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3 \Abstract

Optimal linear smoothing theory is applied to the data

from the Speed of Sound record attempt of a three-wheeled

rocket car on 17 December 1979. A forward-backward estima-

tion method is used which employs a seven state forward-

running extended Kalman filter and a Meditch-form backward

recursive "fixed-interval" smoothing algorithm. Data for

this analysis is supplied by a longitudinal accelerometer

mounted on the vehicle and tracking radar measurements of

range, azimuth, and elevation. States of interest include

two components of vehicle position and velocity, accelero-

meter time-correlated error, and radar range and azimuth bias

*errors.

Two iterations of the forward-backward smoothing algo-

rithm provide excellent covergence of state estimates and

error variance. Based on this analysis a peak speed esti-

mate of 1082.028 ft/sec or 1.008 Mach is obtained at 16.85

seconds from the start of the high speed run. After two

iterations of the smoother the standard deviation of the peak

speed estimate is reduced to 1.055 ft/sec. We conclude with

a confidence level of nearly one, based on the assumptions

and modeling techniques employed in this analysis, that the

rocket car did, in fact, exceed the reference speed of sound

on 17 December 1979.

- x
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STOCHASTIC ESTIMATION APPLIED TO THE

LAND SPEED OF SOUND RECORD ATTEMPT

BY A ROCKET CAR

I. Introduction

Filtering Theory

Any engineering problem inherently involves the use of

measured or calculated information. The engineer bases his

decisions on a variety of issues by using mathematical models

of the "real world" to predict results obtained by experimen-

tation. The mathematical models seldom describe every factor

r impacting a particular issue, but are simplifications in

order to describe the most important characteristics of the

problem and maintain tractability. Likewise, no measurement

device can be considered "perfect", no matter what accuracy

is claimed. How, then, does the engineer meet the ever-in-I

creasing demand for accuracy when he must rely on imperfect

models and measurement devices?

One method for obtaining better answers is to model the

important characteristics of a system and include the effects

of model simplifications and measurement imperfections. This

is the basic idea behind filtering theory, developed by sev-

eral individuals, most notably Kalman. Filtering theory is

concerned with estimating the "state" or status of a system

S of interest at any time, ti by incorporating the time



history of measurements up through time t. Another
1

method of estimation, called the predictor algorithm, com-

putes a state estimate at any time, ti based on the time

history of measurements received before time, ti . The

"Kalman filter" algorithm combines both prediction of the

state estimate before time ti and correction of this pre-

dicted value based on the measurements received up through

time t. . With the advent of high-speed digital computers,

the "Kalman filter" has proven to be Very suitable in a numi-

ber of applications most frequently in guidance and control

problems. In this implementation, state estimates are gener-

ated in an "on-line" manner utilizing the measurement time

history up through the time at which an estimate of state

values is required. When the entire time history of meas-

urements over a particular time interval of interest has been

recorded, "off-line" estimation methods can be implemented.

In this case, a "smoother" algorithm can be employed to gen-

erate state estimates based on all of the measurements, before

and after any time t. . Since the smoother algorithm has

more information available for state estimation, it is the

preferred method for post-run data analysis.

The Kalman filter algorithm requires a linear model to

describe the dynamics of a particular system and a linear

relationship between available measurements and the states

of interest. More often than not, the system model or obser-

vation relationships are non-linear. This requires lineariza-

tion about some reference values for the states as in the

2



"linearized Kalman filter", or re-linearization about the

current state estimate provided by the "extended Kalman

filter". The extended Kalman filter is most appropriate

when the nominal (reference) state trajectory is unknown or

when deviations from the nominal trajectory may become severe.

Application of Theory

The purpose of this report is to apply estimation theory

in post-run data analysis of the "Budweiser Rocket Car" speed

of sound attempt. The method used is to develop an extended

Kalman filter to describe the vehicle dynamics and available

measurements of vehicle position provided by a tracking radar.

The events leading up to this unique event have been well

documented in many publications, most notably Road and Track

Magazine, April 1980. It is not my purpose here to provide a

historical account of the "Budweiser Rocket Car" or to analyze

Air Force involvement in this project. However, some brief

background information may be helpful.

Description of Rocket Car Test

In the summer of 1979 a company known as Speed of Sound,

Inc. (SOS) requested and received permission from the Air

Force to use Rodgers Dry Lake at Edwards Air Force Base.

Their purpose was to drive a rocket-powered land vehicle at

the reference speed of sound. If successful, their rocket

car would be the first to attain such a speed on land. The

"Budweiser Rocket Car" was not designed for high sustained

speeds due to very limited fuel storage capability and short

3



duration thrust augmentation (Sidewinder motor). The SOS

plan was to reach peak speed very quickly and then slow to

a stop. For these reasons, an official "land speed record"

attempt would not be made. The Air Force Flight Test Center

(AFFTC) provided a safe test area for conducting high speed

runs. The speed runs were not allowed to impact in any way

with normal operations at the base, and the government was

reimbursed. At the request of SOS, the AFFTC provided com-

puter analysis of the final high speed run.

The test track used for all the high speed runs at

Edwards AFB began at the northwest corner of Rodgers Dry Lake

(Fig. 1.1). The starting position varied but was located ap-

proximately 200 feet from the lake shore. The course followed

a straight line on a heading of nearly true south from remote

camera site A8 to the intersection of lakebed runways 17/35

and 15/33. From here it made a 12 degree turn to the right

and followed runway 17 to the end. This turn began at about

the seven mile point and had a radius of five miles. Use of

the curve was required to take full advantage of the length

of the lake and would only be used if the normal deceleration

systems on the vehicle (parachute and brakes) failed. Every

quarter mile along the course there were a pair of yellow

flags mounted 30 feet either side of centerline to help guide

the driver. Special red flags were used to signal the driver

when to fire the thrust augmentation system. Approximately

two miles from the starting position was a photoelectric

"speed trap" system erected by the Federation Internationale

4
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des Motorcyclistes (FIM), Official speed recorder for the

event. The "trap" was actually a series of four precisely

measured gates lined with lights that would flash at very

precise time intervals to measure average speed through the

gate. The traps were installed and not moved during the runs,

which posed a difficult problem for the SOS engineers.

The idea was to hit the FIM speed trap at peak velocity

which would presumably be just as the main engine or augmented

system ran out of fuel. The speed was gradually raised on

each successive run by increasing the amount of main engine

fuel and adjusting the timing for Sidewinder ignition. The

point at which the vehicle would reach peak speed for a given

fuel load/configuration was estimated using a simulation of

vehicle performance. Based on the data from this simulation,

the starting position was adjusted to reach peak speed at the

traps. In most cases the peak speed was seldom achieved at

the traps but slightly before due to underestimated vehicle

drag (3). The speed trap system proved to be a very unreli-

able measurement of peak velocity due to the problems stated

above.

In addition to the FIM speed trap system several other

instruments were used to record speed. A magnetic pickup on

a rear wheel was used to convert wheel rotations into veloc-

ity. This device proved to be useless above 500 miles per

hour due to inadequate frequency response of the device and a

severe buildup of dirt over the run. A pitot tube installed

on the nose of the vehicle measured air speed. Due to

6



compressibility errors near Mach one and the unknown influence

of ground effect this device was not considered reliable (3).

Longitudinal and lateral accelerations were measured by a set

of accelerometers installed on the vehicle. Accelerometer

data was not used to find velocity by the SOS engineers, only

as a check on the number of acceleration units (g's) the

driver was exposed to. Data from these devices were recorded

via frequency modulated (FM) telemetry. An Air Force track-

ing radar was used to track the car and provide a backup of

vehicle performance. This radar coverage was considered

training for the operators and in no way impacted on any mis-

sion requirements at Edwards.

On the final day of the high speed runs, the fuel load

on the vehicle was increased to maximum capacity and a Side-

winder motor was installed. The run was set for early morning

to take advantage of light winds and lower temperatures.

Radar coverage was provided by a tracking radar located ap-

proximately 4.5 miles from the starting position on a hill

overlooking Rodgers Dry Lake (Fig. 1.1). Temperature at the

speed trap was recorded by an FIM official as 20 degrees Fahr-

enheit. Using the familiar relationship for the calculation

of the reference speed of sound, a,

a RT(1-1)

where

y ratio of specific heats for air = 1.4

R4 gas constant = 1715 ft 2/sec 2-R

TA temperature in degrees Rankine = 479.66 R

7



we find

a 1073.536213 ft/sec 931.956 mph

The speed of sound depends primarily on the temperature of

the air. The value at a given temperature can also vary due

to changes in relative humidity. For this analysis, we have

no information on the accuracy of the FIM temperature record-

ing system, or relative humidity. Since the run was made in

desert conditions we assume any changes to tLhe calculated

speed of sound due to relative humidity can be ignored. We

also assume that the recorded temperature of 20 degrees is

exact. The calculated speed of sound is used as a reference

velocity to compare rocket car performance. A peak speed of

931.956 mph, therefore, was the goal of SOS people.

At 0726 Pacific Standard time the main rocket engine

ignited, followed 12 seconds later by ignition of the Side-

winder. The vehicle ran out of fuel about a fifth of a mile

prior to the speed traps and thus was already decelerating

as it passed through them. The four traps showed the vehicle

speed to be 666.234 mph, 646.725 mph, 640.112 mph, and 632.522

mph, respectively (3). Since the speed trap measurements

were made after the vehicle had reached peak speed they could

not be used. The radar measurements would have to provide

the estimate of top speed. Unfortunately, the radar range

broke lock at the critical point during the run and followed

a larger vehicle running parallel to the test track and ap-

proximately 1500 feet beyond the rocket car. After two

seconds the radar again picked up the car. The Air Force

8



radar became the only check of actual vehicle performance

with the FIM speed trap system unavailable and unreliable

wheel speed and air speed indicators. The radar azimuth and

elevation data were considered valid for the following rea-

sons (3). The Air Force radar operator used a television

monitor aligned with the axis of the radar dish and manually

adjusted azimuth and elevation tracking rates. Using a set

of "cross-hairs" on the monitor, the operator kept the car

centered on the television screen. To attempt to correct

the erroneous range data, another vehicle was driven over

the tracks of the rocket car. The same tracking radar fol-

lowed this vehicle and measured range and azimuth. Azimuth

data from the rocket car and this second vehicle were aligned

and a corrected range measurement for the rocket car was

found. Based on this corrected range data, Air Force com-

puter analysis showed three data points above the reference

speed of sound, 731.96 mph. Speed of Sound, Inc. averaged

these three points and claimed a maximum speed of 739.66 mph

or 1.0106 Mach.

Speed of Sound, Inc. elected not to make any more high

speed runs as the engineers felt they could get no more per-

formance from the vehicle and the driver had complained of

stability problems. Thus, the speed of 739.66 mph became the

"official" figure that was claimed as the top speed of the

"Budweiser Rocket Car".

9
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Method of Analysis

The data available for this analysis includes raw radar

range, azimuth, and elevation sampled at 20 points per sec-

ond. Also we have the data from the longitudinal accelero-

meter which measured specific force continuously. The te-

lemetry data for the accelerometer is digitized at 250 sam-

ples per second. Using these data sources, a model for the

dynamics of the vehicle is developed and put in proper form

for use in an extended Kalman filter algorithm. A measure-

ment model for the radar measurements is used to relate the

states of interest to the available measurements. To find

the best estimate of vehicle performance with the lowest

achievable error, a "fixed-interval" smoother algorithm is

used. The filtering theory used in this analysis and specific

modeling methods are developed in the next two chapters.

Chapter IV will present the results of the extended Kalman

filter, while Chapter V details two iterations of the ex- I
tended Kalman filter-fixed interval smoother estimation

scheme. Finally, Chapter VI will present a hypothesis test

of the peak velocity estimate and give a confidence level for

this estimate.

10



II. Background Theory

The problem as defined in Chapter I is to obtain better

estimates of vehicle position and velocity by proper modeling

of vehicle dynamics and measurement devices. By combining

data from all measurement sources and including the effects

of identifiable errors and noise through the use of a Kalman

filter, one hopes to get improved state estimates. The

standard form for the model to describe the dynamics of a

problem for which a Kalman filter is to be developed is a

first order vector differential equation. Generally, a dis-

crete-time (sampled data) measurement model is used to relate

observations to the states of interest. The basic Kalman

filter equations will be presented here with little explana-

tion. It is assumed that the reader is generally familiar

with Kalman filtering. An excellent text on this subject is

available by Maybeck (4).

Linear Kalman Filter

The basic equation to describe system dynamics has the

following continuous-time form:

c(t) = fJI(t), u(t), t] + G(t)Lw(t) (2-1)

where

x(t) - n-state vector

u(t) - r-input vector (controls)

f - dynamics vector (possibly non-linear)

11



G(t) - time dependent coefficient matrix (n-by-s)

w(t) - zero-mean, white Gaussian noise s-vector of

strength Q(t) such that

EE(t)j(t+T) T] = .(t)6(T) (s-by-s) (2-2)

where 5(T) is the Dirac delta function. Available dis-

crete-time measurements are modeled by the following relation

z(ti) = h[x(ti),ti] + v(ti) (2-3)

where

t - discrete measurement time

z(ti) - m-vector of discrete measurements

h- measurement model vector function (possibly

non-linear)

x(ti) - n-state vector

Y(ti) - zero mean, white, Gaussian discrete-time m-vector

noise process, independent of system noise and

of covariance R(ti), i.e. such that

E[y(ti)(tj) T] = a(ti)ij (m-by-m) (2-4)

The initial condition on the state is only known with

some uncertainty, and is modeled as a Gaussian random n-vector,

assumed independent of w(t) and v(ti ) , with mean and

covariance:

E[x(t0 )] = (2-5)

E[(0(to)-Xo)(x(to)-A T P- (2-6)

12



The Kalman filter algorithm is most easily generated

when the dynamics and measurement models are linear relation-

ships. If the vectors f and h are linear combinations of the

states, the dynamics model and measurement relation become

linear relationships:

k(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2-7)

z(t i ) = H(ti)x(t i ) + V(t i ) (2-8)

where F(t) and H(t i ) become time-dependent (or possibly

time invariant) coefficient matrices of dimensions n-by-n

and m-by-n, respectively, and B(t) is an n-by-r matrix

relating control inputs to the dynamics model.

The Kalman filter incorporates measurement updates

using the following relations:

K(ti) = P(ti-)HT(ti)E (ti)E(ti-)HT(t i ) + R(ti) -I (2-9)

A + A A2i(t_ i ) =  2i(ti- ) +  K(t i)[ji-H t i)2i(ti-) (2-10)

+

(ti + - 1t ) - (ti) (t i) (ti-) (2-11)

where

t i - - before measurement update at time ti

t + - after measurement update at time t0

K(t i ) - Kalman filter gain matrix (m-by-n)

A
x(t i) - n-state estimate vector

i- m vector of measurements

P(t i) - error covariance matrix (n-by-n)

13



The state estimate and covariance are propagated forward to

A +the next sample time from the initial condition, x(ti l)

and P(ti l+) at time ti_ , by integrating

A A
x(t/ti) = F(t)x(t/t l)+B(t)R(t) (2-12)

-(t/ti -(t)i(t/tii)+(t/ti-l)FT W

+G(t)Q(t)G(t)T  (2-13)

where t/ti_ 1  , indicates integration forward from the pre-

vious measurement update time, ti
i-l

Extended Kalman Filter

The case where either the vector of dynamics relations,

f, or the measurement equation vector, h, is non-linear in

the states requires special consideration. The method most

commonly used when system dynamics or measurement non-line-

arities exist is the "extended Kalman filter". The approach

used in this method is to relinearize the dynamics and/or

measurement equations about the most recent estimate of the
A A

state, x(ti) , at update time, or x(t/t i_) in the

ensuing sample period. Thus, the matrices F, H, K, and P

are evaluated by knowing the most recent estimate of the

nominal (reference) state trajectory.

The system matrix, F(t) , in (2-13) and observation

matrix, H(ti ) in (2-9) and (2-11) become partial derivative

matrices in the extended Kalman filter:
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A af[x(t),u(t),t] 1

]F[tlx(t/t i  ) - -

ax x = X(t/ti) (2-14)

A ah[x(ti ),tiHEti;x(ti-)] A

ax = X(ti) (2-15)

In equations (2-14) and (2-15) the differentiation is done so

that the derivative of a scalar with respect to a column vec-

tor is a row vector. The matrices resulting from this dif-

ferentiation have dimensions n-by-n and m-by-n, respectively.

These matrices relate small perturbations in the state vec-

tor, x(t), to changes in the equations for ;(t) and z(ti).

The F matrix is called the "filter dynamics partial matrix"

and the H matrix the "measurement sensitivity matrix". De-

fining the perturbation of the state, x(t), from its current
A

estimate, (t i-) as
AA

6x(t) = x(t)-x(ti-) (2-16)

the perturbation 6x(t) is called the error state while x(t)

is the full state.

We expand equations (2-1) for x(t) and (2-3) for z(ti )

in a Taylor series about the current state estimate in

powers of 5x(t). Since 6x(t) is assumed small, powers of

6x(t) higher than one are ignored. We arrive at the follow-

ing linearized perturbation equations in 6x(t)t

A
6x(t) = F[t2i(t/til )]_x(t)+G(t)H(t) (2-17)
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A
&z(t) = H[ti;x(ti-)]6x(ti)+v(ti) (2-18)

where F and H are defined as in (2-14) and (2-15), respectively.

Equations (2-17) and (2-18) are in the proper form for

A
use in a conventional filter. Thus, an estimate 6x(ti+)

of the error state 5x(t) can be made from perturbation

measurements, 6z(t i ) , using equations (2-9) through (2-11).

The measurement difference 6z(ti ) is called the residual.

It is formed by subtracting the predicted measurements
A
Z(t i ) from the actual measurements z(t i)

6z(t i) = -[i(ti),t i ]  (2-19)

Equation (2-10) provides an updated estimate of the error
A

state, 5x(t. + ) . By using equation (2-16) we can obtain1
A +

an updated estimate of the whole value state, x(ti )

A ++
x(t i ) = (ti-)+6X(t i  (2-20)

This equation places all of the available information into
the whole-value state estimate. This allows 6x(ti+) to be

reset to zero for propagation of the state estimate to the

next update time. At any time, ti,6x(t) has a conditional
A

mean, 6x(t i) ,'and conditional covariance P (t.) such

that:

A
E[_x(ti)IZ(ti)] = 6x(t i ) (2-21)

and

16



A

ELLx(ti)-6x(ti)Y[x(ti)-6x(ti)]T Z(ti)] = P(t i ) (2-22)

where Z(ti) is defined as the entire measurement history

up through time t . If we assume a zero mean initial con-

dition on the error state,

Lx(tO ) : 0 (2-23)

%0

,hen tx(t) will be zero over the entire interval between

ipdates such that:

A
5x(t) = 0 for ti 1- t < t i  (2-24)

'th x(t 1- zero, the error state update equation from

2-10)

A 
+5x(ti ) = x(ti-)+K(ti)6zz(t i ) (2-25)

simplifies to

Kx(ti+) = E(ti) &z(ti ) (2-26)

which upon sdbstitution into the full state update equation

(2-20) produces A

x(ti+) _(ti)+K(ti)6z(ti) (2-27)

-- 3.K~ 3. - L 3. )

where 5z(t i) is given by (2-19).

Consider the conditional covatiance, P (ti ) of the

error state, 6x(t) , given by (2-21). We wish to relate

this conditional covariance to the conditional covariance,

P(ti) of the whole state, x(t) . From (2-21)
A _

(t i ) = EE__x6x6.6x K(t i ) ]

= E [[x[6xx]TI(ti)] from (2-24)

17



A AT
= E x-x ][x-xi]T (Z(t from (2-16)
= P(t.)

Thus, the error covariance of x(t) is identical to that of

_x(t) . Equations (2-13) and (2-11) describe the propaga-

tion and update of the error state covariance, P(t) , with

F(t) and H(t) in these equations replaced by equations

(2-14) and (2-15), respectively.

The extended Kalman filter algorithm is summarized here.

The measurement vector at time ti,z(t i ) , is incorporated

using

li(t i  P(ti-)HT[tiA (^ _I
T A= t [;(ti-)]X

EH[ti;2(ti-)](t-)H[ti;(ti-)]+R(ti)]- I (2-28)

A A A
x(ti+) = x(ti )+K(ti)i-htx(t.i ),ti]] (2-29)

+ A

+~t ) L~7)K i;A ~t1_ (2-30)a(t i  (t i-)-K(t i)H[ti; (E i )]E(ti- ) ( - 0

The estimate is propagated forward to the update time, ti

from the previous update time, t i 1  , by integrating

A A2E(t/ti_ 1 ) = fE2E(t/ti-l), j(t),t] (2-31)

and
AT A(/tI  =F~t; (t/ti )(/il)Ptt~ )FT[t;A(t/ti~)

+G(t),(t)a(t)T  (2-32)

from time ti 1  to ti  , using the initial conditions pro-

vided by:
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A A
x(ti _/t.i = X(ti (2-33)

P(ti/ti) = P(ti1 (2-34)

Upon integrating (2-31) and (2-32) to the next update time,

t. ,X(t i-) and P(t7) are defined as

A A
x(t i-) = ,(ti/ti-) (2-35)

(ti-) = P(ti/ti) (2-36)

A
where the time notation ti/t indicates that x(ti/t i_)

has been integrated to time ti but is conditioned on meas-

urements through t i 1  only. Thus, the initial condition

for propagation of the state estimate and covariance from

one sample time to the next is constantly being redeclared
A +

based on the most recent state estimate, x(ti_ 1  and co-

variance, P(t 1 )

Fixed-Interval Smoother

The standard Kalman filter algorithm can be called

"forward-running" in the way current state estimates are com-

puted. Several authors, including Meditch (5) have shown

that the state estimate and covariance can be calculated

more accurately by allowing access to "future" measurements.

The values for the state and covariance at time ti from a

forward-running Kalman filter are optimally combined with

estimates of these quantities from a "backward-running" Kalman

filter. This type of algorithm was developed by Fraser (1,2)

and is called an "optimal smoother".
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The Fraser form of the optimal "fixed interval" smoother

incorporates a "backward filter" that propagates the state

estimate and covariance backward in time from the respective
A +

boundary conditions at the final time of interest, 2(tf

and P(tf ) . At each time of interest, ti  , the state

estimates and covariances from the independent forward and

backward filters are optimally combined to yield a "smoothed"

state estimate and updated covariance. Such an algorithm is

described in detail by Maybeck (4). The optimal smoother

has the advantage of being able to "see" the entire measure-

ment history through the final time, Z(tf) . Calculations

of the state mean the covariance conditioned on all of

K(tf) , and not just the "current" Z(t i) , by this method

can significantly improve state estimation primarily by

using the future data.

Meditch (5) has shown that a mathematically equivalent

algorithm to the combined forward/backward filter scheme can

be used. The Meditch form of the "fixed-interval smoother"

algorithm uses the output of a forward-running Kalman filter

where the state estimates and covariances before and after
A A

measurement update x(ti-) , x(ti ) , (ti-) , and
+

E(ti ) , respectively, from the initial to final time have

been stored. Starting from the boundary conditions at the

final time, tf
A A +
x(tf/tf) = x(tf ) (2-37)

P(tf/tf) = P(tf + ) (2-38)
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the smoothed estimate is generated backward in time using

A A A A _2i(t i/tf ) = 2s(ti- )+A(t i)[2(t i+i/t f)-x(ti+ 1 -) (2-39)

where the "smoothing estimator gain matrix" A(t i) is given

by
+ T p-1 -)2-0

A(ti) = P(ti )T (ti+l ,ti) - (ti_1 ) (2-40)

and f(ti+l,t i) is the state transition matrix for prop-

agating adjoint system quantities backward in time (4).

The covariance of the zero mean Gaussian estimation

A
error [x(ti)-x(ti/t f)] can be generated backward from the

boundary condition by

P(ti/tf) = L(ti+)+A(ti)[(ti+l/tf)-E(ti+l-)]AT (ti) (2-41)

The method of analysis chosen to analyze available data

from the rocket car is to develop such a "fixed-interval

smoother" algorithm based on the state trajectory (time

history) generated from an extended Kalman filter. The ex- I
tended Kalman filter will be shown as the appropriate choice

due to non-linear measurement relations. The amount of

pseudo-noise is adjusted to achieve optimum filter perform-

ance in a "tuning" process described more fully in Chapter

IV. The next chapter describes the methods used to model

vehicle dynamics, errors to be estimated, and available meas-

urements for implementation in an extended Kalman filter.
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III. Modeling Techniques

System Model

The test track described in Chapter I has no surveyed

positions from which to reference vehicle position. The best

information on the starting position is provided by the radar

which was set on the vehicle for several minutes before the

start of the high speed run. It is this position provided by

the radar to which changes in vehicle position are referenced.

The coordinate system for the dynamics of the rocket car

is chosen as a Cartesian system fixed at the starting point

of the run. This system is shown in Fig. 3.1 and has the

x-axis aligned with the straight portion of the test track

(true south) and the y-axis aligned with true east. The time

interval of interest is the first 24 seconds of the run, as

the vehicle achieved its maximum velocity at approximately

17 seconds into the run. Thus, the velocity and position

along the x and y axis is taken with respect to a fixed posi-I

tion on the earth corresponding to an inexact starting posi-

tion. The elevation of the car is ignored due to minimal

change in vertical displacement (± 20 feet). Therefore, the

coordinate frame we are concerned with becomes planar or

two-dimensional. Post-run inspection of the test track in-

dicated that the vehicle deviated very little from track

centerline (3). Therefore, y components of position and

velocity are minimal with the motion restricted to the x-axis

almost entirely.
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No information is available on engine thrust or vehicle

drag for use in a model of these forces as they relate to

the acceleration and time-dependent mass of the vehicle. We

have only the specific force measurements from the longi-

tudinal accelerometer. Thus, the model chosen to represent

vehicle dynamics is a straight-forward two-dimensional kine-

matic model. In such a model, the components of acceleration

are the time derivatives of the velocity components. The

velocity components, in turn, are the time derivatives of

the position components. In addition to the components of

position and velocity, we desire to model inherent errors in

the accelerometer and radar. These error states are "aug-

mented' to the states of position and velocity in order to

estimate their value and compensate for their effect.

No data from the lateral accelerometer is available, so

we cannot estimate accelerometer misalignment error. The

tremendous vibration of the vehicle at high speed can con-

ceivably cause a time-correlated error in the longitudinal

accelerometer. Scale factor (due to digitizing accelerometer

data) and bias error are neglected due to lack of information

and observability problems associated with trying to estimate

more than one error term in a single accelerometer configura-

t ion.

The radar range and azimuth measurements are assumed to

be corrupted by some unknown bias (constant) errors. Very

little information is available on the accuracy of the radar

or types of inherent errors, so that these bias terms are
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the only assumed inaccuracies in these measurements. Thus,

the additional states to be estimated include one error

state for the accelerometer, and two error states for the

radar. Lack of additional measurements and resulting ob-

servability problems precluded the identification of any

other errors. It will be shown in the next chapter that even

these states are only weakly observable.

The states to be estimated become:

X- position component along x-axis

X- position component along y-axis

x- velocity along x-axis

x- velocity along y-axis

x- longitudinal accelerometer time-correlated error

x- radar range bias error

X7 -radar azimuth bias error

The first four states are related by deterministic means

(i.e., velocity is the first derivative of position, etc.).

The error states are modeled as stochastic processes in theI

following manner.

The time-correlated error of the accelerometer is modeled

as a first order Gauss-Markov process, the output of a first

order lag, which is driven by white, Gaussian noise. Figure

3.2 shows the output of the longitudinal accelerometer in-

dicating the extreme fluctuations in specific force sensed

by this device. Such rapid fluctuations are due to extreme

vibrations caused by rough ground and engine "pulsing" (3).

Conceivably, the accelerometer error state can also vary
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due to such vibration. We desire the filter to continually

"expect" changes in this error and estimate them. With no

better information on the types of inherent errors in this

accelerometer, the first-order lag model is chosen. The

initial choice for correlation time, T, is one second. This

is a subjective "guess" of how much this error will vary over

time.

The error states on the radar are not expected to vary

significantly, if at all, during the 24 second time interval

of interest. Consequently, these states are modeled as ran-

dom walk.

Random walk is defined as the output of an integrator

driven by white noise, while a random constant is the output

of an undriven integrator. A random walk model for an error

state indicates to the filter that we are not "absolutely"

sure the value of this state never changes. The values for

radar bias errors are allowed to vary (slowly) over the time

interval of interest. By using such a model for the radar

bias error states, the filter gains in these channels remain

non-zero and so the filter is able to detect changes in

these states. If a random constant model were used, the

filter would assume that once it calculates a value for these

states, they will not vary. Thus, random walk is preferable

to the random constant model without detailed information on

the radar error characteristics.
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The first order differential vector dynamics model for

the propagation of the seven states of interest plus addi-

tive "driving" noise becomes:

x2 (t) = 4

x3 (t) = ax+x 5 (t)

A4 (t)= w4 (t)

x5 (t) -I/Tx 5 (t)+w 5 (t)

x6 (t) = w6 (t)

x7 (t) = w7 (t)

Here w(t) is a white Gaussian vector noise process of

strength _(t) over the time interval [t ,t f] . Off-line

"tuning" of the system noise matrix, g(t) , can be used to

match the available data as closely as desired. This was not

done in this analysis. Instead, the noise matrix, _(t) is

adjusted "on-line" in a performance analysis in order to

achieve lowest possible variance in the state estimates. The

results of this tuning process are detailed in the next

chapter.

In the system model presented above the longitudinal ac-

celerometer output ax is used to "drive" the propagation of

the x component of velocity. The output of the accelerometer

is corrupted by a time correlated error which is expected to

vary frequently during the run. With no lateral accelero-

meter data available, we assume the y velocity component,

x 4  ,is well modeled as a constant with zero value. A
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small amount of "pseudo-noise" is added to this state to

allow the filter to estimate deviations in the y velocity

from zero. Small amounts of pseudo-noise are added to the

radar error states, x6  and x7  , for the same reason. The

amount of pseudo-noise is adjusted to achieve optimum filter

performance in a "tuning" process described more fully in

Chapter IV.

The model for the accelerometer time-correlated error

deserves some further explanation. We have chosen a Gauss-

Markov process, which is the output of a first order lag of

the form:

x5 (t) = -1/Tx5 (t)+w 5 (t) (3-1)

where T is the correlation time.

The concept of a time-correlated random process, x, can

be generalized from the "second central moment" or covariance

matrix, Pxx (t) defined as

Exx(t) =E[[x(t)-m,(t)1[2x(t)-mx~)T (3-2)

where mx(t) is the mean. This covariance is an indication

of the spread of values about the mean at time t. General-

izing (3-2) we can obtain additional information about how

fast x(t) sample values can change in time. The covariance

"kernel", P x(tlt2) is defined for all t1 , t2  in some

time interval T as:

Pxx(tl9 t2) E[[x(t )-m x(tl)][(t2)-mx(t2)2 (3-3)

29



For zero mean processes (3-3) becomes the "second non-central

moment" which generalizes to the "correlation kernel" (4)

defined for all ti, t2 ET as

_xx (tt 2,t = E[i(t1 )X(t 2 )
T] (3-4)

From (3-3) and (3-4), it can be seen that

- (tlt 2 ) = Exx(tl't 2 )+m(tl)Mv (t2 )
T  (3-5)

and thus, if x(t) is a zero-mean process, P (t1 ,t2 ) =

P (t,t 2 ) . A scalar time-correlated random process

x(t) of zero-mean has a correlation kernel function (4) of

the form:

Sxx (tl,t 2 ) = Pxx(tlt 2) ' 2 12 (3-6)

where T is the correlation time. If we compare this random

process x(t) to another zero mean process y(t) with cor-

relation time ten times that of x(t) such that

*yy (tl,t2 ) Pyy(t t2) = 2 e (3-7)

we can say that there is higher correlation between the

values of y(tI) and y(t2 ) than between xt I ) and x(t-,)

One would expect a typical sample of x(t) to exhibit more

rapid variations in magnitude than y(t) .

If a random process, x(t) , is wide-sense stationary

(4) then we can define the "power spectral density", PSD, of

such a process as the Fourier transform of the correlation

function x (T) where T is the time difference between
xx
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two sample times. An inverse Fourier transform of the PSD,

in turn, yields the "autocorrelation function". The power

spectral density of a device to be modeled can be plotted

versus frequency. The resulting PSD function can be inte-

grated over the range of frequencies to obtain the mean

squared value of the process. This method of obtaining PSD

and the related autocorrelation helps describe the errors in-

herent in a device to enable proper modeling of these errors.

If we had such PSD information for the rocket car ac-

celerometer we could make more realistic modeling decisions.

Without such information we must make some subjective model-

ing decisions. The correlation time for the accelerometer

error model specifies how much we expect the mean squared

value of this zero mean process to vary over time. Choosing

T as one second indicates that the mean squared value for

this process can vary by approximately 63 percent in one

second. A correlation time of one second will be shown to

be adequate for our purposes.

The amount of driving noise on the accelerometer error

state, q5  , can be obtained from specifying the desired

steady-state variance, P5 (o) . This will be explained in

detail below. Given a continuous-time system that can be

described by the linear vector differential equation

x(t) = F(t)x(t)+G(t)H(t) (3-8)

where
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EEjw(t)] 0

ECE(t)w(t+T) T] = Q(t)5(T) (3-9)

the propagation of the covariance of the state estimate is

described by:

P(t) = F(t)P(t)+P(t)C (t)+G(t)Q(t)G (t) (3-10)

The strength of the driving noise on the accelerometer error

state, x5  , is found in the following manner. Referring

to equation (3-1) we can solve for the steady state value of

the covariance. In this case, F = -I/T, Q = q, and

G = 1 so that (3-10) becomes:

P5 (t) = -2TP5 (t)+q 5  (3-11)

and

P5 (t) = P0 5e- 2 (t-to)/T+q5T/2[l-e- 2 (t-to) iT; t;t 0 (3-12)

For t = 0 we find

0

P5 (to) = Po5  (3-13a)

and the steady state variance, P5 (o() , becomes:

P 5(o() = q 5 T/2 (3-13b)

By specifying the steady state variance we can solve for the

amount of driving noise to be added to the propagation of

the accelerometer error state, x5
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The only information available on the longitudinal -c-

celerometer is calibration data taken before and after the

high speed run of the rocket car. This data indicates that

the accelerometer calibration varied by an average of .003

g's between the two calibration checks. With no more in-

formation on the inherent errors in the accelerometer, we

are forced to refer to information on comparable models. We

desire a comparable accelerometer which has F specified bias

error on the order of .003 g's. The model chosen in this

case is a Honeywell solid-state low-cost accelerometer. The

specified RMS error for this model is listed at .005g.

Thus, we use this specified error as the steady-state devia-

tion in error of the accelerometer actually used in this test

run. Obviously, we need to vary this value in order to check

filter performance, but .005g will serve as a "first-guess".

We now can solve for the driving noise, q5

P5 (0) (.005g)2 = q5T/2 (3-13c)

and

q5 (t) = 2(.005g)2 = .0518 (ft/sec2 ) 2/sec (3-13d)

Choosing the initial variance, P5 (0) , to be equal to

the steady-state variance, P5(o() , results in a "station-

ary" process (4) for the accelerometer error state, x5  *

This stationary characteristic is, in fact, implemented in

the system model for the rocket car.

The initial condition of the state vector at the start

of the run is known only with some uncertainty and is
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modeled as a Gaussian random variable of zero-mean and

covariance, P , such that:--o

A

EE2(t )] = o = 0 (3-14)
A A

E[Ex(to )-x ][(t_)-x ]T  = Po (3-15)

Initially, our uncertainty in the state values is very high.

We choose the following values for PO

10000

10000

100 0

P = 100 (3-16)--o

0 .0259

225

.25E-6

The initial guess on the last three diagonal elements is

obtained by using specified Root Mean Squared (RMS) errors

for the accelerometer, range, and azimuth respectively:

Po5 = (.005g)
2 = .0259 [ft/sec

2 2

Po6 = (15 ft) 2 = 225 ft 
2

P0 7 
= (.0005 rad) .25E - 6 rad 2

The initial variances of the first four states are subjec-

tive values based on relatively high uncertainty in state

values. Having developed the dynamics model for propagating

the states of interest, it is now necessary to relate these
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states to the available measurements of radar range, azimuth,

and elevation.

Measurement Model

The radar measured quantities are taken with respect to

the coordinate system of the radar, shown in Fig. 3.1. These

measured values must be related to the vehicle as it moves in

an earth-fixed coordinate frame, both translated and rotated

from that of the radar. The radar range measurement can be

related to the radar coordinate system by the following model:

Range (x X+y 2 +z2 r (3-17)

where Xr.9 YrV and z r are distance components along the

three axes of the radar coordinate system. The radar azimuth

measurement is related to radar coordinate components by:

Azimuth = arctan (yr/Xr) (3-18)

The radar measurement of elevation, z r P is used only to

adjust the value of range as the car proceeds along the track.

It is now necessary to relate radar measured components,

x rp Yr 1 and z r to components in the earth-fixed system,

xIandx2

The origin for the earth-fixed coordinate system is

taken to be the starting point of the run. The radar is set

on the car prior to the start of the run, and computed values

of distance x r = 16104 feet, and yr = 18374 feet are

taken from the initial range measurement. These initial
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values are held constant as the car travels down the track

in order to relate differing range and azimuth measurements

to changes in position in the earth-fixed coordinate system.

Labeling the initial distance along xr and yr as DELX

and DELY respectively, one can relate the distance traveled

in the earth-fixed frame to radar measurements by the fol-

lowing translation:

X r = DELX - x 1

Yr = DELY + x2  (3-19)

As the car moves along the track, radar distance xr will

decrease to a point where xr 
= 0 . At this point x,

DELX and the azimuth angle, 0 , equals 90 degrees. Sub-

stituting these translations into the range and azimuth equa-

tions we find:

Range [(DELX-x1 ) 2+(DELY+x 2 ) 2+zr 
2 ] -  (3-20)

and

Azimuth = arctan [(DELY+x2)/(DELX-x1 )] (3-21)

Thus, we have related the radar measurements to the states

we desire to estimate. Note that the 180 degree rotation of

the radar coordinate system to align with the earth frame

simplifies the relations. The i.ieasurement model is summa-

rized here:

zi(t i) = [(DELX-x (ti)) 2 +(DELY+x2(ti))2+Z r(ti)2

+x6 (ti)+vl (ti) (3-22)
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z 2 (t i ) = arctan L(DELY+x 2 (ti))/(DELX-x (ti))]

+ x 7(t i)+v 2(ti) (3-23)

In these equations each measurement is corrupted by an in-

herent bias error state, and some scalar, zero-mean white

noise to account for measurement and model inaccuracies.

This white noise vector v(t i ) has a strength R(t i) during

the 24 second interval of interest.

It is apparent from (3-22) and (3-23) that the measure-

ment relations are non-linear in the states. Since we have

no reference values for the behavior of the states, espe-

cially the error states, we cannot use a perturbation model

based on such a trajectory. Thus, we choose the extended

Kalman filter algorithm. Applying equations (2-28) through

(2-30), we arrive at the proper implementation of the extended

Kalman filter for the rocket car analysis. The observation
A

sensitivity matrix, H[t.;x(t.-)] in equations (2-29) and
1 - 1

(2-30) is developed from (2-15). For convenience, only the

non-zero elements of this m-by-n matrix are presented here.
A

For notational ease, H[ti;(t)J is given as H and

A A-
x(ti-) is given as x .

SA _ 2 A 2  2 '-
H(ll) =-(DELX-x1-)/[(DELX-x I ) +(DELY+x 2 )+Zr (ti)

A _.. A 2 A .2 (t. 2 ]-
H(1,2) = (DELY+x2 )/[(DELX-X1 -) +(DELY+x 2 -) +zrt i

H(1,6) = 1.0
A A A 21

H(2,1) = (DELY+x2 )/[(DELX-x -) +(DELY+x 2-)
A A 2  A 21

H(2,2) = (DELX-xI )/[(DELX-xI )+(DELY+x 2 )

H(2,7) = 1.0 (3-24)
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Thus, the extended Kalman filter incorporates the measure-

ments at time, ti  by using:

(t i ) = E(ti-)H3[H P(t i-)T+R(ti (3-25)

A + A -A(t , = A(t-)+K(ti)6z(t
i ) (3-26)

L(t i) = P(ti-)-(ti)H E(ti-) (3-27)

where 6_z(t i) is given by:

A- - -A. 2  A 2  2 A..
Z1(t i  zI-[[(DELX-xl ) +(DELY+x2-) +zr I*x6

5z(t i) = =1- _z(.) fJ t[E A -A A[z 2 (ti 2 uarctan (DELY+x 2 )/(DELX-x 1-)] +x 7 -

(3-28)

The state estimate at time ti 1  is propagated forward to

the next sample time ti  by integrating:

Ax3 (t/t i-1 )

Ax4 (t/ti1)
AXs5(t/t i-l)+a x

x(t/t_) = 0 (3-29)
-I/Tx5(t/ti- 1 )

0

L 0J

The error covariance P(t/t i_) is propagated forward by

integrating equation (2-32) in which
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0010 0 00

0001 0 00

0000 1 00
A

Ft(t/ti )] 0 0 0 0 0 0 0 by (2-14)

0 0 0 0 -1/Tr 0 0

0000 0 00

0000 0 00

The initial value for the system noise matrix in (2-32) is

chosen as:

0

0 0

0

2(t) .01 (3-30)

0 .0518

1

0. 1E-7

The initial values for the diagonal elements of 2(t) are

chosen to indicate our relative uncertainty of the behavior

of the corresponding states over the time interval of inter-

est. The initial value for driving noise on the accelero- I
meter error state, x5, has been previously calculated (3-13d).

The remaining diagonal elements of 2(t) are chosen by subjec-

tively deciding how much these states will vary from con-

stant values. By comparing Q4 4 (t), Q6 6 (t) and Q 7 7 (t) one

can see that we have little doubt that the azimuth bias error,

x79 is a constant. We are less certain about the behavior

of the y velocity, x4 , and even more uncertain about the

range bias error state, x6 . The initial value for Q4 4 (t)

is based on our knowledge of the rocket car trajectory -
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described as nearly a straight line along the x-axis (3).

We do not expect the y velocity to vary significantly from a

constant value of zero. Use of the radar in a "look-down"

mode increases our uncertainty in how the range bias state,

x6, will behave over the 24 second interval. The azimuth

bias error is not expected to vary significantly from the be-

havior of a constant. The initial value for Q(t) presented

in (3-30) is adjusted in a "tuning" process to achieve lowest

possible variance values for the seven states of interest.

This performance analysis is detailed in the next chapter

along with the results of the seven state extended Kalman

filter developed here.

4
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IV. Development and Performance Analysis

of the Extended Kalman Filter

The previous chapters have developed an extended Kalman

Filter estimation algorithmn for post-run data analysis of

the Budweiser Rocket Car. This chapter describes the re-

sults obtained by using the seven state filter outlined pre-

viously. The amount of computer programming required by

this analysis is minimal due to existing software available

for the development of a Kalman filter.

The computer software used in this analysis is a Monte

Carlo Simulation for Optimal Filter Evaluation (SOFE) avail-

able at Wright-Patterson AFB (6,7). The program was devel-

oped under contract by the Air Force Avionics Laboratory

(APAL) and is well documented by Musick (6). SOFE is invalu-

able when designing Kalman Filters. The normal method used

is a Monte Carlo analysis (4) whereby a suboptimal (reduced

order) Kalman filter is evaluated against a "truth model".

The suboptimal filter is adjusted to achieve the best pos-

sible performance when compared to a much higher order "truth

model". The idea is to track the important characteristics

of a physical system adequately using a simpler model. Such

a reduced order filter could then be implemented in an opera-

tional system where computer capability may be limited.

For the purpose of analyzing the rocket car data, SOFE

is used to integrate the dynamics equations and update the
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states of interest at measurement times. There is no truth

model available for tuning purposes, nor do we have the

ability to generate sample statistics. SOFE implements the

Kalman filter equations for either the linear or extended

Kalman filter presented in Chapter II. The user simply spec-

ifies the dynamics and measurement relations for his system.

SOFE propagates the state and covariance estimates forward

from the specified initial time, using a fifth order Kutta-

Merson integration algorithm (6). Updates of state and co-

variance estimates based on available measurements are pro-

vided at user-specified intervals. The user can specify

any number of measurements to be incorporated at a given up-

date time. Use of SOFE greatly reduces the amount of com-

puter programming necessary in developing a Kalman filter and

allows the user to concentrate on the finer details of his

particular problem.

The fifth-order Kutta-Merson integrator implemented in I
SOFE requires a step-size no greater than approximately two

milliseconds for the chosen integration tolerances. The in-

tegrator uses a variable step size to automatically maintain

the integration error below a specified value. The user can

specify a fixed step size mode if exterior factors, such as

a high measurement rate, cause the step size to remain small

regardless of dynamics. If, in order to handle severe dynam-

ics, the integrator reduces its step size to a minimum spec-

ified value without satisfying error tolerances, an integra-

tion failure occurs and the program stops. The default
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parameters for the integrator are variable step size, error

tolerance of .0001, maximum step size of 1.0 E + 9, minimum

step size of .0001, and initial step size of .01. We are

unsure of exact vehicle dynamics but expect rapid changes in

acceleration over a very short time interval. We desire to

allow the integrator to automatically adjust its step size

in order to reduce integration error and avoid "stepping-over"

any fluctuations in the solution. A variable step size also

reduces computer time. For these reasons, we interpolate

the accelerometer data to .002 second intervals for integra-

tion purposes.

SOFE implements user-supplied data records from one ex-

ternal tape and expects the same number of records every time

the tape is read. The external data provided for the rocket

car includes accelerometer, range, azimuth, and elevation

data. This data is interpolated to .002 second intervals

using the cubic spline interpolator implemented in SOFE. Thus,

accelerometer data for integration purposes is available every

.002 seconds while the specified measurement update interval

of .05 seconds insures that actual, not interpolated values

for the radar measurements are used.

Accelerometer Calibration

The first run through the data using SOFE is made to

check the calibration of the accelerometer data. The seven

state extended Kalman filter as implemented in SOFE is run

without incorporating any radar measurements. Integration
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of accelerometer data provides state estimates of x position

and velocity. We desire to compare the estimate of x veloc-

ity from SOFE at FIN trap entry time to the actual value

recorded by the FIM system. The FIN officials had used a

small radio transmitter to record the time of vehicle entry

into the first trap. This constant frequency transmitter was

designed to stop transmission while the car was in the first

trap, and then begin transmission upon trap exit. Based on

frequency data from this transmitter, AFFTC engineers cal-

culated trap entry time as 18.65 seconds from the start of

the run (3). The estimate of state x 3 ' velocity along the

x-axis, based on integrating the accelerometer data is checked

against the trap reading at this time. The vehicle trajectory

generated by integrating the accelerometer data is presented

in Figs. 4.1 through 4.8. The speed as measured by the FlM

speed trap at 18.65 seconds is 666.234 mph or 977.1432 ft/sec.

The state estimate of x-velocity at this time based on inte-

gration of accelerometer data is 978.582 ft/sec. The FIN

system showed that the vehicle was in the first speed trap

for .108 seconds (3). At an average speed of 978.582 ft/

sec over the trap distance of 105.6 ft, we confirm a time of

.1079 seconds in the trap. The peak speed based on integra-

tion of accelerometer data alone is 1080.05 ft/sec or 736.4

mph. This velocity occurs at 16.85 seconds into the run and

results in a Mach number of 1.006 when referenced to the speed

of sound of 1073.536 ft/sec. The accelerometer data indicates
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Fig. 4.1(a),(b) Accelerometer model for x3 - No measurements
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Fig.4.2(a),(b) Accelerometer model for x 3 -No measurements
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Fig. 4.3(a),(b) Accelerometer model for x3 - No measurements
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Fig. 4.4(a),(b) Accelerometer model for x3 - No measurements
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ACCELEROMETER BIAS ERROR
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Fig. 4.5(a),(b) Accelerometer model for x - No measurements
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RA0AR RANGE BIAS ERROR
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Fig. 4.6(a),(b) Accelerometer model for x - No measurements
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Fig. 4.8(a),(b) Accelerometer model for x - No measurements
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the rocket car was above the reference Mach number of one

for approximately 1.25 seconds.

Figure 4.2(a) indicates that there is no deviation from

center-line due to our model for y velocity. Without any

measurements, no estimate of y position or velocity can be

made. Note also that the standard deviations of state esti-

mates increase over the time interval. No reduction in our

initial values for standard deviation is possible without in-

corporating measurements.

Calculation of Measurement Noise Variance

Before incorporating the available radar measurements of

range and azimuth it is necessary to determine the errors in-

herent in these observations. Although the specifications

for the radar are available, one has sufficient reason to

doubt the validity of these numbers. The main reason for con-

cern is the way the radar is used to track the vehicle. This

particular radar is located up to 4.5 miles from the vehiclej

on a hill overlooking the lake bed. A tracking radar normally

used to track airborne vehicles equipped with transponders

is being used in a "look-down" mode into ground clutter at a

target not equipped with a transponder. As described in

Chapter I, we know the range measurement has a two-second-long

interval when the radar picked up a larger vehicle. In addi-

tion to the known error in the range measurement this data

is highly suspect for the reasons outlined above. Certainly

we cannot rely on the specified range RMS error of 15 feet.
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Nor is the azimuth measurement expected to maintain the

specified RMS error of .005 radian.

The manual tracking adjustment used to align the radar

dish with the car is subject to operator errors. An AFFTC

review of the video-tape from the television monitor used to

adjust azimuth tracking rate shows that the operator was able

to keep the cross-hairs on the vehicle for most of the run

(3). However, at the beginning of the run when the car is

accelerating the most, and immediately after engine burn-out

when the car is reaching maximum deceleration, the operator

is off the vehicle by up to three car lengths (3). This very

subjective estimate of azimuth deviation corresponds to ap-

proximately 108 feet. At the minimum range of 18000 feet,

this deviation contributes an error in azimuth of up to about

.006 radian. This error is therefore the best we could hope

for, assuming no inherent azimuth bias error. To estimate

the accuracy of range and azimuth measurements, some compari-

son of actual to expected values is necessary.

Using equations (3-22) and (3-23) for radar range and

azimuth based on estimates of x and y position, we desire to

compare actual measurements of range and azimuth to filter

estimated values without incorporating radar measurements.

The dynamics model using accelerometer data is used to

derive the estimated range and azimuth trajectories. Based

on this model, y position remains at zero while the estimate

of x position is provided by twice integrating accelerometer

output. By comparing actual to estimated measurements we not
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only can find the noise strength of the measurements, but

check our equations for range and azimuth used in the filter.

Figures 4.9(a) and 4.9(b) are plots of actual range and

estimated range. Figure 4.9(a) includes a plot of the dif-

ference between these two values for radar range. It is

obvious from these plots that between 16 and 18 seconds the

range is tracking a larger vehicle beyond the rocket car. it

is also apparent from these plots that the range measurement

is indeed extremely "noisy" and has significant errors.

The azimuth measurement, however, appears to be much

better. Referring to Fig. 4.10, we can see that the actual

and estimated azimuth values are very close. This confirms

our assumption that the radar operator did a good job of track-

ing the car in azimuth.

The purpose of comparing actual to estimated measurements

is to determine realistic values for the diagonal terms in

the measurement noise matrix, R(t.). To accomplish this, we

sum the "residuals", or difference between actual and esti-

mated measurements, over the entire time interval. We then

calculate a mean and variance for the residual values using

the following equations

N
Mean, 1' res = 1/N-1 E r. (4-1)

i=1

2 =1Ni N 2 2Variance, a res ( r. -i (4-2)

where ri is the residual measurement at a given sample time

and N is the number of sample periods used in the calculations.
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F1CTUAL,ESTIMATED,AND RESIDUAL RANGE MEASUREMENT
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Fig. 4 .9(a),(b) Residual range analysis based on an assumed
track heading of 180 degrees true.
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Fig. 4.10 Residual azimuth analysis based on an assumed
track heading of 180 degrees true.
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An inherent assumption in this residual analysis is that we

can employ the principle of "ergodicity" (4). This principle

says simply that we can determine the statistics of a random

process using only the results of one run through the data

rather than a Monte Carlo analysis. We assume that the sta-

tistics of the residual measurements can be adequately de-

scribed using data over the 24 second time interval of in-

terest. The residual sequence can be shown to be a white

Gaussian sequence with zero mean and covariance

a2[res = H(ti)P(ti-)HT(ti )+R(ti)] (4-3)

Thus we can solve for an estimate of the measurement noise,
A
R(ti), for each observation using:1

A 2 T CF
R(t) = res H(ti)P(t i)HT(ti) (4-4)

Once the filter calculated values for error variance P(ti-),

reach "steady state" conditions, the second term in (4-4)

becomes negligible when compared to the residual variance

a2 * Thus, we use the calculated residual variance from
res

(4-2) to yield the initial estimate of measurement noise,
A
R(ti ).

In calculating the range error variance no residuals in

excess of 300 feet are used. This effectively "blocks" the

erroneous range measurements between 16-18 seconds, resulting

in the use of 450 of 487 total measurements between 0 to

24.3 seconds. All of the azimuth measurements between 0 to
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24.3 seconds are used to calculate the mean and variance of

the azimuth residual.

The result of this residual analysis indicates an error

variance on the range residual of 22455.82 ft. The azimuth

residual analysis shows an error variance of .5389 x10-

rad . These variances yield calculated RMS errors of 149.85

ft and 0.734 x 10-2 radian for the range and azimuth measure-

ments, respectively. As expected, the range measurement

error is much greater than the specified error due to the

way the radar is used to track the vehicle. The azimuth

error is very close to the first guess of .006 radian.

The actual and estimated radar range measurements appear

to diverge after approximately 20 seconds. Referring to Fig.

4.9(b), the actual radar range looks fairly good between 20

and 24 seconds. This divergence of filter computed and ac-

tual range values caused some concern. In fact, the initial

extended Kalman filter runs indicated that the state x 2, y

position, grew unrealistically to approximately 300 feet by

24 seconds. This growth in x2is caused by the range measure-

ment which appears accurate between 20 to 24 seconds. It

would seem that perhaps our initial assumption of the test

track heading is incorrect. In fact, if the actual track

heading is 179 degrees true, not due south, this one degree

deviation would cause an approximate change in y position of

300 feet if the car is 17000 feet down-track. Thus, it is

necessary to correct the relations between radar measured

components, x r and y r, to the earth-fixed coordinate system.
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Referring to Fig. 4.10(a), the coordinate translation be-

comes:

X = DELX + (cos 1790 )x1 + (sin 1790)x (4-5)Mr  x2  -5

= DELY + (sin 10 )x1 + (cos 10 )x2  (4-6)

or

x = DELX - .99985x1 + .01745x2

Yr = DELY + .01745x1 + .99985x 2

When these corrections are applied to (3-22) and (3-23) and

the residual plotting and variance calculations are made,

the actual and estimated range measurements are much closer.

The corrected plots of range and azimuth are shown in Fig.

4.11(a), (b) and 4.12. With these corrections, calculated

residual variance for range becomes 16807.66 ft2 and azimuth

variance reduces to .3573 x 10- rad2 . These lower variances

result in RMS errors for range and azimuth of 129.88 feet and

.005977 radian, respectively. Note that we have calculated

an error for the azimuth which matches our initial guess of

.006 radian. It is apparent that the one degree correction

is closer to the true track heading and reduces the majority

of modeling error. Thus, we have computed the estimated
A

measurement noise strength matrix, R(ti):

A [16807.66 0
R(ti) = 0(4-7)

0 .3573E-
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Fig. 4.10 (a) Corcted Coordinate Frame

61



S34. 91..l 9 C IIf

9CTUAL,ESTI!MTED, AND RESIDUAL RANGE MEASUREMENTS

C. cta

residual

0.0 2. i. .0 63. I.0 Ii.0 4 3 16.3 16.0 2j.0 2i.0 24.3 j0.0 .0
TrI !SECONDSI

ACTURL AND ESTIMATED RADRR RRNGE

(b) C

actual

estimated

0.0 2.0 ,. 0 I.-0 i. 2.0 Ii. 3 6.0 4. 0 .& 22.0 24.0 2i.0 3 .0
TIME SECONDS)

Fig. 4.Ul(a),(b) Residual range analysis based on assumed
track heading of 179 degrees true.
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Fig. 4.12 Residual azimuth analysis based on assumed
track heading of 179 degrees true.
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Check of Filter Implementation

Based on the vehicle trajectory generated from the ac-

celerometer data, we desire to check the calculation of the

A
observation matrix, H[ti; (ti-1. The model we are using to

describe the propagation of x velocity, x3 , relies heavily

on the accelerometer measurements of specific force. The

filter receives very good information on the behavior of x

velocity and position, but relatively poor information on y

velocity and position. To check our implementation of range

and azimuth measurements in the filter, we desire to remove

accelerometer specific force from the model for x3. If the

range and azimuth measurements independently track the basic

trajectory of the vehicle, we can be reasonably sure the

observation matrix linearization has been calculated cor-

rectly. Note that we are looking for trends and not specific

confirmation of state estimates. Thus, we expect the range

and azimuth to show a similar trajectory for the car to that

generated by the accelerometer, but not a one-for-one com-

parison. The purpose of such an analysis is simply to in-

sure that we have correctly incorporated the measurements

into the extended Kalman filter state and covariance update

relations. The model for the radar range and azimuth measure-

ments is repeated here for reference:

z= [(DELX-.99985xI+.01745x 2 ) 2 +(DELY+.01745x.99985x2 )

+Z r2 +x6+v1
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z 2 =arctan[(DELY+.01745x +.99985x 2 )/(DELX-.99985x 1

+.01745x 2 )]+x7 +v2

Applying (2-15) to these equations we form the observation
A

sensitivity matrix, H[ti;x(ti)] . It is the model for

measurement incorporation, z(ti), and the calculation of
H[ti;A(ti-)] that we desire to check. By comparing state

trajectories of position and velocity independently obtained

from each measurement, we hope to confirm our calculations

and modeling techniques.

The primary reason for deviations between measurement

trajectories and the accelerometer profile is due to the

rather crude model we substitute for the x-velocity state,

x3.. We now choose this state to be modeled as a random walk

of the form

X3 = w3 (t)

where the driving noise, w3 (t), has a relatively high strength

to account for our uncertainty in such a model and allow

closer tracking of actual data. Modeling this state as we

have, the x velocity is considered a constant. Any change

to its value based on measurement updates is done in a step-

like manner. Therefore, we do not expect to get exact agree-

ment with accelerometer results.

The model for x-velocity is incorporated into a six

state extended Kalman filter where accelerometer error, x5,

has been removed. The filter is run using range measurements
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only, azimuth measurements only, and both measurements com-

bined. The results of these three runs of the extended Kalman

filter are shown in Fig. 4.13 to 4.16. Plots are made of the

estimates of x and y position and velocity. Part (a) of each

figure is the depicted state estimate generated using range

measurements only. Part (b) is the state estimate generated

using azimuth measurements only, while part (c) of each fig-

ure shows the result of combining both range and azimuth. We

see, in fact, that position and velocity along the x-axis be-

have as we would expect from the accelerometer trajectory

shown in Figs. 4.1 through 4.4. However, the geometry of the

radar position to the vehicle is not conducive to accurate

estimates of deviations along the earth-fixed y-axis. The

range measurement is the only means by which we can hope to

estimate position and velocity along the y-axis. The state

estimates of these values are subject to any errors in the

range measurement and indicate only weak observability of these

states. The range measurement is ignored between 16-18 seconds

to account for the known error in this measurement during this

interval. Due to the geometry of the problem, the range

measurement is even less likely to track the vehicle along

the x-axis correctly. This can be seen from comparing the

plots of x-position and velocity for range only to the plots

of these states with azimuth only and both measurements com-

bined. From these plots, it is apparent that the azimuth

does a credible job of trackinc changes in position and

velocity along the x-axis. Conversely, tI azimuth
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Fig. 4.13(b) Random walk model for x3  Azimuth only
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Fig. 4.13(c) Random walk model for x 3 -Range and Azimuth
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Fig. 4.14(a) Random walk model for x - Range only
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Fig. 4.l4(b) Randco walk model for x!3 - Azimuth only
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Fig. 4.14(c) Random walk model for x3 - Range and Azimuth
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0.0 2.0 4 0 6.0 8.3 Ii.0 1;.3 14.2 1 .0 &. 2i.3 2i4.0 2i. 0 28.3
TIME (SECONDS)

Fig. 4.15(a) Random walk model for x3 - Range only

VELOCITY COMPONENT IN X-DIRECTION
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0. 2.0 40 1. 8.0 10.0a 12.0 14.0 16.0) 16.0 2&.0 2.0 2.0 28;.03 2i. 2
TM ISECOWS)

Fig. 4.15(b) Random walk for - Azimuth only
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Fig. 4 .16(a) Random walk model for x3 - Range only
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c!

3.2 2.3 .3 6. i.0 12'3 Ii 20 1i. 3 16.3 16.3 20.0 22.3 24.3 2i. 3 2.0
TIME fSECONDS)

Fig. 4.16(b) Random walk model for x3 - Azimuth only
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Fig. 4f.16(c) Random walk for x- Range and Azimuth
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measurement can tell very little about y-axis changes of

position and velocity. Again, the geometry of the radar and

vehicle track causes this observability problem.

Figures 4.13 (c) through 4.16 (c) are generated by

utilizing both azimuth and range measurements. Again, the

estimates of x position and velocity are fairly consistent

with the estimates of these values generated by using ac-

celerometer data. Deviations from track centerline are less

severe but still subject to range measurement errors. It

is apparent from this analysis that the basic trajectory of

the vehicle generated using accelerometer data is reconfirmed.

Thus, we conclude that the extended Kalman filter is cor-
A

rectly calculating the observation matrix, ictix(t i-],

and that our model for z(ti ) is correct.

Extended Kalman Filter Performance Analysis

Having calculated measurement noise strengths for range

and azimuth and also having checked the calculation of the

observation matrix, we are now ready to run the extended

Kalman filter modeled in Chapter III. The initial condition

for the propagation of the state vector is chosen as zero-

mean Gaussian random variable with mean

A
E )]= x = 0 (4-8)

and covariance
A ATiE[(x(t o)-2EO)(2j(to)-XO )T  = P-- (4-9)

where the initial covariance matrix from (3-16) is specified

as:
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10000

10000

100

PO= 100 (4-10)

.0259

225

L ~.25E-6

The initial values for the diagonal entries of the system

noise matrix, Q(t), are repeated here for reference:

0

0

0

Q~t)= .01 (4-11)

.05 18

1.0

IE-7

The extended Kalman filter as implemented in SOFE is

run with several different combinations of Q(t), Po and

11(t .). This analysis is necessary to monitor the behavior

of the error variance of each state estimate in order to

check filter performance. We desire to obtain the lowest

possible error variance on each state after 24 seconds of

filter operation, using realistic values of initial covari-

ance, PO system noise, Q(t), and measurement noise, R(ti).

This performance analysis can be thought of as "tuning" the

extended Kalman filter. The results obtained from a large

number of noise and initial covariance combinations are sum-

marized here.
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The initial value for the error variance matrix, P ,

proved to be adequate for all the states except range and

azimuth biases. The initial covariance for range bias and

azimuth bias had to be increased to 1600 ft2and .5E-4 rad2

respectively, to see some reduction in the error variances

of these states. After 24 seconds of filter operation, the

filter only reduces the error variance on these states to

1190 ft2and .88E-5 rad 2, respectively due to limited obser-

vability. The filter's ability to estimate accelerometer

error is relatively unaffected by changes to driving noise

on this state. The error variance on the filter estimate of

accelerometer error coverges very quickly to its minimum

value regardless of changes in driving noise or initial co-

variance. Likewise, changes to the pseudonoise values on

states x 6 and x7 -9 range and azimuth bias, do not effect the

filter's ability to estimate these states.

The greatest reduction in error variance on all the

states of interest results from the recalculation of the

measurement noise matrix, R(ti), based on analysis of the

range and azimuth measurement residuals. This is expected

since the filter now "puts more stock" in the measurements

of range and azimuth than it did for higher values of R(t.i).

Since we are most concerned with estimates of vehicle veloc-

ity, X 3 and x 4 1 we present the results of the tuning process

on the error variance of these state estimates. The minimum

error variances for these states occur after 24 seconds of

filter operation. The error variance of x and y velocity
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estimates and associated driving noise strengths and measure-

ment noise is presented in Table I. The initial variance

2on each state is 100 (ft/sec) , or ±10 ft/sec.

TABLE I

Filter Performance Analysis

Driving Noise q Measurement Noise, R(ti) P(t = 24 sec)

q4 = .2E-2 22456/.5388E-4 P3 = 2.4

q5 = .0518 " t P4 
= 6.36

q6 = 10.0 of

q7 = .5E-5 it

q4 = .1E-2 22456/.5388E-4 P3 = 3.193

q5 = .0515 " " P4 = 6.43

q6  = 1.0 " of

q7 = .1E-7 to of

q4 = .lE-3 22456/.5388E-4 P3 = 2.57

q5 = .3E-1 " " P4 = 6.24

q6  = .10 It o

q7 = .IE-7 of

q4 = .1E-7 16808/.3573E-4 P3 = 2.27

q5 = .3E-1 " " P4 = 5.92

q6 = .01 of

q7 = .IE-7 we

The combination of system noise, initial covariance, and

measurement noise chosen as a result of this performance

analysis is presented here:
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10000 0

10000 0

100 0

P 100 2(t) = .1E-7
-o

.03 .03

1600 .01

.5E- .1E-7

F16 808 01

0~ L.3573E-4

Results of One Iteration of the Extended Kalman Filter

State estimates and error standard deviation in these

estimates for the "tuned" extended Kalman filter are pre-

sented in Fig. 4.17 through Fig. 4.25. These plots are

generated using the values for P Q(t), and R(ti), specified

above. Figure 4.24(a) is a plot of the range measurement

residual bracketed by the residual standard deviation. The

azimuth measurement residual and associated residual standard

deviation is plotted in Fig. 4.24(b). It should be noted

that a "residual monitoring" routine has been included in

the basic software for SOFE. This routine calculates the

residual standard deviation at each sample time from:

ares = [H(ti)(t i-) T(ti)+R(ti)]

and compares the residual measurement to this value for
ares. If the residual measurement, 6z(ti), is greater than

3ares, the measurement is ignored. As a result of residual

79

1I



DISTANCE F'ROM1 START ALONG X-AXIS

(a)

23 .3 I2 6.2 83 13.2- 43 1.i 3 15.0 liO Z 2i.3 24. 3 2i. 3 2
TIME 'SECONOS)

STDO0EV OF X-POSITION

(b)

U,

0.0 ~ ~ ~ ~ l- 2. .162 0. 0 0 l2.2 £4 .2 16 .312 20.3 22.3 ;i,3 2623 24.0

rIME (SECONDS1

Fig. 4.l7(a),(b)E-1&tede alman filter - Range and azimuth
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OISTANCE: FROM START ALONG Y-AXIS

(a) U9

c.a

IC

0

T'IME (S~EONOS)

STO DEV OF Y-POSITION

(b)

I-

4 "

, .o 4.2 1.2 6., , , ,2.0 1;.2 S.2 1i 0i., 2i.3 22.3 24.2 21.23 .

Fig. 4.18(a),(b) Extended Kalmaan filter - Range and azimuth
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q/EuOCITY COMPONENT IN X-OIRECT!ON

Reference speed of sound
(a)

TIME ,SECONDS)

STO 0EV OF X-VELOCITY

i I "(b)

- •- -

0. 2 .20 4.2 .0 . 0 . 2. 2 14.0a 16.2 14.0o 26.o 22.2a 24.2 26.2 24as.0
TIME (SECaeOS)

Fig. 4.19(a),(b) Extended Kalman filter - Range and Azimuth
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4ELOCITY COMPONENT AiLONG Y-9X!S

(a)

TIME fSECONDS)

S3TD 0EV OF Y-VELOCITY

(b)

........

C!.

I; .3 A . 2.3 2.a A i i

TIMEt SECONDS)

Fig. 4.20(a),(b) Extended Kalmnan filter - Range and Azimuth
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90

Lo

0.3 2.2 4.3 6.3 . 001. 14.2 16.2 18I.0 . 22. 24. 26.3 28.
TIME~ fSECONOS

'3TO 0EV OF ACCEL BIAS
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TIME !SECODS)

Fig. 4.21(a),(b) Exctended Kalman filter -Range and Azimuth
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RaOAR RANGE B19S ERROR

(a)
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o
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o
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m

0

00. i0 4 . 6.0 .0 10.0 1.. 14 Ii. 0 Ii.0 3& 3 2i . 4 3 6.0 8.0
TIME (SECONOS)

Pig. 4.22(a),(b) Extended Kalman filter - Range and Azimuth
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RADAR AZIMUTH BIAS ERROR
I.

(a)

127

0.", 2.0 4.2 6. .0 O. 1. 2 l.-4 .0 . 2 i. . 24 2 .0 2-.2

STD OEV OF AZIMUTH BIAS

(b)

Cc

i. 0 2 . 3 4 i. 6.0 .0 6. 3. 2 . 1 . .6.0 i. 20 i. 2i 26. 0 2i.rIME (SECONDS)

Fig. 4.23(a),(b) Extended Kalman filter - Range and Azimuth
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Fig. 4.24(a). (b) Extended Kalman filter - Range and Azimuth
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VELOCITY CONVERTEO TO MACH
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Fig. 4.25(a),(b) Exctended Kalman filter - Rhge and Azimuth
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monitoring, 40 measurements between 16-18 seconds, and three

measurements near six seconds, are ignored.

Figure 4.25 (b) is a "blown up" version of Fig. 4.25

(a) which is the magnitude of the velocity vector converted

to Mach number.

The plots o± standard deviation for range bias and

azimuth bias indicate weak covergence of the standard devia-

tion for these states. As mentioned previously, this is due

to limited observability of these states. The standard de-

viations of the other state estimates show good covergence

and indicate that even the "noisy" range measurement provides

some information on state values which can be used to improve

state estimation. From the plot of range residual standard

deviation it should be apparent that the residual monitoring

routine is rejecting measurements of range which have a

residual value greater than 3a res' or approximately 390 feet.

The straight line segment between 16-18 seconds and the "spike"

at six seconds in Fig. 4.24 (a) show where the range meas-

urements have been ignored.

The large deviation in y position shown in Fig. 4.18 (a)

at approximately 10 seconds is due to range measurement

errors which are significant between 6-10 seconds. The fil-

ter weights these measurements lightly due to relatively

high measurement noise, but does not totally reject them.

Thus, the estimated y position shows unrealistic values for

this state due to inaccuracies in the range measurement. It

appears from Fig. 4.11 (b) that during this four second
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interval between 6-10 seconds, the range is indicating short

of actual vehicle position.

The extended Kalman filter indicates a peak speed

estimate at 16.85 seconds of

A
X3max 1089.49 ft/sec

A

X4max = -11.3765 ft/sec

Calculating the scalar speed of the vehicle from

2A2 A
S(3 + x 4

we find a maximum scalar velocity of

V = 1089.55 ft/sec

resulting in a maximum Mach number of

M 1.015
max

when referenced to the speed of sound, a,

a = 1073.536213 ft/sec

The extended Kalman filter indicates that the rocket car was

above the reference speed of sound for approximately 1.9

seconds.

A run of the extended Kalman filter using only azimuth

measurements was made to check the influence of incorporating

the inaccurate range measurement. The estimate of velocity

from this run is much closer to the estimate of x velocity,

x3, obtained from integrating accelerometer data without in-

corporating any measurements. This reconfirms the
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observability problems previously mentioned associated with

estimating x 3 from range measurements. The azimuth only

run of the extended Kalman filter indicates the following

vehicle performance:

A
-ma 1080.26 (16.85 sec)

A

x= 977.081 (18.65 sec, trap entry)

Time above Mach 1 = 1.30 sec

The azimuth only run, however, does not provide very good

estimates of y position or velocity due to the observability

of these states from azimuth measurements alone. It should

be noted, that the apparent error in x velocity caused by

observability problems using range measurements is corrected

by using the fixed-interval smoother algorithm. The time

history of state estimates and error variances from the run

of the extended Kalman filter incorporating both measure-

ments is stored for use in the smoother algorithm. The re-

sults of the smoother analysis will be presented in the next

chapter.
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V. Optimal Smoother Results

Chapter II describes the Meditch form of the optimal

"fixed-interval" smoother algorithm in detail. A simple

FORTRAN program was written by the author to incorporate

this smoother algorithm. The output of the extended Kalman

filter, detailed in the previous chapter, is stored for use

by the smoother program. The FORTRAN code used in the smoother

program is listed for reference in Appendix B. The results

obtained from this program are presented in this chapter.

The output of the optimal smoother at the initial time,

t0,is used to correct the initial conditions for another

iteration of the forward extended Kalman filter. Such a

"forward-backward" iteration scheme is used to correct model

errors and initial conditions of the extended Kalman filter.

After each iteration of the forward-backward estimator a

comparison of state values is made. When the difference in

state estimates from one iteration to the next is less than

some arbitrarily specified value, E, the estimator is said

to have "converged". Since our main area of concern is in

the estimate of vehicle speed, we compare the peak estimates

of velocity for each run of the smoother. When the differ-

ence between peak speed estimates from one iteration to the

next is less than 2 ft/sec and the standard deviation of

this estimate allows at least a 99 percent confidence that

the vehicle exceeded the speed of sound, we stop the itera-

tions. The latter requirement for standard deviation
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becomes the driving factor due to time limitations and suf-

ficient confidence after two iterations.

One Iteration of Smoother

The plots of the "smoothed" state estimates after one

smoother iteration are presented in Figs. 5.1 (a) to 5.7 (a).

The variance for each state estimate calculated by the

smoother are presented in Fias. 5.1 (b) to 5.7 (b). Note

that the smoother works "as advertised"' in reducing the error

variance of state estimates when compared to the standard

deviation plots of the extended Kalman filter in Chapter IV.

Some very interesting results are obtained and need to be

discussed. The plot of y position, Fig. 5.2 (a) indicates

that the vehicle track is indeed a straight line. However,

the figure indicates that y position begins approximately

250 feet east of the assumed origin and decreases in a

linear-manner to 60 feet east of centerline. This indicates

that the starting position of the vehicle is displaced eastf

of the earth-fixed coordinate frame and that the assumed

track heading of 179 degrees true is incorrect by approxi-

mately .209 degrees. The smoother estimated state values

and variances of x and y position at the start of the run,

to, are shown to be

A (t 0/Af) 167.78 ft P 1 1 (t 0/Atf 3746.5 ft2

A2
x 2 (t 0/Atf) 255.85 ft P2 2 (t 0/t f) 3649.5 ft2

93



o

C0

(a) -3

-4

C

oo 5.00 10.00 15.00 20.00 25.00
TIME (SECONDS)

0

00

0-

(b) -

4 0

0

Coj

Ct.00 5.00 10.00 15.00 20.00 25.00
TIME (SECONDS]

Fig. 5.1(a),(b) Smoother estimate and variance of x-position
after one iteration.

94



0-

0
0

(a) .- %c-j

00 C

0
0

00~o 5.00 10.00 15.00 20.00o 25.00
TIME (SECONDS)

1* 3
0

C3,

(b) - C

C;3
WC)

z

-01.00 5 1.00 10.00 15. 00 20.00 25.00

T I ME (SECONOS)
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after one iteration.
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after one iteration.
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and at the final time, tf = 24.3 seconds:

x1 (tf/tf) = 16771 ft P11 (tf/tf) = 3186.3 ft2

x2 (tf/tf) = 61.21 ft P22 (tf/tf) = 1428.0 ft2

Figure 5.2 (a) indicates that the vehicle track is indeed a

straight line but not aligned with the x-axis we have chosen.

The estimate of y position at the final time is used to re-

correct the track heading of 179 degrees. The y position at

tf is 61.21 feet. This deviation in position indicates that

we have "over-corrected" track heading previously by:

^ 61.21

tan- [A 2(f/f) = tan-1 [- ] = .209 degree
x1 (tf/tf) 16771

The corrected track heading now becomes 179.209 degrees. We

can apply this corrected heading to the measurement rela-

tion (4-5) and (4-6) so that the bracketed terms in these

equations now become:

(DELX - .9999xI + .0138x2 )

(DELY + .0138x1 + .9999x2 )

By adjusting the track heading by this amount and recalcu-

lating the residual variance, as in Chapter IV, we should be

able to reduce the amount of measurement noise, R(ti).

These adjustments should help reconfirm our knowledge of

vehicle trajectory and allow the next forward-backward itera-

tions to converge to the "true" state values.
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In addition to resetting the initial covariance matrix,

Po' ,to reflect smoother covariance P(to/tf) , we also correct

the initial conditions of the state vector and adjust the

amount of driving noise, Q(t). We should note here that

several methods are available to adjust Q(t). The backward-

recursive smoother can be used to generate an estimate of
A

system noise at each sample time, Q(ti/tf) (4). One can also

"tune" Q(t) in an "off-line" manner and allow the system

noise to vary over the time interval of interest. If one

has knowledge of the time-varying nature of a particular

state, this knowledge can be used to adjust the strength of

driving noise. For example, we might desire to relate the

amount of driviing noise on the azimuth bias error state to

incorporate our knowledge of radar operator tracking perform-

ance versus vehicle acceleration. As a side note, we should

also mention that the smoother ilgorithm can be used to gener-

ate an estimate of the applied fontrols, u(ti/t f An esti-0I
mate of the controls applied t the system at any time, ti,

is not the concern of this analysis. We also choose to

iteratively adjust Q(t) and use constant noise levels over

the time interval of interest. Such an iterative adjustment

to Q(t) provides adequate smoother performance and simplifies

the algorithm.

Figure 5.4 (a) is a plot of the y component of veloc-

ity obtained after one iteration of the smoother algorithm.

It is apparent from this plot that the y velocity indeed be-

haves as a constant with a value of approximately -8.0 ft/sec.
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This constant negative velocity is caused by the erroneous

initial conditions we used in the extended Kalman filter.

As seen in Fig. 5.4 (a) the smoother is able to detect small

deviations from the constant y velocity. . This is seen as

small "bumps" in the plot of y velocity. Thus, our model of

random walk with smadll driving noise is reconfirmed and

will be used for the next forward-backward iteration.

The smoother estimated value for accelerometer error,

x 5(t i/t f) can be seen in Fig. 5.5 (a). The error appears

to grow with time and seems to be related to velocity (i.e.,

the higher the velocity, the more error). The error does

appear to be time-correlated and does not behave as a constant

bias error. Thus, the time-correlated model for accelero-

meter bias appears to be valid. We can, however, adjust the

driving noise on the propagation of this state by using the

smoother calculated steady state variance. Figure 5.5 (b)

shows a constant variance of O.14937(ft/sec 2 ) 2 after only a

very short transient period. We can adjust the driving noise

on this state by using this steady-state variance:

q5= P 5 (-o)2/Tr = .029874 (ft/sec 2) 2/sec

The initial variance value for this state, P o5 ' is also set

to .014937 (ft/sec 2) 2to insure a stationary accelerometer

error state process.

Figure 5.6 (a) is a plot of smoother estimated radar

range bias error, 6 (t i/t f). This figure indicates that

this state indeed behaves as a constant with only slight
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variations from the initial estimate, 6 (t 0/t f) -177.49 ft.

Thus, a reduction in the amount of driving noise on this

state appears valid. We now reduce the strength of driving

noise on this state to indicate more confidence in its be-

havior as a constant. The value of q6 for the next itera-

tion of the-extended Kalman filter-smoother combination is

obtained by "tuning" the extended Kalman filter in a sensi-

tivity analysis. The new value for q6is determined to be:

q6  .0001 ft 2/sec

This amount of driving noise is two orders of magnitude less

than the value used in the first iteration. The new initial

variance for x6 becomes:

4 Po6 = 1186.1 ft 2

and the new initial condition on this state obtained from

the smoother becomes:

S6 -177.49 ft

Referring to Fig. 5.7 (a) we see that the azimuth bias
q A

error, x 7 (t i/tf ), does not behave entirely as a constant.

It appears that during the first five seconds of the run

the bias error is greatest and reduces to a minimum value as

the vehicle achieves peak speed (minimum acceleration). As

the vehicle begins to decelerate, the azimuth bias error

again grows to a larger value. This result is consistent

with our knowledge of radar operator tracking error. The
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amount of driving noise on this state appears adequate to

allow the filter to track deviations in its value. Thus,

qis left unchanged for the next iteration of the forward-

backward estimator. we adjust the initial condition and

variance of this state, as before:

P0o7  .91619 E-5 rad 
2

A
Xo7 .0066051 rad

The extended Kalman filter and smoother are used again

with new initial conditions on the states and adjusted ini-

tial variance. The amount of driving noise on accelerometer

error, x., and range bias, x6 , are also adjusted for the next

iteration of the forward-backward estimator. As a result of

the first iteration of the smoother we make the following

adjustments to our model for measurements and initial con-

ditions:

1) The track heading is corrected to 179.209 degrees

true.

2) Based on the corrected model for measurement in-

corporation, we recalculate measurement residual variance to
A

reduce the estimate for R(t.i), R(t.).

3) Initial conditions on the state vector are corrected
A

to reflect the smoother calculation of x(t 0 /t f such that

167.78
255.88

A 1.1896
x = -8.0108

p-.003834

-177.49
L-.0064
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4) The initial covariance matrix, P is adjusted to

reflect the smoother calculated value of P(t0 /tf):

3746.5
3649.5

2.315 0
PO = 5.91

0 .015
1186.1

.916E-5

5) Finally, the system noise matrix, (t) is corrected

to indicate increased confidence in our model for range bias,

and adjusted steady-state variance on the accelerometer error:

0
0
0 0

= .E-7
.02987

.IE-3
.1E-7

The residual variance analysis detailed in Chapter IV
A

now produces an estimated measurement noise matrix, R(ti),

such that:

A [6235.4 0
R(ti) =

- .3900685E-41

The range residual variance is calculated from 415 of 487

total measurements which have a residual magnitude less than

300 feet. These variance values result in calculated RMS

errors for the range and azimuth measurements of 127.42 ft

and .006245 radian, respectively.

Incorporating updated values for measurement noise,

initial state and variance conditions, and system noise, we
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rerun the extended Kalman filter. The results of this run

are shown in Appendix A. The state and covariance time

histories are stored for use in a second iteration of the

smoother algorithm.

Second Iteration of Smoother

The second iteration of the optimal smoother algorithm

provides refined state estimates as shown in Figs. 5.8 (a)

to 5.14 (a). The basic behavior and values of these states

remain unchanged from the first iteration of the smoother.

The smoother state estimates at the initial time, to, are

refined from those obtained in the first iteration.

To illustrate the convergent properties of the smoother,

we present a comparison of state estimates and variances be-

tween the first and second smoother iterations in Table II.

This table includes the percentage difference between the

two iterations for each state and variance value and the

overall percentage change between the second and first itera-

tion. We choose to compare these values at the time of peak

vehicle speed at 16.85 seconds. Table II indicates good

reduction in error variance for all the states. This is due

to the improved initial conditions supplied to the extended

Kalman filter after the first run of the smoother. The

smoother is able to reduce error variance from the first to

second iterations due to improved state estimates from the

forward filter. The convergence of the velocity state esti-

mates and reduction in error variance on these states is
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sufficient to stop the iterations at two. Another iteration

of the smoother using refined initial conditions for the ex-
A

tended Kalman filter based on 2i(t 0 /t f) and P(t 0 t f) was not

made due to time limitations and sufficient confidence in

our estimate of vehicle performance. A third iteration of

the smoother would provide only limited refinement of state

estimates and better reduction in error variance. However,

it will be shown in Chapter VI that only two iterations meet

our confidence level requirements.

Figures 5.8 (a) and 5.9 (a) show the starting position

of the vehicle to be approximately 400 feet east and 200 feet

north of the assumed coordinate origin. The x velocity esti-

mate (Fig. 5.10 (a)) at to again indicates that the vehicle

has already started down the track at the assumed initial

time. The smoother estimate of x velocity at to0 is 2.72 ft/

sec. Comparing this to the accelerometer only run, the point

in the radar data chosen as to0 appears to be in error by ap-

proximately one sample period or .05 second. The y velocity

estimate again shows a constant value of approximately -8.33

ft/sec. This constant negative velocity is caused by the

orientation of the test track with respect to the chosen co-

ordinate frame of reference. To illustrate the actual vehicle

track in the assumed frame of reference, Fig. 5.15 shows

smoother estimated y position plotted against x position.

This plot indicates the estimated trajectory of the vehicle

in the earth-fixed coordinate frame of reference. The

trajectory is indeed a straight line, but not along the
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x-axis we have used. However, an exact starting position

and track orientation are not the goals of this analysis.

our main interest is to obtain a good estimate of peak

vehicle speed along the track. We are not concerned with

where this peak speed occurs but more with the value and

error of this estimate.

The second iteration of the smoother yields a maximum

velocity of 1082.028 ft/sec at 16.85 seconds from chosen

initial time. The scalar speed estimate at 18.65 seconds,

FIM trap entry time, is 975.043 ft/sec. The reason we do

not get better agreement between the smoother and FIM esti-

mates of velocity at the trap is due to the time skew in the

radar data previously discussed. The time scale we have used

shows trap entry between 18.60 to 18.70 seconds but we are

not sure exactly where trap entry occurs in this interval.

The behavior of the error states indicated by the first

iteration of the smoother is reconfirmed by the second itera-

tion. The radar range bias error behaves very much as a

constant with only slight deviations from a steady value of

-255.68 ft. The smoother estimate of range error is plotted

in Fig. 5.13 (a). Radar azimuth error in Fig. 5.14 (a) is

again shown to be "slowly-varying" over the 24 second inter-

val. Our initial assumptions about the radar operator azimuth

tracking error are again reconfirmed. The error in azimuth

starts out high as the operator lags behind the vehicle due

to rapid acceleration, decreases as the operator "catches up"
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to the car near peak speed, and again increases upon vehicle

deceleration as the operator "jumps" ahead of the car.

The accelerometer error state estimate shown in Fig.

5.12 (a) indicates that this state varies between approximately

0 to 0.08 ft/sec 2or 0 to .0025 g~s. Maximum error in the ac-

celerometer occurs at approximately ten seconds into the run

and the error decreases to near zero by 24 seconds. Perhaps

the behavior of this error state can be explained by referring

to Fig. 3.2 which is a plot of raw accelerometer data in g's

versus time. Figure 3.2 indicates that maximum sustained

g's on the vehicle occur between 0 to 10 seconds and slowly

decrease from that time on. It appears from Fig. 5.12 (a)

that thc' accelerometer error is a function of the time of

application and level of sustained g's on the vehicle. This

figure indicates a time-correlated behavior of the accelero-

meter. Such behavior may have been adequately modeled as a

random walk. One way to model this behavior might be to re-

late the amount of driving noise on the accelerometer error

state to the level of acceleration units at any given time.

Thus, q 5, could be modeled as time-varying for use in a

random walk model of accelerometer error. Certainly, it can

be argued that a correlation time of one second is too short

from the behavior of the accelerometer error shown in Fig.

5.12 (a). Nevertheless, the forward-backward iterations

have provided better information on the "true" behavior of

the states of interest. Another iteration of the smoother

could be made with updated initial conditions and perhaps a
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different model for accelerometer error, but two iterations

have provided sufficient reduction in variance values for

our purposes.

Figures 5.8 (b) through 5.14 (b) are plots of smoother

calculated error variances for each state. These plots show

that the backward filter is able to reduce the errors in

state estimates from those obtained from the first iteration

of the smoother. After two iterations of the forward-backward

estimator, the error in state estimation is reduced by an

average of 45% over that obtained in the first iteration of

the smoother.

The results of this second iteration of the smoother are

now used to test the hypothesis that the rocket car did, in

fact, exceed the reference speed of sound. This will be shown

in detail in the next chapter.
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VI. Hypothesis Testing

The previous chapter presented the results of the ex-

tended Kalman filter - fixed interval smoother estimation

scheme. The resulting state estimates and error covariance

after two iterations of the smoothing method will now be

evaluated to yield the best estimate of peak rocket car

speed and a confidence level for this estimate. Before we

can analyze a hypothesis test of the peak vehicle speed, it

is necessary to calculate the scalar speed estimate standard

deviation.

Development of Scalar Speed Standard Deviation

The values for x 3 and x 4 ' x and y velocity, are given
A A

in terms of mean values, x 3 (t i/t f and x 4 (t i/t f) and variances

P 33 (t i/tf) and P 44 (ti/tf ) and the covariance P 3 4 (t i/tf).

under our assumptions of approximately Gaussian error models,

these mean and variance values completely describe a two-

dimensional Gaussian probability density function which pro-

pagates forward in time from the initial to final time. The

state estimates of x and y velocity provide the components

of a two-dimensional conditional mean vector, m, the magnitude

of which is the estimate of scalar speed at any time, t..*

This mean vector in the x-y plane, shown in Fig. 6.1, locates

the peak of the density function. Surfaces of "constant like-

lihood" (4) are generated by passing planes through the den-

sity function parallel to the x-y plane. These surfaces are
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Fig. 6.1 Velocity vector and one sipiaL ellipse off
constant likelihood
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ellipses parallel to the x-y plane and when viewed from above,

the one sigma surface of constant likelihood appears as in

Fig. 6.1.

The covariance matrix for the two-dimensional velocity

density function determines the spread of the density about

m as in the figure. This covariance matrix also determines

the angular orientation of the "principal axes" (4) of the

ellipses of constant likelihood.

33 P343443
34 (t i) = (6-1)

P43'43a34 f44 2

where P is the correlation factor. If there were no correla-

tion between state estimates of x and y velocity (i.e.,

P34 = P4 3 
= 0 ), the covariance matrix would be diagonal,

and the principal axes of the ellipse would be parallel to

the x and y axes. The magnitudes of the semimajor and semi-

minor axes of the one sigma ellipse are determined from the

eigenvalues, Xi, of the covariance matrix

I = 
(6-2)33 J

= (6-3)

where the primed notation indicates the lengths are defined

in the principal axes frame of reference. We desire to re-

late the calculated scalar speed estimate from the optimal

smoother:

lv(ti/tf)I A 23(ti/tf))2+(x4(ti/tf))2 (6-4)
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to its associated standard deviation. To do this we must

find the associated representation of the normalized veloc-

ity vector estimate in the frame of the principal axes of

the one sigma ellipse shown in Fig. 6.1. The velocity vec-

tor in the x-y coordinate frame can be represented by:

vxy = v i +v i (6-5)
xy xx y y

The same vector can be specified using the unit vectors, e1

and e2, in the principal axes frame of reference:

Ve v e+v V 66
ee2 el 1 - e2 2 (6-6)

From the smoother-generated variances and covariances

for x and y velocity we solve for the associated eigenvalues

and eigenvectors of this matrix. The square root of the

eigenvalues of this 2-by-2 matrix will be shown to be the

length of the semiminor and semimajor axis of the one sigma

ellipse. The associated eigenvectors determine the angular

orientation of the principal axes of the one sigma ellipse.

We solve for eigenvalues and eigenvectors in the fol-

lowing manner. For simplification, we define the covariance

matrix of the velocity states at any time, ti, as:

P3 4 (ti) = [ 3 3  P34] (6-7)34 i F P3 P 44 J

Forming the matrix [XI-P] and solving for the determinant

we can find the eigenvalues of P34
-34
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X-P33  34 X2 _(P3 3+P4 4 )X+(P 33 P44 -P3 4 P4 3 ) (6-8)

-P43 44

This "characteristic polynominal" is set equal to zero and

the resulting roots are the eigenvalues, X1 and X2, of the

velocity covariance matrix. Noting that this covariance

matrix is symmetric so that:

P34 = P4 3  (6-9)

we define the characteristic polynominal as:

X 2 (P 33+P 44)X+(P 33P44-P34 2 ) = 0 (6-10)

The resulting eigenvalues are

X1,2 =[(P33 +P4 4 )±/(P 3 3 +P4 4 ) 2 -4(P 33P44-P342)]/2 (6-11)

Substituting these eigenvalues, Xi, into the matrix [Xil-E]

and noting that the eigenvectors are in the "null space" of

this matrix, so that

i-P 33 -P3 4 ei1 = 0 (6-12)

- P P34 Xi -P 4 4  i

results in two equations for each eigenvector of the form:

a e. + be. = 0 (6-13)11 12

either one of which is related to the other by a constant.

Thus, we have one equation and two unknowns from which to

solve for the eigenvector, ei, for a given eigenvalue, X.

We need another relation between the components of the eigen-

vector in order to solve for the individual elements. Noting

that the "normalized" eigenvector is the unit vector we find

the other equation: 2 2
e. + e = 1 (6-14)11 12
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With two equations and two unknowns we can solve for the in-

dividual components of each eigenvector.

The resulting eigenvectors determine the angular orienta-

tion of the principal axes of the one sigma ellipse. The

angle, 61, between the x-axis and the semiminor axis of the

ellipse (associated with x velocity error variance) can be

found from:

01 =tan el 2/e1 1 ) (6-15)

where e1 2 and e1 1 are the components of the eigenvector which

describes the orientation of the semiminor axis. This angle

specifies a coordinate transformation matrix, L, for a rota-

tion about the z axis, such that:

cose sine 01
L sine cosO 0 (6-16)

0 0 1-

This coordinate transformation matrix is used to relate the

orientation of the normalized velocity vector to the princi-

pal axes of the one sigma ellipse. Transforming this veloc-

ity unit vector into the frame of reference of the principal

2 axes, we obtain a length from ellipse center to the one sigma

ellipse in the direction of the velocity vector. It is the
magnitude of this length, avel in Fig. 6.1, which determines

scalar speed standard deviation.

Calculation of Peak Scalar Speed and Standard Deviation

After two iterations of the smoother algorithm we arrive

at the following estimates of x and y velocity at 16.85
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seconds. As in the previous iteration, this time is found

to be the point at which peak x velocity is obtained. The

associated error variances and covariances for x3 and x4 at

this time are also given:

Velocity State Estimates Covariances

x3 (16.85/tf) = 1081.996 fps P33  1.117148 (fps)2A2

x4 (1
6 .85/tf) = -8.335287 fps P4 4  2.140282 (fps)2

P34 P .071 (fps)2

The magnitude of the velocity vector or scalar speed estimate

is:

I 1082.028 fps (6-17)

From the covariances for the velocity state estimates at

16.85 seconds we form the two-dimensional covariance matrix:

[1.117148 .071 1
E34 =  (6-18)

.071 2.140282_

The eigenvalues and associated eigenvectors for this matrix

are found from (6-11), (6-13), and (6-14):

.99852]
X1 = 1.11328 e1  .0544

(6-19)F.068941
X2 = 2.14453125 e =2 2 L.997621

The lengths of the semiminor and semimajor axes of the one

sigma ellipse of constant likelihood become:
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X, = 1.05512 ft/sec

2 = 1.464422 ft/sec (6-20)

The eigenvector associated with X1 determines the angular

orientation of the semiminor axis of the one sigma ellipse

in the x-y coordinate frame of reference:

e1 = tan -1(.0544/.99852) = 3.11843 degrees (6-21)

This angle, e1 , defines a direction cosine matrix, L, in

order to transform the nomalized velocity vector

v = 1081.996ix-8.335287iy>.99997ix-.0077iy (6-22)

into the frame of reference of the one sigma ellipse such

that -.99852 .0544 0

L .0544 .99852 0 (6-23)

0 0 l

and

I r .99852e1 + .0544e 2

1y -.0544e I + .99852e2 (6-24)

The normalized velocity vector in the principal axes frame

becomes

v- _ = .99997(.99852e+.0544e)-.0077(-.0544i+.998522)
e1e2  1 21 2

= .9989e1 +.0467Z 2  (6-25)

The angle of this normalized vector with respect to the x-axis

becomes:

82 = tan- (.0467/.9989) 2.6767 degrees (6-26)

128



Subtracting (6-26) from (6-21) we find the angle between the

eI eigenvector and the velocity vector in the principal

axes frame:

a - e = .44172 degrees (6-27)

This knowledge will become helpful in a moment.

We need to find the distance from the one sigma ellipse

center to the ellipse itself, in the direction of the veloc-

ity vector, v- e2- To accomplish this, we have the general

equation for any point (xi, x2 ) on the ellipse:

2 2
- 2 c 

(6-28)
1 2

where c is a constant. For the one sigma ellipse c is equal

to one. We also have the familiar relationship between two

vectors vI, v2 :
11 •

1=1= COS y 
(6-29)

where y is the angle between the vectors. Let x 1 and x2

describe the coordinates of the point where the line from

ellipse center in the direction of the transformed velocity

unit vector intersects the ellipse. We apply (6-28) and

(6-29) to the point on the ellipse described by these points

xI and x2. In (6-29) we are interested in the e1 eigenvector

direction of length -A, and the transformed velocity vector

V = xe1 + x 2 e 2  (6-30)
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of length + x2 2 It is this length which describes the

one sigma deviation of the scalar speed estimate. From

(6-28)
2 2
1 + 2 = (6-31)

1 2

and from (6-29)

*Y [X1 e1+x2e2]
= cos y = cos(.44172) .99997

x1e 1 +x2e2 2

x1

jx 1 +x 2 99997

x, = 129.095572x 2  (6-32)

From (6-31)

16665.67x22 + x2 2 1 (6-33)
1 2

we find

x= .008173

and from (6-32)

x, = 1.055098

Thus,

)x 2 x22 = 1.05513 (6-33)

This value is the standard deviation of the scalar speed esti-

mate, 1082.028 ft/sec. Note that we expected the standard

deviation of the velocity estimate to be only slightly higher

than the one sigma deviation of the x velocity estimate due
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to the small off-diagonal terms of the P 4matrix, and rela-

tive magnitudes of the x and y velocities.

HypothesisTest of Peak Speed and Confidence Level

We are now prepared to apply a hypothesis test of the

peak vehicle speed. We wish to test the hypothesis that the

peak speed estimate is above the reference speed of sound, a:

a =1073.536213 fps

From our assumptions of Gaussian models, the estimate

of peak speed and associated covariance describe a condi-

tional normal distribution. The appropriate one-sided "con-

fidence interval" (8) for this hypothesis test is given by

(8):

x-z (confidence level) a(x) >: 4 (6-34)

where

x-mean of normal distribution = 1082.028

z - area under the standard normal distribution

curve

c()- standard deviation of normal distribution=

1.05513

4- lower bound of confidence interval = 1073.536213

For x=1082.028 fps, 4 = 1073.536213, ci)=1.05513:

z(confidence) = 8.048 (6-35)

To eight significant figures (6-35) yields a probability

that the vehicle was below Mach one of:
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1 - P(x) =3.4346578 E-15 (6-36)

from which P(x), the probability that the vehicle was above

Mach one, is found to be:

P(x) = .9999999999999965653422 (6-37)

For all intents and purposes, we have achieved a proba-

bility or confidence level of one that the vehicle exceeded

the reference speed of sound. Of course, this confidence

level is based on the assumptions and modeling techniques we

have used in this analysis. Such a high confidence after

only two iterations of the forward-backward estimator illus-

trates the power of optimal smoothing theory in post-run

data analysis.
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VII. Conclusions and Recommendations

Conclus ions

Two iterations of the forward-backward estimator have

provided improved state estimates and lower error variance

than is possible with a forward filter only. The backward

recursive fixed-interval smoother provides updated initial

state and variance values which yield improved state esti-

mates from the forward extended Kalman filter. The forward-

backward estimation method has reduced the error variance

from the forward filter by more than half after only two

iterations. Based on the second iteration of the smoothing

algorithm we make some general comments.

The improved initial time conditions from the smoother

indicate an inaccurate assumption of the starting position

of the run. We used an origin based on very inaccurate range

measurements. It appears that the initial x and y position

are, in fact, displaced approximately 200 feet north and 400 ft

east of the assumed starting position. The vehicle is also

already moving at our assumed initial time. This can be ex-

plained by an error in the initial time chosen for the radar

measurements. The point in time in the radar data chosen as

to0 appears to be of f by approximately 0.05 second. In other

words, the actual starting time of the run is about one radar

data sample before the time chosen as the starting time.

This causes the smoother to estimate an off-zero velocity at

our declared initial time. This also explains why we do not
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see exact correlation between filter estimated velocity and

FIN trap speed at 18.65 seconds. On the time scale we have

used, the FIM trap occurs somewhere between 18.60 and 18.70

seconds. In spite of this time skew, the estimated values

are close enough to trap speed to allow the comparison shown

in Table III.

The actual starting position of the vehicle is really

not the information we desire. We set out primarily to get

the best estimate possible of peak vehicle speed no matter at

what time or where on the track this occurs. In terms of

vehicle velocity, the smoothing algorithm used in this analy-

sis after two iterations has provided excellent convergence

to the "true" peak speed.

We also have come close to the maximum velocity estimate

obtained on the day of the run from AFFTC radar data analysis.

It appears that the AFFTC method used to correct erroneous

range data was valid and even averaging only three radar

points came very close to the "true" peak speed. We now

summarize the estimates obtained of the peak vehicle speed

by AFFTC, accelerometer data only, and one and two iterations

of the forward-backward smoothing method incorporating range

and azimuth measurements. These velocity estimates are con-

verted to Mach number using the calculated reference speed

of sound of 1073.536213 ft/sec. These results are summarized

in Table IV.

Two iterations of the optimal smoother also provide some

* information on the behavior of the error states of the
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TABLE III

Speed Estimate at FIM Trap (18.65 seconds)

Method Feet/sec MPH

FIM Recorded Speed 977.1432 666.234

Accelerometer Data Only 978.582 667.215

First Run of Extended Kalman
Filter 979.22 667.649

First Run of Smoother 972.91 663.35

Second Run of Extended Kalman
Filter 978.568 667.206

Second Run of Smoother 975.043 664.802

TABLE IV

Peak Scalar Speed Estimates

Method Used Feet/sec MPH MACH Tmac 1bv

AFFTC Computer Analysis
of Corrected Radar Data 1084.835 739.66 1.0105 N/A

Integration of Longitud-
inal Accelerometer Data 1080.05 736.4 1.006 1.25 sec

First Run of Extended
Kalman Filter 1089.5 742.84 1.0149 2.0 sec

First Run of Smoother 1080.006 736.34 1.006 1.25 sec

Second Run of Extended
Kalman Filter 1086.71 740.94 1.0123 1.8 sec

Second Run of Smoother 1082.028 737.75 1.008 1.4 sec
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accelerometer and radar. The accelerometer error varies be-

tween 0 and .08 ft/sec 2(0 to .0025 g's) during the 24 second

time interval of interest, achieving its maximum value at ap-

proximately ten seconds into the run. From ten seconds on,

this error slowly decreases to approximately zero by 24 sec-

onds. The sustained g's on the vehicle are fairly high

(Fig. 3.2) up to ten seconds and then begin to decrease after

this time. It would appear the accelerometer error is a

function of the length of time sustained g's are applied to

the accelerometer and the magnitude of these acceleration

units. Depending on one's definition of "slowing-varying",

one could make a case for using a random walk model for the

accelerometer error.. Certainly, it could be argued that a

correlation time of one second is too short for the behavior

of this error. Another study of the rocket car data could

use on-line "tuning" of the system noise matrix, 2_(t), by

allowing the smoother to calculate an estimate of its value
A

over time, Q(t i/tf) One could also calculate smoother esti-
A

mated inputs u(t i/tf) In terms of the rocket car analysis,

such estimation of accelerometer input at any time t.i based

on the entire measurement time history would yield improved

state estimation. Nevertheless, the smoother has provided a

better "glimpse" of the "true" behavior of this state than

is available from a forward filter only, especially without

more knowledge about inherent accelerometer errors.

The random walk models for radar range and azimuth bias

errors prove to be very adequate. These errors are shown as
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nearly constant over the 24 second interval with only slow

changes from the behavior of true constants. Certainly, we

are somewhat surprised at the magnitude of the radar range

bias error. Considering the size of the vehicle being tracked,

lack of transponder, ground clutter, and distance from the

radar site, it is conceivable that the radar range has a

large inherent error. The azimuth bias error behaves as we

expected based on our knowledge of operator tracking perform-

ance. Perhaps "bias" is a misnomer, as most of the error in

azimuth is operator-induced. The azimuth error shows that

the operator lags behind the vehicle initially but is able to

regain good tracking as the acceleration decreases. After

engine "flame-out" at approximately 18 seconds, the azimuth

error again increases, indicating the operator has probably

"jumped" ahead of the vehicle. For another iteration of the

estimator, a better description of the azimuth error could

be used. One could relate the strength of driving noise on

this state, q., to the acceleration of the vehicle. When ac-

celeration is high q 7 would be increased. The amount off drivr-

ing noise would decrease as vehicle acceleration decreases.

This analysis has shown that state estimation can be

significantly improved if the estimation algorithm has access

to future measurements. This is the real benefit of a

smoother algorithm in post-run data analysis. The method

used in this analysis requires a straightforward incorpora-

tion of existing theory and available software with only

limited additional programming required. The forward-backward
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iteration scheme is a simple yet effective way to provide

improved state estimates in an "off-line"' application. It

can be applied to almost any system of interest no matter

what dimension, with only computer workload becoming a driv-

ing factor. Good dynamical and error models are a require-

ment, but not a necessity. The iterative method used in

this analysis can help "fine-tune" very simplified models to

provide improved state estimates.

The reader familiar with estimation of unknown para-

meters using a "maximum likelihood" estimation technique may

wonder if such a technique could have been employed in this

analysis. The answer is a guarded "yes" if we can make some

valid assumptions. The inherent assumption in maximum likeli-

hood estimation is that the parameters to be identified can

be accurately modeled as constants over some time interval

of interest. In this analysis, we are concerned with accur-

ate estimates of state values at discrete points in time (i.e.,

peak speed at some time, t i). If we assume the parameters

affecting this problem, such as accelerometer and radar errors,

are constant over time, a maximum likelihood estimation algo-

rithm will yield a best fit of a constant to the data. If

the parameters are not true constants, a better (non-constant)

model would inherently allow better estimation accuracy.

This analysis has shown that the error states do not behave

as constants. Therefore, one cannot accurately model these

errors as constant unknown parameters for implementation in

a maximum likelihood estimation algorithm witnout non-negligible
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estimation performance degradation. Without a priori informa-

tion on the behavior of the errors to be modeled, the deci-

sion was made to model the errors as states in the forward

extended Kalman filter-backward smoother estimator.

If there is a "bottom-line" to this analysis it has to

do with the peak speed of the Budweiser Rocket Car on 17

December 1979. Rather than "eyeballing" the peak speed of

the car based on poor data, we are able to provide an esti-

mate of the speed and a confidence level for our estimate.

In fact, after only two iterations of the forward-backward

smoothing technique, we can state with probability of nearly

one that the vehicle did achieve the reference speed of

sound, based on the assumptions and modeling techniques used

in this analysis.

Recommendations

The position estimates and off-zero velocities calcul-

ated by the smoother at the initial time, to0 indicate a

rather poor choice of origin for the vehicle frame of refer-

ence. Relying on the radar to provide a good initial "f ix"

of vehicle position, no matter how long the radar is aimed at

the vehicle, is only "wishful thinking". Perhaps a better

origin could have been located at remote camera site A8

shown in Fig. 1.1. This point has been surveyed and "exact"

latitude and longitude coordinates of both A8 and the radar

site are known. Using these coordinates one could calculate

a much better DELX and DELY from which to reference changing

139



radar measurements to vehicle motion in the frame of refer-

ence. If the information on track alignment with respect to

A8 is correct, a frame of reference at A8 should indicate a

vehicle track parallel to the x-axis. The starting position

of the vehicle within a frame of reference centered at A8 is

still unknown, however, and only iterative methods could

"zero-in" on the "true" starting position.

An adjustment could be made in the initial time chosen

in the radar data to find the "true" sample time as the

vehicle starts to move. At 20 samples per second, however,

one can only get within 0.05 second accuracy. Also, the

radar data is constant until the azimuth suddenly increases

very rapidly. We chose one sample time before the first

change in azimuth as the initial time. One could "back-up"

the radar data until the smoother estimate of x-velocity at

to0 approaches zero.

Other possibilities for further study include some of f-

line tuning of system noise to account for the time-varying

nature of accelerometer and azimuth errors. One way to ac-

complish this might be to use the smoother estimate of sys-
A

tem noise, 9,(t i/tf ), based on the measurement data to provide

a time history of driving noise for each of the affected

states. This would provide the forward extended Kalman fil-

ter with improved knowledge of state behavior.

Finally, it might be beneficial to allow the smoother

to calculate an estimate of the applied controls, in this

case accelerometer specific force. This smoother estimated
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A

control input, u(t i/tf) could be used to better determine

accelerometer errors and improve state estimation. These

possibilities were not explored in this analysis due to time

limitations and a feeling that confirmation of peak vehicle

speed was the critical area of concern.
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Appendix A. Plots from Second Iteration
of Extended Kalman Filter

This section presents the results of the second itera-

tion of the extended Kalman filter developed in Chapter III

and IV. State estimates and error variances at the initial

time from the first iteration of the Meditch (5) smoothing

algorithm are used to update the initial conditions of the

extended Kalman filter for this run. In addition, a slight

correction to the assumed test track heading provides closer

filter correlation to range and azimuth measurements, allow-

ing a reduction in the estimated measurement noise for radar

range.

Figure A.1 shows a plot of estimated and actual radar

( range obtained with the corrected test track heading. This

figure indicates that the divergence of actual and estimated

range between 20 to 24 seconds has been removed.

The extended Kalman filter shows improved convergence

of the standard deviations of the state estimates due to im-

proved initial conditions from the smoother. This can be

seen by comparing to part (b) of Figs. A.2 through A.8 to

part (b) of Figs. 4.17 to 4.23. Figures A.9 (a) and A.9 (b)

are plots of the range and azimuth measurement residuals

bracketed by the residual standard deviations. From Fig.

A.9 (a) it is apparent when the residual monitoring routine

bypasses range measurements in excess of three times the re-

sidual standard deviation. Figure A.10 (b) is an expanded
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version of Fig. A.1O (a) which is the scalar speed estimate
(magnitude of the velocity vector) converted to Mach number.

143



_- 
--U- - _ _. _ ---

'CTU-L, ESTMATEO, AND RESIDUAL RANGE ME9SUREMENTS

" esi.t d 
..............

residual

0.0 2.0 ,0 6.0 '.0 3.0 12.0 14.0 ,G.0 ;I.0 20.0 2 .0 2.0. 26;0 26.0

TIMF ISECONOS}

ACTUAL AND ESTIMATED RADAR RANGE

(b)-

actual

estimated

3.0 2.0 4.0 6.0 4.0 k. 3 Ii. i 16.0 10.0 20.D 2i.0 2;.0 2i.0 2 .0

THIME SECONS)

Fig. A.(a),(b) Residual range analysis after correcting track

heading to 179.209 degrees true.
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Fig. A.2(a), (b) Ektended Kalman filter state estimate and
standard deviation after two iterations
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Fig. A.3(a),(b) Extended Kama filter state estimate and
standard deviation after two itermations
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Fig. A.4(a),(b) Extended Kalman filter state estimate and
standard deviation after two iterations
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Fig. A.5(a),(b) Extended Kalman filter state estimate and
standard deviation after two iterations
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Fig. A.6(a),(b) Extended Kalman filter state estimate and
standard deviation after two iterations
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Fig. A.7(a),(b) Extended Kalman filter state estimate and
standard deviation after two iterations
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Fig. A.8(a),(b) Extended Kalman filter state estimate and
standard deviaton after two iterations.
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Fig. A.9(a),(b) Range and Azimuth residuals and standard
deviations after two iterations.
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Fig. A.lO(a),(b) Velocity converted to Mach number after
two iterations of the Extended Kalman filter.
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Appendix B. Optimal Smoother Computer Proqram

This appendix includes a listing of the computer pro-

gram used to incorporate the Meditch (5) backward-recursive

optimal linear smoother algorithm described in detail in

Chapter II. The data required for this program includes the

current sample time, ti, state estimate vector before update,

covariance matrix before update (stored in upper triangular

form), state estimate vector after update, and covariance

matrix after update (stored in upper triangular form) from

t to tf.

For this analysis the state estimates and covariance

before and after each measurement update are stored as a re-

sult of one run of the extended Kalman filter implemented in

SOFE. A short data reformating program was used to put the

data at the final time first and the remaining data records

in backward-recursive form to the initial time. This enables

the smoother program to read forward through the data but

actually compute quantities "backward" in time. The Meditch
A + A

algorithm requires x(ti ) and x(t i+ ) for one calculation

at each sample time. The data was put in the following order

to allow for a step-by-step "read" of the required quantities

for each time of calculation. Each data record contains theI

following information in the order shown:

1. time, ti
A +2. state vector at time ti after update, x(ti
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3. covariance matrix at time ti after update, P(ti
+ )

A
4. state vector at time ti before update, x(t.i )

5. covariance matrix at time ti before update, P(t )

The order of the system used in the rocket car analysis al-

lowed for storage of formated records. A higher order sys-

tem will probably require more efficient data storage and

improved formating of smoother printed output.

155



C4
0

t:

In (

-T W:- -. w()L
(0 0.jz .

+ I- I. w -) z o nL
*0 (n C) ;: ". .- LA . x x>

z I-;- , in 4- a: It-. 2
>0 u 'r-It - (a W U a -(A 0

Z"I I i- > Z1 0 (A u 0 0) Z 0 . '2 0 Zr In z
CL P0 III Z " -x-W - (a 0.0 1- 04W (A (A - *- #0.-

z -14 Z0 0x UJ (0 m-1. >. I- W CIw - Z 0A r-: - 0.
(3I - -i 1-Z U-W Z . - C- 4 0.4 4 11j 3 LL LL

U Z ~ Z.> (0 W (A ZO ;; ~ 00. Ix W+3 0 ...X10 >w I
0.I La- ((, >. 4 4- 41 1- (D' I. < 'A W -...

u- 0 - 1. W- OM* - 41- 2 r 4W 3.U. . 1-0 (A (
U. W11. 0.j .1- :0 11 0 1- -... - 01()1n21 0 - 4- 0~ 4r 00 +z- M o t :C

0) -CO 00 -jU 01 w AU.U1 0.4o (zLI0 to) lin6 (A 0. - 1.- - <.
a) ILI U)- UWJZ P A '..0. I..- W I-(A 01J .- 41-0to0. 00 +2 z IA( 0 :1:0.)
IL . w0 0 - 0 In.0 : 4> uWW->0. I.- <u. aZU.C0L .- LL. .2 - 4 Z
0. 1 0 o o a 2 m .0C 42) c-. OW WOO 2 40D X( I cc Iw I.- .- I -C C3 43
11C a 3 L11-. 0z -C wo 20 c-0 1- 0La. 4. 13. U.zI X2 C
P.: w .0. - L1(O 0 2W Z - 0.U4D. 2--U' 00 1--- 12 0 -.

4 ~ r a:~- W 9 30. (nOM 121-2. w wn-'W.-- 0 1-1-. 00
I. ~ 0 - 1.-0 -.4 2U.W2L7.-cc 0 (A 0.00- W) u( I0. LUm 2+ c-I u a(

Z ; -aU z-2 o w)I 0 3 112 U w z 0 . 0 M Z DU W -. W , -m - 2 l- 2 W- - - 0 M 0 - - 4
I. l'-WLUWO D ~W 0 1, 1-0 0.0.440 W4(A Z-Z2 ZI0.0 0 ZE4--- I-W W 0 -O0. -I

1-- QzU OLAI-0. -j . OU.D-WOma0-4 - -.- W <1.-.* n ---- 0r ZI- M-%o
:3 r: 04(<4W I- - 1U02.f .W U. 1-0 (J> In I- In-1-- --1- 0 - - - - - -11-

o0 k Qa u 111O WOW =Z n U.1- L)1-- I.- U)1- M IOU.IZUOW-.U U.Uw.In<4 240m 1- uJ41 01- (n 0
z m 2 2 1.- 4 -cc W W0.o4 112 0Wudz0 - a W .2C I.- tz--12022 Z10 2- MZ -

w- WI- x4 1- U, C) 02 >ZMM0WWWMM0 -I0 M .; O00Z m0- 4.42Z 0 V)w -z-0 * -
M - .. U< WU.W 0.0 lZ z OZ>ZWuJC (000.0a-Z 4. U.(AAu+-+4 0r . 0L 2 r0. 0

11 07c - 0 2 InX X 0 01-- -x0 1 M.U. Z C0.I- <.-0U40.w-0.'( --. = (nO -2n 1-I

M. C. 0 In 0'(W1- 0: :3 ED 2 4 I.0-0a> -- 0 .. .-- 1 7 XX Z u.
0 -4 01-U. I. :) z -(W 00 m (n < >WJO000 WII -U.U.LLIn-(- I.-.In

$I- W-.O *-2.0UZ >0 0001- 1-'(0 (Anot.- LU0 cx . 20.L
01-- x(cc - 2 ::(A7 -1 a .W- .9 2 1 ~ *-IIUn..1 2ZI - ( -L,-
0 o w W - x20 4 w Il 132 2 0. 0. U. 1(0 1 V) V) - x 0-0 -.- j1 - Z"~..

-i IW 0w2 1u42.m > :t0 -U U. U. U. 0(0 In (n 0. ZI.. U- 0.1.0. CLJ <-"-.2a-a
r- 20. M WU-J,3 - .1- 40 1- -A$-' 0. CL 0. (A 1 :In I I a ?- I- z w mU. a z 4 Z -:t

in 927 14n 0.SW -C 02 0:20Aw x - zzI : I 0'--0'(I11M04 011- a 2.a.0M
I.1- 1.- WO 0 W V . X C U 20 L6 2 O- U -j L'- I.U. w w I 0I z *'.------

I'. 2 M .0.W 0U.P- zU. 0U.LL C I CL "0 .. 012 1-C.- I1 1-. - <-
-4 (A7 2 -1 4 4 - e 0L. 1..U.wU. LL. 2E zWU.-1.' c zzzzz
cc0x.AI .- C.W f Z0 -. LL.W '(S()(0.It0M <&.X . .- '0 0 1-. 07x0m 00000
(0 1- =- 4402 2C Ix 4-z1 c- 0<0
0 0: -In 2 &- 0 04 1-- - 0- 0. M U. -KU. .4 0.1-
It -0 to -- JO> P.- U.C 01p- x1f- w u 00000

n. 220 :) m4 0.-2 42 x 1$- Ix U.4CU. Z.-W 00000
In - CL 0- x M U -C - 0.-a-0in 0. x 0. .. J>

I n 0 0 In 0n In 0 In
-C'4 N1 m' m. -W & inS

156



C!

a

to

v )

00

-:I LL
x

I-I--
:3 ( i U. z

0 0- m -j
0 -DC

0.- Li -
z - I a -

n 0 0 - Z f-L)J1
jE-I- - -c z rZCL 4L 2 LU.C 2 Z- x

4 0 CL 0L 4cWU.: -
" -, m) V) LWU

N, IL N. CL C0C L xmx mL .u u n CV- Z- W -it-m z u w I.v00
C4 1-- LU U) I- NU)01- < :7! : w

ozz zz z C:zo U)1 MJ 4 II. Z 02 0
4oo o q~ 0m ". -l -W 0

4- 0 mU) .. , LU 0 -j Ij0 U L - i i- i
-9 -. 0 4 1.- I 1. 0 0J- I . - J- J- J- -

-00 00 0 0094 -4 <) 4 4 0 <<- 4 0
0- 0-.-.-L =ZN. Z 0 U 0' UU 0

1- in 0 n0In-i 0 -A a
to Zo LUII

In~ - --4I -#- . 1-IL -1057



IaS

C4

I-
U.

C,!
x

0

IDI

TI- -

4-
0 I

i(0:0

0a0-

x L L

CL

15



Cmi

C)

4

in

00

Cl U
0t

'N L

21 C DI 0

zL Z- 0

:!~~~ U I:4
- -,z x

2i 4a >--C -:

.4. :) z - = -r
x z 4 5Z- U Z _

4-. U) ?0.1C3 c;
:3 L.I _ CL -l P- I.- .

UJ-. 0 -0. M) L a1. 0. U
P- C4 - 0=nL L Lm mm u r X - 0
lz x 0m 1-U)- Z- Z) LAL -C 2X 0X Z K- Z4 t
4u 4 P- a2 0 i ZZ U)- jZ .- : a o- . a

0 L > 0- Cli 60 .2 l 3
0 wZ c -. lX ,< x w ; ;-" 0 x- 04 i-U 24
Z i- - 4 I a U, uW a Z--:: z - '- 4 .L n -C co 0t- f
o -1 2-MU -- 0 U) U) U)6 LA00 ------ -0. 0 00 -l m uJ

00 --.- D 4 - -Cl 2)w I- 1-4 -CD m C
0-- 4o. -oN NN N NN W - 00 22 K~ C

;: Z w- ' - 0:- .- - -l -) -Z' I.U-1 -C- -l
z Z4 00I)O '- ---- u .-U ZO. U.-M.<LAa

U3 0U (A ~ ' O0 U 3 2a.024U.1-22zzc U)- .-
0 LU 2 0 0 0 00 0 0 o *---U)D D)---1 z 001 u - - C. U.0 1L L 0

1-4 W.-. -j~LllC~lU -.-. -j 1-j 0.LL u.0..0.".4 X001.U) a .-

0 O U Uii O3 i U I..aUlC.- 0 I IIIIZZ IZ Z i -i - .zi -i 4... ClC x - % - A
S.) wz ''- Z0 0 0.( 0000 00 0 at- U)xx x -o -o < UUil*)0 > N'C W

0 1J- -U02-U.22U2a. 1- -' m uwwwwwwwwwww < - 2 *000 <Z m-Cl
-K W 0 4 - . Ia .-4 0' wNI . N N N N 11 - 0 0 4* a

la M ,-O 2 - ax aaaa4 a10 w - - -- - 3) . I i li 1. 1C
q .4 N. ' ' 0 0 0 00 0 4 I- --- - 41

In .i 00 0 0 00 0 0 0 0 44444 444in 0 kZZI Z 0 In
U) ~ ~ ~ C ... 1- UU U UU U UU Un m VUU UU U U An #Au~.aa~. 4

444 LiiWi 159



C3

C!

co

C4

U):

U.

ON U.
-L * 0

b- < - Ci

.. z u

zw 0

ui 03 0 A
2 j .- U. 0

- -A .4-0
004=WO IIOI r ? 0 c. U

U) ~ L a Li- LI.. - 444449

0 w -0=0 I-~ ~ U. U.1--

0 a.

-U In 0 LA - Li

In) In1O4 e1% * Z-. - - 3, ..to

*$~ W ~ UJ U) )W160



LN.

c

W

C!

M
0

tn

U.4

Sj L

(C4
0)xC
(.4

Oa-

tA

LL.U

w- mznZ . .u

0 a L z- x C

uj U. L w Xtn --
I.--

uj LL. LL. U Z 3 C
Z - a X M 0 - - z L

3 -GO. .ZZ Z U

co a-
CA m 42 0I -0w0 -

lAz In -0. w- u In) xU.d

u u(U un
-U,x-~ ~

- U. In~l~nO -I'.161U



C!

C4

0z

I.-

U..

ICL

IA ' IL

L. m 0 (A

00. *W

- 4 2N
'A 0
-(A -j 0.

CL OU'C)

U. j 3-

In U, - - -j
OW~ ~ *W - CL

it-~ 0. 
.. 3) Z - i 2 0..:- I.- - U M 0.
CL0 .-1 .9 9. - -0.CL . L ,: I-- IL

IL IC ~ U.0.CL .- - 4 a.
I.. za1 x~ 0 C4W w

us Mi W LLu.uu I.- _j 0

.T L I L x
S- I- CL -C

M Ow ZZZZZZ a IZ
0 z atQ0

IA 2 .49 0800000 WO, 9 4wz
(A us we Q~~u a' % U Cc

IL IL

me- C4

0 u v u U u (UU u
usI

ac

S i 0 In 0
- - CN

162



0

-C
C,

4
0

an

z I.

W L.

WZ

, 00 Z -:) -e U.>> M (

Pan 0 . z

04K 0 I0 4c 4M LL. 1; M

-i Z-mi m -o X - 4

82FI -41- - -U. -a

0 L Z_ 0-acnX .U I-. > I M 4 -m
4 P- a z a .,.- - M * L

-m0 2-C 0 Z - LL

-o oa -o a CZ -CL Z :3 U. Z -

1% . 2 U -Z Wm Zm 00 Z; 0. Z

9- 01.- cr 0 0 - 4 W. an 0 n a a
de u:)- WU pe - I.- 4

in 9 : 01- a II I a 9- an . a -j - an & a -
Zul o Z uuuuu' 0 CY u >i a. a U 4 U 2

II In0 -- -- Z 0n ,( In ZO 4 .
9-~~~~ -n m2- i - - U 2 - -

-b 1639 -- 03 a o a 9 .~ U



ab

w

tn

C!

11,

cl

(0

ar

U...

0 a -C -

z . 0L

IX a 0i

0 0z 0

o ~ 0

m z it~,, 04C40zC
-1 zAU 0

.:. L(4 0 C4 -
r- F. -LC.C

3. 0 -nDa- 0 "3 an~z
J-19 0 z 07 1 0 C .- ,- m0E :. z F- - 0 Z- 0

0 ~ Z 00." w n 00OL0U C4a0 a w 
M JO 0. -L CLa u LU-C L

09 ~ 0 WU0
1'-u uu u IO - in.0 'D ---- W In~z

In 09 InZ in -0-0a -40 0 in

0 0 0 0 q 0m

a Cl v (E) Q164S



0

I.-

LL

W )

z -C
0C

Inl

I- 2-xu

I.- 0 cI-wU

z -

o a i- P-c c A (
12 4 : t L ; 0g

CL -3a w>

a. W)zxx- .7u
o- I- a: 21 --

. U) I. c U. En l -C (
< - IL w MM . CZ -- X Z

r U a U. U- 0, U.wI. )
v1-0. > Z at.- I-ua 2 4 w a .wa L isU

t-- a : 4 -9 2 z -U m- -

a ll a. CL0w0 0 0 z Z0 ol U 0" -
m~ ~ ~ I. Z W US zP-- 1- - . .-- .

m m - a 0 2 I-W 0 z- I-z
2 2 4.-m 0 0 - 4L U) U.0 4 I-4 u0 W
x 20 2, m u42u 0 :)1- a 0uu 2u " o u m

*w 0 Y I- 2 0 U) 0

U)~C1 4m W
WOfuu US- Q* u i-U) 2w Uo In

z ~ 0--u

in0 In--0 0 W in 1
03.- --- )-- U * U Ie0lf

- W~- ~rl~-.- - 2 4 165 1



LU

C!

0)

cc
IS

IT)
in

LLn

w LL

U,
4 2 / U. 0

-~M I-L . .
0 4 -2 U Z LL 0

4 - .LU -~0. La. 0.
2 -J I) 0; U. U C2 : U

D. OW - 0 0.
J 1- -Z- 0 w-

0 9- 00 4 0. U. W- #.U.L ( z c f

0 :z < 3 z . 4 UL . Z m

c2Uv - 0 Z U. 4 -w z z
4- 0 co -~ 0. 0. -, 1. 0. 0.

z m 4 0Z m0 M. a 4 L 3 a
02 .U .0 - - LU a. 2 0 0

Cz 0(l0z - . LU * 4 .
m 0 ZZ-0 0 V,) LI..z z. -

00-0 .- ',: -5 9M ; a I- -A P.- -i 0
m )a 0. c .:Z L 0 m 2 0.- : j -
D. . 0. n 000.- L UJ CL 0( (U)CL L

0 ) 0 l m0CC tj u.Ua0 U. U 2 u a ) LU 2 U

I. 1f10 3.. 0 U U J U
U' U IXU Z.0.N4. 0 ( U

c-3-n- N' 0 W . 0 4 - Ln 0
a- a- ( - 0 4 2 1 4 Z

0 U)(flU 2ZZ ZZ U) 2166



LCU

.
4

4>

In I0 L

C!

C.) >WL>

co a . OU

-W-

040
La 2w

LU L

+D L -C

In~( .- 4 ) )

211 C-1- w
In - Z .4 m LA

z~~ u l 0

'I az 0>

-. -n 04 -Z

,z LL <~ 0 L L)
tr(1 x C14 I. L U

(n1 LU <I. z-I -WW V) II C)

m (A Z-- U- W 14--1
Ix - 11(-U

a- w-. 0I C C- L 0 , LL: <
z (~ n LUa 17, 01 w

LU~~' -C D cc~U IC 1 'L
0 4Z 0- (A~n In n 11 0 - 0 1.--

cr -4 2i2 ZU U. Cf 4 -n Z- - 2 24(

a,.- I.- 110 LU -r ccCf LUL a
- -J D $.- --I *- -. W- -z (A ui w 0

- 0. * 0 0. CL .-. D- 0 LA. LU o- 2:i 0 JJ LJJ-..
-i u m 0 - 1.--- - .L L U.f 0- -In 0 CL~ -I -J U

01- -LU-.-00 .- = .- U- _j- -W M- .- _W 1Cr -j aD w
0 MuV) .-CfD -LU 1- -. J-.JMU-U- I< -1- J L 0 W-ALU

-j 01- 0Z- 0J - C3 0.-Ii - In U W- 0 ~
CL-J1 0 i-J----1 -- ;; U---U : - i ;U . 1- 7- . 01 I-oz - 0. 01

1- oz aI- xZJI11 I-') m- t .0 F- 4 - M 0 0O - -<0 0(A MI 7

Z--L "Z<. x 2 z" 2 0 00000 < -- 0 0- %,4n 04 in- 101~ U- - N. .WO0 00000 LU 0 - >3 - 2 -'I 00~~~~~~1 00 LN UUO U-I 1- - -- -I ~ - Co U'lW ~.U.
q 0 1-j 0I0-o.--4200nP. I- 1- 0! ?- z ACO O cc 3 3

C- LU 14. CL - WU. U.LU - 1-11--i 0 2 -j LU : La Zo - 0
N. C2 0.L CL -00A0.1 Z 3 -1 4 LU MJ0 re 0 In -. .. .. 4< -J

w - 0 Ir N' . .NNN 0 0. 00000 m. 1- 0LU- - CA - .1-0 "1 *110N . _44 <._j
f- m ~LU0 _j - 1- C4 oco (1 0 o ---------- X 0 WI-LU~~~~ Z;U z22 21 4 z; ---- 0-. i- LU Inq 1------.9 0

- 0000000002 0 LULLW I .W 0 m LUctN4N.rUIU

U3 LU UB A 2~ 32 2- - - LU I U - C, ctC crZ fx r -
=3 PI-O OC0000000- z C~II -~1 -0 000 00 OLZ In OOC'

(x ~ M0 I I
3. 3WJI 39 0C4 V) qT n 4 000

coo00 00 0 1- 000
0 00000 00 00 LU

C4 v 0 CD -

z

0 LUL - - -

CL) LU

toi 0 in 0 LA 0 In 0 In * 00-

0



a.uu U

4l 4 > 4C

4 4

). u >W
XI LU 1Uj

* u Wa aLu

LULU U > LU

c U, LLZW

"- I.-LU -
v U U U

Ix .M LN 2 cc
t- I-

v >. )-. -

U L

LULL

Ix

* L LU LU
r- - , - tU

z=C c z

ui LU LUJ

-4-4

0 Zw Z I.
cc a:

I- 0- 0 -

0 w - -C

r- - LU I.- LU

o: 0 zz a

(. N0 c 0 0n

-Cm V-AC4C

z >.
C im U.L I

w - -

S Lu

1168

C u---



'JJ

U

a.

In

In
Cmd

(0

M

0
a

In

14 z
%z

f- LU

S, z 2 :
I. -It z 0
0. N 04 .

0Z Z

N Z -

N Z N

S2 In Z Z

o 4 2 0 ~ ~ 169



Bibliography

1. Fraser, D.C. A New Technique for the Optimal Smoothing
of Data, Ph.D. Dissertation, Massachusetts Institute
of Technology, Cambridge, June 1967.

2. Fraser, D.C. and J.E. Potter. "The Optimum Linear
Smoother as a Combination of Two Optimum Linear Filters."
IEEE Transactions on Automatic Control VII, 4: 387-390.
(1969).

3. Hamilton, D.E. Evaluation of the Land Speed of Sound
Record Attempt by the Budweiser Rocket Car, unpublished
historical report, Edwards AFB, CA, July 1982.

4. Maybeck, P.S. Stochastic Models, Estimation, and Control,
Volume I and II, Wright-Patterson AFB, OH, 1982.

5. Meditch, J.S. "On Optimal Linear Smoothing Theory,"
Information and Control, XX, 598-615. (1967).

6. Musick, S.H. "SOFE: A Generalized Digital Simulation
for Optimal Filter Evaluation, User's Manual," Technical
Report, AFWAL-TR80-1108, Wright-Patterson AFB, OH,
October 1980.

7. Musick, S.H. et. al. "SOFEPL: A Plotting Postprocessor
for SOFE User's Manual," Technical Report, AFWAL-TR-80-
1109, Wright-Patterson AFB, OH, November 1981.

8. Neter, J. et. al. Applied Statistics, Boston, 1978.

1
170



VITA

Captain David A. Reinholz was born on 7 January 1952 in

Midland, Texas. He graduated from high school in Delavan,

Wisconsin, in 1970 and attended the United States Air Force

Academy from which he received a Bachelor of Science in

Aeronautical Engineering in June 1974. He completed pilot

training and received his wings in August 1975. He served

as a C-130 pilot in the 41st Tactical Airlift Squadron, Pope

AFB, North Carolina from January 1976 to April 1979. From

May 1979 to April 1982 he served as an instructor pilot and

Undergraduate Pilot Training Class Commander in the 47th

Flying Training Wing, Laughlin AFB, Texas. He entered the

School of Engineering, Air Force Institute of Technology, in

June 1982.

Permanent address: 10047 Windburn Trail
Converse, Texas 78109I

171



UNCLASSlI FIED
SECURITY CLASSIFICATION OF THIS PAGE

L REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBtJTIOF/AVAI LABILITY OF R12PORT

____________________________ Approved for public release;
2b. OECLASSIF ICA TION/OWNGRAOING SCHEDULE distribution unlimited

d PERFORMING ORGANIZATION REPORT NUMISER(S) S. MONITORING ORGANIZATION REPORT NUMSERtS1

S&. NAME OF PERFORMING ORGANIZATION li. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

hIfiapPlcable)

School of Engineering, AFIT/ENY
6c. ADDRESS (CIty. Sitet and ZIP Code) 7b. ADDRESS (city-state and ZIP Code)

Air, Force Institute of' Technology
wright-PaLterson AFB, Ohio 4543

$.. N4AME OF FUNOING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

SC ADDRESS (City. State and ZIP Code) 10. SOURCE OP FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
OLE MENT NO. NO. NO. NO.

11 TITLE ti,,cdude iecurity Cla.ittcation)

See Box 19
12. PERSONAL AUTHOR(S)

D~avid A. Reinholz, B.S., Capt, USAF
4.13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT 0'r Mo., Da") 5S. PAGE COUNT

ivSthssFROM ___ TO___ 19b3 DecemierIlUZA07
16. SUPPLEMENTARY NOTATION c 3 Je ~ ? - ~ - l~lpel

I?. COSATI CODES IS. SUBJECT TERMS (Con tiue on railt: 01111t f'~ lcknmbr

FIELD GROUP SUB. GR. Kalman Filter, Extended h"alznan Filter,
0( o Data Smoothing, optimal i-moothinZ, Estimation

1B ABSTRACT C,,ntinuir on rev~erse if necesary and identify by block numb.r)

litles STOCtiASTIC ESTV1AT1ON APPLIED TO The.i
LAND SPEEDi 0? SOUND RECORD ATI&V1PT
BY A ROCKET CAR

thesis Chairman: James K. Hodge, Captain, USA1i

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURIT CLASSIFICATION

UNCLASSIFIED/UNLIMITED 14SAME AS RPT. 0 DTIC USERS 0UNCLASSIlit

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22C. OFF ICE SYMBO L

James K. hodcge, Captain, USAF? 15 ' AFIT/ENY

DO FORM 1473, 83 APR EDITION OF I JAN 73 18 OBISOLETE. UCASFE
SECURITY CLASSIFICATION OP THIS PAGE



UNCLASIr'I ED
SECURITY CLASSIFICATION OF THIS PAGE

Optimal linear smoothing theory is applied to the data
from the land speed of sound record attempt of a three-wheeled
rocket car on 17 December 1979. A forward-backward estimation
method is used which employs a seven state forward-running
extended Kalman filter and a Meditch-form backward recursive
'fixed interval' smoothing algotithm. Data for this analysis
is supplied by a longitudinal accelerometer mounted on the vehicle
arid tracking radar measurements of range, azimuth, and elevation.
States of interest include two components of venicle position
and velocity, accelerometer time-correlated error,and radar
ranoe and bias errors.

i wo iterations of the forward-backward'smoothing algorithm
provide excellent convergence of state estimates and error variance.
Based on this analysis a peak speed estimate of 1082.028 ft/sec
or 1.008 Mach is obtained at 16.85 seconds from the start of the
hir;h speed run. After two iterations of the smoother the standard
deviation of the peak speed estimate is reduced to 1.055 ft/sec.
We conclude with a confidence level of nearly one, based on the
assumptions and modeling techniques employed in this analysis,
that the rocket car did, in fact, exceed the relerence speed of
sound on 17 December 1979.
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