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E&his study developed correction factors for currently used stress
intensity factor equations to more accurately predict stress intensity
factors for a corner crack emanating from a hole as it transitions to a
uniform through-the-thickness crack. These correction factors resulted
in an approximate 15 percent increase in total life prediction and a far
better correlation between analytical stress intensity factor
predictions and experimental results in the transition region. The
material used for total life predictions was 7075-T651 Aluminum, and the

initial crack eccentricity, a/c, was always greater than one,

Correlations were accomplished between experimental results from
Polymethylmethacrylate (PMMA) testing and the Newman-Raju three-
dimensional stress intensity factor equation for a single cornrr crack
at a hole where the crack eccentricity is greater than one. These
correlations were plotted from crack initiation until back surface
penetration for both the top surface and along the bore of the hole.
From these plots correction factors were determined and a transition
region starting point was located. The transition region begins when

the normalized crack depth reaches 0.75.

Correlations were also accomplished between experimental results
from 7075-T651 Aluminum testing and the Grandt linearization of the

Bowie equation for a through-crack emanating from a hole. These




correlations were plotted from back surface penetration to final
fracture. The plot yields the end of the transition region, and also
the required correction factors to be utilized. The transition region

ends when the normalized crack length reaches 2.5.

Life predictions were then made using the corrected model, Engle's
model, (which includes the Newman-Raju equation and Grandt's
linearization of the Bowie equation), and Brussat's mwmodel, The
corrected model produced better predictions than the Engle model in
total life, and in predicting life from back surface penetratiom to
final fracture for constant amplitude loading. The corrected model
yields a slightly more conservative crack shape and life prediction from

crack initiation until back surface penetration than the Engle model.

xi
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TRANSLITION OF CORNRER CR "XS AT HOLES INTO

THROUGH-THE-THICKNESS CRACKS

I. lggxoductigﬂ

1.1 Motivation

Cracks in aerospace structures have caused catastrophic failures
resulting in loss of 1life, destruction of wmillions of dollars in
equipment, and have severely reduced operational capabilities. While
the elimination of <conditions for crack initiation and growth is a
worthwhile endeavor, the fact remains that flaws due to material
defects, manufacturing methods, and in-service conditions will always be
present to some extent. This simple admission opens the door to design
against failure in the presence of flaws existing at the onset of
operational use and during periods of fatigue growth. The fact that a
crack exists is, by itself, no longer a criterion for the scrapping of
an aerospace system, nor 1is it sufficient reason for extensive

modifications.

A comprehensive review of aerospace structural failures completed
by the United States Air Force in 1971 (1) showed the origin of failures
due to cracks, in order of decreasing frequency of occurrence, to be:
(1) Cracks emanating from fastener holesj (2) Corner cracks; (3) Surface
cracks. Over one-third of all failures studied were due to cracks
emanating from fastener holes. The neccessity to accurately predict the

life of aerospace structures through fracture analysis is clear, since
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some of today's transport aircraft contain over one million fastener
holes. In order to ensure that catastrophic failures of aerospace
structures do not occur at these locations, the United States Air Force
has recently adopted a damage tolerant design philosophy (2). This

philosophy is based on the use of fracture mechanics.

The use of fracture mechanics in the analysis of flawed fastener
holes requires an in-depth knowledge of the stress intensity factor, K,
for the structural and crack geometries of interest. Analytical
determination of these stress intensity factors is dependent on various
correction factors and can become quite involved. These factors are
generally derived using experimental data and backtracking, finite
element approximations, or engineering judgement. These factors relate
specimen geometry, loading, and crack characteristics, such as crack
length, Because of their importance, several investigations have been
carried out for corner cracks at fastener holes over the past several
years (see e.g. 3-7). One of the areas that still needs to be addressed
is the transition from a corner crack to a uniform through-the-thickness
crack, since the prediction of an aerospace structure's life is heavily
influenced by the large number of these regions. Several investigators
(21-26) nave looked at this region in recent times. These studies are

summarized in the following sections.
1.2 Background

1.2.1 Stress Iantensity Factors for Corner Cracks Emanating from a

Hole. The first major advance in the study of cracks emanating from

open holes in plates was due to Bowie (3) in 1956. He solved the two

——— — .



dimensional problem of single and double through-cracks at an open hole
using complex variable methods. Although not an exact solution, Bowie's
results have served as the bagis in the framing of other studies.
Perhaps more important is the almost universal use of his solution to
establish the accuracy of other methods designed to provide answers for

the more complicated problems being investigated today.

Tweed and Rooke (4) considered the single through—crack problem at
a later date. They used integral transform techniques to derive stress
intensity factor relationships. Their solution 1is more accurate,

especially for smaller crack lengths, than the Bowie solution.

Kobayashi (5) estimated stress intensity factors for a semi-
elliptical embedded crack adjacent to an open fastener hole in a very
thick plate (plane strain case). The stress intensity factor for the
elliptical crack was formed by applying a shape correction to the
circular crack solution. Surface effects and the through-thickness

stress variation seen in the three-dimensional problem were neglected.

In 1972, Liu (6) considered a quarter-circular crack at a hole in a
plate. He applied Smith's solution (7) to approximately account for the
hole surface and front surface, Kobayashi's solution (8) as an
approximate back surface correction, and Bowie's two-dimensional
solution (3) to approximate the three-dimensional hole effect. The
resulting stress intensity estimate was limited to a point on the crack

periphery midway between the front and hole surfaces.

In 1974, Shah (9) completed one of the more detailed analyses. He
began with the plane strain stress distribution near a hole in & plate

3




under uniaxial loading. He then derived expressions for stress
intensity factors using a Green's function approach. Crack shape
correction factors were applied to extend this estimate to elliptical
cracks. Shah and Kobayashi's (10) results were applied as approximate
back surface correction factors. A constant front surface correction,
independent of location on the crack border, was introduced. Lastly, a
factor was proposed for relating single-crack results to those for

double~cracks.

In 1974, Grandt (11) applied a linear superposition technique to
the Bowie solution to obtain an equation to replace the use of tables.
Han and Liu (12) developed a two-dimensional solution using a back-
tracking method in 1977. They used Bowie's hole correctiom factor (3),
Isida's finite width correction factor (13), and a combined crack shape

and front surface correction factor.

Newman and Raju (14) studied a wide variety of three-dimensional
crack configurations subjected to uniform tension. They examined the
influence of several parameters such as the parametric angle, the crack
depth, the crack length, the plate thickness, and the hole radius. They
curve fit three-dimensional finite element results from their previous
investigations (15) to obtain equations for various correction factors.
Their finite width correction factor 1is based om the stress
concentration at the hole (16) and the crack eccentricity (17). The
parametric angle factor is from Irwin's solution (18) for an embedded
elliptical crack in an infinite solid. Shah's double to single crack
conversion factor (9) was evaluated and found to be in good agreement
with the results of Smith and Kullgren (19).

4




In a recent Air Force Wright Aeronautical Laboratories' Technical
Memorandum, Heckel and Rudd (20) evaluated Shah's, Liu's, and Newman's
stress intensity factors for corner cracks at holes. Newman and Raju's
solution showed excellent results in all categories, except as the crack

length along the bore of the hole approached the plate thickness.

1.2.2 Transition of a Corner Crack at a Hole to a Through-the-
Thickness Crack. When the corner crack tip along the bore of the hole
penetrates the back surface, the crack enters a transition stage which
terminates when it becomes a uniform through-the-thickness crack. The
procedures described in literature and in use today range from ignoring
this transitional behavior to establishing various criteria for dealing
with it. The American Society for Testing and Materials has been one of
the most active proponents for the development of transition criteria.
They have spoansored round-robin competitions for predicting the life of
specimens to determine the accuracy of .current procedures. They

published a Special Technical Publication (21) in 1979 which dealt

strictly with part-through crack fatigue life prediction.

Vroman and Peterson (22) developed two criteria based on back
surface yielding. Their initial criterion in 1972 was shown to be more
conservative than the Kobayashi-Moss (23) solution. The addition of one
higher order term in 1976 provided a better approximation to the
Kobayashi-Moss solution, which 1is very complex to program. This
criterion is a function of c¢rack depth, thickness, and crack

eccentricity.




Johnson (24) tried to compensate for the overly conservative
procedure of assuming a through-crack once the crack depth equals the
thick-ness. He noted that once the crack penetrated the back surface it
8till waintained its elliprical shape until it truly became a through-
crack. His criterion is based upon an imaginary crack depth, which is
arrived at by allowing the flaw to continually grow in the same
elliptical shape it had when it penetrated the back surface. Using his
imaginary crack shape equation, the back surface crack length can be
determined. When the back surface crack length is 90% of the front
surface crack length, transition has ended and the crack can be
considered a through-crack. This technique is mathematically simple,

logical, and in good agreement with actual trends of experimental data.

Brussat and Chiu (25) predicted that during the transition region
the surface flaw was neither a surface flaw nor a through crack but was
actually a combination of both. They developed a criterion based upon
crack depth, crack length and plate thickness for a quarter circular
corner flaw at a hole. Their correction factor 1is a product of

engineering judgement rather than mathematics.

The most commonly used procedure was referenced by Engle (26). In
this procedure Newman and Raju's corner crack solutiom is used until the
crack depth 1is equal to the plate thickness; then the crack length on
the surface at that point is assumed to be a through-crack which follows
Grandt's curve fit solution (11) to Bowie's solution (3) for a through-
crack near a hole. This procedure has been adopted as the current

damage tolerance philosophy of the United States Air Force. Since it




does not consider the region from back surface penetration to a through-

crack, it is a conscrvative approach to life prediction.

1.3 Problem Statement

To accurately predict stress intensity factors for a corner crack
emanating from a hole as it transitions to a uniform through~the-
thickness crack (Fig 1). For the part-elliptical corner crack, the
crack center is located at the intersection of the hole wall and the
front surface, and the crack lies in a plane perpendicular to the axis
of loading. The finite plate geometry and loading conditions are such
that the plane of the crack is a plane of symmetry for the open hole
problem. The loading is a remote uniaxial constant amplitude loading,

and the initial crack eccentricity, a/c, is greater than one.

1.4 Objectives

The objectives of this thesis are to:

1. Evaluate the ability of existing stress intensity factor
models to predict the behavior of a cormer crack at a hole
as it transitions to a wuniform through-the-thickness
crack.

2. Calculate correction factors for existing models to be
applied when the predictions become unconservative beyond
the confidence limit.

3. Accurately define the point where the corner crack begins

its transition to a uniform through-the-thickness crack
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la. Corner Crack Configuration

<]
1b. Crack Configuration after Back Surface Penetration

< — ¢ —>]

lc. Crack Configuration as a Through-the-Thickness Crack

Figure 1: Crack Configurations as it Transitions from a Corner Crack
to a Through-the-Thickness Crack




and where the transition has been completed.
4. Assess the accuracy of the corrected models by comparing
the total 1life prediction obtained using these models to

results of other investigations.

1.5 Approach

Using the results of Heckel and Rudd's report (20), Newman and
Raju's (l4) three-dimensional stress intensity factor equation was used
as the analytical solution for a single quarter-elliptical corner crack
at a hole where the initial crack eccentricity is greater than one.
This equation was used until the crack penetrated the back surface.
These results were then compared to the experimental values found by
Heckel and Rudd. The results were nomalized by dividing the analytical
stress intensity factor by the experimental value. These normalized
results were then plotted as a function of the normalized crack depth,
that is the crack depth divided by the plate thickness. From this plot
the non-dimensional transition region starting point was found. The
inverse of a polynomial curve fit for the normalized stress intensity
factors from the starting point of the transition region to the back
surface was used as the correction factor. This procedure was

accomplished along both the bore of the hole and the top surface.

Corner crack experiments were carried out by Heckel and Rudd (29)
on 7075-T651 Aluminum using constant amplitude loading with varying
stress ratios, R. The crack size was measured with microscopes during

the test on both front and back surfaces. From this data the crack
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growth rate was found. Using the James-Anderson backtracking technique
and the values for Walker's equation found from baseline crack growth
rate data, the experimental stress intensity factors were then computed
for the corner cracks. Grandt's curve fit sclution for Bowie's equation
was the analytical solution used after back surface penetration took
place. The normalized stress intensity factors were computed as before
and plotted for both the front and back surfaces. The normalized crack
lengths, the respective crack lengths divided by the radius of the hole,
were used as the independent variable. The inverse of a polynomial
curve fit for the data on each surface was used as the correction factor
for the corresponding surface. A relationship between the normalized
crack lengths on the front and back surfaces was also developed. This
relationship allows the stress intensity factor corrections to be
computed on both surfaces knowing only the front surface crack length

and hole radius.

The superposition of the stress intensity factor models with their
appropriate corrections was then used to predict total fatigue lives for
seven 7075-T651 Aluminum specimens. The results from these predictions
were then compared to the actual lives and life predictions which used

different models, along with crack shape prediction comparisons.

10




II. Testing

2.1 Polywmethylmethacrylate (PMMA) Testing

2.1.1 Crack Growth Rate Tests. The basic crack growth rate tests
for PMMA were conducted by Grandt and Hinnerichs (27). The tests were
conducted for the compact tension, 3-point bend, and &4-point bend
specimens schematically illustrated in Figure 2. Details of these tests

are documented in Reference 27.

The crack growth rate data from these tests were then curve fitted

to the Paris equation. The best-fit Paris equation was found to be:
da/dN = 6.94918 x 10723  (4K)6-095445 (1)

where MK is the stress intensity factor range defined as Kypx-Kyin. The
units of da/dN and AK in equation 1 are inch/cycle and psi x inl/2,
respectively. For a given da/dN value, the upper and lower bounds for
the data are the mean value (Eqn 1) plus or minus 17%, respectively.
These bounds account for the total amount of scatter for the test data
due to experimental error, human error in making the crack growth

readings, material property variations, etc.

2.1.2 Corner-Crack-at-a-Hole Tests. Tests of PMMA specimens were
conducted for a single corner crack at a hole. These tests were
conducted by Grandt and Snow (28). The specimen geometry is shown in
Figure 3. These specimens were wmade from 8 inches by 14 inches by .72
inch bulk PMMA plate. The hole diameter was .75 inch. The specimens

were pre-cracked at a maximum stress of 780 psi. After a crack

11
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initiated, the crack growth tests were conducted at a maximum stress of
590 psi and a stress ratio of .0Z9, The initial crack lengths and
shapes for the five specimens considered in this study are presented in

Table 1.

Although seven corner-crack-at-a-hole tests were conducted in
Reference 28, only five are considered in this study. Two tests were
omitted due to 1insufficient data and excessive pinning, that is
restricting of the crack growth, at the front surface. Justification
for omitting these two tests is given in Reference 20. Minor pinning
still occured on the front surfaces of the five test specimens
considered in this study. It could be caused by free surface effects,
residual stresses, or a number of other reasons. The minor pinning
prevented the maximum crack dimension measured from the bore of the hole
from occurring at the front surface. The test results indicated that
the maximum crack dimension measured from the hole wall occurred at
approximately 10° from the front surface. Because the Newman and Raju
solution (14) assumes an elliptical crack shape, the predicted maximum
crack dimension from the bore of the hole would occur at the front
surface. The analytical stress intensity factor should not be expected
to predict the pinning action, particularly if residPal stresses were
present. Therefore the experimental crack shape was extrapolated from
the maximum crack dimension measured from the bore of the hole to the
free surface using an elliptical equation. These extrapolated crack
lengths were used in the comparisons with the predicted surface crack
lengths. The extrapolated final crack lengths for the five cases
considered were 3 to 18 percent longer than those measured duriung the

tests.
14
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Since PMMA is a traunsparent material, 35 mm camera picturcs could
be taken during the tests to provide a record of the flaw shape changes.
This procedure allowed growth intervals as small as .005 inch to be
measured. Measurements were not taken once back surface penetration

occurred.
2.2 7075-T651 Aluminum Testing

2.2.1 Crack Growth Rate Tests. Crack growth rate tests for
7075-T651 Aluminum were conducted at the Air Force Wright Aeronautical
Laboratories (29). Duplicate specimens were tested for each test
condition in a laboratory air environment. The temperature and relative
humidity ranges were 68° to 72° F and 50% to 65%, respectively. The
test specimens were subjected to a one Hertz loading frequency. The
tests were conducted for stress ratios of 0.1, 0.5, and -0.5. The
geometry of the center—crack-tension specimens tested is shown in Figure

4.

The crack growth rate data for the positive stress ratio tests for
the 7075-T651 Aluminum specimens were then curve fit to Walker's equa-
tion using Grimsley's procedure (30). The best fit Walker's equation to

the data was found to be:
da/dN = 3.2624 x 1079 {(1-R)~% ak33-3908 (2)

where the units of da/dN and AK in Equation 2 are inch/cycle and ksi x

inch, respectively. For a given da/dN value, the upper and lower
bounds containing 97.7% of the data are the mean value plus or minus 12%

respectively. These bounds account for almost all the scatter in the

16
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test data due to experiuuntal error, human error, material property

variations, etc.

The crack growth rate for the negative stress ratio tests for the
7075-T651 Aluminum specimens was then curve fit to Walker's equation as

discussed earlier. The best—fit Walker's equation was found to be:

da/dN= 1.29 x 108 [ aK/(1-R)}2-89 (3)

where the units of da/dN and AK are the same as in Equation 2. The data
for the negative stress ratio tests had the same error as the positive

ratio tests, plus or minus 12%.

2.2.2 Corner-Crack-at-a-Hole Tests. Tests of 7075-T651 Aluwinum
were conducted for a single cormer crack at a hole. These tests were
performed at the Air Force Wright Aeronautical Laboratories. The
specimen geometry 1s shown in Figure 5. The specimens were precracked
at the same constant amplitude stress levels used in the crack growth
rate tests. The maximum stress levels used for testing after
precracking were 20 ksi and 15 ksi. Two positive stress ratios (0.1 and
0.3) and two negative stress ratios (-0.3 and -0.5) were considered.
The maximum stress level, stress ratlo, and initial crack size and shape
are presented in Table 2 for the seven test conditions considered.
Duplicate tests were run for each loading condition and averaged in

order to eliminate bias due to a single faulty test at one or more load

conditions.

Crack length measurements along the bore of the hole could not be

made for the 7075-T651 Aluminum specimens during the test since these

18
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specimens are not transparent. In order to obtain a limited number of
crack length measurements along the bore of the hole after the tests
were completed, marker loads were applied during the test. These marker
loads consisted of the same maximum constant amplitude stress levels
used in the tests, but the minimum stress levels were increased so that
the stress ratio was 0.85. The marker loads produced striations on the
fracture surfaces which were measured with an optical microscope after
the completion of the tests. The marker loads were applied at surface
crack lengths of .05 in, .08 inm, .12 in, and .16 in. The crack growth
rates due to tne constant amplitude loading were determined both before
and after each set of marker loads was applied. From this, an average
constant amplitude crack growth rate was determined for each associated
marker band. The width of each marker band was divided by the
associated average constant amplitude crack growth rate to obtain the
number of constant amplitude load cycles required to produce the same
amount of growth as the marker load. The number of marker load cycles
for each marker band was replaced by the corresponding number of
constant amplitude load cycles. Hence, this provided a method of
accounting for the crack growth caused by the application of the marker

loads in the experimental results.

Also, since the aluminum specimens are not transparent, the maximum
crack lengths measured from the bore of the hole could not be determined
during the tests. Therefore, the amount of pinning, (restriction of
crack growth) at the free surface could not be determined for these
specimens. The experimental surface crack lengths were the actual

measured values on the surface, unlike the extrapolated results in

21




Grandt and Snow's study (28). As mentioned earlier this could result in

errors up to 18 percent.

2.2.3 Corner-Crack to Final Fracture Tests. The corner-crack-at-
a-hole tests for the 7075-T651 specimens were continued until failure
occurred. Crack length measurements on both the front and back surfaces
were taken at random intervals during the tests. The method chosen for
taking these measurements used two optical microscopes mounted on the
experimental apparatus, one on the front surface and the other on the
back. By taking these crack length measurements and knowing the number
of cycles between each measurement the resulting crack growth rates for

both surfaces were computed.

22




1IL. Eizgggmental Stress Intensigl Factors

3.1 Corner-Crack-at—a-Hole until Back Surface Penetration

Experimental stress intensity factors were determined for the
corner—crack-at-a-hole tests for the PMMA material, but not for the
7075-T651 Aluminum specimens. This was possible for the PMMA material
because large amounts of crack growth data were recorded during the
tests, both on the front surface and along the hole wall. However, this

was not possible for the aluminum specimens.

The experimental stress intensity factors were obtained using the
James—-Anderson backtracking technique (31). The technique 1is

illustrated in Figure 6 and is described as follows:

1. Crack growth curves were determined from the cormer-crack-
at-a~hole tests previously described. The curves were
determined at the wall of the hole (a vs. N) and at the
front surface (c vs. N).

2. Crack growth rates were determined from the crack growth
curves for the corner cracks. A standard seven point
polynomial method, recommended by ASTM, was wused to
determine the crack growth rates. The crack growth rates
were expressed as functions of the crack length (da/dN vs.
a and dc/dN vs. ¢).

3. For a givem crack length and corresponding crack growth
rate, the associated stress intensity factor was calcu-

late. from the Paris equation (see Eqn 1) as

23
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tk = [da/dN / (6.94918 x 10723))1/6.095445 (4)

where AK 1s the mean stress intensity factor. This result
ie the experimental stress intensity factor along the bore
of the hole. For the experimental stress intensity factor

along the surface, dc/dN should be substituted for da/dN.

3.2 Back Surface Penetration Until Final Fracture

Experimental stress intensity factors were determined from back
surface penetration to final fracture tests for the 7075-T651 Aluminum
specimens but not for the PMMA material. This was possible for the
aluminum specimens because large amounts of crack growth data were
recorded during the tests for both the front and back surfaces. However

this was not accomplished for the PMMA specimens.

The experimental stress intensity factors were obtained using the
James~Anderson backtracking procedure, outlined 1in the preceding

section, with the following changes:

1. The crack growth curves were determined at the back sur-
face (c¢' vs. N) and the front surface (c vs. N).

2. The crack growth rates were expressed as a function of
crack length (dc'/dN vs. ¢' and dc/dN vs. ¢). The crack
growth rate was then curve-fit wusing a polynomial
regression technique. This polynomial curve fit allows
the crack growth rate to be calculated at any crack

length. These curve fits are shown in the Appendix.




The associated stress intensity factor for positive stress
ratios was found using the Walker's equation (see Eqn 2)

as

6K = [dc/dN / (3.2624 x 1079)J1/3.3908 (1 - g)l/2  (5)

for the front surface. For the back surface, dc'/dN
should be substituted for dc/dN.
The associated stress intensity factor for negative stress

ratios was found from Walker's equation (see Eqn 3) as
K = fde/dN / (1.29 x 1078)31/2.89 (1 - ) (6)

for the front surface. For the back surface, the

substitution as described before should be used.
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IV. Analytical Stress Intcasity Factors

4.1 Analytical Solution Used for the Corner Crack

Using the results of Heckel and Rudd's studies (20, 29), Newman and
Raju's three-dimensional finite-element solution (14) was chosen as the
analytical solution to be used in this study. This solution was chosen
because of its accuracy as outlined by Heckel and Rudd (20, 29). The
Newman-Raju solution is one of the most commonly used solutions in

aerospace industry today.

The Newman equation used was for an initial a/c, which is crack
depth divided by crack length, greater than one (14). The problem is

schematically shown in Figure la. The resulting equation used is:

tKy = AS vza/Q Fgyla/c,a/t,R/t,c/b,4) Fgy 7
where

48 = Syax (1 - R) (8)

Q=1+ 1.464(c/a)l-65 (9)
Fou = DMy + Mp(a/t)2 + M3(a/0)%] gy g3 &3 £, fw (10)
Mp = /c/a (1 + 0.04(c/a)) (11)
My = 0.2 (c/a)4 (12)
M3 = -0.11 (c/a)% (13)
gy =1+ [0.1 + 0.35(c/a)(a/t)2) (1 - sin ¢)2 (14)
gz = [1 - 0.15% + 3.46)2 = 4.4723 + 3,52341/[1 + 0.1322) (15)

A= 1 + (c/R) cos(0.85¢))1 (16)
g3 = (1.13 - 0.09(c/a)If1 + 0.1(1 - cos$)2)100.8 + 0.2(a/t)1/43(17)
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f¢ = f(c/a)? sinZ¢ + cos? Jl/4 (18)

fu = [sec(1R/2b) sec(+a/T (n(2R + ¢))/(4(b - ¢) + 2e)IV/2  (19)

Fsy = L(4/n + ac/2tR) / (4/7 + ac/tR)}% (20)
The details of this solution are given in Reference 14 and will not be

discussed here.

4.2 Analytical Solution Used for the Through-Crack

Grandt's curve fit solution to the Bowie equation presented by
Engle in Reference 26 was chosen as the analytical solution to be used
after back surface penetration has occurred. The equation, given in

Reference 26, 1s

8Ky = 48 Vmc Fgr(c/R) £ (21)
where
FGR = .6762062 + [.8733015/(.3245442 + c/R)] (22)

and S and f_, are as given in equations 8 and 19, respectively. The
details for this solution are discussed in Reference 26 and will aot be

repeated here.

28




V. Analytical/Experimental Correlations

5.1 Corner Crack Until Back Surface Penetratgqa

Correlations were made of the experimental stress intensity factor
ranges with the analytical predictions for the PMMA material for the
corner crack until pack surface penetration region. The experimental
stress intensity factor ranges obtained using the James-Anderson
backtracking technique (28) were based on mean crack growth rate data.
This correlation was accomplished by dividing the analytical stress
intensity factor ranges by the experimental values at specific points,
both along the bore of the hole and the front surface. The points
chosen were the ones presented by Heckel and Rudd (20), and they are
listed in Tables 3 and 4. The independent variable that was chosen was
the normalized crack depth (a/t), since this variable appears to have

more influence than the crack eccentricity (a/c) has.

The correlations along the bore of the hole are plotted in Figures
7 and 8. 1In these figures an ideal correlation would yield all values
equal to one. It can be seen that the values are conservative, that 1is
the values are greater than one, until approximately one-half of the way
through the material where they become uncounservative. There appears to
be a step where the normalized crack depth is approximately equal to
0.75. This value of the normalized crack depth will be used as the

start of the transition region.

Tne correlations along the surface of the material as a function of

normalized crack depth are plotted on Figures 9 and 10. Again, on these
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TALEL 3: EXPERIMENTAL STRESS INTINSITY FACTORS ALONG BORI.
— —— s
a c a/c da/d! 1Y 4
. . Al/z
(incn) (inch) (inch/cycle)] psixin
TEST 0.1
0.278 0.168 1.655 1.7425E-05 715.26
0.293 0.181 1.619 2.0769E-05 736.16
0.312 0.193 1.617 2.3862E-05 753.12
0.329 06.202 1.629 2.5372E-05 760.76
0.344 0.208 1.654 2.8738E-05 776.45
0.362 0.218 1.661 3.1128E-G% 786.69
0.380 0.236 1.610 3.5051€-G51 802.16
0.420 0.252 1.667 3.5724E-05 804.67
0.440 0.262 1.679 3.5856E-05 805.15 i
0.4506 0.275 1.658 3.7902E-05 812.52
0.472 0.286 1.6250 4.1285£-05 824.00
0.488 0.296 1.649 4.6789:-05 841.09
0.510 0.306 1.667 5.7800E-05| 870.70
0.534 0.322 1.€58 6.3598E-05 884.53
0.559 0.336 1.664 6.7152E-05 £92.45
0.585 0.342 1.711 7.0287E-05}) €y3.16
0.603 0.356 1.677 7.4484E-05 907.717
] | 0.632 0.378 1.672 _ |9.1723t-05] 938.45
| ) TEST NO. 3
0.245 0.208 1.178 2.2388E-05 745.28
0.761 0.219. 1.192 2.4063E-05 754.16
0.290 0.222 1.306 2.5929E-05 763 46 I
0.318 0.238 1.336 2.8186E-05 773.98
4 0.347 0.258 1.345 3.2308t-05 791.51
) 0.376 0.276 1.362 3.7038E-05 809.45
0.385 0.285 1.351 4.2761E-05 828.76
' 0.422 0.301 1.402 4.9779E-05 849.68
* 0.44] 0.304 1.451 5.0977€-05] 853.00
0.474 0.3721 1.477 5.4179E-05 861.57
TEST NO. 5
0.226 0.176 1.284 1.2287E-05 675.42
0.252 0.189 1.333 1.5840F ~ 704.16
0.279 0.214 1.304 2.1984E-05 743.06
0. 305 0.227 1.344 2.6188E-05 764.70
0.336 0.238 1.412 3.2009E-05 790. 30
0.368 0.261 1.410 4.1000E-05 823.06
0.404 0.27/8 1.453 5.0755E-05] 852.39
0.458 0.292 1.568 6.2588E-05 882.21
0.537 0.321 1.673 8.0677E-05 919.73
0.573 0.336 1.705 8.8963E-05 934.60
0.589 0.347 1.697 9.0149E-05 936.63
30
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TARLE 3: EXPCRIMENTAL STRESS INTENSITY FACTORS ALONG BORF (CONT)

a c a/c da/dN AKA
(inch) (inch) (inch/cycle) psixinll2
TEST NO. 6
0.198 0.140 1.414 1.3343E-05 684.62
0.227 0.15 1.455 1.5615E-05 702.51
0.244 0.161 1.516 1.7727E-05 717.28
0.262 0.171 1.532 2.0199E-05 732.81
0.279 C.183 1.525 2.3429E-05 750.86
0.306 0.193 1.585 2.8629C-05 777.29
0.324 0.202 1.604 3.3393E-05 795.81
0.371 0.222 1.671 3.8709E-05 815.33
0.423 0.241 1.755 4.5839E-05 838.26
0.456 0.262 1.740 5.3918E-05 860. 89
0.485 0.280 1.732 5.8789L-05 873.19
0.525 0.295 1.780 6.7342E-05 892.86
0.543 0.303 1.792 7.4357E-05 907.50
0.560 0.315 1.778 7.88G8E-05 916. 36
0.585 0.329 1.778 8.6481E-05 930.29
0.610 0.338 1.805 1.2982E-04 994.38
U.642 0.356 1.803 2.2613E-04 1 1089.16
0.670 0.372 1.801 2.9867E-04 § 1140.03

TEST NO. 8
0.238 0.149 1.597 1.0973E-05 663.00
0.270 0.176 1.534 1.3987E-05 689.93
0.293 0.192 1.526 1.7358E-05 714.81
0.319 0.203 1.571 1.9820E-05 730.54
0.338 0.212 1.594 2.1320E-05 739.33
0.361 0.224 1.612 2.4250E-05 755.12
0.386 0.239 1.615 2.8081E-05 773.51
0.403 0.250 1.612 3.4036E-05 798.30
0.444 0.268 1.657 4.3064E-05 829.72
0.475 0.281 1.690 4.7746E-05 543.89
0.495 0.292 1.695 5.3489E-05 859.76
0.524 0.302 1.735 5.6935E-05 868.76
0.552 0.315 1.752 6.4125E-05 B85.72
0.575 0.322 1.786 7.0024E-05 898.60
0.600 0.333 1.802 7.5996E-05 910.75
0.628 0.343 1.831 7.8788E-05 916.16
0.648 0.346 1.873 7.8326E-05 915.27
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TABLE 4: EXPERIMENTAL STRESS INTENSITY FACTORS AT SURFACE

a c a/c dc/dN AKC
(inch) (inch) (inch/cycle) psixin‘l/2
TEST NO. 1
0. 329 0.202 1.629 1.5070E-05 698.43
0.362 0.225 1.609 1.7140E-05 713.33
0.399 0.247 1.615 1.8978E-05 731.49
0.440 0.262 1.679 2.1717E-05 741.57
0.463 G.277 1.671 2.4137C-05 754.54
0.483 0.292 1.654 2.6566E-05 766.50
0.520 0.312 1.667 3.2103E-05 790.68
0.545 0.328 1.662 3.6119C-05 806.12
0.592 0.346 1.711 4.3418E-05 830.83
0.614 0. 368 1.668 5.1952E-05 855.660
0.652 0.388 1.680 7.8496E-05 915.60
TEST NO 3
0.318 0.238 1.336 1.5527E-05 701.86
0.347 0.258 1,345 1.8104E-05 719.76
0.376 0.276 . 1.362 2.0900E-05 736.92
0.422 0.301 1.402 2.4541E-058 156,80
TEST KO. 5
0.258 0.200 1.290 1.1910E-05 671.98
D. 305 0.227 1.344 1.4782E-05 696. 22
0.368 0.261 1.410 1.8294E-05 721.00
0.404 0.278 1.453 2.0854E-05 736.66
* 0.537 0.321 1.673 2.7323E-05 770. 37

0.573 0.336 1.705 3.3882E-05 797.71
‘ 0.600 0.355 1.690 4.0542E-05 821.54
) TEST NO. 6
0.262 0.171 1.532 1.0572E-05 658.97
0. 306 0.193 1.585 1.3525E-05 686.14
0.371 0.222 1.671 1.6075E-05 719.57
0.423 0.241 1.755 2.2121E-05 743.82
0.456 0.262 1.740 2.7070E-05 763.87
0.485 0.280 1.732 3.1027€E-05 786.27
0.525 0.295 1.780 3.4844E-05 801.38
0.560 0.315 1.778 4.1644E-05 825.17
0.610 0.338 1.805 5.2438E-05 856.96
32
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TABLE 4: EXPERIMENTAL STRFSS INTENSITY FACTORS AT SURFACE (CUNT)
a c a/c dc/dN AKC
(inch) {inch) (inch/cycle) psixinl/?
f TEST NO. 8
0.283 0.183 1.546 8.7612E-06] 63L.96
0.319 0.203 1.571 1.0657E-05] 659.83
0. 361 0.224 1.612 1.3370E-05] 684.85
0.386 0.239 1.615 1.5191E-05] 699.34
0.444 0.268 1.657 1.9310E-05] 727.42
‘ 0.4495 0.292 1.695 2.2406E-05 745.38
? 0.552 0.315 1.752 2.7261t -05; 76%9.76
o
.
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figures an ideal correlation would be oune. The correlation for this
region is very good, but on Figure 9 a definite pattern is noticeable.
The correlations improve until the normalized <crack depth 1s
approximately 0.75, and then they deteriovrate rapidly. This value of
0.75 agrees with the value selected as the start of the transition

region along the bore of the hole.

5.2 Back Surface Penetration Until Final Fracture

Correlations were made of the experimental stress intensity factor
ranges with the analytical predictions for the 7075-T651 Aluminum
specinens for the back surface penetration until final fracture regiom.
Experimental  stress  intensity factors obtained by using the
James-Anderson backtracking technique were based on mean crack growth
rate data. These correlations were obtained by following the same
technique as outliped in the preceding section, but rather than choosing
specific points the procedure outlined in the Appendix was used. The
independent variables in this region were chosen to be the normalized
crack langths (c/R and c¢'/R), since the crack is being treated as a

through-the-thickness crack im this region.

Correlations along the back surface are plotted in Figure 11. As
the value of the normalized crack length approaches 2.5, the ratio
approaches unity. The value of 2.5 also coincides with the value where
the back surface crack length, c¢', is 30 percent of the front surface

crack length, ¢, which Johnson (24) defined as the end of the transition

region in his criterion.
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Correlations along the front surface are plotied on Figure 12.

Again, as the value of the normalized crack length approaches 2.5, the

ratio becomes constant at a value slightly greater than one. Therefore

one of the results of this study is that the transition region ends at a

normalized crack length value of 2.5. (Values were not plotted beyond

2.5 because they showed a fairly constant correlation.)

10
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VI. Correction Factor Development

6.1 Cormner Crack until Back Surface Penetration Region

6.1.1 Correction for Stress Intensity Factor Along the Bore of the
Hole. As noted in the previous chapter when the normalized crack ~epth
is approximately equal to 0.75, an apparent step occurs 1in the
correlation plots. This point (a/t = 0.75) will be used as the start of
the transition region for both the bore and front surfaces. In
developing the correction factor for this region along the bore of the
hole, the analytical/experimental correlation was examined in detail.
The average value for the correlation fell below uaity starting at
approximately one half of the way through the material. Using this as a
reference point, the correlations were replotted in Figures 13 and 14.

From this data the equation for a polynomial regression curve fit was

found as
(Frr)p = 1/00.573924 + 1.468068(a/t) - 1.275787(a/t)?) (23)

and it is plotted in Figures 13 and 14 (in the area where it is to be
used). It was found that a second order curve-fit resulted in a good
correlation for the data, and kept the number of additional terms to a
minimum. Correlations did not improve significantly when higher order

curve~fits were attempted.
This correction factor was substituted into the Newman equation by
(aK1)cor = (AKp)ngw x(Frr)p (24)

where (AK1)gor is the corrected stress intensity range and (AKp)ngw is

42
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Newman's solution, a new analytical/experimental correlation was
accomplished, which is shown in Figure 15. Since this does not show
how accurate the correction factor 1is, Figure 16 1illustrates the
relative accuracy by expanding the y-axis of Figure 15. The line illus-
trates a linear curve fit for the corrected region showing that the
desired value of one, or a perfect correlation, is almost satisfied.
Figure 17 shows all the data plotted along the bore of the hole and a
linear curve fit for that data. This figure shows a slight deviation
near the area where normalized crack depth is equal to 0.75, but then
shows an improvement in the corrected region. Therefore, the correction
factor developed shows a definitely improved correlation in the trans-

ition region.

6.1.2 Correction for the Stress Intensity Factor Along the Front
Surface. Using the fact that the transition region starts when the
normalized crack depth is equal to 0.75, the front surface correlation
data was plotted as shown in Figures 18 and 19. Again a polynomial
regression curve fit program was used and, in this case, a linear

function was found to yield sufficient accuracy. The function used was
(Frr)ps = 1/01.316867 - 0.362863(a/t)) (25)

and it is plotted in Figures 18 and 19 (in the area where it is to be

used).

After substituting this correction factor, (Fyglggs into Equation
24 in place of (FrR)g and then accomplishing the analytical/experimental
correlation, the new results are plotted in Figures 20 and 21. These
figures demonstrate the relative accuracy in the corrected region. The
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linear function plotted in Figures 20 anc 21 displays the relative
accuracy of this correction factor. Figure 22 contains all the surface
data and a linear curve fit for the entire front surface. This linear
function presents an excellent correlation for the stress intensity

ranges on the front surface.

6.2 Back Surface Penetration until Final Fracture Region

6.2.1 Correction for Stress Intensity Factor Along the Back
Surface. As noted in the previous chapter, the correlations tend to
become constant at a normalized crack length of 2.5. Figure 23 displays
the correlation for the back surface. The polynomial regression curve

fit used for this data is
(Frr)ps = 1/00.191601 + 0.724961(c'/R) - 0.158451(c'/R)2Y  (26)

and it is plotted im Figure 23 in its effective region. Due to the use
of the seven point incremental technique to compute the crack growth
rate, actual data could not be obtained for values of the normalized
crack length less than approximately 0.8 for this surface. This causes
the correction factor to be extrapolated in the region from 0.8 to 0.0.
However, since the crack growth rate in this area is very high, the
amount of time spent in this region should have minimal influence on the

total life of the specimen.

Substituting this correction factor, (Fpg)gg, into Equation 24 for
(Frr)p and replacing Newman's equation with Bowie's equation, the newly
corrected analytical stress intensity factor ranges are found. These

results are similar to those demonstrated previously.
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6.2.2 Correction for Stress Intensity Factor Along the Front
Surface. Figure 24 1illustrates the correlation of surface stress
intensity factor ranges in the same region used for the back surface
correction. One difference between the front and back surface is that
data along the front surface were recorded for the entire experiment
which allowed actual results to be plotted from a minimum normalized

crack length of approximately 0.5 rather than 0.8, which was used for

the back surface. The polynomial regression curve fit for the data is
(Frr)ps = 1/01.279537 - 0.106745(c/R) + 0.018451(c/R)?2) (27

and the results are shown in Figure 24 in the effective region. By
substituting this correction factor into Equation 24 and using Bowie's
equation rather than Newman's, the new correlations are found. These

again show a much better correlation pattern.

6.3 Back Surface Crack Length as a Function of Front Surface Crack

Length

Since in most applications it is not possible to measure the crack
length on both surfaces, the capability to calculate the crack length on
both surfaces knowing only the crack length on one surface is extremely
desirable. In most cases only the front surface crack length is
measured, thus the back surface crack length should be expressed as a
function of the front surface crack length. Figure 25 shows the
correlation between front and back surface crack lengths. In this

figure the normalized crack lengths are plotted using the front surface
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crack length as the independent variable. The lincar relationship which

best fits the data is

c'/R = -1.9311 + 1.70076(c/R) (28)

and it is plotted in Figure 25. Using this relationship the corrected
stress intensity factor ranges can be calculated on both the front and
back surfaces knowing only the front surface crack length after back
surface penetration, either predicted or actual. This function is only
valid in the region from back surface penetration until the normalized
crack length is 2.5, which is similar to the region used for the front

and back surface correction factors (see Section 6.2).
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VIL. Life and Crack Shape Predictions and Comparisons

————— e L L LS — -— —— —

Life predictions were made for corner-cracked specimens subjected
to constant amplitude loading. The procedure used was to calculate the
stress intensity factor range and thenm to obtain the crack growth rate

using Walker's equation (see Eqn 2)

de/dN = CEAKR(1 - R)T)D , (29)

Here, C, m, and n are the material constants, as given in Section 3.2
for 7075-T651 Aluminum. After calculating the crack growth rate, the
new crack length was found by integrating after each cycle and adding

the change in crack length to the previous crack length.

The 1life predictions for the seven experiments conducted are
presented in Table 5 along with the actual experimental results. These
results show an average life prediction of 78.85 percent of the actual
life. The average prediction from crack initiation to back surface
penetration was 65.76 percent of the experimental results, while the
average prediction from back surface penetration to final fracture was
86.84 percent. Of the seven cases one test was slightly unconservative,
with a 101.24 percent total life prediction and a 110.55 percent
prediction for back surface penetration to final fracture. The range
for total life predictions was 63.37 to 101.24 percent of the actual
values. For crack initiation to back surface penetration, the range was
44.71 to 95.74, and for back surface penetration to final fracture, the

range was 69.38 to 110.55 percent. To examine the effectiveness of this
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approach, two other models, proposed earlier (25, 26), were tested and

the results obtained are discussed in the following section.

7.2 Life Predictions Based om Other Models

7.2.1 Newman-Bowie Method. The Newman-Bowie method was used as

presented by Engle (26) to predict the fatigue life for the specimens
considered in the previous section. This method ignores the transition
region, 1i.e. it assumes a through-the-thickness crack once back surface
penetration has occurred. Results were obtained using the procedure of
Section 7.1, and they are presented in Table 6. The average life
prediction was 69.32 percent of the experimental results, with a range
of 55.18 to 90.44. The life prediction from crack initiation to back
surface penetration ranged from 48.72 to 105.95 percent, with an average
of 71.97. For the region from back surface penetration until final
fracture, the average prediction was 69.12 percent, ranging from 57.31
to 91.25. These results will be compared to the ones obtained from the

corrected approach in Section 7.4,

7.2.2 Brussat Method. Since the Brussat method (25) was developed

for a quarter-circular crack, the initial crack length used was the
average of the initial crack lengths aloang the bore of the hole and
along the surface. The procedure used was the same as that outlined in
Section 7.1, except for calculating the stress intensity factor ranges

where the following equation from Brussat's report (25) was used,

ARy = ASvme fy £TR - (30)
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Here,
frr = 1 - [0.2886/(1 + 2(c/t)2)) (31)
and AS and f, are as defined in Equations 8 and 19.

Life predictions are tabulated in Table 7. The averages for total
life, crack initiation until back surface penetration, and back surface
penetration to final fracture are 100.40, 149.13, and 77.07 percent,
respectively. The predictions for total life range from 82.71 to 124.89
percent, while for the region from crack initiation until back surface
penetration the range is 103.51 to 226.57 percent, and finally, for the
region from back surface penetration to final fracture the values range
from 64.72 to 101.85 percent. These results will also be compared to
those obtained by the Newman-Bowie method and the corrected method in

Section 7.4.

7.3 Crack Shape Predictions

The actual crack shape at back surface penetration along with the
predicted crack shapes for the three models discussed previously are
presented in Table 8. The Newman -~ Bowie Model has an average
prediction of 104.89 percent when compared to the actual results, while
the corrected method has an average of 108.94 percent. The Brussat
solution assumes that the crack is quarter-circular. The result of this
assumption is that the crack shape will always be equal to one. This
yields an average prediction of 70.25 percent. These crack shape

predictions will be compared in the next section.
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7.4 Comparisons

Since Brussat's Method is for a quarter-circular flaw, the accuracy
of his average total life prediction is outstanding. However, as shown
in Table 7, in eleven out of twenty-one predictions his approach is
unconservative. Due to this fact, this solution will not be discussed

further.

The czorrected method yields a 13.75 percent improvement in total
life prediction, and a 25.64 percent improvement in life prediction for
the region from back surface penetration to final fracture over the
Newman-Bowie approach. However, the corrected method is 8.63 percent
more conservative in the region from crack initiation to back surface
penetration. Clearly, the corrected approach yields better results both
in total life and in the region from back surface penetration to final
fracture; however, it is slightly more conservative (8.63 percent) in
the region from crack initiation to back surface penetration. This

peculiarity deserves a more detailed explanation.

In the transition region, the region from normalized crack depth of
0.75 to 1.0, the Newman - Bowie solution is very unconservative in
comparison with the corrected model, as shown in Figure 26. This leads
to a prediction of wore cycles than actually occur, which in turn
increases the overall average prediction for each test. The average
life prediction between the normalized crack depths of 0.75 and 1 for
the corrected wodel 1is 69.44 percent, while the average for the
Newman-Bowie model is 111.14 percent. This difference accounts for the
corrected model being slightly more conservative for the region from

crack initiation to back surface penetration.
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As noted in Section 7.3, the comparison between the Brussat
solution for a quarter-circular flaw and the other two models, which are
based on elliptical flaws, is unrealistic; in all the tests completed
the f.nal crack shapes tend to be more elliptical than circular. When
comparing crack shapes for the other models, it is found that the
corrected model is slightly more conservative than the Newman-Bowie
approach. fhis is due to the fact that the corrected model predicts
accelerated crack growth along the bore of the hole, but this affects
only slightly the crack growth on the surface. An interesting point
should be made here. The crack lengths along the surface of the
aluminum specimens are the measured values, which do not account for any
pinning action on the surface. As was noted in Section 3.2, in the PMMA
specimens, extrapolated crack lengths, which attempted to account for
this pianing action, are 3 to 18 percent longer than the measured
results. This pinning action, not considered in the aluminum specimens,
could be responsible for most of the difference between the actual crack

shape and the predicted values.
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VIII. Conclysions iud Recommentations

The Newman cormer crack solution (14) and the Grandt linearization
of the Bowie through-crack solution (26) accurately predict the stress
intensity factor range for a corner crack emanating from a hole as it
grows until it reaches final fracture. However, in & region near where
the corner crack penetrates the back surface and slightly beyond, these
models are very inaccurate. This transition region, i.e. the area just
prior to the penetration of the back surface by the corner crack and
until the crack becomes a through-~the-thickness one, was found to start
when tne normalized crack depth (a/t) was 0.75, and end when the
normalized crack length (c¢/R) reached 2.5. This was accomplished by

plotting analytical/experimental correlations.

From these correlation plots, correction factors were found for the
trans.tion region. After applying the correction factors to Newman's
and the Grandt-Bowie's solutions in the region defined previously, a
much better prediction of the stress intemsity factor ranges was
obtained throughout the transitiom region. This 1lmprovement 1in the
prediction of stress intensity factor ranges improved the total life
prediction of test specimens by almost 15 percent. This improvement is
vital in the development of accurate life predictions for structural

components.

This study has demonstrated that the proposed corrections to the
currently used stress intensity factor models have resulted in
significantly better life predictions for constant amplitude loading.

Since these correction factors were developed using non-dimensional
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terms, further tests should be conduted using varying thicknesses and
radii to verify these results. The correction factors to the
Newman-Raju solution are limited to cases where the initial crack
eccentricity, afc, is greater than one. Future studies should determine
if correction factors are required for the case when the «crack
eccentricity is less than one. These results are material independent,
as demonstrated by the use of the correction factors developed from PMMA
for the aluminum tests. After these correction factors are verified by
further testing using spectrum loading, they should be considered for

incorporation into the Air Force Damage Tolerant Design Handbook (2).
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AEEeQQiE: Crack Growth Rate Plots

The following figures show the crack growth rate as a function of
crack length for the 7075-T651 Aluminum specimens. The first seven
display the crack growth rate for the back surface, and the final seven
show the crack growth rate for the front surface. Each figure shows the
data for the two test specimens under each load condition, and a least
squares curve-fit to the data. These curve-fits are used in Section 3.2

to obtain the experimental stress intensity factor ranges.
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