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Preface

Ever since the beginnings of manned flight, the

science of flight test research has "suffered" from the

glamorous image of the reckless, silken-scarf ed test

pilot careening through the sky in defiant contempt of

N: fate. But in reality, actual flight tests are conducted

with countless hours of exhaustive engineering analysis.

As expectations and requirements for manned flying

vehicles have increased exponentially over the years,

so has the complexity of the problems faced by flight

researchers. Today, some eighty years since Kitty Hawk,

the Space Shuttle routinely delves into out space, far

beyond the hopes and dreams of Orville and Wilbur Wright.

The immense challenge of returning such a vehicle through

an extreme, and virtually unknown, reentry environment

has been conquered; thanks to the development of highly

complex analysis tools, such as the HEATEST program

described in this report. The true heroes, in this and

all flight research efforts , are the engineers and pilots

who have overcome each new engineering obstacle. To them,

this report is dedicated, in the hopes that with each small

contribution, a better understanding of ourselves and the

world around us may be gained.

Many thanks are due to those who have aided in the
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completion of this report. The personnel at the Air

Force Flight Test Center at Edwards, AFB have provided

much aid and support. My "mentors" at the Air Force

Institute of Technology, particularly Major David R.

Audley and Dr. Peter S. Maybeck, have provided much

insight and concern throughout the investigation. Finally,

my deepest gratitude is extended to Capt. James K. Hodge,

for getting me through this effort in spite of myself.

Charles D. Lutes
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Abstract

V This report describes improvements made to the data

analysis tool HEATEST, used for identification of the

reentry aerothermodynamic environment of the Space Shuttle

Orbiter. The heating model was changed from a linear

perturbation form to that of a piecewise linear inter-

polation form to account for nonlinear heating rates.

Also, a fixed-point initial condition smoother was

incorporated to gain better estimates of unknown initial

temperatures. he development of both of these imporvements

is described, as well as 11 adaptive estimation

process employed by the HEATEST scheme. Verification of

these modifications was accomplished by applications to

both simulated and actual flight test data.

Simulations of nonlinear heating rates indicated

higher than actual coating thickness predictions for the

linear perturbation model previously used. Flight results

using the improved heating model provided additional

verification of a time skew due to noniothermal wall

effects on the OMS pod. Estimation of initial temperatures

using the fixed-point initial conditon smoother enabled the

identification of an unmodeled Mach or Reynolds number

effect on the lower surface during the Mach 12 Pushover

Pullup maneuver of STS-4.

x
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S 1.1 Background

The Space Shuttle Transportation System (STS) has

of fered the engineering community a unique opportunity

to flight test a reentry, hypersonic vehicle. The key

4 to the Shuttle's versatility is its reusability, which

is inherently dependent upon the Orbiter's ability to

withstand a severe, and sometimes unknown, aerodynamic

environment upon reentry. With this in mind, the National

Aeronautics and Space Administration (NASA), in conjunction

with the Air Force Flight Test Center (AFFTC), has

initiated a flight test program designed to eliminate

uncertainties about this environment and thus expand the

operational capabilities of the system (Refs. 7,8,9,10).

Although the initial test flights have now been completed,

data analysis and expansion of the existing data base

continues.

*The ability to withstand this harsh reentry

environment is provided by the Orbiter's Thermal Protection

System (TPS). This system consists primarily of low

density ceramic tiles, which insulate the underlying

aluminum or graphite-epoxy structure. These tiles typically

have highly radiative surfaces, offering additional

protection from the heat transfer effects of aerodynamic

4m1
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forced convection. The TPS consists of a variety of

materials (Ref 1): Reusable Carbon-Carbon (RCC), used

primarily on high temperature areas such as the nose

cap and the wing leading edge; Flexible Reusable Surface

Insulation (FRSI), a Nomex felt substance found on the

upper surface where lower temperatures are expected; and

two kinds of silicon based tiles, High/Low temperature

Reusable Surface Insulation (HRSI/LRSI), used on the

lower surface and other high heat load areas where RCC

is not needed.

The capabilities of the TPS directly affect the

performance of the reentry Orbiter and its ability to

perform a specified mission. For this reason, the Orbiter

0 Flight Test program (OFT) developed by NASA and AFFTC has

included flight test techniques designed to assess the

TPS capabilities and identify the reentry aerothermodynamic

environment (Ref 10).

Initial phases of the OFT consisted of real time

engineering simulation of the reentry process. Suitable

simulation models were needed to estimate the aerother-

modynamic envelope for safe mission planning of the initial

test flights and for subsequent analysis of the flight test

data. These models, developed by AFFTC, are described in

Chapter II of this paper. Unknown parameters were originally

estimated by theoretical considerations and ground testing.

2



*.- Flight test maneuvers required adequate data

acquisition processes. For assessing aerothermodynamic

capabilities, temperature variations are considered

crucial. During the flight test phase, instrumentation

consisting of temperature-sensing thermocouples

provided this information. Surface thermocouples were

imbedded under a thin coating of the RSI tiles on

several locations on the Orbiter.

Simulation of thermocouple response indicated that

transients in vehicle attitude (angle of attack, sideslip,

and control surface deflection) were important, in

addition to trajectory and atmosphere. Transient flight

test maneuvers were developed by AFFTC (Ref 10) and

incorporated into the flight test program. These maneuvers,

such as the Pushover Pullup (POPU) maneuver, were designed

to provide transients in vehicle attitude for durations

long enough for thermocouple response but short enough to

avoid affecting the reentry profile.

The final phase of the program consists of data

reduction and analysis designed to identify the aerothermo-

dynamic environment and update the models of the engineering

simulation for subsequent envelope expansion. A method of

analysis was designed by AFFTC in the form of a digital

computer program called HEATEST (HEATing ESTimation) (Refs

1,7,8,9,10).

3
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The HEATEST algorithm is based on system identi-

fication theory (Ref 5). The simulator models, applied

in a stochastic context, are combined with thermocouple

measurements in a state/temperature estimation (Kalman

filter) routine. Best estimates of the unknown model

parameters are made using parameter estimation techniques

(Refs 2,5,15). The combined state and parameter identi-

fication technique provides best estimates for both

temperatures and aerothermodynamic model parameters.

Figure 1 (Ref 1), provides a summary of the system

identification process used to identify the aerother-

modynamic environment of the Space Shuttle Orbiter.

% 4

1.2 Objectives

Although the HEATEST program has worked well in the

analysis process, several areas for improvement have been

identified (Refs 1,7,8,9,10,11). The purpose of this

investigation is to analyze these areas, make improvements

in the estimation scheme, and to incorporate them into the

HEATEST program.

5% One aspect in which the estimation process has had
5.J

difficulties is in properly identifying areas with severe

nonlinearities. Because the original models were based on

a linear perturbation form, nonlinear heating rates

resulting from geometric discontinuites, flow irregularities,

and other unmodelled effects have been difficult to

4
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estimate. Attempts to handle these nonlinearities have

included the processing of maneuver data in small time

segments and then correlating the results (Ref 9).

Difficulties in correlation, convergence problems, and

excessive computer time make these methods undesirable

in some cases. Thus one objective of this investigation

is to enhance the aerothermodynamic models to account for

these nonlinearities directly. The method developed by

this report assumes a piecewise linear heating rate,

providing the models with the required flexibility.

Inaccurate initial conditions used for initializing

the estimation process have provided questionable results

in some cases (Ref 8). Generation of these initial

conditions is a difficult process, and one method of

improvement is to estimate these conditions based on the

maneuver data (Ref 1). The development and incorporation

of a fixed-point initial condition "smoother" is another

aspect of this paper.

Testing and application of the modified program is

necessary for verification of the validity of the

improvements. Simulated data, for which the results are

known, are processed for testing purposes. Application

to real flight data where problems have occurred previously

will complete the testing phase and provide additional

insight into the results of the flight test program.

6



13Overview

Because the existing identification process is

important to the overall understanding of the proposed

modifications, details of the theoretical development of

the estimation scheme are provided with emphasis on these

modifications. The enhanced models, formulated from the

original simulator models, are developed in Chapter II

and Appendix A, and then placed in the stochastic setting

needed for the identification effort. Chapter III high-

lights the estimation process, including the development

of the maximum likelihood criterion on which the scheme

is based. The initial condition smoother is developed in

Chapter IV, with an associated discussion in Appendix B

relating the difficulties of solving the model heat

equation in a smoothing context. Testing and application

* results for both simulated and flight test data is given

in Chapter V and Appendices C-F. Finally, conclusions

about the validity of the modifications; discussion of

important physical results from flight test data; and

suggestions for further improvements are included in

Chapter 6.

7
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• .-K II. M1odeling The Aerothermodynamic Environment

2.1 Modeling Assumptions

SModel equations for the reentry aerothermodynamic

environment were orginally developed for the AFFTC

simulator and subsequently applied to the data reduction

scheme HEATEST with some modifications. In developing

these process models, a natural distinction was made

between the diffusion equation model of heat transfer in the

TPS (thermal model) and the surface boundary condition for

aerodynamic forced convection and radiation (heating model)

(Ref 1). The surface heating rate due to aerodynamic forced

4; convection is a primary unknown and is described by the

unknown parameters of the heating model. Observations of

these unknowns occur in the thermal model i.e. the

diffusive heat transfer behavior of the TPS material

measured by thermocouple sensed temperature variations.

Thus, adequate simulation or estimation of the aerother-

modynamic environment must include both of these models.

The development of these models includes several

assumptions. First, it is assumed that the thermal

characterisitics of the TPS materials (thermal conductivity,

k; specific heat capacity, c; and density, p) are known

through laboratory tests and theoretical consideration.

However, the thermal conductivity may be scaled by an

8



pressure changes within the tile. Another assumption

is that each Orbiter location is associated with a

unique set of models. Thus the initial investigation

has concertrated on seven control points (Figure 2)

identified by NASA and AFFTC as critical to reentry

trajectory shaping '(Ref 1).

One assumption that has proven restrictive in some

cases is that of an isothermal wall (Ref 11). The

assumption is that the Orbiter wall, protected by the TPS,

remains at a constant temperature and serves as a boundarycondition for the thermal model. Subsequent analysis

(Ref 11) has indicated that a jump in the wall temperature
may occur at the interface of two dissimilar materials,

thus producing a nonisothermal wall effect. Suchan effect

may significantly raise or lower heating from laminar

predictions depending on the direction of the temperature

jump. In the data reduction scheme described in this

paper, the nonisothermal wall effect may take the form of

increased/decreased heating or time skews caused by

~thermocouple lag during the transient maneuvers.r Finally, a major simplification is the assumption of

a one-dimensonal diffusion model for the heat transfer

through the TPS (Ref 1). Although motivated primarily by

computational tractability, this assumption proves to be

9



#41

s~. *i9: ~0

44m 4,

CL ICU m

CL (i -Jr-LL-L

*0 4.

%- 0.G

100



r:7. ~ *, *.**. .-- ~- --.-- .-- - o°.. . -, -o. . . - .

%-'77

an adequate description of what is largely a one-dimensional

phenomena. Becuase of the low conductivity of the TPS

material, the spanwise temperature gradients are assumed

to be too small to affect the behavior of the temperature

profile significantly for the short period of reentry.

Ths model is developed more fully in the next section.

2.2 Thermal Model

A cross-section of the one-dimensional thermal model

is given in Figure 3 as a typical Reusable-Surface-Insutla-

tion (RSI) tile. For implementation on a digital computer,

n discrete node points were established to approximate

the temperature profile throughout the tile. A surface

thermocouple is normally located just under the surface

coating (block A) at the second node point (i-2). Additional

thermocouples may be embedded in the tile and node points

are spaced so as to correspond with the embedded thermo-

couples. Blocks A through D represent different materials

with thermal properties that vary with local temperature

and pressure. A surface coating (block A) that is hand

applied before flight, is modeled with an unknown thickness

(AXA). Block B represents the bulk of the TPS Material, and

in general is assumed to have an unknown thermal conduct-

ivity factory, oB* In block C, the RSI is bonded by

Room-Temperature-Vulcanizing (RTV) adhesive to a nomex

felt Strain-Isolation Pad (SIP), which in turn is bonded

'a.
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to the structure by RTV. In block D, the effective

structural thickness and heat sink complete the one-

dimensional model where an adiabatic wall is assumed.

The convective heat rate (q), obtained from the

heating model, is applied to the surface node (i-1)

by the mechanism of forced aerodynamic convection.

The surface, with a high emissivity, radiates most of

the heat away but conducts a small amount into the TPS

through the surface coating. The heat then diffuses

throughout the TPS, causing variations in the temperature

profile., An energy balance at each node point yields

a system of n nonlinear differential equations of the

form (Ref 8):

(ci~iAXi + Ci_1 Oi_1 AXi_l)/2 Ui = ki_%/AXi_ 1 Ui- 1

(ki/AXi_1 + ki+%/Axi) U i + ki+%/AXi Ui+ 1 -

a i-(U4 4 4 _ U + 4 + qi
- i-l) - aci+(U i - +1 + (2-1)

where ei is the radiative emissivity; a is the Stefan-

Boltzmann constant; c is the material specific heat; p

is the material density; and k is the material conductivity.

Additionally, the thermal conductivity of Block B, kB,

may be scaled by the thermal conductivity factor, (BD
4.

a" Equation (2-1) includes terms describing the thermal

conduction from adjacent node points (ki_%/AXil); surface

4
.T radiation (atiU ); and the heat rate due to aerodynamic

13
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forced convection as obtained from the heating model (q

Coefficients with subscripts which are less than one or

greater than n are zero. The radiation and heat rate

terms are zero except at the surface and backface nodes.

The radiation sink temperature (U0 and Un+1) must be

specified at the surface and backface nodes. The

emissivities at the plus or minus side of the element

(ci+ and ci_) are also zero except at the surface and

backface nodes where they are assumed constant.

The solution of the system of equations (2-1) is

needed for simulation and for the parameter estimation

scheme described in Chapter III. These equations can be

solved numerically from a given initial condition by

approximating the time derivative. To insure stability

with a minimum of numerical complexity, a first order

backward difference form was chosen for the original

simulator (Refs 8,9,10):

i = (Ui(tn) - Ui(tn-i) ) /At' (2-2)

where At is the time step. The resulting system of implicit

difference equations must be solved simultaneously. The

surface node equation with the highly nonlinear radiation

term was solved with a Newton-Raphson iteration and

extrapolation scheme (Ref 24). A tridiagonal algorithm was

used for the simultaneous solution of the remaining difference

- equations (Ref 8,9,10).

as 1.-4
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~ Numerical solution of (2-1) has resulted in an

accurate simulation of surface and bondline temperatues

at specific locations critical for mission evaluation

(Ref 9). During initial testing and simulations, spatial

and time steps sizes were varied to investigate accuracy

(Ref 9). A spatial step of .00833 feet and time steps

of up to one second yielded acceptable results (Ref 8).

For the purpose of flight data reduction, this numerical

scheme provides an adequate simulation of the temperature

profile during transient maneuvers necessary for

estimating the aerothermodynamic environment.

The environment to be identified thus consists of

unknown parameters given in Equation (2-1). The value of

the radiative emissivity, e, although thought to be

approximatley .85, may degrade over the period of flight

time and is known to vary with surface location and temper-

ature. Thus, because of its importance in the surface

boundary condition, it is desirable to estimate this para-

meter. Unfortunately, difficulties in estimating this

parameter in many cases cause the nominal value to be used

(Ref 10). The thickness of the surface coating, Ax A# may

vary significantly from its specified value of 15 mils due

to the imprecise manner in which it is applied and is thus

treated as unknown. The thermal conductivity factor, (DB'

although generally assumed to have a value of unity, ma~y

4. 15



vary with local tile pressure and thus can be considered

a candidate for estimation. Finally, the parameters

that determine the heating rate (q) as described in the

next section, are estimated.

.2.3 Heating Model

I . Heating models for several specific points on the

Orbiter have been developed for the AFFTC simulator and

the HEATEST program (Refs 1,8,9,10) to determine the

heating rate (q) in equation (2-1). Because of low

J4 ~material conductivity, it is assumed that this heating

p "rate is, however, dependent upon changes in the vehicle

attitude, trajectory, and atmosphere.

Nondimensionalizing ty a reference heating rate, qr,

partially accounts for the heating rate dependence on the

trajectory and atmosphere. The NASA method of calculating

a reference heating rate for a one foot radius sphere was

used as follows (Ref 20):

qr = 17700 p (V./104)3.07 (1hw/ho) (2-3a)

hw W .24 (qr/(oe)) .25 (wall enthalpy) (2-3b)

= 24T +V/50063(stagnation enthalpy) (2-3c)

"j.::
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where the characterizing free stream variables are density

(pm), velocity (V,), and temperature (T,). Alternative

reference methods to account for other effects have also

been establihsed (Ref 8).

The dependence of the heating rate on parameters

other than those included in the reference heating rate

are summarized by the static transfer relation or

heating ratio, f(p). These parameters include body

location (ie. there is a unique f(p) associated with each

control point); angle of attack (a); sideslip (s); control

surface deflection (6e' elevon; 6bf' bodyflap); Reynolds

number (RE); and free stream Mach number (M,). Typically,

the heating ratio has been cast in linear perturbation

form (Ref 7):

f(p) = q/q = q0 + q a(c-a 0) + q$(B-Bo) + qRE(RE-REo)

+qe(6e eo ) + qbf bf - 6bf ) + qMC (Moo-Mo)0 0

(2-4)

where q0 is the magnitude of the heating rate, q, at the

reference conditions specified by the zero subscript on

each variable. The subscripts on the heating rate

indicate partial differentiation or slopes with respect

to each variable. These "heating derivatives" are

assumed to be locally constant for short time durations,

similar to aerodynamic derivaties used in stability

17
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theory. The heating derivatives are generally unknown

and are appropriate for parameter identification.

In the presence of geometric nonlinearities, flow

irregularities, and other unmodeled effects, the

heating ratio may not be adequately described by a

locally linear function of the form given in (2-4).

To account for nonlinearities in the heating ratio,

a new model has been developed. This model, derived

from Lagrange interpolation theory (Ref 3,18), assumes

a heating ratio that is piecewise linear with respect to

the variable of concern (angle of attack for the case

shown):

q0 + ql(a-ao) + f(8,RE,S,M) a<L 1

qo + qal(a-o0 + q a2 (a-al) + f(a,RE,S,M) al<<a 2

f(p) =.

q + q al(-a) + " + qan(a-an) + f(B,RE,6,M)

.<a n-1  (2-5)

where the derivitives, q 1' q 2' q n' and the break points,

al,a 2 , ..., an, are assumed constant for the maneuver

duration.

A more detailed description and development is given

18



in Appendix A. Also presented are model sensitivity

equations needed for the estimation process of Chapter III.

Typically, the derivatives, qai, and the break points or

"knots", ai, are unknown and should be estimated. However,

as discussed in the Appendix, difficulties may occur in

estimating the locations of these break points and it may

be necessary to specify them directly. For flight

maneuvers with relatively small angle of attack sweeps,

this approximation may not prove restrictive.

With the heating model thus described, a vector of

unknown parameters may be defined for use in the system

identification scheme of Chapter III. These include the

radiative emissivity, c; the surface coating, AXA; the

0 thermal conductivity factor, (DB; and the heating model

derivatives contained in f(p). This parameter vector,

-, is given by

E(,AXA, Bqo,qa...,qna

qs~q6e,q6 bf qRE qM_

2.4 Stochastic Models

The heating and thermal models presented thus far are

complete for use in aerothermodynamic simulation. However,

for accurate identification of the aerothermodynamic

4.

19

p-%5-



environment, stochastic processes must be introduced

to account for uncertainties in the modeling process,

estimation scheme, and measurement methods. The

resulting stochastic models are established in linear

state space form and are amenable to state and

parameter estimation.

Initial conditions for the temperature vector,

u (t), are given by the stochastic equation

(2-5)0(t) = --o + Y--5

where uo is the initial state vector; and the initial

error (.1) is assumed to be a zero mean Gaussian

process with an initial covariance matrix given by (Ref 8)

P = 2 ui(to)Uj(to) Ru (2-6)

where IC represents the normalized deviation in initial

temperatures and fiJ defines the spatial correlation

between node points. The error model for the stochastic

process (y) is assumed to be stationary and spatially

distributed with zero mean and covariance given by (Ref 8)

R ij = exp(-Z RCL/OTR) (2-7a)
ii=i

RCJL = Pia AX I/K 1 (2-)

where the subscripts i and j refer to the thermal nodes.
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The constants p K,c,,K, and AX are as defined

previously for equation (2-1). RC is a thermal

conduction time constant, analogous to that of

electrical circuit theory, and represents an approximation

to the amount of time (in seconds) that it takes a heat

pulse to affect a given node point. The time constant is

nondimensionalized by a characteristic time, *TR' which

represents a scaling factor for spatial correlation.

For the state estimation scheme described in

Chapter III, a linear form of the diffusion model is

needed, specifically for covariance propagation. By

quasi-linearizing the nonlinear boundary term of (2-1)

(Ref 9), a linear state space description of the

temperature profile may be given as

a(t) = A u(t) + B + W(t) (2-8)

where u(t) is the n-dimensional state vector representing

the temperature profile at time t; A is an n x n tridiagonal

matrix of material properties; and B is an n-dimensional

vector containing the heating rate parameters and the

quasi-linearized radiation terms of Equation (2-1). W(t)

is a n-dimensional, white stationary Gaussian process

with statistics given by (Ref 1).

E{W(t)} =

E{W(t) W (t')} = Q(t)S(t-t') (2-9a)
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.''-~* where S(.) is the delta function and the strength term

is given by (Ref 9).

2 2 2

NME + N ) Rij Ueq

2 2 2
Q LI +R i1 .j~1

"ij M ME BN ij eq I

2- 292

The constant BN is the normalized deviation of the

heating rate at the boundary and ME is the normalized

deviation in the heat flux due to model error. U iseq

an equilibrium temperature calculated from q assuming

no conduction.

Measurements made by thermocouples embedded in the

TPS can be described by

=(tn H U(tn) + Rn (2-10)

where y is an m-dimensional vector of thermocouple measure-

ments and H is an m x n matrix defined by

1 if u corresponds to Yi
Sij =

0 if uj does not appear in yi (2-11)

The error term pn includes thermocouple noise and

instrumentation errors, especially quantization problems

associated with an 8-bit data word length. All thermo-

couples are independent of each other and the model
.. '4,

' -" processes (Ref 1). The error term is thus assumed to be
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* . a stationary, white Gaussian noise process with statistics

(Ref 1):

E{Pi} 0

E{-i T  Rij6 (i-i) (2-12a)

The strength at each measurement j is given by

Ri 2 y 2(21b
R .meas j(2-12b)

where the constant meas is the normalized deviation of

the thermocouple measurement.

2.5 Summary

The mathematical description of-the Space Shuttle TPS

0 is given by the thermal model of Equation (2-1). The

unknown surface heating rate due to aerodynamic forced

convection is described by the enhanced heating model of

equation (2-5). This new model provides a method of

considering nonlinear heating rates. Additional information

about the reentry environment is provided by noise corrupted

*i thermocouple measurements obtained from the OFT program.

Combining the mathematical models, set in the stochastic

-; context of Section 2.4, with the flight test data may be

accomplished through the adaptive estimation process

developed in the next chapter.
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III. Identifying the Aerothermodynamic Environment

3.1 Maximum Likelihood Criterion

Once the TPS-aerothermodynamic model has been

formulated, the problem then becomes one of finding

the "best" estimate of the aerothermodynamic environment

parameters (e,AXA,$B,f(p)) based on a specified trajectory

estimate and thermocouple measurements. The solution of

the general problem of simultaneously estimating para-

meters and states iA developed in detail by Maybeck (Ref 15)

and will serve as a basis for the solution of this parti-

cular problem. The technique described employs a maximum

likelihood estimator that is found to be asymptotically

0 sufficient and unbiased under general conditions.

The "best" estimate of the aerothermodynamic para-

meters at any given time is the estimate that maximizes a

specified likelihood functions may be chosen, a preferable

form is given as (Refs 1,15):

f, u(ti),LtA (.ype (3-1a)

where (3-1a) is the joint probability function of the

* state, U(ti), and the measurement time history, X(ti),

conditioned on the parameter vector E. The temperature

profile at time ti is contained in u(t.) and H contains

the set of unknown parameters. The measurement time

history is given by Y(ti), while yi is the set of realized

24



.--"measurement values (Ref 1):

(ti )  = [U~ ,2(ti), ... ,I Un(ti)]

= [ ¢,AXAtBI the parameters in f(P)

and e are dummy values corresponding to u(ti) and

respectively.

The form of (3-1a) is desirable because it contains

the necessary state and parameter information of other

forms (Ref 15). Additionally, (3-1a) retains a

dependence on initial temperature statisitcs which are

available and lead to an improvement in estimation

performance (Ref 1,15).

Through repeated applications of Bayes' rule, (3-1a)

may be expressed directly as a product of Gaussian

densities (Ref 1,15)

if ( i)Z~i) E f(ti)IX(t ),jnl f ~ j I(-1),= (3-1b)

Writing each density in its explicit Gaussian form

motivates a redefinition of the likelihood function. By

taking the natural logarithm of (3-1), the likelihood

.o2
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function may be redefined as:

-~L _E~ iIn f U(t.),~. (3-2)

Since the natural logarithm is monotonic, the maximum

of (3-1) will occur at the same values of EF and u(tj)

as he axmumof(3-) These optimal values may be

found by simultaneously solving for the roots of the

grandients of the likelihood equations:

VL 1,,e; 4) I.u*(t.) =0 (3-3a)

7eL (j,e;i)jI- u* (ti) 0 (3-3b)

e |

The solution of (3-3a) may be found by substituting

the Gaussian form of (3-1b) into (3-2) and solving

according to (3-3a). The result is given by (Ref 1):

u*ti t)I = E {R(t ) t.Y(t)= .Ie* (3-4a)

with associated covariance

A Al

as tel maxmu o~ (-2). Thes otia va.e may (te

Y)(3-4b)I

Maybeck, (Ref 15), shows that this maximum likelihood

estimate at time tis given by a Kalman filter algorithm

01

with the optimal parameter estimate values replacing
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". the nominal parameter values in the required propagations.

Simultaneous solution of (3-3b) and (3-4a) is

generally not possible in closed form, hence an iterative

process must be used. This technique is developed

further in Section 3.3.

3.2 State Estimation

Estimation of the temperature states involves solving

for the conditional expectation in equations (3-4). The

general theoretical development of the solution process is

discussed in detail by Maybeck (Ref 15) and Jazwinski

(Ref 12). The resulting Kalman filter algorithm is

presented here with specific equations relevant to the

estimation of the temperature profile.

The nonlinear nature of the combined thermal/heating

model dictates the use of a (nonlinear) extended Kalman

filter for state propagation as follows. Given the a

posteriori statistics

(t+  E {u(tiY(t) = (3-5a)

i

P(t)i = E {(u(ti) - 1(t )) (R(ti) - (ti)) TIY(ti ) =i}

(3-5b)
the a priori expectation

(ti+l) E {u(ti+ )I](ti) yi }

is approximated by solving

27
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-: ..j u(t) = F (r(t), qr(t)bf(y); t a (3-6)

on the interval t: < t < t .  The differential equation
A+

is initialized at each time ti by 1(ti ) = 1(ti)

provided by the previous measurement update. Equations

(3-6) represents the differential equation of the thermal

model as given by (2-i). These equations are solved

numerically as described in Chpater II.

The priori covariance is found by the matrix

equation

Pi+l) - O{ti+llti, i(; Pi ){i+l1ti, ()

ti+1

Jo f{ti+ ,t; (t+)} Q(t) O{tl, t;u(t+)} dt (3-7)

where t{}is the state transition matrix derived from the

linearized model (2-8) of equations (2-1) evaluated at

U(ti) (as an approximation for U(t/ti) for te {ti,ti+l})

(Ref 1):

tiiY; (t) = L{t;U(ti)}{t,y;(ti)

A +  + u
L{t;(t}

_ V(t - F(u(t), qr(t), f(p);e)lu(t) = u(t.)

e6= H* 1
Sagstetter (Ref 20) presents the details of the numerical

solution of equation (3-7) to obtain an approximate a

priori covariance.

+
The a posteriori expectation, u(ti+i), and covariance,
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P[ti are determined by optimally combining the a priori

value with tile measurements taken at time ti+ I. Since the

measurement process is linear, the Kalman update equations

reduce to those of a linear Kalman filter

^(ti+) (t + K(ti+) Jyi+l - H u(ti+l)} (3-8)

where the Kalman gain, K(ti), is given by

K(ti+I) = P(t +I) HT {HP(ti+I)HT + R}I (3-9)

The a posteriori covariance is given by the Joseph form

as

P(t++,) = {I - K(ti+l) H} P(t-+l) {I - K(ti+i) H}T

+ K(ti+1 ) P(t +1) KT(ti+1) (3-10)

It should be noted that the approximate a priori

covariance obtained through the use of the linearized

state transition matrix influences the a posteriori

expectation through the Kalman gain (3-9). The Joseph

form is used in the update equation because it is less

sensitive to errors in this Kalman gain than the standard

form (Ref 15). In addition, the symmetri- roperties of

the additive matrices in (3-10) provide better conditioned

numerical computations (Ref 15).

The equations used to generate the expectation, (3-6)

4'
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and (3-8), assume known values for the parameters E The

estimator thus uses the best estimate of E currently

available from the parameter estimation scheme described

in the next section.

3.3 Parameter Estimation

As stated previously, the solution of equations (3-3)

resulting from the likelihood equations must be solved

using an iterative process. A Newton-Raphson technique

can be used to generate a solution for the unknown

parameters in terms of the previous best estimate (Ref 15)

^*(tiL {u(ti),*(ti);.i }-1
e(tj)= e*(t i ) -e 2

T
3L {u*(ti), e,(ti) ;Yi

Be

where L{u(ti),e*(ti);yi} is the likelihood function using

the best estimate of the temperature profile from the
A

Kalman estimator (u_(ti)) and the previous best parameter

estimate (8*(ti)). The matrix of mixed second partial

derivatives, or Hessian, in (3-11) must be of full rank

for the inversion process. Even so, the inversion of the

Hessian matrix causes the computational burden to be

enormous.

Rao provides an approximation called "scoring" which

30
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-. "~.. reduces computation and maintains accuracy as long as

the number of samples is large (Refs 1,9,15). The

approximation is that

:'.:2" ~~~ 8L{u (ti),e.(ti) ;Yi} l

.e 2  = -J{t, U(ti),e*(ti)} (3-12)

where J{.} is called the conditional information matrix

and is given by

J {ti, u(ti),e*(ti)}
i'y* IT  ^ C3-)}

E{Ve L{ *(t i),e;y i} VeL{u.(ti),ey-i} } (3-13)

In fact, it can be shown that (Ref 15)

A3 
2 L A*

i'(i }Ee 2  e =e,

so that the approximation of the Hessian for a given

measurment can well be approximated by its ensemble average

over all possible measurement time histories. With the

approximation (3-12), equation (3-11) now becomes

e*(ti) - e*(ti) + J{ti,u,(ti),8,(ti)}

L f,(ti),O*(t ) ;Zi}T

31 (3-14)
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It can be shown that the kth element of the

gradient term in (3-14) can be given as (Ref 1)
^ ^ A

aLfu*(ti),e* (ti)y ;i}k I i au(t) HT{Pt )T+R} 1

ae Hj= k )

xi - Hu(t3)} (3-15)

The kith element of the conditional information matrix

may be approximated as

"A-1 - u(t.)
-. i au(t) HT - HT  H j) (3-16)

j--

The a priori sensitivity, uek(tJ), is found by taking the

partial derivatives of (2-1) with respect to the parameter

vector for the time interval of interest:

AI A

lie k = Ckaek + Dk  (3-17a)

The a posteriori sensitivity state, U ek(t.), is obtained

by taking the partial derivatives of (3-8) with respect

to ek and is found to be (Ref 15):

8P(t.)
' e(tj= {I-K(tj)HI () + aek

k J {U k ek

x{H T(HP(t-)H T + R -I( - A t

%*

Audley (Ref 1) argues that this equation may be simplified

by assuming
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3 P(t) @P t .
Se = 0 and = 0

It can be argued that these terms contribute nothing to

a valid means of estimating parameters because the

conditional information matrix includes these partials

only in terms that are not dependent on the measurement

values (Ref 1). With this assumption, the a posteriori

sensitivity reduces to

() = {I-K(t.)H} u.(t) (3-17b)

Maybeck (Ref 15) arrives at the same form as (3-17b) by

neglecting less sensitive terms and retaining only the

highly sensitive weighted least squares type terms.

The sensitivites are calculated throughout the

measurement time history so as to update the running

score vector and the conditional information matrix. With

this information, an optimal estimate may be found using

(3-14).

Information regarding the uncertainty of the parameter

estimates found from (3-14) may be found from the Cramer-

Rao inequality (Ref 1,2,5,15). In the case of unbaiased

estimates, this inequality relates the conditional

information matrix to the covariance of the parameter

estimate.
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*1

- coy {* = E{ e* - e e*-e

J tiu-(ti)1e ,  (3-18)

where e is the true value of the parameter vector. Thus

the inverse of the conditional information matrix as

approximated by (3-12) can be used to construct a lower

bound for the uncertainties in the parameter estimates.

3.4 Algorithm Summary

The operational algorithm incorporating the state and

parameter estimators as developed in this chapter is

II summarized by Figure 4 and serves as a basis for the

HEATEST program. The primary mode of operation is to

process recursively a short segment of the reentry

trajectory. Transient flight test maneuvers of short

duration (30-90 seconds) provide data which is processed

to yield estimates of model parameters as follows.

Initial conditions for the temperature profile,

R(to) , are either specified or obtained by processing data

up to the start of the transient maneuver, while the

initial covariance, P(t0), is specified at maneuver start.

Initial sensitivities of the state are specified to be

zero or are obtained from prior processing. The state

estimates, covariance, and sensitivities can be solved

°. VO
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throughout the maneuver history by incorporating the

measurement data. The value for the unknown parameter

vector,, is the best prior value, either from the

previous pass through the maneuver data, a preflight

value, or a value generated in conjunction with the

initial conditions.

Once the maneuver data has been processed, a new

estimate may be found for the parameter vector. Since

the estimate is based only on the singly processed

maneuver, repeated iterations are necessary for covergence

to some optimal estimate, e, e,.
CAs an improvement to the original algorithm, initial

conditions may be processed with each iteration through

a smoothing estimator which enhances the initial values

4. based on the maneuver data. This estimator, which can

be used to backward-process measurements from tf to to,

is developed in detail in the next chapter.

36

.5



IV. Initial Condition Smoothing

4.1 Smoothing Techniques

Results using the HEATEST program have sometimes

been affected by the imprecise manner in which the

initial conditions are generated (Ref 8). To alleviate

this problem, Audley and Hodge (Ref 1) suggest the

S.' incorporation of some type of smoothing algorithm to

enhance initial values of u(t 0) and P(t 0  based on the

maneuver data.

The general smoothing problem is that of predicting

the state at any given time based on "future" measure-

ments, in addition to the past and present measurements

normally considered in a conventional filter. Thus, the

state estimation scheme incorporates measurements from

the entire history. More detail on the general smoothing

problem is given by Maybeck (Ref 15), Meditch (Ref 16),

and Fraser (Ref 6). Although there exist many classes of

* 4 smoothers, two were considered for implementation in the

HEATEST program: the "fixed-interval smoother", for

smoothing the state estimates throughout the measurement

history; and the "fixed-point smoother", for smoothing

only the initial states.

Fraser (Ref6) shows the general fixed-interval

* smoother to be a combination of two optimal filters. A
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forward filter, formulated as the standard filter

already implemented in the identification algorithm,

would calculate state estimates based on measurements

from the initial time, to, to the current time, t :

R(t+) = E{u(ti)Iz(ti,ti) = Z. i} (4-1)

A backward filter is run independently from the final

condition, tf, to time ti, so as to incorporate "future"

measurements

.b(ti) = E{u(ti)-y(ti+i tf) = i+lf} (4-2)

A A

where the notation ub(ti) denotes the estimate of u

provided by the backward filter just before the measure-

ment at time ti is incorporated. The results from these

two filters are then combined in an optimal manner so as

to provide a smoothed state estimate at time tV. "Better"

state estimates throughout the measurement history would

be expected due to the smoothing process.

A fixed-point smoother, rather than smoothing the

states at each point in time, is constructed so as to

smooth only one point in time at which the values of the

system state is considered critical; i.e. the initial

time for the problem at hand. A forward filter is run

in the same manner as the forward filter described above,

38
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but as new data becomes available, the measurement
information is propagated back to the critical point

(initial condition) to provide an updated (smoothed)

estimate

(to/t) = E{u(to)(t } t = tot ...,tf (4-3)2Oj 0 /t .j o~~ 1'... f ~

Ideally, to solve this particular problem, the

backward propagation of information for either smoother

would incorporate a nonlinear or extended filter of the

form used in the forward propagation (Section 3.2).

However, the solution of Equation (2-1) bakcward in time

has been shown to have unstable properties and in general

is difficult to solve (see Appendix B for a further

discussion). Therefore, the linearized form of the

state transition matrix given in Equation (2-8) will be

used. Development of both smoothers incorporates this

form and is described in the following sections.

4.2 Fixed-Interval Smoothing

Maybeck (Ref 15) provides details of the development

of the fixed-interval smoother which will be summarized

here. First, the forward filter is applied up to the

current time, ti, incorporating the measurement to
A +

provide a state estimate, u(t +). The existing extended

Kalman filter described in Chapter II can be used for this
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•2~ *p' purpose.

An independent backward-running filter may be

formulated as an inverse covariance form. This form

provides a priori statistics at the final time, tf,

that cannot be obtained by the conventional form.

Additionally, this form insures stability of the back-

ward filter (provided the linearized state transition

matrix is used) since the forward filter is stable. If

the states in the backward direction are denoted-ub(ti)

and Pb(ti), then the inverse covariance form is given as
A -1

-bmPb lb and Pb (ti. Initialization occurs at the final

time as given by

Mb (tf) =0 (4-4a)

Pbl(tf) = 0 (4-4b)

Estimation propagation backwards in time to the preceding

measurement time is given by

S= (t t )L(t x(tk)B(t } (4-5a)
Mb(tk-l) k- lb k~kJ~k -Dt'k-l'

b (tk_1) = T (tk,tk-1) {L(tk)p(t)L (tk)

)-1 T

+ J(tk)Q-jT(tk)} (tktkl) (4-5b)

where

J(tk) 1 Pbl(tk) { 1 (t+ ) + Q-1 1 (4-5c)

40
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L(tk) = I - J(tk) (4-5d)

The time indices on the state transition matrices

indicate backward propagation of adjoint system relations.

Measurement updates of the backward filter are generated

by

2(tk) Ab(tk) + R -i (4-6a)

Pb1 (tk) = Pb1(tk ) + HT R-1H (4-6b)

Equations (4-5) and (4-6) are recursively for k=f, (f-i),

(i+l) to generate ?Eb(ti).

Combining the estimates from the forward filter,

u(tT) and P(ti), and those of the backward filter, xb(ti)

and Pb(ti), can be accomplished by

A^

u(ti/tf) = X(ti) u(t+) + P(tItf) b(ti) (4-7a)

P(ti/tf) = Z(ti) P(t+) zT(ti) + W(ti)Pb1 (t)WT(ti)

(4-7b)

where
-1

X(ti) = {I + P(t+) Pbl(t)} (4-7c)

W(ti) = P(ti-x (4-7d)

Z(ti) = I - W(ti) Pbl(ti) (4-7e)

The optimal smoothed estimates are now given by U(ti/tf)
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and P(ti/tf). Computationally, this process can be

achieved by first running the backward filter over the

entire interval and storing values of and (tk).

Next, the forward filter is run simultaneously with the

smoother relations of (4-7) thus generating smoothed

estimates at each sample time, U(ti/tf) and P(ti/tf).

4.3 Fixed-Point Smoothing

The optimal fixed-point smoother for a general point

is given by Meditch (Ref 16) and Maybeck (Ref 15). The

smoother relation is run concurrently with the Kalman

filter of Section 3.2 and is given by.1 ^

u(to/tj) = R(to/tj l) + W(t.) K(t) Ty - H u(t.)} (4-8)

where u(t0 /ti) is the smoothed initial state based on
A +

measurements through time tj, u(tj) and u(tj) are the a

priori and a posteriori values of the state at time t. as

obtained from the Kalman filter; yj is the measurement at

time t H is the measurement matrix given by (2-11); and

K(tl) is the Kalman gain matrix given by (3-9). Equation
, A

(4-8) includes a residual term, {yj - Hu (t-7)}, available

directly from the existing forward filter (3-8). Thus

it can be interpreted as a means of "reflecting back" the

information contained in the filter residual at each time
t about the initial state value at time, t (Ref 15).

S;4
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*. '>'4 The smoother gain matrix W(t.) is defined to be

A j-1
W(t.) = kHO A(tk) = W(tj-1 ) A(tj-l) (4-9a)

A

A(tk) = P(tk) ((tk+ltk)P-(tk 1) (4-9b)

where 0 is the linearized transition matrix; and P(t)

and P(tk+l) are the a posteriori and a priori covariance

at time tk and t k+ respectively.

An approximation for the error commited by this
A A

estimator, {u(to) - u(t /tj)}, is to consider it Gaussian
-03

and zero mean for all j, with covariance

P(t /tj) = P(t /tj) + W(t.) {P(tt)-P(t.)} wT(t) (4-10a)
0 j0 3- 3

or -T
:4 P(to/t) = P(to/t j - W(tj) K(tj) H P(t) wT (tj) (4-10b)

The smoothing algorithm is initialized by

AA

u(t0 /t) = u(to) = - (4-1a)

P(t /t ) = P(t ) (4-11b)

To avoid the inversion of the n x n matrix, P(tj),

of Equation (4-9b), Fraser (Ref 6) provides an alternative

form which requires only the inversion of the m x m

diagonal matrix R of (2-12),
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U(to/t.) U(to/tj) + W(tj) HTR -1  - Hu(t)} (4-12)0 = 031 {Y3 -

where W(tj) is now generated by means of the recursion

W(t) = W(tjl) 1 (tj tj_l) {I-S(tj)P(t )} (4-13a)

S(t) HT R-1  (4-13b)

starting from

W(tj) = P(t ) (4-13c)

Again the residual term available from the forward filter is

*found in Equation (4-12) and provides the means for

reflecting measurement information back to the initial time.

The error covariance can be computed as

P(t o/t ) -- P(to0/tj_ 1 ) -W(tj) {S(tj)P(tj)S(tj)}

+ S(t.) WT(t.) (4-14)

The smoother algorithm is initialized by Equation (4-11).

4.4 Smoothing Algorithm

Although the fixed-interval smoother provides smoothed

estimates throughout the time history, it adds a signi-

ficant amount of computational complexity when compared

with the fixed-point smoother. For the HEATEST Program,

this is a major concern. The main objective is to find

better estimates of the initial conditions, and since the

.- 4
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existing Kalman filter provides satisfactory estimates

throughout the rest of the time history, a fixed-point

smoother is adequate. Thus the Fraser fixed-point

smoother of Equations (4-12) - (4-14) has been

incorporated into the estimation algorithm.

An important consideration in the operation of this

smoother is the length of the smoothing interval.

Because of the use of the linearized state transition

matrix to reflect information backwards, errors caused

by this approximation and other model uncertainties may

increase if smoothing is conducted over a long time

interval. Thus, it may be necessary to restrict the

number of sample measurmenets that are included for

*smoothing.

One criterion for the smoothing interval may be the

RC time constant analogy mentioned in (2-7). The

approximation is that a step input in the heating rate

at the surface will propagate to the interior according

to

RC P c~ x 2K

where the RC time constant, RCV, is in units of seconds and

x is now the distance from the surafce. A node is

expected to reach 98% of its assymptotic temperature within

an amount of time given by three time constants using this
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2 analogy. Since the heating rate at the surface is

actually nonlinear, smoothing beyond a time interval

described by this time constant serves to propagate

errors from the linear state transition matrix assumption.

Thus a smoothing interval of three time constants is

used for the smoothing interval at each node point.

Perhaps a better alternative may be to consider

the eigenvalues of the system for calculating the

smoothing interval. However, since theSchur method of
%

decomposition is used for calculating the state transition

matrix (Ref 20), the eigenvalues are not directly

available from the program. The added burden of calcula-

ting these eigenvalues is unwarranted for this application.

0 Operationally, the updated HEATEST Program provides

an option to use this time constant analogy or to specify

a desired interval. Additionally, the smoother may be

"shut off" completely when initial condition smoothing is

not desired.

4.5 Summary

The fixed-point smoother algorithm provides an

efficient and computationally tractable method for

estimating the TPS temperature profile at the start of

a given maneuver. Incorporation of this smoother into the

adaptive estimation scheme is shown in Figure 4. The

current HEATEST program now contains this smoother, as

.4..6
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well as the enhanced heating model described in Chapter ~. I* 
TTTesting and application of the improved scheme is

described in the next chapter, along with analyses of the

results.
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V. RESULTS

5.1 Approach

To validate the improvements incorporated into the

HEATEST estimation scheme, it is necessary to apply the

program to realistic simulations and actual flight data.

Simulated thermocouple measurements can be generated for

specified heating models and initial conditions. With the

true value for the parameters and initial condition known, a

simulated estimation using the updated HEATEST program can

be compared to the known values. Additionally, linear and

' nonlinear forms of the heating model may be contrasted to

show the flexibility of the new form. For flight data, veri-

fication of the enhanced heating model can be continued by

applying it to STS-2 lower surface measurements where previous

results are adequate and available. Since the lower surface

is expected to have a linear heating rate, similar results

should be obtained with both linear and nonlinear models.

STS-2 OMS pod data provides a good opportunity to apply the

scheme to an area with a nonlinear heating rate. The new

model also enables a further investigation of the time skew

problem due to the possible nonisothermal wall effect on the

OMS pod. For initial condition estimation, simulations with

known initial conditions can also be conducted and the RC time

constant approximation for the. smoothing interval can be
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verified. Application of the smoother to STS-4 lower surface

-~ data, where a telemetered data loss occurred and initial con-

ditions are uncertain, can provide information concerning a

possible Reynolds number or Mach effect during the Mach 12

POPU maneuver.

The results for these cases, given in Appendices C - F,

include parameter and state estimates, along with some measure

of their uncertainty or accuracy. For parameter estimates,

an uncertainty bound is derived from the Cramner-Rao Bound

described by Equation (3-18). Thus, this does not represent

an absolute measure of uncertainty, but can be used for com-

parison purposes. For state estimates, an average error is

presented which represents the average deviation of measure-

ments and a priori estimates. This describes how well the

model "fits" the thermocouple data. Because thermocouple

accuracies vary for each flight condition and location on the

Orbiter, this measure is useful only for comparisons of runs

made with the same data. Finally, uncertainties of smoothed

initial conditions are described by the variance, which is

calculated from the smoothed error covariance matrix.

Two types of thermal models were used in obtaining these

results. The lower surface model includes a plug of thirteen

node points with thermocouples located at node points 2, 5,

8, 11, and 13. The OMS pod includes ten node points with only
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a surface thermocouple located just under the coating thick-

ness at node 2. For both models, thermocouples provide

measurements at a sample rate of one per second.

5.2 Heating Model Simulation

The lower surface thermal model was combined with two

segment and three segment heating models to generate a non-

linear response, similar to that which might be observed on

the OMS pod. Trajectories from the STS-2 Mach 20 Pushover

Pullup maneuver were used to generate the simulated thermo-

couple data. Eight-bit word noise of the temperature data

was not simulated, but could be added for an even more real-

istic simulation. Results described in this section are given

O in Appendix C.

.11 Simulated thermocouple data, along with the a priori

-p temperature estimates of the HEATEST program, are given in

Figure C.1 for the two segment model simulation. The predict-

ed heating model is depicted in Figure C.2. These parameter

estimates, as shown in Table C-i, provide good agreement with

the actual specified values. Any discrepancy may be attribu-

ted to approximate initial conditions that were used for the

estimated case.

Exact initial conditions were used for a three segment

model simulation and the results shown provide better accuracy.

For this model, one, two, and three segment estimates were
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obtained as given in Table C-2. It should be noted that the

heating derivatives represent slopes of each linear segment

N and as such cannot be compared directly for different models.

Rather, the heating ratio itself at specified angles of

attack should be contrasted for the various models, as de-

picted by Figure C.4. As expected, the multiple segment

models provide more accurate results as indicated by the av-

erage error of Table C-2, with the three segment model pre-

dicting the specified values exactly. However, parameter

uncertainty bounds tend to increase with the multiple segment

models. This can be attributed to the approximation used for

4 calculating the sensitivities at the knots or break points,

as well as an increase in the number-~of parameter estimates

or "degrees of freedom" of the scheme. The high uncertainties

of the break point estimations for the three segment case in-

dicate that difficulties may be encountered when estimating

these points with noisy data and rapid transients. By fixing

these points and thus reducing the number of estimated param-

* eters, uncertainty bounds decreased by 50 - 55% (Table C-2.B.).

Another important result shown in Table C-2 concerns the

coating thickness of the one segment estimation case. A

larger coating thickness with a high uncertainty bound is

predicted for the nonlinear data used. This implies that

the linear perturbation model attempts to account for non-

linear heating ratios by estimating a larger coating thickness.
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This would explain some of the large coating thicknesses

obtained in previous flight data results (Ref 7,8,9). By

specifying the coating thickness, as in Table C-2.B., a

smaller average error may be obtained.

Figure C.4 provides a graphic comparison of the one,

two, and three segment estimations of the three segment model.

The one segment interpolation represents the linear pertur-

bation model assumption as contained in the original HEATEST

program. This model attempts a linear best fit, which can be

grossly inaccurate for highly nonlinear heating rates. Mul-

tiple segment piecewise linear models provide a much better

fit as shown in Figure C.4.

0 5.3 Heating Model Flight Data

The updated heating model was applied to STS-2 flight

data at the Mach 20 Pushover Pullup (POPU) maneuver for both

the lower surface and OMS pod. Results for these cases are

given in Appendix D.

The heating ratio for the lower surface is expected to

be fairly linear with changes in angle of attack (Ref 10).

Results from STS-2 data using the linear perturbation model

have been good (Ref 7). Application of the multiple segment

interpolation model should reproduce this result. Figure D.2

compares the heating ratio estimated assuming one, two, and

three segment models. The results are similar and the multiple
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* .. ~ segment models predict an essentially linear heating ratio.

This proves the validity of the linear perturbation assump-

tion for the lower surface.

* In previous analyses of the OMS pod, nonlinearities

were accomodated by processing the data in small time seg-

ments (Ref 7). Typical results are shown by Figure D.4,

which uses data processed in four time increments. This

figure shows that the linear perturbation assumption is not

4 valid throughout the entire maneuver. The entire maneuver

can be processed, however, by applying the new heating model.

Two and three segment interpolation models were used for the

heating ratio estimates given by Figures D.5, D.6, and Table

* D-2. Results obtained with these models agree well with

previous results. In general, improved performance is

obtained from the interpolation forms. The average error

of the three segment model shows a 10% improvement over

that of the original model, while the two segment model

shows a 30% decrease. The better performance of the two seg-

ment model over the three segment model can be attributed to

a reduction in the number of estimated parameters and the

adequacy of the two segment form.

A major problem in previous OMS pod results was the

identification of a three second time skew, which may be

4 caused by the nonisothermal wall effect (Ref 9). Thermo-

couple samples were lagged by three seconds to enable data
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correlation and eliminate hysterisis in the heating ratio

profile. An investigation of this problem was conducted

using the new heating model. The advantage of the new

model in investigating this problem is that an estimate forI

the coating thickness may be obtained for the entire maneuver

interval and data correlation is easier.

Table D-3 compares heating parameter estimates for var-

ious time skews using a two segment model. For adequate

results, it was necessary to estimate the coating thickness,

AX A, and the sideslip heating derivative, q,. Figure D.7

shows the increase in heating with decreasing time skews.

Figure D.8 compares estimated coating thickness, as well as

sideslip heating derivatives, for various time skews. Unus-

ually high coating thickness predictions were obtained for

smaller skews. Although large thicknesses may be expected

due to repairs of the OMS pod prior to STS-2 (Ref 9), esti-

* mations for zero and one second skews are unreasonable.

Thus, time skews are shown to be necessary for reasonable

prediction of the coating thickness. In addition, the esti-

mated sideslip heating derivative, q ,decreases with time

skew as does the uncertainty of the predictions.

Since an approximate value for the coating thickness for

this flight was virtually unknown a priori, the magnitude of

the necessary time skew is difficult to determine. To iden-

tify the magnitude of the time skew, the average errors of
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temperature predictions for various time skews are shown inU Figure D.9. Although previous analysis has indicated a
three second skew, this figure indicates that a two second

skew may be desirable. The coating thickness predicted by

a two second skew is high, but may not be unreasonable. A

conservative approach may be to identify the time skew as

having a range of possible values from two to four seconds.

5.4 Simulation With Initial Condition Estimation

For testing the fixed-point initial condition smoother,

a simulation of STS-4 lower surface data with known initial

* *. conditions was generated (Figure E.1). Poor initial condi-

* . tions were used to initialize the smoother and final smoothed

conditions at each node were compared to the actual initial

temperature values. Simultaneous parameter estimation was

conducted to evaluate the feasibility of using the smoother

in an adaptive estimation setting.

Table E-1 shows the final smoothed conditions after six

parametcr iterations. In addition, the final parameter esti-

mates are shown. Comparison to the actual model and initialUconditions is excellent and provides confidence in the valid-

ity of the smoother.

To anlayze smoother performance more explicitly, Figures

E.2andE.3 indicate the degree of smoothing wihincreasing

sample periods for the first parameter iterat-'on. For

thermocouple node points (Figure E.2), the smoother quickly
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converges to the final smoothed values. For node points with-

out a thermocouple, convergence is much slower, but well within

the three time constant approximation. This indicates the

validity of using this approximation for calculating the

smoothing interval. Also, as expected, more confidence is

obtained for thermocouple node points as indicated by the

smoothed variance values.

5.5 Flight Results With Initial Condition Estimation

An important application of the initial condition smoother

is to analyze the data from the lower surface of the STS-4

-~ Mach 12 Pushover Pullup maneuver. Previous analyses of this

data (Refs 1,7,8) have indicated lower heating derivatives

for the STS-4 data than obtained for the STS-2 Mach 20 man-

euver data. Loss of telemetered data from the beginning to

the middle of the maneuver complicate the analysis. It has

been determined that transitions to turbulent flow and then

back to laminar flow occurred during this da'.a loss (Refs5 1,

.4" 7,8). However, it is unknown whether the lower heating ratio

estimates are a result from some unmodeled Mach or Reynolds

number effect or from inaccurate initial conditions at the

start of the processed data. Audley and Hodge (Ref 1) indi-

cate that an initial condition smoother would resolve this

discrepancy.

Thermocouple data processed in the middle of the maneuver

is presented in Figure F.1. Smoothing was applied to the
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approximate inital conditions used in previous analyses. Con-

vergence for the smoothed initial temperatures, shown in Table

F-1, was obtained. The higher temperatures just below the

surface (Figure F.2) indicate heat storage that would be con-

sistent with flow transitions. Although overall comparison of

the heating ratio estimates from STS-2/STS-4 during laminar

preictd fr te SS-4maneuver (see Figure F.3). This, then

does indicate the presence of an unmodeled Mach or Reynolds

number effect, since the uncertainties about the initial con-

ditions have essentially been eliminated.

5.6 Summary

Results from both simulated and actual flight data show

4'5'.the flexibility and accuracy of the improved HEATEST program.

Both the nonlinear heating model and the fixed-point initial

condition smoother demonstrate excellent performance charac-

teristics. A summary of the important conclusions gained

from the results of this chapter, as well as recormmendations

for further improvements and future applications of this

scheme, are provided in the following chapter.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Areas on the Space Shuttle Orbiter with nonlinear heat-

ing rates may be successfully modeled by a piecewise linear

interpolation scheme. The feasibility of this model has been

demonstrated through applications to both simulated and actual

flight data. Problems may arise when estimating multiple

knots (break points) due to the approximation of the sensi-

tivity calculations at these locations. To avoid such diffi-

culties, these locations may be specified rather than esti-

mated and accurate results can be obtained.

Simultaneous smoothing of initial conditions with the

adaptive estimation scheme successfully provides better esti-

mates of temperatures at maneuver start and enhances the over-

all estimation process. In cases of data loss prior to man-

euver start, initial conditions can now be estimated based

on "future" data obtained after the initial time. Use of

the RC time constant approximation, as shown by simulated

cases, provides a feasible method of calculating the smoothing

interval.

Applications of the new program incorporating both the

nonlinear heating model and fixed-point initial condition

smoother have provided some useful and important results.

From simulated data, it has been determined that the original

linear perturbation heating model may estimate high values
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for the coating thickness when applied to an area with a non-

linear heating rate. Use of the improved model provides

better estimates with lower uncertainties in such cases.

OMS pod data from STS-2 can now be processed in a single

time segment for an entire maneuver history. Problems with

data correlation and hysterisis of the heating ratio profile

have been eliminated with this model. However, a time skew

in this data has been verified to obtain reasonable values

for the coating thickness and heating ratios. This supports

the theory of the nonisothermal wall effect on the OMS pod.

Lower surface data from both STS-2 and STS-4 has been

processed with the new algorithm. Nonlinear heating models

applied to the STS-2 data verify the linear heating rate

assumption on the lower surface. Estimation of initial con-

ditions of the STS-4 Mach 12 Pushover Pullup maneuver has

provided a more accurate estimation of parameters. Values

for the heating ratio are close for the laminar flow STS-2

Mach 20 and STS-4 Mach 12 maneuvers as compared with the tur-

bulent STS-4 Mach 8 case. However, the heating derivative of

the STS-4 Mach 12 maneuver remains low compared to that of the

STS-2 Mach 20 case and indicates the presence of an unmodeled

Mach or Reynolds number effect.

6.2 Recommendations

The flexibility of the new heating model may be enhanced

by improving the ability to estimate the knots of the multiple
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-~* segment model. One possibility may be to store sensitivities

for each linear segment individually as they are calculated.

As the model changes from one segment to another, these

stored values, rather than zero values, may be used as start-

ing points for the propagation of the sensitivities.

Additional modifications to the algorithm may include

placing an upper bound on the coating thickness estimate.

This would provide better parameter estimates in the presence

of the nonisothermal wall and would aid in determining the

necessary time skew. Also, direct incorporation of the non-

isothermal wall effect into the scheme is desirable.

For the initial condition smoother, the use of the RC

time constant approximation for the smoothing interval may be

further verified by calculation of the system's eigenvalues.

A better smoothing interval may be obtained from this, but

added computational burden may not warrant it.

Application of this model to other nonlinear areas can be

accomplished. In cases where a transient other than angle of

attack is considered, minor modifications may be made to use

this model in terms of the desired variable. Such an appli-

cation can be made to elevon and body flap maneuvers.

Previous results obtained through the use of the linear

perturbation model may be verified using the enhanced model.

Lower predictions for the coating thickness may be found on

areas with nonlinear heating rates. Additionally, the improved
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" - model will provide better estimates of the heating ratio for

these areas.

The Mach or Reynolds number effect found on STS-4 should

be investigated more thoroughly. Applying Mach or Reynolds

number perturbations in the nonlinear form described for

angle of attack in this paper may provide greater insight into

a little understood phenomenon.

Another important area for use of this model is in tran-

sient heat transfer measurements made in the wind tunnel. The

HEATEST program has been used to analyze data for such a tech-

nique (Ref 11). In this technique, only one transient is con-

sidered (angle of attack) and thus lends itself to analysis

using this model. Simulations of nonlinear heating rates may

be conducted in the wind tunnel, with subsequent analysis

using the HEATEST program. This technique will aid greatly in

the understanding of the flow phenomena on the Space Shuttle

Orbiter itself.

6.3 Summary

As the data reduction of the Space Shuttle flight test

program progresses, the enhanced HEATEST program should pro-

vide AFFTC and NASA with a more powerful analytical tool. In

addition to the recommendations given here, there exists a

myriad of possible applications for the new scheme. Complete

knowledge of the reentry aerothermodynamic environment is

' .- necessary for landing profiles to Vandenberg AFB and elsewhere.
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. :.-: Thorough testing and analyses of all available data using the

improved program should provide the means for safe aerothermo-

dynamic envelope expansion for the Space Shuttle Orbiter.
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Appendix A

Piecewise Linear Interpolation

This section describes the piecewise linear

interpolation model for the heating ratio mentioned in

Section 2.3. The development of this model draws from

approximation and interpolation theory, details of

which are given by Davis and Prenter (Refs 3,18).

For simplicity in development, it will be assumed

that the heating ratio is a function only of angle of

attack, f(a). It will also be assumed that this function

is unknown for a given maneuver and in general is not

adequately described by the linear perturbation form

originally derived for the NEATEST algorithm. The

problem then becomes one of finding a suitable descrip-

tion for this model to be used in the estimation setting

of the identification process. The solution process is

thus unique in that it seeks to estimate an approximating

function for the heating ratio.

If the heating ratio, f(a), can be described on the

interval (a,b), then this interval may be partioned into

an finite number of subintervals described by a= 0 <a 1 <2<

*'<Cn= b. These numbers, ao,...',n' are called "knots"

in spline theory (Ref 18) and represent points at which

the behavior of the approximating function, f(a), is
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constrained. Specifically, the approximating function

will interpolate the heating ratio at these knots by

f(ci) = f(a,) for each i = 0,1,2,...,n. Davis (Ref 3)

described the Lagrange polynomials as among the simplest

and most practical of interpolating polynomials. One

:4 effective way of approximation is to piece together

Lagrange polynomials of a fixed degree and force them

to interpolate the given data (Ref 18). The resulting

function, s(a), is known as a piecewise Lagrange

polynomial of degree m:

a + a 1a + ... + ama -a <C~m

S(a) a am + 2a + .. + a2m+1 am am<a< 2m+1

a a+a c + *..+ a a m a <2m+2 2m+3 3m+2 2m-< - 3n.3n

4o

where the ai 's are constants determined by s(ai) =f(ai) ,

i = 0,1,...,n, and n is some multiple of m.

Prenter (Ref 18) indicates that an effective

approximation may be made by choosing m=1 such that the

function becomes piecewise linear

6
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a + a a a

0 . -a<a 1

S(a) = a2 + a3a

a +-act2- Ai
4 5 2:-a<a3 (A-1)

where the at's represent slopes for each line segment and

may be replaced by a descriptive form, qai" For the

purpose at hand, such a function is advantageous in that

it eliminates the additional computational burden of

higher order polynomials. In addition, it retains a

form similar to the origianl linear perturbation

0approximation and thus is easily implemented. A different

form of equation (A-i) may be written by defining a step

function, 6i(a), such that

f(a) = q0 + qal(61 (a) - ao) + q. 2 (0 2 (a) - a,)

+ ... + q an(dn (a) - an-,) (A-2)

where

a aa_ 1

6 i(a) a ai<a<a
4%

"4,a a <_a

The step function, 6i(a), represents the discontinuous
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". "'° nature of the model at the knot, a

In general, the unknown parameters in this model

formulation are the intercept, qo, the slopes, q

and the knots, a i" Note that the intercept, qo, is

the same as that given in (2-4). Often it may be

desirable to specify the location of the knots and

thus constrain the approximation to interpolate more

precisely near a given angle of attack. However, a

better fit of the heating ratio throughout the range

of angles of attack would occur when the location of

these knots is determined by the estimation scheme

itself.

*To Estimate these parameters by the method of

Chpater III, it is necessary to calculate the model

sensitivity with respect to each unknown parameter.

The derivative of equation (A-2) with respect to any

slope, qail can be given as

a = 6 (a) (A-3a)
3q 

- -By defining a different step function, ai(a), the

derivative of equation (A-2) with respect to any knot,

a may be given as

=f(a) = (a) q (A-3b)aai  - ai+l
i
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qci+ 1  i
Yi ) =

qsi 1~a

The sensitivity state in general is found by solving the

propagation equation given by (2-7):

k A

"Uk = c u + Dk
e-kk ek k

where the forcing function vector, Dk, is defined by

equations (A-3). Solving this equation requires a time

derivative of Equations (A-3). In general, the time

derivatives of the step functions, 6i(a ) andY(i(a), are

undefined due to the discontinuty at the knot, ai* Thus,

c these step functions are approximated as constants locally

in angle of attack and sensitivities are calculated for

each line segment in the model. Ths approximation works

well for calculating the slope sensitivities, but proves

more tenuous for the knot sensitivites. In cases where

the time rate of change of angle of attack is large in

the vicinity of the knot, difficulties in estimating

this parameter may be encountered.

This interpolation model was implemented into the

HEATEST with the capability of estimating models up to

four segments (i.e. four slopes and three knots).

Application is currently limited to angle of attack modula-

tion, but could be applied to any variable given in

' YYEquation (2-4) with minor modifications.
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- '~-Appendix B

Backwards Heat Equation

The use of an extended Kalman filter in a backwards

filter/smoother requires the solution of Equations (2-1)

backward in time starting from some final condition tf , to

- ~ the initial time t i. With the time derivative written as a

first order backward difference of the form (2-2) for corn-

parison with the original forward-running equations, the sys-

tem of equations become explicit in nature in the backward

scheme. An implicit form may be retained by writing the

time derivative as a forward difference of the form

0 ui = (u i(tn+l) - ui(tn ))/At (B-1)

Stability analyses show that either formulation is unstable

when solved backward in time, even though the implicit scheme

is unconditionally stable in the forward direction. In fact,

it was determined that any conventional scheme is unsuitable.

Further investigation shows this difficulty associated with

solving Equations (2-2) backward in time.

Equations (2-2) are derived from the classic parabolic

partial differential equation describing heat diffusion

ut u ,X (B-2)

where u t represents time differentiation and uxx represents
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the second partial derivative in the spatial direction. Payne

identifies the "backward heat equation" as one that is improp-

erly posed in the sense of Hadamard (Ref 17); i.e., a compat-

ibility condition is violated and no global solution can

exist. More specifically, the temperature profile at a given

point in time will not depend continuously on the data and as

such will have no unique solution.

Despite the improper posedness of the backward heat eq-

uation, attempts have been made to solve it, either directly

or approximately. Lattes and Lions (Ref 14) present the

method of "quasireversibility" which has many of the same

features as the method of artificial viscosity used in solving

fluid and gas dynamic problems. In this method, the partial

derivative operator is perturbed in order to stabilize the

problem and the limiting behavior is investigated as the

perturbation vanishes. A variation of the quasireversibility

method is the "pseudoparabolic" method of Showalter (Ref 21),

in which an alternative perturbation form is given. These

techniques are largely analytic and are not suitable for sol-

ution of the problem at hand.

Ewing (Ref 4) presents numerical results based on

Showalter's method. The backward heat equation is case in a

Hilbert space setting and is approximated by the pseudopara-

bolic or Sobolev equation. A Crank-Nicolson method is used

to solve the Sobolev equation numerically with mixed results.
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Ewing states that it would be "overly optimistic" to expect

good results all the way back to the initial time. This

alone makes this method infeasible as an initial condition

smoother.

Finally, none of these methods apply to the case of

the heat equation with the nonlinear boundary condition,

although Walter (Ref 23) mentions this case in an abstract

setting. Thus, the difficulties associated with solving the

problem at hand in a backward filter context prove enormous

and the alternative method of using the linearized form of

the state transition matrix in a fixed-point smoother be-

comes desirable.

~ii
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Figure C.I. Simulated Thermocouple Data (Two Segment Model)
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TABLE C-I Estimates for a Two Segment Model Simulation

Estimated ValueParameter Specified Value (Cramer-Rao Bound)

.A 00125 .00125
(+ .00015)

q. 05500 .05494
(+ .00360)

ql -. 00490 -. 00488
(+ .00025)

q -. 00040 -. 00040
2 (+ .00025)

4139.200 39.220
(+ .3400)

ao 30 degrees

Average Error = 0.49437
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j ,i>, TABLE C-2 Estimates for a Three Segment Model Simulation

A. Estimated Coating Thickness

1 Segment 2 Segments 3 Segments
Parameter Specified (C-R Bound) (C-R Bound) (C-R Bound)

AXA  .00125 .00157 .00125 .00125
(4 .00024) (4 .00018) (+ .00020)

q .0550 .03781 .05227 .0550
(4 .0021) (4 .0045) (4 .0071)

ql -. 00490 -. 00213 -. 00441 -. 00490
(4 .00021) (4 .00070) (4 .00120)

q -. 0010 - -. 00052 -. 00100"2  (4 .00025) (4 .00011)

q -. 00040 - -. 00040
a3  (4 .00068)

al 38.1 - 38.7245 38.1000
(4 .60 ) (4 1.2 )

c 2  41.2 - 41.2000

(4 1.8 )

Average
Error - .44894 E-1 .12934 E-1 .75669 E-6

B. Fixed Coating Thickness and Break Points

q .0550 .03556 .05230 .05500
(4 .0011) (4 .0039) (4 .0035)

q -. 00490 -. 00110 -. 00441 -. 00490
1 (4 .0001) (+ .00064) (4 .00055)

q -. 0010 - -.00052 -. 00100
(4 .00025) (4 .00051)

q -. 00040 - -. 00040
C13 (+ .00035

Average
Error - .26013 E-1 .12805 E-1 .1284 E-8
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TABLE D-1 Estimates for STS-2 Lower Surface

0,

1 Segment 2 Segments 3 Segments
Parameter (C-R Bound) (C-R Bound) (C-R Bound)

AX A .00129 .00133 .00136
(4 .00037) (+ .00046) (4 .00047)

q .054940 .056510 .05550
(4 .00074) (± .0057) (4 .0093)

qa .00234 .00183 .00199
(4 .00026) (+ .00080) (4 .00150)

- .00315 .00189
OL 2  (4 .00120) (- .00150)

- - .00333
a 3  (+ .00120)

- 40.47792 38.1
(+ 1.9) (Fixed)

- - 41.2
(Fixed)

Average
Error 1.8028 1.2527 1.2586
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TABLE D-2 Estimates for STS-2 OMS Pod

A. Time Segments from original HEATEST program
S(0 - 40 degrees)

Segment 1 Segment 2 Segment 3 Segment 4

Time
Range 0-16 16-29 29-49 49-60
(sec)

.00312 .00558 .00621 .00637
(+ .0057) (+ .0022) (+ .00046) (+ .0023)

q -. 00491 -. 00040 -. 00105 -. 00307

(+ .0013) (+ .00074) (+ .00036) (+ .0013)

Average
Error .31754 .16370 .13352 .44714

a B. Heating Estimates from modified program
( - 30 degrees)

Parameter 2 Segments 3 Segments

q .05220 .05819
(+ .0037) (+ .0049)

q -. 00491 -. 00601
,1 (+ .0005) (+ .00074)

q -. 00061 -. 00239

SO2 (+ .00042) (+ .00049)

- -.00005
q3 (+.00006)

- 1 39.3284 37.5

(+ 0.48 ) (fixed)

41.5
- 2  (fixed)

Z j:.: Average

Error .17281 .22114
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Figure D.4. Time Segment Heating Estimates for OMS Pod STS-2
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87
+-" " "+ ' "+''." +"."+" ,+''."Y,'," '.'; ;P "' ." .';," ',, ",+'..'.' .'"'. .+ ".-"."".""." .'.-'.-"-"."".- -"-".-",- ." " --"-'".'-...".-.- .- -- .- .-',



!

.03

- heating Estimate

$. Uncertainty Bound
4'04.02

o-4 Fixed Parameters

AxA = .00167
q0 = -. 0053

601

0.0.

Y5 40
ANGLE OF ATTACK (deg)

~.' Figure D.5. Two Segment Model Heating Estimates for OMS Pod
STS-2 Data

88



7

....

- Heating Estimate

.03 - Uncertainty Bound

Fixed Parameters

6XA = .00167
q0 = -. 0053
a = 37.5

. .02 a2  = 41.5

02•A

.01

0.0 35 4b '57
ANGLE OF ATTACK (deg)

Figure D.6. Three Segment Model Heating Estimates for OMS Pod
STS-2 Data

89
4



TABLE D-3 Estimates for Various Time Skews in STS-4 Data

4!

Parameter No Skew 1 Sec 2 Sec 3 Sec 4 Sec

.00349 .00291 .00230 .00168 .00118

-A (±.00023) (±.00024) (±.00023) (±.00023) (±.00021)

.11064 .08900 .07125 .05525 .04326

(±.0110) (±.0088) (±.0079) (±.0069) (±.0055)

q -. 01183 -. 00923 -. 00719 -. 00533 -. 00395

1 (±.0015) (±.0011) (±.0010) (±.00087) (±.00069)

qa -.00241 -.00160 -.00166 -.00076 -.00047

2 (±.00067) (±.00062) (±.00050) (±.00042) (±.00033)

01  38.5398 38.8384 38.8729 38.9546 39.0269
(±.50 ) (±.55 ) (±.51 ) (±.55 ) (±.55 )

qO -. 01887 -. 01412 -. 01078 -. 00758 -. 00523

(±.0041) (±.0035) (±.0028) (±.0023) (±.0018)

Average
Error .21729 .09195 .03975 .16627 .27163
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TABLE E-1 Smoothing Simulati.- Results

A. Initial Condition Smoothing

Specified Starting Smoothed Smoothed
Initial Initial Initial Initial
Temp. Temp. Temp. Variance

-Node (deg. F) (deg. F.) (deg. F.) (deg. F.)

*1 1330 1330 1330 13.7

*2 1330 1330 1330 4.6

3 1330 1230 1328 31.0

*4 1100 1017 1102 32.9

*5 1004 928 1004 3.3

6 900 832 894 29.4

7 800 772 808 24.4

C*8 720 665 720 2.3

9 650 600 644 25.1

10 550 509 548 17.9

*11 499 460 499 1.3

12 122 112 122 1.7

*13 112 122 122 0.5
* Thermocouple Node

B. Model Estimation with Smoothed Initial Conditions

Parameter Specified Estimated

AX .00125 .00125
(±.00015)

q0.0535 .05352
(± .0011)

q.00110 .00110
9 1 (±.00024)

99



75'

I

50

0

25- 8 de F

.4 0 -

RC Time Constant = 22 sec

1020

A: 1004 de&F.

1000

Ew 980

E-0

z 960

9o1

9401
0 10 o 3'0 4o 50

TIME (sec)

:. Fiture *E.2. Initial Condition Smoothing for a Thermocouple
Node Point (Node 5)

97



,1

j.

75-

0

ROTm osat=1 e. . . . . . . deg F.

10

* 1350-
Initial Model Temperature =1330 deg F.

z

12001..0 io 20 3'0 o 50
TIME ( see )

" i Figure E.3. Initial Condition Smoothing for a Non-Thermocouple

= Node Point (Node 3)

98



-lo

'p APPENDIX F

Initial Condition Estimation Flight Data Results

N9



Tv I.W

)4 o
#E-

% 35 -a i5
P4

300

<3 DATA LOSS

14.00-

1300

- A Priori Temperature Estimate (Node 2)

1200 0 Flight Thermocouple Measurement

bD

S.1100

1000

0 io o 50 1;o o
TIME (sec)

* -: Figure F.I. STS-4 Lower Surface Thermocouple Data with Initial
Condition Smoothing (Mach 12 POPU)

100

,SW ,, ,, a,,,, ,,%r,. ,.., V .,. ;m- . .. . .... . . . .... :. ... .... . . . .. .. . .



TABLE F-i STS.-4 Lower Surface Initial Condition Smoothing

A. Smoothed Initial Temperature

Smoothed Initial
aNode Temp. (deg. F.)

1 1330

12 1330

3 1347

-~4 1173

*5 1006

6 842

7 781

*8 721

9 626

10 550

*11 430

12 126

13 122

*Thermocouple Node

B. Parameter Estimates (a -40 deg. ;Average Error -. 03136)
1 0a

Parameter Estimate

xA .00137I

.q .06259 .
0 (t .0015)

qa .00106
(t .00029)
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