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Abstract

/;;% The objective of the study is to find the optimal trajectories
and corresponding minimum turning times for a high performance
aircraft with and without direct sideforce to perform a prescribed
turn. These trajectories and times are then compared to evaluate
the benefit of direct sideforce. Optimal control theory is
applied to solve the minimum time to turn optimal control problem
using a suboptimal control problem approach and a second order
parameter optimization method.

The results indicate that the use of direct sideforce is
beneficial in reducing turning time. 1In addition, the use of
sideforce causes a small loss of energy for initial velocities

lower and much higher than the corner velocity. -
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MINIMUM TIME TURNS WITH DIRECT SIDEFORCE f

I Introduction

Background

In air-to-air combat, the aircraft with a higher turn rate
capability has an advantage. The turn rate of a conventionally
controlled aircraft is completely determined by specifying the load ]
factor and velocity. The maximum turn rate occurs at maximum load |
factor and one particular airspeed. The maximum load factor, however,
is bounded by two limits, a maximum structural limit and a maximum
lift limit. Since these limits are heavily influenced by other design
requirements, aircraft designed for similar roles tend to have
similar maximum turn rates.

One possible way of inproving turning time without sacrificing

performance in other design areas may be through the use of conventional
control such as direct sideforce control. The Air Force is currently
flight testing the Advanced Fighter Technology Integrator (AFTI)
aircraft which has the capability of generating both sideforce and 1lift
without the accompaning yawing and pitching moments required by
conventionally controlled aircraft.

Another important parameter in air-to-air engagements is specific
energy. Since maximum performance turns generally cause a loss of

energy, the presence of sideforce may minimize the loss or even allow

a gain of energy.

-
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Several studies such as Humphreys, Hennig, Bolding and
Helgeson (4) and Well and Berger (7) have been published on the
optimal trajectories and control schedules of conventional aircraft
necessary to minimize turning time. However, none have considered
the use of a translational force such as direct sideforce. This
study, therefore, considers the effects on the optimum turning
maneuver of applying direct sideforce.

Problem Statement

The problem is to find the control schedule which will minimize
the time to maneuver a high performance aircraft from a set of
initial conditions to a set of prescribed final conditions.

The controls to be optimized are bank angle, thrust, angle of
attack, and sideforce. Additionally, the controls must not cause the
aircraft to exceed its capability or design limits. These limits
include maximum angle of attack or buffet limit, maximum structural
load factor, minimum and maximum thrust, and the maximum allowable
sideforce.

The objective of this study is to find the optimal controls,
subject to constraints, which will minimize the turning time both
with and without direct sideforce. From tﬁis study, the benefit of
sideforce will then be evaluated.

The scope of this study is to find the trajectories which
minimizes turning time for a variety of initial conditions. Addition-
ally, the scope involves determining the effects of sideforce applica-

tion on turning time.




Assumptions

The assumptions made in this study can be divided into two
parts, those used in modeling the aircraft and those made in
deriving the equations of motion. First, the aircraft is modeled
as a point mass with three degrees of freedom. This simplification
is common for the type of trajectories considered in this study
(4:91, 7:84). The fuel burn during the maneuver is considered
negligible due to the short time it takes to complete a turn.
Another simplification is that the error from the thrust vector
not being colinear with the aircraft centerline is negligible. The
coefficient of lift was assumed to be a linear function of angle of
attack up to the stall limit. The drag coefficient was modeled as
a function of the square of the lift coefficient and a linear
function of sideforce. Standard incompressible aerodynamic theory
shows these assumptions to be valid (8:11.8) The choice for a linear
sideforce term in the drag equation is substantiated by windtunnel
data from a similarly configured experimental Air Force aircraft.
The maximum thrust was considered constant in this study. Since
the maneuver is carried out within a narrow altitude band, the air
density, and hence thrust, remains nearly constant.

The equations of motion were developed (1) assuming a flat
earth with a constant gravitational acceleration. All atmospheric
data were obtained from the 1962 Standard Atmosphere defined by NASA
(2). 1In all cases the turning maneuver was initiated from straight
and level flight, but the control variables angle of attack, band

angle, sideforce, and thrust were allowed to vary instantaneously.

This simplification was made to reduce the problem to manageable
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complexity and allow the effects of different control schedules
' to be evaluated without contamination from a arbitrarily assumed
generic control response data.
Approach
To determine the effect of sideforce on turning flight, a

realistic ajrcraft model must be derived and the parameters of the

maneuver determined. The particular aircraft model and two turning

situations were taken from Johnson's study (5:7-8). This was done

in order to check the optimization computer code written by Johnson

(5) after modification to include sideforce. From these two base-

line cases, without sideforce, various parameters of the aircraft and

maneuver were varied. These parameters include initial airspeed,

thrust to weight ratio, and drag due to lift coefficient. The air-
. craft parameters were changed from the basic model in an attempt

to compare the results with the qualitative conclusions of Well and

Berger (7).

The following sections will define the turning problem,

summarize the optimal and suboptimal control approaches, and
discuss solutions and results.

Summary of Current Knowledge

Henning, Bolding, and Helgeson (4) generated several minimum
turning time trajectories for a generic aircraft without sideforce.
Results wei. presented for two initial velocities, several
maximum thrust to weight ratios, and several final conditiomns. For
the study, only the cases with a final heading of 180 degrees and

a zero final flight path angle were useful for comparison results.
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Johnson (5) and Peterson (6) use the results from two cases
in (4) to verify a suboptimal numerical technique for finding the
optimal control schedules required to minimize the turning time.

Well and Berger (7) used a different optimization technique to
obtain general trends in optimal controls. One parameter of
interest is the inclination of the plane in which the turn is
performed. Well and Berger (7) show that for any initial velocity
below a specific value, the optimum maneuver is a vertical Split-S.
For initial velocities faster than some definable value, a half loop
manuever results in minimum time to turn. The optimum turning
plane varies between these two extremes for initial velocities
between the two key velocities. Unfortunately, Well and Berger
(7) did not provide the specific aircraft characteristics used to
generate their results. Although direct comparison of results
cannot be made, the general trends can be used to qualitatively

check the results beyond the two cases used by Johnson (5) and

Peterson (6).
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I1 The Minimum Time Turn Problem

In order to evaluate the benefits Af direct sideforce in a
turning maneuver, it is first necessary to define a baseline from
which a difference in performance due to the sideforce can be shown.

Establishing the baseline involves defining the turning maneuver
as well as developing the governing equations of motion and a

realistic model of an aircraft.

The Maneuver

The initial conditions for all cases in this study are straight
and level flight at 13,990 feet. From these conditions and a
specified initial velocity, the aircraft turns to a final heading
of 180° with a final flight path angle of zero.

Equations of Motion

The equations of motion for flight of a point mass aircraft

over a flat earth are derived by Miele (1:42-49) as:

i = Vcosycosy (1)
é = Vcosysimy 2)
h = Vsiny (3)
Tcosecosg -~ D - mgsiny - m& = 0 4

Tcosesinz -~ Q + mgsimicosy + mV
(-XcosHcosy + Ysinit) = 0 (5)
Taine + L -~ mgcosucosy - mV (Xsimicosy + Ycosu) = 0 (6)
Assuming the error due to neglecting the thrust sideslip angle
is small, then sin{ = 0, cost = 1, and € =y, Substituting these
values into equations (1) through (6) and rearranging yields:

X = VcosYeos X €]

3 I
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; = VcosYsinX (8)
t.z = VginY _ 9
\.1 = g((T/W)cosy -~ D/W - siny) (10)
X = V§5;V ((T/W)sinasinu - (Q/W)cosu + (L/W)sinu) 11)

Y = _3_. ((T/W)sinacosy + (Q/W)sinu + (L/W)cosu -cosr) (12)
These equations are written in the wind axes and model the
motion of an aircraft with respect to an earth fixed coordinate
frame. The state variables are X, Y, h, V, X, and Y.- The control
variables are o, #, T, and Q. New forms of the control variables
T and Q will be defined later. The aerodynamic forces of L and D
are discussed in the next section. The two variables, g and W, are

assumed to be constant during the maneuver.

Alrcraft Forces

The aerodynamic forces of lift and drag can be expressed as

follows:

2
L =TV SC (13)
—2

2
OgV SCD
2

D= (14)

L and CD can be assumed from their airfoil theory

for conventional aircraft. However, the sideforce in this study is

Expressions for C

assumed to be generated by aerodynamic surfaces. Therefore, the

aircraft drag must include the effects of generating sideforce. J
An expression for this effect was obtained from windtunnel data

of an experimental Air Force aircraft with similar characteristics

to the model used in this study. The expressions for CL and CD )

thus derived are:




CL = Clua (15)
2

CD = CDo + K1C L + KZQ (16)

Substituting these equations into (13) and (14) and dividing

by the weight for use in the equations of motion yield:

2

-3- M ¢ ° (a7
N

D _ paVis 2

D.eg €, +K.C2+KQ (18)

W o
Finally, the thrust to weight ratio and the sideforce to weight
ratio are needed for use in the equations of motion. The maximum
thrust and the maximum sideforce are both assumed to be constant
throughout the turn. Therefore, thrust and sideforce can be

defined as:

T= Ty, " (19)
’ Q= Qpuy ! (20)

Now 7.and I become the control variables for thrust and sideforce,

respectively. Forming thrust and sideforce to weight ratios yields,

T = AR T . T 21)
W
/v = 8%45 R (22)

The actual values of the aircraft parameters used in this study
are listed below. In sowme cases the values for (T/W)HAx and Kl
vere varied to show their influence on the problem. These special
cages are detailed in Chapter VI so only the nominal values are

listed here.
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CLa. = 5.0 a MAX = ,2 radians

CDo = .02 (L/W)MAX = 7.22

Note that the induced drag factor, Kl’ can be calculated for a
given aircraft geometry. Typical iralues range from 0.1 up to 0.3
for fighter type aircraft (8:11.9, E.7). A value of 0.05, therefore,
indicates this is a very low drag aircraft.
Atmosphere

A standard atmosphere defined in (2) was used throughout the

study. The density ratio is expressed as:
0 _ 1
o = == [1- @zly 8 a1 (23)
n ——
° RTo
where,

O
L}

.002377 slugs/ft>

32.174 ft/sec®

(]
[}

-3
[}

518.688°R

n = 1,235

R

1715 ftzlsec2—°R

The Control Variable Constraints

There are aircraft related constraints on all control variables
except bank angle. These constraints are the maximum 1ift limit,
maximum load factor, minimum and maximum thrust and maximum
sideforce.

The angle of attack is limited by either the maximum 1lift limit
or the maximum load factor, which ever is less. This effect on

maximum angle of attack is shown as function of airspeed in Fig 1.

The velocity where these two limits meet 18 called the corner
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velocity and is discussed in section V.

VELOCITY v
Cc

Fig 1. Maximum Angle of attack vs velocity
The thrust is bounded on the lower side by the minimum thrust
which is defined as zero in this study. From this and equation (21),
the thrust control variable is limited to,
0<T<1l
Sideforce can be generated in either direction up to the
maximum value in equation (22). Therefore, the sideforce control
must fall in the range,
15151 (25)
These limits and their effects on the problem are discussed

more fully in Section V.




II1 The Optimal Control Problem

The optimal control approach is discussed in this chapter
to define the basic conditions to be satisfied by the optimal
solution. The discussion also shows the complexity and the inherent
solution difficulties of the approach.

Optimal Control Problem

The optimal control problem requires finding the functional
ralationships for the control variables that will minimize the
performance index,

G = te (26)

subject to the differential constraints expressed vectorially as

X = £ (27)
where X is the state vector and f is the vector containing the
right side of Eqs (7) to (12). The problem is also subject to
the control constraints defined jin the previous chapter and to the
final conditions expressed as:

9 = Xg= 180° (29)

Thus, the final conditions are satisfied when,

M= () =0 (30)
2

The Calculus of Variations is applied to find the necessary and
sufficient conditions to be satisfied by the optimal control
variables.

Conditions to be Satisfied

From Johnson's work (5:13~14) the augmented performance index,

J, is defined by:

ARGy - v - o WAV AP T - 1




A A

T o .
J=G+yv M+ A (£-X)dte (31)
21
where v and A are Lagrange multiplier vectors, then the variational
Hamiltonian, H, 1is expressed as
H=af (32)
The optimal controls, expressed vectorially as U, must satisfy the

first variational requirement or the Euler-Lagrange equations:

T
. E]
£ = - e - ) (33)
. T T
X=H =G (34)
v = ™A (35)
opt U

Equation (35) states that the optimal controls are those which
minimize H. The optimal solution must also satisfy the transver-

sality conditions and corner conditions:

H =G, =0 (36)
i
B, =G, =0 (37)
£
A T -
Lt G_’si 0 (38)
A T
£ - Gif =0 (39)
A -6, =0 (40)
c
AT + G, =0 (41)
[+
G, =0 (42)

Explicitly solving the optimal control problem is at best

complex. If the controls intersect boundaries or are singular,

the difficulty increases. It 1s desirable therefore, to find a




technique which will yield a reasonable solution. The Suboptimal
x" Control Method developed by Hull and Edgeman (3) fulfills these

requirements.




v The Suboptimal Control Problem

: The suboptimal control approach used in this study transforms
the optimal control problem into a parameters optimization problem.
This is accomplished by assuming a known mathmatical form with a
number of unknown constants for the control variables. This '
technique is used by several numerical optimization methods
including the well known Raleigh-Ritz metho” and reduces the ;
problem to one of finding the coefficients which satisfy the

conditions of the problem.

If the unknown constants of the controls are formed into a

vector B, the controls can be written as

U = U(t,B) (43)
And, the vector of all unknowns in the problem can be represented :

as

- A = (egB1" (44)

For any vector A, the equations of motion can be integrated from
t=0 to t=t. to yield a set of final state variables expressed
functionally as !

X = X () (45)

£

Therefore, the performance index, G, as well as the final
conditions vector, M, are functions of the A vector only.
The problem is then to find the A vector which minimizes the

turning time,

G = G(A) (46)
subject to the equations of motion

X = £(X,A,t) (47)

o Doafing vl i Sl



the physical control constraints and the final conditions,

2 M(A) = O (48)

Conditions to be Satisfied

An augmented performance, F, can be defined as:
F(A,V) = G(A) + VIM(A) (49)

Ordinary differential calculas requires two conditions to be

% satisfied: .‘
4 T T

% FA (A,V) = GA + v MA = () (50)

| r
‘ Fv (A,v) = M(A) = 0 (51) 3

where MA and GA are defined as

M
MA = %—A' (52) T
A= (53) i

The gradient, FAT, is a column vector containing first order ]
information or the slope indicating the change in F with respect to
changes in each element of A. FAT then reveals the direction which
A must change to drive F to zero. Since equations (50) and (51) are q

the only two conditions imposed by the suboptimal control approach,

it is clearly much less complex than the optimal approach and

requires less knowledge of the peculiarities of each specific

problem.

Method of Solution

Hull and Edgeman (3) present a second order parameter

optimization technique and an algorithm ideally suited to be used

in a digital computer program. Basically the paper developes

two vector equations which yield the changes necessary in the




Lagrange multipliers, v, and the A vector to drive FAT and M to

- zero. These equations are:
5V = -1, T,-1 _ -1_ T
M,F,, LMA G e (54)
-1 T T
SA = - 8 .
A= -F,, 7 (PF," +M, 8v) (55) 1
where
M
MA - 34 (56)
2°F
FAA = 3A2 (57)

and P and Q are scaling factors which control optimization and
satisfaction of the end conditions, respectively. The algorithm
to solve the suboptimal problem was written into computer code by
Johnson (5) and presented here as follows:

1. guess A and v;

2. 1integrate the equations of motion to obtain ¥ ;

3. compute M, MA, M, ., FA’ and FAA;

G PR Sulyne o PR wrs o b e F

4. select values for P and Q and compute 8V and SA;
5. set A=A+ 0A andv= vy ;
6. check convergence criteria and if unsatisfied go to step 2.

Guessing an initial A vector is relatively simple since the

elements of A are physical parameters of the problem. However,

Egprepe

finding an initial value for the V vector and picking P and Q are

not obvious. Hull and Edgeman (3) developed a first order-
approach which eliminates the need to guess V. The vector

equations for this purpose are:

Vo= (MAMAT)-]' ((Q/P)M - MAGAT] (58)

16




A = =~PF (59)

The first order information of Equations (58) and (59) can be
used to iterate to some region close to a solution. Then a
switch can be made to the second order method (Eqs (54) and (55)) for
quicker final convergence.
In this study the value of Q remained fixed at (1) throughout
the iteration. The optimization weighting factor was initially
set small and allowed to increase until the norm {‘GA!‘ began to
get too large. If SA becomes too large, the iteration process
may skip over the solution and increase convergence time or prevent
convergence completely. When a solution is eminent, P is set equal

T
H

to one and norms I[FA and ||M|| are monitored. When they

are less than some small positive number, convergence is achieved.

T T




V  Solving the Minimum Turning Time Problem i

The solution of the suboptimal control problem is

z' sufficiently complex to require the use of numerical techniques.

In order to implement these techniques, the optimal problem
defined in an earlier chapter must be adapted. In this chapter

{ the equations of motion are presented in their final form, the

control variables are discussed further, and the numerical methods !
used to implement the algorithm in Chapter VI are specified. j
!

Equations of Motion

One step of the suboptimal control algorithm requires the
equation of motion to be integrated from t = 0 to t = tf.
However, the final time is an unknown in the problem. For 4

convenience, the time can be nondimensionalized as

T. L (o5 Tty (60) !
£

Then the time dependence in the equations of motion can be

eliminated by transforming the equations to functions of the non-

dimensional time,T. By the use of the chain rule, i

. _dX _dx drt

dX ,1
X'E'ﬁ?ﬁ?'?ﬁ(t_f) (61)
oY
d .
d_}T{ - t.X (62)

The other variables in Eqs (7) through (12) can similarly be )
transformed. Doing this and substituting the expressions for
aerodynamic forces, atmospheric parameters, and control variables

the equations can be rewritten as:

ax t VcosYcos X (63) J

dr 4




dy

ar = thcosYsinx (64)
dH
It thsinY (65)
%¥ = Cf{48.261ncosa - [1.4917::10-5 + 9-3238x10'402

+ 6.9547x107% |£|][1-6.8823x10" %) 4 2233y?

- 32,174 sin"} (66)
ax _ ¢
a Vecosy [48.261n sina siny - 16.087gcosy

+ 3.7295x107>(1-6.8823x10°n) * - 23332 g1y ] (67>

d = “f [48.2617 sinacosy + 16.087rsiny
darv \'

+ 3.7295x10 > (1-6.8823x10" 1) 4 - 2353y2, cos
~ 32.174cos¥] (68)

The Control Variables

Equations (24) and (25) give the ranges of the thrust and

sideforce controls respectively. The angle of attack is limited

by either one of two constraints. For speeds below the corner
velocity, it is bounded by the maximum 1lift limit given by

£ 0.2 radians (69)
For speeds above the corner velocity, the angle of attack is
limited by the maximum load factor.

@ S 1.2 (70)

Substituting the relationship from Equation (17) yields

040V SC
7

L s 722 (71)
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Further substitution of the known parameters simplifies
Equation (71) to

a s 62286.8
o V2

(72)
Thus, Equations (69) and (72) form the complete boundary for angle
of attack as shown in Fig 1. The corner velocity is defined as the
velocity at which the 1ift limit equals the load factor limit and
can be calculated by equating Equations (69) and (72).

_ 62286.8

Gy 2
vC

0.2 (73)

or

v, = 558.060-% (74)

The corner velocity plays an important part in a minimum time
turning maneuver and is discussed further in Chapter VI.

The constraints on thrust, sideforce, and angle of attack are i
brought into the problem when the optimization algorithm causes the
controls to exceed their limits. When this occurs, the control is
set equal to its limit. In addition to limiting the control variable
itself, the effect on the optimization routine must be eliminated if
a convergence is to be attained. This is done by checking the sign

of the FA terms for each limit bound control. A negative FA term

indicates the control must be increased to drive FA to zero. But, if
the control is already at its maximum limit, FA cannot be driven to
zero. For these cases the effected control is no longer a variable
in the problem because its value 1s fixed at the maximum or minimum

values, Therefore, the matrices used to calculate § A and§v are

computed without the presence of that control,

PIRE P
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Numerical Forms for the Control Variables

In this study, all control variables are described by
Chebyshev polynomials with T as the independent variable. The

polynomials, Ti for i = 1 to 1 = 4 are

Tl =] (75)
T, * 2r-1 (76)
T, = 8t% - 8t +1
3" - 77)
3 2
T4 = 3217 ~ 48Tt° + 181 -1 (78)

The control variables are then described by
NMu
y = L BT (79)
k=1 k'k
NPI
m = LI CT (80)
fm] L 2

NA

a =L DT (81)
mm
m=1

NS

I =L
EnTn (82)
n=1

where B, C, D, and E are the unknown coefficients and NMu, NPI,

NA, and NS are the number of coefficients for‘u, T, &, and I
respectively. It should be mentioned that Johnson's results (5)
show little changes to either the control time histories or the
turning times for controls descirbed by more than four coefficients.
For this reason the control equations in this study were limited to
third order. The actual values and number of coefficients

representing each control is discussed in Chapter VI.
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Numerical Methods

The numerical algorithm used in the suboptimal control approach

requires the matrices M, MA’ M,.» F,, and FAA to be computed. From

A

Ref 3:484, FA and FAA can be calculated from

F, =G, +vM (83)

A AT VTa

- v v

FAA GAA + IMAAI + ZMAAZ (84)
Since G = tes GA and GAA can be analytically determined, M, MA’ and
MAA are the only unknowmns.

To evaluate M, Equations (63) through (68) can be integrated
from T= 0 to T= 1. The MA and MAA are computed by a central
difference numerical derivative technique. This technique requires
the individual elements of A to be perturbed both positively and
negatively one by one. After each perturbation the equations of

motion must be integrated from T= 0 to T= 1. The MA is

calculated by:

M, = M, -M_ (85)
n 26n

where MA are the two MA elements calculated by perturbing the nth
n

element of A. M and M_ are the final conditions computed by

changing An a small amount, Sn. The second derivative is computed

similarly by:

oM -2MM

M (86)
Ah Am 3n2
when n = m and,
, M-H- -M+_-M_+ +M o
A_A

n m 45n8m
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if n # m. The two subscripts indicate two elements. An and Am must

be perturbed both positively and negatively. The equations of
motion then must be integrated for each combination of An and Am
although the MAA matrices are symmetric. The total number of times
the equations of motion must be integrated for one iteration of the
algorithm is then given by:

N = Jg(n’4nt3) | (88)
where n is the number of elements in the A vector and can be
calculated as

n =1+ NNV + NPT + NA + NS (89)
From Equation (88) it is apparent an efficient numerical integration
routine is imperative. A fifth order, Runge-Kutta integration
routine with variable step size is used in this study. Another
problem which influences the integration routine is the discontinous
slope of the angle of attack limit at the corner velocity.

If the velocity traverses the corner velocity as the equations of
motion are integrated, small inaccuracies occur due to the angle of
attack limit changing across the corner velocity. These inaccuracies,
while not severe when compared to the absolute values of the state
variables, are large enough to prevent the optimization algorithm
from converging to an answer. Therefore, the step size must be
controlled as velocity approaches the corner velocity. But, since
the variable of integration is nondimensional time, T, an iterative
procedure is required to find the T at which velocity equals the
corner velocity. Once the corner velocity is passed the integration

routine can be allowed to optimize step size to minimize computation

time.




VI Results
! - The results of this study are divided into two parts. The

first part discusses the effects of sideforce on the minimum turning
time problem. The second part shows the results of attempting
to match the qualitative data presented by Well and Berger (7).

In all cases, two of the controls stayed consistantly against

their limits. The angle of attack always migrated to its limit of
0.2 and I always went to the maximum negative limit of -1.0 when

that control was included in the problem. For this reason, these

two controls were represented by constant coefficients only

instead of higher order polyﬁomials. This greatly reduced the
number of centrol coefficients and sped up convergence time. One
other'varéayle, thru§t, was limited to a single coefficient. Though
Johnson's results (4:61) concluded a near'bang-bang type control for

thrust yields smaller turning times, real world engines have finite

spool up and spool down times. Therefore, the short duration of the
maneuver would not realistically allow large excursions in thrust.
In addition, it was felt the computation time could more

constructively be spent investigating the effect of sideforce if

thrust remained constant throughout the turn. The plot in Figure 2
shows the optimal value for the thrust coefficient as a function of
initial velocity for the case where all controls are represented

by single coefficients. Values for thrust are also shown for
variations in aircraft parameters such as T/W and the drag due to

11ft coefficient, Kl. These parameter variations are discussed

later in this chapter.
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The Effects of Sideforce

The effect of sideforce on turning time is shown in Figure 3.
The graph shows that sideforce has more influence on the final time
the farther the initial velocity is from the corner velocity. It also
shows that even if the turn for a conventional aircraft is initiated at
the corner velocity, which is the speed that yields the quickest turn,
the use of sideforce reduces the turning time though not very much.
The reason for this can be seen in Figure 4. The presence of a direct
sideforce generates a sideslip angle. This sideslip angle then reduces
the angle through which the velocity vector must be turned by conven-
tional means. Hence, the turning time is reduced. One would assume
that more sideforce would generate more sideslip and thereby reduce the
turning time even more. Figure 5 illustrates the effect of various
values of maximum sideforce up to one "g" lateral acceleration. The
changing slope of these curves indicates that even greater benefit
can be realized if the sideforce is allowed to increase above the one
"g" limit shown in Figures 6 through 8. If the specific energy is

given as
v2
ES = (h + —z—g' (90)

where g = 32.174 ft/secz, then the change is specific energy during
the maneuver can be calculated

2 _ .2

- _ - _ (v )
E E E (hf h1)+ f i (91

f i 2g
where subscripts i and f denote initial and final conditions respective~
ly. Values of AES are plotted as a function of initial airspeed

both with and without sideforce in Figure 9. As can be seen at the

low initial speeds, an aircraft using sideforce gains less energy during
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the turn. This 1s apparently caused by the added induced drag of

the sideforce generator. And, since the thrust control is against
the upper limit, no additional thrust is available to counteract

the additional drag. Likewise, the high initial velocity case shows
a slight loss of energy due to sideforce. 1In this case the thrust

is at its lower limit in order for the aircraft to quickly slow to
the corner velocity. In this respect the added drag due to sideforce
aids the deceleration, but it also causes a slightly higher energy
loss.

In summary of the primary function of sideforce, Figure 10 shows
the percent of turning time saved by the use of direct sideforce.
Additionally, the control coefficients, final time and change in
specific energy are tabulated in the appendix.

Variations in Parameters

The general results given by Well and Berger (7) indicates
there exists some initial velocity below the cormer velocity for
which the optimum maneuver is a split-S. That is, a roll of 180
degrees followed by a pull through in the vertical plane. The
strategy in this technique 1is to use gravity, in conjunction with
thrust, to accelerate the aircraft to the corner velocity as quickly
as possible. And, as can be seen in Figure 3, the aircraft which
can get to its corner velocity the quickest and maintain it will
complete the turn the quickest. On the other side of the corner
velocity, Well and Berger (7) found for some initial speed above the
corner velocity, the optimum maneuver will be a vertical pull-up. The
physical reasoning again Being to use gravity to help slow the aircraft

to the corner velocity.
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The curves in Figures 11 and 13 show the bank angle time history,
the vertical plane trajectory, and the altitude/velocity trajectory,
respectively. Of particular interest is Figure 12 because it
indicates the turn is performed in nearly a constant plane. As can
be seen, even for the wide variation in initial velocities, the plane
of the turn approaches vertical only for very low or very high initial
airspeeds. Extrapolating from the values of Figure 12 indicates the
lower velocity would be well below stall speed (256 ft/sec @ h =
13,990 ft) and the upper velocity must be far into the compressible
flow region where the aircraft model is inadequate. The reason the
maneuver plane angle varies so little with initial airspeed can be
seen in Figure 14. This figure shows velocity and flight path angle as
a function to time. In the beginning of the turn, the flight path
angle is negative and the aircraft is accelerated toward the corner
velocity with the aid of gravity. Upon, or slightly before reaching
the corner velocity, the optimal solution indicates Y should bottom out
and become more positive in order to prevent the aircraft from acceler-
ating too far past the corner velocity. If the plane of the turn were
steeper, the Y curve in Figure 14 would become more deeply cupped and
would increase the acceleration due to gravity during the initial part
of the turn. With the increases in acceleration, however, the corner
wvelocity would be attained quicker, much before the Y curve bottomed
out. 'lence, the aircraft would be accelerated well beyond the corner
velocity thereby increasing the turning time.

In an effort to try and match the general results of Well and
Berger and represent an aircraft of more modest performance, the

available thrust was reduced by half. This would force the optimiza-
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tion technique to use gravity more heavily and hence steepen the maneuver
pyane gnglg: The altitude/crossrange trajectory is shown in Figure 15.
In comparison to the curves for the nominal aircraft in Figure 12, the
turning planes are steeper. However, they still do not approach
vertical for velocities within the scope of the aircraft model.
Also note that changing the maximum thrust limit does not affect the
high initial velocity case since the thrust is set to zero
throughout the turn. One explanation for the weak effect thrust has
on the turning plane can be seen Figure 16. This plot shows the drag
to weight ratio of the aircraft for a given normal load factor as a
function of velocity. The two horizontal lines at values of 1.5 and
0.75 represent the thrust available to counteract the drag. It is
apparent that the nominal aircraft model requires very little
thrust to maintain even its maximum load factor. Hence the aircraft
tended to use its large excess thrust to attain corner velocity without
much dependence on gravity.

A survey of similar aircraft was made to determine if the drag
model was unrealistic., The drag polars in Figure 16 show ;he nominal
model and a more realistic one derived from actual data. It is

interesting to note the form drag or CD is the same in both cases.
)

However, the drag due to lift coefficient, Kl, was increased by
more than four times. This change greatly affected the drag curves
of Figure 16 as shown in Figure 18. Again the bank angle time
histories, vertical plan trajectories, and altitude/velocity
trajectories are illustrated in Figures 19 through 21. Only the

thrust to weight ratio of 1.5 was used with the new drag model.
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But Figure 20 shows that the turning plane is steeper for the

low speed case and a vertical optimum turning plane is possible for
a slightly slower initial airspeed. For the high speed case, the
drag actually helps slow the aircraft and hence reduces the plane
angle. Therefore, for the optimum maneuver to be a half-loop, the

initial airspeed must be far beyond the upper bound of this study.
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VII Conclusions and Recommendations

The conclusions on the benefits of using direct sideforce to
reduce turning time based on the results of the previous chapter
are:

1. The use of direct sideforce reduces the turning time from
1Z to 3Z.

2. The further the initial airspeed is from the corner velocity,
the more the turning time is reduced.

3. 1In all cases considered, the optimal use of sideforce to
minimize time is to use maximum sideforce for the full duration
of the maneuver.

4, The additional energy gained or lost due to the use of
sideforce depends on the initial conditions of the maneuvers as
well as the characteristics of the aircraft.

From these conclusions it appears the use of direct sideforce
is an effective way of reducing the turning time; however, the
reduction is not large for the conditions studied here. But, under
certain circumstances the reduction in turning time is accompanied by
a loss in energy, therefore, judgement would have to be exercised by
the pilot as to whether the energy loss could be tolerated.

The secondary effort of attempting to match the results of
Well and Berger (2) was moderately successful. It appears the trends
are the same in that turns initiated below the cormer velocity tended
to use gravity to accelerate to Vc and those initiated above the
corner velocity tended to do the opposite. However, for the cases

and aircraft parameters considered here, no threshold velocities

for vertical turning planes could be found.
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An aircraft's velocity vector can only be turned by an

acceleration componant normal to the flight path. A normal force
componant, therefore, is necessary. And, the larger this force,
the less time it requires to perform a turn. There are two ways to
increase this normal force. The first is through the use of speed
control. This technique accelerates the aircraft as quickly as
possible to the airspeed which maximizes the normal force of lift.
An example is the use of reversil:le thrust by Johnson (4). Although
the thrust does not directly aid in turning the aircraft, it
accelerates or decelerates the aircraft to the velocity which maximizes
lift, thereby minimizing turning time. The second way of increasing
the normal force is by applying an additional force generator such as
sideforce fins or vectored thrust. This technique can directly
increase the resultant normal force over a wide range of velocities.
This conclusion is supported by Figure 3 where the final turning
time is reduced nearly uniformly over a wide initial velocity band.
It is recommended that the minimum time to turn problem be
considered for an aircraft which incorporates both forms of control.
The longitudinal acceleration could take the form of reversible
thrust or aerodynamic fins which could be symmetrically deployed.
The normal acceleration could be augmented by either a vectorable
nozzle for direct lift from the engine or by aerodynamic sideforce

surfaces.




Appendix A: Data Tables
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FORMAT(1Xy2E15.7)

- e ey

sad - T

-

VETLES A

on

1Y




e s i et

—— p _ L R o o .
fadnat & (oo it 135 e 1

g s A

10(€)AD = 0D ¢ 10+(1)03 = 109
(1)942997 + (1)1C435) + 1

(1094253 ¢+ (1)€43€D & (DITH4+TD ¢ (1INNAX = (1)Y 00T
- N¢T=]1 001 DQ

"

10%(9)HD = 93 % 103%(GIHD = G2 § I0s(%)HD %)
102(€)H) = €0 ¢ IQOs$(1)HD = T)

(FI4EXECSTIIAINTG VD
(1YUNax « 1

111634696 ¢ (1)%J4598 + (1)1€34€99 + (11242298 + (1)13d%190 = (1) X Oh
M¢I=] 9% Q@

104(9)H4TY + | = S
102054918 = 699 ¢ 102(%*9)4 = %94

1040£49)8 = €98 8 10¢(72%9)0 = 209 € 10e(159)7 = 19¢

(G4¢X¢S1IATYIQ VD
(1YWNOX ¢+ (1)h32%G68 + (T)FI25GR 4+ (112242258 + (1)T41668 = (1)) G%

N¢T=1 <% 00
104(SIHAIV + 1 = S1

10+(%*6)9 = &G9Q
10+4(€6)9 = €60 3 10#(2°G)8 = 268 ¢ 10s(T1°G)P = 16F

(L46XeSLIATINI0 V)
(1IWNGX + (T)Fd2648 ¢ (T1)2442%8 ¢+ (1)Td415%9 = (1)X &Y

N¢T=1 &% 00
10 MHdIY + 1 = S}

10+(€%%)8 = €50 ¢ 104(2°%)8 = 258 ¢ [03(T¢H)IR = TH9
(E4x*S1IAIN3C TIVD

(IINNGX + (11244268 & (1)1d#1€8 = (1VX €%
NiT=] €% 00

104(EIHdIV + 1 = S}
102(2%C€)9 = 2€0 ¢ 1Q0+(T9€)F = TEEQ

(245%sSTHr1¥3a VIv)
(IIWNAY._ ¢ (I)T42128 = (1)X 2%

Né1=] 2% OO
104(2)H4V + 1 = S§

10+(1¢2719 = 17¢
INNTINDD Ot

e i r——————




YEIth INTNd (RC1°n3°C) 4]

e o _ )¢ =104 miMI¥d (0°T°R2°CS) 4] € $01
N=17 7
— . . IS S 43 S A _
=17 1
S AU L0 S L) —_—
T 0 09 (0°03°NY) 41 001

1]¢=4{0¢ 6hH
D€ D1 09 (8-30°T1°*39°(7213N)¥SBVISI
(120 ~27130) /€112 17130)0)5¢EYV=10
NT D1 09 (2SS°D3°15S)141
666 01 09 (Z2SS*INISS*ONVY*F=30°T°1°(1130)1S8V )41 c6
(23060 1IMNDTS=2S¢
(X1330'0*TINDIS=1SS
{%)IX=-AD=27130
o (9G2°H22((E)X26900000°~0°T}/06°70ET1E)LX0S=AD
T19+1=UNn01L 06
03SSVYd S1 3IINVMITOL I
INNTINDD ¢
NE 01 09
T ¢« %] = ¥1 ¢
€267 (IN1-¥3¥141 L]
2°e21Q021i0 = 10O
371708 = 1@
10 = 110
072=-30°T + 33 = ¥3
INNTINDD 061 og
€3 = ¥3 (¥y3°19°S3)41
(V/7((r194+49CD2 + ()S54%60D 1
+ (F)H4s%0) 4+ (T)E4+FQAD ¢+ () T42T0D))S0Y = S32
06T 01 09 (SddI*1°tv)ISHV)IS)
{(r)x = v <l
N¢T=F 0T DO
‘ N°0 = ¥3
718 431S M3IN JIvwILS3 3
13409300 = 900 ¢ 10«016)00 = 602 ¢ 10+4%)3D = %02

68




(G 0l

N¥NL3Y .
(VYA (1)IXA=¢1)¥Q 1

°o¢1=1 1 na
(Y IX/ULLGIXIS0D8H2T°ZC-(YNISNT2IIVa?

TAa(b)IXAMNYNS (VOINTISHSTS4280°QT+(VARISOI4(IIVINISTds192°8h)=(CI X0 o1

LS XIS (L)X /LLVYEIMNISSdTIVL?

Cex{b ) X2MDYSO4(VR)ISOIHDIS2LR0°OT=(VEINISHUIWVWINISR]Id21972"a0)=(9)X(
CISIXINTS#Y2T°2€=222(b)XAMNAAV=(JIVIS0IS1d2T92°Ah=(H) XA

(ISIXINTISH{HIX=LEIXO
({SIXINTIS2€(G)XISOIs (M) y=12) X0 LA

((9IX)SOD#{ (GIXISNI«(HIX=(1)IXO
GH2LEON 0=

(91S)SAVS2LE2200000°424241V4T5201%0C 049916510000 N=V

(MO¥EXCL1¢9T1SE4AVETIdEVEIDTIVD T1TV)D

£5G2H4s((€)X2E28RI0000N0~0°T)=M]V S
3IVEOTS 1deVa/TISIW/NDRKHED

LOLCVYV ODSddO NN TT9S NS JC  JICSNF YN [ INPHEN/ISTW/NOWRO D

(61101¢€22)IVY4(9IX0CL9)X NNISHAWIQ

N (XOSXELIATHIO SNTLNCEANS !

R NIV ER

INT¥d (0°T1°D3°S)d1 3
& C1 D9

T + SI = S1 9 oT1
94Gtg (1~34)41

110 + 1 = 1}
INKTINDDY 091

69

e D4,



g i e YT - T~ e T A T TTr—— a E——

GN3
NYNLAY

- T T T T pe1=s=nn (D°Z=-"D3°515)41
0°T=00 (0°2°73°21S)41

G*2=291S (0°2-°17°91S)41
0°Z=91S (0°2°12°21S)131

Gt

(111014 (VNS TdNHAN+T+T)IVV+9TC=9TS
SNST=1 9 DC

L 01 09 (0°n3°Ssn)dl
O°T=dd (W]1T4v°03°4I%14]}

41

WI3v=4IV (K1Y L0° 4V )41
(1)1022(1dN4HAN+T+TIVY2 4TV =41V

YyNe¢T=] ¢ 0OQ
INNTINDD

(M0HaZ22(H1X)/8°9R0279=WITJV
Y 01 N9 (2A°37°(H)1x)d1

1'X4

(G*NesMOY)/T1°3CG=DA
2°0=W141V

L1IWIY XvYWD
T—-=NKN (0°0°37° 140141

0c

T=NN (0°1°39°1d)31
0°1=1d (Nn°T°19°1d)41

0°0=1d (N*0°17°14d)3J!
(111014 (HdN+1+T)VVe]d=]1d

IdN*T=] € DO
1SNY¥HL

61

(IV104a(T+T)VYVevH=vVE
HdN¢1=] 2 0OC

0=NN
0°0=dd

01

N°0=00
0°0=1d

0°0=91S
0°0=41Y

n°c=vy
(101¢1)ARIHY V)

101 VVODOSdd NN 1TEGENE [ OO JICSNEYNSTINSHAN/ISTH/NDWHOD
(S)IPLS(ZZIVYVS(9)X NNISNINIC

(VONOXS 1991Cs 4w e 140V @1DTYD INTLINONGNS

70




an3
NNN13Y
0°T+1T1)740°2€—(7)740°00T+(€E)V740°962-(%)7+0°82T=(6)101
0°1-(1)740°81482)7+0°8%~-(£)1740°2€=(%)101
0°T+(1)740°8=(217+0°8=(€}101
0°T-(Y)1240°2=€20104
0*T=(1)101

(V)71 2=¢112 1
1-1=X
Y¢2=1 1 _0G
1=11)7
(5)7¢¢G6)11040 NOTSNIWLQ
(101¢1)A93HD INTLNONANS




B

Bibliography

Miele, Angelo. "Theory of Flight Paths," Flight Mechanics, 1.
Massachusetts: Addison-Wesley Publishing Cowpany, Inc. 1962.

NASA. U.S. Standard Atmosphere. Washington, D.C., December 1962.

Hull and Edgeman. "Suboptimal Control Using a Second-Order
Parameter-Optimization Method," Journal of Optimization
Theory and Application, 17 (5/6): 482-491 (December 1975).

Humphreys, Hennig, Bolding, and Helgeson. - "Optimal 3-Dimensional
Minimum Time Turns for an.Aircraft,” The Journal of the
Astronautical Sciences, XX (2): 88-112 (September-October
1972).

Johnson, Capt Thomas L. Minimum Time Turns with Thrust Reversal.
MS Thesis, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB OH, December 1979.

Peterson, 1Lt Steven. Time Constrained Maximum-Energy Turms.
MS Thesis, School of Engineering, Ai~ Force Institute of
Technology, Wright-Patterson AFB OH, vecember 1980.

Well and Berger. '"Minimum-Time 180° Turns of Aircraft," Journal
of Optimization Theory and Application, 38 (1): 83-96
(September 1982).

Nicolai, Leland M. Fundamentals of Aircraft Design. Fairborn, OH:
E.P. DOMICONE, 1975.

72




e o A < ¢ L

e e e e e s 8 £ i A AU B A LS Mt 2o -

4

} 2
>,

VITA

Michael R. Brinson was born on 9 November 1953 in Franklin,
Indiana. He graduated from high school in Greenwood, Indiana in
1972 and attended Purdue University from which he received the degree
of Bachelor of Science in Aerospace Engineering in May 1977, After
graduation he was employed by the USAF as an aeronautical engineer in
the Aerodynamics and Performance Branch, Flight Technology Division,
Directorate of Flight Systems Engineering at Wright-Patterson AFB,
Ohio until entering the School of Engineering, Air Force Institute of

Technology, in June 1982.

Permanent Address: 250 Wistowa Trail

Beavercreek, Ohio 45430




SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

© REPORT SECURITY CLASSIFICATION
H UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

28 SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release distribution

2b. DECLASSIFICATION/ODOWNGRADING SCHEDULE

unlimited

4. PEAFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GAE/AA/83D-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Sa. NAME OF PERFORMING ORGANIZATION
School of Engineering

b. OFFICE SYMBOL
(If applicable)

AFIT/EN

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

75. ADDRESS (City, State and ZIP Code)

8s. NAME OF FUNOING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicabdie)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT
ELEMENT NO. ) NO. NO. NO.

TASK WORK UNI1

11. TITLE (Include Security Classification)

See box 19

12. PERSONAL AUTHORI(S)
{ Michael R. Brinson, B.S.

.8 TYPE OF REPORAT 13b. TIME COVERED
MS Thesis FAOM TO

18. SUPPLEMENTARY NOTATION

COSATI CODES

GROUP
02

SUB. GR.

0l

18. SUBJECT TERMS (CofliGsioiHesttie {f e Qibarss wild identify by diock number)
Aircraft, Jet Fighters

THESIS ADVISOR:

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
TITLE: B{IINIMUM TIME TURNS WITH THE USE OF DIRECT SIDEFORCE

George W, Watt, Lt Col, USAF

14. OATE OF REPORT (Yr. Mo., Dey) ] 15. PAGE COUNT
1983 December 1 83
gy 1Y,
! % B WCLAUIR s 3 JAN 1564
ean {.r i, . ., on clivelona
RTINS TV RN PN s., " ui"D:v.lopﬂuﬂ -

“* OISTRIBUTION/AVAILABILITY OF ABSTRACT

= ¢CLASSIFPIED/UNLIMITED a same as re1. (J oricusans O

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22s. NAME OF AESPONSIBLE INDIVIDUAL
George W. Watt, Lt Col, USAF

22b. TELEPHONE NUMBER
(Inciude Ares Code)

313-255-4478

22¢c. OFEICE SYMBOL

AFIT/EN

EDITION OF 1 JAN 73 (S OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

TP R ST




SECURITY CLASSIFICATION OF THIS PAGE

)

Abstract

The objective of the study is to find the optimal trajectories

R RN Ry

and corresponding minimum turning times for a high performance

Y

aircraft with and without direct sideforce to perform a prescribed
turn. These trajectories and times are then compared to evaluate

the benefit of direct sideforce. Optimal control theory is applied ﬁ

to solve the minimum time to turn optimal control problem using a H
suboptimal control problem approach and a second order parameter
optimization method.

The results indicate that the use of direct sideforce is
beneficial in reducing turning time. 1In addition, the use of
sideforce causes a smail loss of energy for initial velocities

lower and much higher than the corner velocity.

SECURITY CLASSIRICATION OF THIS PAGE ; .

Y . [RRp— [
- @'l N r . - s .
Rekaod 0 - N - T o . - P . [ 23 f .
PR b < il bl e o Y —_— - K] » . -
o2 2 y ; E it inke AN i & . e g B e o "
2he . tea] ERERG, ST TN i







