
D D-F136 963 LINEAR LONGITUDINRL OSCILLATIONS IN COLLISIONLESSi/
I PLASMA DIODES WITH THIN..(U) CALIFORNIA UNIV BERKELEY
I fELECTRONICS RESEARCH LAB S KUHN 03 OCT 83

7UNCLASSIFIED UCS/ERL-MB3/Gi N00014-77-C 0578 F/G 12/1 N

mhhhEEEEDiEEEEEE~hEhE



. .- - - . . * . -

36 3L

* iiii ,__= __

imis 1.w1 l im

- IiII1.8JI1.25 11114 I11 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS-1963-A

9. I.

'if.
4 - r " : - ' ' ' ' ' ' - " ... . - . . -. ., - - - ' " . ' ' -.. ."

. . .. ,r . .4 , , , . . ,, . , , . ;. ' .. ' .... -, ..



* -
.. -. . .

LINEAR LONGITUDINAL OSCILLATIONS IN COLLISIONLESS

-. -: • /r. PLASMA DIODES WITH THIN SHEATHS. PART If. APPLICATION

TO AN EXTENDED PIERCE-TYPE PROSLEM

'. by

-2 So Kuhn

1 Contraict N00014-77-C-O 578

" Mnmorandum No. UCB/ERL f83/61

3 October 1983
I __.--

i:::):: > ,,. ,.- ---,,-,

~&i.. ~ a~pbbglcu scduIWh

ELECTRONIOS RESEARCH LABORATORY
ColgUfEniern 8 3 10- 20O660.J. C0O 09

or Unlverlit -. 4 'wIf*rla" rkeey, CA 94720

• ., . o -



-d

LINEAR LONGITUDINAL OSCILLATIONS IN COLLISIONLESS

PLASMA DIODES WITH THIN SHEATHS. PART II. APPLICATION

TO AN EXTENDED PIERCE-TYPE PROBLEM

by

S. Kuhn

Accession For
TIS GRA&I

DTIC TAB

Unannounced

Memorandum No. UCB/ERL M83/61 JUat cation

3 October 1983 By
Distribution/

Availability Codes
Avail and/or

Dist Special

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

.°, TM@ dasmmmt km bom
hi pc 1*1.. amd sulk N
dbuwm Is umm"



LINEAR LONGITUDINAL OSCILLATIONS IN COLLISIONLESS

PLASMA DIODES WITH THIN SHEATHS. PART IL APPLICATION

TO AN EXTENDED PIRCE-TYPE PROBLEM

S. Kuhn'

Plasma Theory and SimwJsaioa Group, Electronics Research Laboratory,

University of Calfona Berkleye, CA 94720

The integral-equation method developped in Part I is applied to a Pierce-

type diode (Pierce 1944) whose external circuit involves a resistor, an in-

ductor, and a signal generator. The general linear perturbational problem

is solved analytically for the small-amplitude quantities 3,(t) (external-

circuit current density) and /(z, t) (electrostatic field). Each of these

quantities can be constructed from a 'spatial' Green's function (describ-

ing initial perturbations of the plasma), a 'temporal' Green's function

(describing external-generator signals), and two functions associated with

the initial state of the external circuit. The solutions generally exhibit an

initial transient and an asymptotic part, the latter being a superposition

of eigenmodes only. Systematic numerical results for eigenfrequencies and

eigenmode profiles in some typical parameter regions demonstrate that the

linear response and stability behavior of the diode system may substan-

tially depend on the properties of the external circuit.

O Permanent address: Institute for Theoretical Physics, University of Inns-

bruck, A-6020 Innsbruck, Austria
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L INTRODUCTION AND SUMMARY

This paper constitutes Part II of a study proposing an integral-equation

approach to linear longitudinal oscillations in collisionless plasma diodes with

thin sheaths. The method was formally developed in Part I' and is comprehen-

sive in that it (i) handles the combined initial-value and external-perturbation

problem, thus including the eigenmode problem as a special case, and (ii) allows

for explicit and simultaneous inclusion of three basic constituents of bounded

plasma systems, namely the plasma itself, the boundaries, and the external cir-

cuit! A discussed in Subsec. IU.A/I,; The present restriction to one-dimensional

diode geometry is not inherent to the interal-equation approach as such and

is likely to become dispensable at a later stage of development of the theory.

In lhepe paper, the method developed in Part I is employed to solve

an extended Pierce-tp problem involving a non-trivia external circuit. Our

goal is (i) to demonstrate the applicability and handling of the method, and

--(Iito show in numerical detail that the external circuit, an essential part of

any bounded plasma system, may crucially influence the overall dynamic and

*: stability behavior. The paper proceeds as follows.

Section II a description of the Pierce problem"' 0 and some of its

implications. rom the discussion and literature survey in Subsec. H.A it is

concluded that Pierce-type instabilities are of great practical importance, e.g.,

in various laboratory plasma devices, and have recently attracted considerable

interest in the context of such modern concepts and applications as double

layers or inertial confinement fusion. Areas are pointed out in which more work

is needed, among them the complexes of external-circuit effects and plasma-

wall interaction. In Subsec. H.B we present an argument according to which

2

V ..



the Pierce diode represents, under certain circumstances, a rough but still useful

first approximation to the one-emitter plasma diode or single-ended Q machine.

In Sec. Il, the method developed in Part I is formally applied to derive

the integral equations governing the extended Pierce-type problem considered,

which differs from the "classical" (Le., short-circuited) ones in that it includes

an external circuit kolving a signal generator, a resistor, and an inductor as

shown in Fig. 1. Subsection III.A gives the formal specifications of this pertur-

bational problem, i.e., the level-one quantities defined in Table I/I. In Subsec.

rlI.B we try to foresee the structure of the result and conclude that the general

solution can be obtained by linear superposition of four different types of "ba-

sic modes', two of which are identical with the "spatial" and the "temporal'

Green's functions, respectively. The level-two through level-four quantities of

Table I/I are calculated in Subsec. IU.C and used in Subsec. HI.D to explicitly

construct the integral equations (37)/I-(40)/I as well as the equivalent matrix

equation (48)/L For the particular cue under consideration, this system turns

out to reduce to just two integral equations, the unknowns being the Laplace-

transformed perturbations J.(w) (external-circuit current density) and k(z,oW)

(electrostatic field).

In Subsec. IV.A, these integral equations are solved for the Laplace- trans-

formed basic modes, which are Laplace inverted in Subsec. XV.B into the time-

dependent bask modes. This completes the general solution of the combined

external-perturbation and initial-value problem. Each of the basic modes ex-

hibits an initial transient as well as an asymptotic part and can be represented

as a linear superposition of eigenmodes. The related eigenfrequencies are the

3
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heros of the characteristic equation (or 'dispersion relation'), whose unnormal-

sed form is given by Eq. (45).

The nondimensional eigenmode problem is dealt with analytically in Sec.

V, and numerically in Sec. VL In Subsec. V.A, the characteristic equation is

re-written in nondimensional form and found to depend on the three dimen-

sionless parameters a (*Pierce paramneter), p (external-circuit resistance), and

A (external-circuit inductance). In Subsecs. V.B and V.C we discuss some an.

alytic properties of the eigenfrequencies and eigenmode profiles, respectively.

Throughout Sec. VI, the classical, short-circuited Pierce diode3 (a > 0, p =

0, A - 0) is used as a standard reference to which all other cases are conveniently

compared. It is reviewed in Subsec. VI.A, where numerical data describing

its eigznfrequencies and eigeumode structures in three typical a-intervals are

presented, and a classification scheme for the eigenfrequencies is introduced.

Subsection VLB deals with the 'purely resistive' case (a > 0,p > 0,A

0) and demoutrates that finite external-circuit resistance can, among other

*things, stabilise a classically unstable mode and change the character of the

dominant mode from oscillatory to son-oscilatory. In the 'purely inductive'

case (a > 0,p = 0,A > 0), which is considered in Subsec. VI.C, we find a new
*4 oscillatory mode which may completely change the linear dynamic behavior and

even become unstable for a-values at which the classical Pierce diode is stable.

Some general aspects and implications are discussed in Subsec. VI.D.
Il Finally, our main conclusions are summarizsed in Sec. VII.

*e
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H1. THE PIERCE PROBLEM

A. Pierce diode and Pierce instability

The plasma diode model given by Pierce about fourty years ago,3 which

has ever since been reconsidered in various modifications,4- 3 is a particularly

simple special case of the collisionless one-dimensional configurations described

in Subeec. II.A. The ions, which are assumed to be immobile, provide a uniform

neutralizing background of density Ap, immersed between the left-hand (z = 0)

and right-hand (z = L) electrodes. The electrons are constantly injected at

the left-hand electrode as a cold beam with density N and velocity 9, and are

abeorbed when hitting either electrode. Both electrodes are invariably kept at

the same potential, which corresponds to asuming an external short-circuit.

In what follows, the system just described will be called the classica'

Pierce diode. Out of the various equilibrium states the classical Pierce diode

can exhibit, the original Pierce paper3 was only concerned with the one in which

the electrons are uniform as well. This special case will be referred to as the

'uniform classical' one.

Nondimensional analysis shows that the equilibrium (89/at = 0) and dy-

namic states of the classical Pierce diode can be conveniently classified in terms

of the single parameter

-'-

where wp = (41rte 2/m) i is the electron plasma frequency, e is the positive

elementary charge, and m is the electron man. The parameter a, henceforth

referred to as 'Pierce parameter', is proportional to the ratio of electron transit

5
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time to electron plasma period and thus provides a rough measure of the relative

importance of plasma versus boundedness effects.

In contrast to the classical Pierce diode, any similar plasma configura-

tion characterised by a strong electron current between two electrodes will be

referred to w 'Pierce-type' or 'modified Pierce' diode. Pierce-type config-

urations, although not always recognised as such, are widely encountered in

practice, cf. below.

Despite its simplicity and degeneracy, the uniform classical Pierce diode

is of fundamental importance because it qualitatively retrieves some typical

bounded-system behavior yet is still tractable-to some extent, at least-with

reasonable mathematical effort. Most importantly, it exhibits the 'Pierce insta-

bility', which destroys the electron equilibrium more or les violently, depending

on the value of a. Numerical data for the classical Pierce instability may be

A found, e.g., in Ref. 33, Ref. 34, and Subeec. VIA below.

Since the classical Pierce instability disappears in the infinite-plasma limit

(Le., for L - oo, and hence a - cc), it is inherently due to the finite, bounded

character of the system. One reason for this striking difference between fi-

nite/bounded and infinite/unbounded systems can be spotted in the different

energetics: For a shorter diode, the energy exchanged with the electrodes via

particle injection and absorption is of greater relative importance, so that the

system may rapidly evolve to a final state whose time-averaged energy is signif-

icantly different as compared to the initial one; if the diode becomes sufficiently

long, this energy exchange is relatively unimportant and so the initial energy is

practically conserved. A second important difference comes about through the

external circuit, whose main effect is to control the surface charges sitting on

* 6
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the electrodes. These surface charges give rise to a vacuum field that is super-

imposed on the space-charge field of the plasma and is inversely proportional

to the diode length L, thus becoming less effective for a longer diode.

The Pierce instability may, generally speaking, occur in any Pierce-type

system but will usually not be as violent as in the idealised classical case. When-

ever it appears it is likely to play a non-negligible or even dominant role in the

linear and/or nonlinear dynamics of the system. It may, e.g., cause a rapid

overall transition of the electron and potential distributions to a new, Otempo-

rary' equilibrium state, which, after reaction of the ions on their much longer

time scale, can result in double layers,2 '24.27.38.3842 phase-space holes, 30 '3 or

relaxation oscillations 7-9.11.15.17.18.25.29.41.42 The Pierce instability may alter-

natively give rise to electron turbulence 3'
34"43 which, in turn, can influence the

ion dynamics via the ponderomotive force. In all cases, the Pierce instability

sets an upper limit to the time-averaged electric current that can be passed

through the system.

In short, the Pierce instability is not just of academic interest but rather

requires serious consideration whenever one is dealing with bounded, current-

carrying, weakly collisional plasma systems. It has, accordingly, been invoked in

the context of various practical applications and devices such as electron-beam

generation, 19.20 microwave generation19
.
3 3 ' 4 and amplification,1 9 thermionic

converters, 7- 9. '1 1 .1 5 '138 ' 29 drift tubes,' 3 triode lasers,' 0 or ion-beam neutral-

isation for inertial-confinement fusion. 1' 2'3 7'39 Its relevance to low-density

single-ended Q machines1. 42 is discussed in Subsec. II.B below. Experimental

evidence of the Pierce instability can be found, e.g., in Refs. 5, 11, 22, 27, and

40-42.
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Since the appearance of the classical Pierce pper,3 numerous extensions

and modifications of the Pierce instability have been studied analytic-

a. 3 - -' s 0 . ° '1 2 - 1 4 "1 - 2.2 2 7. 2 9 - 3 7 . 3 9  and numericfly. 7 "9 '- - ' 2 4 .2 5 . 2 s '3 ° - 32 .3

.,These studies were based on fluid," - "- 1' 2- 14 .16- 20. 22 .23.2 7.30- 35.37.39

':,L, ~~kinetic~s s 2 = ' : ' ' 's  or particle7' 9"11'I 6'24". ° -  models. Beams of fi-

. nits thermal spread were considered in Re&8. 6-9, 11, 15, 21, 23-26, 28-30,

32, 36, 38, and 39, and effects of finite ion maw were dealt with in Refs. 4,
i 7-13, 15, 17, 22-24, 27, 28, 31, 36, and 38. Apart from a few remarks on

• ,collisional effects in Ref. 10, all papers mentioned considered the collisionless

case only. Most studies were concerned with one-dimensional geometry; two-

Al

.':dimensional effects were considered in Refs. 3, 5, 13, 20, 31, and 32, but no

.

three-dimensional treatment s known to us. Non-uiform equiibri were ad-

-, mitted in Refs. 6-9, 11, 12, 15, 18, 19, 21, 24-26, 28-31, 34, and 38. Both

inear3-e.s.1o.12.13.17-23.2e,27.29--33.36.39 and
nolinear7 9 1 1 1 4 - 16 2 4s '2 8 3 0 - $ 2 3 4 "3 8 properties of the Pierce instability have

oe- been studied. Except for some considerations on electromagnetic effects in Ref.

13, all references cited employ the electrostatic approximation.

Given the fair amount of literature that already exists on the Pierce in-

stbiity, the question arise as to what remasns to be done. In our opinion,

there are two bs2 lines alon which progress canand shouldbe made. (i)

ollSeveral areas can be located in which, to our knowledge, very little detailed

work has been done. E.., there oe of non-trivial extern -circuit elements,
: thoeh pointed out to be potentially important, 2 h s been ven consideration

linear l012,~l7~.2.19.373an

,by only very few a ethors h Another example is the fact that there

does not seem to exist any treatment including realitic plasma-wall interaction
4 ".



processes such as inelastic reflection or secondary-particle emission. As a third

example we wish to mention that only little analytic work has been devoted to

the nonlinear properties of the Pierce instability,"t 16e 34 "38 which, however, in-

dicates that this is a promising area where much more progress could be made.

(ii) In view of the complexity of realistic systems, it seems desirable to proceed

towards treatments including more of the relevant physics simultaneously. E.g.,

all linear analyses available are concerned with the eigenmode problem-i.e.,

with a time dependence exp(at)-rather than with the full initial-value and

external-excitation problem.

Generally speaking, we believe that the fundamental importance of the

Pierce problem requires and justifies further theoretical efforts towards a more

complete understanding. Thus, the present paper contributes to two aspects

which, according to the above literature survey, have not yet been treated to

a significant extent: (i) The complete initial-value and external-perturbation

problem is solved in Secs. IV and V, and (ii) a fair amount of systematic nu-

merical data describing the influence of external-circuit resistance and external-

circuit inductance on the linear eigenfrequencies and eigenmode profiles is pre-

sented in Sec. VI. The results of particle simulations extending into the nonlin-

ear regimes of the Pierce instability will be presented elsewhere. 43

B. Cold-beam, thin-sheath approwdmation of the positively biased one-

emitter plasma diode or single-ended Q machine

In this subsection we are concerned with the well-known one-dimensional

model of the collisionless one-emitter plasma diode considered, e.g., in the con-

text of thermionic converters 44 45 or low-density single-ended Q machines.4 - 4 s

9



Our goal here is to demonstrate that the positive-bias equilibrium states of this

model can, to a certain extent, be approximated by the uniform classical Pierce

configuration.' This argument is of practical importance because it allows one

to obtain, with relative ease, quantitative estimates of stability domains and

linear growth rates. Moreover, the numerical results following from this model

seem to indicate that, under normal operation conditions, single-ended Q ma-

chines should always be Pierce unstable, a fact which apparently has not been

pointed out previously but could possibly be of relevance in explaining the

various dynamic phenomena observed experimentally. 4 1- 42 For details of the

model, the reader is referred to Refs. 44-48 and many others cited there.49

The equilibrium states in question are characterised by the potential dia-

tribution types 1 (monotonically increasing) and 2 (one-minimum) as d.fined in

Fig. 3 of Re. 46 and Fig. la of Re. 4S.49 For both of these distribution types,

the plasma potential Vp is positive with respect to that of the emitter surface,

V-(z = 0) = 0. Hence, the electrons-which are assumed to leave the emitter

surface with a half Maxwellian velocity distribution-always enter the plasma

region as a distinct beam with a truncated Maxwellian distribution. The cut-

of velocity, average velocity, and effective temperature of this distribution are

respectively given by'

S= V- )/m] (2a)

.4 
- 2,c( T i exp (- M ~02/2r.T ) (

W" -" erfc [o(m/21cT)Ib

T .,, [f T 1(0.- 1(2)

10
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where Vmis the minimum potential (cf. Fig. 1/I; for a monotonically increasing

potential distribution as shown in Fig. I we have V,. = 0), x is Boltsmann's

constant, T is the emitter temperature, and erfc is the complementary error

*function. For a 'long- system such as the Q machine, the nondimensional quan-

tities 1.f = T.fI/T, p, = o/v. (where v. = (2,cT/m)i), and o, = 009/v., as

well as several others, depend only on the Kneutralisation parameter' a, which

is defined as the ratio of desorbing-ion over emitted-electron density at the

emitter surface .' Figure 2b of Ref. 48 shows that at d = 0.405-ie., at the

transition between one-minimum and monotonically increasing potentials--.jjf

assumes its maximum (= 0.22), whereas 0, and p.. assume their respective

minima (= 0.59 and = 0.98, respectively). Hence, the cold-electron-beam ap-

proximation is least accurate, though still acceptable for a first estimate, for

= 0.405; it becomes better with decreasing or increasing a because in both

cases the velocity spread decreases while the beam velocity increases.

The thin-sheath approximation made throughout this work requires that

the axial extensions of both the emitter and the collector sheaths be much

smaller than that of the plasma region. In a Q machine, this condition is

usually satisfied, except when the collector bias is raised to excessively high

values." ° '5 Quantitative estimates of collector sheath widths can be obtained,

e.g., from Fig. 3 of Ref. 48.

In accordance with the foregoing considerations, we now replace a long

one-emitter diode of the above kind with an "approximate' diode having in-

finitely thin sheaths and a uniform plasma region of length L. The electrons

of the approximate diode form a cold beam whose plasma density and velocity

11
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are respectively equal to the plasma density and average velocity of the orig-
inal diode. Apart from the non-trivial external circuits we have in mind, this

-4

approximate diode is formally identical with the uniform classical Pierce diode

described in Subsec. I.A. One can thus associate with it a Pierce parameter a

as defined by Eq. (1). In an extension of the concepts introduced in Ref. 48, we
J.

now propose a method yielding quantitative estimates of a. This establishes a

link between experimental operating conditions and theoretical results such as

given in Sec. VI and elsewhere.-"--

.. In terms of standard nondimensional quantities, 43"4" Eq. (1) can be re-

written in the form

A2 VP~ (3)

where Vp -%/n, is the normalised plasma density,

A: ( / ;M, +w
n," = -- _ _12 T3/ \~ (!W

is the Richardson emission density, A: and W . are the elective Richardson

constant and work function for thermal electron emission from the emitter,

A = LI1. is the normalized system length, and 1. = (r.T/4rn.e2 )1 / 2 is the

scaling length. With the numerical results displayed in Fig. 2b of Ref. 48 we

have calculated (a/A) as a function of the neutralization parameter, the result

being shown in Fig. 2.

For a given experimental situation, the Pierce parameter a can now be

obtained as follows. With the method proposed in Sec. 3 of Ref. 48, one first

determines a and A. One then finds, by inspection of Fig. 2, the appropriate

value of (6/A), which, upon multiplication by A, yields the desired result.

12
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4.

a' In order to get a feeling for the numbers that may occur in practice, we

find it useful to consider yet another representation. Multiplying both sides of

Eq. (3) by I., we obtain

Pz. ) (4)

which quantity is to be plotted against the equilibrium plasma density. Fig-

ure 3 shows several curves (a/L) versus N,, each curve corresponding to a

specific emitter temperature. The emitter material assumed is tungsten with

a Richardson constant A. = 120 Acm2 K 2 and effective work functions for

electron emission and surface ionization W* = W" = 4.52 V, cf. Fig. 3a of

Ref. 47. Each curve has an upper and a lower branch, corresponding to one-

minimum and monotonically increasing potentials, respectively. The arrows

indicate the direction of increasing 4. These curves can be interpreted as fol-

lows. Consider a diode with L = 20 cm and T = 2200K, and assume that

the method of Ref. 48 has predicted a one-minimum equilibrium distribution

with Ap =1.lxl0cm- '. From Fig. 3 we find (alL =2.6cm- 1 , and hence

a = 52 - 16.6w. Upon solving the characteristic equation (Subsec. V.A) we

would find that there are, in the short-circuit case, two unstable eigenmodes

with frequencies w 1 = (0.035+0.032s)w, and W2 = (0.13+0.0025)wp. However,

anticipating the results of Subsec. VI.B we expect that both of these modes can

be stabilized by, e.g., inserting a sufficiently large resistance into the external

circuit.

Generally speaking, the curves plotted in Fig. 3 suggest that, for typical

operation conditions, the Pierce parameter a will usually lie well above ir, so

that, in the short-circuit case, the positively biased single-ended Q4 machine

should always be Pierce unstable. In fact, the experimental evidence is that

13
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it is always unstable4 ' 2 except for very high collector biases,6 0 '6 ' but at the

present stage of understanding it does not seem possible to clearly indicate the

dominant instability mechanism. E.g., it has been pointed out 48"5 2 that the poe-

itively biased single-ended Q machine may be Buneman unstable as well, but

the results there were obtained in the infinite-plasma approximation and there-

fore have only preliminary character. For large values of a, the growth rates of

the classical Pierce instability become much smaller than the plasma frequency,

(J. Subsec. VLA. They can, moreover, be modified by a number of compo-

nents such as external-circuit elements, plasma-wall interaction processes, finite

sheath widths, collisions, finite velocity spreads, or two-dimensional geometry.

If, however, a is not too far above w, the Pierce instability is likely to manifest

itself more clearly, and the theoretical results given in Subsec. VI. may not be

all too unrealistic.

In any case, we believe that the present understanding of bounded plasma

systems-even of relatively simple ones--is far from complete, and that much

more theoretical and experimental work will be needed to improve this situation

to a significant extent.

14

, . - o. . . .." e o• . °oo.• ,.+. o .. ...- • -. + . .. =



777- -777-7 -- 7 - .-. --- ~ vY77 ~ ;~~;.- -i----

.M. DERIVING THE INTEGRAL EQUATIONS

A. Specifications (level-one quantities)

In this subsection we formally define the perturbational problem to be

.I. solved. The level-one quantities as listed in Table I/I are specified in accordance

2. with the general description of the problem given in Secs. I and II.

We restrict ourselves to considering "electron' phenomena, i.e., phenomena

sufciently fast that the ions are practically unable to react and hence can be

considered to be immobile. Thus, the electrons are the only species we have to

deal with (n. = 1), and the species superscript a can be dropped.

In the plasma region, the equilibrium velocity distribution function of the

electrons is assumed to be

A~V)= A6V - 0), (5)

which corresponds to a cold electron beam of density %,, travelling to the right

with velocity a.

Let the initial perturbation of the electron distribution function be of the

~tia" Green's function of the problem, from which the solution for any arbitrary

initial perturbation profile can be easily constructed by suitable integration over

. cf. Subec. .B.
O~'

Th meanta t i tion will, paothclere this c ing es-

stant (non-sero) emission at the left-hand electrode (f, (v > 0, t) -0), and con-



stant (zero) emission at the right-hand electrode (Iv(v < 0, t) = 0). In terms of

the functions introduced in Eq. (26)/1, these conditions can be expressed as

ilg~ > , t)= 0(7a)

b "(v > 0, W' < 0) =0 (7b)

",- (v < 0,0) = 0 (7c)

b,",' (V < O, V, > O) = O. (7d)

The exemplary external circuit we consider consists of a d.c. voltage source

shaping the equilibrium, a small-signal generator SG, a resistance A, and an

inductance L, all connected in series as shown in Fig. 1. (Clearly, and L

are defined per unit crowsection area.) For this system, the external-circuit

condition (33)/I combined with the potential-balance equation (35)/I reads

= ( ) + 9;,(t) + L (it(

where SG has been assumed such as to produce a delta-function signal at time

r, with r > 0. Thus, the solution will also contain the "temporal3 Green's

function, from which one may ultimately obtain the solution for any arbitrary

external signal cf), c. Subsec. III.B.

In order to completely specify the initial state of the external circuit (and,

hence, of the whole diode system), one has to prescribe either two of the three

initial values j.,, (dj./dt)i, and &rpj, whence the third one is readily obtained

via (8). In what follows, Ji and (d3,/dt) will be assumed to be given.

Following the method developped in Part I, the initial-value and external-

perturbation problem just defined must be solved simultaneously for the func-

tions 3(t), t(z,t), 1i(v > 0,t), and fr(v < 0,t). However, since we have

16
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prescribed the two latter functions to vanish identically, the problem actually

reduces to finding 3. and E.

B. Basic modes and general solution

The linear perturbational problem specified in Subsec. IUL.A involves the

four amplitude factors iv, V,,, j.,, and (d./.dt),, which can be prescribed

independently of each other. Hence we conclude that the solution will be a

linear superposition of four independent basic' modes, which we choose to

define as shown in Table I. These basic modes must not be confused with the

eigenmodes discussed in Sec. V; they rather involve sperpositions of eigenmodes,

cf. Sec. IV. Basic modes 1 and 2 are the spatial and temporal Green's functions,

respectively, whereas bask modes 3 and 4 are connected with the initial state

of the external circuit.

As opposed to the basic-mode problem specified in Subsec. IIA and solved

in Sec. IV, the general perturbational problem for the Pierce-type configuration

considered is obtained by replacing (6) with

,(Zv V) = ,() 6(v - ) (9)

and (8) with

A ,q= AI',(t)

= (t) + A j.(t) +td ' (t) (10)
dt

where the initial perturbation profile jj(z) and the external-generator signal

t(t) are now arbitrary. The solution to this problem can be constructed by

linear superposition of basic modes in the form

17

q
4,]
44]

• ,.,.;.***4% 4 . 4 5 ......'.'.,,. . .-. .'. './ v *, . -. ,. . . .:-'-..... .,- .. ' -., . .. .,.:... .,. .-. . - 41 . .. ,,



I |

G=f L df (f) NO + fd1()

Z (,t) ) G k ) ('( tJ)J

t 13) ( , t) , ) Z' , t)]

Thus, solving the full problem is practically equivalent to finding the basic

modes; only these will be dealt with in the rest of the present section and in

Sec. IV.

C. HiSher-level quantities

Starting from the level-one quantities specified in Subsec. TI.A, we now

construct the level-two through level-four quantities according to Table I/l. To

this end it proves convenient to first introduce the auxiliary functions

..,~~~~ +(,- =WH "1+ a)(- 0' 1 (12b)
12,.(, + P,, ( +

(w,,,) = ,+- O i- (,. +_,, I - + L (12c)

14(w____ (p"E ( W) x i(w + Pw)(L- f)

2i) \(12d)
-1 - - .P -(L ))

*wpw +~) \F +wP)z 1 W6(z ) =2- ++ (+ )2

(w,.(12e)

which are non-singular for all values of w.

18



Level two:

D(q,1 = w (q-q-)(q-q+) (13)

with q =- p)ID,

f.(q, v) = 1(i c ' 6(v - 0) (14)

(V > o0,W) = o. 1Jg(v < oW= o (15a, b)

=f- Af(w
(16)

( e -li) + (A - 1wL) ((

Afr. +=d;+ (17)

Level three:

Ei 4re (1 - ) L (18)

."

kj(z, VW) =i - i U(z - C) 6(v - 0) R 2 (x, wI) (19)

k2 (z, w) = -iR(z,w) (20)

o ' (w + Owp): z

(Remark: k is only required for v = 0.)

(V, = hiexp (-, 6(), - ) (22)

Level four:

(= - (23a)

Z,() A-wL (23b)

4ri
ks(x,1 = -R (, w) (24)

19



So(Z 1-4'W) =0 (25)

* ~(z' W) =~{4rie (I~ R) R(z, w) + U(z -)R2(w)

+t~oj[R( z ) (L) )L W 5P

S ( > 0, [z'], W) = 0 (27)

koV> 0,W) = 0 (28)

S,(V < 0, [:',.,) = 0 (29)

k13(V '< 0,) = 0 (30)

(Remark: The operators Vol, Vor, V1i, and V., are not required here because the

functions upon which they act vanih identically.)

D. The integal and coeffeigt equation

With the level-four quantities calculated in Subeec. IL.C, we can now ex-

plicitly establish the integral equations (37)/I through (40)/I, as well as the

equivalent matrix equation (48)/I, for the extended Pierce problem defined in

Subeec. M.A.

Equation (37)/I remains unchanged:

Z,(,) M.1) + f-&(wz',,) = -TO(,). (31)

However, due to the simple boundary conditions (7), Eq. (38)/I reduces to

ks(Z,) 3(W) + '(z.,W) = ks(Z'.W), (32)

while Eqs. (39)/I and (40)/l are identically satisfied and hence need not be

considered in what follows.

20



t ~ ~ ~ ~ ~ ~ ww 4 -'. ...- W

We thus have to solve Eqs. (31) and (32) for j,(w) and t(,wa). The

equivalent matrix equation for the expansion coefficients is given by Eq. (48)/I:

2()- iw M(3

where the coefficient matrix D(w), the known-coefficient vector i(w), and the

unknown-coefficient vector fi(w) are now considerably reduced in comparison

with their general counterparts (49a,b,c)/I:

QPw) Z,( LOT' (34)

i(w = ('-.) lam)= se (35a,b6)

The determinant of (34) is easily found in the analytical form

Z.w) =Z(w) + k W a LP,

L

Ze(W + fodx ks(z,w) (6

* = (A iwL) + -R3(WI).

- .7



TV. SOLVD4G FOR THE BASIC MODES

A. Solution of the integral equations.

The solutions j.6(w) and t(z,w) to Eqs. (31) and (32) can be found ana-

lytically. On inserting .t(z,w), as calculated from (32), into (31), and taking

into account (36), we readily obtain

-to(W) - fjodzsl, w (37)
IaPw)I

Both the numerator and the denominator of this expression contain terms pro-

portional to w - and thus become singular for w - 0. Since these singularities

are inessential but inconvenient with respect to what follows, we multiply both

the numerator and the denominator of (37) by w. With a view to the bask

modes defined in Subsec. IILB, we then rewrite (37) in the form

U p -) ( 3 8 )
(W If + WT ;11W

where

=W(A -w) + 4sL R(w), (39)

fr(w) =w{-,o (w) -jf dzk~ (40)W

22
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A1"1(wIf) = -41ie [(L - f) R3(w) + J,-W R4(WIf)] (41a)

# 1 2 ) = "we " (4 1b )

(= iL R 3 (w), (41d)

and

• (I 1) = A'(,,) (42a)

;(2 (WI) = () (42b)
G(W)

Mj3)(l) = &(3)(W) (42c)

G(W)
% #14()14d

) M',) (42d)

=i,,,)
Inserting (38) into (32) yields

t(z,w ) = Gf (w) k5 (z, w) + (4,bw)

= lei 1,,) (') + t(2 (,' • (43)

where

*114

(z, w(wIf) k(z, w) + k 3 (z, w Ina

A~z~w) =(44b)

functiwons( ,w)+ s4' xw (44d)
The functions k(I) through k4 can be found in a straightforward manner by

inspection of Eq. (26).
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With (37) and (43) we have found the solutions to Eqs. (31) and (32), the

time Laplace transforms of the basic modes being given by Eqs. (42) and (44).

B. Inverse Laplace transformation and time-dependent basic modes

The Laplace transforms j.m((w) and Am)(z,w) (m = 1,.. .,4), as given

by Eqs. (42) and (44), are explicit analytical functions of w and can be easily

inverted into the time-dependent basic modes jm. (t) and (m)(z, t), cf. Table

. Since in the present example the Laplace transforms exhibit no branch cuts,

the inversion procedure requires the evaluation of pole contributions only, cf.

Sec. II.G/I and Fig. 2/1. The poles to be considered are the plasma poles (w =

±wP) and the eigenfrequencies (w = w,, Y = ... , 1, 2,...). According to Eqs.

(60)/I and (39), the latter are the seros of the determinant (33) or, equivalently,

of the function G(w):

G(w&; L, gotp,A,) = 0, (45)

where all parameters are shown explicitly for later purposes.

After some algebra, application of the inverse time Laplace transformation

(8b)/I to (42) and (44) leads to the time-dependent basic modes

24
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= 2 eIW~t(46c)

;.1411( (46d)

and

A!l)z~I~ =-4ireU(z - +Vft]) cooewpt

+ U(z - ot) 2w Lj[e (i~-j) -f 1 + ~wG(~)~

-. 4w

+ iU (ot-z!=)RZzwv

-e (47a)

A~2~z~ +v U(t - ) U ([t - Ite - X) -±I2 C'() -

E 4i

(4b

+z t U(t - O) U+I-ro-z

4w #1 1 CO) ,sw
+ U~vt - R) z, GI~,)b~.-V

4.25
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52L

w,~lo° +,w %w,

F 4)

.< '"( +,t) = U(z-Ot) - ( (, w)(,)

. -'.,. ,, + 8wpJ G'(w,,)J

where G' = dG/dw. Since the asymptotic part in (47b) may not contain a con-

stant term, we conclude that E,,[G'(w ) -  = 0. From the basi modes (46)
and (47), the general solution to our perturbational problem can be constructed

as described in Subse. IU3.B. For given initial perturbations and external-

generator signals, this is a purely mechanial task which will not be pursued

here any further. Let us recall that Ji) and t1l) are the spatial Green's func-

tions (for initial plasma perturbations), and 1.1 ) and t(2) are the temporal

Green's functions (for external-generator signals).

5 "~ By inspection of (46) we see that the external-circuit current densities

1(m(t) (m = ,... ,4) are just superpositions of exponentials exp(-iWt), i.e.,

their time behavior is exclusively governed by the eigenfirequencies w,,. While

basic modes 1, 3, and 4 are due to initial perturbations and hence give non-sero

contributions right from time t = 0 on, basic mode 2 is activated by an external

delta pulse at time r and hence contributes only for t > r.

According to (47), the corresponding electric-field patterns are much more

complex in that each of them exhibits an initial transient and an asymptotic

solution. At a given position z, the initial transient is on during the intervals

0 < t < Z/O (for basic modes 1,3,4) and r < t < r + z/V (for basic mode 2).

Its time behavior is not only governed by the eigenfrequencies but also by the

26
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plasma frequency. The left-hand boundary of the transient pattern moves to

the right as z = Ot and z = 0(t-r), respectively, thus giving way to the "clean'

eigenmode pattern of the asymptotic solution. After t = L/O and t = r + L/,

respectively, the transient is no longer present, and only eigenmodes are left in

the system. Inspection of (47a-d) shows that the electric-field profile associated

with an eigenfrequency w, is essentially given by the function R1 (z, w,,) as

defined by (12a).

After a sufficiently long time, the 'uppermost' eigenmode-i.e., the one

with the most positive Imw,-will be dominant.

27
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V. CHARACTERISTIC EQUATION, EIGENlREQUENCIES,

AND EIGENMODES

With the basic-mode solutions (46) and (47), the detailed linear evolution

of our Pierce-type diode can be calculated for arbitrary initial and external per-

turbations (9), (10) as indicated by Eq. (11). The full details of this evolution

may be required, e.g., for interpreting an experiment where the propagation

of externally generated small-amplitude pulses is studied. In many applica-

tions, however, it will be sufficient to concentrate on the asymptotic behavior.
"! Whichever is the case, the evaluation of Eqs. (46) and (47) requires quantitative

determination of the eigenirequencies wL. These and the associated eigenmode

profiles are the subject of the present section.

A. Normaized characteristic equation

Quite discouragingly, the eigenfrequencies w,, are functions of no less than

"'.I fve physical parameters, namely of the quantities L, 0, frp, A, and L appearing

in the characteristic equation, or "dispersion relation" , (45). However, the com-

plexity of the problem can be substantially reduced by introducing appropriate

normalizations. Let us re-write Eq. (45) in the nondimensional form

=A 0 (48)

where

(49)
Wp

is the normalized frequency, a is the classical Pierce parameter defined by Eq.

P (50a)
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P (50b)
4rO

~!

are the normalised external-circuit resistance and inductance, respectively, and

* .o c;( A G(w)

(=7 - i{eao [(V12 +1 in a + 2it7coosa)

-i - ipij5 + (a + 2A)i,4 + 2ipi" 3 _ (a + A),7 2 - i(2 + v7

We thus have to solve for the roots %, of Eq. (48), which are the normal-

ized eigenfrequencies and "only' depend on the three parameters a, p, and A.

* Each of these parameters may vary between 0 and oo, and for each parame-

ter triple there are infinitel many eigenfrequencies q~, whose imaginary parts

are bounded from above. The question thus arises of how to investigate in a

* systematic manner the relevant eigenfrequencies and the associated eigenmode

profiles in a given parameter domain of interest.

B. Egenfrnquendes

For a given parameter triple (a, p, A), all eigenfrequencies down to some

chosen (Imn) .. j can be approximately located as follows. One starts out

by plotting the complex image curves 6(q; a, p, A) for a suitable sequence of

complex straight-line portions of the form (- M :5 Re~ 7: M, finmn = const.),

where M is positive and sufficiently large to simulate infinity, and Im, j assumes

successively lower values from some suitable (Im, 17),maz down to (Inm, n By

inspection of the image curves one has to find out which ones come close to the

origin =0, and at which values of Reqn. One thus obtains the starting values

29
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needed for the numerical solution of Eq. (48). This procedure is closely related

- to the classical Nyquist method 53 and can, in principle, be automated.

Due to the symmetry

R(-Req+iIm7;a,p)= (+Req+iImq;a,p,A) , (52)

which is not difficult to verify on Eq. (51), we have that eigenfrequencies with

a non-vanishing real part always occur in pairs of the form

(d) : Re 17() + i Im, ,,() (53)
I,.' I

where the superscript (d) indicates the 'doublet' character of these eigeufre-

quencies, and Re od) is defined to be positive. Similarly, we will label purely

- imaginary, or "singlet', roots of Eq. (48) by the superscript (a).

As will become apparent in the following subsection, both eigenfrequencies

of a doublet (53) correspond to one and the same eigenmode, so that it is conve-

nient to distinguish between the "eigenfrequency index* Y and the 'eigenmode

index' p. Thus, a doublet (53) corresponds to two values of v but to just one

value of p.

C. Eigemode profiles

'4. By inspecting the asymptotic parts of the basic-mode solutions (47a-d) we

". that the complex electric field associated with an eigenfrequency w, wpl,

is generally given by

.- ' (z, t) = CRI (z, w,,) e-i("-t+1 1 (54)

with C and -y real. This equation can be re-written in the form

30
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EY'(z,t) =C (Re Rl(z,w) coo(Rewt + y)

+ Im R,(, w,) sin(Rewtw+-y)} +-)elm t

+iC ,ReR(z,(,)cos(Rewt+-y+ 
55

2

+ Im R,(z, w,) sin(Re w,t +-y+ i]JI e1 "~

from which it is evident that the real and imaginary parts describe the same

spatial and temporal behavior, except for an amplitude factor i and a phase

difference r/2. Hence, we may, without low of generality, define a real and

normalised eigenmode profile by the real part of Eq. (55), with C = 1 and

=0:

4..E4;') = (Re Rl(z,wLM) coo(Rew,,t) lw (5)
+ linRi(xw,/) sin(Rew,,t)( e

We furthermore choose to define the associated potential profile in the normal-

ised form

V rn(~) f dZ, EI,,n) (X,, t) (7
(Zt (57)

= ReRe(z,w,,) coo(Rew,t) + ImR5(z,w,.) sin(Rew,,t)l clwv

Since the functions R,(z,w) and R5(z,w) exhibit the symmetry

RI.5(z, - Rew + i Imw) = [RI.5(z, + Rew + i Imw)]* , (58)

Eqs. (56) and (57) imply

VfZ) (, t) = V ( -, )=rhJ(, t) (=9I)

* (z, t) - V/"( (x, t) - Vin(z,t), (59b)

so that both eigenfrequencies of a doublet (53) correspond to one and the same

physical eigenmode.
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Clearly, Re R, (z, w,,) and Re R6 (z, w,,) represent the initial values of the

eigenmode profiles (56) and (57), respectively. One easily verifies that

Re R1(0, w,,) = 1 and ImtR, (0, w,) =ReRB6 (0, w,) = Im &(0, w,,) = 0. Since

the constant-emission assumption (7a) implies zero space-charge perturbation

at z = i- 0, we also expect a(Re Ri)/z = a(imRi)/8z =0 for z - 0.

For a singlet eigenfrequency (Re w, @- 0), both Tm R1 and ImR vanish iden-

tically, and the eigenmodes are either purely damped (Imtwo' < 0) or purely

growing (Imw,(, > 0), thus retaining their initial spatial profiles. (We have

*not investigated the details of the singular case w,= 0.) For doublet eigenfre-

quencies (Re wo'' 960), Im Ri(z, w(")) and ImR&.(z, w'a) represent the spatial

(d)field and potential structures after a quarter-period, Ile Wj t = ir/2, and the

eigenmode is a superposition of two damped (lm wo1 < 0), constant-amplitude

(Tmnw(P = 0), or growing (Imw~d) > 0) standing waves with different spa-

tial profiles and a temporal phase difference of 1, respectively resulting in a

S damped, constant-amplitude, or growing propagating-wave-like structure.

In view of the foregoing remarks, the spatial field and potential structures

of an eigeninode corresponding to a singlet eigenfrequency wc4' are uniquely

represented by Re R,(z, w8A) and Re R5(w, wl,), respectively. Representation

of a doublet eigenmode, on the other hand, in addition requires the functions

Im R, (Z' W M and Im RIS(z,w d~).
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VI. NUMERICAL RESULTS

In this section we present systematic numerical results for the uppermost

normalised eigenfrequencies and the associated eigenmode profiles in some typi-

cal parameter domains, cf. Sec. V. In Subsec. VI.A., the classical, short-circuited

Pierce diode, which lends itself as a convenient standard case, is reviewed,

a classification scheme for the eigenfrequencies is introduced, and some new

eigenfrequencies are calculated. The effects of external-circuit resistance and

external-circuit inductance on the eigenfrequencies and eigenmode profiles are

5' considered in Subsecs. VI.B and VI.C, respectively. Some general aspects and

implications are discussed in Subsec. VI.D.

A. The cladcal, short-circuited Pierce diode (a > 0, p = 0, A = o)

The classical Pierce diode,' defined in Subsec. II.A, offers itself as a refer-

ence case to which all modified configurations can be conveniently compared.

Numerical results for the dominant eigenfrequencies have been given before, 33 3'4

but for the systematic description attempted here we have found it necessary to

complement these, in the parameter domains considered, with new results for

some of the lower (with respect to Im Y) eigenfrequencies. Moreover, since only

little information on eigenmode structures can be found in the literature,1'3 .
7

we present, throughout this section, some typical eigenmode profiles. Follow-

ing Subsec. V.C, these are represented in terms of the functions Re R1, Im R1,

ReR5 , and Im R5 .

Throughout the present section, we restrict ourselves to varying the Pierce

parameter in the range 0.16ir < a < 3r, for which the uppermost eigenfre-

quencies are shown in Fig. 4. This range is representative in that it covers

33
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-W,,.

the 'archetypia at-intervals 0 < a< r, rw< a< 21r, and 2w < a < 3r,

which will be seen to exhibit all possible modes of linear behavior. Since these

three intervals are distinctly different from each other, it is convenient to num-

ber the eigenfrequencies uniformly within each of them. For a given a-interval

nir < < (n + 1)r, where n = 0, 1, 2,..., we choose to number the eigenfre-

quencies q, so as to reflect the ordering of Im ,, in the middle of the interval,

Le., at a = (n + ')w. Thus, the eigenfrequency singlet or doublet with the

uppermost imaginary part there is assigned p = 1 throughout the interval, the

singlet or doublet with the next lower imaginary part there is assigned p = 2

throughout the interval, etc. Ifs = 2 corresponds to say an eigenfrequency

4. doublet, we will speak of eigenmode 2(d) ', etc.

Throughout the three a-intervals shown in Fig. 4, the ordering of the
-. '.

eigenfrequencies 2(0) and 3 (d) remains the same, so that no re-numbering is

necessary at the transition between intervals. Above 3(d), there exist no other

. igenfrequencies than the ones shown. With increasing a, the packing den-

4! sity of the eigenfrequencies with respect to Im q increases rapidly. Thus, at

a = 0.5i = 1.5708 there are only five eigenfrequencies with Im q _ -3.5 (a

doublet counts for two eigenfrequencies), at a = 1.5w = 4.7124 there are six
eigenfrequencies with Imq > -1, whereas at a = 2.5ir = 7.8540 we already

find 44 eigenfrequencies with Imq 2: -1. Eigenfrequencies lying below 3(d) are

not shown, with the exception of the singlets 4P8) (in r < a < 2r) and X' (in

2r <a < 31w; order p unknown).

Figure 4 shows that the dominant eigenmodes (p = 1), which determine the

linear time-asymptotic behavior, are non-oscilatory stable, or purely damped,

for 0 < a < i, non-oscillatory unstable, or purely growing, for i < a < 2r,

oW.
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oscillatory unstable for 2w < a < 3w - e (where e - 0.3), and both oscillatory

and non-oscillatory stable for 31r - e < a < 3-r. The pattern of the last two

intervals basically repeats with increasing a, so that for 3r < a < 4w we have

non-oscillatory instability, etc.; for large values of a, the growth rates decrease

approximately as a- 1 .3 3 ,3 4

Electric-field and electric-potential profiles of the dominant eigenmodes for

a = 0.5r, 1.5r, and 2.5r are shown in Figs. 6 and 12, Figs. 8 and 14, and

Figs. 10 and 16, respectively. For the classical case, the field and potential

structures become more complex with increasing a, and the potential profiles

always return to zero at z - L.

%e. %B. The purely resistive case (a > 0, p > 0, x = o)

The purpose of the present subsection is to establish how the eigenfre-

quencies and eigenmode structures change if we allow for finite resistance, but

still require sero inductance, in the external circuit. We decide to answer this

question for the three a-values 1.5w, 1.Sw, and 2.5w, as representatives of the

a-intervals they are located in, cf. Subsec. VI.A. For each a, the imaginary and
real parts of the normalized eigenfrequencies ,o are plotted for normalized re-

,. sistances in the range 0 5 p :5 100, and some typical field and potential profiles

are given for the dominant eigenmodes. The value p = 0 retrieves the classical

short-circuit case, while p -. oo corresponds to the open-circuit, or floating,

diode.

Fig. 5 shows the eigenfrequencies ts ), and & for a - 0.5w. No other

eigenfrequencies were found above 3(d). We observe that increasing resistance

results in weaker damping for 1 ° but stronger damping for 2(d) and 3 1d). Thus,
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the system becomes "less stable' with increasing resistance, and tends towards

marginal stability for large p. Figure 6 shows that the eigenmode profiles of

lid change significantly with p.

The ee uenies and for a = 1.5v are shown in

Fig. 7. No other eigenfrequencies were found above 4("1 and 3(d), respectively.

The most remarkable result is that I(I ) remains unstable. However, Imn,

decreases monotonically with increasing p, and the system approaches marginal

stability as p --# oo. Figure 7 also shows that Im n( ") crosses Im t( d) at p n 3,

so that from there on 4(s) is the third highest mode. Profiles of eigenmode I (*)

for different values of p are given in Fig. 8.

Figure 9 shows the eigenfrequencies of the modes 11d), 2(d), 3( d), X (
s

) ,

XfIO , and X (' )" for a = 2.5r. No other eigenfrequencies were found above

3(d) . Here we encounter a much more complex and interesting behavior than

for a = 0.5r (Fig. 5) and a = 1.5r (Fig. 7). The classically unstable mode

i d) is stabilised at p = 4. At p = 19.2, id) in 'absorbed' by a singlet mode,

which is seen to be the continuation of the classically high-order mode X),

cf. Fig. 4. Quite strangely, the imaginary part of q(" describes an S-shaped

curve which, for 19.2 < p < 93, exhibits three branches denoted by X ), X (A)I,

and Xl' * . At p - 93, a doublet branches off to the right, which we interpret

as the continuation of 1(d) . Returning to the uppermost eigenfrequencies we

may state that the dominating eigenmode is oscillatory growing for 0 : p < 4,

oscillatory damped for 4 < p < 19.2, 'and purely damped for p > 19.2. For

large p, the system tends towards marginal instability. Eigenmode profiles of

1
0d) and X181" for different values of p are given in Fig. 10.
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C. The purely inductive case (a > o, p = o, A> o)

In this subsection we investigate the eigenfrequencies and eigenmode struc-

tures for the case of finite inductance but zero resistance in the external circuit.

As in Subsec. VI.B, we restrict ourselves to the three a-values 0.5r, 1.5r, and

2.5r. For each a, the uppermost eigenfrequencies are plotted in the range

0 < A 5< 100, and some typical eigenmode profiles are given. The vIue X = 0

recovers the classical short-circuit case of Subsec. VI.A, whereas A - oo corre-

sponds to a current-stabilised external circuit.

Fig. 11 shows the dependence on A of the classical eigenfrequencies q',

Id) , and sd) for a = 0.5wr. However, we also observe a new doublet Ltd)

(iee quencyql), which does not exist for A = 0 and thus is inherently

due to the finite inductance in the external circuit. Since Im ,(d) always lies

well above the imaginary parts of the other eigenfrequencies shown-no others

were found above 3 (d) -- the "inductive' mode Ld) is the dominant one and

even goes unstable within some small intervals of the region 0 < A < 0.09. This

means that the finite inductance now present has changed the linear response

behavior fundamentally as compared with the short-circuit case, which is non-

oscillatory stable. Fig. 12 shows some eigenmode profiles of L(d) for different

values of A. For A -. 0, the oscillation frequency Re s7d tends towards infinity-

which behavior is also observed for the other a-values considered-and thus

precludes numerical solution of Eq. (48) for very small values of A. As A -- oo,

(d)
1L approaches zero, whereas the damping rates of the other modes increase

logarithmically. With Eqs. (46a-d) in mind, this is the qualitative behavior we

expect for the case of a current-stabilized external circuit.
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The variation with A of the eigenfrequencies q 1 2,3 T74 and (d)

for a = 1.5r is shown in Fig. 13. No other modes were found above 3(d 
.

Contrary to a = 0.5r, the classically dominant mode 1(') remains dominant,

retaining its purely growing character. Its field and potential profiles change

with A as shown in Fig. 14. As A - oo, both n.j and o47 tend to zero, whereas

the damping rates of the other eigenfrequencies increase logarithmically. In

some intervals of the region A < 1.1, the inductive mode V(d) goes unstable.
Figure 15 shows the variation with A of the eigenfrequencies 1 (d) 17 (d)

(ld) and tt(I for i - 2.5w. No other eigenfrequencies were found above 3 (d
).

The stability behavior is very similar to that for a = 1.5ir (Fig. 13), except that

now the dominant mode is an oscillatory one. Figure 16 shows the eigenmode

profiles of i(d) for various values of A. The inductive mode L(d) introduces ad-

ditional instability within various intervals in the region A < 4, at an oscillation

frequency much higher than that of 1(d) .

D. Dicusion

The results of the present section have shown that finite resistance or in-

ductance in the external circuit can strongly modify the eigenfrequencies and

eigenmode profiles as compared with their classical counterparts.

In Subsec. VI.B we have found that increasing the external-circuit resis-

tance can change the dominant mode (i) from non-oscillatory stable to non-

oscillatory marginally stable (a = 0.5wr), (ii) from non-oscillatory unstable to

non-oscillatory marginally unstable (a = 1.5r), and (iii) from oscillatory unsta-

ble successively to oscillatory stable, non-oscillatory stable, and non-oscillatory

marginally stable (a = 2.5r).
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Perhaps the most interesting finding of this section is that finite external-

circuit inductance gives rise to a new oscillatory mode L), which does not

exist for A = 0. The occurrence of this inductive mode is plausible because

the system consisting of the diode, the resistance A, and the inductance L

(Fig. 1) may be looked upon as an RLC circuit, with the diode acting as a

capacitor whose properties are partly determined by the plasma in it. Thus,

the eigenmode Ld ) may be interpreted as a modified RLC oscillation. For

all values of a considered here, we have made the remarkable observation that

there are regions of A where LVd ) is unstable, and that with increasing a these

regions become larger. For a = 0.Sr, L"Id is the dominant mode, whereas for

-4 = 1.5wr and a = 2.5r it is second, at least in some range of A.

Globally speaking, we have found that the linear response behavior of our

Pierce-type diode depends crucially on all three parameters considered here,

namely a, p, and A. This induces us to speculate that also the nonlinear final

states may strongly depend on these parameters, as well as on others that may

have to be defined for more realistic cnfigurations. These final states can be

time-independent, oscillatory, or turbulent, 34 and it appears that much more

work is needed to clarify these phenomena, the parameter ranges in which

they occur, and their dependencies on the parameters themselves. Particle

simulations tackling some of these problems are under way and will be reported

elsewhere.
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It should be borne in mind that the three cases considered in Subsecs. V.A,

VI.B, and VI.C are highly idealised ones, thus singling out specific external-

circuit effects. Realistic external circuits, on the other hand, always involve

resistive, inductive, and capacitive components in some more or less complex
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I p.i

combination, so that external-circuit effects may not always be as clear-cut as

in the foregoing examples. Still, the above results are suitable to demonstrate
-4.

that external circuits can matter quite substantially, and hence should be given

proper consideration in every individual case.
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VII. CONCLUSIONS

Using the method developped in Part I, we have given the complete an-

alytical solution to the general linear perturbation problem for an extended

Pierce-type diode. The configuration considered differs from the classical Pierce

diode in. that it exhibits a non-trivial external circuit involving a resistor, an

inductor, and a signal generator.

Each of the solution functions given, j,(t) and t(z, t), can be constructed

by linear superposition of four different types of basic modes, namely a spa-

tial Green's function associated with the initial perturbations of the plasma, a

temporal Green's function accounting for external-generator signals, and two

functions associated with the initial state of the external circuit. While j. al-

ways represents a sum of eigenoscillations only, t(z, t) generally exhibits both

an initial transient containing eigen- and plasma oscillations, and an asymptotic

part made up of eigenmodes only.

After sufficiently long time, the linear dynamics is always dominated by the

uppermost eigenmode. Hence, particular emphasis has been laid on presenting

systematic numerical data covering the most important eigenfrequencies, as

well as the associated eigenmode profiles, in some typical parameter domains.

Among other things, it has been found that increasing external-circuit resistance

can change an oscillatory unstable mode successively to oscillatory stable and

non-oscillatory stable. Non-zero external-circuit inductance r . eate a new

oscillatory mode, which may be dominant and even go unstable in parameter

regions classically stable. Generally speaking, our results demonstrate that

external circuits can, in fact, matter substantially and should, therefore, be

properly accounted for in every individual case.
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Apart from deriving these detailed results, we have also attempted to give

a general account of the Pierce problem and its implications. In so doing it

has been observed that the Pierce problem is potentially relevant to a wide

class of laboratory plasmas and has recently been attracting a remarkable deal

of interest in the context of various modern concepts and applications. More

specifically, we have argued that the low-density single-ended Q machine can,

to a certain extent, be approximated by a simple Pierce-type configuration.

In spite of the fairly large number of papers that have already been written

on Pierce-type problems, we have to conclude that only rather restricted aspects

have been studied so far, and that substantial propress in the theory of bounded

plasma systems will require more comprehensive and realistic approaches. A

first step in this direction has been proposed in Part I, but major extensions-

e.g., to more general geometries--are still needed.
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Tables

TABLE I. Definition of basic modes.

basi
mode ei f 31(

n o.
1 1 0 0 0 _____e u~~te

2 0 1 tr k2)(Z,tlr)
__ 

t(31 (Z 0t
0 _ _--1j~

4 0 0 0
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Figure Captions

FIG. 1. Schematic of extended Pierce-type configuration.

FIG. 2. Pierce parameter over normalized system length versus neutralization

parameter.

FIG. 3. Pierce parameter over system length versus equilibrium plasma den-

sity.
.i1

FIG. 4. Imaginary parts (a) and real parts (b) of the normalized eigenfrequen-
(a 7) (d) (d) (d) (a) d qa ) for [0.1r <a<3Inp=oIA=01.
I fi l 112 1t 17 , --n-

FIG. 5. Imaginary parts (a) and real parts (b) of the normalized eigenfrequen-

cie a ,q(d), and (d) for [a = 0.5w 10 _. p __ 100 IA = 01.

FIG. 6. Electrostatic field (a) and potential (b) profiles of eigenmode 1(81 for

[a = 0.Stlp = o, 1, 10, 00oI A = 01.

FIG. 7. Imaginary parts (a) and real parts (b) of the normalized eigenfrequen-
cies "0 ,( 2  (and) for [a = 1.5 K1 p < 100 IA --= 01 .

FIG. 8. Electrostatic field (a) and potential (b) profiles of eigenmode 1W for

(d= 1.5r I p = o, 1, lO, lOO1 A = o1.

FIG. 9. Imaginary parts (a) and real parts (b) of the normalized eigenfrequen-

(d) (d) (d)ties q,[ , 172 , '73 , X(,j, X(s),, and X(S)" for [a = 2.5w 10 _< p _< 1001 A = 01.

FIG. 10. Electrostatic field (a,b) and potential (c,d) profiles of eigenmode 1 (d)

for [a = 2.5w 1p = 0,4, 191A = 01, and of eigenmode X1' )" for [a = 2.5ir[p =

30, lOO1A = 01.

FIG. 11. Imaginary parts (a) and real parts (b) of the normalized eigenfre-

quencies q,4, 72 7)3 and ,(j) for [a = O.5r P 010 :- A _( 100].
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FIG. 12. Electrostatic field (ab) and potential (c,d) profiles of eigenmode LVdI

for [a = o.5i I p = 01 A = 0.035,0.07, 1, 10, 100].

FIG. 13. Imaginary parts (a) and real parts (b) of the normalized eigenfre-
quencies n,#, 4 12") , ,, 1  , 14°) and q~d) for [a= 1.5-lp--Iolo _ 10].

FIG. 14. Electrostatic field (a) and potential (b) profiles of eigenmode 1(" for
" 1. =1.5 IP = o 1A = o, 1, 10, 1ool.

FIG. 15. Imaginary parts (a) and real parts (b) of the eigenfreqencies 1 7[d|

12 ,)1 q3", and ,t,. for 1a=2.rp=00< ,A <1001.

'{ _ FIG. 16. Electrostatic field (ab) and potential (c,d) profiles of eigenmode 1(d)

for [a =2.5lp =OA= 0,1,10,1001.
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