However, we know that while there will be sufficient
o training data for some context models, there will not be enough
- for others. One solution to the dilemma between the desire to
."\' use highly conditioned models and the practical restriction of a
',.:E" : finite training set is a procedure called "Deleted Estimation”.
o ’ This method combines the individual pdf's of the various
oy ":2 contextual models by taking a weighted average. The weights are
4 ' set to reflect the importance of the different pdf's to the whole
N model and the degree of confidence one has in each pdf estimate,
- I, based on the number of observations of that context. The pdf of
PG the speech parameters xy at time t, given a particular phoneme
f'f :ji: with all possible left and right contexts can, then, be estimated
N from:
ey
_ n P(xtlpdf#,phoneme, left context, right context)= (18)
‘?.x 3 wy(pdf#,n;) p(x.|pdf#, phoneme)+
o wy(pdf#,n;) p(x,Ipdf# phoneme, left phoneme class)+
" p w3(pdf#,n3)p(xtlpdf#,phoneme, right phoneme class)+
2 v
-\ wg(pdf#,n,)p(x, |Ipdf#, phoneme, left phoneme)+
:: & wg(pdf#,ng)p(x, Ipdf#, phoneme, right phoneme)+
- w (pdf#,ns)p(xtlpdf#, phoneme, left phoneme class,
.- r?ght phoneme class)+
‘.;\; . wq (pdf#,nq)p(x, Ipdf#, phoneme, left phoneme, right
":’_; i p?:oneme) +
- where x; is the speech parameter at time t, wi(pdf#,n;) is the
ﬁ weight assigned to the pdf of the ith context, and n; is the
number of occurrences of the phoneme in the ith context. We must
£ have
DY
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ke (19)
! gwi(pdf#, ny) =1

for all pdfs.

» We have 3 pdf's for each phoneme model in our current
implementation, where pdf#l can be thought of as associated with
the left part of the phoneme, pdf#2 the middle, and pdf#3 the
right. So, when using pdf#l in scoring an input spectrum for
A both training and recognition, the weights should reflect that
fact and should favor the left context models more. The pdf in
the middle may be determined primarily from the unconditioned
context (wl), but the right end (pdf#3) would depend more on the
models in right context, if there are enough samples.

The procedure for automatic training of the w;'s is as
mentioned before, deleted estimation. In practice, this
algorithm is combined with a method of dividing training data
into smaller blocks and training on alternate blocks. This
method is called "jackknifing®. 1In this procedure, the data is
first divided into N (usually 4) blocks that are equal in size. by
Given some initial pdf estimates and weight estimates, first we :

«
PR .4

<3|

..
22

“ train the pdf's (using forward-backward algorithm) on a subset of
o) the training set containing N-1 blocks of the data until the
- pdf's converges to obtain new pdf's; then train the remaining
block with the new pdf's on the weights (using forward-backward
_; algorithm) and obtain weight counts (to see how well the trained o

pdf's model the unseen data block). This is the deleted
estimation procedure. Perform this procedure on all possible
permutations of the N blocks of data and obtain a new set of
o weight estimates from the weight counts accumulated over all the
| pieces on which deleted estimation was performed. This is a
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g - single pass of the jackknifing algorithm. With the new estimate .
X of the weights, we start the entire jackknifing procedures over i
n again until the pdf's converge. This might take from a few 1
h passes to several iterations, depending on the size of the ]
BN training set. With the final weight estimates, we now train the :
s pdf's on the entire training set until they converge. This ‘
2 entire process might take as many as tens of iterations of the
S} forward-backward algorithm. Needless to say, deleted estimation
.s combined with jackknifing is expensive computationally. In the

following sections, we'll 1look at ways of speeding up the
forward-backward algorithm.

)
L

AL

L 3.3.3 Implementation Issues

-

Initially, we had designed the data structure so that all of
-3 the system parameters (probability densities) would be stored in
; memory to minimize I/0O and speed up system running time.
Bowever, to do so would require 40-80 Megabytes of main memory
(more than nofmally available). Careful examination of the
algorithm revealed that a relatively large amount of computation
is performed using a fraction of the data. Therefore, the
programs have been altered to store the phoneme spectral pdf's on

A

| S 200
~

Y - a file. The pdf's are read in as they are needed. Since this :
; - amount of memory is small (for a sentence), for a small number of K
X & phoneme context models, and the computations performed are .
’ b~ significant, the overhead involved is small. This phenomenon may

SEERY no longer be true, however, if we use the full range of phoneme .
§ :'{f context models available. We may have to examine more closely
Ny I/0 vs computational issues and to look for ways to speed up the ;
b a system further. Currently, the forward-backward algorithm reads

_‘ in all the pdf's for all the phonemes in an utterance as the

-] o utterance is being trained.

<
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1
§

< The computation of the probabilistic counts in the forward-
backward algorithm requires the forward probabilities a; as well
n as the backward probabilities B8 for all time t. One method of
] computing the counts is to compute the a's and the g's separately
5; for all time t and then compute the counts. Storing both a's and
- the B8's for all input frames for a typical training utterance
;; requires a large amount of memory. To save on storage, and
o possibly computation we have in our system implemented the
% following: the a's are computed first in a forward pass for all
".-' time; then in the backward pass, the fg's are computed a single
frame at a time, along with the counts. As we go back in time,
& the B's for the previous time is updated to become the current
- B8's. This is done for all input time frames. This way, only two
i "rows" of B's need to be stored at any time. This practically
eliminates the storage needs of the backward probabilities.
éi Our current implementation provides two algorithms for
speeding up the forward-backward algorithm. One is to use
n phoneme segmentation to nail down phoneme boundaries and allow +

N frames from the proposed segmentation in the forward-backward
iteration. The second method uses windowing to narrow down the
s range of phonemes for o and 8 computation. At each input time,
in the 1loop of the forward-backward algorithm, the program
computes the phoneme in which the maximum o occurred, and then
use this information to 1limit the computation at the next time
:.'jv frame to a few phonemes bordering the phoneme of maximum a. This
t speeds up the algorithm by (1) reducing the computation of a's
and 8's, and (2) reducing the overhead of memory page faulting
associated with accessing o's in a large array. An order of
magnitude savings in computation has been realized.

In our implementation we are also concerned with the problem

......
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of numerical underflow caused by the fact that small numbers
a (they are probabilities) are multiplied together over may
frames. We have solved this problem by normalizing the o's
the #8's) by the maximum at each time frame and keeping track of

this normalization factor over time.

-‘I

5485

like
time
(and

Since a pdf count involves

dividing a small number (a.8) by a slightly larger number ogq(N),

the

*smallness" often cancels out, resulting in a relatively

large number. All of this is taken care of properly.

Currently, the forward-backward program has the following

capabilities:

1.

Allows the user to specify the number of phoneme
contextual models to use to allow for a certain degree
of control so different experiments can be tried.

The user can specify a pdf file containing the pdf
structures to use in the training. The program checks
for consistency of the file with program data
declarations (for example, the number of spectral
clusters used and declared must be the same).

The user can also specify a count file for accumulating
probabilistic counts for training.

The pdf's in two pdf files can be combined with user-
specified weighting.

Allows forward-backward training of the pdf's.

Allows forward-backward training of the weights on
different context models.

Include 1/0 for reading and writing of pdf's, weights,
pdf counts, and weight counts.

With the three functional capabilities above (5-7), the
user can perform deleted estimation and jackknifing.

Allows estimation of new pdf's in a pdf file from the
counts in a count file. Provide pdf padding and
smoothing capabilities.
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19. Several capabilities for debugging: allows user to
examine various pdf and count structures, as well as |
the weights. Can perform diagnostic test on the pdf \
structures in a pdf file. ‘

Since all the functions have been implemented on a modular
basis, adding a new function can be done with ease. The fact
that the program is controlled by a top level command interpreter

SO provides smooth function integration.
-
B IR

» 3.4 Phonetic Recognition Program

PN

The phonetic recognition program in our phonetic recognition
system is called the stack decoder because (i) it attempts to
*decode™ an unknown utterance by walking a HMM network
representation of speech; and (ii) it uses a stack structure to
: order competing theories.

a.‘s;

ﬂ Network-decoding algorithms in general do not segment the
» speech into phonetic units before labeling. 1Instead, they use a
- dynamic programming type of algorithm that considers all possible
%: segmentations of the input. Associated with each segmentation is

a best labeling and a corresponding score. The algorithm then
o chooses the segmentation and labeling that together result in the
best score.

o o

0
L R A

3.4.1 Stack Decoder

In section 3.3, we provided a solution to the problem of HMM
parameter estimation. In this section, we will address the
problem of utterance classification for recognition. Given the
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phoneme Markov model parameters and an observation sequence Xx,
the problem is to find a phoneme sequence PH such that the
aposteri probability Prob(PH|Xx) is maximized. Baye's rule gives
us

P(x|PH)- P (PH)

Prob(PH|x) = (20)
P(x)

P(x) is the unconditioned probability of the observation sequence
and is independent of the phoneme sequence hypothesis PH. P(PH)
is the unconditioned probability of the phoneme sequence, and
P(x|PH) is the probability of the observation sequence given the
phoneme, The problem is then to find PH such that the joint
probability

(21)
P(PH,x) = P(x|PH)-P(PH)

is maximized.

In theory, the solution can be found by doing an exhaustive
search by trying all possible phoneme sequences (of all possible
alignments). Obviously, this is computationally infeasible.
Instead, the stack decoder that is implemented employs a best-
first strategy, using a stack structure to order competing
theories using a particular scoring paradigm. The type of
computation for' the decoder is similar to that for the forward
probabilities a's in the forward-backward algorithm, where the

scores for all possible paths that end in a particular state are
added together.

In the forward-backward algorithm, the a's are computed with

T
-9
q

N - SR
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the phonemes of an entire training sentence concatenated
together, so that all warpings of the speech input through the
et concatenated model are allowed. In the decoder, a single phoneme
is proposed and scored at a time. This is called the incremental
match. If during decoding of a theory PHy,...PH; 1is being
extended by many i+lth phonemes, PHj,1, PH' 41, PH";47/..., then

B it o X sl adi i
.«

3 only the incremental match calculation beyond PH; need to be done

. K for each new phoneme. This saves on computation as well as

¥ - storage when scoring a new theory. Each theory then actually

a includes a list of possible ending time and corresponding scores.
See Fig. 8.

3.4.2 Algorithm development

a., Search Strategy

' - The stack decoder implemented in our system uses a best-
first strategy to find the best-scoring phoneme sequence. This
‘ . search strategy differs from any other search strategies by the
% B order in which theory nodes are expanded. 1In the breadth-first
, Y gsearch, nodes are expanded in the order they are generated. 1In
é N the depth-first search, the most recently generated nodes are
T - expanded first. And the uniform-cost best-first search expands
g ﬁ the highest scoring theory node first. These are all blind
§ ) search methods which do not take into account how close a theory
? ;g is in getting to the end.
o What the decoder uses then is heuristic search combining the
:ﬁ best-first search strategy with an evaluation function. This

evaluation function scores a theory by combining the score so far
‘i with the expected score of the theory in getting to the end of an .!
utterance. Without an evaluation function, longer theories will
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PH plausible ends for PH

1
(only these scores are stored
for each theory)

PH

PH

PH

Complete match for phoneme
sequence PH = PHl, PHZ""PHn

FIG. 8. Incremental matching procedure for a theory.
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'_-

[

i3

- always get lower score, so that eventually all theories will have

a be evaluated, a phonemenon called thrashing. This way the search

o5 essentially becomes exhaustive, and thus computationally

. expensive.

- What we like to do is to allow the optimal path to stay near
the top of the list of theories to expand. What we would like is
an evaluation function that increased on the optimal path (and

) hopefully decreased on non-optimal paths).

3

@ What is used then, is an evaluation function:

:i ZProb(gtlgg) (22)

(] t

A(PH) = Pr (EH) - -
i - p* (.xt)d

The numerator is simply the joint probability prob(PH,X).

" P*(Xy) is equivalent to unconditioned probability of the input up
d to time t, and we estimate it from a first-order Markov
E: probability of the input:
. 23
) P*(x,.) = P(x.|x,_;) (23)
2
)
- Along the optimal path,

Prob (x, |PH) (24)
"'-' ~s 1
;’; pP*(x,)

and along non-optimal paths,

Prob(x, |PH) (25)
=t <<
P* (%)

~ See Fig. 9.
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L PH l

« PH,
o Optimal Path
PH3

VAT

- FIG 9a. Best-first search. The score for the optirhal path
decreases with the length of the theory.

PH
2 Optimal Path

e

"
LR S

PH

NN |

{ AT

;5 FIG. 9b. Best-first search with an evaluation function. The
N score for the optimal path increases slightly with
the length of the theory.
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§is a constant that allows us some control over how the
optimal path should behave. Choosing § carefully, we can make
A(RH) go up slowly along the optimal path. If we multiply A(PH)
by p*(xq)sT, we get

* T
: P* (%) 6
Pr(PH) * L Prob(x, |PH) « ———
t p*(zt)ﬁ
Now, p*(&T)éT is the expected value for the entire sentence; and
p*(xt)é is expected value for sentence up to Xyo So

p*(xT)éT/p*(xt)ét is the expected value for remainder of the
sentence.

b. Stopping condition for a theory

When a theory PH; is taken off the top of stack and extended
by a new phoneme hypothesis PH;417r we need to know when the
incremental matching procedure can be terminated. Hence, a
stopping condition has to be met.

This is done by looking at the score of the terminal state
ag (8y) for phoneme PHj,; as a function of time t and detecting a
sharp fall in the scores. Actually,gat(sj) is the score used
for stopping (a more robust score). 1In our program, decoding is
terminated when the change in the average 1log slope of
%at(sj) has exceeded a certain threshold. The 15 terminal state
scores (ét(sN), t =t;, tyr...st15) centering around the maximum
oy (8y) is kept for the theory PH; PHy...PH;,;. This gives a
tremendous saving in storage. See Fig. 14.

c. Theory collision

During decoding, whenever two theories end in the same state
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log § at(sj)

,ﬁ stopping condition:
a - B > threshold

)

=
e

s

b — T T T T T 7

KA

‘1

most likely
ending time

LK

significant range
of ending times

.o Y
)
E N Y

o "> s
[

FIG. 0. Stopping condition for a theory.
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LY (as defined by the amount of phoneme context models used), we

R, 2 20 L
. A
.

" would like to keep only one of them on stack and eliminate the
Q ~ other one. For example, consider the two paths, PH = PH;,...PH,
t and PH = fﬁl,...ﬁﬁm, both have equivalent ending time. Suppose
] [
ﬁ Rj that the full context model of a phoneme is used (triphone), and
4 that the phoneme model states for the two paths is the same (so
> that PH,.j = ﬁim—l and PH, = ﬁm), and A(PH) ZA(ﬁl). Then any K
bl extension of ﬁﬁ will be inferior to the corresponding extension .
- of PH. The theory ﬁﬁ can therefore be eliminated. K
g -
"\ 3.4.3 Implementation Issues
-~
_ a. Theory extension control strategy
I' A stack decoder using best-first search strategy in general R
- performs the following logical steps: ¢
"y ) -
- 1. 1Initialize the stack with a null theory (PH=0) and 5
giving it a score of unity. ~
i \ ]
q 2 2. Take the best theory off the top of the stack. If end
. SR of the utterance, stop. This is the optimal answer.
1 L Else continue with Step 3.
¢ ‘S
X 3. Extend the best theory and place it on stack. Go to A
-y, ? step 2. o
o -.j -
ﬁ ) Pig. 11 illustrates the above steps with a flow chart.
] N
Fy
N ;: In our implementation, step 2 is actually more complicated
) than what is described. Due to the fact that we use phoneme
5 e right context models, a straightforward scoring strategy would be .
o KN .
Q * to score a phoneme (o computation) in all possible extensions of -
N the right context. 1In general, this requires a large amount of a K
- computation. We can accomplish essentially the same thing, but .
N .
W oy
.h.
q
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Speech

stack
initialized

Phoneme HMM
parameter

database

‘ > Extend theory

and decode A

FIG. 11. Stack

% 4.
> Oy Ll ke K%
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TNV AT S A R RS RO

place theory
on stack

Take best
theory off A
stack

rege-cec-na-

done

v

===-% output phoneme sequence

Decoder Algorithm.
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with a tremendous saving in computation by doing the following:
we keep two kinds of theories, "fake"™ theories, and "real"
theories, on stack. Fake theories are theories that are scored
with phoneme transition probabilities (no acoustic scores). Real
theories are acoustically scored, using only the left context
models. Whenever a real theory comes to the top of the stack, it
is extended to fake theories by all the possible phonemes that
could follow. The scores for these fake theories are the scores
for the real theory multiplied by the phoneme transition
probability. Only when a fake theory comes to the top of the
stack again is it acoustically scored. When a fake theory comes
to the top of the stack, it is actually scored twice. First it
is scored using the full range of left and right context models
(since it knows about a right phoneme). Then the theory is
extended so that the right phoneme is scored using left context
models only. The scored theory is then placed on the stack. The
benefit of the above algorithm is twofold. PFirst, by giving the
fake theories the benefit of the doubt (not scoring them
acoustically), only those theories with a reasonable a priori
probability will come to the top of the stack and become real
theories. Second, by scoring using only the left context models,
we can det a pretty good idea of how well the acoustics match
without going to the full contextual effects, which would require
hypothesizing many more theories (one for each right context) and
scoring them. Only those theories that have reasonable acoustic
scores based on a reduced model set will ever be considered
again. Together, these two methods for extending and scoring
theories provide large savings in computation with little loss in
performance. See Fig. 12 for an illustration.

b. Theory tree and stack structures
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2 The theory tree (representing theory propagation) in our

decoding network is made up of theory nodes (representing phoneme
gg sequences) that are linked together. Each node in this search

tree, declared as a single structure in our program, contains the
¥~ following information:

phone: phoneme number identifying the node.
.‘"}
S; nextphone: phoneme number identifying the following
context.
ﬁ parent: pointer to the parent node for trace back.
son: pointer to a son node.
it
o) brother: pointer to a brother node. All brothers have 21
the same parent. B
ii lefttime: starting time of when the scores for the
terminal state of the theory is kept (there are R
) : 15 such scores for a theory, starting from .
:i left time). -
vi N
time_max: time of the occurrence of the maximum score for oy
' the terminal state.
L score: a list of terminal state scores )
(at(s )I t= tl’ tz,...tls) :.‘j:

for the theory. o~

N
o

entry_on_stack: pointer to the location of the theory on the

» stack. -
L%
- o
3 Similarly, we have a structure declared for the stack. The ;ﬁ
d stack is declared as an array, and each entry of this array e
< contains a score to order the theories and a pointer to the
2; theory tree to identify the stack entry with a particular theory -
hypothesis. -

.

In our implementation, the stack is organized as a heap so
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that the search time for the best theory increases proportionally
only to the log of the total number of theories (vs a linear

? search time for linear search).
e c. Program Functional Capabilities
- The current implementation of the stack decoder allows a -
i.: wide range of functional capabilities. It allows the user -
o :
r.
. 1. to specify the number of phoneme context models used. x
a 2, to specify a pdf file that contain the Markov model '~
parameters to be used in decoding.
&: 3. to decode an utterance and write out the decoded ~
e phoneme sequence. f::_
'. 4. to constrain recognition to a user-specified phoneme -
transcription to obtain a segmentation.
L 5. I/0 capabilities to read in pdf weights and other .
v tabl es 3 ‘:{‘
6. to set various decoding parameters: (1) set debugging %
q flag for interactive debugging; (2) set a flag to use a
oA version of short-fall density scoring; (3) allows a A
limited breadth-first search by giving all fake o
) theories a benefit, 8o that all will be scored o
% acoustically; (4) specify an offset to raise the theory -
‘ scores; (5) allows the options of using log slope ;
difference or probability threshold as stopping .
‘3 conditions, and to set corresponding parameters and i
e thresholds; and (6) allow use of theory collision -
algorithm. o,
~ BN
;:3 7. to examine the pdf structures for a specific triphone, N
as well as the weights for the pdf models. L
:3 When decoding an utterance in debug mode, the program allows the
- user to interactively examine and if he wishes, to control the __-Z
a decoding process. Specifically, the user can o
S :
- s .
4l
TN N X N e 2 N A T u;.*-:.'-;.~j,.'-:.\:.‘-:.'-;.".p‘vf.-".‘«.'r‘*u".-‘..
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_.I'_.‘-'. '__L‘_‘

1. 1look at N best theories on stack. For each theory the
program will type out the phoneme string, their stack
scores, and the location on stack.

. e
LR ’
.

2, examine the 15 terminal scores of a theory by
specifying a stack position.

3. look at the time alignment (phoneme boundaries) of a
theory.

4, examine all theories ending with a particular phoneme
sequence.

5. redo a theory that seems confusing, giving the user a
chance to run it the system debugger.

6. restrict the decoding to a particular phoneme sequence.

Like the forward-backward program, the decoder is implemented
modularly using command interpreter whenever possible. This
permits easy integration of new function modules and creates a
user-friendly programming and debugging environment.
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4. EXPERIMENRTS

This section describes a set of experiments conducted to get
a preliminary idea for how well our initial phonetic recognition
system performs. First, we will provide a brief description of
our database. We will then describe the experimental procedure,
actual system configuration and parameter values for this
experiment, the type of signal processing that was done, and the
performance that was achieved.

4.1 Database

Currently our database contains 118 different sentences
(about 5 minutes of speech) by a single speaker, carefully hand-
labeled. This means that the researcher has indicated for each
utterance what the phonemes are and where each begins and ends.
The entire set of these 118 utterances have been employed for our
experiment. Out of this set of 110 utterances we used a set of
189 utterances for training, and the remaining set of 10
utterances for testing. In data gathering, speech was first
recorded with a microphone, and sampled at 28 kHz. We are
currently collecting an additional half an hour of speech to be
used in the immediate future to further our research goals.

4.2 Markov Model Structure

In our system, for this experiment, each phoneme is
represented by a Markov model of spectral states and transitions
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to and from these states. The spectral pdf's associated with
each state are dependent on the location within the phoneme (See
Section 3.1). The duration statistics of the transitions are
modeled explicitly by pdf's of duration, rather than by the
first-order Markov probability of repeating the same state (self-
loop). The phoneme model parameters depend only on the phoneme
(rather than on any phonetic context, such as diphone or
triphone). This model is, in many respects, simpler than the
full system being developed. Therefore, initial performance was
expected to be very poor, but this simple system has served as an
initial debugging testbed.

4.3 Signal Processing

For signal processing, LPC analysis is performed to extract
14 log-area-ratio (LAR) coefficients once every 10 ms on the
entire signal spectrum. This results in a 1l4-dimensional
parameter vector for each frame of speech. These LAR vectors are
then quantized to one of 50 spectral clusters. These clusters
are prototypical spectra which span the entire spectral space,
and were derived with a clustering algorithm from 1.5 minutes of
speech. The probability density functions of these spectral
clusters are estimated and used in scoring for phonetic
recognition.

4.4 Recognition Performance

In each experiment, two tests are performed. 1In the first
test 10 test sentences outside the training set are used. This
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set is called test set A. In the second tests, the test sentences
are taken from a set of 10 sentences that are within the training
set., This set is called test set B.

¥

v

m >
RO

Figure 13 provides a summary of the results of the
experiments. It gives the recognition error rate as a function
of the training set size. The dotted line represents the error
rate for the experiments where the test set is outside the
training set (test set A). The solid line is the result for the
experiments where the test set is within the training set (test
set B).

o AT
29

%"

.

g )

Starting from the left of the figure, points 1 and 1' are

ﬁ the results of the experiment where spectral pdf's are based
- ii strictly on initial statistics (hand-labeled data) with no
% forward-backward training. The initial statistics are derived
5 gﬁ automatically by a program that takes the labeled speech and
5‘; L computes a matrix of phoneme-spectral cluster counts, and then

normalizes the counts to obtain the initial pdf's. For each
phoneme, pdf's #1, #2, and #3 are set equal to the pdf obtained
from the initial statistics for that phoneme (see section 3.1)

| £RRE A
'Y o |

ﬁs The duration pdf's are user-specified exponential functions. The ]
~ error rate for test set A (outside training) is 64%, and that for i
A !'3 test set B (inside training) is 62%. ]
32 I )
N - Points 2 and 2' show the error rates when forward-backward 5
i training is done on a single sentence (within set B) starting
(V from the pdf's based on the initial statistics from the 100
3a §§ sentences. The error rate for test set A (outside training) was

very high at 82%. This results is not surprising given that a

very small training set of one sentence is likely to be very j
different from a random set of test sentences. The error rate |
for testing on the same sentence was 0%, as it should be.
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FIG. 13. Phonetic recognition performance results.
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Points 3 and 3' show the results of the experiment where
forward-backward training is done on a set of 10 sentences (set
B) starting with the initial statistics of experiment 1. The
error rate for test set A (outside training) is quite high, at
70%, and that for test set B (within training) is 28%.

FPinally, points 4 and 4' are the results of the experiment
where forward-backward training is performed on the entire set of
100 sentences. Again, two tests are done. In the first case,
test set A (outside training) is used, and in the second, test
set B (within training) is used. The error rates obtained for
both cases turned out to be very close, at 55%. However, this
coincidence may have been an artifact of the random differences
between test sets.

4.5 Conclusion

From the results of this experiment, we can draw some
conclusions as to what needs to be done to improve the
performance of our current phonetic recognition system. The
conclusions are as follows: (1) A 58-cluster spectral
representation of speech is clearly not enough; (2) a more
appropriate speech analysis method is needed; and (3) phoneme
context-dependent information must be used. Below we describe
each of these points in more detail.

First of all, 5@-cluster representation of speech does not
provide enough spectral resolution to distinguish among the
different phonemes, since there are as many phonemes as there are
clusters. Much research is needed to find optimal number of
clusters as well as cluster pdf smoothing algorithms to achieve
both resolution and robustness for speech recognition purposes.
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R X
o Secondly, computing 14 LAR's on the entire 16 kHz bandwidth -
" with no spectral scaling is not appropriate since most of the
- useful information in the spectra reside in the lower few R
i kilohertz. We propose using some warping function on the spectra :'_f
! :’ so that more attention is paid to those spectral bands that A
e contain more useful information. =
- o
’ :':x Lastly, using unconditioned models of phonemes for -
’ recognition yields too much variability in the pdf's that model -
i‘ the phonemes (especially near the phoneme boundaries). Use of
phonetic context (by using phoneme models that incorporate
I effects of neighboring phonemes) should solve this problem and R
3 allow us to make finer phonetic distinctions. i
B In the coming year, our research topics include the ones .
discussed above, as well as incorporating features into the HMM ‘_:‘.
SN nuetwork. 9
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