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Preface

-7 The purpose of this study was to investigate the effect

a trailing vortex wake has on an airfoil un@gggoing a con-
da PHG /]

stant rate of change of angle of attack, ﬂp in two-dimen-

j.-WN«—-. .

sional, incompressible, irrotational flow. Potential flow
theory, conformal mapping by the Joukowski transformation,
and numerical integration and differentiation techniques were
used to develop a computer algorithm to model the problem.
= Once the program was formulated, it was used to solve the i
] impulsive-start problem of airfoil motion. The results were

found to be in excellent agreement with the results obtained

by others. When applied to the constant rate-of-change of

angle-of -attack problem, the results showed that a trailing
vortex wake has a measurable and predictable effect on the

, , . . . A
production of 1lift on an airfoll undergoling a constant &\ '

“xkhé results of this work, taken alone, are helpful in
understanding the phenomena known as dynamic stall, but-
coupled with existing boundary-layer studies the results

may lead to additional understanding of the phenomena. More

specifically, the computer program developed here could be
used to{more realistically predict,the inviscid flow about

a pitching airfoil as it approaches the dynamic-stall con-

O b

ditions. <t

This study could never have been completed without the

help of others. I owe a great deal of thanks to Major Eric

Jumper, who not only posed this problem to me, but who also

ii




provided invaluable assistance throughout the investigation.
I also wish to thank Lt. Colonel Michael Smith for his help
with potential flow theory and his expert advise regarding
the writing of this report. Finally, I wish to thank my
wife Anneliese for her translations of the German references
and, most importantly, for her help in keeping the work in-

volved in this thesis in proper perspective.

Kenneth W. Tupper
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Abstract

This study explored the effect of a trailing vortex
wake on the production of 1ift on an airfoil undergoing a
constant rate of change of angle of attack, &. The study
showed that when an airfoil encounters a constant-& flow,
the trailing vorgex wake acts to suppress the slope of the
airfoil's C, vs. a curve. The change in magnitude of this
effect as a function of airfoil thickness and camber was
also investigated.

Potential flow theory was used to model the flow about
a two-dimensional circular cylinder, and that flow was trans-
formed to flow about an airfoil by the Joukowski transforma-

tion. The trailing vortex wake was modeled by a sequence of

discrete point vortices, and the pitching motion of the air-

foil was modeled by a series of small incremental changes ﬂ
in angle of a;tack, Aa, over a short period of time, &t.

The rate of change(of angle of attack, &, was then defined

as Aa/At. After each time change At, a was changed by an

amount Aa. A discrete vortex was introduced into the wake at

a distance U_At behind the airfoil trailing edde, and a

bound vortex of equal strength but opposite sense was intro-

duced to satisfy the Kutta condition and keep the total cir-

culation in the flow field equal to zero. As each new vor-

tex pair was introduced, all other trailing vortices were

viii




assumed to move in the wake by a distance UAt, where U is
the velocity induced at a vortex position by all other trail-
ing vortices, the bound vortices, and the free stream flow.
The unsteady Bernoulli equation was solved using numerical
integration and differentiation techniques to determine pres-
sure difference distribution, vorticity distribution, and
coefficient of 1lift on the airfoil for that instant in time.
This information was then used to investigate the overall
effect of constant-& flow as well as the effect of thickness
and camber on the constant-& problem, and simple rules for

predicting the effects were developed.
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THE EFFECT OF TRAILING VORTICES ON THE PRODUCTION
OF LIFT ON AN AIRFOIL UNDERGOING A CONSTANT

RATE OF CHANGE OF ANGLE OF ATTACK

I. 1Introduction

It has been determined experimentally that an airfoil
pitching at some rate of change of angle of attack a stalls
at a higher angle of attack a than the static stall a. Max
von Kramer first showed this with his experiments in 1932
(1), where he held the airfoil fixed in space and rotated

the flow over the airfoil to create an &¢. Deekens and Kuebler

(2) and Daley (3) ran similar experiments for a constant a,

but rather than rotating the flow, they rotated the airfoil
in a constant velocity free stream to produce their a. 1In

all three cases the stall occurred at a higher angle of attack

than the static-stall angle of attack. However, because of
the different methods used to produce &, Kramer's results
showed a much smaller change in stall angle of attack than
did Deekens and Kuebler and Daley.

Following these experiments, attempts have been made to
analytically model the case of an airfoil undergoing a con-
stant a. Docken (4) and Lawrence (5) have tackled the prob-
lem using a momentum integral method, but both assumed in

their solution that the effect of the trailing vortices in
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the airfoil wake was small and could be neglected. Thus,

they assumed that the inviscid flow velocity outside the

airfoil boundary layer at any angle of attack was that which
would exist in the steady state at that angle of attack. It

is the intent of this thesis to determine the validity of

- g

that assumption by analyzing the effect a trailing vortex

wake has on the inviscid flow field about an airfoil under-

L e e RN e

going a constant rate of change in angle of attack (i.e.,
cohstant a). The effect of the trailing vortex wake on the
flow about the airfoil can be analyzed by determining how
the vorticity distribution and pressure difference distribu-
tion on the airfoil develop under the influence of the a

(taking the trailing wake into account), and by observing

the effect of the & on the Cz vs. O curve.
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IT. Solution Development

Solution Overview

Consider an airfoil at an angle of attack whica under-
goes an impulsively started motion of velocity u, - Assume
the airfoil is immersed in an incompressible, inviscid fluid.
Under these circumstances, a stagnation point of the flow
would occur on the upper surface of the airfoil. This would
imply an infinite velocity at the airfoil trailing edge. It
is known, however, that the flow at the trailing edge of such
an airfoil becomes smooth and has a finite velocity. This
is known as the Kutta condition. Imposing the Kutta condi-
tion requires the formation of circulation around the airfoil
to move the stagnation point to the trailing edge. This cir-
culation can be modeled as a vortex bound to the airfoil.

The total circulation in the flow must remain equal to zero
by Kelvin's theorem, and thus circulation in the opposite
sense is shed in the form of a discrete vortex into the air-
foil wake. The strength of this vortex is just equal and
opposite to that of the bound vortex on the airfoil. The
equal and opposite strengths of the bound and shed vortices
are just sufficient to satisfy the Kutta condition and
Kelvin's theorem.

Thus, when the airfoil at angle of attack is impulsively
started, circulation about the airfoil develops, and a wake
vortex is shed. After a time At, this shed vortex is arbi-

trarily assumed to be at a distance U _At from the trailing
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edge (6:21). The bound vortex and shed vortex both affect
the flow about the airfoil, and their strengths are such
that the Kutta condition at the trailing edge is satisfied.
Knowing the strengths of these vortices, the instantaneous
values of circulation about the airfoil, as well as the
pressure difference distribution, vorticity distribution,
and coefficient of 1lift on the airfoil can be calculated.
After another time 4t, the shed vortex has moved further
downstream by a distance Ustt, where Ugy is the velocity
at the shed vortex location imposed by the free stream and
all other vortices, including the bound vortex. In cases
other than the impulsive-start problem, the angle of attack
may also have changed by some amount equal to &At, where

& is the average rate-change of angle of attack over the
given time period 4At. The strength of the first shed vortex
remains fixed, and thus another bound vortex and shed vortex
must be introduced to kKeep the Kutta condition satisfied.
This second shed vortex is assumed to be at a distance

Ut behind the trailing edge. The equal and opposite
strengths of these new bound and shed vortices are again de-
termined by imposing the Kutta condition. Now, for this new
instant in time, the instantaneous values of airfoil cir-
culation, pressure difference distribution, vorticity dis-
tribution, and coefficient of 1ift can once again be cal-
culated. This process can be repeated for any number of
discrete time steps 4t desired, and for that matter any

a(t), although in this study a was held constant. By




following this method, a time history of the development of
circulation, pressure difference distribution, vorticity
distribution, and coefficient of 1ift on the airfoil can be

observed.

; Equations for Flow About a Cylinder

% When solving a problem in two-dimensional incompressi-

i ble, irrotational flow, it is often useful to make use of
conformal mapping. In this case, the problem is solved for
flow about a two-dimensional cylinder, then the Joukowski
transformation is used to find the solution for a Joukowski
airfoil.

Consider the flow of an incompressible, irrotational
fluid in the p-plane. The flow is inclined at an angle a
to the x-axis (see Fig. 1). The stream function ¢ and poten-

tial function @ for this flow are given by (7:245):

Y = Qm(Y cos @ - X sin a) (1)

g =0/(Xcos a+ Y sin a) (2)

where U_ 1is the magnitude of the free stream velocity.
If a doublet of strength K, axis inclined at angle a
to the X-axis, is placed at the origin of the o-plane, the

i stream function { and potential function @ are given by:

= (3)

x2 + Y2

? v = =K [Y cos a - X sin a]
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Fig. 1. Cylinder in Free Stream at Angle of
Attack With Vortex and Image
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g =

K

2m

|

2

2

X cos a + Y sin aJ

X

+ Y

(4)

Since stream functions and potential functions are lin-
ear, they may be superimposed to create new flows. Therefore,
the stream and potential functions for a doublet in a uniform

free stream at angle @ to the X-axis can be written as:

. K|{Y cos a - X sin a
Yy =U (Y cosa - X sin a) - 35—~
0 2m XZ + Y2
|
i
= (Y cos a - X sin a) Up = f% 5 1 > (5) !
X“+ Y :
@ =1U_ (X cos a+Y sina) + 5% X cos % i Y251n -
X" +Y
= (X cos o + Y sin a) Up * 5% —E_l__f (6)
X® + Y
If strength K 1is such that K/ZﬂU°° = a2 , where a 1is the

radius of a cylinder, then the zero streamline will be the

line along which Y cos a =

radius

X sin

a

and the cylinder of

a , centered at the origin (8:89).

tion and potential function are now:

'/

LN
i}

UW(Y cos o - X sin a)

U (X cos a + Y sin a)

The stream func-

(7)

(8)




Next, consider a vortex of strength -T located at
(¢,m) in the c-plane. If a vortex of strength T is placed
at point (A,B) such that (A,B) is the inverse point of
(§,M) about the surface of the cylinder of radius a, (i.e.,
|§,n|= 1/|A,B|), then the surface of the cylinder remains a
streamline by the circle theorem (9:84,85), and the total
circulation remains zero. The stream and potential functions

for a line vortex are given by (8:82)

¥ = =4 () (9)
g=3Lo (10)

where r is the distance from the vortex to the point in the
0-plane where Y and @ are evaluated, and 6 is the angle meas-
ured counterclockwise from the x-axis to r. Adding ¥ and @

for each vortex in the pair yields

W = 3=in [ ((x-a)% + (Y-B)ZV/Z]

i, 2—1:12n [ ((x-8)2 + (Y-mz)’/z] (11)

f% arctan[%f% - é% arctan [éf% (12)

@

Note that A = (1/r') cos 6', B = (1/r') sin ' , and since

cos 8' = &é/r' , sin 8' ="/r' (see Fig. 1), then

A= 55— (13)




After using the trigonometric identity (8:86)

= o =-8_
arctan & - arctan 8 = arctan [1 T uBl (15)

and performing some algebraic manipulation, one derives

TP

(16)

2 2
= T (X-2)< + (Y-B)%
Y = —in

4m [(x-s)2 + (Y-m)?

JEPSREN _  SE

N X-§)(Y-B) - (X-A)(Y-
g =55 arCta“[ (Y-ﬂ)%Y-B) + (X-£) (X-A) ] (17)

Finally, let there be N vortex pairs as just described.
Superimposing the N vortex pairs onto the cylinder in a

uniform free stream flow, the stream and potential functions

become:
2
1#=U°°(Ycosa—Xsina)[1-—2-§—2]
X° + Y
+I§ Ei_ n (X—A)2 + (Y-B)_z " (18)
i=1 47 (x-£)2 + (Y-m?

2
=0 (Xcosa+Ysina) |1+ -——3——5
X" + Y

+
([ oo B4

i

2m

1 == arctan ](19)
(Y-ﬂi) (Y"BiT"‘ TX‘El) (X-Al)

The velocity at any point (X,Y) 1in the flow field can

be obtained directly by differentiation and some algebraic




manipulation of Eq. (18). The velocities in the X-direction

(U,) and the Y-direction (Vo) are:

u = ¥ . cos a - a’ cos a _ 2a’xy_sin a + 2a%v? cos a]
0 T T Y R I R 1 R RN 3

*Eogy 3 2 7 2 ] (20)
i=1 (X-Ai) +(Y—Bi) (x-ei) +Y-1.)
v =3V _ g lsin @ - a’ sin a _ 2a%XY cos a . 2a%x? sin a]
o X 0 %2 + y2 (x2 N Yz)z (Xz . Yz)z
o ﬂ[ X-4; ) X-A; ] (21)
oL 2w 2 2 2 2
i=1 (x-ei) +(Y-ni) (X-Ai) +(Y-Bi)

The stream function Y, potential function @, and general
velocities Uo and Vo for any point in the p-plane are

now known.

Joukowski Transformation

The Joukowski transformation can be used to transform a
flow from a cylinder plane to an airfoil plane. We already
have the equations for the flow in the p-plane, where the
cylinder is centered at the origin. In complex variable
form, the position of a point in the p-plane can be expressed

as p=r ele . We can transform this point to the p'-plane
by the transformation p' = oe"lB + up (10:461). This ro-

tates points in the p-plane 8 radians clockwise, and then

10




displaces them by an amount p. The positive X-coordinate

crossed by the cylinder in the C¢-plane, , maps into the

¢

point o' (see Fig. 2). Transforming from the p'-plane

to the Z-plane, the Joukowski transformation is used. It

is given by: 2

(22)

This transforms the cylinder in the p'-plane to an airfoil
shape in the Z-plane. The point p.' maps to the trailing

edge of the airfoil shape in the Z-plane.

Determination of Strength of Vortices

Having seen how the Joukowski transformation maps a
cylinder in the p-plane into an airfoil shape in the Z-plane,
it is time to relate the flows in the ¢ and Z-planes. As
mentioned before, the solution involves placing discrete
vortices in the airfoil wake to simulate the vortex sheet
shed into the wake as circulation builds around the airfoil.
Images of these vortices are placed inside the cylinder to
simulate the airfoil bound vortex. The strength of each
vortex is determined by satisfying the Kutta condition at
each discrete time step. The Kutta condition implies that a
stagnation point of the flow is at the airfoil trailing edge.
As seen in the Joukowski transformation, the point O¢ in
the p-plane maps into the trailing edge of the airfoil in the
Z-plane. Therefore, establishing a stagnation point at P
in the o-plane satisfies the Kutta condition in the Z-plane

(10:469).

11




p - Plane p' -~ Plane
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Z - Plane

Fig. 2. Planes of the Joukowski Transformation
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To make 0, a stagnation point in the 0-plane, set the

t
velocity U, equal to zero at that point and solve for the
circulation strength I in Eq. (20). This value of I" will

be the same in the Z-plane, for circulation is unchanged in
the Joukowski transformation (10:458). Taking Eq. (20) for
Ub’ letting the cylinder radius a = 1 , and recalling that
X2 + Y2 = 1 for points on a cylinder of radius a = 1 , one

arrives at:

UO =0 = Uw[cos O - cos & - 2XY sin o + 2Y2 cos al
N I Y-B; Y-n,
* Lo 3m 7] z - 3 5| (23)
1=1 (X-Ai) +(Y-Bi) (X"Gi) +(Y-'Il)

Let N = 1 to solve for the strength of the first shed vor-

tex. Solving for /U, one gets:

2

I _ _2m (2XY sin a - 2Y° cos a)
r Y-B ) Y-n (24)
l(x—A)2+(Y—B)2 (X- &) %+ (Y-

Recalling the relations for A and B given by Egs. (13) and

(14) and again making use of the fact that X2 + Y2 =1 on

the cylinder, Eq. (24) becomes

[ _4n (Xsinag - Y cos )(§2 + Mm% + 1 - 2(XEWYN)) e,
o 20?1

*
Define [ /U as I’ , the non-dimensional circulation, and
note that at o,, X =1 and Y = 0 . This changes Eq. (25)

to

13




r~ - 47 sin a (62 + n2 + 1 - 2§) (26)

€2 + 2 _

. * ) *
When solving for each subsequent I term, all previous [I”

.

terms are known. Thus, Eq. (23) can be solved for 11 .

In general, then
. 2 2
. 4m sin a, (éi + 00+l - 2€i)
i

i-1 I (ek N - 1)

- 5 - (27)
k=1 £+ °+ 1 - 26

Velocities Induced at Discrete Vortices and on the Cylinder

For each time step taken, the strength of the vortex
pair introduced at that time step can now be calculated
using Eq. (27). However, from one time step to the next,
each vortex introduced in the wake moves away from the air-
foil some distance, that distance being equal to the velocity
at the position of the vortex times the time step, At .

The velocity at the position of each vortex depends upon not
only the free stream velocity, but also the velocities in-
duced at that position by all other vortices in the field.
Equations (20) and (21) can be used to find that velocity in
the p-plane. Let (Gm,ﬂm) be the coordinates of the posi-
tion at which the trailing vortex is located, the i sub-

script denote the time step at which the velocity is com-

puted, and the k subscript identify an individual vortex.

i

1y ek e A e A a e e e




Solving equations (20) and (21) for the non-dimensional

. *
Um/Uoo , Vm/U:‘o , and recalling Ir:\ = I;n/Uoo , One gets:

]
U .
U_m . cos ai - cczns ai - Zem';)m SJ.nza% + 217m2 cos Zi
o0 2 2
g, 0em S (&5 T (6 5+ D)
2 2
+ nn* [ nm(em * nm - 1) ] {28)
2m 2 2,2 2 2
(ém +"1m) -2€m-2‘nm+1
+ N *
kgl Iy Mm~ By - T~ he
Pt 2m 2 2 \2 2
K#m (em-AK) +(ﬂm-Bk) (En-€k, +('ﬂm-ﬂk)
Vm sin a, - sin a, - 2& M _cos a, +2£23in Q.
U, i ' 2 l2 m2m 2 ; m2 212
6m H’m (£m * "lm ) (Em * "m )
* 2 2
In, gm(gm M 1)
" Zn 202 -2:%2 -omZo1 (29)
Em - 28 " - 29
+ N I [ Em~ &k - sl;—AK ]
z 2m 2 2 2
w=1 (§m-£k) +(Tlm-77k) (Em-Ak) +(7)m-Bk)
K#m




Equations (28) and (29) describe the velocity that exists at

any vortex location (Em ’ 77m) as induced by the uniform
free stream and all other vortices in the flow field.

The velocity induced along the cylinder surface is
needed to determine the pressure distribution on the airfoil.
Again making use of the p-plane velocity equations (20) and
(21), and recalling that X2 + Y2 = 1 on the cylinder in

the p-plane, the non-dimensional velocities become:

N * 2 2
%_ = -2XY sin a + 2Y2 cos a + I 11 [ Y(‘Ei +ni -1) ]
20 1=1 2m 512+n12_2(xgl+yn1)+1
(30)
N * 2 2
V_ _ -2XY cos a + 2x? sina -t Ji [ X(g;+n,"-1) ]
U i=1 2m 2 2
oo ‘El +77i -2(X£i+yni)+1

(31)

where (X,Y) are coordinates of a point on the cylinder sur-
face. In the p-plane, these points can be easily put into
cylindrical coordinates. Let X =r cos 8, Y = r sin €& ,
where r = 1 , the radius of the cylinder. Equations (30)

and (31) then become:

%_ = -2 cos 6 sin 0 sin a + 2 sin® & cos a
o0
N * . 2 2
+x I sin & (&7 + ;" - 1) ]
i=1 2n £i2 + niz _ Z(Ei cos & + 7. sin 8) + 1

(32)




R ——

{ V. . . 2 .
‘ 7 = -2 cos 6 sin 6 cos a + 2 cos” 6 sin 2
o0
N 2, 2
+ 11 [ cos @ (El + ’7-1 - 1) ]
i=1 2m 2 2 .
£i +no - 2(&i cos 6 + n, sin ) + 1

(33)

Since the cylinder surface is a streamline of the flow,

the velocity on the cylinder is always parallel to the sur-
face. Therefore, the magnitude of the non-dimensional ve-
locity tangent to the surface of the cylinder, Ug » is

just:
oo - 8"+ )]

Circulation About the Airfoil

As the wake behind the airfoil forms, circulation de-
velops about the airfoil in the form of a bound vortex.
The strength of this bound vortex defines the total circula-
tion about the airfoil. Since the value of the total cir-
culation in the flow field must be zero, then the strength
of the circulation about the airfoil must be equal in magni-
tude and opposite in sign to the total circulation in the
wakKe. The circulation in the wake is just the sum of the
strengths of all the discrete vortices in the wake. The cir-

culation can be calculated by

N
L'-f -n (35)
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* . 4 . 0 .
where 1; is the non-dimensional circulation about the air-
* . .
foil, 11 is as defined in Eq. (27), and N is the number of

discrete vortices in the wake.

Velocity in the Airfoil Frame

Now that expressions for velocities in the p-plane are
known (Egs. (32), (33) and (34)), their values at correspond-
ing points in the Z-plane can be found. Consider the complex
potential F(p) = @ + iy, where p = X + iY¥ in the p-plane.
The complex velocity in the p-plane is dF/do = w(o) .

Since o' = oe"iB +u , then o' is a function of p. By
the chain rule of differentiation, dF/dp = (dF/dp’')(dp'/dp) ,
where dF/dp' = w(p') , the complex velocity in the p'-plane.

Therefore

w(po') = w(p) . . (36)

°F
lo] +—

Note that the magnitude of dp'/do

1 , and thus the magni-
tude of the complex velocity in the o-plane equals the mag-

nitude of the complex velocity at the corresponding point in
the p'-plane. By similar arguments, knowing that the trans-
formation from the 0'-plane to the Z-plane is given by Eq.

(22), and using the chain rule once more, it can be shown

that
u, - 1Vz = w(Z) = w(p*') . 1 = w(g) . 1 . (37)
daz dz__
do’ do'
18
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In this case

éz .
dp’

5 (38)

Thus, given the magnitude of a velocity at a point in the
0o-plane, the magnitude of the velocity at the corresponding
point in the Z-plane can be found using Eq. (37).

All the tools needed to analyze the airfoil wake effects
are now known. The stream and potential functions in the
o-plane are known, from which velocities in the p-plane can
be found. The strength ["* of the wake vortices and their
images can be found by requiring the stagnation point in the
p-plane to remain fixed, thus satisfying the Kutta condition
on the airfc¢il in the Z-plane. The values of fj are the
same in both planes, and velocities in the p-plane can be

directly transformed to the Z-plane.

Pressure, Lift, Vorticity Distribution on the Airfoil

The unsteady Bernoulli equation is used to calculate

the pressure on the airfoil., It is given by (6:18)

)
P+ % oU +Og%=of(t) (39)

where P is pressure, p is the fluid density, U is the fluid
velocity, @ is the potential function, and f(t) is a func-
tion of time independent of position. The subscripts £ and
u will be used to denote the lower and upper surfaces of the
airfoil, respectively. Subtracting the pressure on the upper

surface from the pressure on the lower surface yields




P, - P = %oU-u% «odpe, -9, - (40)

The velocities in Eq. (40) are those tangent to the airfoil
surface. Along a streamline, U = 3¢/dS , where S is the
coordinate along the streamline. This implies that

@ =/,UdS . Therefore, i

S |
2 2 ! a

- - 1 - — -
P P 5 o(U, U,”) + o3 J e (U, = Uy) ds (41)
Integrating in Eqg. (41) from -« to s, » the point on the
streamline where P , U, and Uz are known or desired,
one finds that the integral is zero from -« to -%¢ ,

the airfoil leading edge. Equation (41) then becomes

S
=L 2 2 3_ra -
P, =P, =% 000" -0, + o5p J_L (U, - Uy as (42)

Introduce the following non-dimensional variables, identified

by the superscript =*:

t U
* 00 L ¢ *=§_
£ = Le » U = U, » S Le (43)
Equation (42) now becomes:
S*
- 2 *2 2 a L
Py = Py = B oU (0, = U, ) +oU2 Sy (U -U, ) ds .
At
(44)
Recall the definition of the coefficient of pressure

c_ = P=-P_/k CUOO2 . The difference between the coefficients

P
of pressure on the lower and upper airfoil surface is called

ACp . Using this definition, one obtains from Eq. (44)




*

S
u _ _ 3 a *_ * *
= - ac, = u -U, +2 g;; _] (U, -U, ) ds . (45)

The coefficient of 1ift per unit span, C, is de-
fined as C, = L/%onzc , Wwhere L is the lift per unit span

1
and ¢ is the chord. Since L is defined as f;zZAPdX , and

2
- e 1
AP = -ACp U _“ , then
¢, -t e & (46)
2 -}c c

where X is measured along the chord of the airfoil.
. * * . 1]
The non-dimensional vorticity, y , 1is defined as

* *
U - U, . The vorticity distribution can be easily cal-

u
R *
culated using this relation, since the value of y can be
obtained directly for any position along the airfoil chord
where the velocities on the upper and lower surfaces of the

airfoil are known.

Numerical Solution Process

The following procedure is used to numerically analyze
the wake vortex effects on the airfoil.
Step 1 - Select a non-dimensional time step at” , defined
as At = AtU_/(3C) . Let the airfoil begin its motion -
an initial angle of attack a, and velocity U_ . Assume
that after a time At  , at time i = 1 » the first shed
vortex is at a position U4t downstream of the airfoil
trailing edge in the direction of the velocity at the trail-

ing edge.

—-—— - e v —— ¢




Step 2 - The first vortex is thus at (£,7) in the p-plane,

: and Eq. (26) can be solved for I'". The circulation about

the airfoil is _r?.

Step 3 - Egs. (32), (33) and (34) can now be solved for the

velocity in the p-plane at any point (X,Y) on the cylinder.

These velocities can be transformed to the Z-plane by Eq. (37).

% Step 4 - Eq. (45) can be solved for ACp using a trapezoidal

X rule with variable AX for the integration along the upper and
lower surfaces of the airfoil, and a three-point backward
difference differentiation approximation for the derivative
with respect to time. (For steps 1 =1 and i = 2 , a two-
point linear difference method is used for the time deriva-
tive.) Eg. (46) can then be solved for C, » again using a
trapezoidal rule with variable AX for the integration. The
non-dimensional vorticity distribution can be calculated
directly as y* = Uu* - UE* .
Step 5 ~ The velocity of the shed vortex is calculated using
Egs. (28), (29) and (37). For the next time step, the vor-
tex has moved in the Z-plane by an amount USV*At*, where

t USV* is the non-dimensional velocity of the vortex just cal-

culated. Its position in the p-plane is then determined by

the inverse Joukowski transformation, given by

i o =

‘ z + (2% - 4ot2)% - u ei®
(47)

2

where only the plus sign of the + term gives a value of o in

the wake, and thus it is the value used for .

e
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Step 6 - For the next time step, 1 = 2 , the vortex shed
at time 1 =1 1is at the position computed in step 5. As-
sume the vortex shed at time i = 2 1is at the position
Ut downstream of the trailing edge. The angle of attack

. . * * ok R
at 1 = 2 is now ao + o At , where & 1is defined as

. 1
at = %&9 (48)

[~}

Step 7 - All terms in Eq. (27) are now known, and this equa-
*
tion can be solved for I} . The circulation about the air-
. . % *
foil is =( ;3 + 5 ).
1 2
Step 8 - Egs. (32), (33) and (34) can be solved for the ve-
locity on the cylinder in the p-plane, and then the veloci-
ties can be expressed in the Z-plane using Eq. (37).
Step 9 - The values of ACp and C, can be found using Egs.
(45) and (46) respectively, and the vorticity distribution
* . . *
Y 1s agaln just Uu - UZ .
Step 10 - The velocity at the shed vortices can be calculated
using Egs. (28), (29) and (37). The vortices are then moved
* *
in the Z-plane a distance Ugy ot - This new position of
each vortex in the Z-plane is the assumed location of each
vortex for the next time step. Each vortex position in the
0-plane can be determined by using the inverse Joukowski
transformation, Eq. (47).
Step 11 - For each time step i, the position of each vortex
is known from time step i - 1, and the vortex shed at time

i is assumed to be a distance U_At downstream of the trail-

ing edge in the direction of the velocity at the

23
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trailing edge. The angle of attack a at time step i is

a. = +a’at™ . Egs. (27), (35), (32), (33), (34), (37),

a.
1 1-1
*
(45) and (46) are then used to compute Iz , airfoil cir-
culation, velocities on the airfoil, ACp and Cz for time
step i. Egs. (28), (29) and (37) are used to find the posi-
tion of the shed vortices for time step i + 1.
Step 11 is repeated as often as desired to compute the
airfoil circulation, pressure difference distribution, coef-

ficient of 1ift, y distribution, and shed vortex positions

for any discrete time desired.

24




ITI. Results

cooiag ol

Numerical Method Verification

Before exploring the effect of a constant-& flow on the

production of lift on a Joukowski airfoil, the method devel-

T Sy
e

oped here was compared to the results of others. The first

i : test case was that of a flat plate impulsively started at an

infinitesimal angle of attack, a. This problem was first
explored by Wagner (11) in 1925, Wagner assumed in his analy-
sis that the wake vortex sheet remained along the xa-axis

at all times. For infinitesimal a, this is a good approxi-
mation. In Figs. 3 and 4 a numerical computation for a flat
plate in the Z-plane, impulsively started at a = 0.01
radians, at” = 0.02 , 1s compared with Wagner's analytic
results and Giesing's (12) numerical results. The horizon-
tal axis scale 1is UwAt/%c, which is the non-dimensional dis-
tance the airfoil has traveled since the motion started,
having a value of one for each half-chord distance of air-
foil translation. The vertical scales, fV[;S and CJZ/C)Z ,

SSs

are the ratios of ITor C, to the steady-state values that

z
would be obtained after a long period of time has passed,

respectively. Both the build-up of circulation, [’ (Fig. 3),

and the coefficient of 1lift, Cy (Fig. 4), closely approximate
Wagner's curves,

In 1977, Shung (6) developed a numerical method similar
to the one presented in this thesis, but limited the study

< to that for a flat plate at a constant a. Unlike Wagner,
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however, Shung's method allowed for vortex interactions in
the airfoil wake, as does the method in this thesis. The

ma jor difference ketween Shung's numerical technique and the
technique presented here lies in the method used to integrate
the Unsteady Bernoulli Equation, Eg. (44). Since Shung was
limited to a flat plate, he was able to integrate using the
Gauss-Chebyshev quadrature formula (6:21). 1In this thesis,

a trapezoidal rule with variable AX was used for that inte-
gration. This allowed easy application to Joukowski air-

/C

foils. Figure 5 depicts C for a flat plate at

£ £Ss

a2 = 0.1 radians at various values of At*. Comparing the
numerical solution with Wagner's curve, one sees that for
smaller values of At*, the numerical solution approaches
Wagner's analytic solution. Shung (6:45) noted the same
tendency with his numerical solution. Figure 6 depicts the
formation of the vorticity distribution y* on a flat plate
at o = 0.1 radians, at” = 0.02 . Note that immediately
after the airfoil begins its motion, the vorticity is nega-
tive near the trailing edge, but as time passes, the vortic-
ity distribution approaches that for the steady-state condi-
tion. Shung (6:44) showed the same effect in his study
using a = 0.1 radians, at” = 0.1 . In fact, his results
are identical to the results presented in Fig. 6. Similarly,
the build-up to the steady-state pressure difference distribu-
tion for a flat plate at a = 0.1 radians can be seen in
Fig. 7. Shung also demonstrated wake vortex sheet roll-up

behind an impulsively-started flat plate. The method of
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Fig. 7. Pressure Difference Distribution on
a Flat Plate, o=0.1 Radians




this thesis demonstrates the same phenomenon, as can be

seen in Fig. 8, which depicts wake vortex sheet roll-up for
the case of an impulsively-started flat plate at o = 0.1
radians, at” = 0.1 , the same conditions depicted by
Shung (6:43). Shung's depiction and Fig. 8 are almost iden-
tical.

The flat plate is, in fact, a special case of the more
general Joukowski airfoil, and other airfoils in this family
have been studied. Giesing (12) also developed a humerical
procedure to account for wake effects on the build-up of
1ift on an arbitrary airfoil. Giesing published a curve of
CZ/C for a 25.5% thick symmetric Joukowski airfoil impul-

ESS

sively started at a = 0.01 radians. Using the same airfoil
and motion condi;ions, a CJZ/C)Zss curve was developed using
the numerical method presented in this thesis. Figure 9
compares those two curves with Wagner's curve for a flat
plate. As can be seen in Fig. 4, Giesing's curve predicts
values below those predicted by the present method. Whereas

the present method over-predicted C, for a flat plate, and

£
Giesing's method under-predicted C, for a flat plate, it seems
likely that the ideal solution is bracketed by the present
method and Giesing's method. Both curves for the 25.5%

thick symmetric Joukowski airfoil show a greater delay in

1ift production than does the flat-plate-airfoil curve. This
agrees with an analysis done by Chow, who showed that air-

foils of increased thickness develop lift at a slower rate

than thinner airfoils (13:14).
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Giesing's numerical technique and the one presented in
this thesis differ in several ways. One major difference
between the two numerical techniques is in the way the motion
of the discrete vortices in the airfoil wake is predicted.

In Giesing's technique, after each time step, the non-dimen-
sional velocity induced at each trailing vortex position,

UO*, is calculated and then multiplied by at” to approximately
predict where that discrete vortex will be at the next time
step. The non-dimensional velocity induced at that pre-
dicted position, UC*, is then calculated. The average of

*

* R . * '
U, + U, is then multiplied by At to ccrrect the predic-

-

ted position of each discrete vortex for the next time step.
This method can be referred to as a Predictor-Corrector
method. The numerical technique presented in this thesis pre-
dicts the discrete vortex position in the same manner as
Giesing's predictor, but no corrector velocity is computed

or used. The predicted velocity is the only velocity used

to update vortex position.

To determine the effect a Predictor-Corrector method
has on the numerical solution, a program incorporating
Giesing's Predictor-Corrector method was developed. The re-
sults obtained using this program were compared with the re-
sults obtained using the method presented in this thesis
for the same airfoil and conditions of motion. Figure 10
shows a comparison of wake shape as computed by the two
methods for an impulsively started flat plate airfoil at

a = 10° . Only in the area of starting vortex roll-up
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does the difference in vortex position become apparent.

Further, the values of C£/C computed using the two methods

2
ss

are nearly identical, as seen in Table I. A comparison be-
tween the two methods was also made for the case of the flat
plate initially at a = 0° subjected to an a* = 0.035 .
One can see in Table II that the values of C}Z/'Czss computed
using the two methods are once again nearly identical. It
was thus determined that the added computation time incurred
by using the Predictor-Corrector method was not needed, and
thus not included in other studies in this thesis.

As a final check of the method of this thesis, the de-
velopment of y* and ACp on an impulsively-started symmetric
airfoil with thickness was determined. Figures 11 and 12
show that for a 25.5% thick symmetric Joukowski airfoil im-
pulsively started at a = 0.1 radians, y* and ACp build to
their steady-state values in much the same manner as for a
flat plate, Figs. 6 and 7, when using the numerical method
of this thesis.

It has been shown that for the test cases above, the
numerical method presented here is in good agreement with
the work of others (63;11;12;13). There are two major advan-
tages in using this numerical method over other methods.
First, unlike Shung, one is not limited to a flat plate.
Second, comparing to Giesing, the simpler method of vortex
motion prediction greatly decreases computer run time while
having a negligible effect on the prediction of 1lift build-

up on an airfoil.
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TABLE I

Comparison of C, Calculated by Simple-Predictor
Method to C, C3lculated by Predictor Corgector
Method.” Flat Plate Airfoil, a = 10

Predictor-Corrector

t CZ CZ

1 .70677 . 70779
2 .75962 .75974
3 .79825 79827
4 .83271 .83272
5 .85997 . 86000
6 .88199 .88203
7 . 90008 ,90010
8 .91515 .91518
9 .92788 .92789
1 .93873 .93875

TABLE II

Comparison of C, Calculated by Simple-Predictor
Method to Cz Cdalculated by Predic;or Corrector

Flat Plate Airfoil, a* = 0.035
Predictor-Corrector

t Cl C2
c. .13710 .13968

. .16284 .16543
0. .18888 .19152
0. .21544 .21814
1. .23061 .23062
1. .27020 .27301

. .29837 .30122
1. .32702 .32991
1. .35612 . 35906
2. .38564 .38863
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Fig. 11. Dimensionless Vorticity Distribution, 25.5% Thick
Symmetric Joukowski Airfoil, a=0.1 Radians
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Fig. 12. Pressure Difference Distribution, 25.5% Thick
Symmetric Joukowski Airfoil, «a=0.1 Radians
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Application to Constant-d Flow

In the last section it was shown that the present method
compares favorably to the results of others for the con-
stant-a, impulsively-started airfoil. 1In this section the
results of applying the method to the previouslv-unstudied
problem of constant-a flow is presented. The presentation
of these results is broken into four parts in order to more
systematically explore and understand the interplay of pos-
sible effects. These four parts deal with the effects and
selection of starting conditions, the general effect of a
on the build-up of Cpo the effect of thickness, and the ef-
fect of camber, respectively.

Selection of Standard Starting Conditions. As was

shown in the previous section, it takes some finite time for
an airfoil at angle of attack, a, suddenly placed into motion
to build to a steady-state value of 1ift. It is not sur-
prising, then, to find that the onset of constant o demon-
strates a different result depending on the time delay from
onset of impulsive motion to onset of constant a. The dif-
ferences, however, were found to be predictable, and thus
separable, as the following will show.

To determine the effect the initial o and a start time
have on the C, vs. a curve for an airfoil at constant a, a
15% thick symmetric Joukowski airfoil with a« = 0.01 |,
at” = 0.02 was started at various initial a's and allowed

*
to build lift at that a for varying lengths of time t . For

° , , *
initial a 0 , one can see from Fig. 13 that the time t
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Fig. 13. Effect of Start Time to Begin a
15% Joukowski Airfoil, a_=07 a™=0.01
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at which the @ begins has no effect on the CE vs. Q curve.
For initial «a = 5° , the C, vs. o curves were dependent
upon the value of t* at which the d was begun. However,

as can be seen in Fig. 14, the slope of the C, Vvs. a

curve for & = 0.01 does not depend upon the value of t*

at which the a was begun. Choosing At* = 0.1 , the 15%
thick symmetric Joukowski airfoil was allowed to build 1lift
to within 90% of steady-state C, at various initial a's
before starting an ¥ = 0.01 . As seen in Fig. 15, the

. ' . [o]
slope of the C, vs. @ curves for 1nitial a's of 2°, 4 and

£
6° are all approximately equal. The dashed lines on Fig. 15

depict the C, vs. a curves that would be obtained by starting

£
the constant -0 motion at full steady-state lift values
rather than the 90% steady-state 1lift values depicted by
the solid lines. Note that the initial value of c, obtained
for each of the starting angles of attack of 2°, 4° and 6°
is the same amount above the steady-state CZ curve, and is
therefore independent of initial angle of attack. This ini-
tial value of C, will be called the 'jump’ condition. Thus,
by the foregoing analysis, C, vs. a curve slope effects due
to the vortex wake will be assumed independent of initial a
and t*.

The choice of At* also shows some effect on the Cz Vs,
a curve and was investigated. To do this, a 15% thick sym-
metric Joukowski airfoil at o = 0.01 was run at At”
values of 0.2, 0.1, 0.02 and 0.004. Figure 16 depicts a

*
comparison of Cz vs. @ curves for these four values of At .
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Fig. 14. Effect of Start Time to Begin a
15% Joukowski Airfoil, a =5°, a*=0.01
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Fig. 16. Effect of At on CR vs. a Curve Slope
o
15% Joukowski Airfoil, a_=0°, & =0.01
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Note that the slope of the curves, Cz , reduces as At*
a

is reduced, but the reduction is negligible below At* = 0.02.

As a result of the above analysis concerning initial «
and t* at which a is begun, all constant-a computer runs
assumed an initial « = 0° and t= = 0 for a start-up. A
standard At* = 0.02 was chosen as a reasonable value based
upon the information presented in Fig. 5 for impulsive-start
motion and Fig.16 for constant- motion. While a at” less
than 0.02 would produce more accurate results, the increased
computer time required at the smaller I values was judged
excessive for the slight increase in accuracy that could be
obtained.

General Effect of i on ¢, . To determine the effect

a
an a4 has on the production of 1lift on an airfoil, a 15%

thick symmetric Joukowski airfoil was chosen as a represen-
tative airfoil shape. Using the selected values of initial
a = 0° and at™ = 0.02 , the airfoil was subjected to

various values of a* ranging from 0.005 to 0.035. Figure 17

depicts the C, vs. a curves obtained for small angles of

2
attack. Comparing with the C, vs. a curve for the steady-

. % . .
state case, one can see that as the value of a 1s i1ncreased,

the slope of the C, vs. a curve, Cz , is reduced. As the

£
a
motion progresses to larger values of a, the slopes of the
curves increase slightly (see Fig. 18).

Effect of Airfoil Thickness on i Effect. The general

effect @ has on the production of lift on an airfoil has been

shown. This effect was shown for a specific airfoil only.
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Fig. 17. Effects of a on CR, vVS. o
15% Joukowski Airfoil
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To determine how airfoil thickness may influence this effect,
several symmetric Joukowski airfoils of varying thickness
were subjected to the same o conditions. Once again, values
of At* = 0,02 , 1initial a = O° were used. Symmetric
Joukowski airfoils of 7%, 15% and 25.5% thickness, as well

as a flat plate airfoil, were subjected to a” = 0.02. A

C, vS. & curve can be plotted for each of these airfoils.

£

Plotting the average slopes of these curves, C versus air-

E } ]
a
foil thickness ratio t/c (where t is the maximum airfoil

thickness), one can determine the effect of airfoil thickness
on the C, vs. a curve slope reduction due to a. Figure 19
depicts C

*

;. VS t/c for a = 0.02 . One can see that a
a

has a greater effect on lift curve slope reduction for thin
airfoils than for thick airfoils. This effect is consistent
with results previously presented. Note that in Fig. 9,
where a = 0 , for any given value of U At/%c, the slope

of the CZ/C curve is slightly greater for the 25.5% thick

ZSS

symmetric Joukowski airfoil than for the flat plate. Al-
though the value of CZ/CZ is less for the airfoil with
thickness, the rate at whiih C}Z/CjzSS is increasing is greater.
This implies that, under similar & conditions, Cp will in-
crease at a faster rate for a thick airfoil than for a thin
airfoil. Figure 19 confirms that conclusion.

Effect of Airfoil Camber on i Effect. In much the same

way as airfoil thickness effects are calculated, airfoil
camber effects can also be explored. Joukowski airfoils of

15% thickness at various camber ratios were subjected to an
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d* = 0.02 . As before, initial a was Oo, At* = 0.02 .

Plotting average C, versus camber ratio (maximum camber/
a

chord), camber effects can be shown. Figure 20 depicts C/2

a

vs, camber ratio for 15% thick Joukowski airfoils of wvarious
camber ratios. One can see that & has a greater effect on
1ift curve slope reduction for less cambered airfoils than

for highly cambered airfoils.
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IV. Conclusion

It has been shown that as an airfoil pitches at a con-

stant a, the airfoil trailing vortex wake causes the slope

LT S e L

of the Cz vs. @ curve to be less than the slope of the Cz vs. a

curve for steady-state a. The greater the value of a for a

given airfoil, the greater the slope reduction of the C, vs. a

curve caused by the vortex wake. This effect becomes less
pronounced as airfoil thickness increases. Similarly, the
effect is also less pronounced as airfoil camber increases.

Using the results from the previous section, the follow-
ing predictions of constant-a effect may be made.

For a flat plate, the reduction in C, may be approx-
a

imately calculated by

&*y = 1 + 2.2 (49)

a (G* + 0.00008)9°13

Cy

(See Fig. 21 for a comparison of this prediction with numer-
ical data.) This prediction may be approximately corrected

for thickness by adding a correction term derived from Fig.

19. Thus

c, (@ t/e) = (%77 + ¢, @" (50)

a a

where t/c is the airfoil thickness to chord ratio and

Ci (d*) is the C, VS. & curve slope for a flat plate pre-
a

dicted by Eq. (49). A further approximate correction may
be made for camber by adding another correction term, de-

rived from Fig. 20. Thus
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c. (0¥, t/c,me/c) =

2 o30(mc/c-0.09) c, (a*,t/c) (51)

a a

. ) .o * ,
where mc/c is the airfoil camber ratio and C)z (¢ ,t/c) is
a

the C, vs. a curve slope for an airfoil with thickness pre-

dicted by Eq. (50).
The amount that C, increases immediately after an air-
foil begins constant-a motion is referred to as the 'jump’

condition. This value for a flat plate can be predicted by

ACE(&*) = 3.470% (52)

. %
where AC£(a ) is the 'jump' condition change. Thickness

. %
effects on ACZ(a ) can be approximated by the equation

Acﬁ(d*,t/c) = [1 + gi—z-lgl]Acz(d*) (53)

* %
where t/c is the airfoil thickness ratio and ACZ(a ) is the
‘jump' condition for a flat plate defined by Eq. (52). A

final approximate correction to the 'jump*® condition can be

made by

ac,(a” t/c, me/e) = ac,(d’, t/e) - 1.3(ES)  (54)

e %
where mc/c is the airfoil camber ratio and ACz(a , t/c) 1is

as defined by Egq. (53).
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V. Recommendation

The assumption that the trailing vortex wake of an air-

3 foil undergoing a constant rate of change of angle of attack )
has a negligible effect on the production of 1ift on the air-

foil is not, in general, valid. Although the effect is not

large (see Eg. (49)), it should be accounted for in the in~-

vestigation of dynamic stall of airfoils. The methods de-
veloped by Docken (4) and Lawrence (5) could be modified to

include the techniques presented in this thesis to more ac-

—_—

curately predict the pbtential flow field about a pitching
airfoil at any instant in time. Incorporating the calcula-
\ tion of wake vortex effects outlined in this thesis into
Lawrence's work would significantly contribute to the solu-
tion of the dynamic stall problem for an airfoil undergoing

a constant rate of change of angle of attack.
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AFPENDIX! Computer Program

This program computes circulation, pressure difference
distribution, vorticity distribution, coefficient of
lift, and trdiling vortex wake shape for a 2-D Joukowski
airfoil in an incompressible, inviscid free stream at
angle of attnck., The angle of attack may be a constant
value, or it may be changed at a constant rate for the
number of time steps desired. All output values are
computed assuming 2 trailing vortex wake made up of dis-
crete point vortices of constant strength, each of which
influences the motion of all the other vortices and the
flow about the airfoil. For the constant rate-of-change
a2f angle-of-attack case, coefficient of lift can be
found us a function of the rate of change of angle of
attack, Variables in the program are defined as follows:

alfa - angle of attack

alfad - initial angle of attack

alfdot - time rate of change of angle of attack

betn - the beta parameter of a Joukowski airfoil

calfa - COSINE of alfn

chard - airfoil chord length

cl - coefficient of 1lift

clss - steady~state coefficient of lift

countti - an integer counter used to determine which
tima steps will record output in certain
fi es

ctheta - CDSINE of thetan

dad fo - incremental change of alfa

erlco - array of incremental values of coefficient
of pressure along the airfoil chord

deld - distance on the x—axis in the cylinder

plane behind the cylinder where the first
shed vortex is placed

delgam - array of values of strengths of gamma for
each individual vortex pair

dgams - a sum of vortex strengths

dsl - incremental distance along airfoil lower
surface

dsu - incremental distance along airfoil upper
surface ‘

dt = incremental unit of time

Lz - complex number; derivative of the
Joukouwski transformation

czorc - magnitude of IZD

eta - w-value of trailing vortex pesition
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eta
gammQ
il'j'KPI
intgrl

lastdt
mag2

malfa
maxdt

maxt
MU

333

RHO
RHOF
snlfa
ssqgam
stheta
sumsgr
SuUmMy y sSUMYV

t
thetn

totustoty

eV

UdyVva

usurfyvsurf

uthetn
vordis
veqare

HeVY
H“vort.yvort

IR

et
aty?

#=-vaiue of trailing vortex image position
airfoil circulation

integer values used in iterntions

value of the integration of velocity
differences between upper and lower

airfoil surfaces

last time increment at which alfa changes
distance from a vortex to the center of the
cylinder in the cylinder-centered plane
maximum value of alfa

first time increment at which alfa changes
from alfal

last time step

complex number; distance between the origin
in the displaced-cylinder plane and the
center of the cylinder

the constant 3.14159265

complex number; a position in the cylinder-
centered plane

complex number; a position in the displaced-
cylinder plane -

.SINE of alfa

steady state value of circulation

SINE of theta

the square of the distance of a trailing
varte:x from the origin in the cylinder plane
sum of the velocities on the cylinder in
the # and y directions, respectively, in-
duced by trailing vortices and their images
integer counter for number of time steps
angle measured counterclocKkwise from the
#=axis in the cylinder plane

sum of velocities at a vortex location in
the » and y directions, respectively, in-
duced by trailing vortices and their images
velocities at a vortex locotion in the

2 and y directions, respectively

velocities at o vortex location in the

x and y directions, respectively, in the
airfoil plane

velocities on the cylinder in the x and vy
directions, respectively

velocity tangent to the cylinder

vorticity

velocity on upper surface of airfoil
squared minus velocity on lower surface

of airfoil squared

position on airfoil

position of a trailing vortex

complex number; a position on the airfeil

y wtlue of trailing vortex position

v vulee of trailing vortex image peosition

59




=t - distance along x-axis from origin to
cylinder in disgploced-cylinder plaone

4 - complex number;i a position in the waKe in
the anirfoil plane

FILES?

INFUT
QUTFUT

H

unformatted list of input variables

list of Cl vs. Cl steady-state for angle of
attack and time step

FRESD pressure distribution at specified time

VORT vorticity distribution at specified time

WAKE - position of trailing vortices at specified time

OO0 000OO00Oo0nn

DIMENSION zetn(201,201),eta(201,201),eta2¢201,201),
+zetnl(201,201),u(201,201),v(201,201),delgam(201),
+:x(=1801180),y(-1802180) sutheta(-180:180),un{(201,201),
+vn(201,201) ,:vort(201,201),yvort(201,201),
Tvordis(0i176),delcp(021786),intgrl(02201,0:180) z

INTEGER iyJjemaxtyt,kylymaxdtycountt

REAL delgamydeld,pisctheta,sthetarssgam,dsu,dsl,delcp,
tusurf,vsurf,thetayutheta,gamma,malfn,alfa,sumu,sumv,
+dalfnaydgomsycalfaysalfa,sumsqryalfdotydt,dzdroyua,va,
thetayzt,nlfad,clsssClyxsysvsqare,xvort,yvort,lastdt,
tetalyzetar,zetalyusvychordyintgrlytotu,totv,vordis, ]
tmaglyeta

COMPLEX MU,RHOP,Z,Z2Z,RHO,DZLI

OFEN (13,FILE=YINFUT’)

REWIND 15 _ !

FEN (1&8,FILE=’CUTPUT")

REWIND 16

OFEN (17.FILE="FRESD’)

RZWIND L7

OFEN (18,FILE="WAKE’)

REWIND 13

OFEN (19,FILE="VORT’)

REWIND 19

pi=3.14159265

Initialize delta alpha, delta d, max t. Compute steady
state gamma,

o000

10 CONTINUE
REALI( 15,*,ENU=400) beto,alf‘noydclf‘o,deld smaxdt,maxt,
+lastdt,zt,alfdot,dt
malfa=dalfax{lastdt-maxdt)+alfad
seguam=4X0iXSIN{(malfaXxpi/180)
P WRITE(16,70) zt,beta,dalfa,deldyssgamyalfdect,dt
4 WRITE(17,72) =t,beta,dalfordeld.ssgamsnlfdot,ct
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& WRITE(18,72) zt,beta,dalfae,deldsscgam,alfdot,dt
3 1 WRITE(L9,72) =zt,betaydalfa,deld,ssgamsnlfdot,dt
! beta=betaXpi/ 180

dalfa=dalfaXpi/180

3 alfa0=alfa0Xpi/180

. MU=CMFLX(2t-C0S(beta) ySIN(betn))

c Calculate coordinates of points on the airfoil. (x,y)

theta=iXpi/ 180 |
RHOP=CMFLX(CDS(theta~beta),SIN(theta-beta))+MU T
Z=RHOFP+ztXXx2/RHOP i
; #{1)=REAL(Z) i
! y(1)=AIMAG(Z)}
15 CONTINUE
chord=x(0)-x(-180+2%betn)
l 0 12 i=1,maxt
deigam{i)=0,0
12 CONTINUE
o 13 i=176,0,-4
intgrl(0,i>=0.
13 CONTINUE i

- ‘ ' 00 15 i=-180,180

Legin stepping in time, inserting a new vortex pair at
each time step.

OO0

countt=0
0o 300 t=1,maxt
countt=countt+l
intgrl(t,180)=0,
dgams=0.0
{ cl=0.
IF (t.GE.masxdtiand.t.LE.ilastdt) THEN
ailfa=it-maxdt)Xdalfat+al fFald
ELSE IF(t.LTemoxdt) THEN
2lfa=alfal
ENDI IF
calfa=C0S{(nlfa)
salfa=SIN{alfa)

- —— -

Insert new vortex pair, and update position of all other
vortex images.

zeta(t,1)=deld+l.

eta(t,1)=0.

uvort(tyll)=chordkdtXCOS(2Xbeta)/2+:(0)

yvort(t,l)=chordXkdtXSIN(2%beta)/(-2)

o 20 .j=1,t
setal{tyji=metalt, )/ (z=etalt, ) kkIteta(t,. i) XX2)

P etal{ty)=etadtyjr/izetalt, i YEX2+etalt. ) KXD)

E . CONTINUE

m—— P i
aoaon

[ §%]
<3
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Calculate strength of newly shed vortex at time t.
This is done by satisfying the Kutta Condition at the
trailing edge while Keeping total circulation in the
field equal to zero.

OO

delgam(l)=4%piXsalfaX(zeta(t,1)kk2+eta(t,1)kk2+1-2%

+ zeta(tyl))/(zeta(t,y1)%X%X2+eta(t,1)%X%2~-1)

IF(+.GE.2) THEN

00 21 i=t,2,-1
dgams=dgams+delgam(i)X{(zeta(t, i) XX2+eta(t,i)k%k2~-1)

1 + /(zeta(t,i)kX2+teta(t, i) X¥2+1-2%zeta(t,id))x
- + delgam(1)/{4%piXsalfa)
3 21 CONWTINUE
ENDI' IF
! delgam(l)=delgam(l)-dgams

Compute velocities and circulation arocund the cylinder i
at time t.

aaonn

g 200 i=-178,178,2
theto=i%pi/180
cthetn=C0S{(theta)
stheta=SIN(theta)
4 sumu=0.0
sumv=0,0
00 30 k=t,1,-1 :
sumu=delgam{K)/2/pi*¥((etal{t,K)~stheta)/({ctheta-
zeta(t . KI))XX2+(stheta—-eta(t,K))XX2)+(stheta-
etal(t,K))/ ((ctheta-zeta2(t,Kk))XX2+(stheta~-
eta2 (L, KIIXKX2))+sumu
surnv=delgam{kK)/2/pix{{ctheta~zeta(t,K))/ ((ctheta-
zeta(t,yK))¥X2+(stheta-eta(t,K)IX%k2)-((ctheta~
- : seta2(t,k))/{(ctheta~z2tal(t,K))¥X2+(stheta-
. + 2ta(t,KIIXX2)) ) +sumy
30 CONTINUE
l usurf=2%(calfaxsthetaXxX2-ctheta¥sthetaXsalfal)+sumu
|
{

++ +

+ o

vsurf=2x(salfa¥cthetaXkx2-cthetaXsthetaXcalfa)+sumv

utheta(i)=SART(usurfiXX2+vsurfikx2)

IF(i+.NE.QO) THEN
RHOFP=CMFLX(COS(theta—-beta),SIN(theta~beta))+MU
IZD=1-ztX%X2/RHOPXX2
dzdro=ARS(DZD)
utheta(i)=utheta(i)/dzdro

END IF

IF((theta-(alfa+2%beta) ) .LT.~1%pi) THEN
utheta(il)=-ixutheta(i)

ENDt IF

200 CONTINLUE

gamma=0,

no 210 i=1,t

gamma=ganma+delogam{i)

B - P S
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3y 0

CONTINUE

Compute velocity at each discrete vortex location due
to all other vortices and free stream.

DO S0 1=1,t
totu=0.0
totv=0.0
IO 40 K=1,t
IF(K.EQ.1) THEN
totu=delgam(K)/2/pi¥((eta(t,K)-eta2(t,K))/((
seta(t,kK)-zeta2(t,K))kXk2+(eta(t,K)~eta2(t,K))
%¥X2))+totu
totv=delgam(k)/2/pik((zeta2(t,K)-zetalt, k) )/ ((
seta(t,K)-zeta2(t,K) ) XX2+(etn(t,K)-eta2(t,K))
XX2))+toty
ELSE
totu=delgam(k)/2/pix{{(eta(t,l)-etaZ(t,K))/{(
zeta(t,1)-zeta2(t,K) ) Xk2+(eta(t,l)-eta2(t,K))
¥Xk2)+(etalt,K)-eta(t, 1))/ ({zeta(t,l)-zetal(t,K))
¥k2+(eta(tyl)—eta(t, K))X%X2))+totu
totv=delgam(Kk)/2/pik{{(zeta2(t,K)-z=etal(t,1))/((
zeta(t,l)~zeta2(t,K))%XX2+(eta(t,1)-etal(t,K))
*¥%k2)+(zetal(tyl)-zeta(t,K)V/({(zeta(tyl)~zeta(t,K)
)X%2+(etal(t,yl)-eta(t,k))%x2))+toty
END IF
CONTINUE
sumsqar=zeta(t,1)XX2+eta(t,1)%X%X2
ul{t,ll)=calfaXx(it+{etn(t,l)xkX2-zeta(t,1)%X%X2) /sumsqr
xk2)~2%kreta(t,l)%eta(tyl)Xksalfa/sumsqrikx2+totu
vityll)=salfaoX(l+(zeta(t,l)XX2-eta(t,1)XX2)/sumsqr
+ X¥2)-2%kzeta(tyl)keta(t,l)Xcalfa/sumsqrikx2+toty
S0 CONTINUE

Calculonte pressure distribution and unsteady aerodynam:c
force on the airfoil,

0o 32 i=176,0,-4
theta =i%Xpi/180
ctheta=C0S(theta)
stheta=SIN(theta)
dsu=SORT((x(i)-x(i+4))IKK2+(y(i)-y{(i+4))%X%X2)%2/chord
dsl=SART((X(=-1XKi) = (=1%X(i+4)))XX2+(y(-1Xi)~y(-1X%
(i+4)))Ixk2)%X2/chord
intgrl(tyid=utheta(i+2)Xkdsu-utheta(-1%X(i+2))%dsl
+intgrl(t,i+4)
veqare=uthetn(i)XXx2-utheta(~1%i) Xxx2
IF(t.EQ.1) THEN
delcpl(i)=vegare+2Xintgrl(i,i)/dt
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ELSE IF(t.EQR.2) THEN
deleplid=vsqaret+2k(intgrl(2,yi)—intgrl(l,ij)/dt
ELSE IF(t.EQ.maxdt) THEN
delcp(i)=vsquare+2Xkintgrli(maxdt,i)/dt
ELSE IF{t.EQ.maxdt+1) THEN
delcp(i)=vsqare+2Xx{intgrl(maxdt+i,i)-
intgrl(maxdt,i))/dt

ELSE
delcp(i)=vsqaret+(intgrl(t-2,i)+3%intgrl(t,i)-4%
+ intgrl(t-1,i))/dt
END IF
IF(1.,EQ.176) THEN
cl=cl+delcp(176)%(x(174)-:(180))/chord
ELSE IF(i.EQ.0) THEN
cl=cl+delcp(O)¥{x(0)=-(2))/chord
ELSE
cl=clt+delcp i) ¥ {(x(i-2)~x(i+2))/chord
END IF
32 CONTINUE

Cnlculote Cl.

ann

clss=8%Xpi/chordXsalsa
IF(t.EQ.3) THEN
WRITE(17,’(*Delta Cp,y, "»I3," Vorticesy t=",F7.4)")

+ t,txdt
WRITE(19,’("Vorticity Distribution *»13,
+ * Vortices, t="yF7.4)’) t,txkdt

g 34 i=176,01"'4
vordis(i)=sutheta(i)-utheta(-1%i)
WRITE(19,90) (x(i)+chord-2%xzt)%X2/chordyvordis(i)
WRITE(17,90) (x(i)+chord-2%=t)%X2/chord,-1xdelcp(i)
34 CONTINUE
END IF
IF{countt/1C.67T.0) THEN
WRITE(17,’("Delta Cpy"*"»I3," Vortices, t=",F7.4))

+ tytXdt )
WRITE(19,’("Vorticity Distribution *yI13,
+ * Vorticesy, t=",F7.4)’) t,txdt

D0 39 i=176,90,-4
vordis(i)=utheta(i)-utheta(-1%i)
WRITE{19,90) (x(i)+chord-2%z=t)X2/chord,vordis(i)
WRITE(17,90) (x(i)+chord-2%z=t)X2/chord,-1xdelcp(i)

35 CONTINUE
countt=0
END IF
WRITE(16,80) ty(alfa-betad)XiB0/pi,ixvort(t,t)-x(0))
+ *%2/chord,yvort(t,t)%2/chordy,gammasclss,cl

Move 2ach vortex to ite new location in the flow field.

a0




X G 80 K=t,1,-1
mae2=80RT(zela (bt KIXX2+eta (L, 10 XX2)
Y RHOP=mag2¥CMPLX{CAS(ACOS(zeta(t,K)/mag2)~betn),
| + SIN(ASIN(eta{t,K)/mag2)-betna))+MU
3 DZ0=1-=tXX2/RHOPXX2 !
dz2dro=ARS(DZI)
ualt,K)=u(t,K)/d=dro
val{tyK)=v(t,K)/d=dro
svort(t+l,K+ld=xvort(t,K)+ua(t,K)Xchordxdt/2
yvort(t+l,K+1)=yvort(t.K)+val(t,K)Xchordxdt/2
ZZ=CMPLX(xvort(t+l,K+1),yvort(t+i,K+1))
RHO=({(ZZ+ SQRT(ZZXX2=-4X=tX%2))/2-MU)x%x
+ CMPLX(COS(betn),SIN(betn))
zeta(t+1,K+1)=REAL (RHD)
eta(t+1,Kk+1)=AIMAG(RHO)
delgam(K+1l)=delgam(k)
60 CONTINUE
IF(t.,EQ.S) THEN
GO TO &1
! ELSE IF (t.EQ.maxdt) THEN
GO TO 61
ELSE IF(t.EQ.lastdt) THEN
GO TO &1
ELSE IF(t.EQ.maxt) THEN
GO TO 61
| ELSE
60 TO 300
Ewnl IF
61 WRITE(18,’("WaKke Vortex Locations from Trailing*, 1
; +* Edge (1/2 ¢ = 1)*/" Xvort',SX,"Yvart®)’)
D0 465 i=1,t _
WRITE(IR,?3) (xvort(t,i)-x(0))%X2/chord,
+ yvort(t,i)%2/chord
%] CONTINUE
T00 CONTINUE i
70 FORMAT//7/y'AIRFOGIL DATA 2/,//,'Zeta trailing edge ¢°, } ]
+F7 vy’ Beta (degrees):’,Fé6.3,//,’DYNAMIC PARAMETERS', H
{
L

P

WA N h e s W i

+//y’Telta Alpha (degrees):’ ,Fé6.3,"’ [elta Vortex *,
+'Distance!’yFé6+4,y/,'Steady State Gammal 4,F7.5,
+‘ Alpha Ilot!’FB.S,° Delta Time:’' ,FS5.3://y'Time’ 10X,
+/Starting Vortex’,17X,’Cl’,/,"Step  Alpha X Yy \
+ Y Gamma Steady State Cl’,/) .
72 FORMAT(///,’AIRFOIL DATA $’y//,y’Zeta trailing edge :’, §
+F7.4," Beta (degrees)!’,Fb6.3,//,'UYNAMIC PARAMETERS’, 1
! +//7,’Delta Alpha (degrees):’ ,Fb.3,’ Delta Vortex /, '
+’Distancetl’yFbé.4,/,'Steady State Gamma! ' ,F7.5,
+’ Alpha Dot!/,F8.5,’ Delta Time!’,Fi5.3,/)
B0 FORMAT(IZ 33X Fbi392XsF744,FB.a,1X FB.S,5X,FB.5,2X,FE.5)
90 FORMAT(F3.3,4X,F10.%)
2% FORMAT(FR.4,F11.4)
400 ERD
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