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Preface

- The purpose of this study was to investigate the effect

a trailing vortex wake has on an airfoil undjergoing a con-

stant rate of change of angle of attack, intwo-dimen-

sional, incompressible, irrotational flow. Potential flow

theory, conformal mapping by the Joukowski transformation,

and numerical integration and differentiation techniques were

used to develop a computer algorithm to model the problem.

Once the program was formulated, it was used to solve the

impulsive-start problem of airfoil motion. The results were

found to be in excellent agreement with the results obtained

by others. When applied to the constant rate-of-change of

angle-of-attack problem, the results showed that a trailing

vortex wake has a measurable and predictable effect on the

production of lift on an airfoil undergoing a constant

/he results of this work, taken alone, are helpful in

understanding the phenomena known as dynamic stall, bttt-'

coupled with existing boundary-layer studies the results

may lead to additional understanding of the phenomena. More

specifically, the computer program developed here could be

used to(more realistically predictthe inviscid flow about

a pitching airfoil as it approaches the dynamic-stall con-

ditions. -9

This study could never have been completed without the

help of others. I owe a great deal of thanks to Major Eric

Jumper, who not only posed this problem to me, but who also

ii



provided invaluable assistance throughout the investigation.

I also wish to thank Lt. Colonel Michael Smith for his help

with potential flow theory and his expert advise regarding

the writing of this report. Finally, I wish to thank my

wife Anneliese for her translations of the German references

and, most importantly, for her help in keeping the work in-

volved in this thesis in proper perspective.

Kenneth W. Tupper

S
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Abstract

This study explored the effect of a trailing vortexti wake on the production of lift on an airfoil undergoing a

constant rate of change of angle of attack, a. The study

showed that when an airfoil encounters a constant-a flow,

the trailing vortex wake acts to suppress the slope of the

airfoil's C vs. a curve. The change in magnitude of this

effect as a function of airfoil thickness and camber was

also investigated.

Potential flow theory was used to model the flow about

a two-dimensional circular cylinder, and that flow was trans-

formed to flow about an airfoil by the Joukowski transforma-

tion. The trailing vortex wake was modeled by a sequence of

discrete point vortices, and the pitching motion of the air-

foil was modeled by a series of small incremental changes

in angle of attack, Aa, over a short period of time, At.

The rate of change of angle of attack, a, was then defined

as A(/At. After each time change At, a was changed by an

amount &a. A discrete vortex was introduced into the wake at

a distance U.At behind the airfoil trailing edge, and a

bound vortex of equal strength but opposite sense was intro-

duced to satisfy the Kutta condition and keep the total cir-

culation in the flow field equal to zero. As each new vor-

tex pair was introduced, all other trailing vortices were

viii



assumed to move in the wake by a distance UAt, where U is

the velocity induced at a vortex position by all other trail-

ing vortices, the bound vortices, and the free stream flow.

The unsteady Bernoulli equation was solved using numerical

integration and differentiation techniques to determine pres-

sure difference distribution, vorticity distribution, and

coefficient of lift on the airfoil for that instant in time.

This information was then used to investigate the overall

effect of constant- flow as well as the effect of thickness

and camber on the constant- problem, and simple rules for

predicting the effects were developed.

ix
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THE EFFECT OF TRAILING VORTICES ON THE PRODUCTION

OF LIFT ON AN AIRFOIL UNDERGOING A CONSTANT

RATE OF CHANGE OF ANGLE OF ATTACK

I. Introduction

It has been determined experimentally that an airfoil

pitching at some rate of change of angle of attack a stalls

at a higher angle of attack a than the static stall a. Max

von Kramer first showed this with his experiments in 1932

(1), where he held the airfoil fixed in space and rotated

the flow over the airfoil to create an . Deekens and Kuebler

(2) and Daley (3) ran similar experiments for a constant a,

but rather than rotating the flow, they rotated the airfoil

in a constant velocity free stream to produce their a. In

all three cases the stall occurred at a higher angle of attack

than the static-stall angle of attack. However, because of

the different methods used to produce a, Kramer's results

showed a much smaller change in stall angle of attack than

did Deekens and Kuebler and Daley.

Following these experiments, attempts have been made to

analytically model the case of an airfoil undergoing a con-

stant . Docken (4) and Lawrence (5) have tackled the prob-

lem using a momentum integral method, but both assumed in

their solution that the effect of the trailing vortices in

o1



the airfoil wake was small and could be neglected. Thus,

they assumed that the inviscid flow velocity outside the

airfoil boundary layer at any angle of attack was that which

would exist in the steady state at that angle of attack. It

is the intent of this thesis to determine the validity of

that assumption by analyzing the effect a trailing vortex

wake has on the inviscid flow field about an airfoil under-

going a constant rate of change in angle of attack (i.e.,

constant a). The effect of the trailing vortex wake on the

flow about the airfoil can be analyzed by determining how

the vorticity distribution and pressure difference distribu-

tion on the airfoil develop under the influence of the

(taking the trailing wake into account), and by observing

the effect of the a on the C vs. a curve.

J
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II. Solution Development

Solution Overview

Consider an airfoil at an angle of attack whi(l: under-

goes an impulsively started motion of velocity U Assume

* the airfoil is immersed in an incompressible, inviscid fluid.

Under these circumstances, a stagnation point of the flow

would occur on the upper surface of the airfoil. This would
$

* imply an infinite velocity at the airfoil trailing edge. It

is known, however, that the flow at the trailing edge of such

an airfoil becomes smooth and has a finite velocity. This

is known as the Kutta condition. Imposing the Kutta condi-

tion requires the formation of circulation around the airfoil

to move the stagnation point to the trailing edge. This cir-

culation can be modeled as a vortex bound to the airfoil.

The total circulation in the flow must remain equal to zero

by Kelvin's theorem, and thus circulation in the opposite

sense is shed in the form of a discrete vortex into the air-

foil wake. The strength of this vortex is just equal and

opposite to that of the bound vortex on the airfoil. The

equal and opposite strengths of the bound and shed vortices

are just sufficient to satisfy the Kutta condition and

Kelvin's theorem.

Thus, when the airfoil at angle of attack is impulsively

* started, circulation about the airfoil develops, and a wake

vortex is shed. After a time At, this shed vortex is arbi-

trarily assumed to be at a distance U At from the trailing

3
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edge (6:21). The bound vortex and shed vortex both affect

the flow about the airfoil, and their strengths are such

that the Kutta condition at the trailing edge is satisfied.

Knowing the strengths of these vortices, the instantaneous

values of circulation about the airfoil, as well as the

pressure difference distribution, vorticity distribution,

and coefficient of lift on the airfoil can be calculated.

After another time At, the shed vortex has moved further

downstream by a distance Usv At, where Usv is the velocity

at the shed vortex location imposed by the free stream and

all other vortices, including the bound vortex. In cases

other than the impulsive-start problem, the angle of attack

may also have changed by some amount equal to L~t, where

is the average rate-change of angle of attack over the

given time period At. The strength of the first shed vortex

remains fixed, and thus another bound vortex and shed vortex

must be introduced to keep the Kutta condition satisfied.

This second shed vortex is assumed to be at a distance

.U00t behind the trailing edge. The equal and opposite

strengths of these new bound and shed vortices are again de-

termined by imposing the Kutta condition. Now, for this new

instant in time, the instantaneous values of airfoil cir-

culation, pressure difference distribution, vorticity dis-

tribution, and coefficient of lift can once again be cal-

culated. This process can be repeated for any number of

discrete time steps At desired, and for that matter any

a(t), although in this study . was held constant. By

4



following this method, a time history of the development of

circulation, pressure difference distribution, vorticity

distribution, and coefficient of lift on the airfoil can be

observed.

Equations for Flow About a Cylinder

When solving a problem in two-dimensional incompressi-

ble, irrotational flow, it is often useful to make use of

conformal mapping. In this case, the problem is solved for

flow about a two-dimensional cylinder, then the Joukowski

transformation is used to find the solution for a Joukowski

airfoil.

Consider the flow of an incompressible, irrotational

fluid in the 0-plane. The flow is inclined at an angle a

to the x-axis (see Fig. 1). The stream function and poten-

tial function 0 for this flow are given by (7:245):

= U (Ycos a - X sina) ()

= U (X cos a + Y sin a) (2)

where U. is the magnitude of the free stream velocity.

If a doublet of strength K, axis inclined at angle a

to the X-axis, is placed at the origin of the o-plane, the

4 stream function 4' and potential function 0 are given by:

_K[Y cos aXs n (

2  + y2 
(3)

5
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B r(0'7)

I ~U 0

p plane

Fig. 1. Cylinder in Free Stream at Angle of
Attack With Vortex and Image
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0=K Xcos a + Y si a 4

2 2 1

2,rr x2 + y2 4

Since stream functions and potential functions are lin-

ear, they may be superimposed to create new flows. Therefore,

the stream and potential functions for" a doublet in a uniform

free stream at angle M to the X-axis can be written as:

P= U (Y cos a - X sin a) - Y cos a - X sin a

= (Y cos a - X sin 21 2 +2 (5)

= U (X cos a + Y sin a) + X cos a + Y sina
2Tx2+ a]

= (X cos a + Y sin a) [U0 + K 1 (6)
T X 2 + y2(

If strength K is such that K/2vUO = a2 , where a is the

radius of a cylinder, then the zero streamline will be the

line along which Y cos a = X sin a and the cylinder of

radius a , centered at the origin (8:89). The stream func-

tion and potential function are now:

42 [ a]V/ = U(Y cos a - X sin a) 1 2 2 (7)

0 = U (X cos a + Y sin a) 1 + 2 a 2 (8)

7
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Next, consider a vortex of strength -T located at

( ,q) in the c-plane. If a vortex of strength r is placed

at point (A,B) such that (A,B) is the inverse point of

( ,1) about the surface of the cylinder of radius a, (i.e.,

If,7rj= 1/IA,BI ), then the surface of the cylinder remains a
streamline by the circle theorem (9:84,85), and the total

circulation remains zero. The stream and potential functions

for a line vortex are given by (8:82)

=' n (r) (9)

-Tr
r-F (10)

where r is the distance from the vortex to the point in the

c-plane where 4 and 0 are evaluated, and e is the angle meas-

ured counterclockwise from the x-axis to r. Adding %P and 0

for each vortex in the pair yields

4'P 2-n [ ((X-A) 2 (Y-B))

- r In ((X-4) 2 + (Y-?7) 2) 1] (11)

r rr I X-AI
7-arctanjl_-]_ E arctan [ (12)

Note that A = (/r') cos e', B = (1/r') sin e' , and since

cos e' = 4/r' , sin e' = 7/r' (see Fig. 1), then

A = 2 + 2 (13)

B= 2 2 (14)

4
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After using the trigonometric identity (8:86)

arctan a - arctan 8 arctan a (15)

and performing some algebraic manipulation, one derives

r [ (X-A)2 + (Y-B) 2  (16)

I(x- V 2 + (Y - 11) 2

0 Xarctan -)(Y- - (X-A)(Y-71) (17)=2 rta I(Y-n) (Y-B) + (X-J) (X-A)

Finally, let there be N vortex pairs as just described.

Superimposing the N vortex pairs onto the cylinder in a

uniform free stream flow, the stream and potential functions

become:

= (Y cos a - X sin a) 2 a 2

N rXA) 2 + (Y-B) 2+ Z: " In (18)
i=1  n[(X_)2 + (yn)2

2

0 = U.(X cos a + Y sin aL) 1 + a2

N
+ i.[ (X-ti)(Y-Bi ) - (X-A i )(Y-n i

)

i=l i arctan (Y-i)(Y-Bi) + (X-i)(X-Ai) (19)

The velocity at any point (X,Y) in the flow field can

be obtained directly by differentiation and some algebraic

9
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manipulation of Eq. (18). The velocities in the X-direction

(U,) and the Y-direction (V are:

=-Ilk U. [Cos a cos a 2a 2Xy sin a 2 2y2 cos 1
Sc X2 + y2 (X2 + y2)2 (X2 + y2)2

N ri Y-Bi Y-71i
+ E 2,r2_ -2 2 (20)i=l t(X-Ai) 2+(Y-Bi)2 (X- i) +Y-1i ) 2

_- Tu [sin - a 2 sin a 2a2XY cos + 2a2X2 sin a
0 a =  X2 + Y2 (X 2 + y2)2 (X2 + y2)2

N i [ X-i_] (21)
+ Tr (XAi)y (B )2il (X-_i2+Y-i)2  (XA 2+ 2B

The stream function V1, potential function 0, and general

velocities U0  and V0  for any point in the 0-plane are

now known.

Joukowski Transformation

The Joukowski transformation can be used to transform a

flow from a cylinder plane to an airfoil plane. We already

have the equations for the flow in the 0-plane, where the

cylinder is centered at the origin. In complex variable

form, the position of a point in the 0-plane can be expressed

as 0 = r e . We can transform this point to the o'-plane

by the transformation o' = oe' 8 + . (10:461). This ro-

tates points in the 0-plane 8 radians clockwise, and then

10
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displaces them by an amount 4. The positive X-coordinate

crossed by the cylinder in the -plane, t , maps into the

point Ct ' (see Fig. 2). Transforming from the 0'-plane

to the Z-plane, the Joukowski transformation is used. It

is given by: , t, 2

Z = + t (22)

This transforms the cylinder in the 0'-plane to an airfoil

shape in the Z-plane. The point pt' maps to the trailing

edge of the airfoil shape in the Z-plane.

Determination of Strength of Vortices

Having seen how the Joukowski transformation maps a

cylinder in the 0-plane into an airfoil shape in the Z-plane,

it is time to relate the flows in the C and Z-planes. As

mentioned before, the solution involves placing discrete

vortices in the airfoil wake to simulate the vortex sheet

shed into the wake as circulation builds around the airfoil.

Images of these vortices are placed inside the cylinder to

simulate the airfoil bound vortex. The strength of each

vortex is determined by satisfying the Kutta condition at

each discrete time step. The Kutta condition implies that a

stagnation point of the flow is at the airfoil trailing edge.

As seen in the Joukowski transformation, the point Ot  in

the O-plane maps into the trailing edge of the airfoil in the

Z-plane. Therefore, establishing a stagnation point at 0t

in the O-plane satisfies the Kutta condition in the Z-plane

(10:469).

I,.I



p -Plane P' -Plane

y

aa

Z -Plane

Fig. 2. Planes of the Joukowski Transformation
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To make t a stagnation point in the 0-plane, set the

velocity U. equal to zero at that point and solve for the

circulation strength ]-in Eq. (20). This value of F will

be the same in the Z-plane, for circulation is unchanged in

the Joukowski transformation (10:458). Taking Eq. (20) for

U, letting the cylinder radius a = 1 , and recalling that

X 2 + Y2 = 1 for points on a cylinder of radius a = 1 , one

arrives at:

2U 0 = U. cos a - cos a 2XY sin a + 2Y cos Ci

N fi[ Y-B Y-Y-i
+ Z 2 2+- 2 - 1 (23)
i=l -(XBA ()-+(Y - i B )- I

Let N = 1 to solve for the strength of the first shed vor-

tex. Solving for F /U., one gets:

r 2r (2XY sin a - 2 Cos a)
U00 r Y-B Y- 7 - 24

(XA) 2+(YB)2 (X-)2+(y_7)I (24)

* Recalling the relations for A and B given by Eqs. (13) and

(14) and again making use of the fact that X2 + y2 = 1 on

the cylinder, Eq. (24) becomes

i 41T (X sin a - Y cos a)(4 2 + 72 + 1 - 2(Xt+Y7))( 2 5 )

U. t ~2 + 72 _1(5

Define r/u. as F*, the non-dimensional circulation, and

note that at at , X = 1 and Y = 0 . This changes Eq. (25)

to

13



4rr* 4i sin (42 + 12 + 1 - 24) (26)
2 + ?12_1

When solving for each subsequent F term, all previous F*

terms are known. Thus, Eq. (23) can be solved for F

In general, then

4r sin ai (4i 2 + ni2 + 1 -2 i )

34i 2 + 7 - 1

i-i r+ 2 )
E k 4k2 + 2 (27)k=l k 2 + nk 2+ 2 - 2 k

Velocities Induced at Discrete Vortices and on the Cylinder

For each time step taken, the strength of the vortex

pair introduced at that time step can now be calculated

using Eq. (27). However, from one time step to the next,

each vortex introduced in the wake moves away from the air-

foil some distance, that distance being equal to the velocity

at the position of the vortex times the time step, At •

The velocity at the position of each vortex depends upon not

only the free stream velocity, but also the velocities in-

duced at that position by all other vortices in the field.

Equations (20) and (21) can be used to find that velocity in

the 0-plane. Let ( m7m) be the coordinates of the posi-

tion at which the trailing vortex is located, the i sub-

script denote the time step at which the velocity is com-

puted, and the k subscript identify an individual vortex.

r 14



Solving equations (20) and (21) for the non-dimensional

U/U ,V/U , and recalling r = F/U ,one gets:

U 
2

m CosOL . -Cos a. 2mmsna % CSO osi
U. c0  2 + I2 4m2 + m2 2 4M2 + m2 )2

+ [r 17 I(m2 ) + m] (28)2 + 2--4- 2 + ?Im2)2 _ 2 -m 2 11m 2  + 1

+ *

k_ F 1, 1ky -B k-I-1
kim 2i ( -mAk) 2+(Ym-Bk) 2 (4 nk) 2 +7m_,k) 2

k/r 2En 'm no a' +22s in k

VM = sin a. -sin i - 2i 2 i
U0 m 2+m 2  ( m 2  + 4m2)2  {4m 2 + m2) 2

21 2 22

m  2 M 2 1) 1

- ( 2  + ? (29)

F*

N k [ k - k
+ 2- 2+ 2 2  2
k=l, 2T (km-4k) (07m-77k) ( km-A k ) +(77m-Bk)

k/m

15



Equations (28) and (29) describe the velocity that exists at

any vortex location (m P 7m ) as induced by the uniform

free stream and all other vortices in the flow field.

The velocity induced along the cylinder surface is

needed to determine the pressure distribution on the airfoil.

Again making use of the o-plane velocity equations (20) and

(21), and recalling that X2 + y2 = 1 on the cylinder in

the 0-plane, the non-dimensional velocities become:

U_ = -2XY sina +N r Y( 2+ 2_1)

0 i=l 21- -2 + i 2 _2(X i+Y77i)+1J

(30)

2N *4 i2 + _1

V_ -2XY cos a + 2X2 sin a - N fi[ X( 2 i2 -1)
U0 i=l 277 4i2+,7i2_ 2(X~i+Y77i)+l

(31)

where (X,Y) are coordinates of a point on the cylinder sur-

face. In the C-plane, these points can be easily put into

cylindrical coordinates. Let X = r cos e, Y = r sin e

where r = 1 , the radius of the cylinder. Equations (30)

and (31) then become:

U= -2 cos e sin e sin a + 2 sin 2 e cos a

N 2 2+ * sin (2 + 7 )

i=1 2T [ i + i - 2(i cos 9 + ni sin 0) + 1

(32)
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V ; -2 cos 0 sin e cos a + 2 cos 2 & sin a

00

N cos 8 (4i2  2 1 7 )
+

i=l 21 [ i2 + 17i2 - 2( i cos e + r1i sin 8) + 1

(33)

Since the cylinder surface is a streamline of the flow,

the velocity on the cylinder is always parallel to the sur-

face. Therefore, the magnitude of the non-dimensional ve-

locity tangent to the surface of the cylinder, U8 , is

just:

=O + 2 ]1- (34)

Circulation About the Airfoil

As the wake behind the airfoil forms, circulation de-

velops about the airfoil in the form of a bound vortex.

The strength of this bound vortex defines the total circula-

tion about the airfoil. Since the value of the total cir-

culation in the flow field must be zero, then the strength

of the circulation about the airfoil must be equal in magni-

tude and opposite in sign to the total circulation in the

wake. The circulation in the wake is just the sum of the

strengths of all the discrete vortices in the wake. The cir-

culation can be calculated by

N
a i=l
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where F is the non-dimensional circulation about the air-
a

foil, F is as defined in Eq. (27), and N is the number of
1

discrete vortices in the wake.

Velocity in the Airfoil Frame

Now that expressions for velocities in the O-plane are

known (Eqs. (32), (33) and (34)), their values at correspond-

ing points in the Z-plane can be found. Consider the complex

potential F(Q) = 0 + i4", where O = X + iY in the c-plane.

The complex velocity in the O-plane is dF/dc = w(o)

Since 0' = 0e- i  + . , then o' is a function of 0. By

the chain rule of differentiation, dF/do = (dF/do')(dQ'/do) ,

where dF/do' = w(o') , the complex velocity in the o'-plane.

Therefore

w( w() .W(O) (36)

do'
do

Note that the magnitude of do'/do = 1 , and thus the magni-

tude of the complex velocity in the 0-plane equals the mag-

nitude of the complex velocity at the corresponding point in

the 0'-plane. By similar arguments, knowing that the trans-

formation from the O'-plane to the Z-plane is given by Eq.

(22), and using the chain rule once more, it can be shown

that

UZ - iVZ = w(Z) = w(o') . 1 = w(o) • 1 (37)
dZ dZ
do' do'

18
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In this case

2SdZ Lt
1 (38)

Sdo' U)/ ,

Thus, given the magnitude of a velocity at a point in the

0-plane, the magnitude of the velocity at the corresponding

point in the Z-plane can be found using Eq. (37).

All the tools needed to analyze the airfoil wake effects

are now known. The stream and potential functions in the

0-plane are known, from which velocities in the 0-plane can

be found. The strength F of the wake vortices and their

images can be found by requiring the stagnation point in the

0-plane to remain fixed, thus satisfying the Kutta condition

on the airfoil in the Z-plane. The values of are the

same in both planes, and velocities in the 0-plane can be

directly transformed to the Z-plane.

Pressure, Lift, Vorticity Distribution on the Airfoil

The unsteady Bernoulli equation is used to calculate

the pressure on the airfoil. It is given by (6:18)

P + U2 + 0 t =  f(t) (39)

where P is pressure, o is the fluid density, U is the fluid

velocity, 0 is the potential function, and f(t) is a func-

tion of time independent of position. The subscripts £ and

u will be used to denote the lower and upper surfaces of the

airfoil, respectively. Subtracting the pressure on the upper

surface from the pressure on the lower surface yields

19



2 2 a
P - Pu L )( Uu (40)

The velocities in Eq. (40) are those tangent to the airfoil

surface. Along a streamline, U = a0/aS , where S is the

coordinate along the streamline. This implies that

0= f UdS . Therefore,

2 _ 2) a
P2 -P = 2 0( UU) + SS (Uu - Uj) dS (41)

U U t 00 u 2

Integrating in Eq. (41) from - to Sa  , the point on the

streamline where P , Uu  and U are known or desired,

one finds that the integral is zero from - to - c

the airfoil leading edge. Equation (41) then becomes
S

P- P =  O(U u2 - U 2) +  -(U U2 ) dS (42)

Introduce the following non-dimensional variables, identified

by the superscript *:

tUU
* U U* U * S

t = c -  , U, S =- (43)

Equation (42) now becomes:
o2 *2 *2 O2 _ Sa  .U

'U - Pu = C O(Uu*2 - U ) + U0 5-i (u -U) dS
at

(44)

Recall the definition of the coefficient of pressure

Cp = P-P/ CU2 The difference between the coefficients

of pressure on the lower and upper airfoil surface is called

' C • Using this definition, one obtains from Eq. (44)P

20
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P P 2 2 S a S UP,- S dS* *.

U AC U - U + 2 - (UU) dS (45)

The coefficient of lift per unit span, C. , is de-

fined as Ce = L/ 0 U.2c , where L is the lift per unit span

and c is the chord. Since L is defined as _ cAPdX , and

AP =-ACp Ou then

1 AC

C =r LC P dX (46)
2 -2c c

where X is measured along the chord of the airfoil.

The non-dimensional vorticity, y , is defined as

U - U . The vorticity distribution can be easily cal-

culated using this relation, since the value of y can be

obtained directly for any position along the airfoil chord

where the velocities on the upper and lower surfaces of the

airfoil are known.

Numerical Solution Process

The following procedure is used to numerically analyze

the wake vortex effects on the airfoil.

Step - Select a non-dimensional time step At , defined

as At = AtUJ/( c) . Let the airfoil begin its motion t

an initial angle of attack a and velocity U . Assume000

that after a time At , at time i = 1 , the first shed

vortex is at a position U ,At downstream of the airfoil

trailing edge in the direction of the velocity at the trail-

ing edge.

21
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Step 2 - The first vortex is thus at ( ,n) in the 0-plane,

and Eq. (26) can be solved for . The circulation about

the airfoil is -.

Step 3 - Eqs. (32), (33) and (34) can now be solved for the

velocity in the 0-plane at any point (X,Y) on the cylinder.

These velocities can be transformed to the Z-plane by Eq. (37).

Step 4 - Eq. (45) can be solved for ACp using a trapezoidal

rule with variable AX for the integration along the upper and

lower surfaces of the airfoil, and a three-point backward

difference differentiation approximation for the derivative

with respect to time. (For steps i = 1 and i = 2 , a two-

point linear difference method is used for the time deriva-

tive.) Eq. (46) can then be solved for C. , again using a

trapezoidal rule with variable AX for the integration. The

non-dimensional vorticity distribution can be calculated

directly as Y = U -U

Step 5 - The velocity of the shed vortex is calculated using

Eqs. (28), (29) and (37). For the next time step, the vor-

tex has moved in the Z-plane by an amount USV At , where

U is the non-dimensional velocity of the vortex just cal-

culated. Its position in the o-plane is then determined by

the inverse Joukowski transformation, given by

[Z ± (Z 2 4o t2) e- i

4 C =21(47)

where only the plus sign of the ± term gives a value of o in

the wake, and thus it is the value used for C.

22
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Step 6 - For the next time step, i = 2 , the vortex shed

at time i = 1 is at the position computed in step 5. As-

sume the vortex shed at time i = 2 is at the position

U"At downstream of the trailing edge. The angle of attack

at i = 2 is now a + At ,where is defined as
0

a a 'C (48)

Step 7 - All terms in Eq. (27) are now known, and this equa-

tion can be solved for 2 . The circulation about the air-

foil is-( + ).

Step 8 - Eqs. (32), (33) and (34) can be solved for the ve-

locity on the cylinder in the o-plane, and then the veloci-

ties can be expressed in the Z-plane using Eq. (37).

Step 9 - The values of AC and C can be found using Eqs.p

(45) and (46) respectively, and the vorticity distribution

y is again just Uu  -U 2 .

Step 10 - The velocity at the shed vortices can be calculated

using Eqs. (28), (29) and (37). The vortices are then moved

in the Z-plane a distance USV At . This new position of

each vortex in the Z-plane is the assumed location of each

vortex for the next time step. Each vortex position in the

0-plane can be determined by using the inverse Joukowski

transformation, Eq. (47).

Step 11 - For each time step i, the position of each vortex

is known from time step i - 1, and the vortex shed at time

i is assumed to be a distance U,,At downstream of the trail-

ing edge in the direction of the velocity at the

23
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trailing edge. The angle of attack a at time step i is

a. = a - + a At . Eqs. (27), (35), (32), (33), (34), (37),

(45) and (46) are then used to compute i , airfoil cir-

culation, velocities on the airfoil, AC and C for time
p

*step i. Eqs. (28), (29) and (37) are used to find the posi-

tion of the shed vortices for time step i + 1.

Step 11 is repeated as often as desired to compute the

airfoil circulation, pressure difference distribution, coef-

ficient of lift, y distribution, and shed vortex positions

for any discrete time desired.

24
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III. Results

Numerical Method Verification

Before exploring the effect of a constant-a flow on the

production of lift on a Joukowski airfoil, the method devel-

oped here was compared to the results of others. The first

test case was that of a flat plate impulsively started at an

infinitesimal angle of attack, a. This problem was first

explored by Wagner (11) in 1925. Wagner assumed in his analy-

sis that the wake vortex sheet remained along the x -axisa

at all times. For infinitesimal a, this is a good approxi-

mation. In Figs. 3 and 4 a numerical computation for a flat

plate in the Z-plane, impulsively started at a = 0.01

radians, At = 0.02 , is compared with Wagner's analytic

results and Giesing's (12) numerical results. The horizon-

tal axis scale is U At/ c, which is the non-dimensional dis-

tance the airfoil has traveled since the motion started,

having a value of one for each half-chord distance of air-

foil translation. The vertical scales, P/ss and C£/C ,
ss

are the ratios of Por CI to the steady-state values that

would be obtained after a long period of time has passed,

respectively. Both the build-up of circulation, P (Fig. 3),

and the coefficient of lift, C2 (Fig. 4), closely approximate

Wagner's curves.

In 1977, Shung (6) developed a numerical method similar

to the one presented in this thesis, but limited the study

to that for a flat plate at a constant a. Unlike Wagner,
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however, Shung's method allowed for vortex interactions in

the airfoil wake, as does the method in this thesis. The

major difference between Shung's numerical technique and the

technique presented here lies in the method used to integrate

the Unsteady Bernoulli Equation, Eq. (44). Since Shung was

limited to a flat plate, he was able to integrate using the

Gauss-Chebyshev quadrature formula (6:21). In this thesis,

a trapezoidal rule with variable LX was used for that inte-

gration. This allowed easy application to Joukowski air-

foils. Figure 5 depicts C /C for a flat plate at
ss .

a = 0.1 radians at various values of at . Comparing the

numerical solution with Wagner's curve, one sees that for

smaller values of At, the numerical solution approaches

Wagner's analytic solution. Shung (6:45) noted the same

tendency with his numerical solution. Figure 6 depicts the

formation of the vorticity distribution y on a flat plate

at a = 0.1 radians, At 0.02 . Note that immediately

after the airfoil begins its motion, the vorticity is nega-

tive near the trailing edge, but as time passes, the vortic-

ity distribution approaches that for the steady-state condi-

tion. Shung (6:44) showed the same effect in his study

using a = 0.1 radians, At = 0.1 . In fact, his results

are identical to the results presented in Fig. 6. Similarly,

the build-up to the steady-state pressure difference distribu-

tion for a flat plate at a = 0.1 radians can be seen in

Fig. 7. Shung also demonstrated wake vortex sheet roll-up

behind an impulsively-started flat plate. The method of

28
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this thesis demonstrates the same phenomenon, as can be

seen in Fig. 8, which depicts wake vortex sheet roll-up for

the case of an impulsively-started flat plate at a = 0.1

radians, &t = 0.1 , the same conditions depicted by

Shung (6:43). Shung's depiction and Fig. 8 are almost iden-

tical.

The flat plate is, in fact, a special case of the more

general Joukowski airfoil, and other airfoils in this family

have been studied. Giesing (12) also developed a numerical

procedure to account for wake effects on the build-up of

lift on an arbitrary airfoil. Giesing published a curve of

C /C£ for a 25.5% thick symmetric Joukowski airfoil impul-
ss

sively started at a = 0.01 radians. Using the same airfoil

and motion conditions, a CI/C curve was developed using
ss

the numerical method presented in this thesis. Figure 9

compares those two curves with Wagner's curve for a flat

plate. As can be seen in Fig. 4, Giesing's curve predicts

values below those predicted by the present method. Whereas

the present method over-predicted C 2 for a flat plate, and

Giesing's method under-predicted C£ for a flat plate, it seems

likely that the ideal solution is bracketed by the present

method and Giesing's method. Both curves for the 25.5%

thick symmetric Joukowski airfoil show a greater delay in

lift production than does the flat-plate-airfoil curve. This

agrees with an analysis done by Chow, who showed that air-

foils of increased thickness develop lift at a slower rate

than thinner airfoils (13:14).
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Giesing's numerical technique and the one presented in

this thesis differ in several ways. One major difference

between the two numerical techniques is in the way the motion

of the discrete vortices in the airfoil wake is predicted.

In Giesing's technique, after each time step, the non-dimen-

sional velocity induced at each trailing vortex position,

U , is calculated and then multiplied by At to approximately

predict where that discrete vortex will be at the next time

step. The non-dimensional velocity induced at that pre-

dicted position, Uc , is then calculated. The average of

U, + Uc is then multiplied by At to ccrrect the predic-

ted position of each discrete vortex for the next time step.

This method can be referred to as a Predictor-Corrector

method. The numerical technique presented in this thesis pre-

dicts the discrete vortex position in the same manner as

Giesing's predictor, but no corrector velocity is computed

or used. The predicted velocity is the only velocity used

to update vortex position.

To determine the effect a Predictor-Corrector method

has on the numerical solution, a program incorporating

Giesing's Predictor-Corrector method was developed. The re-

sults obtained using this program were compared with the re-

sults obtained using the method presented in this thesis

for the same airfoil and conditions of motion. Figure 10

shows a comparison of wake shape as computed by the two

methods for an impulsively started flat plate airfoil at

= 10 . Only in the area of starting vortex roll-up
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does the difference in vortex position become apparent.

Further, the values of C /C computed using the two methods
ss

are nearly identical, as seen in Table I. A comparison be-

tween the two methods was also made for the case of the flat

plate initially at a = 00 subjected to an e =0.035

One can see in Table II that the values of CX/CXs s computed

using the two methods are once again nearly identical. It

was thus determined that the added computation time incurred

by using the Predictor-Corrector method was not needed, and

thus not included in other studies in this thesis.

As a final check of the method of this thesis, the de-

velopment of y and aC on an impulsively-started symmetricp

airfoil with thickness was determined. Figures 11 and 12

show that for a 25.5% thick symmetric Joukowski airfoil im-

pulsively started at a = 0.1 radians, y and LC build to

their steady-state values in much the same manner as for a

flat plate, Figs. 6 and 7, when using the numerical method

of this thesis.

It has been shown that for the test cases above, the

numerical method presented here is in good agreement with

the work of others (6;11;12;13). There are two major advan-

tages in using this numerical method over other methods.

First, unlike Shung, one is not limited to a flat plate.

Second, comparing to Giesing, the simpler method of vortex

motion prediction greatly decreases computer run time while

having a negligible effect on the prediction of lift build-

up on an airfoil.
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TABLE I

Comparison of C, Calculated by Simple-Predictor
Method to C Calculated by Predictor Corrector

Method.4 Flat Plate Airfoil, a = 10

Predictor-Corrector
t C2  C

2 1

1 .70677 .70779

2 .75962 .75974

3 .79825 .79827

4 .83271 .83272

5 .85997 .86000

6 .88199 .88203

7 .90008 .90010

8 .91515 .91518

9 .92788 .92789

10 .93873 .93875

TABLE II

Comparison of C Calculated by Simple-Predictor
Method to C2 Calculated by Predictor CorrectorMethod. Flat Plate Airfoil, a = 0.035

t *Predictor-Corrector

t C C

0.2 .13710 .13968

0.4 .16284 .16543

0.6 .18888 .19152

0.8 .21544 .21814

1.0 .23061 .23062

1.2 .27020 .27301

1.4 .29837 .30122

1.6 .32702 .32991

1.8 .35612 .35906

2.0 .38564 .38863
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Application to Constant-i Flow

In the last section it was shown that the present method

compares favorably to the results of others for the con-

stant-a, impulsively-started airfoil. In this section the

results of applying the method to the previously-unstudied

problem of constant- flow is presented. The presentation

of these results is broken into four parts in order to more

systematically explore and understand the interplay of pos-

sible effects. These four parts deal with the effects and

selection of starting conditions, the general effect of

on the build-up of C, the effect of thickness, and the ef-

fect of camber, respectively.

Selection of Standard Starting Conditions. As was

shown in the previous section, it takes some finite time for

an airfoil at angle of attack, a, suddenly placed into motion

to build to a steady-state value of lift. It is not sur-

prising, then, to find that the onset of constant a demon-

strates a different result depending on the time delay from

onset of impulsive motion to onset of constant a. The dif-

ferences, however, were found to be predictable, and thus

separable, as the following will show.

To determine the effect the initial a and a start time

have on the C vs. a curve for an airfoil at constant a, a
iI

15% thick symmetric Joukowski airfoil with a = 0.01 ,

t = 0.02 was started at various initial a's and allowed

to build lift at that a for varying lengths of time t . For
0 *

initial a = 0 , one can see from Fig. 13 that the time t
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at which the . begins has no effect on the C vs. a curve.

For initial a = 5 , the C vs. a curves were dependent

upon the value of t at which the a was begun. However,

as can be seen in Fig. 14, the slope of the C vs. a

curve for a 0.01 does not depend upon the value of t

at which the a was begun. Choosing At = 0.1 , the 15%

thick symmetric Joukowski airfoil was allowed to build lift

to within 90% of steady-state C at various initial a's

before starting an a = 0.01 . As seen in Fig. 15, the

slope of the C vs. a curves for initial a's of 20, 4 and

60 are all approximately equal. The dashed lines on Fig. 15

depict the C vs. a curves that would be obtained by starting

the constant -a motion at full steady-state lift values

rather than the 90% steady-state lift values depicted by

the solid lines. Note that the initial value of CY obtained

for each of the starting angles of attack of 2 , 4 and 6

is the same amount above the steady-state C2 curve, and is

therefore independent of initial angle of attack. This ini-

tial value of C, will be called the 'jump' condition. Thus,

by the foregoing analysis, C 2 vs. a curve slope effects due

to the vortex wake will be assumed independent of initial a

and t.

The choice of At also shows some effect on the C vs.

a curve and was investigated. To do this, a 15% thick sym-

metric Joukowski airfoil at a = 0.01 was run at At

values of 0.2, 0.1, 0.02 and 0.004. Figure 16 depicts a

comparison of C£ vs. a curves for these four values of At
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Note that the slope of the curves, C2 , reduces as At
a*

is reduced, but the reduction is negligible below At = 0.02.

As a result of the above analysis concerning initial a

and t at which a is begun, all constant-a computer runs
0 o  *

assumed an initial a = 00 and t = 0 for a start-up. A

standard At = 0.02 was chosen as a reasonable value based

upon the information presented in Fig. 5 for impulsive-start

motion and Fig.16 for constant-a motion. While a At less

than 0.02 would produce more accurate results, the increased

computer time required at the smaller At values was judged

excessive for the slight increase in accuracy that could be

obtained.

General Effect of a on C * To determine the effect

an a has on the production of lift on an airfoil, a 15%

thick symmetric Joukowski airfoil was chosen as a represen-

tative airfoil shape. Using the selected values of initial

a = 00 and At = 0.02 , the airfoil was subjected to

various values of a ranging from 0.005 to 0.035. Figure 17

depicts the C vs. a curves obtained for small angles of

attack. Comparing with the C£ vs. a curve for the steady-

state case, one can see that as the value of a is increased,

the slope of the C2 vs. a curve, C. , is reduced. As the
a

motion progresses to larger values of a, the slopes of the

curves increase slightly (see Fig. 18).

Effect of Airfoil Thickness on a Effect. The general

effect a has on the production of lift on an airfoil has been

shown. This effect was shown for a specific airfoil only.
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To determine how airfoil thickness may influence this effect,

several symmetric Joukowski airfoils of varying thickness

were subjected to the same a conditions. Once again, values
* 0

of At = 0.02 , initial a = 0 were used. Symmetric

Joukowski airfoils of 7%, 15% and 25.5% thickness, as well

as a flat plate airfoil, were subjected to a = 0.02. A

C vs. a curve can be plotted for each of these airfoils.

Plotting the average slopes of these curves, C£ , versus air-

foil thickness ratio t/c (where t is the maximum airfoil

thickness), one can determine the effect of airfoil thickness

on the C vs. a curve slope reduction due to a. Figure 19

depicts C vs. t/c for a = 0.02 . One can see that a
2a

has a greater effect on lift curve slope reduction for thin

airfoils than for thick airfoils. This effect is consistent

with results previously presented. Note that in Fig. 9,

where a = 0 , for any given value of UAt/ c, the slope

of the CI/C ss curve is slightly greater for the 25.5% thick

symmetric Joukowski airfoil than for the flat plate. Al-

though the value of C2 /C£ is less for the airfoil with
ss

thickness, the rate at which C£/C2 is increasing is greater.
ss

This implies that, under similar a conditions, C will in-

crease at a faster rate for a thick airfoil than for a thin

airfoil. Figure 19 confirms that conclusion.

Effect of Airfoil Camber on a Effect. In much the same

way as airfoil thickness effects are calculated, airfoil

camber effects can also be explored. Joukowski airfoils of

15% thickness at various camber ratios were subjected to an
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= 0.02 As before, initial a was 0 , At = 0.02

Plotting average C versus camber ratio (maximum camber/

chord), camber effects can be shown. Figure 20 depicts C2

vs. camber ratio for 15% thick Joukowski airfoils of various

camber ratios. One can see that a has a greater effect on

lift curve slope reduction for less cambered airfoils than

for highly cambered airfoils.
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IV. Conclusion

It has been shown that as an airfoil pitches at a con-

stant a, the airfoil trailing vortex wake causes the slope

of the C vs. a curve to be less than the slope of the CI vs. a

curve for steady-state a. The greater the value of a for a

given airfoil, the greater the slope reduction of the C. vs. a

curve caused by the vortex wake. This effect becomes less

pronounced as airfoil thickness increases. Similarly, the

effect is also less pronounced as airfoil camber increases.

Using the results from the previous section, the follow-

ing predictions of constant-a effect may be made.

For a flat plate, the reduction in C. may be approx-
a

imately calculated by

C( .15 1 + 2 2 (49)

a( + 0.00008)0.15

(See Fig. 21 for a comparison of this prediction with numer-

ical data.) This prediction may be approximately corrected

for thickness by adding a correction term derived from Fig.

19. Thus

t 0.75Ca ,t/c) = ( ) + C(*) (50)
aL a (0

where t/c is the airfoil thickness to chord ratio and

C£ (cI) is the C. vs. a curve slope for a flat plate pre-

dicted by Eq. (49). A further approximate correction may

be made for camber by adding another correction term, de-

rived from Fig. 20. Thus
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C (a* t/cmc/c) e 3 0(mc/c-0.09) + C (a *,t/c) (51)

where mc/c is the airfoil camber ratio and C (a/) is

the C vs. a curve slope for an airfoil with thickness pre-

dicted by Eq. (50).

The amount that CI increases immediately after an air-

foil begins constant-a motion is referred to as the 'jump'

condition. This value for a flat plate can be predicted by

AC(a) = 3.47a* (52)

where AC (a) is the 'jump' condition change. Thickness

effects on AC (a ) can be approximated by the equation

AC (a*,t/c) = [l + 2(t/c)]Ac2 (d*) (53)
3

where t/c is the airfoil thickness ratio and AC2 (a ) is the

'jump' condition for a flat plate defined by Eq. (52). A

final approximate correction to the 'jump' condition can be

made by

AC( t/c, mc/c) AC(a, t/c) - 1.3(-mc) (54)

where mc/c is the airfoil camber ratio and AC2 (cL, t/c) is

as defined by Eq. (53).
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V. Recommendation

The assumption that the trailing vortex wake of an air-

foil undergoing a constant rate of change of angle of attack

has a negligible effect on the production of lift on the air-

foil is not, in general, valid. Although the effect is not

jlarge (see Eq. (49)), it should be accounted for in the in-

vestigation of dynamic stall of airfoils. The methods de-

veloped by Docken (4) and Lawrence (5) could be modified to

include the techniques presented in this thesis to more ac-

curately predict the potential flow field about a pitching

airfoil at any instant in time. Incorporating the calcula-

tion of wake vortex effects outlined in this thesis into

Lawrence's work would significantly contribute to the solu-

tion of the dynamic stall problem for an airfoil undergoing

a constant rate of change of angle of attack.
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APPEND I X: Computer Prog ram

C
C This program computes circulation, pressure difference
C distribution, vorticity distribution, coefficient of
C lift, and trailing vortex wake shape for a 2-D JouKowsKi
C airfoil in an incompressible, inviscid free stream at
C tangle of attack. The angle of attack may be a constant
C value, or it may be changed at a constant rate for the
C number of time steps desired. All output values are
C computed ,assuming a trailing vortex wake made up of dis-
C crete point vortices of constant strength, each of which
C influences the motion of all the other vortices and the
C flow about the airfoil. For the constant rate-of-chanae
"I of ingle-of-attack case, coefficient of lift can be
C ;ound ,as a function of the rate of change of angle of
C attack. Variables in the program are defined as follows:
C

C alf a - angle of attack
C iallf-2 - initial angle of attack
C alfdot - time rate of change of angle of attack
C beta - the beta parameter of a JouKowsKi airfoil
C cal fa - COSINE of alfa
C chord - airfoil chord length

cl - coefficient of lift
C ciss - steady-state coefficient of lift
C countt - 'an integer counter used to determine which
C time steps will record output in certain
C fies
C ct.heta - COSINE of theta
1C d'a.. fa - increrental change of alfa
C ~oeizo - array of incremental values of coefficient
C of pressure along the airfoil chord
C deld - distance on the x-axis in the cylinder
C plane behind the cylinder where the first
C shed vortex is placed
C delgam - array of values of strengths of gamma for
C each individual vortex pair
C dgoams - a sum of vortex strengths
C dsl - incremental distance along airfoil lower
C surface
C dsu - incremental distance along airfoil upper
C surface
C dt - incremental unit of time
C Z - complex number; derivative of the
C JoukowsKi transformajtion
C dz&-c - rn,,agnitude of c ZD

'S e..t,.a - x .' u~e of trailing vortex position
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C eta2 - x-value of trailing vortex image position
g a mmnI - airfoil circulation

C i,.jK,1 - integer values used in iterations
C intgrl - value of the integration of velocity
C differences between upper and lower
C airfoil surfaces
C lastdt - last time increment at which alfa changes
C mag2 - distance from a vortex to the center of the
C cylinder in the cylinder-centered plane
C malfa - maximum value of alfa
C maxdt - first time increment at which alfa changes
C from alfaO
C max.t - last time step
C MU - complex number; distance between the origin
C in the displaced-cylinder plane and the

C center of the cylinder
C pi - the constant 3.14159265
C RHO - complex. r number; a position in the cylinder-
C centered plane
C RHOP - complex number; a position in the displaced-
C cylinder plane
C sl.fa -.SINE of alfa
C ssgam - steady state value of circulation
C stheta - SINE of theta
C sumsqr - the square of the distance of a trailing
C vortex from the origin in the cylinder plane
C sumu,suMv - sum of the velocities on the cylinder in
C the x and y directions, respectively, in-
C duced by trailing vortices and their images
C t - integer counter for number of time steps
C theta - angle measured counterclockwise from the
C '.-axis in the cylinder plane
C totutotv - sum of velocities ,at 'a vortex location *.n
C the x and y directions, respectively, in-
r - duced by trailing vortices and their images
C UIv - velocities at a vorte.' location in the
C x and y directions, respectively
C ua,va - velocities at a vortex location in the
C x and y directions, respectively, in the
C airfoil plane
C usurf,vsurf - velocities on the cylinder in the x and y
C directions, respectively
C utheta - velocity tangent to the cylinder
C vordis - vorticity
C vsqare - velocity on upper surface of airfoil
C squared minus velocity on lower surface
C of airfoil squared
C x'y - position on airfoil
C .,vort.yvort - position of a trailing vortex

Z- compl.ex number' a position on the airfoil
C zet: .- y v'lue of trailing vorte. position
C :qt,.2 - y v' ,-e of trailing vortex image position
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C zt - distance 'alona x-axis fror, origin to
C cylinder in displaced-cylinder plone

C Z - complex number; 'a position in -the waKe in
C the airfoil plane
C
C FILES:*

-~ C

C INPUT - unformatted list of input variables
C OUTPUT - list of C1 vs. C1 steady-state for angle of
C attack and time step
C PRES' - pressure distribution at specified time

C VORT - vorticity distribution at specified time
.C WAKE - position of trailing vortices at specified time

IMPENSION zeta(201,201),et'a(201,201),eta2(201,201),

+zet'-18:1(0,20-1,(01,0)vht(20101,delg (201),.0)

+v"2(201 ,201) ,xvort(201 ,201) ,yvort(201 ,201),
rvordis(0: 176) ,delcp(0: 176) ,intgrl(0*201,0U*80)
INTEGER i,.j,m'axt,tpK,lvrnaxdtycountt
REALh delgam,deld,pi ,cthetarsthetarssgampdsurdslrdelcp,
+ujsurf~vs'irfptheta,utheta,gamia,malfa,alfarsumu,sumv,
+dalf'a rdgars calf a, salfa, sumsq r, alf dot, dt, dzd ro, ua Pva,
+beta,zt,ailf'aO,clsscl,,ytvsqare,x,,vortryvort,lastdt,
+et':-,2.zeta:.---eta2, uvvchord,intgrl,totui,totvpvordis,
+ na g 2, et'a

COMPLEX MU,RH0P,Z,ZZ,RHODZr
OPEN (15P.FILE="'INPUT')
REWIND 15
fJF'EN (16,FILE=CUTFUT')
REWIND 16
PEN "'17 .FILE="PRESD')

OPEN (18,FILE='WAKE')
REWIND 18
OPEN (1?,P.tLE='VORr')
REWIND 19

pi=3. 14159265

C Initialize delta alpha, delta d, max to Compute steady
C state gamma,

10 CONTINUE

REAI( 15?*,END=400) beta,alfa0,dalfa,deld ,maxdt,maxt,
+lastdt,zt,alfdot,dt
malfia=dal1fa*( lastdt-rn'axdt)+'alftaO0
ssgcm=~4*pi*SIN ( malf'a*p i/!G0)
WRITE(16,70) zt1.beta,dalf'a,dclid, ssg:iv alFdct it

4WFRTTE( 17Y72) zt,bet,a'aj~lf'a~deJIdrsscaairir,'fdot ,dt

60



WRITE( 18,72) zt,betard'af', deid ,SCrg'IrIT,afdot,dt
WRTTE(19,72) ztpbetavd'aliardeld,ssgaiT~,afdotrdt
bet a be tia* p i/180
d al1fia =dal a *p i/i80
QifQO=alfia*p i/iSO
MU=CMPLX(zt-COS(beta),SIN(beta))

C
C Cialculiate coordinates of points on the airfoil* (x,y)I C DO 15 i=-180,180

thetea=i*pi/180
RHOP=CMPLX(COS(theta-beta) ,SIN(theta-beta) )+MU
Z=RHOP+t**2/RHO'
x( i )REAL(Z
y( i)=AIMAG(Z)

15 CONTINUE
chnord.x (0)-x-80+2*b eta)
DiO 12 i=1,mtaxtA

delgari( i )0.0
'2 CONTINUE

DiO 13 i=176,0r-4
intgrl (0, i =0,

13 CONTINUE
C
C Begin stepping in time, inserting 'a new vortex pair 'at
C e'ach time step.
C

cowl tt=0
riO 300 t=1,maxt

count t = co uftt +
intgri (t, 18O)0,.

dcam0 0.

IF (t.GErrgaxdt,'ard .t.LE. iastdt) THEN

ELSE IF(1,.LT.mo'xdt) THEN
'a if 'a='af 'a0

END IF
c'aifa=COS(alfia)
s a if'a =SIN (a if'a)

C
C Insert new vortex pair, and update position of ail other

4C vortex imaiges.

C zet'a(t,1)=deld+1#

et'act, )=0.
xvort (t, 1)=chord*dt*COS (2*beta) /2+x (0)
yvort(t,1>=chord*dt*SIN(2*beta)/(-2)

rDO 20 j=",t
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Calculiate strength of newly shed vortex at timge t.
CThis is done by siatisfying the Kutta Condition a~t the

tr'ailing edge while Keeping totoal circulation in the
C field equal1 to zero.
C

delgam(l)=4*Kpi*salfa*(zeta(tpl)**2+etc(t,1)**2+1-2*

IF(t.GE.2) THEN

1+ /1 (zeti(t, 1 *+et(t, 1 *2-1) cyl~tile

21 CNTIUEdelgan(1)/(4*pi*salfa)

0 -at time t0

D00 30 =t1,-P17

+ zetma=tCk) **2+the'-taa,))*)+sht
+ heta=S(the)/(the -e)(~))*+sht~
+ uu= e .0~K>*))sm

sumu'=d e g'ns(K )/2/p i (eteoe(t rK)kst))/(c theta-
+ zta(t,K))**2+(sthet'1-etQ(trK) )**2)-(s(thets-
+ eta2(t,K))/((ctheta-eta2(t,K))**2+(stheta-
+ eta2(t,K))**2'))+sunmv

30 CONTINUE
usurf=2 *(calf'a*sthetga**2-cthet*sthet*salfa)+sumu
vsurf2*(slf*cthta**2-ctheta*stheta*c.1lfa)+sumv
uthe'a ( i )=SGRT (usurf'**2+vsiirf**2)
IF(i.NE*0) THEN
RHOP=CMPLX(COS(thet-beta) SIN(theta-beta) )+MU
DZD1 -zt**2/RHOP**2
dzd roinAIS (DZD)
jutheta( i)=utheta~i )/dzdro

END IF
IF((theta-(olfa+2*betGi)).LT.-1*pi) THEN

uthet'2(i)=-1*utheta(i)
END IF

200 'CONTINUE
gQMMrn3=0.
DO 210 i=1,t

g a rr 7 i -3 d elcrqnQ m

62



210 CONTINUE
C
C Compute velocity at each discrete vortex location due
C -to all other vortices and free stream.
C

ElO 50 1=1,t

DO 40 lp
IF(K.EO~l) THEN

+ zeta(tk)-zeta2(tk) )**2+(eto(tk)-eta2(tk))
+ **2))+totu

totv=delg'am(R )/2/pi*( (zetaa2(tpK >-zet:(t,K) )/((
+ zeta(tpK )-zet'a2(tK) )**2+(et'a(tk )-eta2(tpK))
+ **2))+totv

ELSE
totu=delgar(K )/2/pi*( (et'a(t,l1)-etra2(t,K) )/((

+ et.a(ti)-zetia2(tpK> )**2+(et'a(t,l)-et'a2(tK))
+ **2)+(etea(tK)-eta(t,l) )/( (zeta(t,l)-zeta(tK))
+ **2+(et'a(t,1)-et'a(t,K) )**2) )+totu

totv=delgar(K)/2/pi*((zeta2(t,K)-zeti(t,l))/((
+ zet'a(t,l)-zet'22(t,K))**2+(eta2(t,1)-etc2(tK))
+ **2)+(zetcl(t,l)-zeta(tK) )/( (zeta(t,1)-zetG(t,K)
+ )**2+(et'a(t,1>-etaa(t,K) )**2) )+totv

END IF
40 CONTINUE

su-nisqrzeta(tpl)**2+eta(t,1)**2
u(t,1)=calf'a*(1+(eta(t,1)**2-zeta(t,l)**2)/sumsqr

+ **2)-2*zeta3(t,l)*eta(t,l)*salfa/surnsqr**2+totu
v( , )=salf'a*( 1+(zeta(t,l1)**2-et'a(t,l1)**2)/suimsqr

+ **2)-2*zeto(t,1)*eta(t,l)*calfo/sunsqr**c2+totv
50 CONTINUE

C
C Calcu'a te pressure dist-ibution 'and unsteady 'aerodynam.c

0 force on the 'airfoil.
C

DO 32 i=176,0,-4
theta =i*oi/18O
ctheta=COS(theta)
sthetaSIN(theta)
dsu=S0RT((x(i)-x(i+4))**2+(y(i)-y(i+4))**2)*2/chord
dsl=SQRT( (x(-l*i)-x(-1*(i+4)))**2+(Y(-l*j)-Y(-1*

+ (i+4)))**2)*2/chord

+ +intgrl(tpi+4)
vsq'areutheta( i )**2-utheta(-l*i )**2
IF(ti.EG.1) THEN.
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ELSE IF(t.EQ.2) THEN
del cprjC) =vsqare+2*(intgrl(2,i)-initgrl(1,i) )/dt

E'LSE IF(t.Eq.iaxdt) THEN
delcp Ci )vsqare+2*intgrl (rYiaxdt i )/dt

ELSE IF(t#E.mia>:dt+1) THEN
delcp(i )=vsqcire+2*(intgrl (rnoxdt+1 , i)-

intgrl(m'axdt, i) )/dt
* ELSE

delcp.(i )=vsqare+(intgrl (t-2,i)+3*intgrl(tpi)-4*
+ intgrl(t-Ii))/dt

END IF
IF(i*EQ*176) THEN
clcl+delcp(176)*(x(174)-x(180) )/chord

ELSE IF(i*EO.0) THEN
clcl+delcp(0)*(x.(0)-x.(2))/chord

ELSE
cl=cl+delcp(i)*(x,(i-2)-x-(i+2))/chord

END IF
A CTNTINUE

C
C Calculate Cl.
C

c is s =8 *pij/ crd * s a 1 i
IF(t%.EO,3) THEN

+ t,t*dt
WRITE(1S','('Vorticity Distribution 5,13.

+ ' Vortices, t=',F7.4)') t,t*dt
DO 34 i=176,0,-4
vordis(i)uitheta( i)-utheti(-l*i)
WRITE C19,90) (t( i )+chord-2*zt)*2/chord ,vordisC i)
WRITEC17,90) (,, i )+chord -2*zt) *2/cho rdv-1*delcp (i)

34 CONTINUIE
END IF
I'F(counrtt/I.C.G T.*0) THEN

WRITE(17,'('Deltai Cp,.',13, U Vortices, t=',F7.4)')
+ trt*cit

WRITE(19,/C'Vorticjty Distribution 5,137

+ '3 Vortices, t=,F7.4)') t,t*dt

WRITE(19,90) (x(i )+chord-2*zt)*2/chordpvordis( i)
4 WRITE(17P90) (x(i)+chord-2*zt.)*2/chord,-l*delcp(i)

35 CONTINUE
C ou.fltt=O

END IF

+ *2/chord,yvort(tpt)*2/chord,gmmac,clss,cl
C

C Move e'achi vortex t~o its new location in the flow field.
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D[1 60 KRt,l,-1
mac2=SRT(zetc1(t1 K)**2+et'3(t,k )**2)
RHO,:P'=i,ra2*MFLX(CS(COS(zeto(t,K )/mag2)-bet a),

+SIN AS IN (eta( t,K )/Ym'ag2)-beta) )+MU
D ZD'=1- zt * *2/R H OF** 2
dzdro=ABS(DZD)

v'a(tK )=v(t,K )/dzdro
xvort(t+lK+1)=xvort(tIO+ua(t,.O)Kchord*dt/2
yvort(t+lK+1)=yvort(tK)+va(t,K)*chord*dt/2
ZZ=CMPLX(x<vort(t+lPK+1),yvort(t+1,K+l))
RHD=( (ZZ+ SORT(ZZ'K*2-4*zt**2) )/2-MU)*

+ CMPLX(POS(bet'a),SIN(beta))
zetQ(t+1 ,K+1 >REAL(RHO)
etga(t+1 ,K+1 )AIMAG(RHO)
clelgamr(K+1 )=delgorn(K)

*60 CONTINUE
I!F(t.EO.5) THEN

GO TO 61
ELSE IF (t.EQ.mox-dt) THEN

00 TO 61
ELSE IF(t.EQ.lastdt) THEN

GO TO 61
ELSE IF(t.EG.maxt) THEN

0O TO 61
ELSE

GO TO 300
END IF

61 WRITE18,1'Wa~e Vortex Locations from Trailing',
+' Edge (1/2 c = 1)'/" Xvort',5X,'Yvrt')')

DO 65 i=l,t
* WRITE(18,95) (xvort(t,i)-x(Ofl*2/chordv

65 & CONTTNUE ± r1,(v)*2/chord

00 CONTINUE
70 FGRMAT(///,'AIRFOIL DATA :',//,'Zeta~ trailing edge '

+F7.4,' Beta (deorees):1F63,//,YNAMIC PARAMETERS',
+//,'D~elta Alpha (degrees):',F6.3,' Delta Vortex
+ rigt'nce:',F6.4,/,'Ste:idy State Gamma:' '7F7.57
+' Alpha Dot:',FB*5,' Delta Time:',F5.3,//,'Tine',1OX,
+'S0tarting Vortex',17X,'Cl',/,'Step Alpha X

+1 Y Gamma Steady State C11,/)
72 FORMAT(///,'AIRFOIL DATA :'p//,'zeto trailing edge '

+F7.4,' B~eta (dwgrees)1,1F6.3r//,'DYNAMIC PARAMETERS',
+//,'Delta Alpha (degre~s)**',F6.3,' Delta Vortex '
+'Distance*',F6.4,/,'SteadY State Gamma: 1,F7*5,
+' Alpha Eot:',FS.5,' Delta Time#0',F5.3,/)

80 FORMAT(13, 3XF6.3, 2X,F7.4,FB.4,1X,FS.5,SX,FB.5,2X,F8.5)
90 FORMAT (FS .3,4X,F1O .5)
?5 FCRMAT(FS.4 , F1l 4)
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