
D-RI736 945 DIALOGUE MANOGEMENT: NEW CONCEPTS IN HUMAN-COMPUTER i/i

ADSAEUI BLCSROCMUEINTERFACE DEVELOPMENT..(U) VIRGINIA POLYTECHNIC INSTAND STATE UNIV BLACKSBURG COMPUTER S..

UNCLASSIFIED H R HARTSON ET AL NOV 83 CSIE-83-13 F/G 5/8 NL

mEmEEEEEEEIE
EuIIIIIII

L3.0.

11.2

'111111.02

-. L uslii ILIO*

11.JI25 1.6_

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

C Z. -:

DIALOGUE MANAGEMENT:

NEW CONCEPTS IN HUMAN-COMPUTER

INTERFACE DEVELOPMENT

__ H. Rex Hartson

Deborah H. Johnson

DTIC

JAN18 984..

A

dl: .baiicn is un:;'iiidJ

Virginia Polytechnic Institute
and State University

Computer Science
IndstralEngineering and Operations Researchp ~ ndusrialBLACKSBURG, VIRGINIA 24061

84 12 17 014

CSIE-83-13 November 1983

DIALOGUE MANAGEMENT:

* NEW CONCEPTS IN HUMAN-COMPUTER

INTERFACE DEVELOPMENT

H. Rex Hartson

Deborah H. Johnson

A ANt31984

TECHNICAL REPORTA

Engineering Psychology Group office of Naval Research
ONR Contract Number NOO0l4-8l-I(-0143

Work Unit Number NR SRO-101

Approved for Public Release; Distribution Unlimited

Reproduction in whole or in part is permitted

~4 *.for any purpose of the United States Government

.4 L .. .\:. ~*. :.*: . . *-. . . . * *

i . r.re .J r , _ - '. - / " i .. * . - r.. e
9

. C-. . -. " . -- . .- " - . " -" - - - .

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
T -I PBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

~~ CSIE-8:3-13 1D63~g~__________
- 4. TITLf end SSbtih.) 5. TYPE OF REPORT & PERIOD COVERED

r.
DIALOGUE MANAGEMENT: NEW CONCEPTS IN Technical

- HUMAN-COMPUTER INTERFACE DEVELOPMENT
% %-. S. PEIORMING ORG. REPORT NUMBER

7. AUTHOR(@) S. CONTRACT OR GRANT NUMUER(s)

"-% H. Rex Hartson

Deborah H. Johnson N00014-81-K-0143

. ' . 9. PERFORMING ORGANIZAT'ION NAME AND ADDRIESS 10. PROGRAM ELEMENT. PROJECT, TASK

Computer Science AREA I WORK UNIT NUMBERS

Virginia Polytechnic Institute & State University 61153N42; RR04209;

Blacksburg, VA 24061 RR0420901; NR SRO-101

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research, Code 442 November 1983
800 North Quincy Street 13. NUMBER Ov PAGES

Arlington, VA 22217 51
14. MONITORING AGENCY NAME A ADDRESS(If different frm Controlling Office) IS. SECURITY CLASS. (o1 thl report)

Unclassi fied
I0. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

aU
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract eftered In Block 20. If different from Report)

Z %J

' tS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere olade i neoooery d Identify by block number)

design, human factors, languages, dialogue management, human-computer interface
dialogue author, dialogue independence, internal dialogue, external dialogue

r 20. OAUSTRACT (Continue an reverse ide If neceeary and Identify by bleck nambei)

"" " Dialogue Management is an emerging field which emphasizes a specialization

in the development of quality human-computer interfaces. It encompasses the
design, implementation, simulation, execution, maintenance, and metering of
dialogues in an integrated environment. Several key concepts in dialogue

L ~ management have been Identified in response to the need for improved human-

computer interfaces. These concepts are surveyed here, and their importance
to dialogue design and management is discussed. Dialogue independence and

internal and external dialogue are manifest in the separation of the dialogue
%DD JAN7 1473 EDITION OF I NOV IS9 1 OBSOLETEDD IF AI113 473Unclassi fied

4 S/N 0102 LF 014 6601 SECURITY CLASSIFICATION OF THIS PAGE (INee, Doet Entered)
LN00-LF 1-60

Unclassified
iSECURITY CLASSIFICATION OF THIS PAGE (When~ Data En9.eed4

d

r. ,20. ABSTRACT (continued)

4 omponents of a software system from the computational components. In a new

svstti., dk-i.gn role, I dlaIloyo., author Is respN(ms lble for creatlng the dia-
logue which cotnstitutcs the human-computer interface of an application system
A holistic methodological approach to system development places emphasis on

- the development of both dialogue and computational components of an appli-

K, *. cation system. Systems are now being built which incorporate many of these
-" important concepts in the management of dialogues for human-computer systems.

Several of these systems are mentioned as examples of concepts application,

S.and one such system is described in some detail.

e-%

~/

-//

0I., ,

.. . * : --

. . .. ,- ..

S,,* 5N 0 102- LF- 0 14- 6601

Unclassified

[,:,.:,.-..,..:,.:,.&.., .;.-,SECURIT ..- L.-SSIF..--.-..,.I--. OF..-. THIS. ..-.. -. n -.. a.-.. ..,.,- - -.. , ..-.

TABLE OF CONTENTS

ACKNOWLEDGEMENT

3< ABSTRACT

INTRODUCTION
Traditional Systems and Their Problems
Related Work

I. DIALOGUE MANAGEMENT: AN EMERGING FIELD
1.1. Functions of Human-Computer Dialogue
1.2. New Concepts in Dialogue Management

* "" * 2. DIALOGUE INDEPENDENCE

2.1. What is Dialogue Independence?
2.2. Separation, But Not Dialogue Independence
2.3. Device Independence
2.4. Internal and External Dialogue

- - 3. DIALOGUE AUTHOR
,- 3.1. Traditional Roles in System Design

3.2. Functions of the Dialogue Author
3.3. Tools
3.4. Interfaces as Languages
3.5. Direct Manipulation

,1CI 4. HOLISTIC METHODOLOGICAL APPROACH

5. A DIALOGUE MANAGEMENT SYSTEM
5.1. Overview of DMS

, 5.2. Dialogue Management Concepts in DMS
-5.2.1. Dialogue Independence

* . 5.2.2. Dialogue Author
5.2.3. Holistic Methodology

6. SUMMARY

REFERENCES

!;~

4%,

ACKNOWLEDGEMENT

The authors gratefully acknowledge the contributions to this

.' research by other members in our research team, especially Dr. Roger

W. Ehrich and Tamer Yunten. Dr. Ehrich was helpful in bringing to

our attention the view of dialogue as a formal language problem in

the DMS environment.

This research was supported by the Office of Naval Research

tunder contract number N00014-81-K-0413 and work unit number

NR-SRO-lO1. The effort was supported by the Engineering Psychology

Group, Office of Naval Research under the technical direction of Dr.

John J. O'Hare. Reproduction in whole or in part is permitted for

-' any purpose of the United States Government.

'a

' N~- t ' d** * -

ft. ft , *tq. U..- .

: ABSTRACT

Dialogue Management is an emerging field which emphasizes a spe-
cialization in the development of quality human-computer interfaces.

V:. It encompasses the design, implementation, simulation, execution,
. . maintenance, and metering of dialogues in an integrated environment.

-" Several key concepts in dialogue management have been identified in
response to the need for improved human-computer interfaces. These

P concepts are surveyed here, and their importance to dialogue design
" - and management is discussed. Dialogue independence and internal and

external dialogue are manifest in the separation of the dialogue com-
5 ponents of a software system from the computational components. In a

new system design role, a dialogue author is responsible for creating
the dialogue which constitutes the human-computer interface of an
application system. A holistic methodological approach to system
development places emphasis on the development of both dialogue and
computational components of an application system. Systems are now
being built which incorporate many of these important concepts in the
management of dialogues for human-computer systems. Several of these
systems are mentioned as examples of concepts application, and one
such system is described in some detail.

Categories and Subject Descriptors: D.2.1 [Software Engineering]:
Requirements/Specifications--languages, methodo±ogies, tools; D.2.2
[Software Engineering]: Tools and Techniques--modules and inter-
faces; structured programming; top-down programming; user interfaces;
D.2.6 [Software Engineering]: Programming Environments; D.2.9
[Software Engineering]: Management--life cycle; D.3.2 [Programming
Languages]: Language Classifications; H.1.2 [Models and Principles]:
User/Machine Systems--human factors

General Terms: Design, Human Factors, Languages

Additional Keywords and Phrases: Dialogue management, human-computer
interface, dialogue author, dialogue independence, internal dialogue,
external dialogue

*~q~ *~i

" - o

Dialogue Management:

New Concepts in Human-Computer Interface Development

% "0H. Rex Hartson

Deborah H. Johnson

. .. -

Department of Computer Science

- Virginia Polytechnic Institute and State University

Blacksburg, VA. 24061

"As we grow more familiar with the intelligent environment,
and learn to converse with it from the time we leave the
cradle, we will begin to use computers with a grace and
naturalness that is hard for us to imagine today. And they

". will help all of us--not just a few 'super-technocrats'--to
think more deeply about ourselves and the world." ITOFF80]

INTRODUCTION

As the "Gestalt of the computer" [ROSE74] becomes more pervasive

in our society, the key to the real effectiveness of computers in
~that society will be usability by people other than computer profes-

h "sionals. As the quotation above suggests, the effectiveness of this

amazing machine is limited not by its power to compute, but rather by

its power to communicate. The roots of poor human-computer communi-

" '-. cation are deeply embedded in the methods currently used to design

large interactive systems. Despite recent advances in methodological

approaches to software design, these improvements have not yet

I -
. -. '-.

addressed the important parallel issue of human-computer dialogue

development. Many researchers have proposed viable solutions to spe-

cific issues in this area. Yet many of these issues represent only a

- small portion of a sizable problem. These existing issues and their

solutions have generally been addressed without a framework for a

. larger strategy for dialogue management. It is the purpose of this

*' ". paper to identify and assemble some concepts of this new field, to

.. .; provide the beginnings of such a framework. In addition, many of the

1 [issues of human-computer interface development bear relationships to'C

existing areas of computer science, particularly structured program-

ming, software engineering, formal languages, and data abstraction.

The key to a solution lies in reassessing the entire software devel-

opment process. This paper reports on recent progress in the evolu-

* tion of some new concepts, new roles, and new tools that are just

" emerging from this reassessment. Although artificial intelligence

*2 considerations such as natural language and knowledge-based user

models are very much a part of the broader subject of human-computer

dialogue, they are excluded from the scope of this paper.

Traditional Systems and Their Problems

'. Traditional software systems design is often aimed mainly at

development of efficient and functionally correct computational code.

Since getting the system debugged and operational depends mainly on

the correctness of the computational component of the software, the

effectiveness of the dialogue component gets little consideration.

2,.-

An application programmer rarely has either the skills and knowledge

I . or the time and patience to create effective, human-factored dia-

logues, but is typically much more intent upon the development of

- algorithms and other computational considerations. The software

P designer may even find it distracting, in the middle of a lengthy,

logically complex piece of software, to have to write dialogue to

S. communicate with the user. But this dialogue comprises the all-im-

portant interface with which human users must interact. If that

interface is not created so that most humans can perform the task

.5 ".•" they set out to do, it matters little whether the computational part

of the code works properly or not. Also in traditional systems,

since both computational code and dialogue generally are written by

an application programmer and are therefore tightly interspersed, the

dialogue is actually a part of the computational software. This
.

often makes it difficult to change easily either the dialogue or the

computational part. The dialogue to be altered must first be found

in a maze of functional code and then the desired changes made. When

the dialogue is embedded in the computational code, changes to dia-

logue may propagate all the problems associated with changes to the

computational program.

Related Work

A .Much research has been done in an attempt to improve human-com-

. puter communication. The groundwork for development of effective

human-computer interfaces was laid during the last decade. This work

* 3

was largely a collection of subjective "principles" for interface

design [HANS71, MART73, KENN74, ROUS75, CHER76, MILL77, SMIT80]. Not

surprisingly, among the leaders of this early work were some who spe-

cialized in graphics [FOLE74, NEWM79]. Very few of these principles

are experimentally validated, however. Of the approximately 500

-- guidelines compiled from this and other relevant literature IWILL81],

only a small portion had any empirical basis. Also, many c tradic-

tions and inconsistencies were found among the "principle in the

literature.

Only recently has empirical evaluation of the humax ...puter

interface and its design been stressed [SHNE80] and communication

identified as a key concept [HAYE79, THOM81]. Some researchers see

the problem as one of dialogue [BLAC77, HART79, BARR80, MEHL81].

Research groups exist solely to give very strong emphasis to dynamic

communication of information through the use of computerized tools

(KAYA77, BYTE81]. Entire systems that emphasize development of the

. human-computer interface are now being created [FELD82, BORU82,

HART82I.

~ . -

JiI

.44

./ 5,

6. %

1. DIALOGUE MANAGEMENT: AN EMERGING FIELD

The discipline of dealing with the creation, modification, simu-

lation, execution, testing, and metering of dialogues in an inte-

grated manner has been called "dialogue management" [EHRI81]. The

\ term is indicative of an emerging field that embodies a specializa-

* tion in the development of quality human-computer interfaces.

1.1. FUNCTIONS OF HUMAN-COMPUTER DIALOGUE

Dialogue, as it relates to a human-computer interface in the

traditional sense, refers to the interaction between a human and the

computer system being used. It is the means by which the human gives

..- , Y: commands or queries to the computer and by which the computer res-

ponds to or queries the user. This discourse iF thus the exchange of

words, phrases, parameterized commands, and other symbols and

. actions, i.e., the conversation, between a huiman and a computer.

This human-co-puter dialogue is composed of two separate parts:

Sthe computer's part and the human's part. The computer's part of the

dialogue, of course, is actually written by humans and, therefore,

could be considered to be human-to-human dialogue, offset in time.

The human's part is any input a user may gi ,e to the system at execu-

tion time. It is confusing and indeed erroneous to think of a

human-computer dialogue as being only what is actually displayed to

the user by the system, (i.e., what is coded into the software

L -itself). Instead, both the human side and the computer side of the

dialogue must be considered in the design of a specific discourse.

Multi-party grammars ISHNE82b] have evolved as a method to explicitly
:-'

s-A
5

f "" 1

specify both the human input and the computer response for a human-

computer dialogue.

Human-computer dialogue has two distinct functions: 1) to

. ~ request information (either from the user or from the computer) and

op 2) to transmit information (either to the user or to the computer).

Most programs, in order to execute, must have input (e.g., "name

"SSN", "edit", numerical data) from the user. This input is typi-

cally obtained through prompts or queries which ask the user for spe-

S-. cific information. These requests are coded at appropriate points

into the computational software itself. When the system needs to

transmit information to the user (e.g., searching database",

"unmatched left parenthesis"), this is also done through some predet-

ermined dialogue built into the software. A combination of transmit-

ting and requesting information is manifest in a menu, which displays

possible options and then asks the user to choose one. The content

and format, as well as the logical sequencing, of dialogue is

extremely important in determining how well the user can understand

and manipulate the system.

1.2. NEW CONCEPTS IN DIALOGUE MANAGEMENT

As research has progressed, some ooncepts have emerged upon

which a new approach to human-computer interface design can be based.

It is the purpose of this paper to identify and highlight those con-

cepts, primary among which are a software design and implementation

concept called dialogue independence, a separate design role called a

dialogue author, and a holistic methodological approach to interac-

6
po.

e ,' .,'. .. ,v .. '., ,,.:-- -. ,''. 4-. -) ."- '.' '.."-."."<.' -. "- . " ."' ' -. i'-.-2 <'." 4 .*4-'4- - . 4-<.--' .-,' .---

. 7

tive system design. The remainder of this paper will present these

, new concepts in the context of various current research efforts and

' . will conclude by relating them to a particular system for dialogue

management (DMS) which is being developed and implemented.

M

2. DIALOGUE INDEPENDENCE

2.1. WHAT IS DIALOGUE INDEPENDENCE?

U" The design of a large software system represents a significant

commitment of resources in terms of both people and money. In tradi-

tional software systems, dialogue and computational code are inextri-

I i cably interwoven together so that a commitment to one is a commitment

to both. In the design of a system, major emphasis is placed on the

'*.-. development of the computational component. The result is that dia-

logue becomes less and less changeable as the design progresses. It

is often later in the design process when the dialogue issues are

understood more completely and human factors experiments can be per-

formed, if necessary, to design a better human-computer dialogue.

Unfortunately, by this time in the development process, the design is

already committed to an ineffective dialogue.

Therefore. an important criterion for the design of human-compu-

ter interfaces is fast, easy modification of the dialogue of a spe-

cific system. Because research in this area properly involves empir-

ical studies of human-computer interaction and dialogue design, this

flexibility is even more important. The dialogue may need revision

7
.-

S."

both for the experiments themselves, as well as to incorporate the

results of experimentation back into the dialogues.

Several years ago, database researchers and designers encoun-

tered a similar problem in the need for easy modification of data

. without the necessity to change the corresponding programs. Data

independence has emerged as a solution to this key issue in database

• - development. Data independence is a concept that directs database

design in such a way that changes to data are independent from, and

therefore do not usually necessitate changes to, the application pro-

gram which manipulates that data. A formal data definition allows

the decoupling of data instances from the programs. An analogous

,concept, called dialogue independence [ROAC82a], allows changes to
dialogue that do not mandate modifications to computational code.

STypically, a structured software system is divided into modules,
.. which apply a single action or function to a single object. In trad-

itional software systems, dialogue and computation are usually mixed

together, often in the same module. This means that the need for a

change to the dialogue may require searching through countless pages

of source code to find the lines that need to be changed. This pro-

gram structure can also make the process of following a program's

- computational logic very difficult, when READs and WRITEs to request

and transmit and check and validate and re-request information

between the user and the system are constantly interrupting the

natural flow of the computational code. Dialogue independence helps

to alleviate some of these difficulties by allowing easy alteration

of dialogues without the associated problems of changing computa-

tional code.

8

Dialogue independence is achieved by both logical and physical

separation of dialogue from computational software, which requires

that dialogue and computational functions do not appear in the same

module. This means that the executable code of an application system

is composed of dialogue modules as well as computational modules.
IS..Intuitively, a dialogue module is used to carry out "one interac-

tion' s worth" of dialogue, and such modular packaging is similar to

that commonly used for computational software. The "dialogue compo-
%. .

nent" of a software system is a collection of all dialogue modules

and the "computational component" is a collection of all computa-

tional modules. These components are bound together at some time

before or during execution. As a result, dialogue and computational

components can be modified to a great extent without each affecting

"* the other.

Since there can be more than one dialogue component for a single

* scomputational component, an application system can have two or more

PC very different user interfaces. Foley [FOLE81] and Feldman [FELD82J

have captured this concept in their Abstract Interaction Handler,

which contains knowledge of interaction styles, allowing their

- style-independent applications to be used with more than one kind of

interface. Feldman and Rogers [FELD82] advocate the separation of

* : the user front-end from the system semantics, even to the point of

being able to customize user interfaces for individual users

[FELD81]. The dialogue independence of their system semantics allows

experimental evaluation of various interfaces while holding the

underlying computational system constant. However, use of libraries

9

" e .

r . ..r . . . -* C. . . ,
I.7

,SI
l'iI

of "interaction handling modules" may have limited advantages in

light of the goal of tailoring an interface for different user

classes as well as different users. It would seem that each applica-

tion system must still be analyzed, and its specific dialogue needs

*, addressed. Even though a given interaction module has "known human-

factors attributes", those attributes were tested for a specific kind

4.. :~- of interaction in a specific system and may not be applicable in a

different situation.

This ability to keep flexible the design of a user interface

relates to another important concept in dialogue management, that it

is often as important to make a system human-factorable as it is to

make it human-factored. Dialogue independence is a prerequisite for

human-factorability, especially when it is not always clear during

U mthe early stages of system design what is needed to make a system

'" human-factored.

2.2. SEPARATION, BUT NOT DIALOGUE INDEPENDENCE

The separation of the user interface from the rest of the appli-

cation software is not an entirely recent idea. The literature con-

tains several descriptions of systems for which such a separation was

attempted after the system was implemented. That is, generalized

user interfaces were developed to be used as add-on front-ends to

existing application systems. [BASS8I] and [WRIG78] each report on

front-ends which were implemented to provide easy-to-understand dia-

logue with which to pass system commands and parameters. In

[BASS81], the interface for a statistical analysis package operated

10

in a system command and a job control command environment, and

,.I applied to both batch and on-line jobs. Essentially one interface

was adapted to this diversity of use in one application. In

[WRIG78], the interface was custom-coded to a single, specific medi-

cal application. Both of these groups began with an existing appli--
2 - cation system which did not have an easily usable interface, and

attempted to revise the human-computer dialogue to meet their needs.

Thus, the systems achieved separation of dialogue and computation,

.. but not true dialogue independence, since the approach was not gener-

alizable and extensible to other systems, or even to other interfaces

for the same systems. These approaches, also, did not consider the

computational component in the overall design.

The work on a demographic database system reported in [EVAN82]

.4 6 is somewhat similar. Here an adaptable user interface provided more

than one dialogue to an existing software system as needed to suit

the varying requirements of different user communities. Separation

P of the interface from the rest of the system made this possible.

Hayes, Ball, and Reddy [HAYE81] refer to the independence of the

N! user interface from the application program as "tool independence".

Their concept of a quality interface is one that supports graceful

" " interaction in the sense that human-to-human communication is grace-
.4

°

ful and robust. Graceful interaction thus goes well beyond the trad-

itional "principles" of human-computer interaction of the variety

mentioned in section 1 of this paper and into the realm of natural

language understanding [HAYE79I. Because of the enormous difficul-

ties of producing such an interface, they propose to amortize this

Ll

'4 .

. - . .. L _._ ,. ,. ,UW t . .r . . .'- . . -
'

. --. - . "r

effort by building an application-independent system that will serve

5 as the user interface for many application systems. Application

independence is achieved by having all knowledge of the application
0.

.-. . in a separate declarative database, rather than in the interface

.- itself. Such an interface system will also provide a consistent user

view across all the applications for which it is used. Intuitively,

however, use of the "same" interface would seem to preclude the pos-

sibility of tailoring the user interface over a broad range of appli-

cation programs and user types (e.g., naive secretary to experienced

engineer). It would seem better to generate different interface ins-

tances for each application. Consistency, in addition to the flexi-

bility of a customized interface, could be achieved by using a com-

prehensive development methodology and a common set of tools (in the

Icontext of system-building, not in the Hayes, Ball, and Reddy con-

text) to generate these interfaces.

2.3. DEVICE INDEPENDENCE

No discussion of dialogue independence would be complete without

reference to the related and more well-known concept of device inde-

pendence. Device independence is used to shield the application pro-

grammer from the special detailed characteristics of the devices

through which the application system communicates with its users and

from the technical differences in those details from device to device

* IHILL81, EHRI82I. Figure 1 shows the relationship of dialogue inde-

pendence to device independence.

12

."

4 4':MZ

P APft.CA.TIU 'S''D

DISAYSU
.1

. Figure 1. Dialogue Independence and Device Independence

2.4. INTERNAL AND EXTERNAL DIALOGUE

When an application system is separated into a computational

.. . component and a dialogue component, the computational part contains

no mechanism for direct communication with the user; i.e., it con-

tains no dialogue in the traditional sense, since all dialogue which

. __

interfaces with the user is now in the dialogue component. Under

this kind of separation, an application system will consist, at its

- y lowest level, of distinct dialogue modules and computational modules.

tational part. The computational modules perform the functional pro-

ldmu
'..

% % . ",'4 '".4.'.'. , . 2. . '2".'"' " .-".. .": , .."- .'. ". " ••-". '" . -13,' .

.- 7-7 7 7 7 - .- .. 7 7 v ;.-

cessing. When the computational component needs information or data

U from the user to continue processing, it makes a call to the appro-

priate dialogue module. The dialogue module then interacts with the

' - user to obtain the necessary input, possibly parses it, checks the

* input for type and range, and returns it to the computational module.

Similarly, when the computational component needs to transmit infor-

mation to the user, it again calls the appropriate dialogue module

which displays the information to the user. Since the collection of

[,

computational modules thus interfaces with the user only through the

, *~ dialogue modules, the computational modules would appear to be dia-

j DIALOGUE DILUE

II

I I

HUMAN I DIALOGUE I COVAWIOAL

5-5USER MODULES I MODULES

Figure 2. Internal and External Dialogues

. logue-free. Computational modules, however, do engage in a less

Sfobvious form of dialogue, which is an "internal dialogue" with the

'

dialogue modules so that the program can obtain data in order to exe-

cute. (See Figure 2.)

S.. m The interaction between the user and the dialogue modules is

Scuexternal dialogue", the interaction which is typically thought of as

" making up the human-computer interface. External dialogue is highly

i I

14

, ii ' '

Li

varying in form and content. The part expressed to the user by the

computer is limited only by the imagination of the person who creates

the content of the dialogue modules and, hopefully, principles of

. . good human-computer communication. Similarly, the possible inputs

* that a human can give to the computer are virtually infinite. Cer-

* tainly only a very small subset of these possible inputs will be

valid, but the potential for the others still exists and must be

dealt with by appropriate messages.

- Internal dialogue, on the other hand, has no direct connection

-_ [to the user of the system, but serves as a link between the dialogue

modules and the computational component of a system. It can there-

fore be formally specified, is much less variable in its form, and

does not have to be human-understandable. The formal specification

of internal dialogue is the real key to dialogue independence.

"-, Either dialogue or computation can be changed without affecting the

other, as long as each remains consistent with the definition of

Stheir common interface.

These two kinds of dialogues can be seen to occur in most of the

approaches which use separation of dialogue. For example, in

*[BORU82I, external dialogue occurs at the user interface and internal

-. dialogue happens at the application interface.

'. '1

4%

-' 15

.

3. DIALOGUE AUTHOR

3.1. TRADITIONAL ROLES IN SYSTEM DESIGN

For many years, the two main roles involved in software develop-

ment were those of the application programmer and the end-user of the

> . system. These two types, however, frequently had severe communica-

. tion problems. The programmer, impatient to begin coding, often had

difficulty understanding the user's requirements. Similarly, the

user was not often able to articulate the needs of the system and was

baffled by the strange "computerese" in which the programmer tried to

explain what was happening. The lack of communication between these

two often resulted in systems that were not what the user wanted or

u needed, but what the programmer decided to provide. Gradually, the

need was recognized for someone who could understand both the techni-

cal (programmer) and non-technical (user) sides of the system. This

role is that of a systems analyst.

The user, however, might possibly be knowledgeable in only the

e. one or two facets of the system used most. So the role of applica-

7; tion expert evolved, one who knew all aspects of system requirements

and uses thoroughly. The systems analyst serves as a liaison between

application expert (and/or users) and application programmer, aiding

and guiding both in defining and communicating system requirements.

But neither the systems analyst nor the application expert was con-

.-*£ cerned primarily and explicitly with the human-computer interface.

k In the last few years, human-factors specialists have become an

16

increasingly important part of computer system design and development

U teams for just this reason. They attempt to emphasize the incorpora-

P.. tion of human-factors considerations into computer systems, and

especially into the dialogues, so that the user has an effective

- interface with which to interact. But a human-factors expert fre-

quently knows little about implementation of dialogues. Thus, a new
role, that of a dialogue author, has been created to design and

"-S.

implement dialogues. The term "dialogue author" was first presented

. . in [EHRI81] and rapidly began appearing in subsequent literature.

"j 3.2. FUNCTIONS OF THE DIALOGUE AUTHOR

For the programmer, communication with the machine is very

different from communication with a human. Thus, an application pro-

grammer, whose skill has been developed to deal with computers, is

not a likely candidate to produce human-oriented dialogue. The know-

ledge and skills required to create effective human-computer interac-

. tions are quite different from those needed to write computational

software. The programmer may even find it annoying in the midst of a

logically complicated section of code to have to "change modes" and

write dialogue to interact with the user, for example, to solicit an

input value. It is even more distracting from the computational pro-

.. S..gramming task to have to check the value received from the user for

all possible errors and to respond, in case of an error, with consis-

** ". tently worded error messages and prompts for correct inputs. Thus,

these interactions are frequently written as quickly as possible,

with little thought given to their form or content.

%.1

Additionally, the independence of dialogue modules from computa-

! tional modules indicates the need for separate roles to create the

two components. Thus, the role of a dialogue author has been devel-

:. '-. oped. The dialogue author is a skilled communication specialist

.q whose ultimate goal is to create and implement human-factored dia-

logues. Because application programmers will no longer write dia-

logues, the dialogue author "will have sole responsibility for creat-

ing an interface for a user. The dialogue author is not specifically

a programmer, but rather is a specially trained, human-factors-o-

riented professional concerned with the high level sequencing of com-

puter-user interaction, as well as the form, style, and content of

. "'" specific dialogues" [HART82].

In addition to creating human-factored dialogues, the dialogue

author is interested in evaluation and revision of dialogue modules.

Particularly since much human factors research encompasses empirical

testing of dialogues, the dialogue author is interested in metering

the dialogues and in incorporating newly discovered principles and

. ~ guidelines into the dialogues. The separation of dialogue and compu-

tational components of the software through dialogue independence

allows these modifications to be made quickly.

3.3. TOOLS

The people working in this relatively new field of human-compu-

ter interaction seem to be very tool-oriented. Many recent articles

in the literature describe tools for the development and testing of

[human-computer dialogue. This is undoubtedly the "first wave" of an

18 *

"' - t** * '.
U

even more comprehensive phenomenon, related to the fact that people

who are designing human-factored interfaces for others are not con-

tent to have poor quality interfaces for their own work. The dia-

logue author, even though creating a component of a software system,

does not program the dialogue modules in the way that an application

programmer programs the computational modules. Instead, the dialogue

author requires a special environment designed specifically to aid in

the implementation of dialogue modules.

Among the tools being developed to design, implement, simulate,

test, and maintain dialogue are special functions to format text,

generate graphics, produce keypad outlines and touch-panel configura-

, .~ •tions, and voice I/O managers. Generic tools that serve the dialogue

author across the spectrum of these specific tools include dialogue

P editors, dialogue simulators, and dialogue databases. Rule-based

flexpert" dialogue designers [ROAC82b, FISC82] guide the author in

applying human-factors considerations, graphic design principles, and

guidelines for effective communication.

The tools generally fall into two categories: those that are

"r -used as dialogue design aids to help the author design the content

and sequencing of dialogue modules (e.g., a design "expert" and a

dialogue simulator) and those that are used as dialogue implementa-

tion aids to help the author produce dialogue modules with a particu-

lar content (e.g., text and graphics formatters and dialogue edi-

tors). There are also tools to facilitate experimentation with human
4"

factors in interactive displays IFOLE81, FELD81], including languages

and metrics for interface specification and ergonomic evaluation

4 l 19
ii'

+%- . -

[BLES81], and tools to implement early and inexpensive experimental

I . user interfaces [FELD82I.

The TAXIS IMYLO80] system for designing and programming interac-

tive information systems includes high-level programming language

* facilities integrated with database management and integrity checking

mechanisms. TAXIS provides tools for the specification of the seman-

tic (computational) component of interactive information systems.

. Barron [BARR80] has extended TAXIS tools to a pragmatic component for

V.- "" the description of processes that construct dialogues. Modified

U. [Petri nets are used to represent the organization and structure of

*., dialogue and process control.
Borufka, Kuhlmann, and ten Hagen [BORU82] employ a mechanism

called "dialogue cells" which provide a basic approach and several

tools to aid in the programming of dialogues for interactive user

interfaces. Separate roles include those of an application program-

mer and a dialogue designer. A dialogue tool providing input/output

access to graphical devices reflects their heavy emphasis on graph-

ics. Programming language extensions for programming of dialogues

are part of their approach to dialogue construction, as an extension

77 of the programming activity. Dialogue "cells" are proposed as a gen-

eric model for instances of human-computer interaction, using the

basic elements of prompt, echo, user input symbol, and user input

value. Dialogue cells are combined to model sequences of interac-

.. tions.

~';-2"

~20

3.4. INTERFACES AS LANGUAGESlm
The kind of tools discussed above, for formatting graphical and

textual parts of dialogue, clearly should be included as part of a

dialogue tool facility. This section singles out for discussion a

% less obvious tool area, but one which is perhaps the most important

of all. Because the user of a human-computer application system must

interact with that system through dialogue, it is evident that this

, . .. dialogue comprises the interaction language between the system and

its users. Beyond this apparent relationship, a view of the various

interactions that occur through interfaces as expressions from for-

mally defined languages can be useful in learning how to design the

software that deals with dialogue.

For this purpose, user-computer interactions can be categorized

into one of two classes: 1) unilateral command string or 2)

,> request/response sequence. The unilateral command string variety of

interaction begins with a prompt, and, therefore, itself is part of a

generalized request/response sequence. But the prompt is usually a

standard prompt not specific to the situation. For example, one

might see a single "Ready" message at the command level of an operat-

ing system or text editor. A command in this case is "unilateral" in

the sense that it is user-initiated and the system does not present

4 to the user the choices for command names, followed by a series of

interactions to obtain the parameters and options. The command is

accepted, lexically analyzed, parsed, recognized as a valid command

or as an error, and acknowledged as a valid command (sometimes impli-

citly through the presentation of the next prompt) or error. The

21

i

* *-.*-.°. . *-* -

action requested by the command, if valid, is performed. The com-

I Wmands are phrased in a formally defined grammar, and there is no dif-

ficulty in seeing this as a situation involving an interaction lan-

guage whose syntactic form can be defined by a Backus-Naur Form (BNF)

grammar or by any other commonly used, formal language-defining tech-

nique. Each command has a well-defined set of semantic actions.

The request/response case does not require the user to unilater-

ally synthesize a command, but allows the user's needs to be conveyed

by a sequence of request/response interactions. The syntactic forms

for request/response interactions include menus, touch panels, key-

pads, and ordinary question-and-answer text. The same kind of com-

" " mand that is found in the unilateral case can be built up by select-

ing a function and then selecting (or specifying), one at a time, the

U parameters and options. The user is coached for each item and does

*.'-, not need to know a syntax for the command. In a system without sepa-

ration of dialogue and computation, the application software must

handle these interactions by asking for each input, accepting it,

performing lexical analysis (and sometimes parsing), recognizing the

.:-: ":' input as valid or erroneous (including validation of values for type

and range), and then performing the required action. In a system

with separation, the programmer need not be concerned with all of

. "these functions, and the dialogue author can deal with them through a

set of automated tools.

i"* *: The unilateral command string is often considered to be most

suited for "expert" users, while request/response interactions, are

typically reserved for verbose "novice" users. At least one system,

22

,oLI

N," however, [ROBE79] uses menus within a fastcomnatnsyem s

its primary means of interaction with all levels of users.

While the syntactic forms of request/response sequences are

:,-.'. quite different from those of regular command string languages, many

of the processing requirements (i.e., lexical analysis, parsing,

recognition, and validation) are similar. The difference is that the

i request/response approach breaks the application system down into

numerous "1micro- languages" whose processing can be done in a local-

IN ! ized manner. That is, at a given point in a particular sequence,

i . only a very small grammar is required to describe the valid inputs at

,, that point.

<- [i'Researchers have realized for some time that severe limitations

Sexist in the notations typically used to specify a language. Repre-

. ' sentational schemes are generally so highly-coded that they become

S.,' .

.1

the formalism and, from it, extract the information needed. This can

be done only through the development of a readable notation that will

Sdescribe the complete syntax of a language LEDG7e. Attention to

', the design of the language specification, so that the general user

can understand it, will help overcome some of the resistance normally

encountered in the use of formal language definitions [MARC761.

Sof There are several established methods of language syntax repre-

sentation, the best known example of which is Backus-Naur Form (BNF)

23

• .- • -- . .* .--"., . ', ."-" , < -'". re u st r sp n e'pro c-be k the app. i cat:"--2 in- systemi down-2-' -i nto" '---"i'i

T.; ---- r,

77.~~~ P. 7i- V.r7 . -,7 7-

[NAUR631. However, most of these are used primarily for representa-

tion of static programming languages and are inadequate for represen-

tation of dynamic interaction languages [JACO82]. BNF has some human

. .factors problems as well. It is a highly-structured, hierarchical

- metalanguage that results in a "fan-out" problem. That is, non-ter-

minals in an expression can be replaced by more non-terminals through

several successive iterations before a terminal symbol is finally

reached. This multi-level tree structure is difficult to follow,

since by the time the leaves (terminals) are reached, the root (high-

est level expression) may long be forgotten.

One variant of BNF, designed specifically to represent interac-
'.-

* -tive languages rather than static languages, is the multi-party gram-

mar ISHNE82b]. The features which differentiate this extension from

standard BNF are the labeling of nonterminals with a party (i.e.,

either human or computer) identifier, assignment of values to nonter-

minals when appropriate, and definition of a nonterminal which will

match any input string if no other parse of that input is successful.

Other issues involving visual features peculiar to interactive dis-

plays are also incorporated. Because of their interactive nature,

.. request/response sequences are good candidates for description by

multi-party grammars ISHNE82b]. The idea of describing interfaces by

a formal language specification has also been addressed by Foley

fFOLE81]. A rigorous definition of input, output, and the relation-

ship between them leads to a more structured design environment and

again emphasizes human-computer interface development. Formal gram-

imatical descriptions, combined with experimental results, are being

24
V°° '

used to compare alternative human-computer interface designs for ease

of use [REIS81.

A fundamental basis underlying these methods for language repre-

sentation is the notion of a metalanguage, which is a language to

describe the syntax of other languages. All of the approaches to

language specification described above contain examples of metalan-

guages. One of the great difficulties in dealing with metalanguages

through a computer interface is in keeping the symbols of the meta-

language disjoint from the symbols of the language being specified.

Since most user languages make use of all the keys on a typical ter-

- minal keyboard, there are none left to use unambiguously as metalan-

guage symbols. A simple example, but one that recurringly causes

problems with naive users, is seen in the following informal language

I definition to a user:

Type "EXIT" to leave the program.

*.' 4It is not clear (and cannot be made clear without special meta-meta-

language conventions concerning the use of quotation marks and upper

and lower case letters) what the user should type. Should the quota-

tion marks be typed? Must EXIT be typed in only upper case letters,

or will lower case work, too? Other examples include the choice of

. symbols for delimiters (which can also be dependent on the context of
A

that which is being delimited), the representation of required versus

optional elements, notation for a choice among alternatives, special

representation of conditionally optional components (including the

conditions themselves), constraints on alternatives caused by choices

made elsewhere in the expression, and limitations on values and char-

acters to be used in parts of the command string.

25

LA

Because of this strong relationship of human-computer

U interaction to language construction, consideration of language

design and implementation must be a part of dialogue management.

Automated tools are needed for both language specification and defi-

q nition, and parser generation for language recognition. Since the

dialogue author is not expected to be a language specialist, human

- .. factors is an especially important part of those tools.

3.5. DIRECT MANIPULATION

S. Direct manipulation is a concept relating to interfaces as lan-

guages. Direct manipulation allows a user to move the cursor to

objects (both graphical and textual), move objects, and perform oper-

ations on objects with immediate visual feedback. Through direct

! manipulation (SHNE82a], naive users can use computing facilities

without having to know a complicated command language. The "syntax"

has become less computer-oriented and more user-oriented. Computer

arcade games are striking examples; it is impossible to imagine play-

ing Tempest by typing in the kind of commands one typically finds in

a line editor!

System design for direct manipulation requires the means for an

exact visual representation of the objects and their relationships.

This requirement reflects a concept in dialogue management sometimes

known as: "What you see is what you get". It is antithetical to

this concept, for example, to build a file of text with imbedded com-

mands for its formatting, as one does with many present-day text for-

matters. A facility for visual programming [MACD82I ought to be

"264 ¢ ,4 ' . ., :Z ? . :; .-.- , ? . -. , ,.-i:Y .; .-.. 2-. .. i:, . ,-.. i i? . ' . . - ,.? 2 .. :? .,,'i - ,i .

offered in the tools provided to system designers and builders,I
especially to the dialogue author. It is more direct for an author

to build a display for an end-user by creating and manipulating

S"boxes, circles, and text on a display screen than to build it by dia-

q, logue programming with an extended programming language, as in

IBORUS2].

4. HOLISTIC METHODOLOGICAL APPROACH

As the preceding section has shown, the importance of a struc-

ltured approach to software development is well-recognized. However,

-' the addition of the dialogue author to the overall system design team

* increases communication complexity in an already sizable group

S (including application programmer, systems analyst, application

expert, user, and human factors expert). One of the most important

concepts in dialogue management relates to the need for a system

design methodology which emphasizes a holistic approach to software

design, so that both dialogue and computational components of a sys-

5,.5.'~ tem are given consideration. Such a methodology must also facilitate

- . inter-role communication between the dialogue author and the applica-

"" ~tion programmer.

* A holistic approach to design methodology treats dialogue design

* as an integral part of the entire software system design. Without

' ,.5 this integration, one can perhaps achieve separation of dialogue from
. --

application programs, but not true dialogue independence. This is

why tuning the dialogue with an add-on front-end to an existing
.2

27

application is not entirely effective. "Silk purse" user interfaces

Ucannot be fabricated from "sow's ears" logical control structures, no
matter how well the dialogue form and content are refined.

The development of a large software system is a complex task

* even without considering the necessity for a human-factored end-user

interface. Thus, the relatively new field of software engineering

has devoted much of its effort to reducing this development complex-

ity with little regard for the human factors that so greatly affect

the performance of the end-user of the system. Current software

.. .. development methodologies are aimed at facilitating the job of the

- application programmer by providing tools and guidelines for system

* analysis, design, implementation, and maintenance. They rarely con-

sider the guidelines, methods, and tools needed to produce quality

human-computer interfaces. As a result of using these methodologies,

the effectiveness of the human-computer interface varies according to

the human factors knowledge of the application programmer, and with

-3 the emphasis that the programmer gives to this interface. Recent
5.

advances in methodological development have seen more emphasis on the

* , role of the human factors expert in system design. But just as the

* programmer's knowledge of human factors is varying, the human factors
.°,.

expert's knowledge of programming is varying. Therefore, for these

two specialists to work together effectively, a methodology is

required which embodies the needs and principles of both the discip-

line of software engineering and of human factors engineering, while

-,providing appropriate development and communication tools for each.

".28

o 28

. * .. * * . * ... w2

Creating an application system which includes both dialogue and

. computational components is different from the development of a trad-

. itional software system. Traditional software methodology is inade-

quate because it fails to fulfill the following requirements:

U

1. Integration of human factors inputs from the beginning of sys-

tem development,

2. Separation of dialogue author and programmer roles,

- 3. Minimization of computer knowledge required for system design,

4. Incorporation of both data flow and control flow in a single

unified representation,

5. Production of requirements specifications that are easy to

- "verify in the design, and

6. Use of an automated tool environment for development of dia-

logue and computational components.

An example of a holistic methodology which meets these requirements

will be discussed in section 5.2.3 in the context of a specific sys-

tem for dialogue management.

* . Foley (FOLE81] reports on a four-phase methodology for designing

- a user interface. The first step, conceptual design, specifies the

user's view of the application system. The semantic design phase

determines system functionality, while syntactic design deals with

sequencing of input and output. Finally, the lexical phase maps syn-

tax to specific hardware devices. This kind of methodological

approach gives emphasib to development of the user interface, while

providing the structure to handle the complexity of application sys-

tem design.

29
C ,..

"4

~5. A DIALOGUE MANAGEMENT SYSTEM

* -

. The concepts discussed in this paper represent a new approach to

- the management of dialogues in the development of human-computer

-.o interfaces. However, recognition of these concepts is not sufficient

" "" to produce improved human-computer interfaces. Demonstration of the

.,effectiveness of these concepts requires a pplication system develop-

"?.[' ment facilities and tools which incorporate them from the first

.. phases of design all the way through to implementation. As one pos-

J sible system to illustrate the concepts, a Dialogue Management System

. (DMS) [HART82] is described below.

.5.1. OVERVIEW OF DMS

'- '-.-DMS is a comprehensive system for designing, analyzing, imple-

'.. menting, and monitoring human-factored interactive application sys-
I tems. The high-level DMS organizational framework which supports the

Sconcepts of dialogue management is shown in Figure 3. DMS provides

an environment which facilitates the design and implementation of
both dialogue and computational components in parallel. The compo-

Sfnents of the environment which effect this parallel development are

30

........ ment facilities and .- tol whic incororat. the.fro thefirs

hii
DIALOGUE

LIBRARY

DIALOGUE DIALM DIALOGUE
AUTHOR UHRDVLPETITRAEUE

INTERFACEI FACILITY FO PPIATO

• SYSTEM ,

* .
IleLIATO APPLICATION COMPUTATIONAL OPTTOA

PROGRAMMER -4 PROGRAMER DEVELOPMENT ------- SnARFOR APPLICATION

J FITre3ACEv FACnLIzTY ofDM

T

Figure 3. High-Level Organization of DMS"

-%5.2. DIALOGUE MANAGEMENT CONCEPTS IN DMS

• "" The concepts of dialogue management which have been presented in

this paper are embodied in DMS. The implementation of dialogue inde-

*. pendence, the role of the dialogue author, and a holistic methodolo-

~gical approach form the underlying basis of DMS.

5.2.1. Dialogue Independence

Dialogue independence is manifest logically in DMS through the

use of separate modules for dialogue and computation in the applica-

31

•.% -. ,;. .;.> . ,.; -' --. " - " -""" " "" " . .. ' " "" "

tion systems produced using DMS. Separate interfaces are provided

for the creation of dialogue and for computational software. The

integrated dialogue components and computational components form the

completed application system. Physically, dialogue independence is

o- achieved in DMS by the use of a multiprocess execution environment.

In this environment, the dialogue component and the computational

component are executed in separate, but concurrent, operating system

processes. Finally, device independence is accomplished by general-

ized device drivers for each hardware device which is used in DMS

"-7 (e.g., a graphics terminal and a black-and-white CRT), to localize

the characteristics of, and differentiate among, display devices.
..

5.2.2. Dialogue Author

The role of the dialogue author is separate from that of the

application programmer in DMS. As shown in the DMS structural organ-

ization, different interfaces and tools are provided for each role.

The application programmer, through the application programmer inter-

' face, uses the comp tational development facility to create the com-

putational component of an application system. No external dialogue,

or interaction with the user, is produced by this portion of DMS.

S Only the internal dialogue, or the interaction between dialogue and

computational components, is a part of the software developed using

this tool. At the same time, the dialogue author uses the author's

interface to create the dialogue portion of an application system.

This Author's Interactive Dialogue Environment (AIDE) is the portion

of DMS with which a dialogue author designs, implements, simulates,

32

LA

tests, and modifies dialogues. It provides an automated set of tools

I for a dialogue author to use in creating human-factored human-compu-

ter dialogues. This set of tools consists of such aids as a dialogue

- editor, a graphical formatter, a menu formatter, a voice I/O manager,

a language implementer, a dialogue simulator, and a dialogue data-

-N base. The output produced by AIDE is external dialogue, or the

.* -Q interface through which an end-user communicates with the completed

application system. A complete presentation of AIDE, its tools, and

its use by a dialogue author can be found in [JOHN82a].

--: :.. A language implementer, one of the tools of AIDE, assists the

-- dialogue author in the design, specification, and recognition of

interaction languages [JOHN82b]. The language implementer consists

of two main components: 1) a tool to aid in creating an interaction

I language and its specification for a specific application system, and

2) a tool to generate a parser to recognize this interaction lan-

guage, once it is incorporated into the application system. Syntac-

tic forms include menus, touch panels, keypads, and command strings.

Additionally, the language implementer alleviates the difficult jnob-

' . , lem of determining whether the dialogue author or the application

programmer should do input parsing. Input from the user to the sys-

tem is really part of the external dialogue, and as such, should be

handled by the dialogue author. But an author generally does not

have the skills necessary to create parsers. The language implemen-

ter is an automated tool in AIDE that the dialogue author can easily

.. use to do input recognition when needed, through the automatic gener-

ation of lexical analyzers and parsers.

'I 33

ti

*4

-[" Direct manipulation and "what you see is what you get" are

achieved by having a very general display representation. Each

screen in represented in the AIDE environment within a high perfor-

mance (primary memory) relational Screen Database (SDB) containing

relations to hold attribute values for the screen and its objects and

groups of objects. The SDB is manipulated by a set of generalized

editing functions. The direct manipulation functions (via keypad

selection and cursor movement through the author's interface) use

these editing functions to manipulate the objects on the screen and

therefore in the database.

The display on the screen at the author's workstation is cons-

tantly kept current with the SDB representations by a Display Inter-

,., preter. Storing dialogue in an interpretable representation produced

by AIDE tools is a key to dialogue independence, since local changes

"-. 7to dialogue do not affect the computational component of an applica-

tion. Screen definitions are retrieved (stored) into (from) the SDB

from (into) the Dialogue Database (DDB), which holds the dialogue for

a complete application system. For performance reasons, special

methods are applied to "compile" the DDB contents when the applica-

tion is ready for execution.

5.2.3. Holistic Methodology

Because traditional software methodologies have been found to be

%! "inadequate for dialogue management, a new methodology, called the

Supervisor-Based System Development Methodology (SBSDM) has been

developed 1YUNT82) for use in DMS. Applicable to the modelling of

34

any procedural system, the SBSDM integrates many of the features of

I conventional methodologies (the equivalent of data flow diagrams,

structure charts, PDLs, structured design, etc.) into a single

approach, which integrates human factors considerations from the ear-

- Bliest stages of design. Based on a separation of dialogue author and

*. application programmer roles, and the fact that the author need not

be a computer specialist, the SBSDM combines both data flow and con-

trol flow into requirements and design representation at all levels

of system development.

The basic element of the SBSDM is a "supervisory structure".

4 '

SYD fort SF orF

Figure 4. Supervisory Structure and Supervisory Cells

*which is a hierarchy of "supervisory cells" (see Figure 4). Each

cell represents the subfunctions of a single supervisory function. A

Supervised Flow Diagram (SFD) represents the sequence of subfunctions

.. 5 \ -

." ... "-

and indicates both control flow and data flow among the subfunctions.

The supervisory function of an SFD administers both data flow and

control flow. Each subfunction can then be a supervisory function of

supervisory cells at the next level in the hierarchy. Worker func-

tions, which perform single dialogue or computational operations, are

found in the terminal nodes of the supervisory structure. All the

supervisory functions, taken together, make up the control structure

of the entire application system. Details of the SBSDM, and examples

of its use, are to be found in [YUNT82].

The supervisory structure is used to represent the application

system in all phases of development in the software lifecycle. The

, ~ requirements analysis and specification phase begins with a "wish

list" from the application experts and users. This list is converted

into a high-level supervisory structure by the human factors engi-

neers and software engineers/systems analysts. When it has been

expanded until its terminal nodes are pure computation or pure dia-

1 logue, this structure is called the "behavioral structure", which is

a complete, precise statement of the system requirements. Only the
V development of the computational and dialogue supervisory functions

in worker modules is required to complete the physical design.

Implementation, then, amounts to a direct mapping of this representa-

tion to source code. This graphical SFD language of the behavioral

43
structure is a very high-level programming language, and, since the

a" '.. methodology is supported by an automated tool environment, the source

code for the entire control structure can be generated using a SFD

"d language compiler. Thus, the behavioral structure provides a graphi-

36

°• -~~....... .,. ,. ,--.. ----.- '-' . ., .- . , ,- - .- - *

cal representation that is itself executable. All application system

I sequences can be tested before any other code is written. Because

the behavioral structure is executable, there is no need for a trans-

lation step from the requirements to the design and implementation,

- and no need to verify that the design and implementation meet the

requirements. The only remaining tasks are the writing of the compu-

-:. . tational modules by the application programmer and the production of

the terminal dialogue modules by the dialogue author.

* •This methodology recognizes and addresses the fact that in order

to deal effectively with dialogue, system developers must work with

the entire system. SBSDM incorporates the, dialogue management con-

cept of dialogue independence into system design, and provides for

effective interaction between the new role of the dialogue author and

the traditional role of the application programmer.

6. SUMMARY

The need for effective human-computer interfaces is well-recog-

nized. However, most research in software engineering has emphasized

mainly the computational component of a system, while the dialogue is

developed as a secondary activity. In order to address this issue,

several important concepts of dialogue management have been identi-

fied. Dialogue independence, which results in the separation of dia-

logue and computational components within a software system, allows

- easy modification of dialogues so that a human-computer interface can

be quickly modified to meet the needs of its users. The role of a

.,'..'~-07

-- . -- . -. . - . -4o.

S..

dialogue author, whose main purpose is to create dialogues that

Iincorporate good human-computer interface guidelines, is another key

concept. By automating as much of the dialogue development and

implementation process as possible, the dialogue author is freed from

much of the tedium of "coding" dialogies and can concentrate on

incorporating human factors into the dialogues to create an effective

human-computer interface. An Author's Interactive Dialogue Environ-

ment (AIDE) is being developed as one such system for use by the dia-

logue author. This environment consists of numerous automated tools

for assisting in both dialogue design and implementation. This

places the emphasis of human-computer interface development on what a

d l dialogue will contain, not on how it will be implemented. Finally, a

system which incorporates dialogue independence and which is created

by a dialogue author and an application programmer working in para-

4- .llel must be developed by employing a methodological approach which

. considers the entire software system. A holistic methodology of this

Ptype provides for coordination of the roles as well as integration of

the dialogue and computational components which are independently

i., >, produced.

Many aspects of human-factoring an application system user

interface seem intuitively obvious, even to the casual observer. But

o . these aspects are all too frequently ignored in the rush to produce

an operational system as soon as possible. Anything that takes time

away from programming is considered by many people to be non-produc-

tive. But application systems which are developed without proper

attention to the human-computer interface are frequently ineffective

38

-6 -

for the end-user. With ever-increasing numbers of interactive compu-

ter users having wide ranges in experience, problems, and expecta-

* tions, the need for effective human-computer interfaces becomes a

-primary input to system design. Ad hoc design methods and tradi-

tional manual development tools will rarely produce satisfactory sys-

-S.

tems. Providing a standard methodology and automated tools for the

5. .- creation of useful, effective human-computer interfaces is "a chal-

-~ lenge to scientific competence, engineering ingenuity, and artistic

elegance" ISHNE8O].

U.°

The concepts presented in this paper are being incorporated into

an automated Dialogue Management System (DMS) t,) be used for the

* . development of human-computer systems. However, such a DMS is not a

* prerequisite for improved dialogue design. More effective human-con-

-'

Sputer interfaces can presently be produced by using the concepts of

dialogue independence, a dialogue author, and a comprehensive holis-

tic methodology in the development of human-computer systems.

.1

Li

39

leng toscietifc copetnceengneerng ngenity andartsti

REFERENCE S

BARR80 Barron, John L., "Dialogue Organization and Structure for
Interactive Information Systems," Department of Computer
Science Technical Report CSRG-108, University of Toronto
(January 1980).

BASS81 Bass, Leonard J., and Ralph E. Bunker, "A Generalized User
**-. *Interface for Applications Programs," CACM, 24, 12 (Decem-

ber 1981), 796-800.

BLAC77 Black, James L., "A General Purpose Dialc;ue Processor,"
Proc. of the NCC, (1977), 397-408.

BLES81 Bleser, T. P., "A Formal Language for Describing and Evaluat-
ing the Ergonomics of User-Computer Interfaces," ACM DC
Chapter 20th Symposium, College Park, MD (June 1981).

* BORU82 Borufka, H. G., H. W. Kuhlmann, and P. J. W. ten Hagen, "Dia-
logue Cells: A Method for Defining Interactions," IEEE Com-
puter Graphics and Applications, (July 1982), 25-33.

BYTE81 Byte: The Small Systems Journal, Special Issue: Smalltalk, 6, 8
(1981).

CHER76 Cheriton, D. R., "Man-Machine Interface Design for Timeshar-
ing Systems," Proc. of ACM Annual Conf., (1976), 362-380.

-. EHRI81 Ehrich, Roger W., and H. Rex Hartson, "DMS -- An Environment
for Dialogue Management," Proc. COMPCON81, Washington, DC
(September 1981), 121.

- EVAN82 Evans, R., N. J. Fiddian, and W. A. Gray, "Adaptable User
Interfaces for Portable, Interactive Computing Software Sys-
tems, " Proc. Part II, Conf. on Easier and More Productive Use of

,, .# Computer Systems, Ann Arbor, Michigan (May 1981), as in
SIGSOC Bulletin, 13, 2-3 (January 1982), 59.

FELD81 Feldman, Michael B., "Tools to Facilitate Human-Factors
Improvement in Interactive Information Display Systems,"
-roc. COMPCON81, Washington, DC (September 1981), 117-118.

FELD82 Feldman, Michael B., and George T. Rogers, "Toward the Design
and Development of Style-Independent Interactive Systems,"

Proc. Conf. Human Factors in Computer Systems, Gaithersburg, MD
(March 1982), 111-116.

0r

q40
.0

.o - . ~......-

-]

FISC82 Fischer, Gerhard, "Symbiotic, Knowledge-Based Computer Sup-
port Systems," Proc. of the IFAC Conf. on Analysis, Design, and

i Evaluation of Man-Machine Systems, Baden-Baden, Germany (Septem-
ber 1982), 351-358.

. FOLE74 Foley, James D., and Victor L. Wallace, "The Art of Natural
Graphic Man-Machine Conversation," Proc. of the IEEE, 63, 4
(April 1974), 462-471.

- FOLE81 Foley, James D. "Tools for the Designers of User Inter-
faces," George Washington University Institute for Informa-
tion Science and Technology Report GWU-IIST-81-07 (March
1981).

HANS71 Hansen, W. J., "User Engineering Principles for Interactive
- Systems," AFIPS Conf. Proc., 39, (1971), 523-532.

HART79 Hartson, H. Rex, and Michael D. Schnetzler, "Generalized
. . Interactive User Interface Dialogue Designer," Working Paper

(March 1979).

HART82 Hartson, H. Rex, and Roger W. Ehrich, "DMS: A System for the
Management of Dialogue for User-Software Interfaces," sub-
mitted for publication (October 1982).

" HAYE79 Hayes, Phil, and Raj Reddy, "An Anatomy of Graceful Interac-
tion in Spoken and Written Man-Machine Communication," Car-
negie-Mellon University Report CMU-CS-79-144 (September
1979).

.%

HAYE81 Hayes, Phil, Eugene Ball, and Raj Reddy, "Breaking the Man-
Machine Communication Barrier," IEEE Computer, (March 1981),
19-30.

HILL81 Hillsberg, Bruce L., "Generic Terminal Support," ACM Operat-
ing Systems Review, 15, 2 (April 1981), 10-15.

JACO82 Jacob, Robert J. K., "Using Formal Specifications in the
Design of a Human-Computer Interface," Proc. Conf. on Human
Factors in Computing Systems, Gaithersburg, MD (March 1982),
315-321.

JOHN82a Johnson, Deborah H., and H. Rex Hartson, "The Role and Tools
of a Dialogue Author in Creating Human-Computer Interfaces,"
VPI&SU Departments of Computer Science and Industrial Engi-

. neering Technical Report CSIE-82-8 (May 1982).

41

.'

**** .%* * ** . * *. " . ,

...
"

-..

JOHN82b Johnson, Deborah H., and H. Rex Hartson, "Interaction Lan-
guage Specification and Recognition", VPI&SU Departments of
Computer Science and Industrial Engineering Technical Report
CSIE-82-11 (1982).

KAYA77 Kay, Alan and Adele Goldberg, "Personal Dynamic Media," IEEE
Computer, (March 1977), 31-41.

KENN74 Kennedy, T. C. S., "The Design of Interactive Procedures for
Man-Machine Communication," International Journal of Man-Machine
Studies, 6 (1974), 309-334.

LEDG74 Ledgard, Henry, "Production Systems: Or Can We Do Better Than
BNF?", CACM, 17, 2 (February 1974).

MACD82 MacDonald, Alan, "Visual Programming," Datamation, (October
1982), 132-140.

MARC76 Marcotty, M., Henry Ledgard, and G. Bochmann, "Sampler of
Formal Definitions," Computing Surveys, 8, 2 (June 1976).

. ? MART73 Martin, James, Design of Man-Computer Dialogues, Prentice-Hall,
. "i Inc., Englewood Cliffs, NJ (1973).

MEHL81 Mehlmann, Marilyn, When People Use Computers, Prentice-Hall,
* Englewood Cliffs, NJ (1981).

MILL77 Miller, Lance A., and John C. Thomas, Jr., "Behavioral Issues
in the Use of Interactive Systems," Int. J. Man-Machine Stu-
dies, 9 (1977), 509-536.

MYLO80 Mylopoulos, John, Philip A. Bernstein, and Harry K. T. Wong,
"A Language Facility for Designing Databasc-Intensive Appli-V.. cations," ACM TODS, 5, 2 (June 1980), 185-207.

NAUR63 Naur, P. (ed.), "Revised Report on the Algorithmic Language
ALGOL 60," CACM, 6 (January 1963).

NEWM79 Newman, William M., and Robert F. Sproull, Principles of Interac-
tive Computer Graphics, McGraw-Hill, second edition, New York
(1979).

.4 REIS81 Reisner, Phyllis, "Formal Grammar and Human Factors Design of
an Interactive Graphics System," IEEE Trans. on Software Engi-
neering, SE-7, 2 (March 1981), 229-240.

-.%
42

4i.

*". ,1

u4

ROAC82a Roach, John, H. Rex Hartson, Roger W. Ehrich, Tamer Yunten,
and Deborah H. Johnson, "DMS: A Comprehensive System for

I Managing Human-Computer Dialogue," Proc. Conf. on Human Fac-
tars in Computer Systems, Gaithersburg, MD (March 1982),

" 102- 105.

' "ROAC82b Roach, John, J. A. Pittman, Susan Reilly, and John Savarese,
"A Visual Design Consultant," IEEE Systems, Man, and Cyber-

.Inetics Conference, Seattle, WA (October 1982).

* ROBE79 Robertson, G., D. McCracken, and A. Newell, "The ZOG Approach
to Man-Machine Communication," Carnegie-Mellon University
Department of Computer Science Report CMU-CS-79-148 (1979).

ROSE74 Rosenburg, Victor, "The Scientific Premises of Information
Science," J. of the ASIS, (July-August 1974), 263-269.

ROUS75 Rouse, William B., "Design of Man-Computer Interfaces for
On-Line Interactive Systems," Proc. of the IEEE, 63, 6 (June
1975), 847-857.

-. SHNE8O Shneiderman, Ben, Software Psychology: Human Factors in Computer
., and Information Systems, Winthrop Publishers, Inc., Cambridge,

- Mass. (1980).

- SHNE82a Shneidermen, Ben, "Direct Manipulation: A Step Beyond Pro-
gramming Languages," Proc. Part I/, Conf. on Easier and More
Productive Use of Computer Systems, Ann Arbor, Michigan (May
1981), as in SIGSOC Bulletin, 13, 2-3 (January 1982), 143.

SHNE82b Shneiderman, Ben, "Multi-Party Grammars and Related Features
for Designing Interactive Systems," IEEE Trans. on Systems,

PMan, and Cybernetics, 12,2 (March-April 1982).

SMIT80 Smith, H. T., and T. R. G. Green, Human Interaction with Compu-
ters, Academic Press, London (1980).

THOM81 Thomas, John, and J. M. Carroll, "Human Factors in Communica-
.= tion," IBM Sys. J., 20, 2 (1981), 237-263.

TOFF80 Toffler, Alvin, The Third Wave, Bantam Books, New York
(1980).

WILL81 Williges, Beverly H., and Robert C. Williges, "User Consider-
ations in Computer-Based Information Systems," VPI&SU
Departments of Computer Science and Industrial Engineering
Technical Report CSIE-81-2 (September 1981).

43

4,'. , ,, "''". ,v . " " ' ¢ , i < i "4- """ " . . ", "- "•, , ,:,-"''", ,"','-,-- ,, %, .v ,

WRIG78 Wright, Peggy R. , and Barry W. Brown, "A Processor for Pro-
* viding Friendly Environments for Frequently Used Application

Packages, " Proc. ACM Annual Conf. 1, Washington DC (Decem-
ber 1978), 346-350.

YUNT83 Yunten, Tamer, and H. Rex Hartson, "A Supervisor-Based System
Development Methodology, " VPI&SU Departments of Computer
Science and Industrial Engineering Technical Report CSIE-83
(1983).

444

-.

OFFICE OF NAVAL RESEARCH

Engineering Psychology Group

TECHNICAL REPORTS DISTRIBUTION LIST

OSD Department of the Navy

, CAPT Paul R. Chatelier Manpower, Personnel & Training
Office of the Deputy Under Secretary Programs

of Defense Code 270
OUSDRE (E&LS) Office of Naval Research
Pentagon, Room 3D129 800 North Quincy Street
Washington, DC 20301 Arlington, VA 22217

Dr. Dennis Leedom Information Sciences Division

.. " Office of the Deputy Under Secretary Code 433
of Defense (C3 1) Office of Naval Research

Pentagon 800 North Quincy Street
Washington, DC 20301 Arlington, VA 22217

"I Department of the Navy Special Assistant for Marine Corps
'- ,Matters

Engineering Psychology Group Code 100M
Office of Naval Research Office of Naval Research
Code 442 EP 800 North Quincy StreetS Arlington, VA 22217 Arlington, VA 22217

Communication & Computer Technology CDR James Offutt, Officer-in-Charge
Programs ONR Detachment

. Code 240 1030 East Green Street
Office of Naval Research Pasadena, CA 91106
800 North Quincy Street
Arlington, VA 22217 Director

Naval Research Laboratory

: ! Physiology & Neuro Biology Programs Technical Information Division
- Code 441NB Code 2627

Office of Naval Research Washington, DC 20375
800 North Quincy Street
Arlington, VA 22217 Dr. Michael Melich

Communications Sciences Division
Department of the Navy Code 7500

Naval Research Laboratory

i:1 Tactical Development & Evaluation Washington, DC 20375
Support Programs

Code 230 Dr. .1. S. Lawson

SOffice of Naval Research Naval Electronic Systems Command
800 North Quincy Street NELEX-06T
Arlington, VA 22217 Washington, DC 20360

4.

oA

I

Department of the Navy Department of the Navy

P I Dr. Robert E. Conley Dr. L. Chmura
Office of Chief of Naval Operations Naval Research Laboratory
Command and Control Code 7592
OP-094H Computer Sciences & Systems
Washington, DC 20350 Washington, DC 20375

Dr. Robert G. Smith Commanding Officer
Office of the Chief of Naval MCTSSA
Operations, 0P987H Marine Corps Base

Personnel Logistics Plans Camp Pendleton, CA 92055
Washington, DC 20350

Chief, C 3 Division
Combat Control Systems Department Development Center
Code 35 MCDEC

% Naval Underwater Systems Center Quantico, VA 22134
Newport, RI 02840

Human Factors Technology Administrator
" Human Factors Department Office of Naval Technology

Code N-71 Code MAT 0722

Naval Training Equipment Center 800 N. Quincy Street
, Orlando, FL 32813 Arlington, VA 22217

Dr. Alfred F. Smode CommanderS Training Analysis and Evaluation Naval Air Systems Command
Group Human Factors Programs

Orlando, FL 32813 NAVAIR 334A
Washington, DC 20361

CDR Norman E. Lane
Code N-7A Commander
Naval Training Equipment Center Naval Air Systems CommandOrlando, FL 32813 Crew Station Design

NAVAIR 5313
Dr. Gary Poock Washington, DC 20361
Operations Research Department

Naval Postgraduate School Mr. Philip Andrews
Monterey, CA 93940 Naval Sea Systems Command

NAVSEA 03416
Dean of Research Administration Washington, DC 20362

Naval Postgraduate School
Monterey, CA 93940 Commander

"- Mr. Naval Electronics Systems Command
Mr. John Impagliazzo Human Factors Engineering Branch
Code 101 Code 81323
Naval Underwater Systems Center Washington, DC 20360
Newport, RI 02840

Larry Olmstead
S. Dr. A. L. Slafkosky Naval Surface Weapons Center

j Scientific Advisor NSWC/DL
Commandant of the Marine Corps Code N-32
Code RD-l Dahlgren, VA 22448
Washington, DC 20380

' ° • . - - . . ° . °° • - , ° - .. .• -4", , .",'i"" '''." ."-",' ". - ''''''' ."

-~ N-: -._- •. .- .-.. -.. - .-. - . . - • . .I

Department of the Navy Department of the Navy

- Dr. George Moeller Dean of the Academic Departments
S"" Human Factors Engineering Branch U.S. Naval Academv

Submarine Medical Research Lab Annapolis, MD 21402
-,. Niaval Submarine Base

Groton, CT 06340 Dr. S. Schiflett
Human Factors Section

n Commanding Officer Systems Engineering Test
Naval Health Research Center Directorate

San Diego, CA 92152 U.S. Naval Air Test Center
Patuxent River, MD 20670

Commander, Naval Air Force,

U.S. Pacific Fleet CDR C. Hutchins
ATTN: Dr. James McGrath Code 55

Naval Air Station, North Island Naval Postgraduate School

San Diego, CA 92135 Monterey, CA 93940

Naval Personnel Research and Office of the Chief of Naval
Development Center Operations (OP-115)

Planning & Appraisal Division Washington, DC 20350
San Diego, CA 92152

Department of the Army

Dr. Robert Blanchard
Navy Personnel Research and Mr. J. Barber

Development Center HQS, Department of the Army'S Command and Support Systems DAPE-MBR
San Diego, CA 92152 Washington, DC 20310

S " CDR J. Funaro Department of the Navy
Human Factors Engineering Division
Naval Air Development Center Dr. Edgar M. Johnson

, Warminster, PA 18974 Technical Director
*1 * U.S. Army Research Institute

Mr. Stephen Merriman 5001 Eisenhower Avenue

* Hum.n Factors Engineering Division Alexandria, VA 22333
Naval Air Development Center
Warminster, PA 18974 Director, Organizations and

Systems Research Laboratory
Mr. Jeffrey Grossman U.S. Army Research Institute
Human Factors Branch 5001 Eisenhower Avenue

Code 3152 Alexandria, VA 22333
-. Naval Weapons Center

China Lake, CA 93555 Technical Director
U.S. Army Human Engineering Labs

V Human Factors Engineering Branch Aberdeen Proving Ground, MD 21005

Code 1226
Pacific Missile Test Center Department of the Air Force

- Point Mugu, CA 93042

U.S. Air Force Office of Scientific

Research
'I Life Sciences Directorate, NL

Bolling Air Force Base
Washington, DC 20332

, ' ' :,', ,: .,L,:,-V', ,..-'. :..'. -, . . -".... -

Department of the Air Force Other Government Agencies

! AFHRL/LRS TiDC Dr. Craig Fields
Attn: Susan Ewing Director, System Sciences Office
Wright-Patterson AFB, OH 45433 Defense Advanced Research Projects

Agency
• . Chief, Systems Engineering Branch 1400 Wilson Blvd.

Human Engineering Division Arlington, VA 22209

USAF AMRL/HES
4. Wright-Patterson AFB, OH 45433 Dr. M. Montemerlo

Human Factors & Simulation

Dr. Earl Alluisi Technology, RTE-6
Chief Scientist NASA HQS
AFHRL/CCN Washington, DC 20546
Brooks Air Force Base, TX 78235

" Other Organizations

Foreign Addressees

Dr. H. McI. Parsons
Dr. Kenneth Gardner Human Resources Research Office
Applied Psychology Unit 300 N. Washington Street
Admiralty Marine Technology Alexandria, VA 22314

Establishment
Teddington, Middlesex TWll OLN Dr. Jesse Orlansky
England Institute for Defense Analyses

1801 N. Beauregard Street
Director, Human Factors Wing Alexandria, VA 22311
Defence & Civil Institute of

Environmental Medicine Dr. Deborah Boehm-Davis
Post Office Box 2000 General Electric Company

*.' Downsview, Ontario M3M 3B9 Information Systems Programs
Canada 1755 Jefferson Davis Highway

Arlington, VA 22202
Dr. A. D. Baddeley
Director, Applied Psychology Unit Dr. James H. Howard, Jr.
Medical Research Council Department of Psychology
15 Chaucer Road Catholic University
Cambridge, CB2 2EF England Washington, DC 20064

7 Professor Brian Shackel Mr. Edward M. Connelly
Department of Human Science Performance Measurement Associates, Inc.

Loughborough University 410 Pine Street, S. E.
Loughborough, Leics, LEll 3TU Suite 300

. England Vienna, VA 22180

Other Government Agencies Dr. Edward R. Jones
Chief, Human Factors Engineering

Defense Technical Information Center McDonnell-Douglas Astronautics Co.
Cameron Station, Bldg. 5 St. Louis Division
Alexandria, VA 22314 Box 516

St. Louis, MO 63166

I
%

" .Other Organizations Other Organizations

Dr. Marvin Cohen Dr. Thomas McAndrew
- - Decision Science Consortium Code 32

Suite 721 Naval Undersea Systems Center
7700 Leesburg Pike New London, CT 06320
Falls Church, VA 22043

Mr. Walter P. Warner

Dr. William B. Rouse Code KOZ
School of Industrial and Systems Strategic Systems Department
Engineering Naval Surface Weapons Center

Georgia Institute of Technology Dahlgren, VA 22448

Dr. Mel C. Moy
Dr. Richard Pew Code 302

% Bolt Beranek & Newman, Inc. Naval Personnel R&D Center

. . 50 Moulton Street San Diego, CA 92152
Cambridge, MA 02238

%4 .Dr. Richard Neetz
" V Dr. Douglas Towne Pacific Missile Test Center

University of Southern California Code 1226
Behavioral Technology Laboratory Pt. Mugu, CA 93042

3716 S. Hope Street
Los Angeles, CA 90007 Mr. Rich Miller

NSWC
Psychological Documents Code N32
ATTN: Dr. J. G. Darley Dahlgren, VA 22448
N 565 Elliott Hall
University of Minnesota Dr. Arthur Fisk

.' * Minneapolis, MN 55455 ATT Long Lines
12th Floor

Mr. Richard Main 229 W. Seventh St.
ONR Resident Representative Cincinnati, OH 45202

George Washington University
2110 C. Street, N.W. Dr. R. J. K. Jacob

'.o, Wasili-gton, DC 20037 Code 7590
, Naval Research Laboratory

Dr. E. Cloye Washington, DC 20375
- ONR Western Regional Office

1030 East Green Street

Pasadena, CA 91106

Dr. J. Hopson
HF Engineering Division
Naval Air Development Center

Warminster, PA 18974

Mr. A. Meyrowitz

Code 433

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

..\ -,' *,. a" "-.' . * . * **.'-",', .. \-. -'-, .'-', , ",

AA

A

f 5

