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Abstract

This Report expands upon our previous work in this ar;;T‘ Specific appli-
cation is made to searches for near-stationary artificial satellites and to
the classical along orbit search. These two reflect different 1imiting cases
for the a priori target distribution (uniform for the near-staticnary case)
and the conditional detection probability (uniform for the along orbit case).
Our treatment of the near-stationary case is as realistic as is currently
possible. Atmospheric extinction, eclipses, and phase effects are all included.
Similarly we have explored a variety of scenarios for the along orbit search.
We conclude with explicit search plan construction and {llustrative examples.

Finally we mention other work in this area currently underway.
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I. REVIEW
In reference 1 one of us (LGT) introduced the ccncepts of optimal search
theory to the artificial satellite search problem. The best summary of the
literature (reference 2) is herein extended in detail to two classical search
problems for deep space artificial satellites--near-stationary satellites and
along orbit searches. Clearly the latter type is frequently utilized in the
low altitude regime and by radars as well as by passive optical sensors.
- Hence the formalism that allows one to solve such problems should be of
interest to a wide audience.
A. Formulation
One looks for artificial satellites on the celestial sphere. 1In
the largest sense this forms the two dimensional search space of the problew.
In practice we delineate a limited area of the celestial sphere (say above
altitude 30°) that we shall actually search in. Denote this search space by J.
One searches using a telescope with a finite field of view. In practice
we always examine an entire field, never a fraction of a field nor more
than one field at a time. Hence the search space J consists of a discrete
set of fields of view. Number these by the index j =1, 2, . . . In
particular, since the celestial sphere encompasses 4n steradians, max (j) < «.

Before the satellite is found one assigns an a priori target distri-

bution on the search space J, p: J - [0,1] (the notation means that p is a
function defined over the set J which maps elements of J into the domain
zero to unity inclusive). The target distribution is the a priori proba-

bility of finding an artificial satellite in field of view j ¢ J before one

starts the search. For near-stationary satellites a reasonable model for p
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is p is uniform over all geocentric right ascensions and over the geocentric
declination range < 10° (or 5° or 20°). For other satellites, both because
or parallax effect; and the inherent spread over orbital element space
(particularly in inclination), a reasonable model for p is that p is uniform

over the topocentric celestial sphere. In any case

L p(3) <1
jed

When one examines a field of view for an artificial satellite one expends
a certain amount of effort trying to detect the satellite. One may look at
the same field of view several times. The cost of performing k inspections

in the j'th field of view is measured by a cost function

c(jsk): J x {0,1,2,...} ~ [0,=]. Clearly ¢c(j,0) =0V j € J (no effort implies
no cost). One could measure cost by the time spent examining a field of view
plus the time spent in moving to the next field of view (this makes ¢ non-
local and is not desirable). Operationally we always spend the same time in
each field of view (mcre or less). Also, because [area (J)]]/Z/slew speed <<
time spent examining a field of view, the non-local element of ¢ is both
unimportant and varies 1ittle. Thus we shall measure cost by time and
specialize to the case when the incremental cost of the k'th examination in

field of view number j, viz.

v(3,k) = c(d,k) - c(J,k-1)

is a constant independent of both j (i.e., the telescope is fast and all

fields of view are treated equally) and k (e.g., the same field of view is

equally well inspected each time).
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When one does examine a field of view of the search space looking for
an artificial satellite then there is a conditional probability of detecting )
it on or before the k'th inspection of that field of view (given that it is .
there). This function, for field of view number j and examination k, is
denoted by b(j,k): J x {0,1,2,...} > [0,1]. Naturally b(j,0) =0V j el
(you can't find it if you don't look for it). From the detection function b

one can construct the probability of failing to detect the satellite on the
first k-1 scrutinizations of field of view number j and then succeeding on the

k'th one (given that the satellite is in field of view number j); viz.
8(J9k) = b(j!") = b(j9k'1)

There is a lot of physics and mathematics subsumed in the detection
function. Clearly it depends on the satellite's apparent magnitude, the
background star density, the night sky background brightness, the resolution
element size of the detector(s), the false alarm probability one is willing to N
accept, how tired one is, etc. Since the celestial sphere is unchanging,
atmospheric extinction can be computed, the Moon's position is known, etc.
this is a computable function. Operationally, for a fixed set of external 3
parameters, our detection probability has the shape shown in Fig. 1 where
m is our quoted limiting magnitude (e.g., where the probability of detection .
is 50%). The form shown in the diagram will be used to compute the optimal
search plans given below.

Finally we need to define a search plan. A discrete plan is a sequence ;

g = (51,52,53,...) which tells the searcher to first look in cell £y3 if the

satellite is found there then terminate the search but if it isn't found then
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l1ook next in field of view 52, etc. A global way to describe this is by a
function which specifies the allocation of effort devoted to each field of
view j. To this end define f: J + [0,=); f(j) is the number of examinations
in field of view number j.

Above we referred to searches for a fixed target. Clearly the satellites
we are trying to find are moving. We've made the assumption that these objects
are fixed when compared to our search rate. The mathematical formulation of
this approximation is [area (J)/search rate]-satellite angular speed << field
of view.

8. Optimal Searches
Given the cost of searching field of view number j a total of k
times, c{j,k), the total cost of performing the search plan ¢ with allo-

cation f is

CCFl = & eli )

The total number of examinations over all fields of view isj%i f(3)
Similarly the total probability of satellite detection with this allocation of
effort is P[f],
PLF] = & p(3)b(3,F(5))
Jjed
where b(j,k) is the conditional probability of finding the satellite in field

of view number j after k examinations of that field of view given that it's

in that field of view.
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There are four types of searches one might define as optimal. One might
be interested in maximizing the total probability of detection when constrained
to a given number of inspections (say K). If the incremental cost function
v(j,k) = ¢(j,k) - c(j,k-1) is a constant, then (after a suitable renormaliza-
tion) one is demanding that P[f] be a maximum for C[f] < K. Such a search is

termed totally optimal. If one demanded optimality for all K =1, 2, 3, . . .

then the search is called uniformly optimal. A third type of search ~lan

that one might consider is the search plan that maximizes the probability of
detection with respect to the incremental cost and does so at every step of

the search., HMathematically one finds the value of j which maximizes

p(j)B(j.k)/v(j,k) at each k. These searches are called locally optimal.
Lastly one might entertain a search plan that minimized the total expected
cost (i.e., was the fastest) to find the target.

The essential assumptions necessary to cast the artificial satellite search

2

into the simplest form of the mathematical superstructure that Stone“ outlines

.

are

(1) That the satellite is fixed (i.e., search rate high
compared to the satellite's angular speed),

(2) That the search space is discrete (i.e., a fixed field of
view),

(3) That the allocation of effort is discrete {i.e., no favored
fields of view), and

(4) That v is bounded away from zero and p(j)b(j,k)/vy(j,k) is a
decreasing function of j (i.e., no free examinations of a

field of view and the larger the search space the more difficult

to detect.)
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I do not believe that the physics or astronomy is strained by these strictures.
In fact (5) y = constant is not unreasonable (i.e., the telescope moves smart-
ly). The important point is that under these five limitations the totally
optimal search plan, the uniformly optimal search plan, the locally optimal
search plan, and the fastest searches are all identical. Not only that, it
can be explicitly exhibited. See Stone's text for the rigorous mathematical
statements of the relevant theorems and their proofs.
C. The Search Plan

We need just a bit more mathematics before we can exhibit the solu-
tion to the optimal search problem. The search plan £ = (51, s E35 cel) i
a sequence of values €i ed for i =1,2,3, ... These specify that the i'th
examination be in field of view gi if the previous i-1 inspections failed to
detect the satellite in fields of view £,,5,,..., &; ;. Let the set of all
such search plans be denoted by =. Introduce the probability P[n, £] (and
the cost C[n, £]) of detecting the satellite on or before the n'th ex mi-
nation while performing search plan £ € = (of the first n inspections).
Finally, let r(j,n,&) be the number of scrutinizations out of the first n
that are placed in j'th field of view while following search plan §&. A uni-
formly optimal search plan [for v(j,k) = 1; this is an unimportant normaliza-

tion] £&* ¢ = is one such that
P[n,t*] = max {P(n,€] : €=}, n=1,2,...,K

A locally optimal search plan £* is one such that 51 is determined by

[y # 0 necessarily]




p(g)8(E),1) oy PLI)B(5,T)
¥(gps1) =G

and having determined the field of view for the first n-1 examinctions

(E]. gz,...gn_]) the field of view for the n'th one is determined from

p(1)8(i,r(i,n-3,8) +1) o p(3)8(3,r(J,n-1,5) +1)
y(i,r(i,n-1,8) + 1) Jed

Y(3.r(J.n-1,8) + 1)

with £ = i. Now define k = r(5, n, £). The notation means that the n'th
examination of the search plan & is placed in field of view €n ard that it is
the kn'th time that this field of view has been searched. The average cost to
find the satellite can be expresced in a variety of ways if the limit as

n + < of P[n,E] is unity;

u(g) = E] C[n,&] (P[nag] - P[n']’g])
n=
w n
. 3;] L vlggky) ple) 8(E, ko)
= JE% gg% v(E .k, ) p(E)R(E Lk )
= 32% Y(Epakp) (1-PIm e 1)

since P[0,£] = 0. If y(j,k) = 1 then this reduces to

(-]

w(g) = 3 (1-P[n,£])
n=0
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Now we can exhibit the solution explicitly. Under the assumptions out-
1ined above if qj is the probability of detecting the satellite after a single
exanination of field of view number j (given that it is in field of view

number j) then, as each inspection is an independent event, the incremental

R AL LA ..,

conditional probability of detection 8(j,k) = b(j,k) - b{j,k-1) is given by

; 3(3+k) = q (l-qj)k'] for jed,k=1,2,...
' Normalize such that y(j,k) =1 v jed, k=1, 2, . . . and suppose that an
: allocation f(j) has total cost (i.e., number cf inspections) K,

f(§) =K

jed

Tt TN L. ...

The total probability of detection for this allocation of effort will be

: . £(4)
i PF] = X p(3)6(3.F(3)) = X p(i)[1-(1-q;) ]
. jed Jed

Consider the search plan defined by: one makes the n'th inspection ir

[ N g

field of view number i ¢ J such that

r(i, n, £) r(j, n-1, &)
E p(i)ay (1-qy) = p(dlay (1 - qy)
i Then £ = 5* and is optimal (in all senses). This result is due to Chew3.
. Since J is finite the existence of an i satisfying the above is guaranteed.
E If one exploits the uniformity of the target distribution p over the search
i space J, then the result is even simpler,
\
‘ :
§ q; (1 - qi)r(l’ " ?23 9;(1 - qj)r(j’ e o) v
!
; 8
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IT. NEAR-STATIONARY SATELLITE SEARCHES

We have already argued that the a prior{ target distribution p(j) can

AL . 3 e BRI

be approximated by a defective uniform distribution over the search space.
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We have also argued that the incremental cost function 1s homogeneous over J
and independent of the number of louks, v(J,k) = 1 (in appropriate units).

The probability of detection of the satellite in f1e'd of view number J (given
that it's there) 1s qJ. This depends principally on the apparent magnitude of
the sateliite and the night sky background. Three effects tend to make satel-
1ites fainter; atmospheric extinction, 10ss of brightness due to increasing
phase angle, and increasing distance (helfocentric or geocentric).

The extinction 48 modeled as usual,

RIS NI N

- "
: € Cz secz

where z {s the tnpocentric zenfth distance and <, 1s the extinction per

unit air mass, We've used a value of 0.13 mag/air masy for ¢ .

7 For the phase

P M NI

function fn magnitudes !'ve used the results in reference 4

B(1,0) = B(1,8) + 0.538 - 0.134 |8/ 7" _ ¢ for Jo] < 7°

-
.

B(1,0) = B(1,0) - 62 for 6| > 7°

where 8(1,0) 1s the absolute B magnitude and 8(1,8) is the apparent magnitude

LTRSS

corrected for phase anyle 6. The parameter of the linear part of the phase

function 1n magnitudes £ = 0,039 mag/deg.
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Eclipses can play an important role in searches for near-stationary
satellites. Obviously it makes no sense to search that part of the sky cur-
rently undergoing eclipse (in the visible wavelength bands). Moreover, it
would be a mistake to preferentiaily find an artificial satellite just prior
to its eclipse (eg. westward of the shadow cone). Hence not looking within
the penumbra represents one level of search planning refinement and only look-
ing eastward of the penumbra represents yet another step up in sophistication.

The geometrical discussion of artificial satellite eclipses is more com-
plicated than that for the Moon because the satellites are much closer. The
results were worked out by one of us {LGT) in 1981. For a near-stationary
satel1ite the half-angle of the umbral cone is 89427 while that of the
penumbral cone is 8%960. Since it only takes ~2 minutes to traverse this
%5 and the brightness variation during the transition through penumbrai
eclipse 1s exceedingly difficult to model, we've chosen to ignore the distinc-
tion. The half-angle of the penumbral eclipse cone was then increased by 2%
to allow for refraction effects in the Earth's atmosphere. Ellipticity of
the Earth, 1ts atmosphere, and 1ts heliocentric orbit have either been ignored
(the first two) or averaged over (the latter).

Since the eclipse 1s centered at the solar opposition point we merely test
for the angular distance from the center of a field of view to the opposition
point. If this distance 1s less than 1,02 times the half-angle of the penum-
bral shadow cone then the apparent magnitude is set equal to = which results in
a probability of detection of zero (cf. Fig., 1). Otherwise the apparent magni-
tude is calculated as indicated above. For the trailing shadow cone searches,

the right ascension of the center of the field of view is less than (mod 24)
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Fig. 1. Probability of detection (PD) as a function of magnitude difference
from the 1imiting magnitude (mL).
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that of the opposition point, then the probability of detection = 0. Other-
wise it {s computed as just described. Sample search plans are shown in
Figs. 2-8.

A1l of the search plans have been terminated under the same (artificial)
criterfa: Either each field of view of the search space (30° x 3h) in declin-
ation x right ascension) is examined once or a field of view of the search
space {s about to be examined for the seventh time (a combination storage/
reasonableness criteria of futility). The fields of view are each 2° x 2°
(uncorrected for the cosé foreshortening). Furthermore all of the sample
search plans are illustrated in the same format: Declination increasing up
(North) and right ascension to the right (East). The numbers in the indivi-
dual fields of view are the examination number, following the optimal search
plan, of that field of view. No entry means that the field of view wasn't
examined before termination. Thus, if you look at Fig. 2, the most north-
easteriy field of view was never examined while the field of view just to its
west was inspected twice--on the 1276 look of the optimal search plan and on
the 1372 1ook. Similarly the highest probability field of view was searched
on tne first examination of the optimal search plan and on the 562 look. The
effort is distributed in elliptical waves, about the opposition point, in
Fig. 2. The major axis of the ellipse is vertical--joining the opposition
point and the zenith, Actually the "ellipses" are not North-South symmetri-
cal, they bulge more in the North (eg.note the number of empty fields of
view in the southwestern and southeastern corners as opposed to the corre-
sponding northern ones). The reason for this is that the satellites are

brighter nearer the zenith (because of reduced atmospheric extinction) than

12
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Fig. 2. Optimal search plan for a near-stationary artificla) satellite on mid-
night local time of a winter solstice night., Each rectangular field of view is
2° X 2°. See the text for a fuller description.
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they are closer to the nadir. The cumulative probability of detection at the
termination of the scarch was 60.7% assuming that the artificial satellite was
in the search space initially. After examining J fields of view the optimal
plan was 23% more efficient than the uniform (eg. existing) search plan. This
increase in efriciency had dropped to 4.2% after 4J cells had been examined
(that is the cumulative probability of detection of the optimal search plan
after the firt 4J examinations was 4.2% larger than the cumulative probability
of detection of 4 repetitions of the plan that searches each of the J fields
of view of the search space once [= the uniform plan]). This loss of effec-
tiveness is easy to understand by actually looking at Fig. 2. As the search
wears on the allocation of effort approaches uniformity, hence the relative
advantage should approach unity.

The next figure (Fig. 3) shows the same scenario but at 3 A.M. local time
instead of at midnight. There is an obvious northeasterly shift of effort
(because of extinction). There are further small scale differences but more
importantly after J field of view examinations the optimal search is 34.4%
more efficient than a uniform one would be (with the same total cost of
course). Figure 4 is identical to Fig. 2 but for a satellite a half magnitude
brighter. Now each cell of the search is examined because it makes sense to
do so. The final cumulative probability of detection is 83.1%.

Figure 5 repeats the scenario of Fig. 2 but now eclipses are included.
The hole in the center represents the penumbral shadow cone and this search
plan is markedly different from the one in Fig. 2. This time the optimal |
search plan 1s 65.7% more efficient than the uniform one after J looks, 42.7%
after 2J looks and 32.0% after 3 1looks. The cumulative probability of detec-

tion at termination is 35.9%.
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Fig. 4. Same as Fig. 2 but for a satellite of pT5 brighter.
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Fig. 5. Same as Fig. 2 but including eclipses.
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In Fig. 6 we've changed from the winter solstice to the vernal equinox.
Otherwise 1t's a repetition of the Fig. 3 scerario but at 9 P.M. local time.
The North-South asymmetry is especially evident because opposition is lower in
the sky (6§ = 0°) than it was at the winter solstice (6 = € = obliquity of
the ecliptic = 2395). After an expenditure of effort of J scrutinizations the
optimal search plan is 60.3% more efficient than is the uniform one. Figure 7
is also on March 21 but at midnight; compare with Fig. 5. Finally, Fig. 8
shows vernal equinox, midnight, trailing edge shadow cone search plan. The
first field of view is displaced northeast (extinction) and there's a marked
tendency to look in the middle declination fields of view (phase loss).

Hopefully these examples will convince you that optimal search planning

is non-trivial, non-intuitive, and important.
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Flg. 6. Same as Fig. 2 but at 9 P.M. local time on the vernal equinox.
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ITI. ALONG ORBIT SEARCHES

One usually initiates an along orbit search when an examination ¢f the ~-
nominal position for the artificial satellite doesn't yield the object of
interest. In addition one has assumed no change in the satellite's orbital
plane, merely that the sateilite is slightly late or slightly early. Hence
an along orbit search is one wherein a series of fields of view (or beam
widths), along the topocentric path of the assumed orbital plane and travel-
ling with the satellite's presumed mean motion, are examined under the hypo-
thesis that the mean anomaly at epoch is slightly larger or smaller than its
nominal value. Such a procedure renders the moving target fixed in the moving
coordinate system of the search space. As the usual reason for the non-
appearance of a satellite is a perturbation in the mean motion (atmospheric
drag) or a poor element set (due tuo a mean motion/eccentricity swap), the
search space is not strictly comoving with the satellite. Therafore to remain
within the fixed target scenario, the strong inequality

area search space . field of view
search rate relative angular speed

must hold (relative angular speed = |true mean motion-nominal mean motionj).
1 shall assume this to be the case.

With this point in mind the search snace J for the along orbit search is
a Yinear series of field of view (see Fig. 9). I shall label them by j = -N,
-N+1, ..., 0, ..., N. The a priori target distribution p will be assumed to
be symmetrical [p(n) = p(-n) n =0, 1, 2, ..., N] and unimodal [1>p(0)>p(1)>
...>p(N)]. We intend to acquire data this Fall at the ETS to provide an

empirical estimate for p as a function of orbital type and age. For the
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explicit numerical computations listed below we shall further assume that the
probability of being in either of the next outer fields of view is equal to

that of being in the adjacent inner one, viz.
p(n+ 1) + p(-n - 1) = p(n) = p(-n)

and since p 1s symmetrical this implies that
p(n+1)=p(n)/2 n=12,...,N

The cost function is most realistically defined in terms of time--the
time spent examining a field of view plus the time required to move to the
next one. In the case of the GEODSS network, the telescopes accelerate and
decelerate so fast that the non-local nature of the cost function for the
small areal extent {<(2N + 1)6 where 6 is the field of view [N.B. This is not
strictly true because J is comoving with the satellite. The real maximum
angular extent is a complicated function of N,8, the satellite's mean motion,
and the time spent inspecting each field of view]} involved here shall be

neglected. Since the time spent examining each field of view is a constant,

c(ij,k) = k(tlook +t

move )’ v jdd, k= 1,2,...

where tlook is the time spent looking in a field of view for the artificial
satellite and tmove is an average duration of a movement from one field of
view to another. In the appropriate set of units the incremental cost func-
tion b(j,k) = c(j,k) - c(j,k - 1) =1,

The last quantity needed to specify the problem ié the conditional

detection probability b(j,k). As the portion of the celestial sphere covered
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by J is small, the natural background and foreground sources of noise vary
smoothly, and the time to complete an along orbit search is short, the differ-
ential extinction, phase angle, night sky background, etc., effects are all
small. Therefore, the essential approximation for the along orbit search is

that b(j,k) is homogeneous,
b(i,k) = b(j,k) vi,jed; k =1,2,...

If b is the single glimpse probability (i.e., the conditional probability of
detection in any field of view given that the satellite is in that field of
view) then the incremental probability of detection on the k'th examination

is

8(3.k) = b(1 - )X k=1,2,...

Note that ab/aj = 0 and 9B/3j = 0 because of the assumed homogeneity of b(j,k).

The algorithm for planning the search is, cf. Eq. (1),

p(1)b(1-b)"(1+ME) < max p(3)b(1-b)T(3on-1.)
jed
and if the n'th inspection is in field of view En = i then search plan
£ = (£),8,-.48,) s optimal.

Let's consider the first few inspections of three different along orbit
searches. In each case we'll take J=5 (N=2) and p(-2) + p(-1) + p(0) + p(1)
+ p(2) = 0.8 so p(-2) = p(2) = 0.08, p(-1) = p(3) = 0.16, and p(0) = 0.32.
First let the single glimpse probability of detection be high, b = 95%.

Then the optimal search plan for the first 20 examinations is the sequence
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g* = (0,1,-1,2,-2,0,1,-1,2,-2,0,1,-1,2,-2)

The probabilities of detection with this allocation of effort are 76%,
79.80%, and 79.99% after the first §, 10, and 15 looks. Note that P[f] <0.8
in this case. Since the first five looks of the optimal search plan are in
each field of view of the search space, the existing search plans yield the
same probability of detection after completion as does the optimal one. This
should not be at all surprising since it's been assumed that you'll find the
satellite if you look at it (i.e., b = 0.95). The difference between the R
usual search plan and an optimal one becomes more apparent as the probability
of detection decreases or the maximum amount of effort (K) increases.

To see this more clearly let us reduce b to 55%. The optimal search plan
for the first 21 examinations is (both this plan and the one above appear to
be periodic)

gx = (0,1,-1,0,2,-2,1,-1,0,2,-2,1,-1,0,2,-2,1,-1,0,2,-2)
The cumulative probabilities of detection following the optimal plan's alloca-
tion of effort are 47.52%, 65.38%, 73.42%, and 77.44% after 5, 10, 15, and 20
looks. If we just look in each cell of the search space the corresponding
cumulative probabilities of detection would be (for the same total effort)
44%, 63.8%, 72.71%, and 76.72% respectively. Once again, not much difference
between the optimal plan and the usual ones. Of course it's been assumed that
we have a pretty good chance of detection.

To tip the balance towards the optimal plan consider the case of a faint
object, say b = 0.15. The first twenty-two stages in the optimal plan are

£* = (0,0,0,0,0,0,1,-1,0,1,~l,0,1,-1,0,1,-1,6,1,-1,2,-2)

26




Note the heavy concentration on that field of view of the search space where
the a priori target distribution is highest. The optimal search plan is
telling us that when our chance of detection is minimal (b = 15%) then we'd
best not 100k where it's not likely to be. The cumulative probabilities of
detection following the allocation of effort of the optimal plan are 17.80%,
28.58%, 36.94%, and 43.50% after 5, 10, 15, and 20 looks. The once in each
field of view search plan has only a 12% cumulative probability of detec-
tion upon completion. Thus the optimal plan is 48% more efficient than the
usual one after the customary expenditure of effort. Repeating the usual
plan once or twice yields cumulative probabilities of detection upon com-

pletion of 22.2% and 30.87%. The optimal plans with equal expenditure of

effort are 29% and 20% more effective in these cases.




IV. ADVANCES

There are two areas of especial interest that we have not dwelled upon.
One concerns optimal searches for moving targets. The rigorous theory that
supports optimal searches for fixed targets has not been developed for this
case. Hence, while an experienced optimal searcher may pursue his (or her)
intuition in such matters, certainty is lacking. The second domain concerns
optimal searches for targets by multiple searchers--either moving or fixed
targets and colocated or separated searchers. Space based surveillance
systems will yield yet another order of complexity when non-colocated and
moving searchers look for moving targets in an asynchronous fashion. Progress
on these topics is being made by others and in particular, the optimal mul-
tiple search for constant brightness, near-stationary artificial satellites

has been solved (reference 5, see reference 6 too).
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