f<: '/‘ £ ‘.
-'.:‘_‘-'-: ESD-TR-83-054 5 X / 0“
-’- | \—',

s

Technical Report
663

Protocol Software
for a Packet Voice Terminal

C.K. McElwain

3 '{f - 16 November 1983

ERNEE.

Lincoln Laboratory

MASSACHLSE’]TS INSTITUTE OF TECHNOLOGY

Lsxmcmu MASSACHUSETTS

Pngmd for the Defense Advanced Research Proje s Agency

under Electronie Systems Division Contract F19628-5 0-(-0002. DT‘ c :(

L N
qufw 18 1984

Aﬁlﬂeﬂ for puhlic l'eleue; diuribulion unlimited. ¥ g

84 0\ |7 130

 FLE CoPY

A

S

&L R ERERESEN

The work reported in this document was performed at Lincoln Laboratory, a
center for research opersted by Massachusetts Institute of Technology. This work
was sponsored by the Defense Advanced Research Projects Agency under Air
Force Contract F19628-80-C-0002 (ARPA Order 3673).

This report may be reproduced to satisfy needs of U.S. Governruent agencies.

The views and conclusions contained in this dacument are those of the contractor
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United States Government.

The Publie Affairs Office has reviewed this report, and it 1s
releassble to the National Technical Information Service,
where it will be available to the genenl public, including
foreign nationals.

. ' This technical report has been reviewed and is approved for publicution.
: FOR THE COMMANDER

-

'ﬂmmn l Alpeﬂ, Mnjor. USAF :
Chiel, ESD lh\odn hhrm:y Project Omu

Non-Lincoin Recipients
PLEASE DO NOT RETURN

;.:: ! Permission is given to dumy this dncumom
_when it is no longer needed. ‘

0
RO . e

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

PROTOCOL SOFTWARE
FOR A PACKET VOICE TERMINAL

C.K. McELWAIN
Group 24

TECHNICAL REPORT 663

16 NOVEMBER 1983

. Approved for public release; distribution unlimited.

.:'_'J.ft_.“‘. o '
% JAN1 8 1984

G
@ A

LEXINGTON MASSACHUSETTS

_‘:s T ATy

T Ty
SOSEEORS |20

".

- -"o—o

)
e e

9, 1} £y
w r_‘.‘;%:, Xy

X

LA,

X
-

1

e '3.;"‘.‘ Nl e

12
AR

%I
o’

ABSTRACT

fk Packet Voice Terminal (PVT) has been developed at Lincoln Laboratory
to provide voice access to an experimental wideband internetwork packet
system. The PVT employs a modular, microprocessor-based structure to provide
voice processing, packet voice protocol, and network interface functions.
The packet voice protocols are implemented in software in the Protocol
Processor (PP) module, which is the primary controlling module of the PVT and
which handles interfaces to a voice processor, a network interface processor,
and a user instrument. This report describes the software implemented in the
Protocol Processor. The implementation of the Network Voice Protocol
(NVP-II) and the Stream (ST) protocol are described. Call set-up functions
for both point-to-point calls and conferencing, and the methods used for
packetization and reconstitution of speech, are described. Problems

encountered and solutions which have been implemented are discussed.

114

e epearaey-
A A N T o T
A SV, W Y A AR A L I R I O R RO ORI I L SRS S LA

e Te T -
o 'c e "a K R .-
o W w W s - Y d ™o

<
%

%
N
)
Y

vy =

CONTENTS

ABSTRACT
1. INTRODUCTION
2, PACKET VOICE TERMINAL ARCHITECTURE AND DESIGN

3.

4.

2.1 Overview
2.2 Protocol Processor Architecture and Interfaces

2.3 Protocol Processor Software Modules; Function and Size

VOICE PROTOCOLS
3.1 Brief History of Voice Protocols
3.2 Network Voice Protocol II

3.3 Stream Protocol

CALL SETUP
4.1 Overview
4.2 Setting Up a Point-to~Point Call

4.3 Conferencing

DIALING CONVENTIONS

5.1 Interaction with the Caller
5.2 Dialing a Point-to-Point Call
5.3 Conference Dialing

5.4 The Echo Extension

5.5 Using the Switched Telephone Network Interface (STNI)

5.6 Special Dialing Sequences

111

16

17
17
18

18

19

19

21

26

35

35

36

37

37

39

40

.,

]

.‘

~

N 6. SPEECH DATA 41
o 6.1 Packetizing Speech Data 41
4

J

\3 6.2 Silence Detection 47
w5

.3 6.3 Vocoder Dependent Modules 48
1 6.4 Efficient Handling of Speech Data 49
§
¥ 6.5 Reconstitution of Speech Data 52
11

Ly

7. RELIABILITY 55 .

ﬁz 7.1 Reliable Transmission of Control Messages 55
¥

#

LY 8. REAL~-TIME STRUCTURE OF PVT SOFTWARE 57
N 8.1 Assembly Language Code 57
1%
3 8.2 Polling Loop 58
S
W 8.3 Buffer Availability to BC 59
e 8.4 Output Message Formation 59
)

o 8.5 Timing 59

9. LANGUAGES AND SUPPORT FACILITIES 61

E: 9.1 Choosing Languages 61
a 9.2 Support Facilities 62
: 9.3 Downloading Facilities 62
o«

e 9.4 PROMS 63
b 10. MONITORING AND DEGUGGING AIDS 63 .
- "
X 10.1 Diagnostic Record Keeping 63 !
<)
g 10.2 “Talking To Yourself" 64
,$ 10.3 Echo Extension
7‘ 10.4 Providing Information to the User
A
;1 vi

Pt E S

L

1=

11. COMMENTS
11.1 Implementing Protocols in a PVT
11.2 Use of Checksums
11.3 RAM Memory
11.4 Implementation on Packet Radio Network
11.5 Implementing NVP-II and ST

11.6 Support Facilities

12. SUMMARY

ACKNOWLEDGEMENTS

REFERENCES

APPENDIX I - Acronyms and Abbreviations

APPENDIX II - Size and Function of PP Modules

vii

65
65
66
66
67
67

68

68

69

70

72

73

> W, S W W T e ™ - AN R N S A A R O R AT

1. INTRODUCTION

% An experimental wideband packet internetwork system is being implemented
zi under sponsorship of the Defense Advanced Research Projects Agency (DARPA) to
hy | develop and demonstrate techniques for achieving the advantages of

integrating packet voice with data in a realistically large-scale system

éé b (1,2,3,4]. The experimental system consists of research facilities at

f:} multiple sites which are linked by a wideband packet satellite network

ré including a satellite transponder channel, earth stations, high-performance
;i burst modems, and demand assignment processors. The sites have local

ié packetized speech access facilities including concentrators, local

‘:C distribution networks, and packet voice terminals.

N

&
[

Lincoln Laboratory has developed the Lincoln Experimental Packet Voice

.
L
alal,t

"

Network (LEXNET) [5] to act as a local access area network for voice traffic
0 traveling to and from the satellite. The LEXNET provides broadcast

] connectivity among a set of Packet Voice Terminals (PVTs) by means of a
wideband coaxial cable. The PVT digitizes and packetizes speech for

transmission over the local network. For local calls, these packets are sent

%3
‘.1
}: directly to another PVT on the same LEXNET. To reach a PVT on another
o
<.
~, network, the packets are sent to a special interface unit, the LEXNET
-
§ . Concentrator Interface (LCI), which forwards the packets to the remote net
ft via a speech concentrator. The speech concentrator acts as a GATEWAY between
f'n -
2y two LEXNETS and/or between a LEXNET and the satellite. The GATEWAY consists
" of a PDP-11/441 augmented with peripheral UMC-2802 processors to aid in
;3
X
X lnigital Equipment Corporation, Maynard, MA
'c 2 pssociated Computer Consultants, Santa Barbara, CA
.sQ
1
‘I
£
X} 1
o
\ ‘q v "\-' .-\. 1,‘-‘- " \.f‘v.\-' . A «‘,:'._-;"-’.'.':‘;-:';::;:':_.; \:;:_-...;:}::‘:{.::._:;. “. ‘-;._:'\::‘ :-__ .)‘_:\J:.‘ G

- -

EAE AR N "‘J"_'?’_‘F__V','-‘_‘~'._-'“_~‘,>T\Y',‘_- ML 2o %l i o A S NI R g i ."

1/0 operations. A flexible packet-satellite demand assignment multiple
access (DAMA) processor’ (PSAT) provides scheduling for the satellite

Syl
“:5 channel. A flexible burst modem serves as an Earth Station Interface“ (ESI)

'

-4 with the earth station transmitter and receiver.

v The experimental network currently includes four sites: Lincoln

j@d Laboratory; the Defense Communications Engilneering Center, Reston Virginia;
Celd
g :ﬁ the Information Sciences Institute of the University of Southern California,

: Marina Del Rey, California; and SRI International, Palo Alto, California. .

f:; The satellite channel is supported by Western Union's WESTAR III satellite.
e
‘zt: The PVTs with their attached telephone instrument serve as the interface

\l

LA
o with the voice user. The PVTs prepare speech for transmission through a

ﬁui packet network by digitizing the speech, preparing speech data packets, and
-':f sending speech data messages. The PVT handles the speech coming in from the
I network. The protocols required to establish communication with other PVTs
o are also implemented.

)

f% In earlier experiments sending packetized speech over ARPANET and

.0\

A SATNET, the function of a PVT was performed on large host computers such as
é{‘ PDP-11s. The PVT has the advantages of being modular, compact

~

4
x: (microprocessor based) and generalizable. It can be programmed to handle
mgg many different single card voice processors (vocoders) and can be adapted to

?2 interface to a variety of networks. A PVT is shown in Figure 1.

-‘:':'

e, The purpose of this report is to describe the protocol software for the
Ml .
N PVT. The report will focus on the present implementation but much is
:22 generalizable. In Section 2 the PVT architecture and design is shown.

\j'

‘ U
T3

\~i

o 3Bolt Beranek and Newman, Cambridge, MA
. “LINKABIT Corporation, San Diego, CA

N
S
A
‘o N
Pty 2
s.h.

AL R O A A R S S g S N A S Ay T T U T G S, S R X
MEVE S RS R LS E RS ALY S U RN

Gl s

T

o e S

T

JI0MI3N 2OTOA 3I9)OBJ TeIUSmTaadxy uroout 1 *814

AVNIWHIL 3DI0A 13X0Vd HVINAOW

A

fEseee ==

1078
H3IAOON3 (19uxa)
3DI10A WNIa3w
1SvOoavoys
ANVE3aIM

93009 : e R (e BT 0 ol W01
WOd \ r - \

_ |
| |
ONION3Y3INOD ® _ |
SHIA0ON3 $100010Hd 30I0A © “ HOSS300Hd _
3010A NOLLVHINIO TIVO @ |tme—tmi JODOLOHd [w=b <>
vLI9Ia ——— 1
Py “ 13N ¥20 W3aOW "
7000104d | |
_ SNOLLONNS V3V SS3D0V |
Rt M Rl =5
YHOML3IN 3LITIELVS zokw.mwaﬂzs
QINOISSY ONVIN3A ONVE3AIM OL | viva/3oion <>
 [ueoeeer] mes

t, . ARG ey
| o Q.-‘rk‘-.-v-‘n'uwn H}v .y -buu- 2 : t-f

L't = o Ara i o4 g8 o nVal LR GO RIDAL AR Tk A S A A A e i e A I AR AU SO O Raat J o i i i N SR g A |
IR A ‘

Fov |

»

o 4
A

Section 3 discusses the two protocols used and gives a brief history of the

‘n‘:

developuent of these protocols. Next, call setup functions are described,
B 3 including the standard point-to-point call, conference calls and calls to and
i:}‘ from phones in the commercial telephone system. Dialing conventions,
efficient handling of speech data and the problem of reliable transmission
are addressed. Then the real time structure of the PVT software, the
SR languages used, the support facilities, and the debugging aids are covered.

The report ends with some comments and conclusions that have emerged from

2‘;_ this effort.

%}; 2. PACKET VOICE TERMINAL ARCHITECTURE AND DESIGN

_2;. 2,1 OQverview

,§35 This section describes briefly the design of the Packet Voice Terminal
!3:_ [6]), the modules that comprise it, and the tasks that the protocol processor
. performs while servicing the interfaces between modules.

figg 2.1.1 Design of a Packet Voice Terminal

_%Qg The experimental Packet Voice Terminal (PVT) was designed to provide a
;:? 64 kbps PCM capability, and also to provide a flexible interface for any of a
VSEE number of single-card narrowband speech processors. The terminal is

vs%; partitioned into three functional units; the speech digitizer, the protocol
A processor, and the access area processor, Speech can be digitized by a PCM
Eéi CODEC or by a speech processor internal or external to the voice terminal
\E;E unit. Speech digitization is independent of the transmission process. The 4
f:? protocol processor (PP) forms the packets and provides the necessary protocol
{E&S functions to insure that the packets can be delivered to a distant network
:EE: and played out at the proper time. The protocol functions are designed to be
3

N o 4

g

Vaox
At

L .
[}

2L2.
XXX

¢

A s e T T A AT A e T e e e T (Ve T e e e e e e e e L .1

.....

SO R .
IR I TP R R

At S Y] « eV, AT AT M e Lr o, W W T TR TN .-".'FT'. Pt St St Attt S Bege S It -Sanr-i e _-)'-;v'-.-‘

3

N independent of the transmission medium. The access area controller or buffer
f controller (BC) accepts packets from the PP and transmits them across the

szi LEXNET to a similar controller in another terminal. The BC is only concerned
ff% with packet transport on the LEXNET.

,‘ 2.1.2 Modular View of Packet Voice Terminal Functions

=:£ R The PVT can be thought of as being made up of the modules shown in

ﬁ%ﬁ Figure 2. The voice processor module represents the vocoder currently being
i * used. The PVT 1is programmed to handle three different vocoders; 64 kbps

Eiﬂ Pulse Code Modulation (PCM), 2.4 kbps Linear Predictive Coding (LPC) [8] and
fgz a variable-rate 16-64 kbps Embedded Continuously Variable Slope

;{ Delta modulation (ECVSD) [7]. (PCM and ECVSD are actually speech waveform
33' encoders but the term vocoder will be used when referring to them.) The box
 ;¥ labeled user telephone represents the phone-like instrument that the user

;. uses to communicate. The buffer control (BC) processor cornects directly to
~

'ﬁg the LEXNET and sends/receives messages from LEXNET. The protocol processor
2i3 (PP) module handles the protocols involved in setting up Point to Point calls
i and Conference calls. Two protocols are implemented in the PP; the second
és generation Network Voice Protocol (NVP-II) {9] and the Stream protocol (ST)
';; [10]. These two protocols are used to negotiate the connections and transmit

‘;' the speech data. The PP module 1is also equipped with a vocoder preference
iij selection switch (VPSS) by which the user can indicat. which vocoder he

%Eﬁ desires to use.

£ The protocol processor services the interfaces to the other modules

':; including: packetizing and depacketizing speech data, monitoring and

‘EE processing signals from the phone's key pad, monitoring and adapting to the
Ny

-

':S

o

I T T N g L e e

. . . . - 2 -4 e e i o e S M Gk oot uih amer A oLk suntronddl 0 Broegiine -
=8 P A A A A e e I P TN AT AR N >]

132300 N

GATEWAY

<

%q SPEECH
. VOICE PARCELS PROTOCOL MESSAGES BUFFER
PROCESSOR PROCESSOR = CONTROL |
R VP PP (Data and 8C
Control)

PVT

A

DA
S

B

Y

PVT

]

»
um20 -+
mMmMIWnNCo

2044 C®

O0r»2Z>»

>
.
ol

SPEECH PVT

USER
TELEPHONE

e

Yy
4

LEXNET

d
s
-

A
AL s a v 2

Fig. 2 Modular View of a PVT

aoard et

a

8 'l-:l'.
- l"".l'

|5

N

CR RN
.
pl Wl S T S

s
>,
A

o .
"%
0
.l‘.

ezl
S
o

."
~

AN
A A

......
»

B e CRaChachacioe i i Ry S Titecdre Adn Site ing ie Reec o 4o Sees St Aar Svin e Ao S Sdn SViLEue S a-s S 0 o o |

ST e Ve T ae b LW W GE T,

L
Tty
»

|8

i |
e
.
';4 desired vocoder, and processing messages going to and from the LEXNET. This ‘
NG report is concerned with the functions of the protocol processor (PP) module
:§ and their implementation in software.
e
:} 2.2 Protocol Processor Architecture and Interfaces ‘
x 2.2.1 Protocol Processor Architecture !
Ai; ’ The protocol processor resides on a card consisting of an INTEL 8085 E
;;T microprocessor CPU, a data memory, a program memory, a DMA controller,and a 5
w3 USART port. A block diagram is shown in Fig. 3. A separate memory extension
'5 card is included allowing the total memory to be about 40K bytes. Two 5
: versions of this extension card are available. A RAM card can be used for ;
f;' network sites where a downloading or crossnet loading capability is available :
;ﬂ and for software development. A PROM version of the card provides a :
;i stand-alone capability. Only 4096 bytes of the RAM memory can be accessed by i
I3 the DMAs. (This limitation has significantly complicated the software.) The l
;% term "DMA memory"” will be used to refer to this memory. The current NVP/ST i
:4 protocol program requires about 31K bytes. 5
= A DMA controller is used to pass data in both directions to the access
E controller and to the speech processor. The USART is used as a serial 3
qs channel to the telephone instrument for signaling and display. Communication é
:3 between the protocol processor and the speech processors is via two pairs of !
3
;; byte-parallel channels. The first pair is used by the speech data and is E
:§ ’ controlled by the protocol processor's DMA chip. The second pair is a ;
= control channel which has several possible uses depending on the specific !
:2 speech processor. At start-up the speech processor presents an j
53 identification code on the control input channel. The protocol processor)
g i
2 3'
f: 7 J
<

s & w mem .. s

»
Y

.
V'
Y

PP TP T T S A ST S

,l. . .l‘
. X
)
w-.. sA
-.-. 4
b, : .\.n
X meideyp y0o1q 108830014 Te20301g £ *814 M
b, " 4
_ SR
m.. VWG A8 318I1SS300V HOLIMS SIHILIMS W
. V3UY H3IING-AHOWIW € NOILD313S Ss3vaav L
g ¥3A020A NOILVLS .
N AHOW3W HOLVHIS 2
X VIHY AHOW3IW WYYOOHd | " 9
JINNVHD g
g JOYINOD 907 -y
" HOSSID0Hd TOHINOD ANV Sy
: H9934S LdNHYILNI ..
g 104INOD wyy © 0/ on
!. \ -~¢
g (o]} o G618 6548 3
- w %
. o
. ok
5 N.V WV]
g Nndd Ny
s <608 b
g N
. . e
.. t N ..--
. . t—— WVYH . g
1Hvsn on 90Yd
137Ivevd .
4 .,J %8
. S
b — ——— —— — — — o—
g r T .
4 _ by .
fr._ | |)
. YOSS300Hd “ “ .
. HO33dS Ol _ o [.
XeW) Nzg ' ¥
auvd | ,
. NOISNaLXT | WOoY Ho vy |)
y] oW J

2 VJ..J-......... a0

';,?..

’.. PN

«] .
AR IO

-
Ty

SN0
PR

0

4 .
N

-.‘
o
A

.....

Pl bute e R A A S

uses this code to determine which speech algorithm is active and to select
appropriate program parameters., The control channel can also be used for
passing control parameters to variable-rate speech systems or for loading
programs into programmable voice processors.

2.2.2 User Telephone

The telephones are standard key pad telephones which have been modified
to match the needs of the PVTs. Internally, the phone contains a small
microprocessor system consisting of an 8085 CPU, ROM memory, keypad and a
USART. Communication with the PP is via an RS-232 serial interface. Drivers
and receivers for the analog signals passing to and from the handset are
contained in the ﬁelephone set, Commands transmitted over the serial line by
the PP cause signaling tones to be added to the analog signal driving the
earplece.

The PP can send the following five commands to the phone: ring, dial
tone, busy signal, ringing tone and silence. Once a command is sent to the
phone it will continue in effect until another command is sent. The protocol
processor uses these commands to create a calling environment similar to what
the user expects from a regular phone.

The telephone is equipped with a standard key pad with the twelve
characters 1 thru 9, plus *,0,and #. The PP receives a signal when the phone
goes on or off hook as well as when a key is pushed. When a digit is pushed,
a tone is sent to the phone for approximately 9 msec. This causes the phone
to seem to be "alive” to the user and reassures him that his key push was

noted. A LEXNET phone is shown in Fig. 4.

T

PO S T e e clie 20

i Bl

.......

........

e e P

oy-\\.-‘

LEXNET telephone

Fig. 4

.........

.JM::? ‘ ¥4

P

LA

»

o !
LR A MA

PO M. o)

ST

N '-5\\ 'r';:ﬂn

L ity
. .

o

ry

L arn v gy PR A ARG T ~ DRSNS e AR A

2.2.3 Voice Processor Selection

All PVTs are equipped with a PCM vocoder card. There is an extra card
slot which is wired to accommodate an alternate vocoder. The PP software
supports two alternate vocoders; a 2400 bps LPC Vocoder (8], and a
variable-rate Embedded CVSD Vocoder [7} which operates at rates of 16, 32,
48, or 64 kbps. The caller 1s supplied with a switch so that he can express
a preference between PCM and the vocoder plugged into the alternate vocoder
slot. The preference switch is a manual switch that is monitored by the
program. The actual selection of the vocoder is controlled by the program.
The switch is a three position momentary switch., Its rest position indicates
no preference. The PP constantly monitors the position of the vocoder
preference switch. If a new preference is indicated, the PP will record the
fact and take appropriate action.

2.2.4 Connection to the Voice Processor

Speech to and from the vocoder is sent in units called parcels. For a
narrowband vocoder such as LPC, a parcel consists of the data generated by
the vocoder in analyzing one unit or frame of speech. The basic frame time
for the LPC vocoder used in the PVT is 20 msec. The PCM and ECVSD vocoders
do not have a basic frame time. Data for these vocoders are passed in
parcels which comprise 22.5 msec of speech.

Speech goes to and from the vocoder via two direct DMA channels working
in auto-initialize mode. Separate buffer space is reserved in the DMA memory
for each channel. In the auto-initialize mode the DMA reads/writes speech
from/to the buffer until it reaches the end. It then automatically begins
again at the beginning of the buffer., The buffer areas are sized so that

they always end at a parcel boundary.

11

I I IR

s

> W3

LML g . A Wl) [y e Y T G W T T T e o W ST W s _-._‘..I._"~.‘..‘l..-.'_tl“l_~‘h‘.IT::‘._VY“":W:T.‘\LX_“i‘Z"._‘—_': A
) AR R g Ao Rt O .“]
. .
~ j
o 1
-‘ ’
™ 1
.
£
-

. Transfers in each direction are independent. An interrupt is provided J

once per parcel for each direction. A one-byte header precedes each speech

NI

parcel in the buffer. The header byte tells whether the following parcel is

speech or silence. On reading a parcel which is marked as silence, the

:- vocoder plays out an internally stored parcel of silence. When the vocoder
+
N
f finishes reading a parcel, the end-of- parcel interrupt executes code which
" marks the parcel as silence by clearing the speech indication in the header .

byte. This ensures that a speech parcel will not be played out more than
once even if no new speech i1s received before the DMA reaches this buffer

again. When writing speech parameters into the speech buffer, the PP sets

.: the header byte to indicate that the parcel contains speech.
;i 2.2.5 Access Area Interface
& All messages on a LEXNET begin with a two-word LEXNET header which
33 consists of the destination address and the source address for the message.
g During a conference, messages contalning speech data use the broadcast LEXNET
C4
: address augmented with the ID number assigned to the conference as a
*; destination address. The Buffer Control card forwards to the PP card all
: messages on the LEXNET which are specifically addressed to it plus all
;E messages addressed to any conference ID which the PP has asked to receive,
;: Once the buffer control card has notified the PP that it has a message for
~
‘31 it, the PP must read in the entire message or it will get out of sync with
o
> the buffer countrol card.)
E: The PP expects to receive three distinct types of messages (see Section
E; 3 on Protocols). Control information is transmitted in two different types
;S of messages corresponding to the two protocols IP (DoD standard Internet
{:
A 12
N
-

0y ”
“ %

(%

e e T e e e e e e T T T T T e T T T T e PO Y -'.'.‘-' ‘-.“'-"'-' . - A
IR BN TP B I I I U S A R S S P, - S AP S S S T L I D IR e e B W S U S

(s

3 .”.’. ..:'.'L |..

L e s

e N R Y

§ QO

’ AT
' als’s

Pl Uall .
"!;'. HatataTd ! 4

(gl .

9 'ACMN

ROy

e @ e .
P e e L A e P N TRl

Protocol [11]) and ST. (See Section 3). The third type of message contains
speech parcels and may also have control information preceding the speech.
The PP first reads in the number of bytes equal to the smallest correct
header it can recelve. If analysis of this data shows the message to be
defective (e.g., bad checksum), the remaining bytes are read into
“"nonexistent memory"” and thereby discarded. If the message contains only
protocol information, all the remaining bytes are read into the PP read-in
buffer. For a message containing speech parcels, all the bytes in the
message which precede the first speech parcel are read into the PP

read-in buffer. Then each parcel of speech is transferred via DMA directly
into a selected buffer in the set of buffers which contain speech to be
played out. Efficient handling of incoming speech parcels is discussed in
Section 6.

The PP creates the same three types of messages to send out to the
LEXNET via the Buffer Control card. Messages which contain only control
information are formed in one of two output buffers in DMA memory. One
buffer is used for IP messages, the other for ST messages. These messages
are transferred directly from the output buffer to the Buffer Control card.
The header and any accompanying control tokens for messages containing speech
parcels are generated in a third output buffer. After this information is
sent to the Buffer Control card, the accompanying speech parcel(s) are
transferred via DMA one by one directly from the circular bufters which
receive speech from the vocoder. For vocoders with low bit rates and
correspondingly few data bits in a parcel, several parcels are usually sent
in one message. For a high bit rate vocoder such as PCM, only one parcel is

sent in a message.

13

< U IR, R S S S TR S S S S Tt - N - .
\..f~-\ A \1'.. . "’.“ '......\ . ..-.- > ‘.‘,.; T e e L s e) ‘-.'~,“. T taN AT
" A . e T L e N Y e

AR N A A T 2o ARl B e B S Bt e g e
PN e - PE

Ll g

L0250 Bk 2 S B -.‘J

L - a g e R g 4 L ARl R ~ A T T L T R . L T T L o

et 2,2.6 Summary of the PP Functions

s
.

The primary function of the PP is to implement the two protocols NVP-II

;4,

and ST, thereby giving a user access via packet speech to other PVTs and to

NN
R I

regular phones., It does this through interaction with the four interfaces
*i connected to it. The PP does not spontaneously generate any activity. A

summary of the interactions with each interface is contained in Table I.

SN
P A

A

N 14

e

)

-
“
-~

B

A e T T AT T A T N e e e
\I '.\. .,. \vh!' RO ‘.-" +, -

e B R R
2R PR,] -~ N . -

.
a
AR

3

B/ ov 7 -
XAAS

ALY

XXX
'J)

' .
~a
> P

”~

h ,:
W

4

s &

'r.‘.‘ l.

2,

AN

&

\‘. [)
TNV

L

TABLE 1

SERVICES PROVIDED BY THE PROTOCOL PROCESSOR

User Instrument Interface

D
“

Receive signals from the instrument via the USART

Interpret Signals Received

Implement action caller desires

Send commands for the appropriate tones to the instrument to reflect

current status
Send ring command to the instrument when call received from LEXNET

Voice Processor (Vocoder) Selection

Monitor Vocoder Preference Selection Switch (VPSS)
When changed, reconfigure buffer assignments and storage space
dynamically to use newly requested vocoder and select vocoder.
Switch Vocoder Selection internally to satisfy “"Request to Talk”

Voice Processor (Vocoder)

Set up buffer space, pointer tables, etc., according to type of Vocoder

in use
Start speech transfer (both directions) when call established

Package frames of speech into speech packets and send
Stop speech transfer when connection ends or is broken

Access Area Processor Interface

Accept, analyze, and act on all incoming messages

Apply reconstitution algorithm to incoming speech messages

Unpack speech parcels in message and DMA into correct Vocoder buffer
Respond to incoming protocol messages

Create and Send Outgoing messages

Determine which speech parcels to send, pack and send them

Control protocol dialogue which establishes requested connections
Insure reliable transmission of Protocol Messages

15

2.3 Protocol Processor Software Modules; Function and Size

The software system for the PP is written partly in the high level
-~ language C and partly in an assembly language called A-Natural [12].
A-Natural 1is the assembly language generated by the C compiler used for this
project. (See Section 9.1).

The A-Natural routines handle all the input/output interaction between

the PP and 1) the USART attached to the user phone, 2) the DMAs to and from

the buffer control, 3) the DMAs to and from the vocoders, and 4) the two
frame sync interrupts for the vocoders. Routines in A-Natural also
initialize the various I/0 devices and set up and initialize the speech
buffers.

The C routines handle the analyses of incoming messages, process all the
protocol messages, and direct the actions of the lower level A-Natural
routines.

There are 114 C routines of various sizes which are contained in six
separate modules with a total length of 28,464 bytes.

There are 17 routines written in A-Natural which are contained in two
modules and are 2855 bytes long. There are three routines to
initialize/reinitialize various I/0 interfaces, a routine to set up speech
buffers, routines to start interrupts, and to start and stop the speech
) DMAs. Two routines run at interrupt level and handle the frame sync
interrupts from the vocoder, three routines handle the output to the phone,
two routines handle error conditions, two routines compute checksums (word
checksum and byte checksum). The final routine is the general control loop

which polls the status of all I/0 interfaces and causes appropriate action to

16

a2
L

»
WY,
. ¢

PXAXPAT |

NNHANS

b

RN

AARNIUSY

{

‘ IHF

;‘\

‘a

[l R Sl Y
AR
AN

P
x
“
>
)
-

WYY

S T e e e e e e
'-r'h..:i‘“(h ISR AT

be taken. The Whitesmith system [12], which compiles and links these

modules, adds sixteen library routines which are a total of 566 bytes long.
More detail on the size and function of each module is contained in

Appendix 2.

3. VOICE PROTOCOLS

3.1 Brief History of Voice Protocols

The initial efforts beginning around 1973 to conduct packet voice
experiments on the ARPANET focussed on the development of appropriate network
protocols for voice. The Network Control Protocol (NCP) then in use was not
satisfactory for the throughput and delay requirements of real-time speech.

A protocol was needed that: handled real time data, was vocoder independent,
was network independent, and separated data and control. Network Voice
Protocol (NVP-1) was developed by the Information Sciences Institute (ISI)
[13] and was used in initial speech experiments in 1974. NVP-I was extended
to handle conferencing and became the Network Voice Conferencing

Protocol (NVCP). Then after IP became a widely-used DoD-standard protocol,
NVP-1 was improved and modified so that its cqnttol tokens can be carried as
the data portion of IP datagrams. The resulting protocol is NVP-II [9].
(Like NCP, the DoD Standard Transmission Control Protocol (TCP) [11] is not
suitable for real-time voice transmission.) Stream Protocol (ST) [10] was
developed as an extension to IP to efficiently transmit the speech data after
a protocol negotiation had been conducted using NVP-1II and to handle the
milti-address delivery requirements of conferencing.

Voice Protocols define a sequence of messages that are sent between

terminals in order to set up and maintain a packet voice connection between

17

R A o S,
RIS NI 8, TN ORI -

-'-.' -'. - . ." ».' . . - - t - -
PR Wil Y S B T A A P L S S SR PURPURR R D

T R A T Ty ™.

I |

1)
.A:L‘L"._“LL

two voice terminals or a conference among many voice terminals. Two kinds of

A

%, messages are involved-~—-Control messages and Speech Data messages. Control ,
J -
. 4
S messages contain information needed to set up or maintain the call. This i
‘: includes information about the vocoder to be usec, the addresses of the 5
o terminals involved, dynamic conference control information etc. The speech

N

N messages normally contain only speech data although there is a provision for

N including control information. The PVT software normally sends NVP-II

2 control information as the data portion of IP datagrams. NVP-II speech

N

> parcels are sent as the data portion of ST messages.

.

b The implementation of the two voice protocols NVP-II and ST is the

2 primary subject of this report.

: 3.2 Network Voice Protocol II (NVP-II)

. NVP-II handles the vocoder~-type negotiations, ringing, timestamping,

M etc., as well as dynamic conference control functions. NVP-II defines a

j} large number of protocol "tokens" which pass pertinent information. These

- tokens are sent either as the data portion of IP datagrams, as is done in

N call set-up, or along with data in an ST message. NVP-II also defines the

o

j form of the speech data parcels which are sent in ST messages.

-

! 3.3 Stream Protocol. (ST)
. ST provides an internet transport mechanism for the delivery of speech

. parcels for both point-to-point conversations and conferences. ST differs

» from IP because it creates a virtual circuit as opposed to a datagram

. protocol. 1In order for a host or GATEWAY to be able to interpret an ST

Oal

- message header, it must be told about the virtual circuit (called a

o

' “connection” in ST) by a setup process that precedes the transmission of any
Al
&8

N

N 18

S

‘

4

»

e

]

¥

AU)

£ R

A SO L S S st

PR N AT T

BT AV S gO T,V ¥ V]
-

{ I

o .
'A’.“- (8 l..l:

Jo s

[}
-
L
-
L]
*
=,

speech messages. The setup process involves finding an internet route for
the connection and informing all GATEWAYs that might have occasion to deal
with packets for the connection. During the process, GATEWAYs build tables
containing information about the connection. It is these tables that permit
ST to offer capabilities that cannot be provided by a datagram protocol such
as IP. After a connection is established, speech messages are sent with a
minimal header which contains the name of the connection to be used. The
tables in the GATEWAYs contain the information needed to route these messages
correctly.

To set up a point-to-point (PTP) call between two PVTs, the parameters
of the call are first negotiated using IP datagrams containing NVP-II
tokens. Then a connection or route is established using ST. When this is
complete and the remote site has answered the phone, speech can flow.
Point-to—-point call setups are discussed in Section 4.2. Setting up a
conference requires establishing an ST conference connection between each
pair of voice terminals. Speech packets sent on a conference connection are
distributed automatically to all participants. Conference setups are
discussed in Section 4.3.

4, CALL SETUP

4.1 Overview

The PVT software supports calls between any two PVTs as long as there
is a route available between them. Figure 5 shows the possible paths between
PVTs in a typical wideband system configuration. The special lines show the
route which would be taken by a call between PVT 231 and each of the other

PVTs. The "number” by which a PVT is known is the number of its local LEXNET

19

St L. T - .) - R B A .
e . te LR B

-

R Ce oo . PO P B T i S T Vo - LSRR B . N
AR . . LI e N S S N S Ui S SR
ALV ST S Gl & T P S A A A I I R T T T 0 O e e P W P N I WL AP P AL

e SIS 4 l'.;;‘_j

. ¥ (] . - 2’ » "« N ™ - - L
e B P . LYY SN PR A A e,
e . ek : -a..n-\v..'.aq..w- s N, Vo -- \.\-W.. v -J I‘In-!-- e ' w ! --\-‘:) § -..:\. AR .N.-\-- 5, L A .), .v.w \V ..,H— . \.‘ b

uoT3eINZTJUOD pueqapIM TedTdLAL ¢ *314

v
¥3 ove 952 veT oze LEZ
OHINOD IAd INd INd IAd INd
S$S300V
OvZ IAd ONV LEC INd N3IMU3E HIvd
(TYY Y
9G¢ INd ANV LEC iAd NIIMI3Y HIivd
0000
290 _
0ZZ IAd OGNV LEZ IAd N3IMLIE HLVd 13NXIT
- [J
H o
. oN
[]
[]
®
. L)
AVMILYO AVM3ILVYO
1S/dl 1S/di

W3LSAS "
Teas]. 311131VYS ONVEIAIM "
»

onm.'-»‘ l\.\l&'\ .‘., DA A e] Y‘Y‘j\]\ﬂv Mo : ., T AN W§ K B R AR rras it 2 TR U

. % v v

. e
Ca

N followed by its local number. To make a call to another PVT the caller

merely dials the number of the PVT he wishes to reach. 1If a call is being

7 made to another PVT on the same local LEXNET, the LEXNET number may be)
) omitted when dialing. See Section 5 for a discussion of the dialing -
. conventions. If the caller dials a PVT on another LEXNET, the call must go f
through a GATEWAY on the local LEXNET. If no GATEWAY is attached to the

local net, such a long distance call is impossible. The PP gives the caller

back a Dial Tone to signal that the call could not be established. Otherwise

. the PP attempts to establish the call using NVP-II and ST protocols.

I~

a‘a

Insuring reliable call set-ups is discussed in Section 7. The messages

M e |
I P

exchanged in setting up a successful PTP call are shown below.

LNEN

4.2 Setting Up a Point—to-Point Call

The NVP-11 protocol is very general and allows any combination of tokens
in a message. To make implementation easier and to avoid ambiguity, the
implementation in the PVTs defines which tokens must be present in various
y call setup messages. Three tokens must be included in the initial message E
called a Want-To-Talk message (WIT). The Please Echo token needed by the

reliability code (see Section 7) is included in every NVP-II protocol

message. Other tokens may be added but the WIT will be rejected if the basic

three tokens are not included. Since the Connection~Name Token identifies

4y ‘.—" S .’ ..'

messages relating to this call, it must be the first token in the messages.

N Figure 6 diagrams a "Want-To-Talk" message.

.
P 4

2

The WIT always includes:

4.t

Token CONNECTION-NAME includes caller's address
Token VOCODER-TYPE specifies vocoder

Token I-AM-READY specifies caller is ready

PP iy

Token PLEASE-ECHO needed for reliability

L ¢
e

21

.:,
"l
4
LJ
-

{j
y
R
!

'-.,o-,-' RPN -"-.

S AT A A AT A NG UG

The answering Accept message is required to contain:
Token CONNECTION~NAME
Token PLEASE-ECHO

plus either

Token I-AM-RINGING notes phone 1s being rung
or
Token I-AM-READY

The receipt of an NVP-1I1 Accept message is considered to signal
acceptance of the proposed vocoder. If the Accept message contained the
Token I-AM-RINGING,then when the phone is answered, a message containing the
Token I-AM~READY would Se sent by the called PVT. No connection is complete
until both signal that they are ready. After receiving the NVP-II Accept
message, the calling PVT begins the ST protocol exchange which is described
by example below. Normally the NVP-II and ST protocols are completed long
before the receiving phone is answered. The ringing signal is sent to the
phone before the ST negotiation is begun. If the ST negotiation fails -
possibly because some network cannot allocate resources for another call - a
message closing down the call is sent back to the PVI. The local PVT will
then silence the phone and be ready for another call. This could be annoying
if it happened often., It can be avoided by completing the ST connection
before ringing the phone. The ST connection negotiations have never failed
on our net, after a successful NVP-II negotiation. Ringing the phone as soon
ag pogsible shortens the total set-up time.

The following shows the sequence of protocol exchanges for PVT 220 on

LEXNET 056 establishing a PTP call with PVT 240 on LEXNET 062. Since these

a 1Ny L At DI Al A AN Sl S Nl el g i A A Ay Pacibachon S0 S e i

\: .
\' .
A

- -)
'J K
" 20 Byte IP Header 5
- Contains Sender and)
f: Receiver IP addresses, s IP

. checksum,

:. length of message, .
y etc. :
1:; -;— <

VR 10 Byte ST Header

‘1 Contains Sender and

h Receiver extensionms, 2 ST

N . length, version number

. and checksum

i 3 .
'; 2 Byte checksum of following tokens) -
.' N
" Token Connection-Name

3 12 Bytes

- is the "Name™ of the :
\ connection >
6 Token = Vocoder-Code > NVP-II

’ 4 Bytes
»

y Token = I-AM-READY :
H 2 Bytes ;
{ Token = Please-Echo
N 4 Bytes
< J
-
N Fig. 6 INITIAL MESSAGE TO ESTABLISH A POINT-TO-POINT CALL
3
R
;; *This ST header is inserted between the IP header and the NVP-II data to
b provide an additional address field. This is needed to distinguish between
o callers if there is more than one at a single site.
23

¥

0
»

)
.

X w,. Sy ._-\.}-. o>

- " l'- \' '.< c. -.' 4- . - - ., - - i‘ - . - AN . - -, . - - -
AN P e T e T AT T T et T e T S el
L P S A AT T N R UL R . <

| s

s Ye) W e T
P SO X

s

¢+
AR AR A

A .lJ\J" J". A‘*_:{a !

(G

'l + 'l »
L

)

»,
(]
2

AN

0
4

-

N)
AN J‘n’\._ 3

X XNRRN

e Y T T e —r———

PVTs are on different LEXNETs, the protocol messages pass through one or more
network GATEWAYs. The GATEWAYs simply pass the IP messages through. The ST
messages CONNECT and ACCEPT inform the GATEWAYs about the call being set up.

The GATEWAYs determine the "best™ route for the call, allocate the necessary

resources and create tables containing this information. These tables

determine how the ST speech messages are forwarded. This is transparent to

P

the PVTs.
MESSAGES SENT TO ESTABLISH A TYPICAL PTP CALL

PVT (056-220) PVT (062-240)

— o o

.
WP AT O W Y -lL o

INITIATE CALL -—————-—- >
(NVP-11)
(Token Connection Name
Token Vocoder Type
Token Am Ready
Token) Please Echo

(Ring Phone)
Accepting
(NVP-11)
(Token Connection Name
Token Am Ringing
Token Please Echo

Token) Echo Reply

24

A AR NIRAS S M A A A i Rl T] .".-'_-I_l<' 'Ai.,'._'-_". LA gl S S A MR I AN -,~4-"."- b \1
- - . ~ v e
»

o
LR}

;é ACKNOWLEDGE Accept —=—————-- >
(NVP-1I)
> (Token Connection Name
5:? Token) Echo Reply
ESTABLISH CONNECTION - —~=——==-——- >
. (sT)
f: (= Accept CONNECTION
(sT)
- ACK ACCEPT -=—--~---- >

Z (sT)

“
2 | l |
-
| | |
(Phone Goes Off Hook)
Cmmmmm e NOW READY
(NVP-I1)
o (Token Connection Name
i
‘\ Token Am Ready
i
':: Token) Please Echo
ACK AM READY
2 (NVP-II)
- (Token Connection Name

Token) Echo Reply

25

: SO S M TR PR L St M RN Sy . . L PR

&% B mr
ey yn

» as

3
PIRAFAPAA

‘¢

Chet S
& e

s 55 5.4

g
PO

{8 { ”»
AN B2 Wt N R

AN LR - - .. - A LR I .“.~.-.‘. . e et - et -, '.'-’ 2 ;' IR

4.3 Conferencing

4.3.1 Access Controller

In addition to PTP calls the PP software can set up a conference call
[14] among any number of callers who have access to PVTs. The conference
capability utilizes an ACCESS CONTROLLER (AC). The AC is a system—wide
resource whose address must be known to all potential conference
particiants. Such an address 1s referred to as a "WELL KNOWN ADDRESS". The
AC is implemented in a PVT which currently resides on a LEXNET at Lincoln
Lab. 1Its address is Net 62 Host 156. This is shown in Figure 5. The AC can
contain information about many conferences. Currently the AC contains
information about three conferences - one for each implemented vocoder. This
information has been prestored and is always available for use. Ideally a

user could use his telephone key pad to cause the information defining a new

conference to be sent to the AC. However, this has not been implemented.

o

The information defining a conference includes: conference name, password, 4

A

vocoder to be used and optionally a list of the IP addresses of acceptable

participants. If the participant list is omitted anyone is allowed to join.

"‘_.A_Ln 4.4

While a conference is in progress the AC also maintains a list of the IP
addresses of the conferees. This information is supplied to each conferee as 4
he successfully joins a conference. Information about conference !
participants may always be requested and recelved by conferees and interested %

GATEWAYSs.

4,3.2 Setting Up a Conference

A conference may be set up or joined in several ways. Our primary

implementation uses a "MEET ME" style. A group of prospective conferees

26

LYy
a

A A

s 4 NN
3, % %

PP R R

N it
)

. -"."."'. DAL ALY .. - J\J .; 2) .‘.

NN

.‘o.‘ ":\

_‘-

5%

.':.

[
LR RN

agree in advance on the time of the conference and the vocoder they wish to
use.

On or after the appointed time each conferee attempts to join the
conference. To join such a conference a conferee dials the name of the
conference which uses the agreed upon vocoder. His PP sends a WANT TO JOIN
message to the AC asking to join the conference.

The NVP-I1 protocol for a conference specifies that a conference should
have a password known to the AC. The AC will only accept a PVT that supplies
the correct password as part of its WANT TO JOIN message. The current
implementation considers the conference password to be identical to the
conference name. At a later date a more sophisticated password system can
eagsily be installed.

If the PVT is accepted into the conference, the AC will supply
information about the conference such as the vocoder to be used. As soon as
the PVT is accepted by the AC, the PP sends a RINGING signal to its phone.

If others are already in the conference it is the PPs responsibility to
establish a connection with each one using ST. As soon as the first
connection is established, the RINGING tone is turned off and the vocoder is
started. During a conference each site keeps a list of the sites to which it
has a connection. When a participant hangs up, disconnect messages must be
sent to the AC and to all the other participants. A participant who hangs up

or whose site crashes can rejoin the conference at will.

A person who wishes to spontaneously set up a conference may use the
“"INVITE IN" feature. First he dials the conference name of the type of

conference he wishes to establish. After being accepted by the AC he then

27

- A g "4‘_‘“" P 8 W)

>

ot X} ‘.. Ty St p e T e '.‘-‘,' - AR "-.‘_.“' .". . - T - . - \“.." .t
\ *."_'.3‘1.\;5_.1.1.4.;;._;;;;; PRIV YA AT SR A R SRR R

can dial the phone number of others he would like to have join his

conference. His PP recognizes this dialing as a desire to have a remote PVT
join the current conference. The PP sends the remote PVT an IP datagram
which contains the NVP-II token "PLEASE JOIN MY CONFERENCE". The token
contains the necessary information to allow the remote PVT to join. The PP
at the remote PVT immediately rings its phone. When the phone is answered
the PP sends a "WANT TO JOIN" message to the AC and proceeds as described
above. These two ways of entering a conference may both be used to set up a
single conference. If a "MEET ME" conference is in progress and someone else
is needed, any participant can "INVITE IN" the needed PVT. One participant
who has been "INVITED IN" can then "INVITE IN" another.

A conference can also be set up using voice commands. VCOP (Voice
Conference Operator) [15],(16] is now operational. VCOP includes: 1) a word
recognition system to identify spoken words; 2) a speech synthesizer to
produce speech feedback, prompts and acknowledgements; 3) interfaces from the
recngnizer and the synthesizer to a PVT, and software to control the
recognition system and the synthesizer. The Threshold Technology T580
speaker-dependent word recognition system and a Lincoln LPC Speech Processing
Periperal [8]),[16] have been used. Communication between VCOP and the PP
occurg through the USART. To the PP the VCOP takes the place of the user
telephone. One PVT with a WELL KNOWN ADDRESS is connected to VCOP. To
establish a conference using VCOP, the conference initiator dials a PTP call
to the PVT connected to VCOP. When the connection 1s made, the caller is
greeted by VCOP. VCOP asks the caller questions about the conference he

wishes set up. After VCOP has information on the vocoder to be used and the

28

R T S

P
: :
.’ :4
4 names of the people to be asked into the conference it requests the caller to]
. =4
f“ hang up and wait for the conference to be set up. When the connection !’
‘: between the VCOP PVT and the caller is closed, VCOP translates the names of 5
;; the desired conferees into PVT addresses and selects the correct conference %
X name., VCOP then passes this information to its PP. The PP sends each
'§ conferee a "PLEASE JOIN MY CONFERENCE" message. To ensure reliability all
A
ﬂ conference protocol messages use the retransmission mechanism described
.) below. When this is completed VCOP is available to set up another
=
» conference.
E The Access Controller acts as a central storehouse of information about
x conferences. The protocols could allow as many as 128 participants in a
‘é conference, but the current AC implementation is limited to 32 participants.
g As each PVT is accepted into a conference it is assigned an identification

number. These identification numbers are assigned in numerical order from 1
. to 32, The identification number corresponds to a bit in a 32-bit conference
.: bit map. A conference bit map is maintained by the AC, the PVTs and the

GATEWAYs 1involved in the conference. The bit map provides an efficient means
f of referring to the conference participants. When a PVT notifies the AC that
. {t 18 leaving the conference, its bit is cleared. A bit in the bit map is
| never reassigned to another PVT during the life of a conference. If a
5 conferee hangs up and then later rejoins a conference, his PVT will be
§ - assigned a new identification number. The conference ACCEPT message from the
N AC to a PVT tells the PVT its identification number (bit number in the bit
2 map) and also contalns a copy of the current conference bit map. The PP
§ should set up a connection to every PVT with a lower bit number than it's own
;. and be ready to accept a connect from PVTs with higher bit numbers.
A
2 29
N

s .\ e e T e T e e e e \.:1

PRSA A S it it el sl Al v B IR A GRS I e e 0 Sede Sren o Jva e 4 vv1

This system has made provisions for a crashed site to rejoin a
conference. When a site crashes, neither the other conferees nor the AC know
that it is out of the couference. If the site comes up and redials the
conference, the AC will reassign it its former bit number. To the AC, the
"WANT TO JOIN" message is either a duplicate sent by the site's reliability/
retransmission mechanism or the site crashed and is reentering the
conference. The AC sends out a duplicate ACCEPT message reassigning the site
its original bit in the bit map. The PP of the reentering PVT issues an ST
CONNECT to all conferees with lower bit numbers and issues an ST ACCEPT to
all conferees with higher bit numbers. The PP has been programmed to accept
these ST CONNECTs and ST ACCEPTs from conferees who it thought were already
in the conference or to whom it had initially been unable to connect. The
ACCEPT message from the AC to a PVT contains a copy of the current conference
bit map. When the PP receives the ACCEPT message from the AC, it can
ascertain how many other conferees are in the conference by counting the
number of bits set in the conference bit map. The PP does not know who the
participants are. The PP sends messages to the AC requesting the address of
each participant.

Two commands are needed for the PVT to request and receive the addresses
of the other participants from the AC. These were not defined in NVP-II, but
have been provided in ST. The commands are TELL-ME and INFO. Since there is
no ST connection between a PVT and the AC these commands are sent as the data .
portion of an IP message. The voice protocols allow NVP-II tokens and ST
commands to be transmitted via ST or IP. Commands and tokens are treated

identically regardless of the transport protocol. The AC forms a bridge

30

e S e ca e - a-
-‘_f\f (PR A e D i I T P S e N L, T L S - . et i
LN LA R T T T L UL I FL S TR T Ay e e A T, LT e R c. . e e
Tl ot N Tt N AN o NPt e e P R A TP T e L T i L P T AT P U

AN S B A M A i Al A A Sl A N A [

between the IP and the ST protocol levels, but since the AC receives only IP
messages, it must be told whether the data portion of a message coantains ST

commands or NVP-II tokens. Therefore, IP messages containing NVP-II1 tokens

are sent to extension 122 at the AC, while those containing ST commands are
sent to extension 123,

TELL-ME is issued by a PVT to the AC and requests information about one
or more conference participants. The participants are identified by their
bit number in the conference bit map. The AC responds with an INFO message
which contains the requested addresses. On receiving this information, the
PP issues the appropriate conference connect (CONNECT.CONF) or conference
accept (ACCEPT.CONF) message.

The following scenario illustrates the protocol messages sent when
PVT(056-220) joins a conference. PVT(062-240) and PVT(062-156) are already

in the conference.

PVT (056-220) AC (062-156)
WANT TO JOIN -———~---——- >

(NVP-1I)

(Token Want To Join

Token Conference ID

Token Conference Password

Token User Address

Token) Please Echo

31

VMt e .

N RN I e T PN B S L e T T e e e et - L e RSN R - -
) "\ 4 PG SRR W B A I AR TP ML S S et el
. "‘MMM.LE‘.\(J--'- PSR A A S D T T R S e I P T

—————e AR M s el e - LR S S Sadt e
Sty e e T e L e e e e e e e N L T N L T e T e T e '!

(Token Conference ID
~ Token Connection ID
Token Conference Style
-\ Token Vocoder Type
Token Conference Bit
Map
(Your bit number is 4.
Bit numbers 1 and 3
are active.)
Token) Echo Reply

PVT (056-~220)(#4)

- TELL-ME = ~=—====—m >

b (ST command via IP)

2 (Who 1s bit #1°)

;.‘ S INFO

. (ST command via IP)

2o (#1 is PVT 235 on Net 56)

}' PVT (056-220)(#4) PVT (056-235)(#1)

o CONNECT.CONF —-—=-~-—~ >

N
,*S\ (ST)
A {mmmmmmm~ ACCEPT.CONF

» (ST)

X 32

T T AT e e e SN ~j
VSR PN L, LR W W e S A L AN R R S

¢ Cadet i DO L A i i i A S L R S sl I A S i A S A e i e A A A e
h T =
R
LY
-1$:
Lo ACK (of ACCEPT.CONF) ——==———n- >
A0 {mmmmmm SPEECH-=-~=~===-= >
o
R PVT (056-220)(#4)
A,
“
TELL-ME ------- >
\“ .
S9N
AN (ST command via IP)

Who is bit #37?)
(== INFO
(ST command via IP)

(#3 1is PVT 240 on Net 62)

PVT (056-220)(#4) PVT (062-240)(#3)
CONNECT.CONF ~ —~===—=== >
(sT)
(m—emmmmmm ACCEPT. CONF
(sT)
ACK (of ACCEPT.CONF) =—~--——=- >
(sT)
(== SPEECH----~---- >

4,3.3 Conference Floor Controller

Since a vocoder can only play out one received speech signal at a time,
gome selection method is required, A distributed Floor Controller has been
implemented. The same small control module operates in each PVT in a
conference, This module controls the sending and playing out of speech data

at 1its local site. It is a floor controller for its own PVI. The floor

--------- - . - - - - - . . ~ . . - - ~ . N
B
' RN N L R Y P L L T L AR e e R B B A T

|

controller is voice activated. It only attempts to send speech when the j
: silence detection mechanism indicates that the user 1is talking. The Floor
:; Controller will not transmit speech messages unless it has not received
: speech for a sufficient period to merit deciding that the previous speaker
has finished. When a PP begins sending out speech, it also sends an IP

control message containing the NVP-II token "I WANT TO TALK". This token is

4
.i
-l
also included in the speech message. A PVT receiving this token considers i
the sender to "have the floor”. A conflict can arise if two conferees start X

talking at roughly the same time. This is resolved by assigning each

conferee a priority. If a PVT is listening to one site and receives an "I
WANT TO TALK" token from a higher priority site it begins listening to the
new site. The first site should also receive this token and yield the

floor. This preemption occurs only in the short time window when there is no
speaker established and more than one site attempts to transmit. This could
be extended into an interrupt capability if desired. Currently priority is
determined by a PVT's bit number in the conference bit map. Bit 1 has
highest priority. This tends to give high priority to the person who
initiated the conference. Other schemes for deciding priority could easily
be implemented.

4.3.4 Routing Conference Speech Messages

PN

Each PVT in a conference must maintain a current copy of the conference

bit map. A PVT which is currently the conference talker sends out only one

ot

copy of his speech messages. The LEXNET which is the local network for PVTs
is a broadcast network. Each PVT notifies its BC that it wishes to receive

megsages relating to this conference. The BC checks each message that it

34

_ oo
P
R PP

.
)

finds on its LEXNET and passes to its PP all messages addressed to it and all
messages with a conference address for which the PP has requested to receive
messages.

The GATEWAYs handle the routing of speech messages to PVIs on other
nets. The ST CONNECT.CONF and ACCEPT.CONF between the local PVT and the
remote PVT go to the GATEWAY when the connection is set up. These messages
contain the identification numbers (bit numbers in the conference bit map) of
the sender and receiver of the message. The GATEWAY issues TELL-ME messages
to the AC to obtain the IP addresses which correspond to these identification
numbers. The GATEWAY then selects a route and propagates the messages to
another GATEWAY or PVT. The GATEWAY records this information and builds
tables to guide it in handling the conference speedmessages.

Each speech message carries in its header the conference bit map. The
PP gets the identification bit in the conference bit map of all the PVTs to
which it is connected. It clears its own identification bit. A copy of the
message is to be sent to each participant whose bit is set. The header of a
speech message contains the conference ID and the bit map. The GATEWAY
forwards these messages to each PVT whose bit is set. This mechanism could
be used to send messages to a subset of the current conferees if desired.
Currently all speech messages go to all conferees.

5. DIALING CONVENTIONS

5.1 Interaction with the Caller

PVT dialing conventions differ from those of the regular phone. No
timer is used to determine the completion of a dialing sequence. All dialing

sequences can be parsed to completion. The characters * and # are used to

35

R S

". .‘: Y ’-‘- 'n.- .~< .““ !‘ l“" - -
PN I R R I N N A PR R R

a_a & L3
i

'

delimit special dialing sequences. Such sequences are dialed before the 4

destination number is dialed. The caller by dialing can make a Point To

Py~
)
1

4,

.7

Point (PTP) call to another phone, Join a Conference, Invite others into a

ets

“

conference and give some limited instructions to his PVT.

< When an "Off Hook™ is received, a dial tone is sent to the phone. When

an "On Hook” is received, silence is sent to the phone. When a dialing -

-;ﬁ sequence finishes, the PP will attempt to honor the caller's request. i
y To establish a connection, the PP enters into a protocol dialog. 1If the 4

R -.J L
- :
jd remote phone is busy, a busy signal is sent to the local phone. TIf the 1
..‘ -
. 4
': remote phone can not be reached, a dial tone is sent to the local phone to

:}. indicate that the call has been aborted and that another call may be tried.

."

i

A If the protocol dialog is successful, the remote PP will ring its phone and

il

AN

¥ the local PP will send a ringing signal to its phone. When the remote

-, phone 1is answered, a silence command is sent to both phones and speech

Xy transmission begins. If the remote phone fails to answer, the connection is p
~ 1
2y terminated when the local phone hangs up. p

- 5.2 Dialing a Point-To-Point Call ;
e \
. !
’ A simplified addressing convention has been implemented in the PVTs. It d
) -
éf is expected that at a later time the address of a PVT will be redefined in X
. keeping with a more general wideband network addressing scheme. Currently A
-

.-J

:} the address of a PVT consists of two three-digit numbers--.its LEXNET number

;; and its own "host number” on the LEXNET. A LEXNET normally supports several

o PVTs and 1is also connected to a GATEWAY. PVTs on different LEXNETs can

ﬂ{: communicate via these GATEWAYs. A typical configuration is shown in Figure

,{ 5. To call a PVT on the local net a caller merely dials the three digit host

22

’!

x 36

’-

o

0

M

Q

1~ - = IR I YU N N T T s T M . e~ - LI R B s I P . N - - I . LI L~

T ™ et e e T TN N L e L T

- DN MO CoL L R IR TR TR TR BRGNS LA L A LA S A i hd il B AT LR st S SN e

AN S %

--‘-J]

T'Q:.-. !
o !
fi number of the other PVT. To call a PVT on a distant LEXNET the caller first 2
Ei dials '9' to indicate that the call must be routed via the GATEWAY and then ‘
.\3' dials the three digit LEXNET number followed by the three digit host number.

;i: A caller can route a call to another PVT on his local net through the GATEWAY *
- by dialing '9' followed by the local LEXNET number and the other PVTs host

;5 number. For testing purposes the capability, not found in normal phones, to
%;g call oneself was added to the system. A Dialing Matrix showing the correct

| - dialing between sites is shown in Figure 7.
': 5.3 Conference Dialing

ng Several special dialing conventions have been implemented. These

;- conventions use the special characters * and # to indicate the boundaries of
{E the string being dialed. To join a conference (“"Meet Me" style) the name of

-z; the conference is dialed preceded by a # and followed by a *., #234* means
: : that the caller wishes to join a conference called 234. A string of digits

SE preceded by a # and followed by a * is also used to pass to the PVT the

;E address of a PVT which should be "Invited Into” a conference. To "Invite In"

f PVT 234 on LEXNET 062, one keys in #062 234*. If both PVTs are on the same
S% LEXNET, only #234* must be keyed in. The PVT distinguishes these cases by

;i noting whether or not it is in a conference when it receives a string of

digits preceded by # and followed by *.

%3) 5.4 The Echo Extension
Fii . A dialed number may optionally be preceded by an extension number (the
= extension number must itself be preceded and followed by *). For a PVT only
:;s extension 1 has meaning. Extension 1 is the ECHO extension. When a call
:éz comes in for extension 1 the phone is not rung and all the received speech

.7

:'.: 37

2

5

e .
-

. -
e
ARy .

&Nt

4 Dt
5 ’\"t--,..'-. 2 F)

v

"“t_’

" _';,‘h‘
3
-, T0
L LL LL ISI SRI
S
Ei; FROM (062) (063) (061) (053)
N —_—
T
A LL (062) NNN 9-063-NNN 9-061~NNN 9-053-NNN
1‘.. .1
N LL (063) 9-062-NNN NNN 9-061~NNN 9-053-NNN
XN ISI (061) 9-062-NNN 9-063~NNN NNN 9-053-NNN
e SRI (053) 9-062-NNN 9-063-NNN 9-061-NNN NN
a8
e
v\-'.k‘
s Fig. 7. Dialing matrix for point-to—point calls. The three-digit number
« assigned to the LEXNETs at each site is fixed. The three-digit host number
~

assigned to a PVT is determined by the setting of a thumb wheel switch on the
back panel. Since the host number of a PVT may change, it is represented by
N NNN in the matrix. LEXNETs 062 and 063 are at Lincoln Laboratory. LEXNET

" 061 is at IST and 053 is at SRI.

7308

Y 1 .
.~’."- ate"
FRCMTAFNTR

o
»
»

.. e o ®
LR N

38

RO

()
B '~

.’

&

S

Nt - Nt T e e N T L T N N T e —
L e T AN T T e e N T TN W, P A -~ NN
* e s_)-‘_.A\f_\L\ AT WAL o T ‘."--.\.J‘.-. LA R N

ARARA AR AR AR A b JACaee T I A 2B MMt S Al A RS AN A N

" LA S A TN S A I L RSPl oI SR A SR S St A P e v—‘

packets are merely echoed back to the sender. This has proved to be useful

for testing and for demonstrating the system when no one is available at a

;3 remote site. To call the ECHO extension for PVT 234 on LEXNET 062 from
‘- another LEXNET, the dialer keys in *1* 9 062 234. This causes a 1 to be put
. in the extension field of the called terminal's address in the IP header.
$:§ . 5.5 Using the Switched Telephone Network Interface (STNI)
g
; Information Sciences Institute has developed the Switched Telephone
: Interface card (STNI) [17] to allow interconnection between the packet
;; network and the commercial telephone system. The S"NI is contained on a
%iz single card and plugs into the PCM card slot in any PVT. The STNI
. communicates with the PP module over the USART. To the PP the STNI card acts
‘Eg like the user's telephone which is usually connected to the USART. An STNI
';3 equipped PVT runs the same PP program as other PVTs except that the dialing
module written to handle the user phone is replaced with a dialing module
i; written by ISI specifically for the STNI. An STNI equipped PVT becomes a
;} "GATEWAY" between a packet net and the commercial phone system. Since such a
.
. PVT is not equipped with a phone, it may not be used to place a call.
;2 When a call is to be made from one PVT through another PVT equipped with
fé an STNI card out into the regular phone system, the regular phone number to
f be called by the STNI must be dialed in. This is done by dialing #, the
~§S ' regular phone number, then *, followed by the number of the STNI-equipped
\if PVT. The digits between the # and the * are then passed to the STNI card in

the Want-To-Talk message as the data of a "PLEASE DIAL" token. This outside
phone number preceded by a # and followed by a * must be dialed before the

address of the PVT containing the STNI card. To call the weather information

39

l/‘

0O

U ..
o S
) e

'o' PN

'
o _‘.'4"'." 55

a4,

——

. 'i"f N
e

P

Y
R

Voo
£

n ’:"{;'/
Y !

[RN W)
.
“0aleltal s
, 4

N
Al

Q 0
. B e v

number in Los Angeles through an STNI-equipped PVT whose host number is 244
on LEXNET 062 from a PVT on another LEXNET, one would dial #9 554 1212* 9 062
244, Requiring a caller to dial the regular phone number in this manner was
a convenient way to implement this feature in the PVT code. Other
conventions are feasible such as implementing a timing mechanism to determine
when the user has finished dialing a number. Then a second dial tone could
be used to signal the user that the second phone number could be keyed in.
This would avoid the use of # and *.

All STNI-equipped PVTs at Lincoln have been assigned a regular extension
number from the Laboratory switchboard. To call a PVT from a regular phone,
the user first dials the Lincoln extension assigned to an STNI-equipped PVT.
After an initial ringing tone, a second dial tone is heard. Now the number
of the destination PVT must be dialed. (Any commercial phone system number
may also be dialed instead of the PVT number.)

5.6 Special Dialing Sequences

When a special dialing sequence is to be used in conjunction with a
normal dialing sequence, the special sequence must be keyed in first. This
avoids a walting loop in the dialing code. If an optional special sequence
could follow the dialing of a remote site, the protocol would either have to
wait some inieterminate amount of time to ascertain whether the dialer was
going to key in such a sequence or would have to send the special sequence in
a later control message.

Dialing a *# at anytime is equivalent to hanging up the phone and then
picking it up again. The call in progress is cancelled and the program is

reinitialized. While shutting down 18 in progress, the PVT can not handle

40

O « ST, L e AP .
T e gy g ey e T e - P P N

TR

-

e

O T A "R A A R A e A1 S SR Y
.

3

S
2
o
ES another call. The caller will hear a fast busy signal and his dialing will
{_ be ignored. As soon as the shut down is complete, the caller will hear a
v%i dial tone and is free to dial again.
i} The *# feature is needed by the STNI card. A call may be set up between
' a regular phone and a PVT by routing the call through an STNI-equipped PVT.
i§ . It is important that if either talker terminates the call this knowledge
:ﬁ reaches the STNI-equipped PVT and the other caller. Then the connection can
- i be taken down and the equipment made available for another call. If the PVT |
is phone hangs up, the ST protocol message DISCONNECT (or REFUSE) is sent to the '
Yol
N

STNI and the call is correctly taken down. If the regular phone hangs up,

some local switches (such as the one at Lincoln) do not send out a disconnect

1 X
W CRORIP.

2y

E% signal. Using a regular telephone, once a connection is established the 5
:EE tones generated by key pushes are passed through on the line. The STNI is E
i able to receive and interpret these tones. Therefore, if such a regular ?
j} phone user keys in *# before hanging up his phone, the STNI card will

3 interpret the tones correctly and take down the connection. The general |
- facility for any caller to be able to use *# provides one convenience not i
'ES avallable on most regular phones. i
.?S A string of digits preceded and followed by a # is ignored. This :

provides a handy way of aborting dialing if an error is made in the

5
.

i
-

conference name or in the address of a PVT to be "INVITED IN".

A
-141&'.."

6. SPEECH DATA

L NG AL

dad

t. 6.1 Packetizing Speech Data
::5 In addition to PCM, the PP can handle a 2400 bps Linear Predictive Coder
'$: (LPC) vocoder and an Embedded CVSD (ECVSD) vocoder. The ECVSD vocoder can
- operate at one of four rates: 16000, 32000, 48000, and 64000 bps. Speech
¥
|
N 41
e e e e TN T N e T

e n"(\l’ .

L)
i

&
hd
P

ﬂ‘ ‘l .l ;' « vl
ol

S

-~

[}
A_b

“)
“

g)

X - pa
) {%.l\ ‘.

A AN A
&4 5 Y

P

.....

data are digitized by the vocoders on a parcel basis. Buffers are
established in the 4K bytes of DMA memory in the PP. Each buffer is the size
of a parcel of speech plus an initial one-byte header. Speech goes to and
from the vocoder via two direct DMA channels each working in auto-initialize
mode. In this mode each DMA reads/write speech from/to its buffers until it
reaches the end of the last buffer assigned to it. It then automatically
begins again at the beginning of it's first buffer.

A speech message consists of an ST header and and NVP-1I header
optionally followed by NVP-II protocol tokens and then one or more
consecutive parcels of speech. The one byte header used in the vocoder
buffers is not included in the message. The number of parcels of speech
included in a speech message varies depending on the vocoder in use. The
timestamp of the message 1s the timestamp of the first parcel of speech in
the message. Figure 8 shows a speech data message.

For PCM and ECVSD, a parcel has been defined to represent 22.5 msec of
speech and consists of 180 bytes of data. Space is available for a total of
20 buffers (3620 bytes). For PCM, 4 of the 20 buffers are used to hold
speech coming from the vocoder. This is enough to insure that the speech has
been packetized and sent out before it begins to be overwritten four frames
(90 msec) later. Sixteen buffers are used to collect and reconstitute the
incoming speech data. Packetizing ECVSD speech 1s discussed below.

A parcel of LPC data represents 20 msec of speech and is 6 bytes long.
Because of the comparably small parcel size there is ample buffer space in
DMA memory. For LPC, 128 buffers are provided in each direction. LPC could

have been implemented with fewer buffers but as long as space is not a

42

A % Dol AntiAn Wi DA R Gl I IR A

S adiCdtaads sadt el o i S A Sl
P N I) A

e 10 Byte ST Header
Contains Connection ID
Checksun

4 Message Length

ST
Header

Timestamp

L .4,

> NVP‘II

" NVP-II Header Checksum

Header

Optional
~ | NVP-II
Control
Tokens

) NVP-II
<+, Speech
" Parcels

.Atmﬁﬂis-‘

e — —— m——

Yo
et
.

»
\
L

122

A
Y,

o .~

v

)

43

“:"J..ol

-

\

-

L

- IR -
P -

v, e

Fig. 8. NVP-II speech parcels transmitted via ST.

9

‘

.

i

[

; L

&ﬂ e - . - ‘ ‘
- LI AT . L ; At ¢ at .'-' ST o P '. S '.ﬂ‘ e e e "..‘_- IR NS T e ._"-_"-. .
AN D) &MM.M&:AL;‘A:‘J.,.UI ,.._1'-_.'_’.'; PRGN N WINPT SR R PR A S T

TV T Tt ek ai

PRI

oAl 8,

problem any convenient number of buffers can be used. Using a relatively
large number of buffers lessens the likelihood that a very late message will
be mishandled by the reconstitution algorithm. This is discussed further in
Section 6.4.

For PCM with a parcel size of 180 bytes, one parcel of speech data is
put in each message. For LPC with a parcel size of 6 bytes, the number of
parcels in a message is a variable which can be set to match the demands of
the transport medium.

Packetizing ECVSD data is more complicated. The ECVSD algorithm was
designed to allow the vocoder to transmit and receive at four bit rates: 16,
32, 48, and 64 kbps. To do this, the vocoder arranges the data in four
45-byte slices in the parcel. Slice 1 - the first 45 bytes — contains the
data required for 16 kbps CVSD. Slice 1 plus slice 2 is equivalent to 32
kbps CVSD, etc. Four bits are used in the header byte to indicate the
presence of each slice; As the slices arrive and are transferred via DMA
into their proper position in a speech buffer the bit which indicates that
this slice has arrived is set. To reconstitute the speech parcel, at least
slice 1 must be present. The vocoder will use slice 1 and all the other
consecutive slices which have arrived to reconstitute the parcel. Speech
quality depends on the number of slices available.

At times various nodes in a network become overloaded and are forced to
discard messages. If messages were prioritized the nodes could discard the
least important messages in their queues [18]. The ECVSD algorithm makes it
possible for the PP to send speech messages with four priority levels. Only

slices of the same priority from adjacent parcels are combined in one speech

44

B T
e et .
P I LI P R L .
a? aT gt at g W o @ P A A AT S T T TR s T S

I P/ S P A UL A At S S NS A SRR A MO S

.
HAAA‘ P B PR

NPl ol oAU ok 2d
LT

message. Lf a speech message contains slice 1 data from one or more parcels

of speech, it is a priority 1l message. 1f it contains slice 2 data, its
priority is 2, etc., The priority of each message 1s specified in its header.
o~ This allows a heavily loaded GATEWAY to check the priority of speech
o messages and discard low priority messages when necessary. Since there can
%ﬁ . be up to four slices in a data parcel, the PP must be able to combine slices
across four consecutive parcels. Therefore, it is not adequate to provide

only four buffers for speech coming from the vocoders. For ECVSD eight

'

{; buffers are used for speech coming from the vocoder and twelve buffers are

.f available for speech coming in from the local net. Sending a large number of

g: messages puts an added processing burden on the GATEWAYs. Therefore the PP

5%; never sends more than one data message per frame time. When sending ECVSD at

rzi a rate of 64 kbps, the slice 1 data from parcels 1 thru 4 will be sent in one

" priority 1 speech message during frame 5. The slice 2 data will be sent

E% during frame 6, etc. If sending at a 16 kbps rate, a one slice message can

SH be sent every frame, or a two slice message can be sent every other frame, or

; a three slice message can be sent every third frame or a four slice message

%ﬁ can be sent every fourth frame. To allow experience to be gained on the

'$; results of different packetizing methods, command sequences on the key pad

T; may be used to change the bit rate and packetizing method at any time. The

:Ei program is initialized to send at 64 kbps. The command sequences are y
1

;i?. discussed below.]
:: The receiving PVT can unpack the data rather easily. The priority of

:i; the message tells what level slices it contains. The timestamp is the

é% timestamp of the first of consecutive data parcels. The size of the data

-

:: 45

<

- b
2

VTR SRR A P o A S ST e DA L N N)

.

]

]
e

il K

~fatalaz

AL L.

',

' Y AR N

*ERAAAANH ' 1 NI O

A\

R B, o
L N .

contained in the message determines the number of slices it contains,
Therefore the two PVIs can transmit at different rates and do not need to
notify the other when they change rates.

To specify a bit rate and packetizing method for ECVSD two digits are
keyed in preceded and followed by a star. This may be done at any time after
a connection is established. The second digit is the number of slices of
data to send from each frame. A 1 1s one slice or 16 kbps up to a 4 for four
slices or 64 kbps. The first digit 1s the number of adjacent frames across

which slices should be combined into one message. *41%* would send 1 slice

»

per frame (16 kbps) but would combine the first slice from four adjacent

e
A s

‘3

frames into one message. Therefore a speech message containing four priority
1 slices would be sent every four frames. *11* would also send at 16 kbps
but a speech message containing one priority 1 slice would be sent every »

frame. In order to send only slices of the same priority in each speech

message the number of frames combined must be equal to or greater than the
number of slices sent per frame. Possible combinations are shown in the
Table II below.
TABLE II
NUMBER OF FRAMES TO BE COMBINED

(first digit)

1 2 3 4
(second digit)
Number of ' 1 , x X X X
Slices | 2 I - x X X
Per | 3 l - - X X
Frame | 4 I - - - x
46

.. P A
TR P S . S . RN .
- 'L TR S N oA S R A TR SR VR VR PR S S . B
PO B G N S A i PN B P I R R P UL P

e

.
.

Ay Ay
7 N

[8

[

|
7’

s

e
3
0y
L .,

)
e s
AT

LYY

CRE)

)
* -
.

ral %’ N ?.-_.

L

-
’
A QA 4,
. B

Note: Both extension numbers and ECVSD packetizing instructions are gisen by
preceding and following the digits by *, Confusion is avoided by the
following rules: Extensions are one digit long; ECVSD instructions are two
digits long; all other lengths are ignored.

Several factors influence how many speech parcels are packed into one
megsage. The overhead is reduced if many parcels are included since the size
of the header does not change. Some speech packets may be lost in
transmission. If a single message contains too much speech its loss will
seriously effect the quality of the received speech. Also if many parcels
are contained in a single message, an added initial delay is imposed on the
system since a message can not be sent until sufficient parcels have been
buffered up.

A conference speech message containing no data tokens has a header of
nine 16 bit words (144 bits). Sending two LPC parcels per message results in
a message containing 9 words of header and 6 words of data. It represents 45
msec of speech and imposes an initial 45 msec delay before the first message
is sent. Sending 18 parcels results in a message containing 9 words of
header and 54 words of data. However, this message would represent slightly
over 400 msec of speech. 1Its loss would cause a troublesome glitch in the
received speech.

6.2 Silence Detection

During a conversation, each participant can be expected to be silent
slightly more than half the time. It is wasteful to send speech messages
when the data represents silence. Each of the vocoders used by the PP

provides Silence Detection as part of its algorithm. The vocoders store the

47

R G I R S
) RN 5

v .“ -"-sv\ -" : -
U el

a e
Fs

I.:‘

0
s 4
f‘n‘

r' 4

[

b &ty
'L"': %

&
-

»
)
»
-

N A Ty AT

s T TR PV R Iy Ve vw TR e Sl e N
ISR s et g Sl et ke et i NSRS IIRAS gt

current parcel of "speech” parameters into the PP buffers at all times.
Based on its Silence Detection algorithm (which is vocoder dependent), the
vocoder program sets the SPEECH bit in the one byte header following the
speech data only when “"speech” is present. The vocoders generally smooth the
speech by allowing several low energy parcels to occur before declaring
"silence”. The PP checks this flag when preparing speech packets. No speech
message 1s sent unless it contains at least one parcel of speech.

For use in debugging and to provide a constant stream of speech messages
for experiments, a three position switch is provided on each PVT. 1In the
center or normal position, the Silence Detection algorithm decides when
speech messages should be sent. In the up position "speech” messages are
sent continuously regardless of the results of silence detection. In the
down position no speech messages are sent.

6.3 Vocoder Dependent Modules

Each vocoder type (i.e., PCM, LPC and ECVSD) requires different
handling in the PP. The PP has special routines tailored to handle each type
of vocoder data. The routines which send and receive data check which
vocoder is currently in use and call the appropriate subroutine. The
initialization routines also contain special code to correctly set up the
buffers and to initialize variables for each vocoder. The PP at
initialization reads the Vocoder Selection Switch and prepares to handle that
vocoder.

If the setting of the selection switch is changed the PP executes the
routines done at initialization time and "flips"” vocoders. This can be done

at any time although if it is done in the middle of a talkspurt, a slight

48

- “ - - .-
Tt e Yt LI

BV P L L B DR U T T T

1

e

B

SR
' :
%%v transient may be noticed. However, since changing vocoders may change the E
I 4
; : data rate and since the GATEWAYs are not notified, it should be done only ‘
gi: when "Talking-To-Yourself” or when talking to another PVT on the same net. :
53 The implementation in the PP allows switching at any time, but the protocol 1
i
o) does not. The protocol could be extended to include this. A new protocol !
Qaé . message announcing a change of vocoders would have to be defined and i
{5 implemented if this feature is ever supported on an internetwork basis. i

4

The same vocoder must be used by both talkers. When a Want-To-Talk
message 1s received from a remote phone it specifies what vocoder it wishes
A
9 to use. If the vocoder currently selected is not the same as the requested

d vocoder, the PP will flip the selection switch internally and check the other

a -
[I
.

“ available vocoder. I1If a match is achieved, the incoming call will be

N
- accepted. Otherwise the selection switch is returned to its former position
and the incoming call is rejected.

3 6.4 Efficient Handling of Speech Data

K] It i{s essential to use DMAs to move the data across the interface

between the PP and the BC and across the interface between the PP and the

. vocoder. Without DMAs, speech parcels would have to be copied across each of
:j these interfaces using the CPU on the 8085 chip. Copying over data via

programmed I1/0 is very time consuming and a PVT without DMAs could only
support low bit rate vocoders. It could not keep up with a 64 kbps PCM
- vocoder.

Using a DMA to read speech data on a parcel basis requires resetting the

4
:} DMA for each parcel. The DMA must be provided with the new address and byte
:Q count. When a 64 kbps vocoder is in use, the two DMAs servicing the vocoder
o4
P
\l
. 49
2
‘l
N
PEVIRIVET P SR WU Ve WA 19 P S SRR PR S U N LA RIS P AP IV JEETAT I ARt SRR L

DA Ao A A ey B i S rh s |

p
fﬂf; read and write a byte every 125 microseconds. There is not time enough
?Zx between operations to reliably reset the DMAs without disrupting the speech.
'gti DMAs can be operated in a so-called auto-increment mode. A separate ‘
Y
i;; data area is reserved in the DMA memory for each channel. When each DMA
Y channel is started up, it is given the length and address of its data area.
3;55 The DMA begins reading or writing speech from or to its data area and when it
'éﬁf reaches the end it automatically starts over again at the beginning. By
_ using the auto-increment mode, we avoided the timing problems involved in .
f;?‘ resetting the DMA. However, speech parcels coming from the vocoder must be
N
;Si& moved out of the data area before they are written over by the DMA on its
ii:' next pass. Conversely, the incoming speech parcels must be moved into place
féé in the data area before the DMA reads that part of the data area again.
iig The PP has access to only 4096 bytes of DMA memory. This must be
S divided into data areas for the two DMA channels servicing the vocoder, space
%ﬁg for messages coming from the BC, and space to form messages to be sent out to
;Si the BC. The restrictions imposed by the need for speed and by the lack of
f’ space strongly influenced the final design.
S‘ﬁ Protocol messages from the BC and the headers of speech data messages
S%E from the BC are read into an input buffer for which 96 bytes of DMA memory
= have been set aside. 380 bytes are used as buffers to form messages that
QS must be sent to the BC. A maximum of 3620 bytes of DMA memory are used for
! §§ the data areas of the DMA channels servicing the vocoder. The amount of
= memory needed depends on the vocoder and its parcel size. 3620 bytes provides
S&: for twenty 18l-byte buffers. PCM and ECVSD have 180-byte parcels and each

o parcel needs a one-byte header. For PCM a data area the size of four of

iei these buffers is used for speech coming from the vocoder and a data area the

{ size of sixteen buffers is used for the incoming speech. ECVSD uses eight

;;f for speech from the vocoder and twelve for incoming speech. LPC uses a 7-

i}: byte buffer (6 bytes of data plus one byte of header). For LPC a data area

o of 896 bytes (128 buffers) is used in each direction. The size of the data

izi . area for each channel is always a multiple of the buffer size. This insures
2?? that the location of the buffers in a data area does not change. During

‘ : vocoder initialization a table is set up which contains the pointers to these
BN

ﬁE: buffers.

;S%f Software in the BC puts messages on the LEXNET and reads messages from
fﬁ the LEXNET. To send a speech message the header and any accompanying control
.;% tokens are assembled in an output buffer. After this is transferred via DMA

Cé‘ to the Buffer Control, the speech data are transferred via DMA directly from

LR 2

- the vocoder buffer to the Buffer Control. When a message comes in from the
SEE LEXNET the Buffer Control software alerts the PP by sending the byte count of

15; the message via the DMA. The PP first uses the DMA to read in the two bytes
;. of data which contain the length of the message. If the length is

%g reasonable, the PP next reads in the number of bytes which correspond to a

§:§ speech message header. 1f it 1s a speech message and it does not contain any

i control tokens, the next byte to be read is the first byte of speech data.

A

:ii If the message contains control tokens preceding the speech, their length can
R

Z?? . be determined from a value in the header and they are also transferred in

;f' using the DMA. The speech is then transferred via DMA directly into

.ES buffer(s) in the vocoders' data area one parcel at a time. Then the speech
2& activity bit 1s set in the header byte of the buffer(s).

":-:, 51

0

N

AN

Tala

SA

3
Yalela

%
AN

e

| |2

-
.

¢ | PR
R) L3 SRR

5%
'.,I .}

7,005 "%ﬂ%.
ARV R

e tu e LA I Y Pl T Y e

’ . on e Se B B Sd By B o e o T ———
AT e T W W L T T A T T e T v T s

This method avoids having to move the speech data from the PP read-in
buffer to the vocoder buffer and means that the read-in buffer can be much
smaller than a PCM parcel in length. For a high data rate vocoder such as
PCM, time is critical. This method saves the time and CPU cycles that would
be used in moving the data using a load store loop. For a vocoder with small
parcels such as LPC, it would actually be faster to use a programmed "load-
store” loop to move a parcel. However, since time is not critical here, the
DMA routines are also used to read in LPC data.

6.5 Reconstitution of Speech Data

Speech messages received at a voice terminal may experience a wide

dispersion in their arrival times. If more than one route is possible

between source and destination, messages may arrive out of order. Each .

message carries in its header the timestamp associated with the first speech

parcel in the message. The timestamp is a ten bit number which is

incremented once per vocoder frame. This timestamp can be used to determine

where in the speech stream each incoming speech parcel belongs. Sixteen

buffers are available for incoming PCM speech. Each incoming timestamp is

adjusted as described in the following paragraph. Originally this adjusted

timestamp mod 16 became the number N of the buffer where the speech should be
put. To find the Nth buffer in the data area, the program used the buffer

pointer table which was created when the DMA was initialized. The speech

parcel was then transferred via DMA directly from the BC into buffer N. If a
data message contained more than one parcel of speech, the parcels were

transferred via DMA into consecutive buffers.

52

L I M O P o R AR L A P .'.—'\-.-\’-‘\::_'-:__.::}

. .
. . R T R

e . e o -
. * . .« . « e LR v e, e e
IR PRCIRLIG VY PR ISR I P PR P PR PP It s

B A e e
SR LU TR P W

Ca
RN

.'_‘
oL

When the vocoder is initialized, the timestamp is set to zero. The
timestamp is incremented once per parcel by the code which services the
vocoder interrupt. The low bits in the timestamp always correspond to the
buffer being used by the vocoder. Therefore, using the local timestamp (mod
16) to select a buffer in the data area locates the buffer from which speech
is currently being transmitted to the vocoder. The difference between the
local ticestamp and the timestamp of the first speech message is calculated
and called the OFFSET. Adding this OFFSET to the timestamp of an incoming
message and using the result, should select the current buffer. Therefore, a
reconstitution delay is added to the adjusted timestamp before it is used to
select a buffer. The reconstitution delay should be large enough to ensure
that speech parcels have arrived before they are needed for play out. The
best value depends on the expected arrival dispersion and the total trip
time. Since a large value increases the overall delay in the system, the
value should be kept as small as possible.

To correct possible drifts in the clocks at different sites and to
minimize the effect of calculating the OFFSET value from an atypical
timestamp, the OFFSET is recalculated whenever speech has not been received
for a quarter of a second. This tends to cause the OFFSET to be recalculated
at the beginning of every talkspurt.

In PCM tests over the wideband satellite channel, cases occurred where
the dispersion exceeded eight messages and this method of employing the 16
available buffers did not handle this dispersion well. Sixteen buffers
cannot handle effectively a message stream with a dispersion greater than

eight. Therefore, to create the smoothing effect available with 32 buffers,

53

,S

4

L4

. ‘
TSR NS

L PR P,

.

(R

i

L 2

AT

a2t MR o ok

R S R K R
¢ N .

a pointer table with 32 entries 1s now used. Sixteen of these entries point

to the 16 actual buffers. The remaining 16 entries point to an imaginary

buffer in nonexistent memory. The timestamp of an incoming speech message is

adjusted as described above. Then the adjusted timestamp (mod 32) 1s used to

select a pointer from the pointer table. The speech iIs stored in the buffer

pointed to by this pointer. If the buffer pointed to is in nonexistent

memory, the parcel of speech will be discarded. Using a pointer table with

32 euntries allows maximum use of the 16 available buffers. -
When the DMA is initialized, the timestamp 1s set to zero and the

pointer table is created. The first 16 values in the pointer table are the

locations of the 16 real buffers in order. The last 16 entries in the

pointer table point to the imaginary buffer. The pointer table is constantly
updated. After each parcel of speech is read out of a buffer to the vocoder
an interrupt occurs and a special routine 1s executed. This routine copies
the pointer to the just used buffer into the slot 16 entries later in the
pointer table (mod 32). The original entry is then changed to point to
nonexistent memory. After buffer zero is transferred to the vocoder, its
pointer is copied into the 17th slot in the buffer pointer table and the
zeroth entry in the table is set to point to nonexistent memory. We do not
expect to receive a message whose adjusted timestamp is zero for roughly 25
frame intervals. A pointer to a real buffer will be written into slot zero
of the pointer table in 16 frame intervals. If such a message is received
before a pointer to a real buffer is put into slot zero, it is probably

correct to discard the message. This method, suggested by James Forgie,

54

LS
0 e,
a"s%s

.
4

AN,

"
2

£
0

k)
%

NN

| 00

A

',.;l‘:l."t‘:l. |‘ ..' .f. L4 {, P

1%

b

Pl

‘f&&s

.....

ORI AN P LR RS O AR

causes us to have 16 buffers available where we expect to need them and
causes late arriving speech to be automatically discarded. For ECVSD there
are only 12 buffers available. Therefore, the buffer pointer table contains
only 12 pointers to real buffers and 20 pointers to the buffer in nonexistent
space. For LPC the pointer table has 128 entries. Each entry is a pointer
to a real buffer. The pointer table does not require updating.

Count 1s kept of the number of parcels discarded and a dispersion
distribution is maintained. If two consecutive data messages are discarded,
it could indicate that the value of the OFFSET is wrong. Therefore, the
OFFSET is recalculated.

Since only the low bits of the timestamp are used, this algorithm could
be fooled by a speech message that was very late in arriving. This is not a
problem on our net. The high bits of the timestamp could be used to detect
this case on any net where it was necessary. For networks with high
dispersion, more buffers and therefore more low bits should be used. In this
way, the algorithm self-adjusts and lessens the need to use the high bits in
the timestamp.

7. RELIABILITY

7.1 Reliable Transmission of Control Messages

The system must insure that a PTP or Conference call is completed if
possible. Control messages occasionally fail to reach their destination for
many reasons. Therefore a retransmission mechanism is needed. The NVP
protocol does not specifically provide for automatic retransmissions. NVP-II
does define a token called "PLEASE ECHO". This token carries one word of

data which the receiver returns to the sender as the data of an "ECHO REPLY”

55

2 AN S AR SCIACHA DA 4 St A TR 0 A S 0 DO TR el R i <D G Al e e e A T e i Sl S IR AR IR D
- - - . B B - - - o B o . -t A R . - -

TN
-

LARNPONAS

DA

)
4‘..‘ 4

N

W

AN

y

ey <y Ml v

W

token. Using these two tokens, an acknowledgement/retransmission routine was

written. The acknowledge/retransmission routine maintains a retransmission

table of control messages sent but not yet known to have arrived. Every NVP

control message contains an "ECHO REQUEST" token whose data is a pointer to

its entry in this table. Since most messages reach their destination safely,

a copy of outstanding messages is not kept. The acknowledgement/

retransmission table contains sufficient information so that the message can

be recreated and resent if necessary. .

When an NVP control message arrives containing an "ECHO REPLY" token,
the data are used to remove the corresponding message from the retransmission
table., The table is constantly monitored. If a message has not been removed
within two seconds, it is a candidate for retransmission. First the program
checks to ascertain that it is reasonable to repeat the message. (There is
no reason to resend a “WANT TO TALK" message if the caller has hung up.) A
message will be retransmitted a maximun of ten times. If no acknowledgement
is received, the call is terminated and the program is re-initialized.

The ST protocol provides for reliability checks. 1In ST every control
message must be answered with either an ACK or a responding control message.
ST control messages are also put on the retransmission table and removed when
the corresponding ACK or answering message is received. Speech messages are
never retransmitted. By the time the retransmission was accomplished, the
time to play out the retransmitted speech would have passed.

In closing down a conference, a large number of disconnects may need to
be sent. 1If one or more sites do not respond immediately or have crashed and

cannot be reached it will be 20 seconds or so before all the retransmissions

56

P VR S

.
'
'
-
«

o
‘SEQ are done. The PP cannot handle a new call until it has completed the shut
;b¥ down process. Therefore, if the user picks up the phone while shut down is
SEZ in progress he will hear a fast busy signal and his dialing will be ignored.
E?S When the shutting down is complete, a dial tone will be sent to the phone and

2 the user may place another call.
;\1 . 8. REAL-TIME STRUCTURE OF PVT SOFTWARE

Eﬁ 8.1 Assembly Language Code

.) At first it was hoped that virtually all of the PVT software would be
;ﬁ written in a higher level language so as to gain some of the advantages
yiﬁ available with such a language. Code written in a higher level language is
;; usually easier for someone else to read and understand. Because of the
‘Eta constraints imposed by the compilers of higher level languages the code they
i? produée is often easier to debug than is assembly language. However, because
. of real-time constraints in handling some of the I/0 and because of

:ag limitations in the compiler which was used for the project, a significant

A
Ef amount of code was written in the assembly language A-Natural [12].
s The code which handles the 1/0 over the interfaces and the code which is
\é time critical is written in assembly language. Every time the voco&er

)
}x‘ finishes reading or writing a parcel of data, an interrupt is generated.
,: This parcel time for PCM and CVSD is 22.5 msec. For LPC, it is 20 msec.
2; Both interrupt routines maintain a parcel count. The transmit parcel count
25 . is used as the timestamp for data messages. The number of buffers of speech
f:‘ coming from the vocoder is always a power of 2 (4 for PCM, 8 for ECVSD and
$§ 128 for LPC). The low order bits of the parcel count tell which buffer was
i% just filled. The interrupt routine, which is called when a new parcel
;:

ﬂs 57

Zf arrives from the vocoder, increments the transmit timestamp signaling to the K
EEE higher level routines that a parcel is available to be sent out. The E
P interrupt routine which i1s called when a parcel is played out to the vocoder é
S% must locate the parcel and clear the header byte. This signals that there is %
a? no data in the parcel and if no new data have been put into this buffer when é
it 1s next read, the vocoder will play out a prestored parcel of silence. i
_g For each vocoder there is a buffer pointer table which contains pointers to ;
?? the speech buffers. For LPC every register in the buffer pointer table
points to a real buffer. However for ECVSD and PCM some of the registers in .
this table point to nonexistent memory. The reconstitution algorithm for PCM
3 and ECVSD that was previously discussed requires that this interrupt routine
v update the buffer pointer table.
ﬁ Two other types of routines are coded in assembly language. All the
fI control messages and the headers of the speech messages are sumchecked.
Since sumcheck routines worry about the carry bit they are easier and faster
5 written in assembly language. The main routine which services the I/0 -
-3 interfaces is also written in assembly language. i
8.2 Polling Loop .
g Except for the two interrupt routines, the remainder of the program
| operates on a polling system. The main "C" program is controlled by a
polling loop that never ends. The 1/0 service routine sets flags for the "C”
:§ program. The "C" program checks for these flags and executes the appropriate i
ft routine when the flags are set. The "C" loop checks the transmit parcel

count and if it has advanced, calls the routine which sends a speech data

message (if appropriate). Each time around the polling loop the "C" program

NS
LA

calls the I/0 service routine so it may check the state of the I/0

A
(]

4

interfaces.

LA l{L'-‘q.'..'.

Va2

) et I.l
FIAIH

“‘.
13 %

8.3 Buffer Availability to BC

Simplicity is enhanced by refusing to accept a second message from the
BC until the current one is completely processed. Since processing an input
message 1s likely to cause an answering message to be created, the PP does
not accept a new message from the BC until its output buffer to the BC is
free. The BC has five buffers used to handle messages from the local net.
If the PP is slow taking messages from the BC, the BC routines buffer up the
four most recent messages. The fifth buffer is kept free to handle priority
messages. By taking advantage of this, the PP can process each message to
completion. There is only room in the PPs DMA memory for one input buffer
for messages from the BC. Reading a second message before completing action
on the first could involve copying the first message into scratch memory.

8.4 Output Message Formation

In a PTP conversation the PP is normally sending messages to only one
remote site. Space is reserved in DMA memory for the two normally used
protocol headers (IP header and ST control header) and the ST data message
header. These are set up when the connection is established and since only a
small percentage of the bytes in a header change between messages, a new
message can be sent very quickly. A fourth buffer area is reserved for the
formation of answers to calls from other sites. In a conference, speech
messages are sent to a fixed broadcast address and contain a bit map to
denote which conferees are to receive coples. The headers change very little
and the same strategy is employed.

8.5 Timing

Because the Protocol Processor software includes interrupt level

routines and handles asynchronous DMAs, and because the main software

59

I

4

AN
3 =L S

..
..:f!’.

'..f
LN

Rxgc
PR

o P
P

OO X

A

]

4

LAY

B LD
Wt B E L EEE

}

..A
&

R)

LN

!

[xs

SR

" 2

-

3
‘.

routines are interlocking polling loops, it has not been possible to
ascertain precisely how much idle CPU time a PVT has. However, a PVT has
been timed to see how much time is used sending and receiving speech data
messages. For the PCM vocoder, time between parcel interrupts is 22.5 msec.
Two DMA channels are used, one for sending messages to the Buffer Control and
one to receive messages from the BC. The two DMAs are independent of each
other,

To time PCM, a logic analyzer was used to measure durations. A point-
to-point call was set up between two PVTs on the gsame LEXNET. One PVT was
set to send continuously. The other PVT was prevented from sending but was
receiving continuously. The sending PVT got a vocoder interrupt every 22.5
msec signaling that a parcel of data was available for sending. The time
between the occurrence of this interrupt and the completion of sending the
resulting speech message was measured. The data are shown in Table II. The
time varied from a minimum of 3.4 to a maximum of 5.2 msec.

The PVT which was only receiving was measured to see how much time
elapsed between getting the signal from the BC saying that a message had
arrived and finishing reading in the message. The time fluctuated slightly
around the value of 7.95 msec. Then both terminals weré set to send
continuously and therefore were also receiving continuously. The
measurements were repeated. The time required to send a message increased by
less than a msec while the time required to read in a message increased by
1.5 msec.

When there is a message to read and a message to send, the message to

send is given priority. No message is read in until the output buffer is

60

AT AT AT NN TN N L e
B SR . L

* v e

Tyt st et
ENEIE

- - - . . - - - y - v - -
D N A e A A A A M M A A PENEAE R A NP S A RS AN o5 oS ¥ A N

- et e N e e e
« w90 aa"y ANt ete . LI
A A R P A S Sk

-

N

T T B N T L N T e N Y v ¥ o e o T e)
-‘. " ?
— L]
o
b, >
b \‘ B
- \' K
e free (see Section 8.3). This probably accounts for the greater increase in .
‘ . the maximum time required to read in a message when the terminal was also
3
x) sending.
2
;: These times recorded in Table III show that a PVT can easily handle a
' PCM conversation even when both parties are talking at the same time, Not
fﬁ} reading in a message until the output message queue is empty undoubtedly
f? causes some extra delay. However, since the PVT is a dedicated machine and
) was able to meet the real-time requirements for the highest rate vocoder
(i.e., PCM), there was no reason to complicate the program to reduce this
delay.
- TABLE III
‘s
-:‘:
Y
) MEASURED SEND AND RECEIVE TIMES
\
o
h s Time to Send Time to Receive]
O b
") Min, Max. Min, Max.
-«
.J: Sending Only 3.4 ms 5.2 ws —_— —_— :
%: Receiving Only —_— —_— 7.95 ms 7.96 ms !
’ Sending and Receiving | 3.4 6.08 8.5 9.5 ‘
~
A 3
3 1
X :
pd 9. LANGUAGES AND SUPPORT FACILITIES ;
}: 9.1 Choosing Languages ‘
._'. 4
9 When this effort began, an investigation was made of the various means ;
1
1

e »

available to produce INTEL 8085 code. Writing most of the program in a

P

61 1

L 2

I..
N
-
Q-.'
of"
o

higher level language was highly desirable. However, the routines operating
at interrupt level had to be written in assembly language because of time
constraints and because this was the only way to run the DMA channels and
handle 1/0. The development machine available was a DEC PDP 11/70.
Whitesmith, Ltd., markets a system which runs on a PDP 11/70, compiles code
written in the higher level language "C", and produces INTEL 8085 code. The
Whitesmith system also includes an assembly language called A-Natural. The
Whitesmith compiler first compiles "C" code into A-Natural code. Then a
Whitesmith assembler produces a relocatable binary file from the A-Natural
file. Code written in "C" and in A-Natural can be linked together. The PP
program has been written in "C" and A-Natural using the Whitesmith package.

9.2 Support Facilities

Unfortunately the Whitesmith package provides very little information to
aid in debugging the code it generates. A map of core is produced which
gives the core location of the beginning of each "C” routine, each label in
the A-Natural code and each named variable. (Each label and variable
contained in the A-Natural module must be specifically declared "PUBLIC" at
the beginning of the module if its location is to be listed in the core map.)
The ability to label a line in a "C" routine and have its location appear on
the map would have been invaluable but the Whitesmith compiler deletes such a
label unless it is used in a GOTO statement. A cross reference would also
have been very helpful.

9.3 Downloading Facilities

During the development stage it is necessary to have s¢-9% means of

downloading the INTEL 8085 code produced on the PDP 11/70 into the RAM memory

62

VT e T e T e T T W T W e W e e
PRl TR LA

S T R N T N N e Sy T A s T T e T VR T = T T T LY R

R

;
i
of a PVT. Several so-called "debugger boxes" were built. A debugger box ?
- contains a small program which can receive characters over a dedicated M
ig asynchronous I/0 line from the PDP and store them in the RAM memory of a
i? PVT. The debugger box also provides limited debugging facilities. When the
x program is halted variables can be examined by keying‘in their locations and
?ﬂ . reading a display register. The debugger box also allows for trapping on
reference to a given location. However, trapping when a location is changed
' : is not available. Debugging a large program under these circumstances was
:S painful.
> 9.4 PROMS
1 The program is limited to 32768 bytes. This limit is observed in order
i to keep the program contiguous and on one card. By doing this we can put the
?: program on EPROMs and send a set to a site which does not have a downloading
| capability. Currently the program is 31885 bytes long. There are 4096 bytes
S of data memory which the DMA channels can read and write. This is why there
:E is limited space available for buffering to and from the vocoder. There is
‘ ample space available for scratch memory.
;E 10. MONITORING AND DEBUGGING AIDS
j-,:,; 10.1 Diagnostic Record Keeping
‘ Recordg are kept by the PP to aid in spotting errors in the system and
i to monitor the performance of various parts of the system. Counts are kept
.]
\ . of all messages sent and received. The PP notes how many speech messages
. were discarded because their timestamp, when adjusted and used as an index,
f; selected a pointer to nonexistent memory. The PP also keeps a distribution
5 histogram of the varfation of the incowming timestamps from the value

63

1

rdPd Sl

expected. The number of times the offset used to adjust the incoming

- e

timestamp needed to be recalculated i1s recorded. There are many reasons why

an incoming protocol message might be discarded: bad checksum, illegal

A A

message, message too big or too small, etc. A speech message will be
discarded if it is not from the conferee who the PP thinks "has the floor”.
There are thirty-four different reasons why a message might be rejected.
Whenever a message is discarded, that fact is recorded and a count is
maintained of the number of messages discarded for each reason. Whenever the
system is not functioning properly, these records often give an indication of

why. For instance, the delay distribution plus records kept by the GATEWAY

+

can indicate trouble on the satellite channel. Conference speech messages

thrown away because the sender does not “have the floor"” may mean trouble

AL NN NSRS

with the Floor Controller.

10.2 "Talking to Yourself"”

Possibly the most useful diagnostic tool we have is the ability to "Talk

To Yourself™. A user can pick up a PVT phone and dial his own number. As

2 um G - e
s s 2 A2 AP

soon as a connection is set up, he can "Talk To Himself"”. Setting up this

type of connection requires a reasonable amount of special code because one

LA S AL A

site 1s both caller and callee. The PP checks the address dialed to see 1if
it 18 its own address. If so, it notes that fact and handles the protocol

messages differently. If the call is dialed as a "long distance"” call, the

PSRN

messages will be sent to the GATEWAY which will then send them back to the
calling PVT. The GATEWAY can be instructed to send the messages over the

satellite channel and back to the caller. This allows the system to be

ata'ata e 8

probed and evaluated from a single PVT. A user can check to see if his PVT

64

& 3RO

e &

4

......... R T T Yl T - - & T N - - - - -~ " L - - . . - . P - L e - - . . .
R SO S S AL e AT e T s

a8 & s

| AL

0

R

T+ ISR
e
P

LANS

*2"¢"a?

A
s

LA
PR YOS

s
-y

ek

P

» -‘_ 2 "_41.‘

- - - a ln* -

is operating correctly, if both vocoders are functioning correctly, if there
is an operational GATEWAY on his net, etc. If the GATEWAY is instructed to
route messages over the satellite, a single PVT can be used to check out the
channel.

10.3 Echo Extension

When a user dials extension ONE (the ECHO extension) at a remote site,
his speech will be echoed back to him without disturbing anyone at the remote
gite. One reason for adding this feature to the PVT code was to provide
another means of bouncing speech off a remote site, either as a demonstration
or to check the channel.

10.4 Providing Information to the User

The telephone instrument has only four tones it can play out to its
user. This allows a rather limited amount of information to be passed back
to the user. Often the PP has exact information on why a connection fails,
why a remote phone does not join a conference, etc., but it cannot pass the
information back to its user. The system would be much more "user friendly”
if it had more ability to inform its user.

11. COMMENTS

11.1 Implementing Protocols in a PVT

The PVT has many advantages when implementing a system of packet voice
speech. The biggest advantage is that it is a dedicated machine; no other
user requirements had to be accommodated, and it was not necessary to
interface the protocols to an existing operating system. General issues
associated with interfacing protocols with the underlying operating system

are discussed in [19]. This interface problem can be a great source of

65

e YLt _a'.—'.lT'-'\--1‘.'.--'."‘7"'-. ol s 8

performance degradation and delay. One delight of programming these
protocols in the PP of a PVT was that being a dedicated machine, no other
requirements had to be accommodated.

The PP was provided with DMA channels to facilitate the moving of data from
the access area to the vocoder buffers and then directly to the vocoder.
This allowed the message handling routines to move messages and data without
using the CPU.

11.2 Use of Checksums

To ensure reliability, all protocol messages carry a checksum. The PP
checksum routines have been carefully coded in assembly language in an
attempt to gain efficiency. The speech data are not checksummed. Vocoder
data with a small percentage of bits in error will normally produce better
speech output than would be produced if the data were not used and a silence
frame was played. Speech data cannot be retransmitted because it will not
arrive in time to be played out in its proper place in the speech stream.
Therefore, only the headers of speech data messages are checksummed. If a
control measage does not checksum correctly, it 1s simply discarded. This is
appropriate for two reasons., First, the address of the sender could be where
the error is and therefore is not a reliable address to which a complaint can
be sent. Second, the sending PVT on not receiving an acknowledgement will
resend the message.

11.3 RAM Memory

When the PVTs were built, the best available chips which would support a
DMA channel were considerably larger in size than the standard INTEL memory

chips. Because of space considerations on the boards, only 4K bytes of

66

-,

k.“ \' Ly '-"'-' e e \,-"1-',_'-'.'.'4".

DMA memory were provided in the PVTs. This limit on DMA memory had a
considerable impact on the design of the PP software. The resulting program
has worked well although a considerable amount of extra time and effort had
to be expended to fit the I/0 into the given space. There are now available
chips which contain DMA memory and are the same size as the standard RAM
memory chips. In new voice terminals now being designed and built, all
on-board RAM memory will be DMA memory.

11.4 Implementation on Packet Radio Network

NVP-II and ST have also been implemented at SRI International in their
Speech Interface Unit (SIU) on the Packet Radio Network (PRNET) in the San
Francisco Bay Area. Their implementation duplicated the restrictions on
NVP-11 messages that are in use at Lincoln. Point-to-point calls have been
placed between an SIU at SRI and a PVT at Lincoln. "MEET ME" style
conferences using the SIU at SRI and PVTs at Lincoln and ISI have been
demonstrated. These conferences used the Access Controller at Lincoln
Laboratory. A description of the initial SRI work in radio nets is covered
in [20] and [21].

11.5 Implementing NVP-II and ST

Both NVP-1II1 and ST are implemented in the PP. NVP-II is a very free-
form protocol. The user can combine tokens as he wishes. There is no
definition of the tokens to be contained in any message. ST is a very
structured protocol. Specific messages are totally specified for each
protocol function.

Implementing the two protocols was instructive. At first NVP-II was

implemented allowing the full freedom the protocol gives. There was trouble

67

e ottt e e e e e e M et e A e e al ml a, ==
T et e e L, I I T T TRl Tt T W W W B S S ST N
" e, R I R A L N S T I s TS O T T W T YRt

}}3 immediately. If an initial message arrived and did not contain enough
f.' information for the PP to judge whether or not to accept the call - what
?;3 then? Should the receiving terminal hold, waiting for another message with
Esg the remaining information? That message may never come. Therefore, some
n structure was imposed on NVP-II. The PVT implementation requires that
i}i various messages contain at least a certain set of tokens. Even then NVP-II
;;; was tricky to implement because there was so much freedom in the protocol.
! ST was very easy and straightforward to implement. To handle the
ygg internet case, it developed that two words containing the address of the
¢:§ current sender had to be added to each command. Otherwise ST was implemented
2’ as originally specified.
Ei} 11.6 Support Facilities
‘E;E The support facilities used on this project were extremely primitive. A
B very large amount of debugging time was required. Timing dependent errors
)éf were particularly difficult to find. A HP64000 Logic Development System [22]
32 has recently been purchased. Utilizing a system such as this to prepare the
:T; program, to debug it using the emulation capabilities, and finally to burn
fg; PROMs for the PVTs would have saved a great deal of time and frustration.
".;‘:'2 12. SUMMARY
.
. The software implemented in the Protocol Processor of Packet Voice
;5; Terminal has been described. Point-to-point speech and conferencing
;ﬁ; capabilities in both local nets and over the wideband satellite have been
= discussed as well as the ability to place a call between a PVT and a
_§§ telephone in the commercial telephone system. The PVT provides a compact and
;é versatile speech interface to a packet network.

AN

X 8
‘ 6
AN
65
Y
pay
¥
o
LJ
rod
‘-.1 A . e
T N o, T e e T e S T R e S T e S N e N N

N

3

W "

R

ACKNOWLEDGEMENTS

Many people have cuntributed to the work reported in this paper. Dan
Cohen of ISI designed the NVP-II protocol. James Forgie designed the ST
protocol. The vocoders used with the PVTs are the work of Joel Feldman,
Marilyn Malpass, and Joseph Tierney.

Gerald O'Leary designed the PVT and supervised its development. He also
wrote the software for the Buffer Control module and provided invaluable
assistance when problems arose in debugging the Protocol Processor software.

William Kantrowitz developed the GATEWAY software and we worked together
in checking out the system. James Forgle provided the algorithm which is
used to correctly buffer incoming messages for playout. He was also very
helpful in many other software design decisions. Clifford Weinstein has

provided many ideas for this paper and has spent much time reviewing it.

69

REFERENCES

o (1] C. J. Weinstein and J. W. Forgie, "Experience with Speech

;‘ Communication in Packet Networks,” to be published in IEEE Journal

gt¢ on Selected Areas in Communications, December 1983,

g

R [2] J. W. Forgie, "Network Speech Implications of Packetized Speech,"
7 M.I.T. Lincoln Laboratory Annual Report to the Defense

2% Communications Agency, 30 September 1976. DDC-~AD-A045455/3

o

'i;: {3] C. J. Weinstein and H. M. Heggestad, "Multiplexing of Packet Speech
oo on an Experimental Wideband Satellite Network," Proc. AIAA 9th

b.7-.! Comm. Sat. Systems Conf., San Diego, CA, March 1982.

SR [4] H. M. Heggestad and C. J. Weinstein, "Experiments in Voice and Data
o Communications on a Wideband Satellite/Terrestrial Internetwork

" 3 System,” ICC'83 Conf. Rec., Boston, MA, June 1983.

;fﬁ [5]) D. H. Johnson and G. C. O'Leary, "A Local Access Network for

Packetized Digital Voice Communication,” IEEE Trans. Comm., Vol.
COM—-29, pp. 679-688, May 1981,

[6] G. C. O'Leary, P. E. Blankenship, J. Tierney and J. A. Feldman, "A
Modular Approach to Packet Voice Terminal Hardware Design,” AFIPS
Conference Proceedings (NCC'81), Vol. 50, May 1981.

g (7} J. Tierney and M. L. Malpass, “Enhanced CVSD - An Embedded Speech
408 Coder for 64-16 kbps,” Proc. 1981 IEEE Int'l. Conf. on Acoust.,
\‘ Speech and Signal Processing, Atlanta, GA, 30 March-1 April 1981.
Y

¥ (8] J. A. Feldman and E. M. Hofstetter, "A Compact, Flexible LPC

Vocoder Based on a Commercial Signal Processing Microcomputer, "

N Electro'82, Session 22/5, Boston, MA, 25-27 May 1982,

Y

;sj (9] D. Cohen, "A Network Voice Protocol NVP-II," University of Southern
f". California Information Sciences Institute (unpublished memorandum),
:i;' April 1981.

A [10] J. W. Forgie, "ST - A Proposed Internet Stream Protocol,”

204 (unpublished memorandum).

AN

Py

,2; [11] J. B. Postel, "Internetwork Protocol Approaches," IEEE Trans.

ol Comm., vol. COM-28, pp. 604-611, April 1980.

N (12] C Computer Systems Interface Manual for 8080 Users, Copyright ©
4’$1 1979 by Whitesamith, LTD.

N

{‘3 [13] D. Cohen, "Specifications for the Network Voice Protocol,”

}s; University of Southern California Information Sciences Institute,
- Rpt. ISI/RR-75-39, March 1976.

)

A

%)

g

174 70

:gt‘ 3

1

LIPS T L N et et

Pl el Pl

1,

OO oy oy AN N N o s T e

e AL S e B ' i R LSRR R A RS L oAt R SRR AN RSO S I A AR O AT O B S

5:; [14] J. W. Forgie, "Voice Conferencing in Packet Networks," ICC'80
A Conf. Rec., pp. 21.3.1-21.3.4, June 1980.
&3 {15] M.I.T. Lincoln Laboratory, Semiannual Technical Summary to the
iq Defense Advanced Research Projects Agency on Packet Speech Systems
P Technology, 30 September 1982, DTIC-AD-A126880
e
\;f [16] M.I.T. Lincoln Laboratory, Semiannual Technical Summary to the
' Defense Advanced Research Project Agency on Packet Speech Systems
. Technology, 31 March 1982, DTIC-AD-A120433"°
e
Nt [17] I. H. Merritt, "Providing Telephone Live Access to a Packet Voice
.2 Network," University of Southern California Information Sclences
! Institute, Rpt. ISI/RR-83-107, February 1983.
-
[18] T. Bially, B. Gold and S. Seneff, "A Technique for Adaptive Voice
,} Flow Control in Integrated Packet Networks,“ IEEE Trans. Comm,,
b Vol. COM-28, pp. 325-333, March 1980,
: [19]) D. Clark, "Modularity and Efficiency in Protocol Implementation,”
- Massachusetts Institute for Computer Systems and Communication
| Group, RFC: 817 (unpublished memorandum), July 1982,
E [20] P. Spilling and E. Craighill, "Digital Voice Communication in the

A Packet Radio Network,"” ICC'80 Conf. Rec., pp. 21.4.1-21.4.7, June
b 1980
." .

[21] N. Schacham, E. J. Craighill and A. A. Poggio, "Speech Transport in
AN Packet Radio Networks," submitted to IEEE Journal on Selected Areas
in Communications. {

: {22] M. Davis, J. A. Schmarrer and R. G. Weekliff, Jr., "Extensive Logic
' Development and Support Capability in One Convenient Systenm,”
Hewlett-Packard Journal, March 1983. .

71

IR Syl S T e W

2 S03E NN

=55

)
o

4“1_.“)".‘)

i
t
',
R
tef
&
£y
it

STTIT O Ty O

AC
ARPA

ARPANET
BC

CPU
CVSD
DARPA

DMA
DoD
ECVSD
EPROM
GATEWAY

INTEL 8085
IP

LCI
LEXNET

LPC
NCP

NVCP
NVP-I1
PCM
PP
PROM
PTP
PVT
RAM
ROM
SATNET
ST

STNI
TCP

USART
vcop

ve

VPSS

WB SATNET
WIT

A%}

-y e -

L o e s

s Sk e o Jeng ey Bhn Bty Sde S Jar Tadr e
DA Sttt S S S e

APPENDIX I

Acronyms and Abbreviations

the Conference Access Controller

Advanced Research Projects Agency (also referred to as
DARPA)

the ARPA network

the Buffer Control Module

Central Processor Unit

Continuously-Variable Slope Delta Modulation

Defense Advanced Research Projects Agency (also referred
to as ARPA)

Direct Memory Access

Department of Defense

Embedded CVSD

Eraseable Programmable Read Only Memory

the module which connects two or more networks in an
internet

microprocessor developed by INTEL Corporation

Internet datagram Protocol; a DoD standard datagram
protocol

Lexnet Concentrator Interface

Lincoln Experimental packet voice network developed by
Lincoln Laboratory

Linear Predictive Coding

Network Control Protocol; the basic host-host data
protocol used in the ARPANET

Network Voice Conferencing Protocol

Network Voice Protocol II

Pulse Code Modulation

Protocol Processor

Programmable Read Only Memory

Point-to-Point

Packet Voice Terminal

Random Access Memory

Read Only Memory

the Atlantic Packet Satellite Network

Stream protocol; an internet transport protocol for
speech and other real-time traffic

Switched Telephone Network Interface developed by ISI

Transmission Control Protocol; DoD standard reliable
transmission protocol

Universal Synchronous/Asynchronous Receiver Transmitter

Voice-controlled Operator

Voice Protocol

Vocoder Preference Selection Switch

the Wideband Packet Satellite Network

Want-to-talk; Button on conference control box used in
SATNET

72

-
|

IS AN

Sadey S A 4 lo Tl WA R Yot Pl A . RAARRERLI DTSR A SR A At A A A i A A A R A A achfacine i e

Q‘ :
b .
”

&

¥ APPENDIX II

2 h
.. Sizes and Functions of Protocol Processor Software Modules ,
o A. C-Language Modules -

There are 114 C routines of various sizes which are contained in 6
separate modules with a total length of 28,464 bytes.

C-Module-1: CONTROL. This is the general control module for the
system. It contains 23 routines and is 5822 bytes long. It contains the
. main control loop. Once initialization is completed this loop runs forever
and monitors the condition of the phone and the activity on the various 1/0
interfaces. Each pass through the main loop polls a series of status
registers about jJobs that are pending. Control is passed to the various
modules as appropriate. At the end of the main C loop the main A-Natural -
routine 18 called so that it can poll and service the hardware 1/0. .

CONTROL contains, besides the main loop, four initialization routines, a
routine to handle output to buffer control and one to handle input from ..
buffer control, five routines involved in shutting down a connection or a
conference, a retransmission control routine, two routines to handle turning
vocoders on and off, three routines to handle errors in incoming messages, a
routine to echo back speech input, and four service routines.

AMBRTAAIS

-
o

o -
Ay

A

* C-Module-2: IPIN. Handles incoming IP messages. It contains twenty
,* routines and is 5203 bytes long. It consists of two control routines, -
: gseventeen token processing routines and a final analysis routine. The
control routine checks and processes each incoming IP message, invokes the
s appropriate token processing routine to handle each token and finally invokes
an analysis routine which determines the correct response to this message.

! C-Module~3: IPOUT. Handles creating and sending IP messages. It
contains twenty-seven routines and is 4496 bytes long. There are seven
U‘ control routines which create a particular type of message by invoking one or
? more of the sixteen routines which add particular tokens to the message being
- formed. These seven routines create messages such as: initial IP connect
message, accept of another IP connect, request to the Access Controller (AC)
* to join a conference, request for information from AC about participants in a
conference, notification to the AC on departure from a conference, invitation .
to another PVT to join a conference, and refusal of a request to join. There :
. is a service routine which determines the correct destination for each]
outgoing message (local terminal or GATEWAY) and two routines which control 4
the actual sending of IP messages. g
1

1

C-Module~4: STIN., Handles incoming ST messages. It contains nineteen
routines and {s 5655 bytes long. An ST message either contains one token of
ST control information or it contains speech data. (ST messages which
contain speech data may also contain NVP-II protocol tokens). The module

Y7 ¢ o4

73

e &

AT W AW A M

™ \‘-~.’.‘_’-.~ st
:stm.\.\.\-\.

g’ 1
X

. {..-',C&;L

A Clita
\I‘.“?ISIFI’;. .

F A

g ¥’

-
- or

k¢
o

gy
5

contains two general control routines, two routines which control readin of
speech data, an ST control token-processing routine, thirteen token-handling
routines, and a general checking routine. Since an ST control message
contains only a single control token, each control processing routine
determines what answering message (if any) should be sent.

C-Module~5: STOUT. Handles creating and sending ST messages and
sending speech data. It contains eighteen routines and is 4058 bytes long.
There is a general control routine for sending speech data which uses one of
three vocoder~dependent subroutines to correctly send each data message.
There are two control routines which create various ST protocol messages, a
record keeping routine, and two service routines.

C-Module-6: PHONE. Handles the analysis of input characters coming
from the PVT phone via the USART. It contains seven routines and is 3230
bytes long. It consists of a general control routine, a switching routine,
two routines which handle the special characters * and #, a routine to handle
an incoming digit, and a routine to handle VCOP. When a PVT is acting as the
front end of VCOP, it receives a special character (an ASCII "v") over the
USART from the attached PDP-11 when it tries to "ring the phone”. This
notifies the PVT that the VCOP routine should be used.

C-Module-6': STNI. When a PVT is used as an STNI, the Lincoln phone-
handling module is replaced by a module written by Ian Merritt of ISI [20].
This module handles the features unique to an STNI. The module is
approximately 3030 bytes long (about 200 bytes shorter than the Lincoln PHONE
module).

B. A-Natural Modules

There are seventeen routines written in A-Natural which are contained in
two modules and are 2855 bytes long. There are three routines to initialize/
reinitialize various I/0 interfaces, a routine to set up speech buffers,
routines to start interrupts, and to start and stop the speech DMAs. Two
routines run at interrupt level and handle the frame sync interrupts from the
vocoder, three routines handle output to the phone (two for VCOP and one for
general use), two routines handle error conditions, two routines compute
checksums (word checksum and byte checksum). The final routine is the
general control loop which polls the status of all the I/0 interfaces and
causes appropriate action to be taken.

C. Library Routines

The Whitesmith system, which compiles and links these modules, adds
sixteen library routines which are a total of 566 bytes long. These library
routines are used by the compiler to implement functions such as
multiplication and divisfon which are allowed in the "C" language but for
which there are no corresponding machine instructions for the INTEL 8085.

SRR

e ety Y S e - e . PN .
s N DN e e e PR IR

Y s .
DT NI A I T) ..
AR PR U

.'1! AR A A A S AL ENUMGE L P I M e B4 e S s SRS NI A SR R S S A e i il i L A on R L T S AT b I St e i At

< RO S
FP NN YRS L“‘L\

o

o -
r)
2

ey

4%

S

PN
2

B
.

L]
o'

vy
iﬁi@-

.

£

-

Summary
C-Routines

IFIN
IPOUT
STIN
STOUT
PHONE
CONTROL

A-Natural Routines
I1/0 Routines
Checksum Routines

Library Routines

Total

20 Routines

27
19
18

147 Routines

5203 bytes
4496
5655
4058

28464 bytes

31885 bytes

\ @y *
AR
HEMEN

Ay

r

o]

o
»
N

N u‘
b

%
..5‘, <
USRI

'

I .
L W

LA A A &

e e .
RN A N

-

»
o

.
v s %0 s

T

n
-~
a
a%a

‘.

)
a

[
»

G

e

YOANY

.
2t

R B R N

+

9.

A d

e

PAP R}

‘

]

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Protocol Software for a Packet Voice Terminal

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLE FING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-83-054
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER
Technical Report 663

7. AUTHOR(s)

Constance K. McElwain

8. CONTRACY OR GRANT NUMBER(s)

F19628-80-C-0002

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Lincoln Laboratory, M.L.T.
P.O. Box 73
Lexington, MA 02173-0073

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Program Element Nos. 61101E, 62708E
Project Nos. 3D10 and 3T10
DARPA Order 3673

11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1406 Wilson Boulevard
Arlington, VA 22209

12. REPORT DATE
16 November 1983

13. NUMBER OF PAGES
86

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

Electronic Systems Division

Hanscom AFB, MA 01731

15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repors)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

18. KEY WORDS (Continue on reverse side if necessary and id

h

ify by block

network speech

packet voice terminal

7

ARPANET network voice protocol
internetwork packet
LEXNET packet speech

protocol

stream protocol
vocoder

voice conferencing

and solutions which have been implemented are discussed.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A Packet Voice Terminal (PVT) has been developed at Lincoln Laboratory to provide voice access to an experi-
mental wideband internetwork packet system. The PVT employs 8 modular, microprocessor-based structure to pro-
vide voice processing, packet voice protocol, and network interface functions. The packet voice protocols are imple-
mented in software in the Protocol Processor (PP) r-odule, which is the primary controtling module of the PVT and
which handles interfaces to a voice processor, a netwark interface processor, and a user instrument. This report de-
scribes the software implemented in the Protocol Processor. The implementation of the Network Voice Protocol
(NVP-II) and the Stream (ST) protocol are described. Call set-up functions for both point-te-point calls and confer-
encing, and the methods used for packetization and reconstitution of speech, are described. Problems encountered

1473

DD "'"'7 EDITION OF 1 NOV 85 IS OBSOLETE

.«

. * A N P T T L -n'n‘-..‘A‘.‘
2 '\c’ I AN AT N

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (W hen Data Entered)

