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ABSTRACT

Orthogonal collocation is used to simulate cyclic

voltammiograms that are influenced by non-linear diffusion due to

edge effects at small disc electrodes.
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Introduction

In this paper, the general theory derived in part 2 of this

series is implemented, and the effect of edge diffusion on the

cyclic voltammetric response at very small electrodes is

examined. The use of very small electrodes for cyclic

voltammetric experiments has usually been limited to specialized

investigations, for example in neurochemical studies (1,2).

There are obvious advantages in using very small electrodes. In

theory, the ratio of the faradaic to the double layer charging

current increases with decreasing electrode area. Small

electrodes are suited for experiments where available volumes of

analyte are limited. In general, several effects have been

observed in various systems as the electrode size was reduced.

Thus increased faradaic peak separation (3), little or no reverse

sweep currents (4,5), and a steady state current plateau (6) have

been observed. In the case of a small hanging mercury drop

electrode, anomalous behavior was observed when the reduced

species was soluble in the mercury drop (7,8,9). The resulting

ratio of the reverse peak current to the forward peak current was

found to be greater than one.

Examination of the so-called "edge-effect" has been carried

out for chronoamperometric experiments (10,11). The analysis by

various workers has led to a corre.tion term o to the Cottrell

equation

i = nFACO(R-- ) ' / 2 [ + 2

r0
" 0

'p.
. -a ~..~~.



where r0 is the electrode radius, and a varies between 1.772 and

2.257 (11, 12). Using implicit finite difference methods, Heinze

developed an analogous equation for the cyclic voltammetric

response with contribution from edge effects (6):

XTOTAL : Xi ,d(at) + p(at) VWr17 -  [.2]

with 5' D/ar0 2, a = nFv/RT, v = sweep rate. xi,d(at) is the

planar diffusion current function and the second term is the

radial diffusion current function. In this work, we give the

results for the voltammetric response in terms of the efficient

orthogonal collocation technique (13,14), the results of which,

in many cases, are exact.

The term "very small electrodes" (e.g. 3-300 pm radius (5))

is used herein to differentiate them from microelectrodes,

diffusion to which is purely hemispherical. The case examined

here is that where the amount of hemispherical diffusion to a

planar disk electrode is large enough to cause significant

departure in the response from semi-infinite linear diffusion

theory. Extentions to the two limit'ing cases will be discussed.

The solution of the non-linear partial differential

equations describing this case has been treated in part 2 (15).

The general method is the simulation of the concentration

profiles in the diffusion layer by approximate trial functions in

distance whose time dependent coefficients are selected by

weighted residual techniques such that the differential equation

* is satisfied at chosen fixed (collocation) points in the distance

;.- .- '-. .- ., . " -.. ... .. .,. ..-.. .. . . . .-... .. ." - .
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coordinate. These points are also chosen purposely as the roots

of orthogonal polynomials, combinations of which best approximate

the expected profiles and the boundary conditions. The model

used herein accounts for planar and lateral diffusion. As has

been pointed out (16), it is a simple matter to add homogeneous

reactions to the overall scheme once the basic model is

developed. The reliability and accuracy of the model have been

verified in part 3 (17). of the series, where the

chronoamperometric response was simulated.

Id
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Theory

The full description of the theory is given in part 2, (15)

and is briefly summarized here. The mechanism considered was an

EC type:

-ne

B E°  [3]
+ne"

B C k [4]

In this paper, we will not consider the effects of [4], i.e. we

let a = 0 and the electrode geometry is a planar disk electrode

of radius ro, flush mounted in an insulating cylinder. The

diffusion coefficients Di for all of the species are assumed to

be equal, even though the treatment is only slightly different if

different Di are used (13). For this system, the current density

will not be homogeneous across the electrode surface, but will be

...- greater near the edges due to additional diffusion to the edge

from the region over the insulator. Dimensionless diffusion

equations describing the model are

a 2 c* * 2*"'-. A  A 21 +... A. + cA'CA A A I A5

aT' TX R aR aR2

aci a2 * * 2*
2@ 2

S Bc Bc a -2 ac B [6]

a x 2 ~2BaT 'X R BR aR BI



* * *
,' 1  + *c [

I B 2 2 -'C. 2T' aX R DR DR 1Ir
where the subscript 1 denotes the concentrations above the

. electrode surface. A similar set of equations exists for the

area above the insulator.

The terms in the equations are:

D D D k * cB a=L- -, B' = ,B" =-.- ------ 
= -, c - [8]

aL ar 0  a(M-rO) a c A

where a = nFv/RT. L represents that distance out in solution

above the electrode where no diffusion occurs and M the radial

distance out into solution from the center of the electrode where

no diffusion occurs. These terms need to be included to

normalize the equations later to a (0, 1) distance coordinate so

that Legendre polynomials might be used to represent the

concentration solutions (15, 17). r0  is the radius of the

electrode and the other terms have their usual significance.

The constant B' is a quantity given by experimental

parameters. For simplicity herein we let B = B". This is a

sensible approximation since both L and M are >> rO . The choice

of B may be optimized by various procedures already described

(18,19). B in essence defines a "window" on the diffusion

phenomena. If B is too small, the diffusion layer will be small

compared to the collocation point span, and it will be poorly

simulated or missed entirely. If, on the other hand, B is chosen

too large, then the diffusion effects may be present at L or M

*4-". ''•" ... ' .. " -. ""' """ - ' .-. ;.. ''...- - °)-- ') ."-,-"-"-. ." "-. - -- -"- / ' -
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and the boundary conditions will be violated. This is the

intuitive reason for optimization of 5 values. The procedure for

optimization depends on the integration method used for solution

of the set of differential equations. Each such integration

method will have a corresponding set of stability and accuracy

criteria which vary significantly from method to method. In the

Hammings predictor-corrector method used herein, the stability

criterion (20) takes the form

h 4 0.65 [9]
I y

where h is the independent variable stepwidth chosen for the

integration, and fy is the Jacobian or derivative of the

differential equation f(x,y) with respect to the independent

variable at each point of interest. Thus, accuracy and curve

shape relax as h is made very small, whereas unstable oscillation

will occur if h is too large.

The corresponding first order differential equations for the

problem (Part 2 (15)) are:

.5
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d B i  eAS (T') Nx+1*
dCAl = 1 A/B A + A1 [C(XRT
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Nx +1
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N + 1
x**
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* 1 / N +1*dc A2  = a--xdCBKi iNx+2  + Ki ljc A (X OR ,T')
dT I XiR A1, j=2 ,A 2(Xj'R '

dT xi O k Al I 
I

B'' R +1• NR +l 1+~ ~ ~ ~ ~ ~~ ~R GI LR, 2 k
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iii
.4 1 =2 k1 klAl (Xi 1R ,~ ~12 ,c2

[12)

d* fX+
B2  K NX+l * R' T'
d . 2_ B K (x ,R )

dT' X,R A' j2 B2

NR+ 1  
NR 1 +1
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The A., B., C.' F. G.' H.' i, Ki, and are discretization

matrix elements which have been defined previously (15, 17).

The Jacobians of each of these expressions are

A B2fdc -. f ( B1
BC A d T ac B dT'

A B

ff [B(T 14]

We then specify the two limiting cases at S,(T') =1 (at the

beginning of the experiment), and SO(T) =0 (at the end of the

experiment). Thus there are six total conditions to be treated

by the iteration procedure described previously (14,19) so that

the optimum value of for a given steplength is obtained.

.7- -.



' - Results and Discussion

The program was first tested under conditions of

semiinfinite linear diffusion and the resulting values of the

current function x(at) compared well with those of Nicholson and

Shain (21) (x(at) = 0.44627 at 8' = 10 - 1 0, = 0.05, and AE -

0.057 V). Various combinations of a and switching potentials

were used to vary the parameter log (k-) where T is the time

between E* and EX governed by the scan rate, and k is the

homogeneous rate constant for the follow-up reaction. The

Sresults are shown in Figure 1. This verifies the consistancy of

the model at low values of S'. For any value of 8' chosen, the

corresponding value of B is optimized by iteration and it makes

little difference what original value of B is input since rapid

convergence to the optimum value is manifest.

The general shape of the voltammograms may be predicted with

reference to the factor B. When 0 is small, the corresponding

value of L is large and the radius is small with respect to L.

Thus the factor

8 ' rF21 [15]

contributes more to the current function and we reach a steady

state at faster times.

If, on the other hand, B is large then L is small relative

to r0  so that the spherical diffusion effects are less and a more

classical voltammogram is expected. The ratio V 8/B' equals ro/L

*, ",t



and the effect of this factor on the shape and magnitude of the

current function are shown in Figure 2. Curves (a) and (b) are

calculated for the case when 8 is not optimized. Thus they have

the apperance of voltammograms from microelectrodes. However r 0

for curve (a) is 113 um whereas for curve (c) r0 is 9 pm (DO =

10-6 cm2/sec, v = 1 V/s). The effect of optimizing the parameter

B for curve (c) is the scaling down of the surrounding dimensions

to accommodate the small radius. Thus the voltammogram has a

classical shape. This does not occur physically and for very

small radii a voltammogram of the form (a) is observed which can

be easily simulated with the appropriate value of B.

Figure 3 shows the effect of B' on the current function. At

small values of 8' the classical value of 0.4463 is obtained. At

large values there is an asymptotic approach to hemispherical

diffusion values.

Anomalous forward/reverse peak current ratios have been

observed at small hanging mercury drop electrodes. Beyerlein and

Nicholson (7) have pointed out that these are caused by both

sphericity and amalgam formation and have demonstrated the

dependance of the magnitude on V78. "Guminski and Galus (8)

developed an experimental equation for the resulting ratio

=- + 3.2 red (EPC EX) 16
Pf Ivr2

The spherical correction obviously becomes less at large drop

sizes and/or high sweep rates.

Galus has presented a spherical correction equation for

- .- .... . - .. ;. -.- .-.-.. , . - . . ., .. ,. .. > ,-. -. . -. - . . .. . -... .. . . . . . . . .- . . . , .



small planar disks (22)

f , + Q' €'r} [17)
pr

0' was estimated as 0.92 by oxidizing ferrocyanide at a graphite

paste planar disk electrode (r0  = 81 um). At low scan rates,

however, there was no reverse current observable.

In the model presented herein for small planar disks there

is no evidence for departure from the current ratio of unity due

to edge effects. In practice, it is probably true that the small

but not negligible charging current contributes to the observed

results.

Beyerlein and Nicholson (7) have presented an equation for

the current function at a hanging mercury drop electrode in terms

of a linear combination of planar and spherical components:

x(at) = x(O)i,d + AB' + B /8' [18]

If the equation is rearranged, it is seen that a plot of

x(at) - x(O)id [19)

vs /' should yield a straight line for a system having spherical

diffusion contribution. It is seen in Figure 4 that such a plot

constructed with the present model leads to an intercept, when

extrapolation is made from large S' values (small ro), which is

equivalent to the value obtained by Beyerlein and Nicholson for a



peak current function value. This indicates the model is

correctly providing currents consistent with pure hemispherical

diffusion at large values of B'.

Recently an expression for the current in the following form

was proposed (23):

it(t) i2 (t)
i(t) = i ,d(t) ++ r2 + [20]

r0  r00 0

the second term being found analytically in the case of the

potential scan. The calculated value for B from the first two

terms compares well with that of Beyerlein and Nicholson (7).

It is observed that, as different values of the integration

stepwidth h were chosen, the product of the optimized value of B

and h is a constant. The reason for this becomes clear as the

following points are considered. We assume that the diffusion

layer thickness 6 has grown to some value

62 = 7 DAt [21]

after some time interval At. It is roted again that L2 is

related to 62 through the definition of B. Thus any change in ht

by a factor Q' implies a necessary I/Q' factor change in B to

preserve the relative values of 6 and L. This, of course, is

J-9 true only at the optimized B value for a given h. Thus if an

optimized $,h pair is known, it is unnecessary to re-optimize B

if a new value of h is used, or conversely, it is unnecessary to

calculate a new h by trial and error if it is desired to use a
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specific value of 0.

The model also provides a convenient method for obtaining

diffusion coeficients or n values. Such a working curve is

presented in Figure 5. The predicted change in AE is plotted vs

log B'. The diffusion coefficient is then given by

B'n F v r 0
2

D = RT [22]

where B' is obtained at the observed value of AE on the working

p

curve.

Figures 6 and 7 demonstrate the effect on the current

function and peak separation of changing the value of the

parameter B for a given value of B'. The optimized values of B

are indicated.
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Figure Legends

Figure 1. Ratio of peak currents as a function of log(kT) curve

from Nicholson and Shain points calculated at S' =

10-6 and B optimized at 0.01089.

Figure 2. Curve (a), 8 = 2.5 x 10-6 B' = 2 x 10 "4 ,  ro/L =

0.112. Curve (b), B = 0 - 5 ,  B' = 2 x 10 - 4 , ro/L
0.223. Curve (c), B = 0.0081, B' = 0.03162, ro/L

0.506. (B optimized).

Figure 3. Effect of 6' on the magnitude of peak current

function (B optimized).

Figure 4. Plot of w(x - xi,,)//B' against VS' showing the

transition between the two limiting cases of semi-

infinite linear diffusion and hemispherical diffusion.

Figure 5. Working curve for determining D from AE where B'

D/ar 0
2  (a - nFv/RT)- (B optimized; T =  25°C).

Figure 6. The effect of changing the parameter B on the current

function.

Figure 7. The effect of changing B on the peak separation.

.1

.4.:

".I

__ *9. .- .. ~ . . * .° .



LL.0

-
-

- 0 0 0 c



Figure 2

(14 (a)

O02

.

-~ 0.02

-OL -

IsUs



Figure 3
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Figure 5
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Figure 6
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Figure 7
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