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1. OVERVIEW

1.1 Introduction

This annual report describes the work performed during the
past year in an ongoing effort to design and implement a system
that performs phonetic recognition of continuous speech. The

general approach used is to develop a Hidden Markov Model (HMM)
of speech parameter movements, which can be used to distinguish
among the different phonemes. The resulting phoneme models
incorporate the contextual effects of neighboring phonemes. One

major aspect of this research is to incorporate both spectral
parameters and acoustic-phonetic features into the HMM formalism.

Previous work on using acoustic-phonetic rules has yielded
average phonetic recognition rates of 60-70%. We estimate that a
minimum recognition rate of 80% is needed for a high-performance
speech understanding system. We believe that the information
needed to achieve the higher recognition accuracy is available in

the speech signal, manifested in the form of spectral parameter
sequences, as well as in the more global acoustic-phonetic

features that are on the order of a phoneme. Current recognition

systems make use of one or the other type of information. We

believe that in order to achieve the level of performance that we
-~ desire, the recognition system must make use of both kinds of

information in a coherent way.
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1.2 Progress

During this past year, we completed a major milestone of the

project, namely, the design and implementation of an initial
phonetic recognition system on the VAX 11/780. Specifically, the

following tasks were performed:

1. Designed and implemented a data structure to represent
spectral probability densities and acoustic-phonetic
features within the same formalism, and to allow
extensive use of context-dependent phoneme models.
Special attention has been paid to space/computation
tradeoffs.

2. Designed and implemented a phonetic recognition system,
referred to as the stack decoder. This program takesU as input the acoustic representation of an unknown
utterance and attempts to find the most likely phoneme
sequence using a best-first search strategy.

3. Designed and implemented a system parameter training
program, referred to as the forward-backward algorithm.
Much effort has been spent on debugging and speeding up
this program.

4. Developed software tools to debug the system
:4 interactively.

5. Carefully hand-labeled 110 utterances with phonetic
transcriptions and phoneme segment boundaries.
Upgraded and improved the labeling program to
facilitate the labeling process. Recorded 250 new
utterances for future use.

*6. Performed an experiment with 110 utterances (5 minutes
of speech) and obtained some initial recognition
performance results.

In the following sections, we describe these tasks in

greater detail. In Section 2, we present our basic system design
and the underlying concepts. Details of our initial system

2
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implementation are given in Section 3. In Section 4, we describe
an initial experiment that was performed to test the first

implementation of the system, and conclusions are made to guide
our research plans for the coming year.
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2. SYSTEM DESIGN

U In this section we describe the motivation for the approach
we have taken to phonetic recognition. We also rev-*:w the
methods used and how they will fit together in t). final
recognition system.

2.1 Combination of Methods

Phonetic recognition algorithms generally fall into one of
*two types. The first type, which we call rule-based algorithms,
uses a set of heuristic acoustic-phonetic rules to segment speech

Iinto phoneme-sized units and then assigns phoneme labels to these
segments. The second common type of phonetic recognition
algorithms, which we call netyork-dgcoding algorithms, is usually
based on a single parametric representation of speech sounds
compiled into a network that represents alternate realizations of

*phonetic units. Given some input speech, the algorithm uses a

dynamic programming search that attempts to find the optimal path
through the network, based on a distance metric or a
probabilistic error criterion. The advantages and disadvantages

*, of each of the two types of algorithms are presented below.

2.1.1 Rule-Based Algorithms

Typically, the rules in a rule-based system are
hierarchical. For example, the speech is f irst divided into
sonorant and obstruent regions based on gross features, such as
the amount of low-frequency or high-frequency energy. Then,

4
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N within each of these regions, context-dependent rules are used to

further subdivide the speech. These rules are most often based

on explicit knowledge of the relation of certain acoustic-

phonetic features to a particular articulatory gesture.

2.1.2 Network-Decoding Algorithms

Several phonetic recognition programs have been based on a

network representation of speech (often known as a Hidden Markov

Model). These methods do not segment the speech into phonetic
units before labeling. Instead, they use a dynamic programming

algorithm that considers all possible segmentations of the input.

Associated with each segmentation is a beit labeling and a
corresponding score. The algorithm then chooses the segmentation

and labeling that together result in the best score.

2.1.3 Comparison of Methods

The rule-based phonetic recognition system explicitly models

the salient features of different phonemes by using those

features that are best at making each phonetic distinction. By

segmenting the speech before labeling, these algorithms avoid the

expensive computation associated with dynamic programming. They

can also make use of more global acoustic-phonetic features of

phonemes that are difficult to represent in single-frame models.
The primary drawback of these rule-based algorithms is that if
decisions made in an early stage of the hierarchical analysis are

incorrect (as they must be occasionally), decisions made in later

stages are often not meaningful. While the processes that use
the results of the phonetic recognition (such as a word matcher).

5
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can hypothesize various errors, they do not have the ability to

score those errors accurately. Rather, they must rely on average

confusion statistics to score these unlikely errors. Thus, a
severe error in segmentation or labeling is quite likely. Such

:1 errors were found to be quite devastating in our speech
understanding system.

In contrast, the hypothesize-and-test paradigm used by

network -decoding algorithms typically computes detailed acoustic

scores for a wider range of alternatives. while the correct
phoneme will not always receive the highest score, it will at

'. a least always be considered, and will receive a score that is
comparable to other scores assigned to other theories. Another

way to describe such systems is that, by considering all

I reasonable alternatives, they degrade gracefully. Experience has
shown that this feature is essential to a speech understanding

~ system that combines many theories spanning different periods of

input speech. A second very important feature of the network
decoding algorithms is their capability for automatic training of

the network model. The training method used is based on a

Sbootstrapping technique. The training method used is based on a

bootstrapping technique. A known sentence is given to the system
- along with a phonetic transcription. The system first finds the

'best alignment of the known input to the network. Then it uses

the aligned input speech to update the network models, either by
changing probability densities or by adding alternate paths in
the network. In this way, large amounts of training speech can

be incorporated into the network with relatively little effort.

The primary disadvantage of the network-decoding algorithms
to date is that they use a uniform representation and metric for

all frames of all phonemes in all contexts. The spectral

parameters in a single frame are also not ideal because they are:

6
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4. The system is amenable to retraining to a new speaker,
or to multiple speakers, with only a short training

p period.

5. The system can be made to run faster by constraining

the search significantly without degrading performance. "

.5-
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.1 2.1.5 Block Diagram

Figure 1 illustrates the overall block diagram for the

recognition system. The system can be divided into two major
sections: the training component and the recognition component.

The division between these sections is indicated by the

horizontal dotted line. The training component uses two data

bases. First, a small data base of carefully labeled speech is

AV used to produce initial estimates of probability densities for

spectral parameters and for acoustic-phonetic features (discussed

%- further below). Then, a larger data base of phonetically
vf transcribed (but not time-aligned) speech is used by the training

algorithm to automatically improve the pdf estimates. The
knowledge sources shown provide the training system with a model

for the variability of speech parameters, and the effect of

phonetic context, and a set of acoustic-phonetic feature

definitions that have been found to be useful for making fine
phonetic distinctions. These features are initially suggested by

our experience with spectrum reading experiments. They are then

further developed using our Acoustic-Phonetic Experiment Facility

(APEF) [1] on a data base of phonetically labelled speech. These

sources of human knowledge constrain the system along a smaller

set of dimensions for modelling speech. The sources of knowledge

are specifically n~t used to set thresholds or determine rules,

but rather are used only as a structure on which the training
system can build further knowledge.

*~ :-'4The training system produces two sets of probability density

functions (pdf's), for spectral parameters as a function of each

frame in the phoneme, and for acoustic-phonetic features that are

6i ~ defined globally over a whole phoneme. These two sets of pdf 's
are then used by the network decoder to determine the most likely

phoneme sequence corresponding to an input speech utterance.

9



Bolt Beranek and Newman Inc. Report No. 5485

Acousic-Phneti

Parametric andAcoustic-Fetr t !

Training PhoneticSpeech Faue0'Mode Prmter

Analysismation

uman (PDF

Phonetic Etimation)

Transcription

Database of

? TRAINING

*RECOGNI TI ON

Parametric anda
Input Acoustic- utpuSpeech Phonetic , NETWP DECODER honee

Feature S eqec
Analysis ____________

FIG. 1. Block Diagram of phonetic-recognition system.
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Each of these components will be discussed further in
Section 3. In the remainder of this section, we outline briefly
the basic methods and the major advances with respect to

previously implemented network decoding algorithms.

2.2 Hidden Markov Model

The basic model of a phoneme that we use is a Hidden Markov

Model (HMM) of spectral parameters as a function of time within

the phoneme. In this subsection, we define the HMM and explain
how it is used for the problem of phonetic recognition.

2.2.1 Definition

A simple example of a HMM is shown in Fig. 2. The HMM
consists of a set of states in a Markov Chain. The probability

of proceeding from any state to another state is given by a

transition probability matrix. However, unlike the normal Markov

* .Chain, which associates only one output symbol with each state,

each state also has associated with it a probability for each

output symbol or - in general - a probability density for the

output. Assuming that the probability densities of the different
states overlap, it is not possible to determine absolutely the

_sequence of states that produced a particular output sequence

(thus the term "hidden").

In the example shown, there is a nonzero probability of

proceeding between any two states, and the pdf's associated with

the states are assumed to be independent. In modelling the
acoustic realization of a phoneme, we can apply some reasonable
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SFIG. 
2. Simple Hidden Markov Model.

m

"4

FIG. 3. Hidden Hidden Model constrained to proceed from left

to right.
-4

constraints to the model that will allow its parameters

(transition matrix and pdf's) to be more easily estimated.
Figure 3 shows a simple example of a HMM in which the states are

12
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assumed to "flow" from left to right. That is, it is not
possible to go f rom a later part of a phoneme to an earlier part
of the same phoneme. The model does allow the deletion of the

state at the center, under the assumption that if the person is
~' .~ speaking quickly, the target at the center of the phoneme may

never be attained. The loops from a state back to itself (self-
loops) allow for variable duration for any particular part of the
phoneme. Finally, the pdf's associated with some of the

transitions are "tied" together. This constraint allows the
system to more easily estimate the fewer number of pdf Is, while
providing the flexibility to change the transition probabilities
as needed.

2.2.2 Automated Training

The H1M structure affords a very powerful model for the
parameters of speech as a function of time within a phoneme.
However, it is also very important that the parameters of the HMM
be easily estimated using a sufficient amount of speech such that

the parameter estimates will be robust. First, using a small
V amount of carefully labeled speech (about 100 sentences), we

determine an initial estimate of the spectral pdf's for each of
~ ~ the models for each phoneme. Initially, the pdf's are assumed to

the same everywhere within a phoneme, and the transition matrix

is assumed to be the same for all phonemes.

A large data base of phonetically transcribed speech is then

used to estimate the pdf's, transition matrices, and the effect
of phonetic context on these models more accurately. The
algorithm used (termed the "Forward-Backward" or Baum [2]

- algorithm) first computes the probability of each possible

13
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alignment of the training speech given the model so far. Then,

the new speech is used to update the model parameters in

proportion to how well the particular alignment scored. This
algorithm can be shown to determine the set of model parameters

;j that maximizes the estimated probability of all of the training
data. However, the maximum achieved is only guaranteed to be a

local maximum - not a global maximum.

1b 2.2.3 Network Decoder

4 Once this model has been sufficiently trained, another

algorithm (similar to but not the same as the Viterbi algorithm)
can be used to compute the probability of any sequence of

Iphonemes, given a particular sequence of speech spectra. A
search strategy is then used to f ind the most likely sequence of

~ phonemes.

2.3 Phonetic Context

One of the major factors affecting the acoustic realization

of a phoneme is the phonetic context. As a result, there have
.~ ~.been many suggestions to model the acoustics of units larger than

4phonemes, such as diphones, demisyllables, syllables, etc. The
larger the acoustic unit used, the more its acoustic realization
will be independent of any neighboring units. However, even when

% the acoustic unit is the syllable or the whole word, both ends

are still affected considerably by neighboring phonemes. All

S..' that can be said is that most of the interior parts (far from
neighboring phonetic contexts) are unaffected. Each such

41
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proposed unit also has its own associated problems. For

instance, if the unit is the syllable, a very significant problem
is that in English there are about 10,000 different syllables,

and therefore, it is impossible to gather detailed statistics
'i-. C~ about the likely acoustic realizations of each of them from a

reasonable sized data base.

The different acoustic models proposed are, in fact, just

trying to model the coarticulation effects of adjacent phonemes

on each other. There is not necessarily any significant

importance in the unit itself. Therefore we have chosen to
- return to a model of the acoustics of each phoneme, but to take

into account the phonetic context in which it appears.

2.3.1 Triphone Model

As an approximation to modeling the phoneme in all possible

phonetic contexts, we have decided to take into account the

q immediately preceding and following phonemes. We call this a
triphone model, although it really only models the middle phoneme

of three as a function of the two adjacent phonemes. It is
expected that this model should account for almost all acoustic

effects that are due to phonetic context. However, as discussed
in the preceding section, using a larger unit results in a severe

Straining problem, since there are many such larger units, and
therefore no longer enough of each to develop a robust acoustic

model. Due to the uneven distribution of any such units,

however, there are enough samples of the more commonly occurring

triphones. For those triphone contexts that have not occurred a
sufficient number of times, we could use the model for the

phoneme that depends on the phoneme to the left ("left diphone

15
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model") combined with the model that depends on the phoneme to

the right ("right diphone model). For those diphone contexts

that have not occurred, we can use the model for the phoneme that

is independent of context.

-The method automatically uses information about adjacent

phonemes only to the extent that it has seen examples of that

context, and combines this information with less context-specific

models for the phoneme in an optimal way. The
specificity/robustness tradeoff is not eliminated, but is

controlled by varying the amount of context used and the

robustness to optimize performance.

2.3.2 Interpolated Estimation

One solution to the the problem of how to decide between the

highly conditioned models and the general models with more

training is a procedure called "Interpolated Estimation" [3].

Interpolated Estimation combires the individual pdfls obtained in
the different contexts by taking a weighted average. The weights
are set to reflect the importance of the different pdf's to the

whole model and the degree of confidence one has in each pdf

4estimate based on the number of observations of that context.

2.4 PDF Estimation

The crucial step, then, is to estimate the conditional

probability densities (pdf's) for the spectrum for each phoneme

or phoneme sequence.

4 -1
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There are many methods available for estimating pdf'Is, but
the method used most frequently is to assume a multivariate
normal distribution. If we assume that each phoneme class can be
represented by a normal distribution, and that all the covariance

matrices are diagonal with all the variances equal (within each
class and across all classes), then the Euclidean distance to
each class is proportional to the log of the probability density
for that class. Of course these assumptions are =~ all true.
The distributions have different variances, and some features are
much more useful than others. Therefore, some systems use a
different covariance matrix for each class. Again, the tradeoff
between specificity and robustness arises. Since there are fewer
samples of each phoneme than of all phonemes, estimating a
separate covariance matrix for each phoneme either requires more

data, or will result in less robust pdf estimates. Taking this
issue one step further, we note that most feature distributions
are not typically Gaussian. Several systems, therefore, use non-

parametric pdf estimates (4, 5, 61. Two such estimators are

described below.

Given many samples of each distribution in several
dimensions, and a feature vector z from an unknown class, the

OR problem is to estimate the probability density p(IPhi) at z.
,;,% The simplest method entails first dividing the space into

discrete bins -- typically by the use of a clustering algorithm.
Then, for each class, the fraction of samples that fall into each
bin determines the probability. For these probability estimates
to be robust, we need several samples f or each bin that is
somewhat likely (the very unlikely bins, which correspond to
other phonemes, are usually assigned an arbitrary low probability
by padding them with one sample).

17
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This discrete non-parametrc: pdf estimate has two major

advantages: First, the pdf is not assumed to be Gaussian.

Second, the computation needed to compute the probability density

of a feature vector given all classes requires only that we find

the nearest bin to the feature vector once. (This can be done

quickly with a binary search if desired.) Then, the identity of

the nearest bin is used as an index into the vector of

precomputed probabilities for each class. This method requires

several orders of magnitude less computation than a Gaussian

probability computation.

- "... There is one major problem with this approach. If the
"I

" number of bins used to represent the space of feature vectors is

small, then the pdf will not have enough resolution. For

reference, consider the space of LPC vectors divided into 64

clusters. Speech that has been coded to 64 clusters (6 bits) is

only barely intelligible. We must conclude that the fine

phonetic distinctions have been eliminated. The pdf for any

particular phoneme would span only 3 or 4 of the 64 clusters.

If, on the other hand, we use about 1000 clusters (as indicated

from our experience with coders) we now have a severe robustness

* problem. We could not hope to have enough data to estimate the

probability of each of the 1000 bins for each phoneme. We can

pad the bins carefully with an optimal number of fake samples

(determined by a deleted estimation procedure), but this won't

change the fact that our estimates are still, at best, poor.

Another non-parametric pdf estimation method uses all of the

4 training data directly. Given an unknown X, we compute the

probability density directly from the data. This can be done

using a Parzen window to compute the contribution of each

training sample at the unknown, or more robustly, using a k-

* 18
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nearest neighbor (KNN) window. First, we find the K nearest data

points. (K is typically made proportional to the square root of

the number of training samples in the class.) Then, the

probability is computed from the volume of the resulting window

and the distribution of the neighbors within the window.

Since the number of points within the windows is kept fixed,

the variance of the probability estimates is also fixed. The

resolution then varies according to the amount of training data

in each region. This method does not eliminate the trade-off

between specificity and robustness, but at least it controls it

in a definable way.

These non-parametric pdf estimators are more sensitive to

-the amount of training data than the Gaussian pdf estimator. But
this sensitivity can be offset by the greater flexibility in the

model. The major disadvantage of the more robust KNN pdf

approach is the vast amount of storage and computation resources

required to compute the distance to all of the training points in

each distribution.

The solution that we have adopted takes the best of each
method and combines them. The pdf is represented by a vector of

probabilities - one for each of a large number of bins. However,

the probability at each bin is estimated from as many samples as

is deemed necessary to make the estimate robust -- rather than
q ."the very small number of samples that happen to fall within the

particular bin. The pdf estimator used can be the Gaussian, the

, KNN estimator, or any other robust estimator. The storage and

computation are also minimized.

19
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* 2.4.1 Acoustic-Phonetic Features

There is often a distinction made between speech recognition

systems that use detailed knowledge of the characteristics of
* speech sounds in order to recognize them, and systems that use

only minimal specific information, but rather just measure the
speech short term spectrum as a function of time and "grind out"
numbers.

At BBN we have been trying to develop experience in using
probabilistic methods combined with a detailed understanding of

" *C.~ the nature of the variability of phonemes in order to improve the
performance of phoneme recognition. In particular, we are

attempting to determine the ways in which different phonemes vary

in order to guide the probabilistic algorithms to find the

optimal pattern recognition strategies. That is, to the extent
that knowledge about the nature of speech exists, it can be used

in the very powerful formalisms afforded by probabilistic

methods. One key element in this effort is that we will be using
*acoustic-phonetic features, which have been heuristically

* developed over the years by speech researchers in a probabilistic

*formalism. We feel that this step is essential to the good
performance of probabilistic pattern recognition methods. For

example, a complete representation of the speech waveform or theq
power spectrum contains most of the information that is present
in the speech. Theoretically, a probabilistic system, with2

sufficient training, should be able to develop optimal

N recognition algorithms. However, the dimensionality of the power

spectrum is too high for accurate estimation of probability

densities without an unreasonable amount of training data. On

the other hand, by identifying a few acoustic-phonetic features,
of the type typically used for reading spectrograms, most of the

20 S
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information contained in the speech spectrum can be represented

in a much smaller number of dimensions, thus making it possible

* to develop accurate probabilistic models with a tractable amount

of training data. In addition, there is some evidence that

S features of this type may vary less from speaker to speaker and
thus result in systems that are closer to speaker independent.

*Q Below we present the procedure for using acoustic-phonetic

features in the recognition process.

1. Identify those phonetic confusions that are most common
in the network decoder using the spectral parameters.

2. Using the Acoustic-Phonetic Experiment Facility (APEF),
we will determine a set of features that seems to
distinguish those phonemes well. These experiments areS carried out on a modest sized data base of carefully
labeled speech. This would be the same subset of the
data base used to derive the initial statistics for the
spectral parameter HMM's.

3. The specification of the most useful features are
inserted into the network by associating them with the
phonemes that are to be distinguished. The probability
densities derived using APEF are also inserted as the
initial pdf's for these features.

4. The forward backward algorithm is used to jointly train
both the spectral pdf's and the new acoustic-phonetic
feature pdf's. The feature pdf's can also be made to
depend on phonetic context in the same way as the
spectral pdf's.

5. Using a procedure similar to that used to the one that
determines the weights between different context models
(interpolated estimation), determine the optimal
weights to use to combine the probabilities computed
from spectral parameters and from acoustic-phonetic
features.

In the decoder, the feature pdf's will be used in a somewhat

different manner than the spectral pdf's. When a phoneme is

21
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proposed (during the search for the best phoneme sequence) , the

decoder first scores the new phoneme using the context-dependent

spectral parameter model. Then the newly scored theory is placed

back on the stack according to its score. When this theory comes

to the top of the stack again it is rescored using the feature

pdf 's, and again put on the stack. By using this two step

procedure, we avoid computing scores due to the feature pdf's

unless they will be necessary.

.4
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to model phoneme contextual effects.

In Section 2.2 we presented a short introduction to the
theory of Markov chains. Here, we will discuss in detail the
structure of the specific phonetic HMM that was implemented.

ii 23



a Z;

ra rq
-- 1 0 4J
4) z -)

ra cn~

0 ) >

U) 0 ~ 0 (

to- b4 4.
QJQ

VzR (
*..) 4) : a

4.'

a)' 0
5,)

* S' 54 (0-r4
$44 4-) 0

0 41

a4 0 4.
'U 4-4 0

04

-E-

'4.24



Bolt Beranek and Newman Inc. Report No. 5485p

Figure 5 shows the model that is actually used in our current

system. This model is uniform (has the same structure) across

all phonemes. we believe that this same structure is adequate to

represent distinct phonemes that differ in both temporal and

acoustic characteristics, and yet powerful enough to model the
often rapid acoustic transitions within a specific phoneme.

Now let us take a closer look at the model structure. This

Narkov model, like all Markov chains, is made up of a finite
number of nodes (corresponding to states) and arcs (corresponding

to transitions) . Associated with each state is a probability

density function (pdf) for spectral parameters (usually

represented by an alphabet of a set of prototypical spectra) .

The arcs are transitions to and from other states (representing

Bother Odf Is) . Associated with each transition is a transition
probability. Together, these states and the transitions

represent a stochastic process that characterizes the acoustic

phenomena of a phoneme.

.0Figure 6 shows the data structure for the Markov model that
is implemented. In this implementation of the Markov model, each

node contains the following information: an index to a specific
pdf (pdf number) associating a probability density function to

the node, a list of nodes that can follow this node, and a list
of transitions to use in getting to those nodes. As an example,

consider node 1. Node 1 is tied to pdf #1, and can be followed

1 i by itself (self loop) using transition 3. It can also be

*followed by node 2, using transition 4, and node 3, using

transition 5. Node 2 is tied to pdf #1 (the same pdf as that of

node 1), and node 3 is tied to pdf #2. This means that in going

to node 2, pdf #1 is used, and to node 3, pdf #2 is used. A node

that is tied to pdf #0 (for example, node 10) means that no input

25
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spectrum is used in going to that node. The fact that there are

a total of 3 pdf's is rather arbitrary: we can have as many (or
. as few) as we like. However with too many pdf's one would run

into the problem of not having enough training, and with too few

the Markov model would in general not be powerful enough to model

the acoustic variations within a phoneme. Using three pdf's is a

- reasonable first try since, in general, each phoneme can be
thought of as having 3 parts, the beginning, the middle, and the

end. Each pdf can be thought of as modelling each of those
parts. Also, the fact that states are tied together (different

states use the same pdf) allows us enough flexibility to model

-p pdf durations.

The above structure defines a Markov chain that models the

duration of a spectral pdf by having successive states tied
together (have the same spectral pdf), and by using self-loops (a

state can follow itself). Although this may be powerful enough

in most cases to model spectral duration, it does place some
constraint on the shape of the duration pdf that is estimated.

* We have designed our data structure for a Markov model node to

allow us to model duration explicitly by using pdf's of duration.

Each node, then, has a duration pdf associated with it. To
reduce computation and storage, we have chosen to use self-loops

-for duration, for the time being.

This completes our HNM structure definition. Associated

with each of the definition for a phoneme is a probability

structure for the pdf's of spectral parameters and transition
probabilities. This probability structure is defined in our

program to be a single entity that can be referenced by the name
of a phoneme. This structure is declared with the following

fields:

28
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1. Nocc: number of occurrences of a particular phoneme.

p 2. Pdf: pdf of spectral parameters referenced by a pdf
number (there are a total of 3 such pdf's)

3. Transprob: an array of transition probabilities
- .referenced by a transition number.

It is worthwhile to remember that while there are many such

probability structures (one for each phoneme), there is only one

Markov model. The HMM defines the structure of the finite state

automaton whereas the probability structure provides the

parameter values of this automaton.

With the above Markov model and probability structure

*definitions for a phoneme, we can generalize the structure to

that of a triphone, i.e., a phoneme in the context of a

particular left phoneme and right phoneme. In our system, a

triphone, then, can include many different models that

incorporate various levels of context information. In

particular, in our current implementation, we have models for (1)

phoneme (unconditioned on context), (2) left diphone (phoneme in

the context of a left phone), (3) right diphone (phoneme in the

context of a right phone), (4) left class (phoneme in the context

" of a class of phonemes to the left), (5) right class (phoneme in

the context of a class of phonemes to the right), (6) left-right

class (phoneme in context of a class of phonemes on both sides),

and (7) triphone (phoneme in context of a particular left and

right phoneme). Identical models of different triphones are tied

together. This means that only one copy of a particular context

model exists in physical memory. For example, the triphones

P[IYJL (for "peelf) and P[IY]R (for Rpeer") all reference the
same diphone model for P[IY], and the same phoneme model for

[IY], although these are two different triphones. We will

a-2
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describe how these different context models can be combined in

some optimal way for scoring in a later section.

3.2 Markov Model Definitions

In this section, we formulate a mathematical definition for
the hidden Markov Model (HMM). We shall assume that the

underlying Markov chain has N states ql' q2' "qN and the

observations are drawn from an alphabet, S, of M prototypical

spectra, sl,...,sM .

The underlying Markov chain can then be specified with a

parameter set (H, A, B), where:

HI = (II , ' 2 ,  .. ,'I N)1 )

is an initial state distribution,

A - [aij], lji,j N (2)

is a state transition matrix, with aij being the probability of

., ~ transiting to state qj given current state qi, that is,

aij - prob(qj at t+l I qi at t) (3)

and

B - [bjk], I-jSN, lkSM (4)

is an output symbol probability matrix, with bjk being the

probability of observing symbol sk given current state qj, that

is,

A.

30
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bjk = prob(sk I qj) (5)

Hence, a hidden Markov model, N, is identified with the parameter

set (, A, B).

4 .To use hidden Markov models to perform speech recognition we
must solve two specific problems: (i) computing the probability

.i of an observation sequence, which is used to decode an utterance

for recognition purposes, and (ii) estimating the model

parameters, for training the models. Both problems are based on
a sequence, x of observations xl, x2,...,xT where each xt for

l t T is some SkES.

The training problem is simply that of determining the model

parameters A,B, given a training sequence x such that the

probability prob(zl) (probability of x given the model) is
maximized. The recognition problem is the following: given the

4 lHNM parameters (A, B) and an observation sequence X, we want to
determine the model M (phoneme sequence) such that the

-probability Prob(Mlx) is maximized.

3.3 Training Program

The theory of speech parameter training with a hidden markov

• .: chain as the underlying model using forward-backward algorithm
was first proposed by Baum, and it is known as the Baum-Welch
algorithm. Whereas dynamic programming finds the single most

- ~likely path through the model network with global consideration
of all possible states, the forward-backward algorithm determines

the probabilities of all the state sequences that are possible

within a given time frame (sum over all paths).

31
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. One major advantage in modeling a speech signal as a

-probabilistic function of a hidden Markov chain is that the HMM

allows for automatic training of its parameters. The training

method used is based on a bootstrapping technique. A known
.4 ' sentence is given to the system along with a phonetic

" :~.: transcription. The system first aligns the known input speech in

all possible ways to the network. Then it uses these alignments

to update the network models by changing probability densities.

A major advantage of this technique is that the training could be

done automatically without human interference, and that it allows

the network to be trained on large amounts of speech with
• ., relatively little effort. A drawback of this type of algorithms

.4 is that they typically require large amounts of computation.

However, computation is becoming increasingly faster and cheaper,

while human labor is becoming more and more expensive and

unavailable. Therefore we still prefer computer-intensive to

labor intensive methods.

A, 3.3.1 Forwaro-backward Algorithm for Markov Model Parameter
Estimation

"4d

As mentioned in the previous section, the training problem

is that of determining the HMM parameters A, B, given a training

sequence x such that prob(xIM is maximized.

One could, in principle, compute prob(zIM) by computing the

joint probability prob(x,ZIM) for each state sequence I of length

-1 4'T, and summing over all state sequences. This would be

computationally intractable. Instead there is an efficient

method for computing prob(xIM). We can define a function at(i)
for let T as prob(xlx2 ...xt, and at state qi1M). And we have the

following recursive relationship for the "forward probabilities".

32
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N
a ti(j) = [ I (ia. I b.(Xt1i) ltiT

(6)
bi(xt+) E bik iff xt+1  k

Similarly, we define another function Ot(j) = prob(xt+l,

Xt+ 2 '''''xtlqJ at t, M). We set OT (j)= 1 and then use the

" backward recursion

, = Z a, .b (x ) ( (7)
t" j 3j(t+l) t+l

to compute the "backward probabilities. " Then,

N N
Prob(xlM)= Z E a)a .tb (x t+) (j) = eT(N) (8)

-" -- ti=l j=l aijbj t+T
for any t, l&t T-l. Equation (6) and (7) formulate what is known

as the forward-backward algorithm.

U The problem of training a model, that is, finding a global

maximum for Prob(XIM), does not have a simple solution. However,

Prob(xIM) can be locally maximized. Global maximization involves
searching for all local maxima over the entire search space and
finding the maximum, whereas a local maximum is any one of those

local maxima. We can use the forward and backward probabilities

to formulate a solution to the problem of training (finding a
local maximum) by parameter estimation. Given some estimates of
the parameter values we can compute the expected number of

transitions Yij' from qi to qj, conditioned on the observation

sequence an it is just
T

iJ Z a %t(i)aij b(xt+l) Ot+I(J)/aT(N) (9)
t=l

Then, the expected number of transitions Yi, out of qi' given x,
is

N T

i = Z y ij = a t(i) t(i)/aT(N )  (10)
j i t=l

" 33
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p t " m .

The ratio Yi  is then an estimate of the probability of state

qj, given that the previous state was qi. This ratio may be taken

as a new estimate,aij, of aij. That is

JR T
an - .get .a a(i)a b (xt) (j) the)'.- t ij i t+1 aib t+l

a.. = '-3 t-1. )ai3 =Yi T

- -. Likewise, we can get a new estimate of bjk as the frequency of

occurrence of sk in qj relative to the frequency of occurrence of
any symbol in state qj. Stated in terms of the forward and

-. backward probabilities, we have

t. E a t (j)t(j)/ aT(N) t tst(t (j)_~ txs k  t ~ k  (2

Bjk and a w T

Both i rality intewad wefl arefe oasobaion sequce xouts
. In reality, instead of a single observation sequence x,

.'.. we'll have many sequences (corresponding to many distinct

utterances)x (1 I, x(2),... x(L) that make up the training set.

Then
(, (Z.)) ( / ( )

.( ) W E a(i aijb j (Xt+l t+l(T)/ aT (N)ij.t=-., t+1 (13)

CL T (N) - Prob(x IM)

for output sequence x1t1, and for the entire training set,

=i. L (Z) (14)
- Yij

and

434

4.;

' ,4

I .? . .. - . '& .. . . .



. o%-j ca, _ -.. -, .. , . . m . . m . . -' ' - . ' , . • " • ' " "

Bolt Beranek and Newman Inc. Report No. 5485

L (t)
Y Y • (15)

ai j = Li

y. (Z)

Likewise,

LL W 1 (16)z . . [E at(J)Bt(j)/ (N)]

". :jk :1 (k = t Tx(N)
t j Z-1 t:xt~Sk

'\~ ~. andL

bi (17)

SYi

The forward-backward reestimation procedure is as follows:

I. Given some initial parameter values.

2. Use Pl(phonetic transcription) - x(observation
sequence) pairs to obtain new counts from currentqparameter values. Do this on all of the training data.

3. Estimate new parameter values from the accumulated
counts. Replace current parameter values with new

%4 ~ parameter values.
4. If parameter values have converged- stop, otherwise

dt continue with step 2.

Figure 7 provides an illustration of the system training

-: :- procedure.

3.3.2 Deleted Estimation

In the previous sections we discussed using HMM's of

phonemes in context as the basis of our recognition/training
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C.-

SSpeech Forward-Backward

New parameter
estimates

Phoneme Algorithm
Transcription _

U

Initial Parameter Phoneme model
estimates from parameter
hand-labeled database

speech

FIG. 7. Forward-Backward Training Algorithm.
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algorithm. However, we know that while there will be sufficient
training data for some context models, there will not be enough

. for others. One solution to the dilemma between the desire to

use highly conditioned models and the practical restriction of a

finite training set is a procedure called "Deleted Estimation".
This method combines the individual pdf's of the various

contextual models by taking a weighted average. The weights are
set to reflect the importance of the different pdf's to the whole
model and the degree of confidence one has in each pdf estimate,

based on the number of observations of that context. The pdf of
the speech parameters xt at time t, given a particular phoneme

". 4. with all possible left and right contexts can, then, be estimated

from:

P(xtlpdf#,phoneme, left context, right context)= (18)

wl(pdf#,n1 ) p(xtlpdf#, phoneme)+

w2 (pdf#,n2 ) p(xtlpdf# phoneme, left phoneme class)+

w3 (pdf#,n3)P(xtlpdf#,phoneme, right phoneme class)+

w4 (pdf#,n4 )P(xtlpdf#, phoneme, left phoneme)+

w5 (pdf#,n5 )p(xtlpdf#, phoneme, right phoneme)+

wI(pdf#,n6 )P(xtlpdf#, phoneme, left phoneme class,
r ght phoneme class)+

(pdf#,n7)P(Xtlpdf#, phoneme, left phoneme, right
phoneme)+

46

where xt is the speech parameter at time t, wi(pdf#,ni) is the
weight assigned to the pdf of the ith context, and ni is the
number of occurrences of the phoneme in the ith context. We must

-have
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(19)

* Zw i(pdf#, ni) - 1

for all pdf#.

P We have 3 pdf's for each phoneme model in our current
implementation, where pdf #1 can be thought of as associated with

* -. the left part of the phoneme, pdf#2 the middle, and pdf#3 the

, right. So, when using pdf#l in scoring an input spectrum for -

- both training and recognition, the weights should reflect that
fact and should favor the left context models more. The pdf in

* .the middle may be determined primarily from the unconditioned
context (wl), but the right end (pdf#3) would depend more on the

models in right context, if there are enough samples.

The procedure for automatic training of the wi's is as

mentioned before, deleted estimation. In practice, this
algorithm is combined with a method of dividing training data

into smaller blocks and training on alternate blocks. This

method is called "jackknifing". In this procedure, the data is
first divided into N (usually 4) blocks that are equal in size.

Given some initial pdf estimates and weight estimates, first we
train the pdf's (using forward-backward algorithm) on a subset of

the training set containing N-1 blocks of the data until the
* -*pdf's converges to obtain new pdf's; then train the remaining

block with the new pdf's on the weights (using forward-backward
algorithm) and obtain weight counts (to see how well the trained

pdf's model the unseen data block). This is the deleted

estimation procedure. Perform this procedure on all possible

permutations of the N blocks of data and obtain a new set of
" weight estimates from the weight counts accumulated over all the

pieces on which deleted estimation was performed. This is a

38
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- ~ single pass of the jackknifing algorithm. With the new estimate

of the weights, we start the entire jackknifing procedures over
pagain until the pdf's converge. This might take f rom a few

passes to several iterations, depending on the size of the

training set, With the final weight estimates, we now train the
pdf's on the entire training set until they converge. This

entire process might take as many as tens of iterations of the

forward-backward algorithm. Needless to say, deleted estimation

combined with jackknifing is expensive computationally. In the

following sections, we'll look at ways of speeding up the

forward-backward algorithm.

3.3.3 Implementation Issues

Initially, we had designed the data structure so that all of

,A the system parameters (probability densities) would be stored in

memory to minimize I/0 and speed up system running time.

However, to do so would require 40-80 Megabytes of main memory

(more than normally available). Careful examination of the

algorithm revealed that a relatively large amount of computation

ZA is performed using a fraction of the data. Therefore, the

programs have been altered to store the phoneme spectral pdf's on

a file. The pdf Is are read in as they are needed. Since this

amount of memory is small (for a sentence), for a small number of

phoneme context models, and the computations performed are
-~ significant, the overhead involved is small. This phenomenon may

no longer be true, however, if we use the full range of phoneme

.. context models available. We may have to examine more closely

I/0 vs computational issues and to look for ways to speed up the

system further. Currently, the forward-backward algorithm reads

in all the pdf's for all the phonemes in an utterance as the
-1

~ utterance is being trained.
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The computation of the probabilistic counts in the forward-

backward algorithm requires the forward probabilities at~ as well

as the backward probabilities at for all time t. One method of
computing the counts is to compute the a's and the B's separately

for all time t and then compute the counts. Storing both at's and

the 8's for all input frames for a typical training utterance
*requires a large amount of memory. To save on storage, and

possibly computation we have in our system implemented the

following: the at's are computed first in a forward pass for all
time; then in the backward pass, the a's are computed a single

f rame at a time, along with the counts. As we go back in time,

the B's for the previous time is updated to become the current

B's. This is done for all input time frames. This way, only two

"rw"of B's need to be stored at any time. This practically

eliminates the storage needs of the backward probabilities.

Our current implementation provides two algorithms for

speeding up the forward-backward algorithm. One is to use

phoneme segmentation to nail down phoneme boundaries and allow+

N frames from the proposed segmentation in the forward-backward

iteration. The second method uses windowing to narrow down the
range of phonemes for at and B computation. At each input time,
in the loop of the forward-backward algorithm, the program

* computes the phoneme in which the maximum at occurred, and then
use this information to limit the computation at the next time

*~i ~.frame to a few phonemes bordering the phoneme of maximum at. This

speeds up the algorithm by (1) reducing the computation of a's

and 8's, and (2) reducing the overhead of memory page faulting
associated with accessing at's in a large array. An order of
magnitude savings in computation has been realized.

In our implementation we are also concerned with the problem
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of numerical underfiow caused by the fact that small numbers like

q~ (they are probabilities) are multiplied together over may time

frames. We have solved this problem by normalizing the a's (and

the 0' s) by the maximum at each time f rame and keeping track of
this normalization factor over time. Since a pdf count involves

dividing a small number (at.$) by a slightly larger number ctT(N),

the wsmallness" often cancels out, resulting in a relatively
large number. All of this is taken care of properly.

Currently, the forward-backward program has the following

capabilities:

*1. Allows the user to specify the number of phoneme
contextual models to use to allow for a certain degree
of control so different experiments can be tried.

2. The user can specify a pdf file containing the pdf
structures to use in the training. The program checks
for consistency of the file with program dataA declarations (for example, the number of spectral
clusters used and declared must be the same).

3. The user can also specify a count file for accumulating
probabilistic counts for training.

4. The pdf's in two pdf files can be combined with user-
V specified weighting.

5. Allows forward-backward training of the pdf's.

6. Allows forward-backward training of the weights on
different context models.

7. include I/0 for reading and writing of pdf's, weights,
pdf counts, and weight counts.

8. With the three functional capabilities above (5-7), the
user can perform deleted estimation and jackknifing.

9. Allows estimation of new pdf's in a pdf f ile f rom the
counts in a count file. Provide pdf padding and
smoothing capabilities. *'

Jko
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10. Several capabilities for debugging: allows user to
examine various pdf and count structures, as well as
the weights. Can perform diagnostic test on the pdf
structures in a pdf file.

Since all the functions have been implemented on a modular

basis, adding a new function can be done with ease. The fact

that the program is controlled by a top level command interpreter

provides smooth function integration.

3.4 Phonetic Recognition Program

The phonetic recognition program in our phonetic recognition

system is called the stack decoder because (i) it attempts to

*decode* an unknown utterance by walking a HM?4 network

representation of speech; and (ii) it uses a stack structure to

order competing theories.

Network-decoding algorithms in general do not segment the

speech into phonetic units before labeling. Instead, they use a
dynamic programming type of algorithm that considers all possible

segmentations of the input. Associated with each segmentation is

a best labeling and a corresponding score. The algorithm then
.. * chooses the segmentation and labeling that together result in the

* best score.

3.4.1 Stack Decoder

In section 3.3, we provided a solution to the problem of HMM

parameter estimation. In this section, we will address the

problem of utterance classification for recognition. Given the
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phoneme Markov model parameters and an observation sequence I,

the problem is to find a phoneme sequence PH such that the

aposteri probability Prob(PHIx) is maximized. Baye's rule gives

us
P (xILH). P (PH)

Prob(PHlx) = - (20)P (x) (2

P(W) is the unconditioned probability of the observation sequence

and is independent of the phoneme sequence hypothesis PH. P(.H)
is the unconditioned probability of the phoneme sequence, and

P(xIP) is the probability of the observation sequence given the

phoneme. The problem is then to find 2Z such that the joint

probability

, P(PH,IE) - P(xIPH)-P(PH) (21)

is maximized.

In theory, the solution can be found by doing an exhaustive
search by trying all possible phoneme sequences (of all possible

alignments). Obviously, this is computationally infeasible.

Instead, the stack decoder that is implemented employs a best-

first strategy, using a stack structure to order competing

theories using a. particular scoring paradigm. The type of

computation for- the decoder is similar to that for the forward

probabilities a's in the forward-backward algorithm, where the

scores for all possible paths that end in a particular state are

added together.

In the forward-backward algorithm, the a's are computed with

43 
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the phonemes of an entire training sentence concatenated

together, so that all warpings of the speech input through the

* concatenated model are allowed. In the decoder, a single phoneme

is proposed and scored at a time. This is called the incremental

match. If during decoding of a theory PHI,...PHi is being

extended by many i+lh phonemes, PHi+1, PH'i+i, PHni+l,..., then
- only the incremental match calculation beyond PHi need to be done

for each new phoneme. This saves on computation as well as

storage when scoring a new theory. Each theory then actually

includes a list of possible ending time and corresponding scores.

See Fig. 8.

3.4.2 Algorithm development-i
a. Search Strategy

The stack decoder implemented in our system uses a best-

first strategy to find the best-scoring phoneme sequence. This
Ssearch strategy differs from any other search strategies by the

order in which theory nodes are expanded. In the breadth-first

search, nodes are expanded in the order they are generated. In
the depth-first search, the most recently generated nodes are

expanded first. And the uniform-cost best-first search expands

the highest scoring theory node first. These are all blind

search methods which do not take into account how close a theory

is in getting to the end.

What the decoder uses then is heuristic search combining the

. best-first search strategy with an evaluation function. This

evaluation function scores a theory by combining the score so far
with the expected score of the theory in getting to the end of an
utterance. Without an evaluation function, longer theories will

44
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always get lower score, so that eventually all theories will have

be evaluated, a phonemenon called thrashing. This way the search

o o-4,essentially becomes exhaustive, and thus computationally

expensive.

'S What we like to do is to allow the optimal path to stay near

the top of the list of theories to expand. What we would like is

an evaluation function that increased on the optimal path (and

hopefully decreased on non-optimal paths).

What is used then, is an evaluation function:

t 7 Prob (at I PH) (22)
- t

A(PH) - Prr(PH)b- t

The numerator is simply the joint probability prob(Pk,x).
p*(xt) is equivalent to unconditioned probability of the input up

to time t, and we estimate it from a first-order Markov

probability of the input:

p*()= P(xtIXt-l) (23)

Along the optimal path,

Prob (xt I PH) (24)

p*(x)

and along non-optimal paths,

Prob (xt PH) (25)

p(x t )

See Fig. 9.
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PH1

2
Optimal Path

PH3

PH
4

FIG 9a. Best-first search. The score for the Optimal path
decreases with the length of the theory.

PH 3

PHPH
P 2  Optimal Path

PH
4

MP

FIG. 9b. Best-first search with an evaluation function. The
score for the optimal path increases slightly with
the length of the theory.
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i 6 is a constant that allows us some control over how the

optimal path should behave. Choosing 6 carefully, we can make
. .A(Zff) go up slowly along the optimal path. If we multiply A(PH)

Sby p*(2XT)6T, we getT

" P* (XT) 6
Pr(PH) ° Z Prob (Et I--H) P* (t t

I"!

Now, P*(ET) 6T isteexpected valu for the entire sentence; and
tp*(Bt)6 is expected value for sentence up to xt . So

SP,(6T) T/p (x t)6 t is the expected value for remainder of the

sentence.

i pb. Stopping condition for a theory

When a theory i is taken off the top of stack and extendedby a new phoneme hypothesis PHi+l, we need to know when the

incremental matching procedure can be terminated. Hence, a
stopping condition has to be met.

This is done by looking at the score of the terminal state

at(s N ) for phoneme PHi+l as a function of time t and detecting a
sharp fall in the scores. Actually, ;a (s.) is the score used
for stopping (a more robust score). In our program, decoding is

terminated when the change in the average log slope of

.- a (s ) has exceeded a certain threshold. The 15 terminal state
'-" scores (6 t(SN)' t - tI , t2,...,t 15 ) centering around the maximum

at(s N ) is kept for the theory PH1 PH2...PHi+. This gives a

tremendous saving in storage. See Fig. 10.

c. Theory collision

During decoding, whenever two theories end in the same state

X4
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stopping condition: j

a -8> threshold

I F

most likely
ending time

significant range
of ending times

* FIG. 10. Stopping condition for a theory.
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(as defined by the amount of phoneme context models used), we

would like to keep only one of them on stack and eliminate the

. other one. For example, consider the two paths, RH = PHI,...PHn

and PH PH1 ,...PH m , both have equivalent ending time. Suppose

that the full context model of a phoneme is used (triphone), and

that the phoneme model states for the two paths is the same (so
that PHn-I. = PHml and PHn = m ) , and A(ZH) A(jH). Then any

extension of RZ will be inferior to the corresponding extension

of 2H. The theory 2H can therefore be eliminated.

3.4.3 Implementation Issues

a. Theory extension control strategy

A stack decoder using best-first search strategy in general

performs the following logical steps:

1. Initialize the stack with a null theory (UH-0) and
giving it a score of unity.

2. Take the best theory off the top of the stack. If end
of the utterance, stop. This is the optimal answer.
Else continue with Step 3.

3. Extend the best theory and place it on stack. Go to
Step 2.

Fig. 11 illustrates the above steps with a flow chart.

In our implementation, step 2 is actually more complicated

than what is described. Due to the fact that we use phoneme
right context models, a straightforward scoring strategy would be

to score a phoneme (ca computation) in all possible extensions of

the right context. In general, this requires a large amount of a

computation. We can accomplish essentially the same thing, but
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with a tremendous saving in computation by doing the following:
we keep two kinds of theories, "fake" theories, and "real"

qtheories, on stack. Fake theories are theories that are scored
with phoneme transition probabilities (no acoustic scores). Real

theories are acoustically scored, using only the left context
models. Whenever a real theory comes to the top of the stack, it

is extended to fake theories by all the possible phonemes that
could follow. The scores for these fake theories are the scores

for the real theory multiplied by the phoneme transition

probability. Only when a fake theory comes to the top of the

stack again is it acoustically scored. When a fake theory comes

to the top of the stack, it is actually scored twice. First it

is scored using the full range of left and right context models
% (since it knows about a right phoneme). Then the theory isi extended so that the right phoneme is scored using left context

models only. The scored theory is then placed on the stack. The

benefit of the above algorithm is twofold. First, by giving the

fake theories the benefit of the doubt (not scoring them

acoustically), only those theories with a reasonable a priori
probability will come to the top of the stack and become real
theories. Second, by scoring using only the left context models,

we can get a pretty good idea of how well the acoustics match
without going to the full contextual effects, which would require

hypothesizing many more theories (one for each right context) and

scoring them. Only those theories that have reasonable acoustic

scores based on a reduced model set will ever be considered
again. Together, these two methods for extending and scoring
theories provide large savings in computation with little loss in

performance. See Fig. 12 for an illustration.

b. Theory tree and stack structures
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Real Theory Fake Theories
with stack score A(PH i) stack score = A(PH i) • P(PH PH., PHi

* : . PH.l, " " "i+ l

PHPHi PHiP i-I 1~ --- -

PH'
i+1

PH 
PH

i

1+1

PH.

What happens to a "real" theory

B
Fake Theory Scored in Full Context

PH. PH
1+1 i+l

PHi_ PH. PHi_ 1  PH.

Scored in Left Context Only

PHi_ 1  PH i  PHi+
ii

-:*~What happens to a "fake" theory

FIG. 12. Theory extension control strategy.
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The theory tree (representing theory propagation) in our
decoding network is made up of theory nodes (representing phoneme
sequences) that are linked together. Each node in this search
tree, declared as a single structure in our program, contains the
following information:

phone: phoneme number identifying the node.

: nextphone: phoneme number identifying the following
context.

parent: pointer to the parent node for trace back.

son: pointer to a son node.

brother: pointer to a brother node. All brothers have
the 'same parent.

lefttime: starting time of when the scores for the
terminal state of the theory is kept (there are
15 such scores for a theory, starting from
left time).

time_max: time of the occurrence of the maximum score for
the terminal state.

score: a list of terminal state scores• (S ), t - tl, t2,...t15 ) ">'fo t(Re theory.

entry-onstack: pointer to the location of the theory on the
stack.

Similarly, we have a structure declared for the stack. The
stack is declared as an array, and each entry of this array -

contains a score to order the theories and a pointer to the
theory tree to identify the stack entry with a particular theory . -

hypothesis.

In our implementation, the stack is organized as a heap so
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that the search time for the best theory increases proportionally -

only to the log of the total number of theories (vs a linear
search time for linear search).

c. Program Functional Capabilities

The current implementation of the stack decoder allows a
wide range of functional capabilities. It allows the user

1. to specify the number of phoneme context models used.

2. to specify a pdf file that contain the Markov model
parameters to be used in decoding.

*3. to decode an utterance and write out the decoded%
phoneme sequence.

4. to constrain recognition to a user-specified phoneme& transcription to obtain a segmentation.

5. I/0 capabilities to read in pdf weights and other
tables.

6. to set various decoding parameters: (1) set debugging
flag for interactive debugging; (2) set a flag to use a
version of short-fall density scoring; (3) allows a
limited breadth-first search by giving all fake
theories a benefit, so that all will be scored
acoustically; (4) specify an offset to raise the theory
scores; (5) allows the options of using log slope
difference or probability threshold as stopping
conditions, and to set corresponding parameters and
thresholds; and (6) allow use of theory collision
algorithm.

7. to examine the pdf structures for a specific triphone,
as well as the weights for the pdf models.

When decoding an utterance in debug mode, the program allows the
user to interactively examine and if he wishes, to control the
decoding process. Specifically, the user can
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1. look at N best theories on stack. For each theory the
program will type out the phoneme string, their stack
scores, and the location on stack.

2. examine the 15 terminal scores of a theory by
specifying a stack position.

3. look at the time alignment (phoneme boundaries) of a
theory.

4. examine all theories ending with a particular phoneme
sequence.

5. redo a theory that seems confusing, giving the user a
chance to run it the system debugger.

6. restrict the decoding to a particular phoneme sequence.

Like the forward-backward program, the decoder is implemented

modularly using command interpreter whenever possible. This

permits easy integration of new function modules and creates a

user-friendly programming and debugging environment.
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4. EXPERIMENTS

This section describes a set of experiments conducted to get
a preliminary idea for how well our initial phonetic recognition
system performs. First, we will provide a brief description of
our database. We will then describe the experimental procedure,

~. *-.'actual system configuration and parameter values for this
experiment, the type of signal processing that was done, and the

performance that was achieved.

4.1 Database

g Currently our database contains 110 different sentences
(about 5 minutes of speech) by a single speaker, carefully hand-

.5.*1labeled. This means that the researcher has indicated for each
utterance what the phonemes are and where each begins and ends.

q The entire set of these 110 utterances have been employed for our
experiment. Out of this set of 110 utterances we used a set of
M3 utterances for training, and the remaining set of 10

utterances for testing. In data gathering, speech was first
recorded with a microphone, and sampled at 20 kliz. We are
currently collecting an additional half an hour of speech to be
used in the immediate future to further our research goals.

4.2 Rarkov Model Structure

In our system, for this experiment, each phoneme is
I represented by a Markov model of spectral states and transitions
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to and from these states. The spectral pdf's associated with

each state are dependent on the location within the phoneme (See

Section 3.1). The duration statistics of the transitions are

modeled explicitly by pdf's of duration, rather than by the

first-order Markov probability of repeating the same state (self-
loop). The phoneme model parameters depend only on the phoneme

(rather than on any phonetic context, such as diphone or

triphone). This model is, in many respects, simpler than the

. full system being developed. Therefore, initial performance was

expected to be very poor, but this simple system has served as an

initial debugging testbed.

4.3 Signal Processing

For signal processing, LPC analysis is performed to extract

14 log-area-ratio (LAR) coefficients once every 10 ms on the

entire signal spectrum. This results in a 14-dimensional

parameter vector for each frame of speech. These LAR vectors are

then quantized to one of 50 spectral clusters. These clusters

are prototypical spectra which span the entire spectral space,

and were derived with a clustering algorithm from 1.5 minutes of

speech. The probability density functions of these spectral

clusters are estimated and used in scoring for phonetic

recognition.

4.4 Recognition Performance

In each experiment, two tests are performed. In the first
test i test sentences outside the training set are used. This
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set is called test set A. In the second tests, the test sentences

are taken from a set of 10 sentences that are within the training

set. This set is called test set B.

Figure 13 provides a summary of the results of the

experiments. It gives the recognition error rate as a function
of the training set size. The dotted line represents the error

rate for the experiments where the test set is outside the

training set (test set A). The solid line is the result for the

experiments where the test set is within the training set (test

set B).

Starting from the left of the figure, points 1 and 1' are

the results of the experiment where spectral pdf's are based

strictly on initial statistics (hand-labeled data) with no

forward-backward training. The initial statistics are derived

automatically by a program that takes the labeled speech and

computes a matrix of phoneme-spectral cluster counts, and then

normalizes the counts to obtain the initial pdf's. For each

phoneme, pdf's #1, #2, and #3 are set equal to the pdf obtained

from the initial statistics for that phoneme (see section 3.1)

The duration pdf's are user-specified exponential functions. The
error rate for test set A (outside training) is 64%, and that for

tet set B (inside training) is 62%.

Points 2 and 2' show the error rates when forward-backward

training is done on a single sentence (within set B) starting

from the pdf's based on the initial statistics from the 100

Asentences. The error rate for test set A (outside training) was

very high at 82%. This results is not surprising given that a
very small training set of one sentence is likely to be very

I different from a random set of test sentences. The error rate

for testing on the same sentence was 0%, as it should be.
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FIG. 13. Phonetic recognition performance results.
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Points 3 and 3' show the results of the experiment where

forward-backward training is done on a set of 10 sentences (set
B) starting with the initial statistics of experiment 1. The

error rate for test set A (outside training) is quite high, at
70%, and that for test set B (within training) is 28%.

Finally, points 4 and 4' are the results of the experiment

where forward-backward training is performed on the entire set of

100 sentences. Again, two tests are done. In the f irst case,

test set A (outside training) is used, and in the second, test

set B (within training) is used. The error rates obtained for

both cases turned out to be very close, at 55%. However, this
coincidence may have been an artifact of the random differences

between test sets.

4.5 Conclusion

From the results of this experiment, we can draw some
conclusions as to what needs to be done to improve the

performance of our current phonetic recognition system. The

*conclusions are as follows: (1) A 58-cluster spectral

representation of speech is clearly not enough; (2) a more

S., appropriate speech analysis method is needed; and (3) phoneme
context-dependent information must be used. Below we describe
each of these points in more detail.

First of all, 50-cluster representation of speech does not

provide enough spectral resolution to distinguish among the

different phonemes, since there are as many phonemes as there are

clusters. Much research is needed to find optimal number of
clusters as well as cluster pdf smoothing algorithms to achieve
both resolution and robustness for speech recognition purposes.
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Secondly, computing 14 LAR's on the entire 10 kHz bandwidth

with no spectral scaling is not appropriate since most of the

useful information in the spectra reside in the lower few

kilohertz. We propose using some warping function on the spectra

so that more attention is paid to those spectral bands that

contain more useful information.

Lastly, using unconditioned models of phonemes for

recognition yields too much variability in the pdf'Is that model

the phonemes (especially near the phoneme boundaries) . Use of

phonetic context (by using phoneme models that incorporate

effects of neighboring phonemes) should solve this problem and

allow us to make finer phonetic distinctions.

In the coming year, our research topics include the ones

discussed above, as well as incorporating features into the HMM-

njtwork.
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