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Abstract

The objective of the study is to find the optimal trajectories

and corresponding minimum turning times for a high performance

aircraft with and without direct sideforce to perform a prescribed

turn. These trajectories and times are then compared to evaluate

the benefit of direct sideforce. Optimal control theory is

applied to solve the minimum time to turn optimal control problem

using a suboptimal control problem approach and a second order

parameter optimization method.

The results indicate that the use of direct sideforce is

beneficial in reducing turning time. In addition, the use of

sideforce causes a small loss of energy for initial velocities

lower and much higher than the corner velocity.

p

viii

. 4



I

MINIMUM TIME TURNS WITH DIRECT SIDEFORCE

I Introduction

Background

In air-to-air combat, the aircraft with a higher turn rate

capability has an advantage. The turn rate of a conventionally

controlled aircraft is completely determined by specifying the load

factor and velocity. The maximum turn rate occurs at maximum load

factor and one particular airspeed. The maximum load factor, however,

is bounded by two limits, a maximum structural limit and a maximum

lift limit. Since these limits are heavily influenced by other design

1 requirements, aircraft designed for similar roles tend to have

similar maximum turn rates.

One possible way of inproving turning time without sacrificing

performance in other design areas may be through the use of conventional

control such as direct sideforce control. The Air Force is currently

flight testing the Advanced Fighter Technology Integrator (AFTI)

aircraft which has the capability of generating both sideforce and lift

without the accompaning yawing and pitching moments required by

conventionally controlled aircraft.

Another important parameter in air-to-air engagements is specific

energy. Since maximum performance turns generally cause a loss of

energy, the presence of sideforce may minimize the loss or even allow

*a gain of energy.



Several studies such as Humphreys, Hennig, Bolding and

Helgeson (4) and Well and Berger (7) have been published on the

optimal trajectories and control schedules of conventional aircraft

necessary to minimize turning time. However, none have considered

the use of a translational force such as direct sideforce. This

study, therefore, considers the effects on the optimum turning

maneuver of applying direct sideforce.

Problem Statement

The problem is to find the control schedule which will minimize

the time to maneuver a high performance aircraft from a set of

initial conditions to a set of prescribed final conditions.

The controls to be optimized are bank angle, thrust, angle of

attack, and sideforce. Additionally, the controls must not cause the

aircraft to exceed its capability or design limits. These limits

include maximum angle of attack or buffet limit, maximum structural

load factor, minimum and maximum thrust, and the maximum allowable

sideforce.

The objective of this study is to find the optimal controls,

subject to constraints, which will minimize the turning time both

with and without direct sideforce. From this study, the benefit of

sideforce will then be evaluated.

Scope

The scope of this study is to find the trajectories which

minimizes turning time for a variety of initial conditions. Addition-

ally, the scope involves determining the effects of sideforce applica-

tion on turning time.

2
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Assumptions

The assumptions made in this study can be divided into two

parts, those used in modeling the aircraft and those made in

deriving the equations of motion. First, the aircraft is modeled

as a point mass with three degrees of freedom. This simplification

is common for the type of trajectories considered in this study

(4:91, 7:84). The fuel burn during the maneuver is considered

negligible due to the short time it takes to complete a turn.

Another simplification is that the error from the thrust vector

not being colinear with the aircraft centerline is negligible. The

coefficient of lift was assumed to be a linear function of angle of

attack up to the stall limit. The drag coefficient was modeled as

a function of the square of the lift coefficient and a linear

function of sideforce. Standard incompressible aerodynamic theory

shows these assumptions to be valid (8:11.8) The choice for a linear

sideforce term in the drag equation is substantiated by windtunnel

data from a similarly configured experimental Air Force aircraft.

The maximum thrust was considered constant in this study. Since

the maneuver is carried out within a narrow altitude band, the air

density, and hence thrust, remains nearly constant.

The equations of motion were developed (1) assuming a flat

earth with a constant gravitational acceleration. All atmospheric

data were obtained from the 1962 Standard Atmosphere defined by NASA

(2). In all cases the turning maneuver was initiated from straight

and level flight, but the control variables angle of attack, band

angle, sideforce, and thrust were allowed to vary instantaneously.

S This simplification was made to reduce the problem to manageable

3



complexity and allow the effects of different control schedules

to be evaluated without contamination from a arbitrarily assumed

generic control response data.

Approach

To determine the effect of sideforce on turning flight, a

realistic aircraft model must be derived and the parameters of the

maneuver determined. The particular aircraft model and two turning

situations were taken from Johnson's study (5:7-8). This was done

in order to check the optimization computer code written by Johnson

(5) after modification to include sideforce. From these two base-

line cases, without sideforce, various parameters of the aircraft and

maneuver were varied. These parameters include initial airspeed,

thrust to weight ratio, and drag due to lift coefficient. The air-

craft parameters were changed from the basic model in an attempt

to compare the results with the qualitative conclusions of Well and

Berger (7).

The following sections will define the turning problem,

summarize the optimal and suboptimal control approaches, and

discuss solutions and results.

Summary of Current Knowledge

Henning, Bolding, and Helgeson (4) generated several minimum

turning time trajectories for a generic aircraft without sideforce.

Results weil presented for two initial velocities, several

maximum thrust to weight ratios, and several final conditions. For

the study, only the cases with a final heading of 180 degrees and

a zero final flight path angle were useful for comparison results.

S
4
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Johnson (5) and Peterson (6) use the results from two cases

in (4) to verify a suboptimal numerical technique for finding the

optimal control schedules required to minimize the turning time.

Well and Berger (7) used a different optimization technique to

obtain general trends in optimal controls. One parameter of

interest is the inclination of the plane in which the turn is

performed. Well and Berger (7) show that for any initial velocity

below a specific value, the optimum maneuver is a vertical Split-S.

For initial velocities faster than some definable value, a half loop

manuever results in minimum time to turn. The optimum turning

plane varies between these two extremes for initial velocities

between the two key velocities. Unfortunately, Well and Berger

(7) did not provide the specific aircraft characteristics used to

generate their results. Although direct comparison of results

cannot be made, the general trends can be used to qualitatively

check the results beyond the two cases used by Johnson (5) and

Peterson (6).

5____ ____ ___ ____ ____ __ ____ ___



II The Minimum Time Turn Problem

In order to evaluate the benefits of direct sideforce in a

turning maneuver, it is first necessary to define a baseline from

which a difference in performance due to the sideforce can be shown.

Establishing the baseline involves defining the turning maneuver

as well as developing the governing equations of motion and a

realistic model of an aircraft.

The Maneuver

The initial conditions for all cases in this study are straight

and level flight at 13,990 feet. From these conditions and a

specified initial velocity, the aircraft turns to a final heading

of 1800 with a final flight path angle of zero.

Equations of Motion

The equations of motion for flight of a point mass aircraft

9 over a flat earth are derived by Miele (1:42-49) as:

X = Vcosycosx (1)

Y - VcosysinX  (2)

- Veiny (3)

Tcosecos4 - D - mgsiny - mV 0 (4)

TcoscsinC - Q + mgsimcosy + mV

(-icosucos + sinij) - 0 (5)

Tsinm + L - mgcosucosy - mV (xsinucosY + ycosp) = 0 (6)

Assuming the error due to neglecting the thrust sideslip angle

is small, then sint - 0, cosC - 1, and e -y. Substituting these

values into equations (1) through (6) and rearranging yields:

X - VcosYcosX (7)

6



Y - VcosYsinX (8)

h - VsinY (9)

V . g((T/W)cosy - D/W - smny) (10)

. -- 9 ((T/W)sinasin - (Q/W)cosu + (L/W)sinu) (11)
VCoaY
V cos ((T/W)sinccosp + (Q/W)sinu + (L/W)cosu-cosr)(l2)
V

These equations are written in the wind axes and model the

motion of an aircraft with respect to an earth fixed coordinate

frame. The state variables are X, Y, h, V, X, and Y., The control

variables are (1, U, T, and Q. New forms of the control variables

T and Q will be defined later. The aerodynamic forces of L and D

are discussed in the next section. The two variables, g and W, are

assumed to be constant during the maneuver.

Aircraft Forces

The aerodynamic forces of lift and drag can be expressed as

follows:

L - P6" 2SCL (13)
2

D - oVSCD (14)
2

Expressions for CL and CD can be assumed from their airfoil theory

for conventional aircraft. However, the sideforce in this study is

assumed to be generated by aerodynamic surfaces. Therefore, the

aircraft drag must include the effects of generating sideforce.

An expression for this effect was obtained from windtunnel data

of an experimental Air Force aircraft with similar characteristics

to the model used in this study. The expressions for CL and CD

thus derived are:

7



CL a CLQ (15)

CC K1C2L + K2Q (16)

Substituting these equations into (13) and (14) and dividing

by the weight for use in the equations of motion yield:

0= VS C a (17)

D 2o va

R-. (7V 2S 2
W 2W (CD + K1CL2 + K2Q) (18)

Finally, the thrust to weight ratio and the sideforce to weight

ratio are needed for use in the equations of motion. The maximum

thrust and the maximum sideforce are both assumed to be constant

throughout the turn. Therefore, thrust and sideforce can be

defined as:

T -T MAX iT (19)

Q Z QM r (20)

Now Ir and E become the control variables for thrust and sideforce,

respectively. Forming thrust and sideforce to weight ratios yields,
T T

T/W - TMAXiTI.() 'r (21)
WHA

Q/W - QMAX z (R) (22)
W W MAX

The actual values of the aircraft parameters used in this study

are listed below. In some cases the values for (T/W)A X and K1

were varied to show their influence on the problem. These special

cases are detailed in Chapter VI so only the nominal values are

listed here.

W *= 12,150 lb S - 237 sq.ft.

8 --



CLO = .2 radians

=5.0 aMAX

CD 0 .02 (L/W)MAX = 7.22

Note that the induced drag factor, KI, can be calculated for a

given aircraft geometry. Typical values range from 0.1 up to 0.3

for fighter type aircraft (8:11.9, E.7). A value of 0.05, therefore,

indicates this is a very low drag aircraft.

Atmosphere

A standard atmosphere defined in (2) was used throughout the

study. The density ratio is expressed as:

a =- (n g" 1-n-i (23)
RTo

where,

P - .002377 slugs/ft
3

go M 32.174 ft/sec
2

T - 518.688°R
0

n - 1.235
R - 1715 ft2 /sec2.R

The Control Variable Constraints

There are aircraft related constraints on all control variables

except bank angle. These constraints are the maximum lift limit,

maximum load factor, minimum and maximum thrust and maximum

sideforce.

The angle of attack is limited by either the maximum lift limit

or the maximum load factor, which ever is less. This effect on

maximum angle of attack is shown as function of airspeed in Fig 1.

( The velocity where these two limits meet is called the corner

9



velocity and is discussed in section V.

S
CLmax

VELOCITY V
C

Fig 1. Maximum Angle of attack vs velocity

The thrust is bounded on the lower side by the minimum thrust

which is defined as zero in this study. From this and equation (21),

the thrust control variable is limited to,

0 Sir n 1 (24)

Sideforce can be generated in either direction up to the

maximum value in equation (22). Therefore, the sideforce control

must fall in the range,

-! ' r 1 (25)

These limits and their effects on the problem are discussed

more fully in Section V.

1

10



III The Optimal Control Problem

The optimal control approach is discussed in this chapter

to define the basic conditions to be satisfied by the optimal

solution. The discussion also shows the complexity and the inherent

solution difficulties of the approach.

Optimal Control Problem

The optimal control problem requires finding the functional

ralationships for the control variables that will minimize the

performance index,

G - tf (26)

subject to the differential constraints expressed vectorially as

X = f (27)

where X is the state vector and f is the vector containing the

right side of Eqs (7) to (12). The problem is also subject to

the control constraints defined in the previous chapter and to the

final conditions expressed as:

M1 - Yf (28)

M2in Xf- 1800 (29)

Thus, the final conditions are satisfied when,

M . - 0 (30)
2

The Calculus of Variations is applied to find the necessary and

sufficient conditions to be satisfied by the optimal control

variables.

Conditions to be Satisfied

From Johnson's work (5:13-14) the augmented performance index,

J, is defined by:



J - G XT (f-X)dt (31)
ti

4.

4 where v and X are Lagrange multiplier vectors, then the variational

Hamiltonian, H, is expressed as

H - ATf (32)

The optimal controls, expressed vectorially as U, must satisfy the

first variational requirement or the Euler-Lagrange equations:

S = - -(33)

T DH T
X (H * " ) (34)

Uopt U (H) (35)

Equation (35) states that the optimal controls are those which

minimize H. The optimal solution must also satisfy the transver-

sality conditions and corner conditions:

H - Gt - 0 (36)

H - G - 0 (37)
f t f

XT+ G - 0 (38)
i x i

T
f -G - 0 (39)

(H) G t  0 (40)
c

A (kT) + Gx - 0 (41)
c

GV - 0 (42)

Explicitly solving the optimal control problem is at best

complex. If the controls intersect boundaries or are singular,

the difficulty increases. It is desirable therefore, to find a

12
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technique which wuill yield a reasonable solution. The Suboptimal

Control Method developed by Hull and Edgeman (3) fulfills these

requirements.

13



IV The Suboptimal Control Problem

The suboptimal control approach used in this study transforms

the optimal control problem into a parameters optimization problem.

This is accomplished by assuming a known mathmatical form with a

number of unknown constants for the control variables. This

technique is used by several numerical optimization methods

including the well known Raleigh-Ritz metho. and reduces the

problem to one of finding the coefficients which satisfy the

conditions of the problem.

If the unknown constants of the controls are formed into a

vector B, the controls can be written as

U - U(t,B) (43)

And, the vector of all unknowns in the problem can be represented

as
• lT

S•A - (tfB (44)

For any vector A, the equations of motion can be integrated from

t-0 to t-tf to yield a set of final state variables expressed

functionally as

Xf - Xf(A) (45)

Therefore, the performance index, G, as well as the final

conditions vector, M, are functions of the A vector only.

The problem is then to find the A vector which minimizes the

turning time,

G - G(A) (46)

subject to the equations of motion

- f(X,A,t) (47)

14



the physical control constraints and the final conditions,

M(A) - 0 (48)

Conditions to be Satisfied

An augmented performance, F, can be defined as:

F(A,V) - G(A) + V TM(A) (49)

Ordinary differential calculas requires two conditions to be

satisfied:

T TFAT(A,) - GA + vTMA - 0 (50)

FVT(Av) - M(A) - 0 (51)

where MA and GA are defined as

M a  (52)

G aG (53)

T
The gradient, FA , is a column vector containing first order

information or the slope indicating the change in F with respect to

changes in each element of A. FAT then reveals the direction which

A must change to drive F to zero. Since equations (50) and (51) are

the only two conditions imposed by the suboptimal control approach,

it is clearly much less complex than the optimal approach and

requires less knowledge of the peculiarities of each specific

problem.

Method of Solution

Hull and Edgeman (3) present a second order parameter

optimization technique and an algorithm ideally suited to be used

in a digital computer program. Basically the paper developes

two vector equations which yield the changes necessary in the

15
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Lagrange multipliers, v, and the A vector to drive FAT and M to

zero. These equations are:

Sv i (MA F AA-M T) -l (-PMA F AA-1F AT + QM) (54)

6A -_FAA-1 (PFAT + MATdv) (55)

where

M am (56)
MA - 3A

FAA  3A (57)AA 2

and P and Q are scaling factors which control optimization and

satisfaction of the end conditions, respectively. The algorithm

to solve the suboptimal problem was written into computer code by

Johnson (5) and presented here as follows:

1. guess A and v;

2. integrate the equations of motion to obtain Xf;

3. compute M, MA, MAA, FA , and FAA;

4. select values for P and Q and compute 6v and 6A;

5. set A -A + 6A andy- v+6v ;

6. check convergence criteria and if unsatisfied go to step 2.

Guessing an initial A vector is relatively simple since the

elements of A are physical parameters of the problem. However,

finding an initial value for the V vector and picking P and Q are

not obvious. Hull and Edgeman (3) developed a first order-

approach which eliminates the need to guess v. The vector

equations for this purpose are:

- (MAMA T)-I (Q/P)M- MAGA T (58)

16
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SA- PF AT (59)

The first order information of Equations (58) and (59) can be

used to iterate to some region close to a solution. Then a

switch can be made to the second order method (Eqs (54) and (55)) for

quicker final convergence.

In this study the value of Q remained fixed at (1) throughout

the iteration. The optimization weighting factor was initially

set small and allowed to increase until the norm 11AH began to

get too large. If 6SA becomes too large, the iteration process

may skip over the solution and increase convergence time or prevent

convergence completely. When a solution is eminent, P is set equal

to one and norms I IFAT I and Jimi are monitored. When they

are less than some small positive number, convergence is achieved.

17__ _ _ _ j
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V Solving the Minimum Turning Time Problem

The solution of the suboptimal control problem is

sufficiently complex to require the use of numerical techniques.

In order to implement these techniques, the optimal problem

defined in an earlier chapter must be adapted. In this chapter

the equations of motion are presented in their final form, the

control variables are discussed further, and the numerical methods

used to implement the algorithm in Chapter VI are specified.

Equations of Motion

One step of the suboptimal control algorithm requires the

equation of motion to be integrated from t - 0 to t - tf*

However, the final time is an unknown in the problem. For

convenience, the time can be nondimensionalized as

T (04 T 4 1 ) (60)
tf

Then the time dependence in the equations of motion can be

eliminated by transforming the equations to functions of the non-

dimensional time,T. By the use of the chain rule,

dX dX dT dX 1 (61)

X = -t dt ( t

or

dX
jT- tfX (62)

The other variables in Eqs (7) through (12) can similarly be

transformed. Doing this and substituting the expressions for

aerodynamic forces, atmospheric parameters, and control variables

the equations can be rewritten as:

dXX -tf VcosYcos X (63)

18
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~dy dY = VcosYsinX (64)

dr

H . tfVsinY (65)

d-V. t (48.261ircosa - [1.4917x10- 5 + 9.3238x10l 2

+ 6.9547x10I-8EI][1-6.8823xlO- hi4V2553V2

- 32.174 sin y} (66)

dX tf
- ., [4 8 . 2 6 lr sina sinu - 16.087zcosp

+ 3.7295xlO-3 (l-6.8823xlO-6 h) 42553 V2asinv] (67)

dY tf [48.2617 sinacosu + 16.087Esinp

+ 3.7295xlO-3 (1-6.8823xlO-6 h) 42553 V2cosgi

- 32.174cosyI (68)

The Control Variables

Equations (24) and (25) give the ranges of the thrust and

sideforce controls respectively. The angle of attack is limited

by either one of two constraints. For speeds below the corner

velocity, it is bounded by the maximum lift limit given by

a S 0.2 radians (69)

For speeds above the corner velocity, the angle of attack is

limited by the maximum load factor.

(t) S 7.22 (70)

Substituting the relationship from Equation (17) yields

poaV 2SCL 7.22 (71)

2W

19



Further substitution of the known parameters simplifies

Equation (71) to

S62286.8 (2

Thus, Equations (69) and (72) form the complete boundary for angle

of attack as shown in Fig 1. The corner velocity is defined as the

velocity at which the lift limit equals the load factor limit and

can be calculated by equating Equations (69) and (72).

0.2 -62286.8 (73)

or

VC 58.060-1 (74)

The corner velocity plays an important part in a minimum time

turning maneuver and is discussed further in Chapter VI.

The constraints on thrust, sideforce, and angle of attack are

brought into the problem when the optimization algorithm causes the

controls to exceed their limits. When this occurs, the control is

set equal to its limit. In addition to limiting the control variable

itself, the effect on the optimization routine must be eliminated if

a convergence is to be attained. This is done by checking the sign

of the F A terms for each limit bound control. A negative F A term

indicates the control must be increased to drive F A to zero. But, if

the control is already at its maximum limit, F A cannot be driven to

zero. For these cases the effected control is no longer a variable

in the problem because its value is fixed at the maximum or minimu,

values@ Therefore, the matrices used to calculate tS A and6v are

computed without the presence of that control.
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Numerical Forms for the Control Variables

In this study, all control variables are described by

Chebyshev polynomials with T as the independent variable. The

polynomials, Ti for i - I to 1 " 4 are

T 1 (75)

T2 - 2r-1 (76)

T 3 2 8T + 1 (77)

T4 - 32t - 48r 2 + 18T 1 (78)

The control variables are then described by

NMu
- k BT k  (79)

k-l

NPI
Ir - E C T (80)

NA

SL Z D T (81)
i mm

NS

E E E T (82)
n-in n n

where B, C, D, and E are the unknown coefficients and NMu, NPI,

NA, and NS are the number of coefficients for V, w, a, and E

respectively. It should be mentioned that Johnson's results (5)

show little changes to either the control time histories or the

turning times for controls descirbed by more than four coefficients.

For this reason the control equations in this study were limited to

third order. The actual values and number of coefficients

representing each control is discussed in Chapter VI.
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Numerical Methods

The numerical algorithm used in the suboptimal control approach

requires the matrices M, MA, MAA, FA , and FAA to be computed. From

Ref 3:484, FA and FAA can be calculated from

FA = GA + TMA  (83)

FAA - GAA + \1MAA1 + V2MAA2 (84)

Since G - tf, GA and GAA can be analytically determined, M, MA, and

M are the only unknowns.
AA

To evaluate M, Equations (63) through (68) can be integrated

from T - 0 to T - 1. The MA and MM are computed by a central

difference numerical derivative technique. This technique requires

the individual elements of A to be perturbed both positively and

negatively one by one. After each perturbation the equations of

motion must be integrated from T- 0 to T- 1. The MA is

calculated by:

M M+ -M (85)
n 26n

where MA are the two MA elements calculated by perturbing the nth
n

element of A. M+ and M_ are the final conditions computed by

changing An a small amount, 
6n. The second derivative is computed

similarly by:

M M -2MM (86)
n m T5Tn

when n - m and,
M++-M+_-M_ +M -

MAA - + (87)
n m 4 6.nam
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if n #m. The two subscripts indicate two elements. A nand A Mmust

be perturbed both positively and negatively. The equations of

motion then must be integrated for each combination of A nand A

although the M AAmatrices are symmetric. The total number of times

the equations of motion must be integrated for one iteration of the

algorithm is then given by:

2
N = (n +n+3) (88)

where n is the number of elements in the A vector and can be

calculated as

n - 1+ NNV + NPI + NA + NS (89)

From Equation (88) it is apparent an efficient numerical integration

routine is imperative. A fifth order, Runge-Kutta integrationI

routine with variable step size is used in this study. Another

problem which influences the integration routine is the discontinous

slope of the angle of attack limit at the corner velocity.

If the velocity traverses the corner velocity as the equations of

motion are integrated, small inaccuracies occur due to the angle of

attack limit changing across the corner velocity. These inaccuracies,

while not severe when compared to the absolute values of the state

variables, are large enough to prevent the optimization algorithm

from converging to an answer. Therefore, the step size must be

controlled as velocity approaches the corner velocity. But, since

the variable of integration is nondimensional time, T, an iterative

procedure is required to find the T at which velocity equals the

corner velocity. Once the corner velocity is passed the integration

routine can be allowed to optimize step size to minimize computation

time.
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VI Results

The results of this study are divided into two parts. The

first part discusses the effects of sideforce on the minimum turning

time problem. The second part shows the results of attempting

to match the qualitative data presented by Well and Berger (7).

In all cases, two of the controls stayed consistantly against

their limits. The angle of attack always migrated to its limit of

0.2 and Z always went to the maximum negative limit of -1.0 when

that control was included in the problem. For this reason, these

two controls were represented by constant coefficients only

instead of higher order polynomials. This greatly reduced the

number of control coefficients and sped up convergence time. One

other variable, thrust, was limited to a single coefficient. Though

Johnson's results (4:61) concluded a near bang-bang type control for

thrust yields smaller turning times, real world engines have finite

spool up and spool down times. Therefore, the short duration of the

maneuver would not realistically allow large excursions in thrust.

In addition, it was felt the computation time could more

constructively be spent investigating the effect of sideforce if

thrust remained constant throughout the turn. The plot in Figure 2

shows the optimal value for the thrust coefficient as a function of

Initial velocity for the case where all controls are represented

by single coefficients. Values for thrust are also shown for

variations in aircraft parameters such as T/W and the drag due to

lift coefficient, K 1. These parameter variations are discussed

later in this chapter.

24



The Effects of Sideforce

The effect of sideforce on turning time is shown in Figure 3.

The graph shows that sideforce has more influence on the final time

the farther the initial velocity is from the corner velocity. It also

shows that even if the turn for a conventional aircraft is initiated at

the corner velocity, which is the speed that yields the quickest turn,

the use of sideforce reduces the turning time though not very much.

The reason for this can be seen in Figure 4. The presence of a direct

sideforce generates a sideslip angle. This sideslip angle then reduces

the angle through which the velocity vector must be turned by conven-

tional means. Hence, the turning time is reduced. One would assume

that more sideforce would generate more sideslip and thereby reduce the

turning time even more. Figure 5 illustrates the effect of various

values of maximum sideforce up to one "g" lateral acceleration. The

changing slope of these curves indicates that even greater benefit

can be realized if the sideforce is allowed to increase above the one

"g" limit shown in Figures 6 through 8. If the specific energy is

given as
V2

Es - (h + i) (90)

2where g - 32.174 ft/sec , then the change is specific energy during

the maneuver can be calculated
= V 2  - V 2)

S2g

where subscripts i and f denote initial and final conditions respective-

ly. Values of AE are plotted as a function of initial airspeed

5

both with and without sideforce in Figure 9. As can be seen at the

low initial speeds, an aircraft using sideforce gains less energy during
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14500 - quadratic bank angle control

vc
14000

13500

tflO0.56 9 sec
NO SIDEFORCE

-e 13000

125001.Og SIDEFORCE

12000

400 500 600 700 800 900

VELOCITY -FT/SEC

Fig. 6. Altitude vs. Velocity Trajectory f or Vi 420 ft/sec
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18000 - cubic bank angle control

17500 /
tf-9.564 sec

NO SIDEFORCE

16500- tf-9.468sec
1.0g SIDEFORCE

16000

15500 /

15000/

14500 /
Vc

14000

600 650 700 750 800

VELOCITY - FT/SEC

Fig. 7. Altitude vs. Velocity Trajectory for Vi - 621 ft/sec
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16500 -linear bank angle control

16000 I
tf-10.826
;6 SIDEF RCE

15500

S15000 l.1Og SIDEFORCE

tf-lO.683

14500 /
14000 1

13500
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Fig. 8. Altitude vs. Velocity Trajectory for V~ 903 ft/sec
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the turn. This is apparently caused by the added induced drag of

the sideforce generator. And, since the thrust control is against

the upper limit, no additional thrust is available to counteract

the additional drag. Likewise, the high initial velocity case shows

a slight loss of energy due to sideforce. In this case the thrust

is at its lower limit in order for the aircraft to quickly slow to

the corner velocity. In this respect the added drag due to sideforce

aids the deceleration, but it also causes a slightly higher energy

loss.

In summary of the primary function of sideforce, Figure 10 shows

the percent of turning time saved by the use of direct sideforce.

Additionally, the control coefficients, final time and change in

specific energy are tabulated in the appendix.

Variations in Parameters

The general results given by Well and Berger (7) indicates

there exists some initial velocity below the corner velocity for

which the optimum maneuver is a split-S. That is, a roll of 180

degrees followed by a pull through in the vertical plane. The

strategy in this technique is to use gravity, in conjunction with

thrust, to accelerate the aircraft to the corner velocity as quickly

as possible. And, as can be seen in Figure 3, the aircraft which

can get to its corner velocity the quickest and maintain it will

complete the turn the quickest. On the other side of the corner

velocity, Well and Berger (7) found for some initial speed above the

corner velocity, the optimum maneuver will be a vertical pull-up. The

physical reasoning again being to use gravity to help slow the aircraft

to the corner velocity.
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The curves in Figures 11 and 13 show the bank angle time history,

the vertical plane trajectory, and the altitude/velocity trajectory,

respectively. Of particular interest is Figure 12 because it

indicates the turn is performed in nearly a constant plane. As can

be seen, even for the wide variation in initial velocities, the plane

of the turn approaches vertical only for very low or very high initial

airspeeds. Extrapolating from the values of Figure 12 indicates the

lower velocity would be well below stall speed (256 ft/sec @ h -

13,990 ft) and the upper velocity must be far into the compressible

flow region where the aircraft model is inadequate. The reason the

maneuver plane angle varies so little with initial airspeed can be

seen in Figure 14. This figure shows velocity and flight path angle as

a function to time. In the beginning of the turn, the flight path

angle is negative and the aircraft is accelerated toward the corner

velocity with the aid of gravity. Upon, or slightly before reaching

the corner velocity, the optimal solution indicates Y should bottom out

and become more positive in order to prevent the aircraft from acceler-

ating too far past the corner velocity. If the plane of the turn were

steeper the Y curve in Figure 14 would become more deeply cupped and

would increase the acceleration due to gravity during the initial part

of the turn. With the increases in acceleration, however, the corner

velocity would be attained quicker, much before the Y curve bottomed

out. Jlence, the aircraft would be accelerated well beyond the corner

velocity thereby increasing the turning time.

In an effort to try and match the general results of Well and

Berger and represent an aircraft of more modest performance, the

available thrust was reduced by half. This would force the optimiza-
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160 -linear bank angle

control for V1 - 903
-cubic control for 621
-quadratic control for 420
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Fig. 11. Bank Angle Time HIistory for Nominal Aircraft
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Fig. 12. Altitude vs. Croasrange Trajectory for Nominal Aircraft
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17500 - linear bank angle
control for Vj - 903

- cubic control for 6211

17000 - quadratic control for 420 1
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Fig. 13. Altitude vs. Velocity Trajectory for Nominal Aircraft

39

lie



sNvimV - aflOKY Hiva imViu

0w 0- 41 i

0 o 0

0
1-4

' -4

I&4 io
,4C 0

4

II ->

o4

03SIla XIIDO'13A

40



tion technique to use gravity more heavily and hence steepen the maneuver

plane angle. The altitude/crossrange trajectory is shown in- Figure 15.

In comparison to the curves for the nominal aircraft in Figure 12, the

turning planes are steeper. However, they still do not approach

vertical for velocities within the scope of the aircraft model.

Also note that changing the maximum thrust limit does not affect the

high initial velocity case since the thrust is set to zero

throughout the turn. One explanation f or the weak effect thrust has

on the turning plane can be seen Figure 16. This plot shows the drag

to weight ratio of the aircraft for a given normal load factor as a

function of velocity. The two horizontal lines at values of 1.5 and

0.75 represent the thrust available to counteract the drag. It is

apparent that the nominal aircraft model requires very little

thrust to maintain even its maximum load factor. Hence the aircraft

tended to use its large excess thrust to attain corner velocity without

much dependence on gravity.

A survey of similar aircraft was made to determine if the drag

model was unrealistic. The drag polars in Figure 16 show the nominal

model and a more realistic one derived from actual data. It is

interesting to note the form drag or C D is the same in both cases.
0

However, the drag due to lift coefficient, 1(1) was increased by

more than four times. This change greatly affected the drag curves

of Figure 16 as shown in Figure 18. Again the bank angle time

histories, vertical plan trajectories, and altitude/velocity

trajectories are illustrated in Figures 19 through 21. Only the

thrust to weight ratio of 1.5 was used with the new drag model.
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160 -linear bank angle
control for Vj - 903

-cubic control for 621
-quadratic control for 420
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17 - linear bank angle

control for Vi - 903
- cubic control for 621
- quadratic control for 420
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But Figure 20 shows that the turning plane is steeper for the

low speed case and a vertical optimum turning plane is possible for

a slightly slower initial airspeed. For the high speed case, the

drag actually helps slow the aircraft and hence reduces the plane

angle. Therefore, for the optimum maneuver to be a half-loop, the

initial airspeed must be far beyond the upper bound of this study.
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VII Conclusions and Recommendations

The conclusions on the benefits of using direct sideforce to

reduce turning time based on the results of the previous chapter

are:

1. The use of direct sideforce reduces the turning time from

1% to 3%.

2. The further the initial airspeed is from the corner velocity,

the more the turning time is reduced.

3. In all cases considered, the optimal use of sideforce to

minimize time is to use maximum sideforce for the full duration

of the maneuver.

4. The additional energy gained or lost due to the use of

sideforce depends on the initial conditions of the maneuvers as

well as the characteristics of the aircraft.

From these conclusions it appears the use of direct sideforce

is an effective way of reducing the turning time; however, the

reduction is not large for the conditions studied here. But, under

certain circumstances the reduction in turning time is accompanied by

a loss in energy, therefore, judgement would have to be exercised by

the pilot as to whether the energy loss could be tolerated.

The secondary effort of attempting to match the results of

Well and Berger (2) was moderately successful. It appears the trends

are the same in that turns initiated below the corner velocity tended

to use gravity to accelerate to V and those initiated above thec

corner velocity tended to do the opposite. However, for the cases

and aircraft parameters considered here, no threshold velocities

for vertical turning planes could be found.
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An aircraft's velocity vector can only be turned by an

acceleration componant normal to the flight path. A normal force

componant, therefore, is necessary. And, the larger this force,

the less time it requires to perform a turn. There are two ways to

increase this normal force. The first is through the use of speed

control. This technique accelerates the aircraft as quickly as

possible to the airspeed which maximizes the normal force of lift.

An example is the use of reversi~le thrust by Johnson (4). Although

the thrust does not directly aid in turning the aircraft, it

accelerates or decelerates the aircraft to the velocity which maximizes

lift, thereby minimizing turning time. The second way of increasing

the normal force is by applying an additional force generator such as

sideforce fins or vectored thrust. This technique can directly

increase the resultant normal force over a wide range of velocities.

This conclusion is supported by Figure 3 where the final turning

time is reduced nearly uniformly over a wide initial velocity band.

It is recommended that the minimum time to turn problem be

considered for an aircraft which incorporates both forms of control.

The longitudinal acceleration could take the form of reversible

thrust or aerodynamic fins which could be symmetrically deployed.

The normal acceleration could be augmented by either a vectorable

nozzle for direct lift from the engine or by aerodynamic sideforce

surfaces.
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Appendix B: Program Listing
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