
AD-fii36 944 THE BEHAVIORAL DEMONSTRATOR: A REQUIREMENTS
i/i

SPECIFICATION EXECUTOR(U) VIRGINIA POLYTECHNIC INST AND
STATE UNIV BLACKSBURG COMPUTER S.. J E CALLAN MAY 83

UNCLASSIFIED CSIE-83-i4 N60814-81-K-Oi43 F/G 9/2 NLmlhEEEEEEEliE
EEEEEEEEEEEEI
EEEEEEEEEEEEEE
EllEEEEEEEEEEE
EllEEEEEI

jj3.,2.-2

/ lUU __ S o
11111 ,_ ,
llll - m __-- r32l

1.8.

11111L25 LA111. 111.6

MICROCOPY RESOLUTION TEST CHART
NATWONAL BUREAU OF STANOAROS-1963-A

oV

- L

II I

~THE BEHAVIORAL DEMONSTRATOR:

.-. ' A REQUIREMENTS SPECIFICATION EXECUTOR

AA

JAMES"EJA N 1A3LLA4

4 A
Thiz docimxrent hn c -"r Op jov, '

fox public ielease cnd sale- it!-
diztribution is unlimited.

•A Virginia Polytechnic Institute

and State University
Computer Science

CZX Industrial Engineering and Operations Research
BLACKSBURG, VIRGINI- 24061

84 12 17 01
"" " ' ;' ; 'i""", .,,."€ ". . ,'"""".,. """"" "'. ' -' , ' -.- ,,.- . ' ---""Wi'mp"-"." ". ' " ."."- "- .

~A REQUIREMENTS SPECIFICATION EXECUTOR. -I.

i :, JAMES E. CALLAN III
ON ConEtract MAYbe 1983-1--04

*qi

I'-.

|r 0
TECHNICAL REPORT "

ApprovPrepared for -et i,
Engineering Psychology Group, Office of Naval Research

o aONR Contract Number N00014-81-K-0143: ~~Work Unit Number NR SRO-1O1, - .--.

~A

Approved for Public Release; Distribution Unlimited

. [Reproduction in whole or in part is permitted -
*for any purpose of the United States Government "

..

Unclassi fied
SECURITY CLASSIFICATION OF THIS PAGE (When Doea Entered)

-'. pREAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE RE COMPLETIORM__________________________BE'FORE_ COMPLETI['NGFORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

CSIE83-14 K.,r~(.g4 IL/(

14. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

THE BEHAVIORAL DEMONSTRATOR: Technical

A REQUIREMENTS SPECIFICATION EXECUTOR s. PERFORMING ORG. REPORT NUMBER

S7. AUTHOR() . CONTRACT OR GRANT NUMUER(e)

James E. Callan III

N00014-81-K-0143
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Computer Science
Virginia Polytechnic Institute & State University 61153N42; RR04209;

Blacksburg, Virginia 24061 RR0420901; NR SRO-101

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research, Code 442 May 1983
4.. 800 North Quincy Street IS. NUMBEROF PAGES

Arlington, VA 22217 62
14. MONITORING AGENCY NAME 4 AOORESS(II dlllerent from Controlling Olfeo) IS. SECURITY CLASS. (of Ihle regort)

Unclassified
-I IS. DECL ASSI FICATION/DOWNGRADING

SCHEDULE

1S. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

7 ?. DISTRIBUTION STATEMENT (of the abetrct entered in Block 20. II different frm Report)

S..

I;

1S. SUPPLEMENTARY NOTES

-

7% It. KEY WORDS (Continue on revetee olde It nocesecty and Identify by block nrumnber)

SBSDM, supervisory-structure, supervisor-cell, supervised-flow-diagram (SFD)
dialogue-function, computational-function, requirements-executor, Behavioral-
Demonstrator (BD), Transactional Database (TDB), Dialogue-Management-System
(DMS), Behavioral-Translator, SFD-compiler, Human-computer dialogue, Human-
factorable, Dialogue-author.

20. ABSTRACT (Continue n revree aidee If necesear and Identify by block namber)

This report presents a disign for tools which aid in the requirements
verification of computer systems. These tools use a very high level
graphical requirements specification language and a system development

-- methodology for human-computer systems. The report moves from an abstract
design to actual implementation and uses a sample application system through-
out for illustration.

DO . 1473 EITONOF I NOV 5. IS OBSOLETEDO 0 147 too-riot, Unclassified
SN12 -1A60SECURITY CLASSIFICATION OF THIS PAGE (When Dete e

ONi PAGE 2

ACKNOWLEDGEMENT

The author wishes to express appreciation to Shuhab Ahmed, Roger

.4. Ehrich, Rex Hartson, Pardeep Narang, and Tamer Yunten for their help

in preparing this report. This work was done under the supervision of

H. Rex Hartson.

-n-t

I.

'A

.4.

* 'AwAw

o%

I ia ,, " ' . . .

-°-4

U 7 d. * -l- " m - • . . - -

PAGE 3

ABSTRACT

This report presents a design for tools which aid in the requirements

i S. _ verification of computer systems. These tools use a very high level

graphical requirements specification language and a system development

. ! >methodology for human-computer systems. The report moves from an

abstract design to actual implementation and uses a sample application

* system throughout for illustration.

%

N
CA

PAGE 4

., KEYWORDS

SBSDM, supervisory-structure, supervisor-cell, supervised-flow-diagram

(SFD), dialogue-function, computational-function, requirements-
5- executor, Behavioral-Demonstrator (BD), Transactional Database (TDB),
,Dialogue-Management-System (DMS), Behavioral-Translator, SFD-compiler,

Human-computer dialogue, Human-factorable, Dialogue-author.

.%

1

.4q

'Ii

5" ' . , -' - € ,' . '""""","" .'. - . o ,, . .,"-"-",',"."
- ,' -",: -"- -",- -,,," ,- - -,

PAGE 5

TABLE OF CONTENTS

a -\ ACKNOWLEDGEMENT ... 2
AB STRACT .. 3

BSKEYWORDS .. 4

TABLE OF CONTENTS ... 5

INTRODUCTION .. 7

1.0 THE BEHAVIORAL DEMONSTRATOR 8

1.1 The SFD Language 10
1.2 BD Behavior and the User's Console 14

1.3 An Example BD .. 15

1.3.1 Requirements Specification 16

1.3.2 BD Operation .. 19

2.0 DESIGN ISSUES ... 22

, 2.1 BD Formal Requirements Specification 22

2.2 Graphical Support Environment 23

2.2.1 SFD Graphical Standards 23

2.2.2 Textual Standards ... 26

2.3 Conceptual Data Model 29

2.3.1 Node Attributes .. 29

2.3.2 Object Attributes ... 31

3.02.4 Definition of Formal Relations 32

3.0 BD EXECUTION ENVIRONMENT .. 34

.,3.1 BD: A Finite-State Automata 34

3.2 Graphical Expansion .. 38

3.3 Textual Expansion .. 39

3.3.1 TDB Description ... 40

-- - -- - -

% PAGE 6

3.3.2 BD I/O Support.. 41

3.3.3 An Example Tuple Translation.............................4

3.3.4 BD Command Alternatives................................... 45

*46
3.3.S Problems and Solutions.................................... 4

4.0 BEHAVIORAL DEMONSTRATION OF THE AIRLINE EXAMPLE................ 47

* ~5.0 FUTURE WORK.............................5

?' ~~~ REFERENCES..............................5

0
Li

;--r T~* 7-7 7.. 7. . - .7".

-PAGE 7

INTRODUCTION

A movement has begun in the software engineering industry

towards the development of tools which allow system designers to

7•1 observe the logical flow of their system designs before implementation

begins. Designers using such tools may see exactly how a system will

behave at the earliest stages of development. Such tools will be used

to demonstrate the completeness, or lack thereof, of system

requirements specifications. These specifications are stored in a

"requirements structure", a formal format completely describing both

the data flow and control flow, and the internal functional

Udescriptions of the functional components of systems.

? .As specifications for a system are developed, they are added to

the "requirements structures" for the system. Later, the "requirements

S specifications" may be executed by these tools in a manner similarly

used by interpreters. In effect, the system may be "taken for a spin"

to determine how it behaves. If properly designed, these tools can be

used for structured walk-throughs of the completed system. In fact, an

environment utilizing these tools and a structured design methodology

5 could improve productivity and system reliability by ten-fold.

At Virginia Tech research on such an environment is already

underway. The environment is called the Dialogue Management System.

This paper presents a design for the tools and environment described
*above as used in the Dialogue Management System.

The Dialogue Management System (DMS) is being developed to

- improve human-computer dialogues. It consists of three major

* components: a dialogue development facility, a computational

development facility, and a structured development methodology
C9

PAGE 8

". [JOHND82aJ. The Behavioral Demonstrator (BD) is perhaps the most

important tool included in DMS. The BD aids in the functional

decomposition and verification of an application system. Users of the

BD may execute requirements specifications for an application system

even when the system is at the most abstract level of development. In

. one respect, the BD can be viewed as a development environment

supporting the other tools in DMS in a manner consistent with the*0

structured-development methodology presented in [YUNTT82]. This report

5J.. presents a basic design for implementation of the BD and concludes

with a description of a sample application-system.

1.0 THE BEHAVIORAL DEMONSTRATOR

A formal language for describing the "requirements structure"

for application systems is basic in the design of any Behavioral

Demonstrator (BD). In that formal language three ingredients are
needed:

1. A means for describing functional components of systems in

z. terms of modules, sets, or entities.
2. A means for describing the requirements specifications and

os

data flow between the functional components.

"" 3. A group of control structures describing the flow of control

between the functional components.

Languages exhibiting these features can be high-level procedural

languages, menu-driven interpreters, or even graphical languages such

as the Supervised Flow Diagram Language chosen for use in DMS.

'I, . . "- , ,>-..,,.-.-, .".•-" , "-"-" " -''' •- ' ' , " , , "-" . "' , ' " . ? '.

PAGE 9

The Supervised Flow Diagram Language is presented [YUNTT83I as

a high-level requirements specification language supporting the

Supervisor-Based System-Development Methodology (SBSDM). The SBSDM

• .was created to improve software design and productivity by human-

factoring human-computer dialogues. In this methodology, human-

computer dialogues are constructed separately from the system's

S[.computational components [JOHND82b]. Application programme-s construct

computational components; whereas, "dialogue authors" d ign human-

: factored human-computer dialogues [JOHND82a]. SBSDM is the -tructured-

development methodology for which DMS is being developed.

g During requirements specification, Supervised Flow Diagrams

(SEDs) are constructed using an SFD editor. Once created, the

graphical nodes in the SFDs may be executed by the BD to verify that

system requirements are being met. The BD allows a user to walk

through a system at its most abstract level of development and

pdetermine how a system behaves. In this way, the BD may be viewed as

both a requirements "verifier" and a system behavioral demonstrator.

As each worker node in the SFDs is expanded (i.e. written by either an

application programmer or a dialogue author), the Behavioral

Translator, a tool similar to the BD, may be used to execute the

r finished module. Hence, a user can use the BD as a structured walk-

through supervisor during all phases of system development. After all

primitive modules have been expanded in an SFD, another BD-like tool

compiles the SFD "program", generating the finished system. Viewed

1 this way, the BD may be used as a development framework supporting the

SBSDM.

'

'I

-. -a- ,t- R t A d. -. . u* . bj . . - a . . .-. . . .,% % ; - . - ,o l i .

-a PAGE I0

1.1 The SFD Language

. At its most abstract form of development, a system will consist

of little more than supervisory-cells structured in a hierarchical

representation consistent with the SBSDM. Figure 1.1.1 illustrates

- 'K. this hierarchical representation and the corresponding SFD structures.

SYSTEM REPRESENTATION:
STRUCTURE OF SUPERVISORY CELLS

-a , a N
E I N/ a\/e,acD.Ienov r,, 'a / O .. ilV"flOv ec .m.L

i ¢. \. / -,.'-a,.-- a

-. / 'a/ iO 'V[$1a Y

-a.

p I / /

PUEVSR QTC 7'% ES.VISR E CELT 1S

, -D

afo

SUEVSR TUTR n AEVSR EL

%I

PAGE 11

Wherein each supervisory-cell defines "what" is to be done in a

given function, the corresponding expansion of a supervisor-cell

defines "how" the function is to be performed [YUNTT83]. This

expansion is known as the supervised flow diagram corresponding to its

supervisory-cell. As depicted in Figure 1.1.1, it is quite possible

for 'nodes in an SFD to be supervisory-cells for other SFD's.

Consequently, each supervisory-cell may have two types of subfunctions

in its SFD expansion: supervisory-functions and worker-functions.

Where the expansion of a supervisory-function is a corresponding SFD,
.

the expansion of a worker-function is the executable source code of a

high-level language such as FORTRAN. Like FORTRAN, the SFD language

has its own syntax and semantics. Graphic symbols comprise the SFD

syntax, and the control constructs dictate its semantics. Figure 1.1.2

shows the graphical symbols included in the SFD language.

-I-

D" a.que-Computatioral Co u.tat iGnal-Workar Co:Autaioa1- u .vis:r
-'. - "- . _ _ _ _ _ _ _ _ _

I. / \

,/ ", return -iimbol

./ ~ ~........... a aI. . , i: 1iad .o:dit tot

User-Furctin

PAGE 12

The Dialogue-Computational node denotes a supervisory-cell

containing both Dialogue and Computational nodes in its SFD expansion.

The dashed Dialogue and Computational nodes represent supervisory-

cells containing only dialogue or computational functions in their

respective SFDs. The rectangular node represents a computational

function which the SFDs' author feels is too insignificant to be

included in a separate Computational node. The hexagon represents a

user function and may be included in an SFD for consistency and better

requirements representation. Control Flow and Data Flow are

represented by solid and dotted lines, respectively. Control

conditionals are contained within < > symbols. The _ symbol

represents control return from an SFD expansion to its supervisory-

. ." cell. Implied conditionals, to be explained later, are o symbols

- designating control-line intersections having special semantic

actions. As with most high-level languages, four types of control

constructs are defined. These are show in Figures 1.1.3-1.1.6. The

-" remainder of this report presents implementation issues concerning BD

development.

:4' . - .. _ .' .. . '__--

-

.'

.'.

r' " " . % """J " ".'' ' .'I . ' .'"' " "-"" . ' ° "" - .

-~ PAGE 13

<CODI5MaA FLO

FIGURE REI1URSIV ONTL FLW

PAGE 14

1.2 BD Behavior and the User's Console

I .The user's console for the BD consists of two terminals: a

graphical interaction terminal and a control-interaction terminal.

The top supervisory-cell in the system and its SFD expansion are the

items displayed by the BD when a behavioral demonstration begins.

This is displayed on the graphical interaction terminal (GG), shown in

A ~ Figure 1.2.1, with the cell blinking. The control-interaction terminal

(TT) displays the functional description of the cell, data passed to

and from the cell, and the control-flow options. Control options are

selected via a screen directed, touch-panel keypad as illustrated in

Figure 1.2.2.

CELL- .

E X i

-.SF EXPANS~~ION

CURRENTLY EXECUTINC ,

- .

, * i 2.."

i -.

...

-- __ . ,__, ,__. M_ ... A._,
<-: / ,a

PAGE 15

-?.

I IIhere,

"t in. currenti4 vo..i lt. i

I~ ' I

- ' " . : I t , i

:I.

orr

2 a.

a 0%"r' a c Ia r kes e p n

/7

D.o Control advances as control keys are pressed. Each node in the

current SFD "executes" and control returns to the supervisory-cell.
As worker nodes for a system are expanded (i.e., coded), the

Behavioral Translator may be used to execute them during Behavioral

• Demonstration. Finally, to conclude system development, the SED

i - Compiler is used to compile and link SFD modules for structured walk-

throughs of completed sections of a system.

1.3 An Example BD

In order to illustrate the functions of the BD using the SFDa.*.
*! ..1\;

*1. " ," , ." ,' ," , .- " , ' " -"," . ' "- ' ' ' ' ' "-"" "•"- "" ' "•" ' " "' ' " " ".".-."•".". ' .". " ' ' ""'

PAGE 16

-. language described in Section 1.1 we will use the following

hypothetical, interactive airline-reservation system as an example.

* This example also appears in [JOHND82a] and [YUNTT83] and is repeated

here with permission.

1.3.1 Requirements Specification

PERFORM-AIRLINE-RESERVATION: Manage airline reservation activities to

serve the airline users.

REQUIREMENTS:

1. The system must check the agent-id everytime a person logs on and

adjust agent-computer communication according to the agent's

expertise level (e.g., novice or expert).

"-i 2. The system must perform the following functions, each of which

can be invoked independently by a terminal function button.

a. Reservation

b. Get-payment

c. Cancel-reservation

d. Show-user's-reservation-status

* "., 3. The system has two major logical record structures. These records

- are shown in Figure 1.3.1.

____-FtIX4-RCORD

2 "DEPARTURE i L F.IG)t-N DEpARTU'E ARRIVAL' VACANTCRIGI DESINATIO A IN TIME TIM ,FAFE SETS
lilI iI I I

9 'TOIFER-INFO LEG-DEFTINITION-4 i TOTAL-ME AIOUNT-PAID BALANCE
I LEG-DEFINITION-2

I "I I
, I I

. LE.A-LIST

FICE 1.3. 1 LOGICAL R MCD STRUCIURES

Wi

J1 a -2 -.P* ~ . ~ ~ y w w ~ v ~ w -

PAGE 17

The SED frPROMARIERSR TONis sonin Fiur 1.3.2.

~7 7

-~ - - .

E7~~ t-e-

.t-tn Z X

S /*

ax Eava to rmr-X-KIN E

PAGE 18

In the following, the requirements specification for "GET-

AGENT-ID" of Figure 1.3.2 will be given.

GET-AGENT-ID: Gets a correct identification from the agent when the

agent logs on.

REQUIREMENTS:

1. The system must have a list of valid agent-id's stored. Figure

-"- 1.3.3 expands the SFD for GET-AGENT-ID.

f- N

.1

... !.. '.!- _.

Normally, all control and data lines on an SFD are administered

0 Iby the supervi sory- function with one exception: "Communication with

i ,,,,the data bases is done within the logic of a supervised computational

function." A supervi sory- function only invokes a supervi sed- function

to do the job. For instance, in Figure 1.3.3, the data flow of GET-

AGENT-ID is shown by a double-line. The double-line indicates that
" this flow will actually happen within the logic of CHECK-AGENT-ID. It

".:.• x.--;

-. - 4M.

T% 7 T - 7 -.

PAGE 19

". is cited on the SFD to show the existence of the file.

In a real application-system requirements specification, each

of the other supervisory-functions would be further refined, providing

that this information was available. For brevity in our example, we

will assume that the remaining specifications are still quite

abstract.

,-: 1.3.2 BD Operation

Once a user invokes the BD, the GG displays a window into an

SFD structure while the TT expands the functional description, data

:descriptors, and control alternatives for the blinking node. Control

selections are accepted from the TT video touch-panel, and control

advances to the selected node, Figures 1.3.4-1.3.9 illustrate these

P advances in our airline example. Figure 1.3.8 shows how selection

. control is represented, and Figure 1.3.9 depicts iterative control-

flow.

Although our example only illustrates sequence, choice, and

iteration, the BD can "execute" complex conditionals and recursion

. .' with only minor modifications to the SFD "program." In Chapter 3 we

shall detail the representation for each of the control constructs.

[~Reproduced from --

b. a(

Sbet avShble copy.
F~~CST#

... %~~

PAGE 20

9 A.5.

.'i ruif \.1 I I ~T~i Ta;

Op -

smSg iin -- evo ell

:4
"0S.e h irieusl

IrrITW C LI:

ia-

rV

%5

%5- NIL-

WTW WT.

PAGE 21

"Casa correct jio 4rm tMh tdn
::he th agen *o, un

- I; Val:IQ

V

~-rt E,1 -

c.~e~*s theaent~ airt d

PAGE 22
F. 2.0 DESIGN ISSUES

In Section 1.3 we gave an example illustrating how the BD

operates. Here we present in detail all of the functions that the BD

will include and refine the SFD language and BD database design.

2.1 BD Formal Requirements Specification

a'-

The BD will:

. 1. Demonstrate the flow of data and control in systems;

2. Provide a communication forum for design teams during

the development process;

3. Serve to manage progress on each component of a system;

%i and

4. Enforce the SBSDM.

To demonstrate the flow of data and control in systems, we will

use the SFD language with more precise syntactic specifications. The

SFD language syntax should visually reflect the function and "state"

of each component in a system.

As users of the BD discover requirement inconsistencies and

needs for requirement modifications, the BD provides an opportunity

dfor those users to document their observations.

J During the development of an application system, programmers

* and dialogue authors are working in parallel expanding worker-

4 s functions. Since this is a temporal process, some facility must be

Iprovided to keep track of the progress on each worker-function. The

BD can serve not only to verify and maintain requirements, but also to

!,

PAGE 23

continually inform users of system progress during behavioral

demonstration.

The designs of the SFD language and BD enforce the methodology

in which they are embedded.

%' 2.2 Graphical Support Environment

) "The BD requires a supporting graphical editor for the creation

and modification of SFD "programs." This editor provides all the

features in an SFD structure and stores these structures in a

transaction database. SFD structures will include the following:

- Graphical representation of supervisor-cells and their

corresponding SFD expansions;

- Functional descriptions for each functional component;

- Progress reports for all functional components;
-- - Notes and comments for each functional component; and

- Control structure linkage descriptors and data descriptors.

19

2.2.1 SFD Graphical Standards

Since SFDs pictorially represent function as well as structure,

SFD nodes will have color, size, and shape standards. Those standards

.. ? are grouped by function in the following paragraphs.

-.5

-S

S...

.' PAGE 24

*. -CONTROL STRUCTURES:

In the SFD language, lines represent flow of control. There are

three types of control flow lines:

-Control lines not labelled by data or conditionals are

represented by solid,white lines.

-Control lines containing only data are represented by dash-dot,

~'. white lines.

-Control lines labelled with conditionals are presented as

.4- ~dotted, white lines.

This specification implies that no control lines exist which contain

1W both data and a conditional. Note also that control lines may be arcs

as well as straight lines.

The two remaining control constructs: the implied

N. conditionals and the return branches are white o symbols

and red A symbols, respectively.

""

PDATA FLOW STRUCTURES:

*i Data Flow is represented by white, dotted lines or arcs.

All lines contain arrow heads that indicate the direction of both data

flow and control flow.

PAGE 25

L

D-C NODE STANDARDS:

D-C nodes are unshaded in the inner circle and unshaded on the

4outer square.

i* *-. D-Cs are blue if the have a corresponding SFD expansion and red

if they have not been expanded.

D-Cs should not exceed 5 cm in diameter.

COMPUTATIONAL WORKERS:

Computational-Worker functions are cyan, unshaded squares not

exceeding 2.5 cm across.

COMPUTATIONAL SUPERVISORS:

Computational Supervisors are unshaded, dashed-line, cyan squares

- not exceeding 3.8 cm across. If a Supervisor's SFD has not been

expanded, then it's node will be red.

DIALOGUE WORKER:

.4 Dialogue-Worker nodes are yellow, unshaded, circles not exceeding

2.5 cm in diameter.

DIALOGUE SUPERVISORS:

Dialogue Supervisors are yellow, unshaded, dashed-line circles

not exceeding 3.8 cm in diameter. If the Supervisor has no SFD

expansion, then the node will be red.

_7

L -

PAGE 26

USER FUNCTIONS:

I User Functions are represented by green, shaded, solid-line

hexagons not exceeding 5 cm across.

COMPUTATIONAL EXPANSIONS:

Computational-Expansion nodes are white, shaded, rectangles

without size limitations. The explicit code expansion will be

written in black text.

CONDITIONALS:

" - •Conditionals label control lines and are green text contained

within red < > symbols. The < > symbols are optional.

p
DATA DESCRIPTORS:

Data Descriptors are magenta text that label Data Flow or Control

Flow lines.

-5.

J2.2.2 Textual Standards

Standards for the text contained in the functional

descriptions, progress reports, and notes made by the users are

provided in the following paragraphs.

"..

C. " . " . . $. " 4 ' o ,. ' , 4 ',- - ,- - ° - . - " - , - ' - ' ° "°
" ,

"- . -" • ' . . -'" . " . "

- .- % -.- . - ' .--.- 1-..*-* -

- PAGE 27 .

FUNCTIONAL DESCRIPTIONS:

Functional Descriptions of system components contain the

following information:

-The description of the function this component will carry

-. .out;

- The data passed to and from this component; and

- A procedural specification containing implementation details,

as they become available.

Figure 2.2.1 The format for Functional Descriptions.

c . I c n a s c r i, ? I&C-1 n :. - -. _,, am- .
A brie;' description oF what --,he node" does oes ne.re.

RJ e 0, 3'.*J .r -RecLurement-,U eif Jcat ions that thE node 1 s= to ,i at,.

-q . U "

V=i • r ,I n . o "'n +h d- used

eROGe. Name:char(5', Jnn]>

.*PROGSS REPORTS:

" -,Progress Reports contain the following information:

- The date the expansion for this node was complete;

- The names of the persons responsible for this node's

* -/ expansion (i.e., the Task Group for this node); and

- A status report expounding on the current progress and/or

problems which are impeding progress.

,.°o ° , * -. . . .

.- PAGE 28

Figure 2.2.2 The format for Progress Reports.

W "" n I

Il t ~us Node ;:rgra. pb~5acnae,:

USER NOTES:

User Notes contain the following information:

* - The date the notes were made or become effective;

- The priority of the message (Will it critically affect

progress?); and

- A section for notes which will be distributed to the

"1mailboxes" of the Task Group members for this node based cn

the date and priority fields.

[4

.. ,°

' I-.

.) -' - hedat te ote wre ad orbeom effective

" :] i - The.. ffec

%°

PAGE 29

" Figure 2.2.3 The format for User Notes.

-User Notes For. ,a t
Date . P',",.," -6 L i Meesaf_ Prioritw

.. ~~~ W i,,, ,Q lei- otes,... ke4, Dialcque :r ;.'.ert fo.", r, ,.I.oq.,-,ue

2.3 Conceptual Data Model

A key issue in the design of the BD is the design of a database

* .*representation for both the graphical and textual content of SFD

nodes. Listed below are the entities and attributes with which we are

concerned.

2.3.1 Node Attributes

-..

NodeName:

Each node in an SFD expansion will have a uniquely identifying

name. This name will be an abstract of the functional

Sre description of the node and will serve to label the node. It also

is the relation's primary key.

%

5'

* ,,.%-.". 54*' *"-*"'" *. -... '. .,.".--.

;k V-n L--. -. 7 - .1

LI

PAGE 30

NodeType:

All nodes will be a member of the following set of node types:

Dialogue-Computational Computational-Worker

Computational-Worker Computational-Supervisor

Dialogue-Worker Dialogue-Supervisor
U

Computational-Expansion User-Function-Module.

Node Composition:

Each node has a graphical representation which may include

4 :related graphical entities such as A and o. A node's composition

descriptor is a pointer to a linked chain of object relations

describing the graphical composition of a node before the node is

, -" expanded.

Node_Expansion:

* Each node has a pointer to a linked chain of object relations

describing its SFD's graphical representation, control flow, and

data flow.

NodeControlEntry:

.' *..i Each node has a pointer to the first object relation in the

NodeExpansion chain which represents the first function to be

executed when the supervisory-function is called.

.4-. "" NodeFunction:

Each node has a corresponding functional description written by

an SFD author (i.e., Project manager or Systems Analyst).

ii

• . - 4

.

. •-,- -

PAGE 31

NodeProgress:

p Each node has a corresponding progress report to keep the system

- "designers informed of system progress.

~.:, .. NodeNotes:

During behavioral demonstration, the user has the opportunity to

..q make notes which would later be read by the node's author(s).

.4

2.3.2 Object Attributes

ObjectName:

Objects of the executable type (e.g., Computational-Worker) have

unique object names which serve as primary keys in the object

relations. These names correspond to the Node-names in the Node

relations. Text for objects of type COND, TEXT, and DATA will

" "appear in this tuple and can be thought of as an attribute of the

object that functions the same as the object's name.

Obj ect-Type:

Object_Type describes the graphical entity that an object

.9 represents.

ObjectColor:

Each object has a color descriptor.

," -"ObjectShading:

a-. Objects may be shaded, unshaded, or system-defined composites.

PAGE 32

Object-location:

All objects can be positioned by knowing two absolute coordinates

relative to the absolute origin on the screen.

Object Link

Each object may be composed of other objects and/or SFD nodes.

This attribute links objects in the same object chain.

Object-Successor:

Objects of type EDGE represent control lines connecting two

nodes. These objects have a successor attributes whose tuple

values are pointers to the node to be executed once this EDGE has

been traversed.

2.4 Definition of Formal Relations

.
4'4 . . The conceptual data model is formalized after the CODASYL

relational database, and presented in Figure 2.4.1 as that model is

implemented under DMS. Clearly, during implementation some new

attributes were defined. We introduced these new relations in order

to satisfy certain hardware characteristics of the GG device.

"O E RErTIO' ,
.'ama :Tra i Comsition Ex-ar sicrn i Ccnt-roi i Fi.nc'ion i crogrss ,ktas -Taar.

Tjp- 'Successor Li :. X Y X Ya Color 3;edirq Lre -ce

4., 4o

Jo.i• .'.

-%

4.. .., 'i ,,..-. - 2 - ,' , . - . " "-"-" - -'- . ' "" ' " " ' " - ' ' " " " " " " " "" ' " " - " " " - " - ""

Li
PAGE 33

I Figure 2.4.2 shows how the formal relations appear in the

transaction database.

E C

"- / -C--

e i Suc esso r I Lin k .y - . Co I -, M OI

, T v uc r Link v2 Coiyr! S. .in -. in i n

• .- , STRIN44- EAF

PESERVATION'

I -

l

I

,'C' " : ' ... ' ,~** . , ,.-.....-:-.-.-.... . , %v,. ,- -.-- .- , - - -,.- -.-.-. .il ..j< - -- .- .

PAGE 34

3.0 ED EXECUTION ENVIRONMENT

PThe BD execution environment contains three support subsystems:

the SFD language editor, the ED database manager, and the ED proper.

.'-. The SFD language editor and the ED database manager were discussed

q earlier; in this Section, the ED proper and its relationship to the ED

database are examined.

3.1 ED: A Finite-State Automata

-4 The BD is a push-down automata operating on relations contained

in the transaction database. As each SFD node is retrieved from the

- ED database, the ED moves from state to state and node expansion to

node expansion. A stack becomes useful when the ED retrieves a

supervisory-cell that has an SFD expansion. The ED, in this case, must

stack the current window of the supervisory-structure shown on the GG

. .and the current node position within the SED now executing. In this

way, the ED will be able to "return" from a lower-level SFD expansion

to its supervisory-function and continue behavioral demonstration. In

at least one situation, the handling of implied conditionals, semantic

actions are also placed on the stack; hence, the ED could be viewed as

- an augmented transition network.

'.; .'

o -. o•• o .
•

• .
•

-. . ° . " o •. .o" *4'a** °" . -. . .-. ' ... " . ' . .

PAGE 35

Figure 3.1.1 shows the stacking action of the BD.

/*

p 1"-.

/. .7 '4%

- i*. ;,; ,/ N*T

ST AC'; .- N . - --..

;' E e'a

Z 31 .1 'I,- THE BD

a During behavioral demonstration, the BD dynamically binds with

each pair of edge-connected SFD nodes a control and data-flow

structure. This structure then governs how the BD displays on the TT

q .the control-path alternatives, the functional descriptions, the data

£4 descriptors, and the command-level alternatives. The BD treats each

i SFD entry as a token of the graphical-requirements language. The

refined SFD syntax governs how each SFD node may be interpreted and

Silater expanded.

' .- For illustration, consider our airline example discussed in

Section 1.3. The BD first retrieves the node relation with

NodeName = 'PERFORM-AIRLINE-RESERVATION.' A typical relation

retrieval might return the tuples shown in Figure 3.1.2. The BD then

expands the node's graphical composition and expansion by following

NodeComposition and Node Expansion to their respective Object chains
. 2

-'.
PAGE 36

and converting the tuple values retrieved from these Object relations

into subroutine calls for graphic display. The BD displays the

functional description for the current cell by simply displaying the

- value contained in the NodeFunction tuple. It then follows

NodeControlEntry to the first Object relation on the control path.

Based on the tuple values obtained from this object relation the BD

redraws the first node blinking.

-,, D-¢
""'('7 7)•

Ak. .4 M

s. a i

-. o

.. .. ,,FIC1L RELATIOT RETRTEVAL

The current state-of-affairs is placed on the stack and
expansion for the blinking node continues similarly. After control

returns to the supervisory-cell (GET-AGENT-ID is popped off the stack,

•'.' ' the object relations comprising the cell are searched for objects of

type DATA, COND, and EDGE. DATA objects are used for displaying

parameters and COND objects are bound with EDGE object

. .-

PAGE 37

Object Successors. The BD generates keys on the TT to correspond with

the COND labels (discussed in Section 3.3.4) and binds with the input

of each key the object pointer contained in the ObjectSuccessor of

the bound EDGE object.

After continuing in this process, the BD will expand the last

node in the SFD for PERFORM-AIRLINE-RESERVATION and return to the

PERFORM-AIRLINE-RESERVATION node, concluding behavioral demonstration.

..

.21

4.

S -A

.4

4, ,

L l " PAGE 38

3.2 Graphical ExpansionPAE3

The following algorithim describes how the BD windows SFDs:

. ~INPUT Object relation to execute.

OUTPUT: Object's SFD expansion window.

Save ObjectLocation coordinates

Extract Node relation where NodeName = Object Name

Extract Object relation pointed to by NodeComposition

Take the difference between the saved ObjectLocation

coordinates and the Object-Location coordinates

specified by Node-Composition

.4 While the coordinates are different do

Translate the current NodeExpansion object by

object by an offset

Add offset to the .saved Object_Location coordinates

. and resave

5 -" End While

q Expand Object chain specified by NodeExpansion

Blink object specified by NodeControlEntry

Go to Control Mode

- The above algorithim illustrates the control flow for SFD

windowing but fails to explain how the objects are actually drawn. We

will not concern ourselves with this issue since it is hardware

dependent. In a nutshell, the BD converts object tuple values into

parameters for simple graphic routines which draw basic objects.

U

PAGE 39

3.3 Textual Expansion

-IThe following algorithm describes how the BD dynamically binds

-. -conditionals to control paths and generates control-option labels for

labelling touch-keys on the TT:

'

.

1,dq

-S.

",p

S . ".,p

.j o

.i~- .-.

'-'I--

a

PAGE 40

INPUT : Object relation to execute.

OUTPUT: New path for control [user's choice].

'U If ObjectType = IMPL then

Next-Object = ObjectonStack

Else

Indexi = 1

Index2 = 1

Controlkey(1) = 'NEXT NODE'

While ObjectType is not executable do

Extract next Object relation on Object chain

If Object-Type = COND then

Control key(Indexl) = ObjectName

Indexl = Indexl + 1

End If

U If Object-Type = EDGE then

Controlpath(Index2) = ObjectSuccessor

Index2 = Index2 + 1

End If

End While

Display Controlkeys and receive input in KEY

p Index = Input key(KEY)

-' Next-Object = Controlpath(Index)

End If

Since the other textual-expansion functions the BD performs are

. ... fairly straight-forward their algorithms are not included.

IA

.9.

• , ", o% %, " ,,% " % -. % , % -.-. • . . • , . A .~ . > - - - ~ - ~ -.

PAGE 41

3.3.1 TDB Description

[HARTH83] describes the Transaction Data Base (TDB) as a

4, database resident in primary memory that manages screens for

- application programs. In a later version of DMS there will be a

secondary storage database, the Dialogue Data Base (DDB), which will p

.i contain all screens for applications. The TDB contains the following

predefined relations [HARTH831: Screen, Group, and Object. Each Screen

is composed of Groups of Objects, where Objects in the same group are

stored in a dequeue that links Object relations. These three relations

can easily represent the SFD Node and Object relations thus

maintaining consistency within the DMS environment. For more

information concerning the TDB or SED relations as implemented on the

"-' TDB we refer our readers to [HARTH831.

3.3.2 BD I/O Support

DMS currently supports two device drivers as described in

" [EHRR82a]. Following the SBSDM tradition, these drivers are

intelligent device-drivers providing high-level interactive dialogue

services for both the TT and GG devices. PAD, a service that draws a

touch-panel on the screen, is an example common to both drivers;

whereas, CIRCLE, a service that draws a circle on the screen, is an

example included only in the GG device-driver. The BD uses the TT and

GG drivers to generate the dialogue for '.-..ual and graphical

expansion, respectively.

During execution, the BD retrieves tuple-relations from the

TDB, translates the tuple values into service calls to the TT and GG
.9

T. 7-7 7- 76T 7

-"~ PAGE 42

drivers, and makes the calls to the drivers to provide the user

interactions. The user experiences "requirements execution." The

next section illustrates by example this tuple-value translation

process.

n

3.3.3 An Example Tuple Translation

S"' Consider the airline example examined in Section 3.1. Figure

3.3.1 shows the tuples retrieved by the BD when it retrieves the

supervisory-cell PERFORM-AIRLINE-RESERVATION.

,•X,

I M I L I P% W- - - -f ~

-S .

- .-- I -

°'% * -- ' gE_ ,,. f .
,,: . .,, , , ., .,.,.. . .. ,., .. . -.. . .. ,_... - .. _. ,._..._._...__ _ _,

PAGE 43

The BD first uses the value of Node Composition to extract the

Object chain describing how the node is to be drawn on the GG. Figure

3.3.2 illustrates these relations.

.-:R ex ~ --?r;6 1451 1 1 ihd~on .~
2%"5

The irEst Object rela in trnH ae into F he fozoin OTRN!a

ni I Lin n,', 37 33-ice-dZive;

37

S .* ' •O --

I i

The first Object relation translates into the following FORTRAN calls

to the GG device-driver:

Call Box ('gg',X2,Y2,Xl,Yl,'keep'//linemode//write_mode//color//
shading//blinking)

.w

... Call Circle

-5

('gg' ,X2/2,Xl,Y1, 'keep'//line mode//write mode//color/i

shading//blinking)

For more information on the device-drivers see [EHRR82bI.

"C5 IL

LA

PAGE 44

The BD next expands the function description for PERFORM-

' NAIRLINE-RESERVATION on the TT by simply printing the value of the

NodeFunction tuple. It next clears the GG screen based on the

value of NodeClear and expands the SFD expansion by translating

the Object chain pointed to by the value of NodeExpansion into

GG device-driver calls. Once the expansion has been drawn, the

BD stacks the current node and object values and passes control

to the object pointed to by NodeControlEntry.

Tuple translation continues similarly until the tuple

value for NodeControlEntry = nil or control passes to an object

of type RETN. At this point the BD "pops" the stack values and

continues execution.
-.

.4.

'-

m-p
-miP ,

-. 4

-U" •

PAGE 45

3.3.4 BD Command Alternatives

Previous Sections have alluded to the Progress Reports and

User Notes but have not discussed how BD users access and use

these entities. Figures 1.3.4 - 1.3.9 show various command

alternatives as they appear on the TT touch-panel for our airline

example. These figures illustrate the three command alternatives

which are detailed here:

CONTINUE - continues sequential execution. This command is

used for stepping sequentially through TT
U%.'

displays.

PROGRESS - displays the node's Progress Report in the

functional-description text box.

US NOTES - places the BD into edit-mode so that the user may

• : enter notes. After these notes have been

entered, they will be routed to the mail files of

the persons responsible for the node's expansion.

In earlier Sections we mentioned the implied conditional. This

. is an implied state and command alternative included in the SFD

language syntax. Consider the SFD and its corresponding code shown in

U~*Figure 3.3.3.

,o.

7 * . - .j 7

"" ". PAGE 46

"..; 4 ~ ..

ar 94 T7 _QMTnk A, ITrT ; rn 7TI 3 .
.. ,' ". HE.,O -, .-, -iD .

- , 8. rn4-i i 627; i

GU370cLABE.- r. 2

Y .C T'C',

"T C.

CALL C
:

.. I i . T"

4.1

le I
'- When control has passed through node A and the user has chosen

to go to node C, then af ter leaving node D control passes to node C.

• - 'This causes node A to be expanded only once.

','. .','3.3.5 Problems and Solutions

4 '

%*

-,t g Currently, the BD places a restriction on SFD structures: only fifteen

edges are allowed on nodes. The TT touch-panel having only eighteen

V.

['&, .4,

* *I

-- - .-

PAGE 47

keys makes this restriction. Clearly, this could become a problem for

an application-system design for which there are large "Case"

structures. A solution to this problem, to be included in a future

version of the BD, would be to add a service to both the TT and GG

m drivers which can maintain a touch-keyboard similar to the one

depicted in Figure 3.3.4. During execution, the BD would adapt

.-.. >. keyboards to the application required.

ka

. 1
S , J. .I"".0 B I D T OF THE ARI EXAMPLE

, .. - - ' - -

- - .-" .-

.* 4.0 BEHAVIORAL DEMONSTRATION OF THE AIRLINE EXAMPLE

Figures 4.1.1 - 4.3.3 depict a terminal session with the BD.

The airline example is used again. Data expansion is excluded for

K •

t~' " " " ". % '-" - " •, ," -"" " ¢ ". "" ¢2') " ." • "h
- ' . 2 "

•2,,'.. j ,,,' , '.,' ,. -,,.''." ' "', '.,''" ." . ' "
° ° °

.
-

U ,

PAGE 48

simplicity, but for completeness it is illustrated in Figure 4.2.5.

iease en-r-i Roo-, Noe: ..
*' .1

, . . ,. .

A &r-.o.m--Air

0 .%

w ----- . -
At th un

.I , t d.-- ' n t ,_ ,
-. , A . o

A. -' *

-.

" retrieved.

1%N4,

A- "

"A' . -

.".

-- r ~ . - ~ j x ' . J '~ . ' .-W ' r W u- --r. /r y ' i .
-

- - - . --- - - r .' . - _ - . -

PAGE 49

1manae air i ine reservat 1 on act.Tv iT U1
'to serve the airilre use-S.

i 4. Th!e SMSem Must Cf~l .. +..b..--is . ant , tLs -. ,. -
. - , '= ... +=, .+ -, ,r,-

• .°..• , -" *,m *, c O nication.I ; I

* -. rr ,

i . - .._ ._ &Inr___rl

i. MI' P."M PMP I y; ' MF PP t l). ...

The requirements specifications for the root node are displayed, and

I the user selects a command option. In this case CONTINUE is selected.

let

."4 .. .A+I_~ + + -'+-, ,

I"-.' -

Vol The reurmnt pcfiain for the curoot node ise expalayed anddeosrtncnius

: ~ wth te seety nod iomnd he on S epnstis aeCOTNEn.setd

iN " /

\/ - :

x / .t/

a A

"" The SFD for the current node is expanded and demonstration continues

~with the entry node in the SFD expansion.

S i - . -i- -. -

PAGE 50

4 .'ets a correct i ,opm T , I -r:

wnen t -.e agert :a UP on.

vau acent-ias s-3rea._

-:va a;;.: --

2--4

i mii 4 ..

S i , I•. , * .1C " - - -

a,, ,,. a.,, ,,
,

* ,.,

:" User selects CONTINUE.

ft... * .

..4 ft. ; .__

q The SFD for GET-AGENT-ID is expanded and demonstration continues with

ASK-FOR-AGENT- ID.

_ ft, f- .
.:4.

PAGE 51

a perscn to en'ar nis/er i'.:

.Z . ,

User presses CONTINUE.

a. p s s arson tc enter n:ier ia.

* ,. 4 4 *

S, -,-

, .I4 . L~ ., 4.2

Since ASK-FOR-AGENT-ID is a worker node (Dialogue) the User is given

the option to continue sequentially through the SFD9 to the next node.

. User selects NEXT NODE.

Li PAGE 52

.v _____________________________________77=7____

46~

~ ;Z4

-~~~v . -. -AJ.E'T r -

- hem th agn.c .g~ST

'as,-a tre-n,'aataae

Z

1% .

LPAGE 53

.1=
I ___ 1_________AV , ___

P . .
7 i

vaidfagrqurs ale .1igr .2 . h sri ie h

1;

L" ac.--, . ..- . .. -

f ' S ,,, r'- -W7

.'.% .2~~W, .-: ... >

'-,

, , ,,', ,',.V '.,. , .': -" p,.;' " '.-- , _ . -.-,. . . , _ \. .,, . _ , . _.

PAGE 54

* . om~ts -Trke userIf ic 15 1'? in a ~ A-,sjjOjj*

A. I

- . -

*i f ar avannar

_geA ,, AS-Z ;;&r;74-Tl)

I I

.8I.

PAGE 55

'4; &W

t -

i -

Conro cotiue ina trtv oputl h srslcsVld

sprisr - utr htsprie GE -GN-. hw nFgr

iL

I .. AM. . -M Ik,

I I en -.a , .'-

I "- .-I
I

"- Control continues in an iterative loop until the user selects Valid-

i Flag=OK in Figure 4.2.6, then demonstration resumes with the

*supervisory-structure that supervises GET-AGENT-ID, shown in Figure

-. 4.2.7.

", .--- *- /

- ,,-

.1 k

4 .-..- , .. .,. .. _ -

4/ . - .

* ,....- :, ,.,

a,:.,,

'* %1

-- PAGE 56

CCMPLETEID TACK ; _____

-N' :SA'1 -

S%- - -

% .0

*tJ - -

"I' ---. - . I

.1W
AIIIAY ~ ~

Demonstration continues, and in Figure 4.2.8 the user has selected

PROGRESS REPORT.

4 4!;e7S t a c.Orrec to -orm the aent.

Ti- coic!a mI4+ Amue z I i c+
va.ia agerV-:as s oraa _______,___

'. " '

". a. +* .- * "
-: , .'A9 A. .. •4A .

*.,

a.,4

NN

__,Qw t'-T f :Y a. of 3a'a.- -,
a.. 44.. Claa

RCA -'a - /
T'Ia.tp~ jTraea ito

vs: idre.issoe r

....................

., ~ v .-I :eT.er in ;dni. ' ioe- %zt

i/* %wSAj MUT .9v

Demontraton cntines L

2ac-

PAGE 58

5.0 FUTURE WORK

In Section 1.0 the BD was presented as one of three similar and

related design-tools to be integrated into DMS. Neither the Behavioral

Translator, nor the SFD Compiler have as yet been discussed. Those

design tools represent areas for future work.

The SFD Compiler will produce the code for a system, or subsets

of a system, after the supervisory-structure for the system, or

subset, has been completed. The code produced will be written in

Fortran, Pascal, or some other high-level programming language.

Clearly, since most of the complicated control constructs will be

coded automatically by the SFD compiler, productivity on a system

design using the SBSDM will be greatly increased.

The SFD Translator allows designers of systems to execute any

completed portion of a system during any phase. By checking the

progress report on each node the SFD Translator determines if the node
V. has been completed. Completed computational nodes are linked and the

data necessary for execution binded. A separate process is allocated

to "run" the completed nodes and interprocess "windows" are used to

retrieve output data. For completed dialogue nodes the SFD Translator

calls the "dialogue executer" to perform a dialogue-transaction. See

[JOHND82a] for a description of dialogue-transactions and the
5%, "dialogue executer."

4

5% .

.,-

PAGE 59

REFERENCES4

EHRR82a Ehrich, R. W. "The DMS Input-Output Services."

Departments of Computer Science and Industrial Engineering

S;,Technical Report, VPI&SU (1982).

EHRR82b Ehrich, R. W. "The DMS Multiprocess Execution Environment."

Department of Computer Science Technical Report, VPI&SU (1982).

S.HARTH83 Hartson, H.R., Goodwin J., and Ahmed S. "A Manual for The

Transaction Database." Department of Computer Science

Technical Report, VPI&SU (1983).

JOHND82a Johnson, D. H. and Hartson, H. R. "The Role and Tools of a

Dialogue Author in Creating Human-Computer Interfaces."

Z i!Department of Computer Science Technical Report CSIE-82-8,

VPI&SU (1983).

JOHND82b Johnson, D. H. and Hartson, H. R. "Dialogue Management: New

Concepts in Human-Computer Interface Development." Department

of Computer Science Technical Report, VPI&SU (1982).

YUNTT82 Yunten, T. and Hartson, H. R. "Human-Computer System

Development Methodology for the Dialogue Management System."

Department of Computer Science Technical Report CSIE-82-7,

VPI&SU (1982).

4- YUNTT83 Yunten, T. and Hartson, H. R. "Supervisor-Based System

Development Methodology (SBSDM)." Department of Computer

Science Technical Report CSIE-83-10, VPI&SU (1983).

'-

4 .

! /;~~~~~~~~~~~~~~~~... ... ,.-..-'...','...........•.-,...-.. ., ..- ,.

OFFICE OF NAVAL RESEARCH

Engineering Psychology Group

TECHNICAL REPORTS DISTRIBUTION LIST

-p..OSD Department of the Navy

* CAPT Paul R. Chatelier Dr. J.S. Lawson
Office of the Deputy Under Secretary Naval Electronic Systems Command

of Defense NELEX-06T
OUSDRE (E&LS) Washington, D.C. 20306

* , Pentagon, Room 3D129
Washington, D.C. 20301 Dr. Robert E. Conley

Office of Chief of Naval Operations
Department of the Navy Command and Control

1 OP-094H
Engineering Psychology Group Washington, D.C. 20350
Office of Naval Research
Code 442 EP Dr. Robert G. Smith
Arlington, VA 22217 (2 cys.) Office of the Chief of Naval

Operations, OP987H
Communication & Computer Technology Personnel Logistics Plans

-, Programs Washington, D.C. 20350
Code 240
Office of Naval Research Combat Control Systems Department
800 North Quincy Street Code 35
Arlington, VA 22217 Naval Underwater Systems Center

Newport, RI 02840
Information Sciences Division

,'. Code 433 Dean of Research Administration
Office of Naval Research Naval Postgraduate School
800 North Quincy Street Monterey, CA 93940
Arlington, VA 22217

J. Impagliazzo
Special Assistant for Marine Corps Code 101

i Matters Naval Underwater Systems Center
Code lOOM Newport, RI 02840
Office of Naval Research
800 North Quincy Street Dr. A.L. Slafkosky
Arlington, VA 22217 Scientific Advisor

Commandant of the Marine Corps
Director Code RD-i
Naval Research Laboratory Washington, D.C. 20380
Technical Information Division
Code 2627 Dr. L. Chmura
Washington, D.C. 20375 Naval Research Laboratory

Code 7592
Dr. Michael Melich Computer Sciences & Systems

* . Comunications Sciences Division Washington, D.C. 20375
Code 7500
Naval Research Laboratory
Washington, D.C. 20375

* ~ V %~4~~ W j**~ ~ - *** V~'V ~ v~-'~-Ix- ~ .**-~.%

'.°o

Department of the Navy Other Organizations

Chief, C Division Mr. Edward M. Connelly
Development Center Performance Measurement
MCDEC Associates, Inc.

" - Quantico, VA 22134 410 Pine Street, S.E.
Suite 300

Human Factors Technology Administrator Vienna, VA 22180
Office of Naval Technology
Code MAT 0722
800 N. Quincy Street

.> .. Arlington, VA 22217

Mr. Philip Andrews
* .Naval Sea Systems Command

NAVSEA 03416
Washington, D.C. 20362

Commander
Naval Electronics Systems Command
Human Factors Engineering Branch
Code 81323
Washington, D.C. 20360

Larry Olmstead
Naval Surface Weapons Center
NSWC/DL
Code N-32

Dahlgren, VA 22448

Dean of the Academic Departments

U.S. Naval Academy
Annapolis, MD 21402

Office of the Chief of Naval
Operations (OP-115)

Washington, D.C. 20350

Department of the Army

i Mr. J. Barber
HQS, Department of the Army
DAPE-MBR
Washington, D.C. 20310

Other Government Agencies

, 4 Defense Technical Information Center
Cameron Station, Bldg. 5

Alexandria, VA 22314 (12 copies)

IIC

'L3

Oe I q<p6

