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Preface

Ever since the beginnings of manned flight, the
science of flight test research has ''suffered'" from the
glamorous image of the reckless, silken-scarfed test
pilot careening through the sky in defiant contempt of
fate. But in reality, actual flight tests are conducted
with countless hours of exhaustive engineering analysis.
As expectations and requirements for manned flying
vehicles have increased exponentially over the years,
so has the complexity of the problems faced by flight
researchers, Today, some eighty years since Kitty Hawk,
the Space Shuttle routinely delves into out space, far
beyond the hopes and dreams of Orville and Wilbur Wright.
The immense challenge of returning such a vehicle through
an extreme, and virtually unknown, reentry environment
has been conquered; thanks to the development of highly
complex analysis tools, such as the HEATEST program
described in this report. The true heroes, in this and
all flight research efforts, are the engineers and pilots
who have overcome each new engineering obstacle. To them,
this report is dedicated, in the hopes that with each small
contribution, a better understanding of ourselves and the
world around us may be gained.

Many thanks are due to those who have aided in the

ii




N AT

‘.
-

ol

N

N

PSS

. 9
LY. Y. ¥ "o,

&
BCE )
LE s
\é}

completion of this report. The personnel at the Air
Force Flight Test Center at Edwards, AFB have provided
much aid and support. My "mentors" at the Air Force
Institute of Technology, particularly Major David R.

Audley and Dr., Peter S. Maybeck, have provided much
insight and concern throughout the investigation. Finally,
my deepest gratitude is extended to Capt. James K, Hodge,
for getting me through this effort in spite of myself,

Charles D. Lutes
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; :ST Abstract

23 ,:>This report describes improvements made to the data

§ analysis tool HEATEST, used for identification of the

" reentry aerothermodynamic environment of the Space Shuttle

.?: Orbiter. The heating model was changed from a linear

;; perturbation form to that of a piecewise linear inter-

;f polation form to account for nonlinear heating rates. #
4 Also, a fixed-point initial condition smoother was ‘
:é incorporated to gain better estimates of unknown initial d
:; temperatures. he development of both of these imporvements

f is described, as well as 11 adaptive estimation

‘3 process employed by the HEATEST scheme .~ Verification of

\ ‘E’ these modifications was accomplished by applications to

§ both simulated and actual flight test data, ,
§ Simulations of nonlinéar heating rates indicated i
N higher than actual coating thickness predictions for the i
-i linear perturbation model previously used., Flight results i
3 using the improved heating model provided additional %
p verification of a time skew due to noniiothermal wall h
é effects on the OMS pod. Estimation of initial temperatures

'ﬁ using the fixed-point initial conditon smoother enabled the

- identification of an unmodeled Mach or Reynolds number

ﬁ effect on the lower surface during the Mach 12 Pushover
b Pullup maneuver of STS-4, f;\\_\
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~ I. Introduction ;
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1.1 Background :

The Space Shuttle Transportation System (STS) has
offered the engineering community a unique opportunity
to flight test a reentry, hypersonic vehicle. The key
to the Shuttle's versatility is its reusability, which .
is inherently dependent upon the Orbiter's ability to
withstand a severe, and sometimes unknown, aerodynamic
environment upon reentry. With this in mind, the National
Aeronautics and Space Administration (NASA), in conjunction
with the Air Force Flight Test Center (AFFTC), has
initiated a flight test program designed to eliminate
uncertainties about this environment and thus expand the
operational capabilities of the system (Refs. 7,8,9,10). ;
Although the initial test flights have now been completed,
data analysis and expansion of the existing data base Z
continues,

The ability to withstand this harsh reentry
environment is provided by the Orbiter's Thermal Protection
System (TPS). This system consists primarily of low
density ceramic tiles, which insulate the underlying
aluminum or graphite-epoxy structure. These tiles typically
have highly radiative surfaces, offering additional

protection from the heat transfer effects of aerodynamic
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i;} forced convection. The TPS consists of a variety of

:

materials (Ref 1): Reusable Carbon-Carbon (RCC), used

T

X primarily on high temperature areas such as the nose

_i cap and the wing leading edge; Flexible Reusable Surface
n Insulation (FRSI), a Nomex felt substance found on the
;g upper surface where lower temperatures are expected; and
.i two kinds of silicon based tiles, High/Low temperature
ﬁ; Reusable Surface Insulation (HRSI/LRSI), used on the

;1 lower surface and other high heat load areas where RCC
fg is not needed.

The capabilities of the TPS directly affect the

performance of the reentry Orbiter and its ability to

LV

. perform a specified mission. For this reason, the Orbiter
‘E, Flight Test program (OFT) developed by NASA and AFFTC has
included flight test techniques designed to assess the

TPS capabilities and identify the reentry aerothermodynamic

HAAAAAL

environment (Ref 10).

Initial phases of the OFT consisted of real time

Sl R R

2 engineering simulation of the reentry process. Suitable

% simulation models were needed to estimate the aerother-

‘-l

i modynamic envelope for safe mission planning of the initial

test flights and for subsequent analysis of the flight test

data. These models, developed by AFFTC, are described in

R
)

A% % 1 a

Chapter II of this paper. Unknown parameters were originally

1O

estimated by theoretical considerations and ground testing.
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Flight test maneuvers required adequate data

4 ®
S

[
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«

acquisition processes. For assessing aerothermodynamic

iy

capabilities, temperature variations are considered
crucial. During the flight test phase, instrumentation
consisting of temperature-sensing thermocouples
provided this information. Surface thermocouples were
imbedded under a thin coating of the RSI tiles on
several locations on the Orbiter,

Simulation of thermocouple response indicated that
transients in vehicle attitude (angle of attack, sideslip,
and control surface deflection) were important, in
addition to trajectory and atmosphere. Transient flight
test maneuvers were developed by AFFTC (Ref 10) and
incorporated into the flight test program. These maneuvers,
such as the Pushover Pullup (POPU) maneuver, were designed

to provide transients in vehicle attitude for durations

long enough for thermocouple response but short enough to
avoid affecting the reentry profile.

The final phase of the program consists of data
reduction and analysisdesigned to identify the aerothermo-
dynamic environment and update the models of the engineering
simulation for subsequent envelope expansion. A method of
analysis was designed by AFFTC in the form of a digital
computer program called HEATEST (HEATing ESTimation) (Refs
1,7,8,9,10).
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The HEATEST algorithm is based on system identi-

7’
-

4

)

fication theory (Ref 5). The simulator models, applied

in a stochastic context, are combined with thermocouple

A
e ,:1.‘." :- .’

measurements in a state/temperature estimation (Kalman

filter) routine. Best estimates of the unknown model

Y

parameters are made using parameter estimation techniques
(Refs 2,5,15). The combined state and parameter identi-
fication technique provides best estimates for both
temperatures and aerothermodynamic model parameters.
Figure 1 (Ref 1), provides a summary of the system

identification process used to identify the aerother-

modynamic environment of the Space Shuttle Orbiter,

@ 1.2 Objectives
h Although the HEATEST program has worked well in the
analysis process, several areas for improvement have been
identified (Refs 1,7,8,9,16,11). The purpose of this
investigation is to analyze these areas, make improvements
in the estimation scheme, and to incorporate them into the
HEATEST program,

One aspect in which the estimation process has had
difficulties is in properly identifying areas with severe
nonlinearities. Because the original models were based on
a linear perturbation form, nonlinear heating rates

resulting from geometric discontinuites, flow irregularities,

and other unmodelled effects have been difficult to
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estimate. Attempts to handle these nonlinearities have

included the processing of maneuver data in small time
segments and then correlating the results (Ref 9).
Difficulties in correlation, convergence problems, and
excessive computer time make these methods undesirable
in some cases. Thus one objective of this investigation
is to enhance the aerothermodynamic models to account for
these nonlinearities diréctly. The method developed by
this report assumes a piecewise linear heating rate,
providing the models with the required flexibility.

Inaccurate initial conditions used for initializing
the estimation process have provided questionable results
in some cases (Ref 8)., Generation of these initial
conditions is a difficult process, and one method of
improvement is to estimate these conditions based on the
maneuver data (Ref 1). The development and incorporation
of a fixed-point initial condition "smoother'" is another
aspect of this paper.

Testing and application of the modified program is
necessary for verification of the validity of the
improvements. Simulated data, for which the results are

known, are processed for testing purposes. Application

to real flight data where problems have occurred previously

will complete the testing phase and provide additional

insight into the results of the flight test program.

o w"

TTTeE™

A AGEE A% 8 A _ 2R A .

~f o MERA ¢ ..’ "m."a

Ab o b A A L LMNRE 2 2 £ &



AAAL

7 Y . se

[0

B e
3 000 &4, LAN

|

“

0y

s

v

o

1.3 Overview

Because the existing identification process is
important to the overall understanding of the proposed
modifications, details of the theoretical development of
the estimation scheme are provided with emphasis on these
modifications., The enhanced models, formulated from the
original simulator models, are developed in Chapter II
and Appendix A, and then placed in the stochastic setting
needed for the identification effort. Chapter III high-
lights the estimation process, including the development
of the maximum likelihood criterion on which the scheme
is based. The initial condition smoother is developed in
Chapter IV, with an associated discussion in Appendix B
relating the difficulties of solving the model heat
equation in a smoothing context., Testing and application
results for both simulated and flight test data is given
in Chapter V and Appendices C-F. Finally, conclusions
about the validity of the modifications; discussion of
important physical results from flight test data; and

suggestions for further improvements are included in

Chapter 6.
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aﬁ ;§§‘ II. Modeling The Aerothermodynamic Environment

::; 2.1 Modeling Assumptions

}sg ‘Model equations for the reentry aerothermodynamic

?? environment were orginally developed for the AFFTC

‘;g simulator and subsequently applied to the data reduction

:ﬁ scheme HEATEST with some modifications. 1In developing

:f these process models, a natural distinction was made

Fﬁ between the diffusion equation model of heat transfer in the
“é

}ﬁ TPS (thermal model) and the surface boundary condition for
oy

aerodynamic forced convection and radiation (heating model)
(Ref 1). The surface heating rate due to aerodynamic forced
convection is a primary unknown and is described by the

unknown parameters of the heating model. Observations of

these unknowns occur in the thermal model i.e. the

diffusive heat transfer behavior of the TPS material

measured by thermocouple sensed temperature variations.

Thus, adequate simulation or estimation of the aerother-

N
(ﬁ modynamic environment must include both of these models.
N
— The development of these models includes several
QQ; assumptions, First, it is assumed that the thermal

o
-ﬂ characterisitics of the TPS materials (thermal conductivity,
aot :
- k; specific heat capacity, c¢; and density, p) are known
;ﬁ through laboratory tests and theoretical consideration.
.:).0
Es However, the thermal conductivity may be scaled by an
SRR,
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unknown thermal conductivity factor to account for
pressure changes within the tile. Another assumption
is that each Orbiter location is associated with a
unique set of models. Thus the initial investigation
has concertrated on seven control points (Figure 2)
identified by NASA and AFFTC as critical to reentry
trajectory shaping kRef 1).

One assumption that has proven restrictive in some
cases is that of an isothermal wall (Ref 11). The
assumption is that the Orbiter wall, protected by the TPS,
remains at a constant temperature and serves as a boundary
condition for the thermal model. Subsequent analysis
(Ref 11) has indicated that a jump in the wall temperature
may occur at the interface of two dissimilar materials,
thus producing a nonisothermal wall effect., Suchan effect
may significantly raise or lower heating from laminar
predictions depending on the direction of the temperature
Jump. In the data reduction scheme described in this
paper, the nonisothermal wall effect may take the form of
increased/decreased heating or time skews caused by
thermocouple lag during the transient maneuvers,

Finally, a major simplification is the assumption of
a one-dimensional diffusion model for the heat transfer
through the TPS (Ref 1). Although motivated primarily by

computational tractability, this assumption proves to be
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an adequate description of what is largely a one-dimensional

L)
.
2

phenomena, Becuase of the low conductivity of the TPS

3
i

P\-"'

E§ material, the spanwise temperature gradients are assumed
r Y

55 to be too small to affect the behavior of the temperature
e

. profile significantly for the short period of reentry.
fk% Ths model is developed more fully in the next section.

2

= 2.2 Thermal Model

;ﬁ A cross-section of the one-dimensional thermal model
“ 1

".'.

is given in Figure 3 as a typical Reusable—Surface-Insutla?

» tion (RSI) tile. For implementation on a digital computer,

‘iﬁ n discrete node points were established to approximate

ga the temperature profile throughout the tile. A surface

X cza thermocouple is normally located just under the surface

ﬁ i coating (block A) at the second node point (i-2). Additional
l;ﬁ thermocouples may be embedded in the tile and node points

are spaced so as to correspond with the embedded thermo-

i% couples. Blocks A through D represent different materials
%ﬁ with thermal properties that vary with local temperature

- and pressure. A surface coating (block A) that is hand

'§§ applied before flight, is modeled with an unknown thickness
E (AX,). Block B represents the bulk of the TPS Material, and
iij in general is assumed to have an unknown thermal conduct-
'ﬁ? ivity factory, ¢g. In block C, the RSI is bonded by

Eé Room-Temperature-Vulcanizing (RTV) adhesive to a nomex

;: felt Strain-Isolation Pad (SIP), which in turn is bonded

M 11
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to the structure by RTV. In block D, the effective
structural thickness and heat sink complete the one-
dimensional model where an adiabatic wall is assumed.

The convective heat rate (q), obtained from the
heating model, is applied to the surface node (i-1)
by the mechanism of forced aerodynamic convection,

The surface, with a high emissivity, radiates most of

the heat away but conducts a small amount into the TPS
through the surface coating. The heat then diffuses

throughout the TPS, causing variations in the temperature ;
profile.., An energy balance at each node point yields ‘
a system of n nonlinear differential equations of the

form (Ref 85: i

(CjPy Xy + €5 10598%;.9)/2 Uy =Ry o /8%y 4 Uiy -

(g /0Ky ) + By ppy/0%y) Uy + Ky /0%y Uy =
4 _ .4 4 _ .4
083 (U3 = Uj_g) =085, (U5 = Uju9) + (2-1)

where €5 is the radiative emissivity; ¢ is the Stefan-
Boltzmann constant; c¢c is the material specific heat; p

is the material density; and k is the material conductivity,
Additionally, the thermal conductivity of Block B, kB'
may be scaled by the thermal conductivity factor, ¢B‘
Equation (2-1) includes terms describing the thermal

conduction from adjacent node points (ki-%/AXi-l); surface

radiation (céiUg); and the heat rate due to aerodynamic

13
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forced convection as obtained from the heating model (qi).
i ‘ Coefficients with subscripts which are less than one or
L greater than n are zero, The radiation and heat rate

(<3 terms are zero except at the surface and backface nodes.

The radiation sink temperature(Ub and Un+1) must be

%f specified at the surface and backface nodes. The

~E¥ emissivities at the plus or minus side of the element

ji (€i+ and ei_) are also zero except at the surface and

;; backface nodes where they are assumed constant.

}is The solution of the system of equations (2-1) is

- needed for simulation and for the parameter estimation

Eg scheme described in Chapter III. These equations can be

E? solved numerically from a given initial condition by

Y ‘ib approximating the time derivative. To insure stability

:: with a minimum of numerical complexity, a first order

;% backward difference form was chosen for the original

. simulator (Refs 8,9,16):

EA

: Up = (Ut - Uyt ) ) /At (2-2)
e

o where At is the time step. The resulting system of implicit
‘ig difference equations must be solved simultaneously. The

it surface node equation with the highly nonlinear radiation

;: term was solved with a Newton-Raphson iteration and

;i extrapolation scheme (Ref 24). A tridiagonal algorithm was
?3 used for the simultaneous solution of the remaining difference
t; :;33 equations (Ref 8,9,16).

;E: S

]
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Numerical solution of (2-1) has resulted in an

accurate simulation of surface and bondline temperatues

ol S Ao

at specific locations critical for mission evaluation d
(Ref 9). During initial testing and simulations, spatial
and time steps sizes were varied to investigate accuracy !
(Ref 9). A spatial step of .06833 feet and time steps
of up to one second yielded acceptable results (Ref 8).
For the purpose of flight data reduction, this numerical !

scheme provides an adequate simulation of the temperature

2 8 4 & &

profile during transient maneuvers necessary for

estimating the aerothermodynamic environment.

enellRAL

The environment to be identified thus consists of

. e

unknown parameters given in Equation (2-1). The value of i
the radiative emissivity, e, although thought to be
approximatley .85, may degrade over the period of flight
time and is known to vary with surface location and temper-
ature. Thus, because of its importance in the surface
boundary condition, it is desirable to estimate this para-
meter. Unfortunately, difficulties in estimating this
parameter in many cases cause the nominal value to be used
(Ref 16). The thickness of the surface coating, AxA, may
vary significantly from its specified value of 15 mils due
to the imprecise manner in which it is applied and is thus
treated as unknown. The thermal conductivity factor, ¢g,

although generally assumed to have a value of unity, may

15




vary with local tile pressure and thus can be considered
a candidate for estimation. Finally, the parameters
that determine the heating rate (q) as described in the

next section, are estimated,

] .

2,3 Heating Model

Heating models for several specific points on the
Orbiter have been developed for the AFFTC simulator and
the HEATEST program (Refs 1,8,9,10) to determine the
heating rate (q) in equation (2-15. Because of low
material conductivity, it is assumed that this heating
rate is, however, dependent upon changes in the vehicle
attitude, trajectory, and atmosphere.

Nondimensionalizing ty a reference heating rate, q,
partially accounts for the heating rate dependence on the
trajectory and atmosphere, The NASA method of calculating

a reference heating rate for a one foot radius sphere was

used as follows (Ref 26):

"4.3.07

a, = 17700 Jo_ (V_/10%) (1-bg /b)) (2-3a)

hy = .24 (q./(0e)) ‘2%  (wall enthalpy) (2-3b)

ho = .24T°+V3)56663(stagnation enthalpy) (2-3c¢)
16
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where the characterizing free stream variables are density

(P,), velocity (Vm), and temperature (T_ ). Alternative
reference methods to account for other effects have also
been establihsed (Ref 8).

The dependence of the heating rate on parameters
other than those included in the reference heating rate
are summarized by the static transfer relation or
heating ratio, f(p). These parameters include body
location (ie. there is a unique f(p) associated with each
control point); angle of attack (a); sideslip (B); control
surface deflection (Ge, elevon; be, bodyflap); Reynolds
number (RE); and free stream Mach number (Mcg. Typically,
the heating ratio has been cast in linear perturbation

form (Ref 7):
f(o) =q/q, = q, * q (a~a,)) + qB(B-Bo) + dpg (RE-RE )

* q6e(Ge - 6eo) + QSbf(be - beo) + qu (Mm-Mmo)
(2-4)

where q, is the magnitude of the heating rate, q, at the
reference conditions specified by the zero subscript on
each variable. The subscripts on the heating rate
indicate partial differentiation or slopes with respect
to each variable, These '"heating derivatives'" are
assumed to be locally constant for short time durationms,

similar to aerodynamic derivaties used in stability

17
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R fﬁf- theory. The heating derivatives are generally unknown

and are appropriate for parameter identification.

In the presence of geometric nonlinearities, flow

'-_‘:'
yy e
&,
‘*q irregularities, and other unmodeled effects, the
. heating ratio may not be adequately described by a
'QJ locally linear function of the form given in (2-4).
,;2 To account for nonlinearities in the heating ratio,
?: a new model has been developed., This model, derived
2
:% from Lagrange interpolation theory (Ref 3,18), assumes
N
. a heating ratio that is piecewise linear with respect to
I the variable of concern (angle of attack for the case
o shown) :
B
4 @ qQ, * 9 q(a-ay) + f(B,RE,S M) a<ay
53 q, *+ qal(“l ao) + qaz(a al) + f'(8,RE,§,M) a, <a<a,
v-"c .
. f(p) =
3 '
<. ’
:ﬁ' + a, - + + a- + £(B,RE,§,M)
. qO qal( 1 ao) o e e qdn( a'n) ( ’ ’ ")
i <o, _q (2-5)
7
;i, where the derivitives, q 1! Q45,9 and the break points,
L Ay,89, «.., &, , are assumed constant for the maneuver
et
e
ot duration.
=~
-f'J

A more detailed description and development is given

.
4
4
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in Appendix A. Also presented are model sensitivity
equations needed for the estimation process of Chapter III.
Typically, the derivatives, oy » and the break points or
"knots", a;, are unknown and should be estimated. However,
as discussed in the Appendix, difficulties may occur in
estimating the locations of these break points and it may
be necessary to specify them directly. For flight
maneuvers with relatively small angle of attack sweeps,
this approximation may not prove restrictive.

With the heating model thus described, a vector of
unknown parameters may be defined for use in the system
identification scheme of Chapter III. These include the

radiative emissivity, e; the surface coating, AX the

A’

thermal conductivity factor, ¢ and the heating model

B’
derivatives contained in f(p). This parameter vector,

is given by

?

g8 = (e,AXA,¢ B,qo,qal,...,qan,al,az,...,an,

qB ’qée’qabf’qRE’qM“’ )

2.4 Stochastic Models

The heating and thermal models presented thus far are
complete for use in aerothermodynamic simulation. However,

for accurate identification of the aerothermodynamic

19
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environment, stochastic processes must be introduced
to account for uncertainties in the modeling process,
estimation scheme, and measurement methods. The
resulting stochastic models are established in linear
state space form and are amenable to state and
parameter estimation.

Initial conditions for the temperature vector,

u (t), are given by the stochastic equation

ulty) = ¥y *+ 1, (2-5)

where u, is the initial state vector; and the initial
error (xo) is assumed to be a zero mean Gaussian

process with an initial covariance matrix given by (Ref 8)
P = ¢2' u, (t Ju.(t.) ﬁ (2-6)
ij IC "i*"0’"j' "0 ij

where ¢IC represents the normalized deviation in initial
temperatures and ﬁij defines the spatial correlation
between node points. The error model for the stochastic
process (y) is assumed to be stationary and spatially

distributed with zero mean and covariance given by (Ref 8)

- J

Rij = exP(-E,iRCE/¢TR) (2-7a)
2

RCL pzcz sz/Kz (2-7b)

where the subscripts i and j refer to the thermal nodes,

20
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2 $;§ The constants pQ,CZ,Kl, and AXQ are as defined

. previously for equation (2-1). RCQ is a thermal

: conduction time constant, analogous to that of

: electrical circuit theory, and represents an approximation

! to the amount of time (in seconds) that it takes a heat

o

g pulse to affect a given node point. The time constant is

Q nondimensionalized by a characteristic time, drR > which
represents a scaling factor for spatial correlation.

E For the state estimation scheme described in

E Chapter III, a linear form of the diffusion model is
needed, specifically for covariance propagation. By

o
"

quasi-linearizing the nonlinear boundary term of (2-1)
(Ref 9), a linear state space description of the

temperature profile may be given as
u(t) = A u(t) + B + W(t) (2-8)

where u(t) is the n-dimensional state vector representing
the temperature profile at time t; A is an n x n tridiagonal

matrix of material properties; and B is an n~dimensional

vector containing the heating rate parameters and the

{
1

quasi-linearized radiation terms of Equation (2-1). W(t)

is a n-dimensional, white stationary Gaussian process

e,
o atefs el

«
*aa

with statistics given by (Ref 1),

'y

E{W(t)} = 0 B
E{W(t) ¥ (t')} = Q(t)§(t-t') (2-9a) b
21
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where §(.) is the delta function and the strength term

is given by (Ref 9).

t
.

s (62 + o2 Ry, 0. 1=j=1

o ME BN ij "eq

Q, = OME 02 + o2 R 02 i=1 j#1

” 13j ME BN 'ij “eq ;9
“ﬁ -
;Fz 2 = 2

) ¢ME Rij Ueq ifl;Jfl (2-9b)
iv
e The constant ¢p, is the normalized deviation of the
h \* N

x heating rate at the boundary and ¢yp 1S the normalized

Lot

X deviation in the heat flux due to model error. Ueq is
a an equilibrium temperature calculated from q assuming

o
el no conduction,
:f X Measurements made by thermocouples embedded in the
; @ TPS can be described by
L

4 L(ty) = B U(t,) + p, (2-10)
v

» where y is an m-dimensional vector of thermocouple measure-
Yo,
b7 ments and H is an m x n matrix defined by

3
- 1 if 1.1:j corresponds to Yy

T By =

X{ 0 if uj does not appear in Yi (2-11)
N
= The error term u. includes thermocouple noise and

, instrumentation errors, especially quantization problems
. associated with an 8-bit data word length. All thermo-
couples are independent of each other and the model

ERTY

:ﬁ Hﬁf processes (Ref 1), The error term is thus assumed to be
N
§§ 22
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a stationary, white Gaussian noise process with statistics

(Ref 1):
E{u,} = 0
T
E{uiuj} = Rijd(i—:j) (2-12a)

The strength at each measurement j is given by

_ .2 2
Rij- ¢meas Yj (2-12b)
where the constant ¢ is the normalized deviation of

meas
the thermocouple measurement.

2.5 Summary
The mathematical description of -the Space Shuttle TPS

is given by the thermal model of Equation (2-1)., The
unknown surface heating rate due to aerodynamic forced
convection is described by the enhanced heating model of
equation (2-5). This new model provides a method of
considering nonlinear heating rates., Additional information
about the reentry environment is provided by noise corrupted
thermocouple measurements obtained from the OFT program,
Combining the mathematical models, set in the stochastic
context of Section 2.4, with the flight test data may be
accomplished through the adaptive estimation process

developed in the next chapter.
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i ‘f:} I11I. Identifying the Aerothermodynamic Environment ;
s - ‘
g 3.1 Maximum Likelihood Criterion 3
ﬁ Once the TPS-aerothermodynamic model has been b
) .
> formulated, the problem then becomes one of finding
; the "best'" estimate of the aerothermodynamic environment
“
- parameters (e,AXA,QB,f(p)) based on a specified trajectory
kS
- estimate and thermocouple measurements. The solution of
", the general problem of simultaneously estimating para-
fa
- meters and states i® developed in detail by Maybeck (Ref 15)
“-
A and will serve as a basis for the solution of this parti-
ﬁ cular problem. The technique described employs a maximum
'E likelihood estimator that is found to be asymptotically
2 .
i ‘Ei sufficient and unbiased under general conditions.
5 ) The "best" estimate of the aerothermodynamic para-
; meters at any given time is the estimate that maximizes a
)

specified likelihood functions may be chosen, a preferable

form is given as (Refs 1,15):
¥ ) g
‘, fg(ti)’z(ti)j E(E.:Xi’ 9) (3-1a)
- where (3-1la) is the joint probability function of the
’.
- state, u(ty), and the measurement time history, ¥(t,),
N
- conditioned on the parameter vector £, The temperature
¥ profile at time t, is contained in u(t;) and I contains
2 the set of unknown parameters. The measurement time ?
= history is given by Y(t,), while y, is the set of realized n
AR :
- .
: 24 ;
- b
; .
* B . e, = - ~ - . B .
L, e Ca o 0, B Ly L R S S A T TR P A G SR S W WO




.
A

i YA

DN

\
E
.l.l.l

IR

- . o »
-
}»s-‘l;l‘.

i)

2% a

0
s 4

M o Shai N Sies Shee denac Sag 2aee o et

Y ., C Y -, d R .
Nt AT TR Ty, N AT R S A N N e NI T P AL R

measurement values (Ref 1):

u(ty) = [uy(t),up0t), e, u (e |
¥(ty) = |26, X, -.h, Xt ]
g =[ e,AXA,GB, the parameters in f(p)]

A VS U s

5 and 6 are-dummy values corresponding to g(ti) and Z,
respectively.

The form of (3-la) is desirable because it contains
the necessary state and parameter information of other
forms (Ref 15), Additionally, (3-1a) retains a
dependence on initial temperature statisitcs which are
avalilable and lead tc an improvement in estimation
performance (Ref 1,15).

Through repeated applications of Bayes' rule, (3-1la)
may be expressed directly as a product of Gaussian
densities (Ref 1,15)

i
fucr), 2o 1E T fuce X0ty 555 TEee ) XD ,E

Writing each density in its explicit Gaussian form
motivates a redefinition of the likelihood function. By

taking the natural logarithm of (3-1), the likelihood

25
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2
q: -jﬁ: function may be redefined as:
L {£,0;Y;}= In fg(tij.z<ti>|5 (&,%;19) (3-2)
'~
3 Since the natural logarithm is monotonic, the maximum

of (3-1) will occur at the same values of £ and E(ti)
as the maximum of (3-2). These optimal values may be
found by simultaneously solving for the roots of the

grandients of the likelihood equations:

2 VQP (£,0;¥;) |E»u*x(t;) =0 (3-3a)
i g > Sk

= TeL (8,037 £rux(ty) =0 (3-3b)
v 0 » =%

The solution of (3-3a) may be found by substituting
lﬁ the Gaussian form of (3-1b) into (3-2) and solving

according to (3-3a). The result is given by (Ref 1):
- ur(ty) = u(t)lg e = E {u(e)l¥(ty) = giHos2x  (3-4a)
with associated covariance

PeeD)| = Ela(ty) - u(th)) (@) - uct,» Tlycty)

e+

= y; Hor=* (3-4b)

Maybeck, (Ref 15), shows that this maximum likelihood
estimate at time tiis given by a Kalman filter algorithm

with the optimal parameter estimate values =* replacing

:
:
;
q
R
;l
K
K
i
:
o




Ts
- f%ﬂ the nominal parameter values in the required propagations.
o~ Simultaneous solution of (3-3b) and (3-4a) is ,
§3 generally not possible in closed form, hence an iterative :
Cy \
_q} process must be used. This technique is developed f
v further in Section 3.83. !
\E 3.2 State Estimation .
\C,
— Estimation of the temperature states involves solving i
v, . . . .
Fﬁ for the conditional expectation in equations (3-4). The ‘
v §
R general theoretical development of the solution process is
.: discussed in detail by Maybeck (Ref 15) and Jazwinski
N (Ref 12)., The resulting Kalman filter algorithm is
‘s
Ca
:3 presented here with specific equations relevant to the 1
3 .

‘jb estimation of the temperature profile.
& The nonlinear nature of the combined thermal/heating
:j model dictates the use of a (nonlinear) extended Kalman j
\-
i filter for state propagation as follows. Given the a
Jj posteriori statistics
o
2 ut]) 8 E {ue)]¥(t,) = y,) (3-52)

=Y ARS RATA RS | L

R pctl) & E {qucey) - aee,n @ty - e, NIy = g}
X i u(ty) = () (U0ty) = Uty ) X)) = %y
:: (3-5b)
) the a priori expectation
o) Ao A
& u(ti,g) = B {uct, ¥t = y;}
Yyl
<
. is approximated by solving
OIS
o * e,
v B
e
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Fo(u(t), a.(t),1(p);
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(3-6)

on the interval te sttt The differential equation

i+1°
is initialized at each time ty by i(ti) = ﬁ(tI) as
provided by the previous measurement update. Equations
(3-6) represents the differential equation of the thermal
model as given by (2-1). These equations are solved
numerically as described in Chpater 11,

The priori covariance is found by the matrix

equation
i+1)
ti41

. tr[ o{t,, ,tiu(t)} Q) elt ., t;u(t)H} dt  (3-7)

-

R + AU
P(t - ¢{ti+1’ti’ g(ti)_ P(ti)Q{ti+1,ti, g(ti)}

where ¢ {-}is the state transition matrix derived from the
linearized model (2-8) of equations (2-1) evaluated at

~ + A

u(t;) (as an approximation for g(t/ti) for te {ti’ti+1})
(Ref 1):

s A+ A+ ~ o+
¢{tiy;g(ti)} = L{t;g(ti)}¢{t,y;3(ti)}

) + A ~ +
L{t;U(ti)} = v Fu(t), q.(t), f(p);0)|u(t) = u(t))

- u - r = =% i
Sagstetter (Ref 20) presents the details of the numerical
solution of equation (3-7) to obtain an approximate a
priori covariance,

The a posteriori expectation, u(t and covariance,

+
i+1)

28
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value with the measurements taken at time ti+1'

measurement process is linear, the Kalman update equations

are determined by optimally combining the a priori

Since the

reduce to those of a linear Kalman filter

where the Kalman gain, K(ti+1), is given by
- - T - T -1
K(ti+1) = P(ti+1) H {HP(ti+1)H + R} (3-9)

The a posteriori covariance is given by the Joseph form

as
P(t = {I - K(t H} P(t I - K(t H
( i+1) {. ( i+1) } ( i+1) { ( i+1) }

+ K(ty,) P(t],,) KT(ti+1) (3-10)

It should be noted that the approximate a priori
covariance obtained through the use of the linearized
state transition matrix influences the a posteriori
expectation through the Kalman gain (3-9). The Joseph
form is used in the update equation because it is less
sensitive to errors in this Kalman gain than the standard
form (Ref 15). In addition, the symmetri- roperties of
the additive matrices in (3-10) provide better conditioned
numerical computations (Ref 15).

The equations used to generate the expectation, (3-6)

29
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and (3-8), assume known values for the parameters =. The
estimator thus uses the best estimate of Z currently
available from the parameter estimation scheme described

in the next section.

3.3 Parameter Estimation

As stated previously, the solution of equations (3-3)
resulting from the likelihood equations must be solved
using an iterative process., A Newton-Raphson technique
can be used to generate a solution for the unknown
parameters in terms of the previous best estimate (Ref 15)
PL (0, (t),0,(t;)7,) >

502

8% (ty) = 6,(t;) =

. ,\ N : T
00

(3-11)

where L{ﬁ*(ti),g*(ti);xi} is the likelihood function using
the best estimate of the temperature profile from the
Kalman estimator (ﬁ*(ti)) and the previous best parameter
estimate (8*(ti)). The matrix of mixed second partial
derivatives, or Hessian, in (3-11) must be of full rank
for the inversion process. Even so, the inversion of the
Hessian matrix causes the computational burden to be

enormous.

Rao provides an approximation called 'scoring" which

..............................
.......................................
.....................
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;ﬁq R reduces computation and maintains accuracy as long as

;_ the number of samples is large (Refs 1,9,15). The

‘ii approximation is that

=5 32L{u, (t,),0.(t);y.}

U (T3),9, (% )30 . R

= 262 = =3{ty,u,(t;),0,(t)]} (3-12)
~

Eﬁ where J{-:} is called the conditional information matrix
o

i and is given by

\'.'

‘i

o
L]

J {ti,g*(ti),e*(ti)}

ot

~ ~ T A

Iy E{Vy L{u,(t;),8;y;} VoL{u,(t;),0;5%,} |q. e*} (3-13)
A

A

‘?a In fact, it can be shown that (Ref 15)

l% @ . IazL (8,(t,),8; g}
o o I8, (2 T b= B 302 lo =0,

< e
b - ::

" so that the approximation of the Hessian for a given

{P measurment can well be approximated by its ensemble average
jg over all possible measurement time histories., With the

¢ .

~ approximation (3-12), equation (3-11) now becomes

iz::; A ~ A LA .- 1
~: O*(t,) = 0,(ty) + J{t ,u,(t;),8,(t)}

:' .: ~ ~ . T

< 3L {g*(ti),e*(ti);xi} 514
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It can be shown that the kth " element of the

gradient term in (3-14) can be given as (Ref 1)

Y
-~
AN ~ ~ - _
" aL{u, (t,),0,(t.);y.} 1  3u(t?)
A5 i * Ui i° _ - T - T -1
v L §=1 —3§§l_ H' {HP(t)H +R}
.‘}..' A -
‘E; x{y; - Hg(tj)} (3-15)
oA
:_'.;&

The ki&th element of the conditional information matrix

|

2

may be approximated as

DR
Y

2t N

R . N -1 du(t})
N i su(t.) T - T =" _
o J. =1 —gp—— H {HP(t)) H + R} 1 =53, (3-16)
: ke L k
v Jj=1
’ :'-F: ~ -
,5. The a priori sensitivity, gek(tj), is found by taking the
) .
~Y partial derivatives of (2-1) with respect to the parameter
GE’ vector for the time interval of interest:
Ny . '
.':_ X A A
e u, =Cu, +D (3-17a)
" O k7O K
WA
A The a posteriori sensitivity state, gek(t;), is obtained
\-,.‘ -
,fﬁ by taking the partial derivatives of (3-8) with respect
el
o to 9, and is found to be (Ref 15):
- aP(t>)
.:‘-: : 9 \ = - 1 u =
o Yy (Bp) = (IR(EPHY {up (tp) + 730
<.
! ::h T _ T 1 A c
A x(B (BP(tDH + B (g - Hu(t))
' l..\
‘: Audley (Ref 1) argues that this equation may ke simplified
Ny by assuming
- 4.: }‘?.-
1‘::
™ . 32




PN aP(t7) aP(t™)
:. T —Fék = 0 and ek =0
SRe
3§ It can be argued that these terms contribute nothing to
gg a valid means of estimating parameters because the
3 conditional information matrix includes these partials
§§ only in terms that are not dependent on the measurement
{5 values (Ref 1), With this assumption, the a posteriori
i; sensitivity reduces to
X
iﬁ ﬁek(tg) = {I-K(t;)H} ﬁek(tg) (3-17Db)
v Maybeck (Ref 15) arrives at the same form as (3-17b) by
é? neglecting less sensitive terms and retaining'only the
%ﬁ . highly sensitive weighted least squares type terms.
Y| ci, The sensitivites are calculated throughout the
i%: measurement time history so as to update the running
ﬁ? score vector and the conditional information matrix, With
X this information, an optimal estimate may be found using
;?g (3-14).
~: Information regarding the uncertainty of the parameter
o~ estimates found from (3-14) may be found from the Cramer-
::§ Rao inequality (Ref 1,2,5,15). In the case of unbaiased
j? estimates, this inequality relates the conditional
¢3 information matrix to the covariance of the parameter
y% estimate,
3%

. ‘
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cov {8} = E{ 6x = 8_ 6x-6. '} »
J ot,,u.(t,),8, 1 (3-18)
E-C A PR

where et is the true value of the parameter vector. Thus
the inverse of the conditional information matrix as
approximated by (3-12) can be used to construct a lower

bound for the uncertainties in the parameter estimates.

3.4 Algorithm Summary

The operational algorithm incorporating the state and
parameter estimators as developed in this chapter is
summarized by Figure 4 and serves as a basis for the
HEATEST program. The primary mode of operation is to
process recursively a short segment of the reentry
trajectory. Transient flight test maneuvers of short
duration (36-96 seconds)Aprovide data which is processed
to yield estimates of model parameters as follows,

Initial conditions for the temperature profile,
g(toj, are either specified or obtained by processing data
up to the start of the transient maneuver, while the
initial covariance, P(to), is specified at maneuver start.
Initial sensitivities of the state are specified to be
zero or are obtained from prior processing. The state

estimates, covariance, and sensitivities can be solved
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he xi} throughout the maneuver history by incorporating the

A measurement data, The value for the unknown parameter
)
k- vector,Z, is the best prior value, either from the

previous pass through the maneuver data, a preflight
X value, or a value generated in conjunction with the
}; initial conditions.

Once the maneuver data has been processed, a new

: estimate may be found for the parameter vector. Since
2
\: the estimate is based only on the singly processed
.
3 maneuver, repeated iterations are necessary for covergence
Far to some optimal estimate, 6, +6%*,
AN :
. As an improvement to theoriginal algorithm, initial
G
) :: conditions may be processed with each iteration through
20 a smoothing estimator which enhances the initial values
P
;E; based on the maneuver data. This estimator, which can
;
N be used to backward-process measurements from te to to,
:\ is developed in detail in the next chapter.
-
)
1
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3
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fi o IV. 1Initial Condition Smoothing

54 4.1 Smoothing Technigues

zﬁ Results using the HEATEST program have sometimes
;ﬂ been affected by the imprecise manner in which the

:bi initial conditions are generated (Ref 8). To alleviate
t‘ this problem, Audley and Hodge (Ref 1) suggest the

Q3 incorporation of some type of smoothing algorithm to

?3 enhance initial values of g(to) and P(to) based on the
ii maneuver data.

b The general smoothing problem is that of predicting
Sg the state at any given time based on "future' measure-
fg ments, in addition to the past and present measurements
o (ib normally considered in a conventional filter. Thus, the
$~ state estimation scheme incorporates measurements from
jﬁ the entire history. More detail on the general smoothing
34 problem is given by Maybeck (Ref 15), Meditch (Ref 16),
l% and Fraser (Ref 6). Although there exist many classes of
:% smoothers, two were considered for implementation in the
- HEATEST program: the 'fixed-interval smoother", for

::E smoothing the state estimates throughout the measurement
S§ history; and the '"fixed-point smoother", for smoothing
:3 only the initial states, |

?i Fraser (Ref6) shows the general fixed-interval

.fg smoother to be a combination of two optimal filters. A
W'

-

S
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forward filter, formulated as the standard filter

already implemented in the identification algorithm,
would calculate state estimates based on measurements

from the initial time, t,, to the current time, ti:
u(t?) = E{uct,)|y(t,,t.) = 4-1
u(ty) = Blucr|lycey,ty) = gy 4} (4-1)

A backward filter is run independently from the final

condition, t to time ti, so as to incorporate ''future"

fl
measurements
up(t3) = Bt IE(t 0 t) = g4 ) (4-2)

where the notation ﬁb(t;) denotes the estimate of ﬁ

provided by the backward filter just before the measure-
ment at time ti is incorporated. The results from these
two filters are then combined in an optimal manner so as

to provide a smoothed state estimate at time t "Better"

i
state estimates throughout the measurement history would
be expected due to the smoothing process.

A fixed-point smoother, rather than smoothing the
states at each point in time, is constructed so as to
smooth only one point in time at which the values of the
system state is considered critical; i.e. the initial

time for the problem at hand. A forward filter is run

in the same manner as the forward filter described above,

38
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but as new data becomes available, the measurement

information is propagated back to the critical point
(initial condition) to provide an updated (smoothed)

estimate

u(to/ty) = Eu(t )Xt = g5}ty = t,t;,..., 8, (4-3)

Ideally, to solve this particular problem, the
backward propagation of information for either smoother
would incorporate a nonlinear or extended filter of the
form used in the forward propagation (Section 3.2).
However, the solution of Equation (2-1) bakecward in time
has been shown to have unstable properties and in general
is difficult to solve (see Appendix B for a further
discussionj. Therefore, the linearized form of the
state transition matrix given in Equation (2-8) will be
used. Development of both smoothers incorporates this

form and is described in the following sections.

4.2 Fixed-Interval Smoothing

Maybeck (Ref 15) provides details of the development
of the fixed-interval smoother which will be summarized
here., First, the forward filter is applied up to the
current time, ti' incorporating the measurement to
provide .a state estimate, Q(t;). The existing extended

Kalman filter described in Chapter II can be used for this

39
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- An independent backward-running filter may be

e

f: formulated as an inverse covariance form. This form

2N
5 provides a priori statistics at the final time, te,

. that cannot be obtained by the conventional form,

Lot

L Additionally, this form insures stability of the back-
’__: - N

Q: ward filter (provided the linearized state transition

matrix is used) since the forward filter is stable. If

(9
i
.
1’: A

O the states in the backward direction are denoted Eb(ti)

g:% and Pb(ti), then the inverse covariance form is given as
o x,=P;'u, and P;l(t;). Initialization occurs at the final
;J time as given by

N .~

‘ @ _;Eb(t;) =0 (4-4a)
.-:' -1 - .

&% P (tg) =0 (4-4b)
»

Estimation propagation backwards in time to the preceding

measurement time is given by

P

o Xy (te_q) = @ (ty, b L) {x, (£, )B(t, _;)} (4-5a)
-1, - _ o7 ' o=l .+ T,

.;;::. pb (tk-l) ¢ (tk’tk-l) {L(tk)Pb (tk)L (tk)

3 e | |
.*_.» + J(tk)Q J (tk)}(b(tk'tk"'l) (4-5b)
3 where

o : -1, 4 o=l 4 -1, -1

\.;..‘ J(t) = Pur(ty) {Pb (ty) +Q 7} (4-5c)
AR

\::
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o L(t) =1 - Jd(ty) (4-5d)
;5 The time indices on the state transition matrices
+ \'
;b indicate backward propagation of adjoint system relations. ]
K 1

Measurement updates of the backward filter are generated

w
e ¥

.‘v l.. ] “

. by j
": s
;T Eb(tk)= §b(tk) + H R ¥ (4-62) i
3 - ’ - R -

“ Prl(t,) = Prl(e) + H R7E (4-6b) ]
:': :
N
X Equations (4-5) and (4-6) are recursively for k=f, (f-1), i
13 ..., (i+1l) to generate §b(ti). i
& Combining the estimates from the forward filter,
N . i(t;) and P(tI), and those of the backward filter, §b(t;)
R Ij and Pb(t;), can be accomplished by
A -~ + ~ -
"- U(ty/te) = X(ty) u(ty) + P(t,/ts) X (t)) (4-7a)
_ _ + T ‘ -1, -.wT ‘
;E P(ty/te) = Z(ty) P(ty) Z7(ty) + W(T P~ (L)W (ty) ‘
ks (4-7b) |
5 where
: ) + =1 - -1
N X(ty) = {1 + P(t;) Pb (;i)} (4=7c)
N
- wet,) = pethyxT e, 4-7d
» (ty) = P(tX (ty) (4-7d)
S -1 . -
3 Z(ty) = 1 - W(ty) P o(ty) (4=7e)
N
N A
W The optimal smoothed estimates are now given by g(ti/tf)
S
»
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and P(ti/tf). Computationally, this process can be
achieved by first running the backward filter over the

. S -1, -
entire interval and storing values of Eb(tk) and Pb (tk).
Next, the forward filter is run simultaneously with the
smoother relations of (4-7) thus generating smoothed

estimates at each sample time, g(ti/tf) and P(ti/tf).

4.3 Fixed-Point Smoothing

The optimal fixed-point smoother for a general point
is given by Meditch (Ref 16} and Maybeck (Ref 15)., The
smoother relation is run concurrently with the Kalman

filter of Section 3.2 and is given by
Q(t Jt.) = u(t /t. .) + W(t.) Ket.) {y. - H u(t- -

where g(to/tj) is the smoothed initial state based on

35 8ty

priori and a posteriori values of the state at time tj as

measurements through time t u(t j and g(tsj are the a

obtained from the Kalman filter,; zj is the measurement at

time tj; H is the measurement matrix given by (2-11); and

K(t ) is the Kalman gain matrix given by (3—9). Equation

J
(4-8) includes a residual term, {Xj - Hg-(tg)}, available
directly from the existing forward filter (3-8). Thus

it can be interpreted as a means of 'reflecting back' the

information contained in the filter residual at each time

t, about the initial state value at time, t_ (Ref 15).

J
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\5& The smoother gain matrix W(tj) is defined to be
= 4 Jﬁl _
3; W(tj) = k=0 A(tk) = w(tj-l) A(tj-l) (4-9a)
! A 1 .
(.‘ = = = -
A(tk) P(tk) ¢(tk+l,tk)P (tk+1) (4-9b)

where ¢ is the linearized transition matrix; and P(t;)

and P(t;+lj are the a posteriori and a priori covariance

| AP

at time tk and tk+1 respectively.

s

An approximation for the error commited by this

X ik A

e

estimator, {g(to) - g(to/tj)}, is to consider it Gaussian

and zero mean for all j, with covariance

. . ‘ + o T )
P(to/tj) P(to/tj_l) + W(tj) {P(tj)-P(tj» i (tJ) (4-10a)

g or

. P(t,/ty)

AP PIN “

) K(t

‘ . - .
P(to/ty_q) = Wity 30 HP(t)) W (ty) (4-10b)

The smoothing algorithm is initialized by

R u(t,/ty) = u(ty) = u, (4-11a)

P(t,/t,) p(toj (4-11b)

To avoid the inversion of the n x n matrix, P(tj),

o7

of Equation (4-9b), Fraser (Ref 6) provides an alternative
form which requires only the inversion of the m x m

diagonal matrix R of (2-12),

are ;.o

al
o
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o a(t /t.) = u(t /t. .) + W(t.) HR L {y. - Ha(tD)} (4-12
,\‘ DU _( 0/ J =‘"0o j-1 .]) XJ _( J) ( )
‘f; where W(tj) is now generated by means of the recursion
AN | . .
o W(t,) = Wet, ) o (t, t I-s(t )P(th) -
(t3) = W(ty_ ;) 0 (ty ty_ 1) {I-S(t)HP(t))} (4-13a)
2 S(tJj =o' Rl ® (4-13b)
.ﬁ
<3
N starting from
;‘ W(tj) = P(t)) (4-13¢)
3
ﬁb Again the residual term available from the forward filter is
: found in Equation (4-12) and provides the means for
1 reflecting measurement information back to the initial time,
D
f: . The error covariance can be computed as
A ) \ - ' ‘ -, ' l
o~ P(t_/t = P(t_/t - W(t, S(t.)P(t.)S(t
Ay ‘
- S S
o + S(tj) w (tj) (4-14)
Lo
1# The smoother algorithm is initialized by Equation (4-11).
-
ﬁi 4.4 Smoothing Algorithm
‘3? Although the fixed-interval smoother provides smoothed %
o,
ji estimates throughout the time history, it adds a signi-
!
JA ficant amount of computational complexity when compared
~ with the fixed-point smoother. For the HEATEST Program,
' -
.
t this is a major concern. The main objective is to find
j; better estimates of the initial conditions, and since the
,i: .
1': 44
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existing Kalman filter provides satisfactory estimates
throughout the rest of the time history, a fixed-point
smoother is adequate, Thus the Fraser fixed-point
smoother of Equations (4-12) - (4-14) has been
incorporated into the estimation algorithm,

An important consideration in the operation of this
smoother is the length of the smoothing interval.
Because of the use of the linearized state transition
matrix to reflect information backwards, errors caused
by this approximation and other model uncertainties may
increase if smoothing is conducted over a long time
interval, Thus, it may be necessary to restrict the
number of sample measurmenets that are included for
smoothing.

One criterion for the smoothing interval may be the
RC time constant analogy mentioned in (2-7). The
approximation is that a step input in the heating rate
at the surface will propagate to the interior according

to
RC, = p, ¢, X2/K
LS YA

where the RC time constant, RC,, is in units of seconds and

2')
xz is now the distance from the surafce. A node is
expected to reach 98% of its assymptotic temperature within

an amount of time given by three time constants using this
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N

g ﬁéﬁ' analogy. Since the heating rate at the surface is

7;» actually nonlinear, smoothing beyond a time interval

S described by this time constant serves to propagate

? errors from the linear state transition matrix assumption.
. Thus a smoothing interval of three time constants is

iz used for the smoothing interval at each node point.

"S Perhaps a better alternative may be to consider

: the eigenvalues of the system for calculating the

x smoothing interval. However, since the Schur method of

2 decomposition is used for calculating the state transition
v matrix (Retf 20), the eigenvalues are not directly

ﬁ available from the program. The added burden of calcula-
N,

.. ting these eigenvalues is unwarranted for this application.
‘E’ Operationally, the updated HEATEST Program provides
an option to use this time constant analogy or to specify

% a desired interval., Additionally, the smoother may be

; "shut off" completely when initial condition smoothing is
9 not desired.

= 4.5 Summary

‘E The fixed-point smoother algorithm provides an

? efficient and computationally tractable method for

= estimating the TPS temperature profile at the start of

a given maneuver. Incorporation of this smoother into the

Rar’s g

adaptive estimation scheme is shown in Figure 4, The

current HEATEST program now contains this smoother, as

I
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well as the enhancec heating model described in Chapter II.
Testing and application of the improved scheme is

described in the next chapter, along with analyses of the

results,
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R V. RESULTS

f%g 5.1 Approach

:;3 To validate the improvements incorporated into the

i: HEATEST estimation scheme, it is necessary to apply the

.?g program to realistic simulations and actual flight data.

;;i Simulated thermocouple measurements can be generated for
j-’ specified heating models and initial conditions. With the
f;g true value for the parameters and initial condition known, a
%ﬁ simulated estimation using the updated HEATEST program can
“; be compared to the known values. Additionally, linear and
éSJ nonlinear forms of the heating model may be contrasted to

EZ show the flexibility of the new form. For flight data, veri-
- GE: fication of the enhanced heating model can be continued by
5?@ . applying it to STS-2 lower surface measurements where previous
:; results are adequate and available. Since the lower surface
30 is expected to have a linear heating rate, similar results
Eé% should be obtained with both linear and nonlinear models.

-ﬁﬁ STS-2 OMS pod data provides a good opportunity to apply the
N scheme to an area with a nonlinear heating rate. The new

;Sﬁ model also enables a further investigation of the time skew
3?3 problem due to the possible nonisothermal wall effect on the
:g. OMS pod. For initial condition estimation, simulations with
?EE known initial conditions can also be conducted and the RC time
?E% constant approximation for the smoothing interval can be

§ < {;\'-

X
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;? ‘;5' verified. Application of the smoother to STS-4 lower surface
::3 data, where a telemetered data loss occurred and initial con-
Sg ditions are uncertain, can provide information concerning a
:: possible Reynolds number or Mach effect during the Mach 12

-;3 POPU maneuver.

fz§ The results for these cases, given in Appendices C - F,
Té include parameter and state estimates, along with some measure
ig: of their uncertainty or accuracy. For parameter estimates,
;& an uncertainty bound is derived from the Cramer-Rao Bound

L$§ described by Equation (3-18). Thus, this does not represent
‘Ei an absolute measure of uncertainty, but can be used for com-
'3% parison purposes. For state estimates, an average error is
?{ tﬁ? presented which represents the average deviation of measure-
?ﬁ ments and a priori estimates. This describes how well the

:§ model "fits'" the thermocouple data. Because thermocouple

Kt

accuracies vary for each flight condition and location on the

Orbiter, this measure is useful only for comparisons of runmns

made with the same data. Finally, uncertainties of smoothed

N

— initial conditions are described by the variance, which is

:ﬁ calculated from the smoothed error covariance matrix.

oo

;% Two types of thermal models were used in obtalning these
>

o

e results. The lower surface model includes a plug of thirteen
:ﬁ: node points with thermocouples located at node points 2, 5,
S

$3 8, 11, and 13. The OMS pod includes ten node points with only
o

o <,

NI
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:§ “53? a surface thermocouple located just under the coating thick-

. ness at node 2. For both models, thermocouples provide

53 measurements at a sample rate of one per second.

> 5.2 Heating Model Simulation

?T The lower surface thermal model was combined with two

-% segment and three segment heating models to generate a non-

:f linear response, similar to that which might be observed on

‘S the OMS pod. Trajectories from the STS-2 Mach 20 Pushover

3 Pullup maneuver were used to generate the simulated thermo-
couple data. Eight-bit word noise of the temperature data

:? was not simulated, but could be added for an even more real-

N istic simulation. Results described in this section are given

" G in Appendix C.

g Simulated thermocouple data, along with the a priori

ﬁ temperature estimates of the HEATEST program, are given in

“, Figure C.1 for the two segment model simulation. The predict-

-vé ed heating model is depicted in Figure C.2. These parameter

E? estimates, as shown in Table C-1, provide good agreement with

ji the actual specified values. Any discrepancy may be attribu-

; ted to approximate initial conditions that were uéed for the

:5 estimated case.

:: Exact initial conditions were used for a three segment

fi model simulation and the results shown provide better accuracy.

‘i For this model, one, two, and three segment estimates were

T)!
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XIS obtained as given in Table C-2. It should be noted that the

" heating derivatives represent slopes of each linear segment

'g and as such cannot be compared directly for different models.

% Rather, the heating ratio itself at specified angles of

:: attack should be contrasted for the various models, as de-

'% picted by Figure C.4. As expected, the multiple segment

) models provide more accurate results as indicated by the av-
-; erage error of Table C-2, with the three segment model pre-

ii dicting the specified values exactly. However, parameter

E uncertainty bounds tend to increase with the multiple segment

A models. This can be attributed to the approximation used for

ﬁ calculating the sensitivities at the knots or break points, 3

'E’ as well as an increase in the number .of parameter estimates ]

{ or "degrees of freedom" of the scheme. The high uncertainties

? of the break point estimations for the three segment case in- )
4 dicate that difficulties may be encountered when estimating

‘f these points with noisy data and rapid transients. By fixing

; these points and thus reducing the number of estimated param- -
? eters, uncertainty bounds decreased by 50 - 55% (Table C-2.B.).

~§ Another important result shown in Table C-2 concerns the

-; coating thickness of the one segment estimation case. A

3 larger coating thickness with a high uncertainty bound is

predicted for the nonlinear data used. This implies that
the linear perturbation model attempts to account for non-

linear heating ratios by estimating a larger coating thickness.
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This would explain some of the large coating thicknesses
obtained in previous flight data results (Ref 7,8,9). By
specifying the coating thickness, as in Table C-2.B., a
smaller average error may be obtained.

Figure C.4 provides a graphic comparison of the one,
two, and three segment estimations of the three segment model.
The one segment interpolation represents the linear pertur-
bation model assumption as contained in the original HEATEST
program. This model attempts a linear best fit, which can be
grossly inaccurate for highly nonlinear heating rates. Mul-
tiple segment piecewise linear models provide a much better

fit as shown in Figure C.4.

5.3 Heating Model Flight Data

The updated heating model was applied to STS-2 flight
data at the Mach 20 Pushover Pullup (POPU) maneuver for both
the lower surface and OMS pod. Results for these cases are
given in Appendix D.

The heating ratio for the lower surface is expected to
be fairly linear with changes in angle of attack (Ref 10).
Results from STS-2 data using the linear perturbation model
have been good (Ref 7). Application of the multiple segment
interpolation model should reproduce this result. Figure D.2
compares the heating ratio estimated assuming one, two, and

three segment models. The results are similar and the multiple
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segment models predict an essentially linear heating ratio.
This proves the validity of the linear perturbation assump-
tion for the lower surface.

In previous analyses of the OMS pod, nonlinearities
were accomodated by processing the data in small time seg-
ments (Ref 7). Typical results are shown by Figure D.4,
which uses data processed in four time increments. This
figure shows that the linear perturbation assumption is not
valid throughout the entire maneuver. The entire maneuver
can be processed, however, by applying the new heating model.
Two and three segment interpolation models were used for the
heating ratio estimates given by Figures D.5, D.6, and Table
D-2. Results obtained with phese models agree well with
previous results. In general, improved performance is
obtained from the interpolation forms. The average error
of the three segment model shows a 10% improvement over
that of the original model, while the two segment model
shows a 30% decrease. The better performance of the two seg-
ment model over the three segment model can be attributed to
a reduction in the number of estimated parameters and the
adequacy of the two segment form.

A major problem in previous OMS pod results was the
identification of a three second time skew, which may be
caused by the nonisothermal wall effect (Ref 9). Thermo-

couple samples were lagged by three seconds to enable data
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SRS correlation and eliminate hysterisis in the heating ratio

profile. An investigation of this problem was conducted

using the new heating model. The advantage of the new

e ,:_‘ :

'y

model in investigating this problem is that an estimate for
the coating thickness may be obtained for the entire maneuver

interval and data correlation is easier.

7 o
H5 5D VT

Table D-3 compares heating parameter estimates for var-

ious time skews using a two segment model. For adequate

RO ARA%

results, it was necessary to estimate the coating thickness,

BN

AXA, and the sideslip heating derivative, g - Figure D.7
shows the increase in heating with decreasing time skews.

Figure D.8 compares estimated coating thickness, as well as

‘E? sideslip heating derivatives, for various time skews. Unus-
ually high coating thickness predictions were obtained for

smaller skews. Although large thicknesses may be expected

—a s s LD

due to repairs of the OMS pod prior to STS-2 (Ref 9), esti-
X mations for zero and one second skews are unreasonable.

Thus, time skews are shown to be necessary for reasonable

22T 2T AT

- prediction of the coating thickness. In addition, the esti-
N mated sideslip heating derivative, q , decreases with time

“

N skew as does the uncertainty of the predictions.

Al

- Since an approximate value for the coating thickness for

this flight was virtually unknown a priori, the magnitude of

25" 2"

the necessary time skew is difficult to determine. To iden-

3

tify the magnitude of the time skew, the average errors of

Y
)
o)

»
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temperature predictions for various time skews are shown in
Figure D.9. Although previous analysis has indicated a
three second skew, this figure indicates that a two second
skew may be desirable. The coating thickness predicted by
a two second skew is high, but may not be unreasonable. A
conservative approach may be to identify the time skew as

having a range of possible values from two to four seconds.

5.4 Simulation With Initial Condition Estimation

For testing the fixed-point initial condition smoother,
a simulation of STS-4 lower surface data with known initial
conditions was generated (Figure E.l1). Poor initial condi-
tions were used to initialize the smoother and final smoothed
conditions at each node were compared to the actual initial
temperature values. Simultaneous parameter estimation was
conducted to evaluate the feasibility of using the smoother
in an adaptive estimation setting.

Table E~1 shows the final smoothed conditions after six
parameter iterations. In addition, the final parameter esti-
mates are shown. Comparison to the actual model and initial
conditions is excellent and provides confidence in the valid-
ity of the smoother.

To anlayze smoother performance more explicitly, Figures
E.2 and E.3 indicate the degree of smoothing with increasing
sample periods for the first parameter iterat.on. For

thermocouple node points (Figure E.2), the smoother quickly
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converges to the final smoothed values. For node points with-

out a thermocouple, convergence is much slower, but well within
the three time constant approximation. This indicates the
validity of using this approximation for calculating the
smoothing interval. Also, as expected, more confidence is
obtained for thermocouple node points as indicated by the

smoothed variance values.

5.5 Flight Results With Initial Condition Estimation

An important application of the initial condition smoother
is to analyze the data from the lower surface of the STS-4
Mach 12 Pushover Pullup maneuver. Previous analyses of this
data (Refs 1,7,8) have indicated lower heating derivatives
for the STS-4 data than obtained for the STS-2 Mach 20 man-
euver data. Loss of telemetered data from the beginning to
the middle of the maneuver complicate the analysis. It has
been determined that transitions to turbulent flow and then
back to laminar flow occurred during this da:ta loss (Refs 1,
7,8). However, it is unknown whether the lower heating ratio
estimates are a result from some unmodeled Mach or Reynolds
number effect or from inaccurate initial conditions at the
start of the processed data. Audley and Hodge (Ref 1) indi-
cate that an initial condition smoother would resolve this
discrepancy.

Thermocouple data processed in the middle of the maneuver

is presented in Figure F.l1l. Smoothing was applied to the
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approximate inital conditions used in previous analyses. Con-
vergence for the smoothed initial temperatures, shown in Table
F-1, was obtained. The higher temperatures just below the
surface (Figure F.2) indicate heat storage that would be con-
sistent with flow transitions. Although overall comparison of
the heating ratio estimates from STS-2/STS-4 during laminar
flow remains favorable,. lower heating derivatives are still
predicted for the STS-4 maneuver (see Figure F.3). This, then
does indicate the presence of an unmodeled Mach or Reynolds
number effect, since the uncertainties about the initial con-

ditions have essentially been eliminated.

5.6 Summary
Results from both simulated and actual flight data show

the flexibility and accuracy of the improved HEATEST program.
Both the nonlinear heating model and the fixed-point initial
condition smoother demonstrate excellent performance charac-
teristics. A summary of the important conclusions gained
from the results of this chapter, as well as recommendations
for further improvements and future applications of this

scheme, are provided in the following chapter.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Areas on the Space Shuttle Orbiter with nonlinear heat-
ing rates may be successfully modeled by a piecewise linear
interpolation scheme. The'feasibility of this model has been
demonstrated through applications to both simulated and actual
flight data. Problems may arise when estimating multiple
knots (break points) due to the approximation of the sensi-
tivity calculations at these locations. To avoid such diffi-
culties, these locations may be specified rather than esti-
mated and accurate results can be obtained.

Simultaneous smoothing of initial conditions with the
adaptive estimation scheme successfiully provides better esti-
mates of temperatures at maneuver start and enhances the over-
all estimation process. In cases of data loss prior to man-
euver start, initial conditions can now be estimated based
on "future'" data obtained after the initial time. Use of
the RC time constant approximation, as shown by simulated
cases, provides a feasible method of calculating the smoothing
interval.

Applications of the new program incorporating both the
nonlinear heating model and fixed-point initial condition-
smoother have provided some useful and important results.

From simulated data, it has been determined that the original

linear perturbation heating model may estimate high values
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for the coating thickness when applied to an area with a non-
linear heating rate. Use of the improved model provides
better estimates with lower uncertainties in such cases.

OMS pod data from STS-2 can now be processed in a single
time segment for an entire maneuver history. Problems with

data correlation and hysterisis of the heating ratio profile

~

have been eliminated with this model. However, a time skew

in this data has been verified to obtain reasonable values
for the coating thickness and heating ratios. This supports
the theory of the nonisothermal wall effect on the OMS pod.
Lower surface data from both STS-2 and STS-4 has been
processed with the new algorithm. Nonlinear heating models
applied to the STS-2 data verify the linear heating rate
assumption on the lower surface. Estimation of initial con-
ditions of the STS-4 Mach 12 Pushover Pullup maneuver has
provided a more accurate estimation of parameters. Values
for the heating ratio are close for the laminar flow STS-2
Mach 20 and STS-4 Mach 12 maneuvers as compared with the tur-
bulent STS-4 Mach 8 case. However, the heating derivative of
the STS-4 Mach 12 maneuver remains low compared to that of the
STS-2 Mach 20 case and indicates the presence of an unmodeled

Mach or Reynolds number effect.

6.2 Recommendations

The flexibility of the new heating model may be enhanced
by improving the ability to estimate the knots of the multiple
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segment model. One possibility may be to store sensitivities
for each linear segment individually as they are calculated.
As the model changes from one segment to another, these
stored values, rather than zero values, may be used as start-
ing points for the propagation of the sensitivities.

Additional modifications to the algorithm may include
placing an upper bound on the coating thickness estimate.
This would provide better parameter estimates in the presence
of the nonisothermal wall and would aid in determining the
necessary time skew. Also, direct incorporation of the non-
isothermal wall effect into the scheme is desirable.

For the initial condition smoother, the use of the RC\
time constant approximation for the smoothing interval may be
further verified by calculation of the system's eigenvalues.

A better smoothing interval may be obtained from this, but
added computational burden may not warrant it.

Application of this model to other nonlinear areas can be
accomplished. In cases where a transient other than angle of
attack is considered, minor modifications may be made to use
this model in terms of the desired variable. Such an appli-
cation can be made to elevon and body flap maneuvers.

Previous results obtained through the use of the linear
perturbation model may be verified using the enhanced model.

Lower predictions for the coating thickness may be found on

areas with nonlinear heating rates. Additionally, the improved
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model will provide better estimates of the heating ratio for
these areas.

The Mach or Reynolds number effect found on STS-4 should
be investigated more thoroughly. Applying Mach or Reynolds
number perturbations in the nonlinear form described for
angle of attack in this paper may provide greater insight into
a little understood phenomenon.

Another important area for use of this model is in tran-
sient heat transfer measurements made in the wind tunnel. The
HEATEST program has been used to analyze data for such a tech-
nique (Ref 11). In this technique, only one transient is con-
sidered (angle of attack) and thus lends itself to analysis
using this model. Simulations of nonlinear heating rates may
be conducted in the wind tunnel, with subsequent analysis
using the HEATEST program.‘ This technique will aid greatly in
the understanding of the flow phenomena on the Space Shuttle

Orbiter 1tself.

6.3 Summary
As the data reduction of the Space Shuttle flight test

program progresses, the enhanced HEATEST program should pro-
vide AFFTC and NASA with a more powerful analytical tool. 1In
addition to the recommendations given here, there exists a
myriad of possible applications for the new scheme. Complete
knowledge of the reentry aerothermodynamic environment is

necessary for landing profiles to Vandenberg AFB and elsewhere.
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Thorough testing and analyses of all available data using the

N improved program should provide the means for safe aerothermo-
R
"3 dynamic envelope expansion for the Space Shuttle Orbiter.

2

MR ¢
%3
e

)

1 e
«

.
el
el e

\

"

Xy
A

R .'
AN
5

62




PR BREAR WS AN € T T A, RS "R he S I SIS SO S N R A AN SR AN SR CA AN L I ) SaTtptetn

! .‘.., ‘o8

ol _'f:, T
¥ T BIBLIOGRAPHY

1. Audley, D.R. and Hodge, J.K. "Identifying the Aero-
thermodynamic Environment of the Space Shuttle Orbiter,
Columbia." 6th IFAC Symposium on Identification and
System Parameter Estimation, June 1982.

A

L

2. Beck, J.V. and Arnold, K.J. Parameter Estimation in
Engineering and Science. John Wiley, 1977.

3. Davis, P.J. Interpolation and Approximation. Blaisdell,
1963.

-.'.;6.’4 2’ l. :

4, Ewing, R.E. "The Approximation of Certain Parabolic
Equations Backward in Time by the Sobolev Equations,"
SIAM Journal of Math. Anal., Vol. 6, pp. 283-294,
April, 1975.

Y M

20 s
AR APy

5. Eykhoff, Pieter. System Identification. John Wiley,
1974.

A 6. Fraser, D.C., and Potter, J.E. "The Optimum Linear
Smoother as a Combination of Two Optimum Linear Filters,"
§ IEEE Trans. Automat. Control. Vol. 7, pp. 387-390, 1969.

‘;D 7. Hodge, J.K. "Trends in Shuttle Entry Heating from the
Correlation of Flight Test Maneuvers,'" NASA Langley
Conference on Shuttle Performance: Lessons Learned,
March, 1983. To be published as NASA CP.

8. Hodge, J.K. and Audley, D.R. "Aerothermodynamic Para-
%, meter Estimation from Space Shuttle Thermocouple Data
R during Transient Flight Test Maneuvers,' AIAA-83-0482,
4 January, 1983.

" 9. Hodge, J.K., Audley, D.R., Phillips, P.W., and Hertzler,
E.K. "Aerothermodynamic Flight Envelope Expansion for

a Manned Lifting Reentry Vehicle (Space Shuttle)."
Paper 3-B, AGARD CP-339, October, 1982.

!

.

‘S 10. Hodge, J.K., Phillips, P.W., and Audley, D.R. "Flight

s Testing a Manned Lifting Reentry Vehicle (Space Shuttle)
for Aerothermodynamic Performance." AIAA-81-2421,
November, 1981.

2 11. Hodge, J.K., Woo, Y.K., and Cappelano, P.T. '"Parameter
0, Estimation for Imbedded Thermocouples in Space Shuttle
¥ Wind Tunnel Test ATrticles with a Nonisothermal Wall,"
AIAA-83-1533, June, 1983.

: 63

_______

......




g

5§#%ﬁ1

WA

aA_t

I I 6 B Q0 e 2.

X AR

- TR g3
Pl 1

b AT ST

582
72

Wi

A

R |

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

--------------------------

Jazwinski, A.H. Stochastic Processes and Filtering Theory.
Academic Press, 1970.

Kaplan, M.H. Space Shuttle: America's Wings to the

Future. Aero Publishers, 1978.

1
Lattes, R., and Lion, J.L. The Method of Quasireversi- ‘
bility, Applications to Partial Differential Equations. |

Control. McGraw-Hill, 1969.

American. Elsevier, 1969

Maybeck, P.S. Stochastic Models, Estimation, and Control,
Vols. I and II, Academic Press, 1979 (Vol. 1) and 1982
(Vol. II).

Meditch, J.S. Stochastic Optimal Linear Estimation and

Payne, L.E. Improperly Posed Problems in Partial Diff-
erential Equations. Society for Industrial and Applied
Mathematics, 1975.

Prenter, P.M. Splines and Variational Methods, John
Wiley, 1975.

Rao, C.R. Advanced Statistical Methods in Biometric
Research. Chapter 4, John Wiley, 1952,

Sagstetter, P.W. '"Numerical Computation of the Matrix
Riccati Equation for Heat Propagation During Space
Shuttle Reentry," M.S. Thesis, AFIT/GCS/MA/82D-7,

Air Force Institute of Technology, Wright Patterson AFB,
Ohio, 1982.

Showalter, R., and Ting, T.W. "Pseudo-Parabolic Partial
Differential Equations,'" SIAM Jornal Math. Anal., Vol. 1,
pp. 1-26, 1970.

Space Shuttle Orbiter Entry Aerodynamic Heating Data ]

Book. Rockwell International Space Division, Document
Number SD73-SH-0184 C Revision, Books 1 and 2, October.
1978.

Walter, W. "On Existence and Nonexistence in the Large of
Solutions of Parabolic Differential Equations with a
Nonlinear Boundary Condition,'" SIAM Journal Math. Anal.,
Vol. 6, pp. 85-90, 1975,




.Y IS 24. Williams, S.D., and Curry, D.M. "An Analytical and

e Experimental Study Using a Single Embedded Thermocouple,"
9 Journal of Spacecraft and Rockets, Vol. 14, pp. 632-

< 637, October, 1977.

: (see also '"Technical Comments,"

({- Journal of Spacecraft and Rockets, Vol. 15, pp. 381-

%3 383, November, 1978).

B

(o

o
& 65

I S I e T ] PR et T a . el .o . . A e
o« LR ) ..-..' KBS RS ‘-_’ . _....’-...- '_'.“ T e e e e TR W i



wTa

- ra
SN O¢
Bl

A D2 I

&

FaUI So S

. e
)

A XROOXNNG

s

o
3

iy

AAANIY

;

)

.01‘7'-

A A HU TV

PRI IR R YL P PRI R RGBS siin A ion Ay Ae i e By R AR R AL AR AR T . RSt

Appendix A

Piecewise Linear Interpolation

This section describes the piecewise linear
interpolation model for the heating ratio mentioned in
Section 2.3, The development of this model draws from
approximation and interpolation theory, details of
which are given by Davis and Prenter (Refs 3,18}.

For simplicity in development, it will be assumed
that the heating ratio is a function only of angle of
attack, f(a). It will also be assumed that this function
is unknown for a given maneuver and in general is not
adequately described by the linear perturbat;on form
originally derived for the HEATEST algorithm. The
problem then becomes one of finding a suitable descrip-
tion for this model to be used in the estimation setting
of the identification process. The solution process is
thus unique in that it seeks to estimate an approximating
function for the heating ratio.

If the heating ratio, f(a), can be described on the
interval (a,b), then this interval may be partioned into
an finite number of subintervals described by a=Qq <0, <ay<
cee<an= b. These numbers, Qgseee,@,, are called "knots"
in spline theory (Ref 18) and represent points at which

the behavior of the approximating function, E(a), is
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b ‘Ti' constrained. Specifically, the approximating function

* e will interpolate the heating ratio at these knots by

o
jg i(ai) = f(ai) for each i = 6,1,2,...,n. Davis (Ref 3)
» described the Lagrange polynomials as among the simplest
=4 and most practical of interpolating polynomials. One
;i effective way of approximation is to piece together
;:f Lagrange polynomials of a fixed degree and force them
;% to interpolate the given data (Ref 18), The resulting
ﬁ% function, s(aj, is known as a piecewise Lagrange
X polynomial of degree m:

8, *+ 8,0 + ... +aa’ a casa

S(a) = Bgeq * Bpp0 ... * a2m+1am o <agag 0
8o g0t Boia * ... *ag  oa” azmgagasn

- where the a,'s are constants determined by s(a;) = f(ay),

i-= O,l,...,n, and n is some multiple of m,

<

oy

Prenter (Ref 18) indicates that an effective

P
b’ 4

-

approximation may be made by choosing m=1 such that the

L

function becomes piecewise linear

* e v
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I-O

Q o <a<a
0 1 - -

o 1
S(a) = %2 7 30 psasey
a4 + a5a a25a5a3 (A-1)

where the ai's represent slopes for each line segment and
may be replaced by a descriptive form, qai' For the
purpose at hand, such a function is advantageous in that
it eliminates the additional computational burden of
higher order polynomials. 1In addition, it retains a

form similar to the origianl linear perturbation
approximation and thus is easily implemented. A different
form of equation (A-1) may be written by defining a step

function, Gi(a), such that

f(a) = q  + a4y, (8§;(a) = ag) + a4 ,(85(a) = ay)

oo v q (8 (@) oy y) (A-2)
where
®i-1  92%3q
§;(a) = a ay_qSesoy

ay aga,

The step function, Gi(a), represents the discontinuous
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nature of the model at the knot, Q.

In general, the unknown parameters in this model
formulation are the intercept, dg» the slopes, qai'
and the knots, Q. Note that the intercept, q,, is
the same as that given in (2-4). Often it may be
desirable to specify the location of the knots and
thus constrain the approximation to interpolate more
precisely near a given angle of attack. However, a
better fit of the heating ratio throughout the range
of angles of attack would occur when the location of
these knots is determined by the estimation scheme
itself,

To estimate these parameters by the method of
Chpater III, it is necessary to calculate the model
sensitivity with respect to each unknown parameter,
The derivative of equation (A-2) with respect to any

slope, q_., can be given as

ai

~

3%&21 = §;(a) = a;_4 (A-3a)

ai
By defining a different step function, ai(a), the
derivative of equation (A-2) with respect to any knot,
a;, may be given as

3f(a)

3o =¥ ;(0) = Q4549 (A-3b)
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Yl(a) =

¢i i
The sensitivity state in general is found by solving the
propagation equation given by (2-7):

=¢c, u + D
k kK &

k

where the forcing function vector, Dk’ is defined by
equations (A-3). Solving this equation requires a time
derivative of Equations (A-3). 1In general, the time
derivatives of the step functionms, Gi(a) and'Yi(a), are
undefined due to the discontinuty at the knot, a . Thus,
these step functions are approximated as constants locally
in angle of attack and sensitivities are calculated for
each line segment in the model., Ths approximation works
well for calculating the siope sensitivities, but proves
more tenuous for the knot sensitivites. 1In cases where
the time rate of change of angle of attack is large in
the vicinity of the knot, difficulties in estimating
this parameter may be encountered.

This interpolation model was implemented into the
HEATEST with the capability of estimating models up to
four segments (i.e. four slopes and three knots).
Application is currently limited to angle of attack modula-
tion, but could be applied to any variable given in

Equation (2-4) with minor modifications.
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Appendix B

Backwards Heat Equation

The use of an extended Kalman filter in a backwards
filter/smoother requires the solution of Equations (2-1)

backward in time starting from some final condition t to

£
the initial time ty. With the time derivative written as a
first order backward difference of the form (2-2) for com-
parison with the original forward-running equations, the sys-
tem of equations become explicit in nature in the backward

scheme. An implicit form may be retained by writing the

time derivative as a forward difference of the form

U = (U (b)) - ug(t))/At (B-1)

Stability analyses show that either formulation is unstable
when solved backward in time, even though the implicit scheme
is unconditionally stable in the forward direction. 1In fact,
it was determined that any conventional scheme is unsuitable.
Further investigation shows this difficulty associated with
solving Equations (2-2) backward in time.

Equations (2-2) are derived from the classic parabolic

partial differential equation describing heat diffusion
u, = u (B-2)

where u, represents time differentiation and U,y represents
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the second partial derivative in the spatial direction. Payne

identifies the "backward heat equation' as one that is improp-
erly posed in the sense of Hadamard (Ref 17); i.e., a compat-
ibility condition is violated and no global solution can
exist. More specifically, the temperature profile at a given
point in time will not depend continuously on the data and as
such will have no unique solution.

Despite the improper posedness of the backward heat eq-
uation, attempts have been made to solve it, either directly
or approximately. Lattes and Lions (Ref 14) present the
method of '"quasireversibility" which has many of the same
features as the method of artificial viscosity used in solving
fluid and gas dynamic problems. In this method, the partial
derivative operator is perturbed in order to stabilize the
problem and the limiting behavior is investigated as the
perturbation vanishes. A variation of the quasireversibility
method is the ''pseudoparabolic" method of Showalter (Ref 21),
in which an alternative perturbation form is given. These
techniques are largely analytic and are not suitable for sol-
ution of the problem at hand.

Ewing (Ref 4) presents numerical results based on
Showalter's method. The backward heat equation is case in a
Hilbert space setting and is approximated by the pseudopara-
bolic or Sobolev equation. A Crank-Nicolson method is used

to solve the Sobolev equation numerically with mixed results.
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Ewing states that it would be "overly optimistic" to expect
good results all the way back to the initial time. This
alone makes this method infeasible as an initial condition
smoother.

Finally, none of these methods apply to the case of
the heat equation with the nonlinear boundary condition,
although Walter (Ref 23) mentions this case in an abstract
setting. Thus, the difficulties associated with solving the
problem at hand in a backward filter context prove enormous
and the alternative method of using the linearized form of
the state transition matrix in a fixed-point smoother be-

comes desirable.
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TABLE C-1 Estimates for a Two Segment

Model Simulation

Parameter Specified Value
AxA .00125
qo .05500
qa1 -.00490
q -.00040
Q
2
a] 39.200

a, = 30 degrees

Average Error = 0.49437

76

Estimated Value
(Cramer-Rao Bound)

.00125
(+ .00015)

.05494
(+ .00360)

-.00488
(+ .00025)

-.00040
(+ .00025)

39.220
(+ .3400)
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g"
R
R 1‘.‘1":“
; BN TABLE C-2 Estimates for a Three Segment Model Simulation
% A. Estimated Coating Thickness
1 Segment 2 Segments 3 Segments

) Parameter Specified (C-R Bound) (C-R Bound) (C-R Bound)
2
%
b By .00125 .00157 .00125 .00125
13 - (+ .00024)  (+ .00018)  (+ .00020)
o3 -
- q, .0550 .03781 .05227 .0550
it (+ .0021) (+ .0045) (+ .0071)
: : : :
¥ Ay -.00490 -.00213 -.00441 -.00490
3 1 (+ .00021) (+ .00070) (+ .00120)

q -.0010 - -.00052 -.00100
% % (+ .00025) (+ .00011)
& q, -.00040 - - -.00040 ;
% 3 (+ .00068) :
. 6 @y 38.1 - 38.7245 38.1000
3 (+ .60 ) (+ 1.2 ) ,
A ay 41.2 - - 41.2000 ]
& (£ 1.8 ) :
- Average
h Error - .44894 E-1 .12934 E-1 .75669 E-6
§\ .
= B. Fixed Coating Thickness and Break Points
N q .0550 .03556 .05230 .05500
; ° (+ .0011) (+ .0039) (+ .0035)
»

q -.00490 -.00110 -.00441 -.00490
" e (+ .0001) (+ .00064) (+ .00055) .
? q -.0010 - -.00052 -.00100 :
" %2 (+ .00025) (+ .00051) ;
IO 3 (+ .00035 :
2 e v .
8 Average .
" Error - .26013 E-1 .12805 E-1 .1284 E-8 :
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TABLE D-1 Estimates for STS~2 Lower Surface

X

N
?j 1 Segment 2 Segments 3 Segments
v Parameter (C-R Bound) (C-R Bound) (C-R Bound)
o
" Ax, .00129 .00133 .00136
B (+ .00037) (+ .00046) (+ .00047)
ety d
oa 9, .054940 .056510 .05550
s (+ .00074) (+ .0057) (+ .0093)
%
) 9 .00234 .00183 .00199

’ 1 (+ .00026) (+ .00080) (+ .00150)
T q - .00315 .00189

“ ay (+ .00120) (+ .00150)

e dedd

)
&
atalal

ol
X M

Average
Exrror

- .-
e

A0

BN

1.8028

40.47792
(+1.9)

1.2527

83

.00333
(+ .00120)

38.1
(Fixed)

41,2
(Fixed)

1.2586
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SRR

; - TABLE D-2 Estimates for STS-2 OMS Pod

N
‘\y: A. Time Segments from original HEATEST program
N (a, = 40 degrees)

S3 4

Segment 1 Segment 2 Segment 3 Segment 4

.;i Time

N Range 0-16 16-29 29-49 49-60
ol (sec)
e q, .00312 .00558 .00621 .00637
e (+ .0057) (+ .0022) (+ .00046) (+ .0023)
Ted - - - -
"

i Aq -.00491 -.00040 -.00105 -.00307

(+ .0013) (+ .00074) (+ .00036) (+ .0013)

i} Average

s Error .31754 .16370 .13352 44714
3%

87 B. Heating Estimates from modified program

N ( = 30 degrees)
o

" Parameter 2 Segments 3 Segments
h 9% .05220 .05819
i%j (+ .0037) (+ .0049)
)
4 4
q -.00491 -.00601
: o (+ .0005) (+ .00074)
s, q -.00061 -.00239
20 % (+ .00042) (+ .00049)
- -.00005
9o, (+.00006)
ey a 39.3284 37.5
R ' (+ 0.48 ) (fixed)
3 A
:b:.: - 41.5
.- az (fixed)
A

VY BA Average

o Error .17281 L22114
i
R 86
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TABLE D-3

Parameter

axp

9%

Average
Error

Estimates for Various Time Skews in STS-4 Data

No Skew

.00349
(x.00023)

.11064
(+£.0110)

(+£.0015)

-.00241
(£.00067)

38.5398
(.50 )

-.01887
(£.0041)

.21729

l Sec

.00291
(£.00024)

.08900
(£.0088)

-.00923
(x.0011)

-.00160
(+£.00062)

38.8384
(.55 )

-.01412
(£.0035)

.09195

2 Sec

.00230
(£.00023)

.07125
(£.0079)

-.00719
(+x.0010)

-.00166
(£.00050)

38.8729
(.51 )

-.01078
(£.0028)

.03975

3 Sec

.00168
(£,00023)

.05525
(£.0069)

-.00533
(£.00087)

-.00076
(£.00042)

38.9546
(.55 )

-.00758
(£.0023)

.16627

........

"4 Sec

.00118
(+£.00021)

.04326
(£.0055)

-.00395
(£.00069)

-.00047
(x.00033)

39.0269
(.55 )

-.00523
(x.0018)

.27163
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Initial Condition Estimation Simulation Results
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’ TABLE E-~1 Smoothing Simulatic . Results =
! !
N :
: A. Initial Condition Smoothing i
“ P
i Specified Starting Smoothed Smoothed j
Initial Initial Initial Initial
.z Temp. Temp. Temp. Variance
- Node (deg. F.) (deg. F.) (deg. F.) (deg. F.)
R 1 1330 1330 1330 13.7
} *2 1330 1330 1330 4.6
3 1330 1230 1328 31.0
4 1100 1017 1102 32.9
: *5 1004 928 1004 3.3
‘%
¥ 6 900 832 894 29.4
7 800 772 808 24.4
6 *8 720 665 720 2.3
" 4
”
- 9 650 600 644 25.1
. 10 550 509 548 17.9
*11 499 460 499 1.3
12 122 112 122 1.7
*13 112 122 122 0.5
* Thermocouple Node
'd B. Model Estimation with Smoothed Initial Conditions
_:
5 Parameter Specified Estimated
Bx, : .00125 .00125
‘ (+.00015)
2,
' 9% .0535 .05352
(£.0011)
RS % .00110 .00110
O 1 (+£.00024)
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TABLE F-1

A.

STS~4 Lower Surface Initial Condition Smoothing

Smoothed Initial Temperature

Node

*2

*8

10
*11
12

13

* Thermocouple Node

Parameter Estimates

Parameter

AxA

(ao

Smoothed Initial
Temp. (deg. F.)

1330
1330
1347
1173
1006
842
781
721
626
550
430
126

122

= 40 deg. ; Average Error =
Estimate

.00137
(£.00016)

.06259
(2.0015)

.00106
(£.00029)

.03136)

s a4

CORCINAN - | T e Yo Sy DRV - § AL

palr s

e

]



. “ " 3 v . - e T m e YAy T VW e e, Y v v v - Ly >
A S _iae_the = - g 3 % 24 » * PUINCIAS T s W ML YA YA A A R SIER A O A N A A S 'r.l
I

;';::J lD @) !
S.'fé |
oy :

: 1200
10004 O
800 -

600 -

TEMPERATURE (deg F.)

X 400 4

200 4

! ). 0 .02 .0l .06
3 DISTANCE FROM SURFACE (ft)

*
ﬁﬂﬂ Figure F.2, Smoothed Initial Temperature Profile for STS-4
d : Lower Surface Plug ‘

102

PR Sl et Wt ..
L I AL A PR

|

i

|

\

T e S A T G N W L '\.-J
PR R L"‘:f A LA R {AJH.';‘} A'-P..'n{\l‘m}u'}-&\.l}




Y

%

§e
&

.'";" p

v
N5

)
P 5‘

g
%

g

ot o
W i :
NN

A0y

-

STS-4, M = 8 (Turbulent)
(Ref 8)

X 0.3 -

A O&——®Heating Estimates

4,
>,
o
N
1

]: Uncertainty Bounds

HEATING RATIO (q9/q.)

o
L ]
[wrs
1

g‘ STS-2, M = 20
’

, ,,;.{' . /
341 :

Jatay STS-4, M = 12 (Laminar)
with Smoothed Initial Conditions

: N 0.0 T T y ! T
N 20 25 30 35 ko ks
5« ANGLE OF ATTACK (deg)

DT o

YA f:-',%' Figure F.3. Heating Estimates for STS-2/STS-4 Lower Surface
vy

4

T&E :

e 103

B S N L I T O S T T T TN LR NI R SV ,Ji
* . R R A NS A AP A AU A S TR LR T S SRS SR A A YA



..............

R

.
LM L . _e_*

e vita

Charles Dyches Lutes was born on 29 October 1966

X!

DY

in New York City, the son of Charles L. and Marilyn

=

D. Lutes, He was raised in Louisville, Kentucky where

3 he graduated from Trinity High School in 1978. He

;$ attended Duke University in Durham, North Carolina on
- an Air Force ROTC scholarship and graduated magna cum

é laude in May 1982, with a Bachelor's Degree in

] Mechanical Engineering and Materials Science. Upon

,k his commission in the Air Force, Lt Lutes entered the

\? Air Force Institute of Technology in June of 1982. He

lé is a member of Phi Beta Kappa, Tau Beta Pi, and Pi Tau

(Ei Sigma.

X

i Permanent Address: 101 Fair&ay Lane, Route 2
b Barnwell, S. Carolina 29812
v
i;

AR,

L e
)

104

AR

% ) y I “v h 2P - . - " e " m T et Y e . e Y Y
I I A Sy e A A A A N R e A A NPT IR



- _UNCLASSIFIED

p SECURITY CLASSIFICATION OF THIS PAGE

£ . ' *
E' . ! REPORT DOCUMENTATION PAGE
N

- o o
AN A amn ara it St e SN e SR ARaRE L L AR AL AL SUACI A

ciPald

A2 RC RSN T T S
v . :

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2s. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPOR1

2v. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public re
distribution unlimited

lease;

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GAE/AA/83D-14

5. MONITORING ORGANIZATION REPORT NU"13ER(S)

6a. NAME OF PERFORMING ORGANIZATION

School of Engineering

AFTEJENY

rb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

6c. ADODRESS (City, State and ZIP Code)

Air Force Institute of Technology
Nright-Patterson AFB, OH 45433

7b. ADORESS (City, State and ZIP Code)

OF THE SPACE SHUTTLE ORBITER

Thesis Chairman: James K. Hodge, Captain, USAF

“;:: 8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PAOCUREMENT INSTRUMENT IDENTIFICA 1 1'ON NUMBER
vl OMGANIZATION (I applicabie}
- 6520 Test Wing TEG
i 8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. )
Edwards AFB, California 93523 PROGRAM PROJECT TAS« WORK UNIT
ELEMENT NO. NO. NC. NO.
11. TITLE (Include Security Clossification)
See Box 19
*Sfaries Do Tutes, B.S.E., 24 Lt, USAF
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Dav) 15 - AGE COUNT
MS Thesis FAOM T0 1983 December /
16. SUPPLEMENTARY NOTATION ¥ SRR "‘10:1'-‘ releilsts
Yfii L. Ql }‘ 3 JBN lui
Dedn for R~ - .1 ond Prelessicnal Davelopment AN 13(54
e Sonmub eyt oS
COSAT) CODES 18. SUBJECT TERMS (NenplinpeiqnynreBtif Qlicedddtl and identify by black ~umber)
GROUP SUB. GR. Space Shuttle; System Identification; arameter
' 03 Estimation; Fixed-Point Smoothing; Ac dynamic
o Heating; Aerothermodynamics
19. ASBSTRACT (Continue on reverse if necessary and identify by block number)
Title: NONLINEAR MODELING AND INITIAL CONDITION ESTIMATION
FOR IDENTIFYING THE REENTRY AEROTHERMODYNAMIC ZNVIRC ENT

“r

. _?9. OISTRIBUTION/AVAILABILITY OF ABSTRACT

21 ABSTRACT SECURITY CLASSIFICATION

neLassiFieo/unLimTeo XX same as ret. (J otic useas O UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIDUAL

James K. Hodge, Captain, USAF

DD FORM 1473, 83 APR .
R

22b. TELEPHONE NUMBER
tInclude Area Code)

(513)-255-3517

EDITION OF 1 JAN 73 1S OBSOLETE. UNCIASS

22c¢ OF#

SECORITY Ay

.- L. o
. . . . B LR S R P
............... SIS

SYMBOL

'.“.. ~-.'_. - ..'_‘ e .-




- N v S S I A e . s AR PRI Tt Sl Wl et
AT C AT O LR BTN SN EV O A L A D A e e A S N P PR B A e IR -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
—,'

vy .

N This report describes improvements made to the

e data analysis tool HEATEST, used for identification

< of the reentry aerothermodynamic environment of the

™ Space Shuttle Orbiter. The heating model was change’
from a linear perturbation form to that of a piecewi. e

A4 linear interpolation form to account for nonlinear

§§4 heating rates. Also, a fixed-point initial conditio-

A smoother was incorporated to gain better estimates « -

Y unknown initial temperatures. The development of b« :h

e : of these improvements is described, as well as the ¢ .er-

— all adaptive estimation process employed by the REA" 3T

AN -~ scheme. Verification of these modifications was acc :m-

N plished by applications to both simulated and actu:.

P flight test data.

sg

3;_ Simulations of nonlinear heating rates indicat: i
higher than actual coating thickness predictions fo:

A the linear perturbation model previously used. Flis .t

:;i results using the improved heating model provided ad-

SNV ditional verification of a time skew due to nonisothermal

3 wall effects on the OMS pod. Initial condition smoc *th-

XN ing enabled the identification of an unmodelled Mac! )
or Reynolds number effect on the lower surface durin- 4

"y the Mach 12 lushover Pullup maneuver of STS-4.

N

|

2.

v

=

_'.::_.

‘ 1

%

B

o A

N

G

B {.:,'

SECURITY 1 AR TATION OF THIS PAGE

.................................







