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Abstract
\ -

';/Optimal linear smoothing theory is applied to the data
from the Speed of Sound record attempt of a three-~wheeled
rocket car on 17 December 1979. A forward-backward estima-
tion method is used which employs a seven state forward-
running extended Kalman filter and a Meditch-form backward
recursive "fixed-interval" smoothing algorithm. Data for

this analysis is supplied by a longitudinal accelerometer

mounted on the vehicle and tracking radar measurements of
range, azimuth, and elevation. States of interest include
two components of vehicle position and velocity, accelero-
meter time-correlated error, and radar range and azimuth bias
errors.

Two iterations of the forward-backward smoothing algo-
rithm provide excellent covergence of state estimates and
error variance. Based on this analysis a peak Speed esti-
mate of 1082.028 ft/sec or 1.008 Mach is obtained at 16.85
seconds from the start of the high speed run. After two
iterations of the smoother the standard deviation of the peak
speed estimate is reduced to 1.055 ft/sec. We conclude with
a confidence level of nearly one, based on the assumptions
and modeling techniques employed in this analysis, that the
rocket car did, in fact, exceed the reference speed of sound

on 17 December 1979.
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STOCHASTIC ESTIMATION APPLIED TO THE
LAND SPEED OF SOUND RECORD ATTEMPT

BY A ROCKET CAR

I. Introduction

Filtering Theory

Any engineering problem inherently involves the use of
measured or calculated information. The engineer bases his
decisions on a variety of issues by using mathematical models
cf the "real world" to predict results obtained by experimen-
tation. The mathematical models seldom describe every factor
impacting a particular issue, but are simplifications in
order to describe the most important characteristics of the
problem and maintain tractability. Likewise, no measurenment
device can be considered "perfect", no matter what accuracy
is claimed. How, then, does the engineer meet the ever-in-
creasing demand for accuracy when he must rely on imperfect
models and measurement devices?

One method for obtaining better answers is to model the
important characteristics of a system and include the effects
of model simplifications and measurement imperfections. This
is the basic idea behind filtering theory, developed by sev-
eral individuals, most notably Kalman. Filtering theory is
concerned with estimating the "state" or status of a system

of interest at any time, t; ., by incorporating the time

e N




history of measurements up through time t. . Another
method of estimation, called the predictor algorithm, com-
putes a state estimate at any time, t; , based on the time
history of measurements received before time, ti « The
"Kalman filter” algorithm combines both prediction of the
state estimate before time ty and correction of this pre-
dicted value based on the measurements received up through
time ty . With the advent of high-speed digital computers,
the "Kalman filter" has proven to be very suitable in a num-
ber of applications most frequently in guidance and control
problems. In this implementation, state estimates are gener-
ated in an "on-line'" manner utilizing the measurement time
history up through the time at which an estimate of state
values is required. When the entire time history of meas-
urements over a particular time interval of interest has been
recorded, "off-line"” estimation methods can be implemented.
In this case, a "smoother" algorithm can be employed to gen-
erate state estimates based on all of the measurements, before
and after any time ty . Since the smoother algorithm has
more information available for state estimation, it is the
preferred method for post-run data analysis.

The Kalman filter algorithm requires a linear model to
describe the dynamics of a particular system and a linear
relationship between available measurements and the states
of interest. More often than not, the system model or obser-
vation relationships are non-linear. This requires lineariza-

tion about some reference values for the states as in the
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"linearized Kalman filter"”, or re-linearization about the
current state estimate provided by the "extended Kalman
filter"”. The extended Kalman filter is most appropriate
when the nominal (reference) state trajectory is unknown or

when deviations from the nominal trajectory may become severe.

Application of Theory

The purpose of this report is to apply estimation theory
in post-run data analysis of the "Budweiser Rocket Car" speed
of sound attempt. The method used is to develop an extended
Kalman filter to describe the vehicle dynamics and available
measurements of vehicle position provided by a tracking radar.
The events leading up to this unique event have been well

documented in many publications, most notably Road and Track

Magazine, April 1980. It is not my purpose here to provide a
historical account of the "Budweiser Rocket Car" or to analyze
Air Force involvement in this project. However, some brief

background information may be helpful.

Description of Rocket Car Test

In the summer of 1979 a company known as Speed of Sound,
Inc. (SOS) requested and received permission from the Air
Force to use Rodgers Dry Lake at Edwards Air Force Base.
Their purpose was to drive a rocket-powered land vehicle at
the reference speed of sound. If successful, their rocket
car would be the first to attain such a speed on land. The
"Budweiser Rocket Car" was not designed for high sustained

speeds due to very limited fuel storage capability and short




duration thrust augmentation (Sidewinder motor). The SOS
plan was to reach peak speed very quickly and then slow to

a stop. For these reasons, an official "land speed record”
attempt would not be made. The Air Force Flight Test Center
(AFFTC) provided a safe test area for conducting high speed
runs. The speed runs were not allowed to impact in any way
with normal operations at the base, and the government was
reimbursed. At the request of S0S, the AFFTC provided com-
puter analysis of the final high speed run.

The test track used for all the high speed runs at
Edwards AFB began at the northwest corner of Rodgers Dry Lake
(Fig. 1.1). The starting position varied but was located ap-
proximately 200 feet from the lake shore. The course followed
a straight line on a heading of nearly true south fromhremote
camera site A8 to the intersection of lakebed runways 17/35
and 15/33. From here it made a 12 degree turn to the right
and followed runway 17 to the end. This turn began at about
the seven mile point and had a radius of five miles. Use of
the curve was required to take full advantage of the length
of the lake and would only be used if the normal deceleration
systems on the vehicle (parachute and brakes) failed. Every
quarter mile along the course there were a pair of yellow
flags mounted 30 feet either side of centerline to help guide
the driver. Special red flags were used to signal the driver
when to fire the thrust augmentation system. Approximately
two miles from the starting position was a photoelectric

"speed trap" system erected by the Federation Internationale



SE-Y -
‘18
& v p
o . )
§ > S
0 7
4 Y

& i
w3

’
4
A /
g . / \
- \ . ~NI5
N . /
> )
> 7. B ; 6 “‘(

. > 5%
! : Vo (] o W //
’ G \‘:-‘\ Ay ’ -

\) et
e 0“‘ \ o < “.‘ N \ \
) ) ! R N\ \
- .- - -t .‘1...__74 — e - N\ | \. -
| wdl— i L S N R
.’ N < / ,x‘ A . L \‘\
ov -1 ! ~ ' . /(,:‘()T‘\"'/( @
: -~ . L7 ialp .
3) / &/ ‘ S .’/ 3 A\
v H A}
U R ) . - / p A
1 . - [ S SR \ SN Pl P a
\ee. SO\ D 3 A \,,\" ‘\S/: , T

Fig. 1.1 Rodgers Dry Lake Test Area



des Motorcyclistes (FIM), official speed recorder for the
event. The "trap" was actually a series of four precisely
measured gates lined with lights that would flash at very
precise time intervals to measure average speed through the
gate. The traps were installed and not moved during the runs,
which posed a difficult problem for the SOS engineers.

The idea was to hit the FIM speed trap at peak velocity
which would presumably be just as the main engine or augmented
system ran out of fuel. The speed was gradually raised on
each successive run by increasing the amount of main engine
fuel and adjusting the timing for Sidewinder ignition. The
point at which the vehicle would reach peak speed for a given
fuel load/configuration was estimated using a simulation of
vehicle performance. Based on the data from this simulation,
the starting position was adjusted to reach peak speed at the
traps. In most cases the peak speed was seldom achieved at
the traps but slightly before due to underestimated vehicle
drag (3). The speed trap system proved to be a very unreli-
able measurement of peak velocity due to the problems stated
above.

In addition to the FIM speed trap system several other
instruments were used to record speed. A magnetic pickup on
a rear wheel was used to convert wheel rotations into veloc-
ity. This device proved to be useless above 500 miles per
hour due to inadequate frequency response of the device and a
severe buildup of dirt over the run. A pitot tube installed

on the nose of the vehicle measured air speed. Due to




compressibility errors near Mach one and the unknown influence
of ground effect this device was not considered reliable (3).
Longitudinal and lateral accelerations were measured by a set
of accelerometers installed on the vehicle. Accelerometer
data was not used to find velocity by the S0OS engineers, only
as a check on the number of acceleration units (g's) the
driver was exposed to. Data from these devices were recorded
via frequency modulated (FM) telemetry. An Air Force track-
ing radar was used to track the car and provide a backup of
vehicle performance. This radar coverage was considered
training for the operators and in no way impacted on any mis-
sion requirements at Edwards.

On the final day of the high speed runs, the fuel load
on the vehicle was increased to maximum capacity and a Side-
winder motor was installed. The run was set for early morning
to take advantage of light winds and lower temperatures.
Radar coverage was provided by a tracking radar located ap-
proximately 4.5 miles from the starting position on a hill
overlooking Rodgers Dry Lake (Fig. 1.1). Temperature at the
speed trap was recorded by an FIM official as 20 degrees Fahr-
enheit. Using the familiar relationship for the calculation

of the reference speed of sound, a,

a = JyRT (1-1)
where
'z ratio of specific heats for air = 1.4
R4 gas constant = 1715 ft2/sec2-R
TA temperature in degrees Rankine = 479.66 R

5




we find

a = 1073.536213 ft/sec = 931.956 mph
The speed of sound depends primarily on the temperature of
the air. The value at a given temperature can also vary due
to changes in relative humidity. For this analysis, we have
no information on the accuracy of the FIM temperature record-
ing system, or relative humidity. Since the run was made in
desert conditions we assume any changes to the calculated
speed of sound due to relative humidity can be ignored. We
also assume that the recorded temperature of 20 degrees is
exact. The calculated speed of sound is used as a reference
velocity to compare rocket car performance. A peak speed of
931.956 mph, therefore, was the goal of SOS people.

At 0726 Pacific Standard time the main rocket engine
ignited, followed 12 seconds later by ignition of the Side-
winder. The vehicle ran out of fuel about a fifth of a mile
prior to the speed traps and thus was already decelerating
as it passed through them. The four traps showed the vehicle
speed to be 666,234 mph, 646.725 mph, 640.112 mph, and 632.522
mph, respectively (3). Since the speed trap measurements
were made after the vehicle had reached peak speed they could
not be used. The radar measurements would have to provide
the estimate of top speed. Unfortunately, the radar range
broke lock at the critical point during the run and followed
a larger vehicle running parallel to the test track and ap-
proximately 1500 feet beyond the rocket car. After two

seconds the radar again picked up the car. The Air Force




radar became the only check of actual vehicle performance
with the FIM speed trap system unavailable and unreliable
wheel speed and air speed indicators. The radar azimuth and
elevation data were considered valid for the following rea-
sons (3). The Air Force radar operator used a television
monitor aligned with the axis of the radar dish and manually
ad justed azimuth and elevation tracking rates. Using a set
of "cross-hairs" on the monitor, the operator kept the car
centered on the television screen. To attempt to correct
the erroneous range data, another vehicle was driven over
the tracks of the rocket car. The same tracking radar fol-
lowed this vehicle and measured range and azimuth. Azimuth
data from the rocket car and this second vehicle were aligned
and a corrected range measurement for the rocket car was
found. Based on this corrected range data, Air Force com-
puter analysis showed three data points above the reference
speed of sound, 731.96 mph. Speed of Sound, Inc. averaged
these three points and claimed a maximum speed of 739.66 mph
or 1.0106 Mach.

Speed of Sound, Inc. elected not to make any more high
speed runs as the engineers felt they could get no more per-
formance from the vehicle and the driver had complained of
stability problems. Thus, the speed of 739.66 mph became the
"official" figure that was claimed as the top speed of the

"Budweiser Rocket Car".




Method of Analysis

The data available for this analysis includes raw radar
range, azimuth, and elevation sampled at 20 points per sec-
ond. Also we have the data from the longitudinal accelero-~
meter which measured specific force continuously. The te-
lemetry data for the accelerometer is digitized at 250 sam-
ples per second. Using these data sources, a model for the
dynamics of the vehicle is developed and put in proper form
for use in an extended Kalman filter algorithm. A measure-
ment model for the radar measurements is used to relate the
states of interest to the available measurements. To find
the best estimate of vehicle performance with the lowest
achievable error, a "fixed-interval' smoother algorithm is
used. The filtering theory used in this analysis and specific
modeling methods are developed in the next two chapters.
Chapter IV will present the results of the extended Kalman
filter, while Chapter V details two iterations of the ex-
tended Kalman filter-fixed interval smoother estimation
scheme. Finally, Chapter VI will present a hypothesis test
of the peak velocity estimate and give a confidence level for

this estimate.
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II. Background Theory

The problem as defined in Chapter I is to obtain better
estimates of vehicle position and velocity by proper modeling
of vehicle dynamics and measurement devices. By combining
data from all measurement sources and including the effects
of identifiable errors and noise through the use of a Kalman
filter, one hopes to get improved state estimates. The
standard form for the model to describe the dynamics of a
problem for which a Kalman filter is to be developed is a
first order vector differential equation. Generally, a dis-
crete-time (sampled data) measurement model is used to relate
observations to the states of interest. The basic Kalman
filter equations will be presented here with little explana-
tion., It is assumed that the reader is generally familiar
with Kalman filtering. An excellent text on this subject is

available by Maybeck (4).

Linear Kalman Filter

The basic equation to describe system dynamics has the

following continuous-time form:

x(t) = £flx(t), ul(t), t] + g(L)u(t) (2-1)
wvhere
x(t) - n-state vector
u(t) - r-input vector (controls)

£ - dynamics vector (possibly non-linear)

11




G(t) - time dependent coefficient matrix (n-by-s)
w(t) - zero-mean, white Gaussian noise s-vector of

strength Q(t) such that

efw(t)w(t+T)T] = Q(£)8(T) (s-by-s) (2-2)

where 5§(T) is the Dirac delta function. Available dis-

crete~-time measurements are modeled by the following relation

z(t,) = hlx(t),t ]+ v(e;) (2-3)
where
£y - discrete measurement time
z(t,) - m-vector of discrete measurements
h - measurement model vector function (possibly

non-linear)

x(t.) - n-state vector |
v(t.) - zero mean, wvhite, Gaussian discrete-time m-vector
noise process, independent of system noise and

of covariance g(ti), i.e. such that
T 2 —by- -
Efv(t;)u(ty) ] = R(t;)8, 4 (m-by-m) (2-4)

The initial condition on the state is only known with

some uncertainty, and is modeled as a Gaussian random n-vector,

assumed independent of w(t) and y(t;) , with mean and
covariance:
E[x(t,)] = 2 (2-5)
A AT
E[(&(to)—go)(ﬁ(to)—go) 1 =B, (2-6)
12




The Kalman filter algorithm is most easily generated
when the dynamics and measurement models are linear relation-
ships. If the vectors f and h are linear combinations of the
states, the dynamics model and measurement relation become

linear relationships:
x(t) = E(t)x(t) + B(t)ul(t) + g(t)w(t) (2-7)

E(ti) = ﬁ(ti)ﬂ(ti) + !(ti) (2-8)

where F(t) and g(ti) become time-dependent (or possibly
time invariant) coefficient matrices of dimensions n-by-n
and m-by-n, respectively, and B(t) 1is an n-by-r matrix
relating control inputs to the dynamics model.

The Kalman filter incorporates measurement updates

using the following relations:

- -\ T -l -1

K(t;) = P(e; DH (£)[H (¢R(ETIH (£)) + R(£) 7T (2-9)
(£.%) = R(e:7) + Kt (2. -H(t)x(t; )] (2-10)
e B R L S SRR R s B -

+ - -
P(ti ) = B(ti ) - K(ti)ﬁ(ti)g(ti ) (2-11)
where

ti‘ - before measurement update at time ti

ti+ - after measurement update at time t,
K(t;) - Kalman filter gain matrix (m-by-n)
x(ti) - n~state estimate vector

- m vector of measurements

P(t.) - error covariance matrix (n=-by-n)

13




The state estimate and covariance are propagated forward to

. o, A
the next sample time from the initial condition, §(ti 1+)
and g(ti_1+) at time t. , , by integrating
A A '
z(t/ti_l) = E(t)é(t/t1_1)+§(t)g(t) (2-12)
. _ T
P(t/t, ) = E(R)R(t/t; )*+R(t/t, _)E (t)

+e(e)Q(t)a(t)T  (2-13)

where t/ti » indicates integration forward from the pre-

-1

vious measurement update time, tio1 -

Extended Kalman Filter

The case where either the vector of dynamics relations,
£, or the measurement equation vector, h, is non-linear in
the states requires special consideration. The method most
commonly used when system dynamics or measurement non-line-
arities exist is the "extended Kalman filter". The approach
used in this method is to relinearize the dynamics and/or
measurement equations about the most recent estimate of the
state, g(ti“) , at update time, or g(t/ti_l) in the
ensuing sample period. Thus, the matrices F, H, K, and P
are evaluated by knowing the most recent estimate of the
nominal (reference) state trajectory.

The system matrix, E(t) , in (2-13) and observation
matrix, g(ti) in (2-9) and (2-11) become partial derivative

matrices in the extended Kalman filter:

14




Cesh - 3flx(t),u(t),t]
Flt;x(t/t )] o=
-7 -1 3x X = ;\_c(t/ti_l) (2-14)
3h[x(t.),t;]
B_[ti;;\_{(tl-)] = = 2 A _
X x = x(t; ) (2-15)

In equations (2-14) and (2-13) the differentiation is done so
that the derivative of a scalar with respect to a column vec-
tor is a row vector. The matrices resulting from this dif-
ferentiation have dimensions n-by-n and m-by-n, respectively.
These matrices relate small perturbations in the state vec-
tor, x(t), to changes in the equations for x(t) and g(ti).
The F matrix is called the "filter dynamics partial matrix"
and the H matrix the "measurement sensitivity matrix". De-
fining the perturbation of the state, x(t), from its current
estimate, g(ti-) as

Ay

sx(t) 2 x(t)-%(t;7) (2-16)

the perturbation 8x(t) is called the error state while x(t)
is the full state.

We expand equations (2-1) for é(t) and (2-3) for z(t;)
in a Taylor series about the current state estimate in
powers of 8x(t). Since 6x(t) is assumed small, powers of

6x(t) higher than one are ignored. We arrive at the follow-

ing linearized perturbation equations in 8x(t):

sx(t) = E[tsk(t/t, 1)Jox(£)+a(E)u(t) (2-17)

15




A
sz(ty) = Hle sx(t, ) Jex(e ) +v(t;) (2-18)

i
where F and H are defined as in (2-14) and (2-15), respectively.
Equations (2-17) and (2-18) are in the proper form for

use in a conventional filter. Thus, an estimate éi(ti+)

of the error state 5x(t) can be made from perturbation
measurements, gg(ti) , using equations (2-9) through (2-11).
The measurement difference gg(ti) is called the residual,

It is formed by subtracting the predicted measurements

A
z(t;) from the actual measurements z(t.)

s2(t,) = z;-nlx(t,7),t;] (2-19)

Equation (2~10) provides an updated estimate of the error

A +
state, b&x(t.”)

i . By using eguation (2-16) we can obtain

)

+

A
an updated estimate of the whole value state, gc_(ti

;\_c(t-;) = g(ti‘)+§}<_(ti+) (2-20)

This equation places all of the available information into
the whole-value state estimate. This allows §x(t,") to be
reset to zero for propagation of the state estimate to the
next update time. At any time, ti,gg(t) has a conditional
mean, éi(ti) , ‘and conditional covariance gé(ti) such
that:

ELox(t,)|2(t)] = 8x(t,) (2-21)

1

and

16




A

A
Etrg_(ti>-6_>_<(ti)3[é_x(ti)-§5(ti>]Tiz(ti)] = P (t;)  (2-22)

where g(ti) is defined as the entire measurement history
up through time t; - If we assume a zero mean initial con-

dition on the error state,

dx(ty) = 0 (2-23)

\
~hen :ix(t) will be zero over the entire interval between

ipdates such that:

A
§x(t) = 0 for t.

i-1 St E (2-24)

alth 25(t1°1 zero, the error state update equation from

(2-10)
fx(t.*) = {x(t.=)+R(t,)6z(t,) (2-25)
- 1 -_— 1 - 1" — 1
simplifies to
gx(t;*) = K(t;) sz(t) (2-26)

which upon substitution into the full state update equation

(2-20) produces

A

X(t,*) = X(t,")+K(t)sz(t;) (2-27)

where 5§z(t.) 1is given by (2-19).

- Consider the conditional covariance, Eﬁ(ti) of the
error state, 8x(t) , given by (2-21). We wish to relate
this.conditional covariance to the conditional covariance,

g(ti) of the whole state, x(t) . From (2-21)

By (t))

A A
) = ECCsx-sx]sx-6x1"|z(t)]

E[[g§][§§]T|§(ti)] from (2-24)

17




i

E[[§—2][§-%]Tlg(ti)] from (2-16)

B(t;)

Thus, the error covariance of x(t) 1is identical to that of
8x(t) . Equations (2-13) and (2-11) describe the propaga-
tion and update of the error state covariance, P(t) , with
E(t) and H(t) 1in these equations replaced by equations
(2-14) and (2-15), respectively.

The extended Kalman filter algorithm is summarized here.

The measurement vector at time ti,g(ti) y 1s incorporated

using
_ =\ T A-']
K(t,) = B, DHE [t5x(t,7) X
Ca(t sX(t “yle(t, HHt sx (¢ T)I+R(£) 7Y (2-28)
S S T R Rt Sl | i
x(t,%) = x(t,T)+k(t, [z, -nlk(e, ™), €, 1] | (2-29)
i =i ERS LS T ot G T |
+y L - A - -
P(t;7) = B(t;7)-K(eH & 5x(e;7) JB(E; ) (2-30)
The estimate is propagated forward to the update time, ts
from the previous update time, tiqg by integrating
A A
x(e/t; ;) = flx(e/t; ),ule),t] (2-31)
and

. B A T A ]
B(t/t, ) = ELesx(e/ty ) IR(e/e; ()+P(t/t; )E Cesx(tr/e; )

T

+G(t)Q(t)G(t) (2-32)

from time ti-l to t, , using the initial conditions pro-

vided by:

18
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(£ _1/t;1) ) (2-33)

B(t; /85 1) (2-34)
Upon integrating (2-31) and (2-32) to the next update time,
t; » x(t;7) and B(t;,”) are defined as

A

A -
x(t;7) = x(e /8 ) (2-35)

B(t; ) = B(ty/t; ;) (2-36)

1 1

A
where the time notation ti/ti indicates that §(ti/ti_1)

-1
has been integrated to time t, but is conditioned on meas-
urements through ti-l only. Thus, the initial condition
for propagation of the state estimate and covariance from

one sample time to the next is constantly being redeclared

A
based on the most recent state estimate, E(ti_1+) and co-

. +
variance, B(t;_ , ) .

Fixed-Interval Smoother

The standard Kalman filter algorithm can be called
"forward-running” in the way current state estimates are com-
puted. Several authors, including Meditch (5) have shown
that the state estimate and covariance can be calculated
more accurately by allowing access to "future" measurements.
The values for the state and covariance at time ti from a
forward-running Kalman filter are optimally combined with
estimates of these quantities from a "backward-running" Kalman
filter. This type of algorithm was developed by Fraser (1,2)

and is called an "optimal smoother".
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The Fraser form of the optimal "fixed interval" smoother

incorporates a "backward filter" that propagates the state
estimate and covariance backward in time from the respective
boundary conditions at the final time of interest, g(tf+)
and g(tf+) . At each time of interest, t. the state

estimates and covariances from the independent forward and

backward filters are optimally combined to yield a "smoothed"

state estimate and updated covariance. Such an algorithm is
described in detail by Maybeck (4). The optimal smoother
has the advantage of being able to "see” the entire measure-
ment history through the final time, Z(tf) . Calculations
of the state mean the covariance conditioned on all of

2(t , and not just the "current™ g(ti) , by this method

o)
can significantly improve state estimation primarily by
using the future data.

Meditch (5) has shown that a mathematically equivalent
algorithm to the combined forward/backward filter scheme can
be used. The Meditch form of the "fixed-interval smoother"
algorithm uses the output of a forward-running Kalman filter
where the state estimates and covariances before and after
+

) , PB(t.7) , and

A - A
measurement update x(t. Y, x(t, i

=71
+ . s s . .
g(ti ) , respectively, from the initial to final time have
been stored. Starting from the boundary conditions at the
final time, te

) (2-37)

]
%>
o+

A
§(tf/tf)

) (2-38)

n
o
o+

B(t /t,)
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the smoothed estimate is generated backward in time using

A A - A A -
—x-(ti/tf) = )—((tl )+é(ti)[§(ti+1/tf)_§(ti+l ):l (2-39)
where the "smoothing estimator gain matrix®” é(ti) is given
by

A(t;) = B(e, )8 (e, e )R (e, 7 (2-40)

and I(t.+1,ti) is the state transition matrix for prop-
agating adjoint system quantities backward in time (4).
The covariance of the zero mean Gaussian estimation
A
error [§(ti)-§(ti/tf)] can be generated backward from the

boundary condition by
+ - T
B(t,/t.) = B(t; )¥Alt )[B(t, /e )Rt ) ]A" (£)) (2-41)

The method of analysis chosen to analyze available data
from the rocket car is to develop such a "fixed-interval
smoother" algorithm based on the state trajectory (time
history) generated from an extended Kalman filter. The ex-
tended Kalman filter will be shown as the appropriate choice
due to non-linear measurement relations. The amount of
pseudo-noise is adjusted to achieve optimum filter perform-
ance in a "tuning" process described more fully in Chapter
IV. The next chapter describes the methods used to model
vehicle dynamics, errors to be estimated, and available meas-

urements for implementation in an extended Kalman filter.

21




III. Modeling Technigques

System Model

The test track described in Chapter I has no surveyed
positions from which to reference vehicle position. The best
information on the starting position is provided by the radar
which was set on the vehicle for several minutes before the
start of the high speed run. It is this position provided by
the radar to which changes in vehicle position are referenced.

The coordinate system for the dynamics of the rocket car
is chosen as a Cartesian system fixed at the starting point
of the run. This system is shown in Fig. 3.1 and has the
X-axis aligned with the straight portion of the test track
(true south) and the y-axis aligned with true east. The time
interval of interest is the first 24 seconds of the run, as
the vehicle achieved its maximum velocity at approximately
17 seconds into the run. Thus, the velocity and position
along the x and y axis is taken with respect to a fixed posi-
tion on the earth corresponding to an inexact starting posi-
tion. The elevation of the car is ignored due to minimal
change in vertical displacement (+ 20 feet). Therefore, the
coordinate frame we are concerned with becomes planar or
two-dimensional. Post-run inspection of the test track in-
dicated that the vehicle deviated very little from track
centerline (3). Therefore, y components of position and
velocity are minimal with the motion restricted to the x-axis

almost entirely.
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No information is available on engine thrust or vehicle
drag for use in a model of these forces as they relate to
the acceleration and time-dependent mass of the vehicle. We
have only the specific force measurements from the longi-
tudinal accelerometer. Thus, the model chosen to represent
vehicle dynamics is a straight-forward two-dimensional kine-
matic model. In such a model, the components of acceleration
are the time derivatives of the velocity components. The
velocity components, in turn, are the time derivatives of
the position components. In addition to the components of
position and velocity, we desire to model inherent errors in
the accelerometer and radar. These error states are "aug-
mented" to the states of position and velocity in order to
estimate their value and compensate for their effect.

No data from the lateral accelerometer is available, so
we cannot estimate accelerometer misalignment error. The
tremendous vibration of the vehicle at high speed can con-
ceivably cause a time-correlated error in the longitudinal
accelerometer. Scale factor (due to digitizing accelerometer
data) and bias error are neglected due to lack of information
and observability problems associated with trying to estimate
more than one error term in a single accelerometer configura-
tion.

The radar range and azimuth measurements are assumed to
be corrupted by some unknown bias (constant) errors. Very
little information is available on the accuracy of the radar

or types of inherent errors, so that these bias terms are
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the only assumed inaccuracies in these measurements. Thus,
the additional states to be estimated include one error

state for the accelerometer, and two error states for the
radar. Lack of additional measurements and resulting ob-
servability problems precluded the identification of any
other errors. It will be shown in the next chapter that even
these states are only weakly observable.

The states to be estimated become:

position component along X-axis

Xy - position component along y-axis

Xq = velocity along x-axis

X, - velocity along y-axis

Xg - longitudinal accelerometer time-correlated error
Xg = radar range bias error

X4 - radar azimuth bias error
The first four states are related by deterministic means
(i.e., velocity is the first derivative of position, etc.).
The error states are modeled as stochastic processes in the
following manner.

The time-correlated error of the accelerometer is modeled
as a first order Gauss-Markov process, the output of a first
order lag, which is driven by white, Gaussian noise. Figure
3.2 shows the output of the longitudinal accelerometer in-
dicating the extreme fluctuations in specific force sensed
by this device. Such rapid fluctuations are due to extreme
vibrations caused by rough ground and engine "pulsing” (3).

Conceivably, the accelerometer error state can also vary
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due to such vibration. We desire the filter to continually
"expect” changes in this error and estimate them. With nc
better information on the types of inherent errors in this
accelerometer, the first-order lag model is chosen. The
initial choice for correlation time, T, is one second. This
is a subjective "guess" of how much this error will vary over
time,

The error states on the radar are not expected to vary
significantly, if at all, during the 24 second time interval
of interest. Consequently, these states are modeled as ran-
dom walk.

Random walk is defined as the output of an integrator
driven by white noise, while a random constant is the output
of an undriven integrator. A random walk model for an error
state indicates to the filter that we are not "absoluﬁely"
sure the value of this state never changes. The values for
radar bias errors are allowed to vary (slowly) over the time
interval of interest. By using such a model for the radar
bias error states, the filter gains in these channels remain
non-zero and so the filter is able to detect changes in
these states. If a random constant model were used, the
filter would assume that once it calculates a value for these
states, they will not vary. Thus, random walk is preferable
to the random constant model without detailed information on

the radar error characteristics.
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The first order differential vector dynamics model for
the propagation of the seven states of interest plus addi-

tive "driving"” noise becomes:

il(t) = X4

xz(t) = X,

x3(t) = a +x(t)

X (t) = wylt)

xg(t) = -1/Txg(t)+w(t)

Xg (£) = wg(t)

X, (8) = w,(t)
Here w(t) 1is a white Gaussian vector noise process of
strength Q(t) over the time interval [to,tf] . Off-line
"tuning" of the system noise matrix, Q(t) , can be used to
match the available data as closely as desired. This was not
done in this analysis. Instead, the ncise matrix, Q(t) 1is
ad justed "on-line” in a performance analysis in order to
achieve lowest possible variance in the state estimates. The
results of this tuning process are detailed in the next
chapter.

In the system model presented above the longitudinal ac-
celerometer output a, is used to "drive" the propagation of
the x component of velocity. The output of the accelerometer
is corrupted by a time correlated error which is expected to
vary frequently during the run. With no lateral accelero-
meter data available, we assume the y velocity component,

X , 1s well modeled as a constant with zero value. A

4
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small amount of “pseudo-noise” is added to this state to
allow the filter to estimate deviations in the y velocity
from zero. Small amounts of pseudo-noise are added to the
radar error states, Xg and Xa s for the same reason. The
amount of pseudo-noise is adjusted to achieve optimum filter
performance in a "tuning"” process described more fully in
Chapter IV.

The model for the accelerometer time-correlated error
deserves some further explanation. We have chosen a Gauss-
Markov process, which is the output of a first order lag of
the form:

x5(t) = -1/Txg(£)*+ws (t) (3-1)

where T is the correlation time.
The concept of a time-correlated random process, x, can
be generalized from the "second central moment" or covariance

matrix, gxx(t) , defined as

A
B (t) = E[[;(t)-mx(t)][g(t)-_mx(t)]T] (3-2)

where m (t) is the mean. This covariance is an indication

of the spread of values about the mean at time t. General-
izing (3-2) we can obtain additional information about how

fast x(t) sample values can change in time. The covariance

"kernel", P (tl’tZ) , 1s defined for all ¢t tz in some

1’
time interval T as:

P (tysty) = ECLx(t))-m (£ ) 0x(ty)-m (£,)]"] (3-3)

29




For zero mean processes (3-3) becomes the "second non-central
moment" which generalizes to the "correlation kernel” (4)
defined for all t

t, €T as

17 72

A
T
Yo ltyaty) = ELx(t))x(t5)"] (3-4)
From (3-3) and (3-4), it can be seen that

¥ (Eoty) = B (b ,t5)+m (£))m (£)7 (3-5)

and thus, if x(t) 1s a zero-mean process, g&x(tl,tz) =
gxx(tl,tz) . A scalar time-correlated random process
x(t) of zero-mean has a correlation kernel function (4) of

the form:
g TLEymtplsT
\lfxx(tl,tz) = P (tyrty) = 0"e (3-6)
where T 1is the correlation time. If we compare this random
process x(t) to another zero mean process y{(t) with cor-
relation time ten times that of x(t) such that
, -Lty-t,J107
‘l'yy(tl,tz) = Pyy(tl,tz) = g"e (3=-7)
we can say that there is higher correlation between the
values of y(tl) and y(tz) than between x(tl) and x(tz)
One would expect a typical sample of x(t) to exhibit more
rapid variations in magnitude than y(t) .
If a random process, x(t) , is wide-sense stationary
(4) then we can define the "power spectral density", PSD, of
such a process as the Fourier transform of the correlation

function w&x(T) where v is the time difference between
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two sample times. An inverse Fourier transform of the PSD,
in turn, yields the '"autocorrelation function". The power
spectral density of a device to be modeled can be plotted
versus frequency. The resulting PSD function can be inte-
grated over the range of frequencies to obtain the mean
squared value of the process. This method of obtaining PSD
and the related autocorrelation helps describe the errors in-
herent in a device to enable proper modeling of these errors.

If we had such PSD information for the rocket car ac-
celerometer we could make more realistic modeling decisions.
Without such information we must make some subjective model-
ing decisions. The correlation time for the accelerometer
error model sPecifies how much we expect the mean squared
value of this zero mean process to vary over time. Choosing
T as one second indicates that the mean squared value for
this process can vary by approximately 63 percent in one
second. A correlation time of one second will be shown to
be adequate for our purposes.

The amount of driving noise on the accelerometer error
state, qg , can be obtained from specifying the desired
steady-state variance, Ps(w) . This will be explained in
detail below. Given a continuous-time system that can be

described by the linear vector differential equation

x(t) = E(t)x(t)+G(t)w(t) (3-8)

where
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E(w(t)] =0

Elw(t)w(t+T)T]

Q(tl)s(m) (3-9)

the propagation of the covariance of the state estimate is

described by:
P(t) = E(t)P(t)+P(t)EL (£)+G(£)Q(t)G" (¢) (3-10)

The strength of the driving noise on the accelerometer error
state, xg , is found in the following manner. Referring
to equation (3-1) we can solve for the steady state value of
the covariance. In this case, F = -1/T, Q = g, and

G =1 so that (3-10) becomes:

Pg(t) = ~2/TPg(t)+qg (3-11)
and

Po e-z(t-to)/T+q5T/2[1_e_2(t-to)/T]; t'>-t0 (3-12)
5

PS(t)

For to = Q0 we find

PS(tO) = Po5 (3-13a)
and the steady state variance, Ps(w) , becomes:
Ps(w) = qST/2 (3-13b)

By specifying the steady state variance we can solve for the
amount of driving noise to be added to the propagation of

the accelerometer error state, Xg o
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The only information available on the longitudinal «c-
celerometer is calibration data taken before and after the
high speed run of the rocket car. This data indicates that
the accelerometer calibration varied by an average of .003
g's between the two calibration checks. With no more in-
formation on the inherent errors in the accelerometer, we
are forced to refer to information on comparable models. We
desire a comparable accelerometer which has ¢ specified bias
error on the order of .003 g's. The model chosen in this
case is a Honeywell solid-state low-cost accelerometer. The
specified RMS error for this model is listed at .005g.

Thus, we use this specified error as the steady-state devia-
tion in error of the accelerometer actually used in this test
run. Obviously, we need to vary this value in order to check
filter performance, but .005g will serve as a "first-guess".

We now can solve for the driving noise, dg

Ps (=) = (.0059)° = qT/2 (3-13¢)
and

a5 (t) = 2(.0059)% = .0518 (ft/sec’)®/sec (3-13q)

Choosing the initial variance, P5(0) , to be equal to
the steady-state variance, P5(w) , results in a "station-
ary" process (4) for the accelerometer error state, Xg
This stationary characteristic is, in fact, implemented in
the system model for the rocket car.

The initial condition of the state vector at the start

of the run is known only with some uncertainty and is

33




modeled as a Gaussian random variable of zero-mean and

covariance, P, » such that:

=0 (3-14)

A
Elx(t )] = x,

A
BCx(t)-x Ilx(t)-x 17T = (3-15)

Initially, our uncertainty in the state values is very high.

We choose the following values for B,

10000
10000
100 0

= 100 (3-16)

A’U

0 .0259

225

.25E-6J

The initial guess on the last three diagonal elements is
obtained by using specified Root Mean Squared (RMS) errors

for the accelerometer, range, and azimuth respectively:

Pos = (.0059)° = .0259 [£t/sec?]?
. 2 2

Py = (15 ft)© = 225 ft

P, = (.0005 rad)? = .25E - 6 rad’

The initial variances of the first four states are subjec-
tive values based on relatively high uncertainty in state
values. Having developed the dynamics model for propagating

the states of interest, it is now necessary to relate these
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States to the available measurements of radar range, azimuth,

and elevation.

Measurement Model

The radar measured quantities are taken with respect to
the coordinate system of the radar, shown in Fig. 3.1. These
measured values must be related to the vehicle as it moves in
an earth-fixed coordinate frame, both translated and rotated
from that of the radar. The radar range measurement can be

related to the radar coordinate System by the following model:
faN 2 2 2. L
= + 2 -
Range (xr Y,z ) (3-17)

where Xos Y o and z, are distance components along the

r
three axes of the radar coordinate system. The radar azimuth

measurement is related to radar coordinate components by:
. A
Azimuth = arctan (yr/xr) (3-18)

The radar measurement of elevation, z. is used only to

ad just the value of range as the car proceeds along the track.
It is now necessary to relate radar measured components,

X » y;, and Z, tO components in the earth-fixed system,

x and 32 .

1
The origin for the earth-fixed coordinate system is
taken to be the starting point of the run. The radar is set
on the car prior to the start of the run, and computed values

of distance X, = 16104 feet, and Y, = 18374 feet are

taken from the initial range measurement. These initial
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values are held constant as the car travels down the track
in order to relate differing range and azimuth measurements
to changes in position in the earth-fixed coordinate system.
Labeling the initial distance along X, and Y, as DELX
and DELY respectively, one can relate the distance traveled
in the earth-fixed frame to radar measurements by the fol-

lowing translation:

r DELX - x1

DELY + X, (3-19)

X

Yr

As the car moves along the track, radar distance X, will
decrease to a point where x. =0 . At this point Xy =
DELX and the azimuth angle, ¢ , equals 90 degrees. Sub-
stituéing these translations into the range and azimuth equa-

tions we find:

i
Range = [(DELX—xl)2+(DELY+x2)2+zr2]2 (3~20)
and

Azimuth = arctan [(DELY+x2)/(DELX-x1)] (3-21)

Thus, we have related the radar measurements to the states
we desire to estimate. Note that the 180 degree rotation of
the radar coordinate system to align with the earth frame
simplifies the relations. The measurement model is summa-

rized here:

zi(ti) = [(DELx-xl(ti))2+(DELY+X2(ti))2+zr(ti)2]%

+x6(ti)+v1(ti) (3=-22)
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z,(t;) = arctan [(DELY+x2(ti))/(DELX-xl(ti))]
+ x7(ti)+v2(ti) (3-23)

In these equations each measurement is corrupted by an in-
herent bias error state, and some scalar, zero-mean white
noise to account for measurement and model inaccuracies.

This white noise vector y(t;) has a strength R(t;) during
the 24 second interval of interest.

It is apparent from (3-22) and (3-23) that the measure-
ment relations are non-linear in the states. Since we have
no reference values for the behavior of the states, espe-
cially the error states, we cannot use a perturbation model
based on such a trajectory. Thus, we choose the extended
Kalman filter algorithm. Applying equations (2-28) through
(2-30), we arrive at the proper implementation of the extended
Kalman filter for the rocket car analysis. The observation
sensitivity matrix, g[ti;g(ti')] in equations (2-29) and
(2-30) is developed from (2-15). For convenience, only the
non-zero elements of this m-by~n matrix are presented here.

A - k) .
For notational ease, ﬂ[ti;§(ti )] is given as H and
A A

x(t;7) is given as x~ .

H(1,1) = -(DELx-Ql')/[(DELX-QI‘)2+(DELY+§2')2+zr(ti)2]%

1
]

H(1,2) (DELY+§2‘)/[(DELX-QI')2+(DELY+§2‘)2+zr(ti)2]
H(1,6) = 1.0

A /\_2 A2
H(2,1) = (DELY+x, )/[(DELx-x1 ) “+(DELY+x,") ]

H(2,2)

(DELX-QI')/[(DELX-QI‘)2+(DELY+§2')2]
H(2,7) = 1.0 (3-24)
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Thus, the extended Kalman filter incorporates the measure-

ments at time, t, by using:

K(t;) = B(t,DOH[H (e, )ET+R(£)]! (3-25)
A + A -
x(t;7) = x(t;7)+K(t;)8z(t,) (3-26)
B(t;™) = B(t;T)-K(t)H B(£;7) (3-27)

where 3§ (ti) is given by:

. A2 A 2 2 AN
8z, (t;) zl-[[(DELX-xl ) “+(DELY+x, ") “+z “I+x." ]
.5_Z.(tl) = = A A _ A
ézz(ti{ _?Z-Earctan[(DELY+x2 )/(DELX-xl )J+X7 ]
(3-28)

The state estimate at time ti g is propagated forward to
the next sample time t; by integrating:

- A
x3(t/ti_l)

A
f4(t/ti-1)
xS(t/ti—l)*ax

x(t/e, )= | o (3-29)

1)
A

0

- 0 -
The error covariance g(t/ti_l) is propagated forward by

integrating equation (2-32) in which
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[0010 0 00]
0001 0 0O
0000 1 00
g[t;%(t/ti_l)] =/0000 O 00| by (2-14)
0000-1/TOO
0000 0 00O
| 0000 O 00

The initial value for the system noise matrix in (2-32) is

chosen as:

3 -
0 Q
0
Q(t) = .01 (3-30)
0 .0518
1
i 0.1E-7 |

The initial values for the diagonal elements of Q(t)_ are
chosen to indicate our relative uncertainty of the behavior
of the corresponding states over the time interval of inter-
est. The initial value for driving noise on the accelero-
meter error state, X5, has been previously calculated (3-13d).
The remaining diagonal elements of Q(t) are chosen by subjec-
tively deciding how much these states will vary from con-
stant values. By comparing Q44(t), 066(t) and Q77(t) one

can see that we have little doubt that the azimuth bias error,
X9 is a constant. We are less certain about the behavior

of the y velocity, Xy and even more uncertain about the
range bias error state, X+ The initial value for Qua(t)

is based on our knowledge of the rocket car trajectory -
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described as nearly a straight line along the x-axis (3).

We do not expect the y velocity to vary significantly from a
constant value of zero. Use of the radar in a "look-down"
mode increases our uncertainty in how the range bias state,
Xg will behave over the 24 second interval. The azimuth
bias error is not expected to vary significantly from the be-
havior of a constant. The initial value for Q(t) presented
in (3-30) is adjusted in a "tuning” process to achieve lowest
possible variance values for the seven states of interest.
This performance analysis is detailed in the next chapter
along with the results of the seven state extended Kalman

filter developed here.
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IV. Development and Performance Analysis

of the Extended Kalman Filter

The previous chapters have developed an extended Kalman
Filter estimation algorithm for post-run data analysis of
the Budweliser Rocket Car. This chapter describes the re-
sults obtained by using the seven state filter outlined pre-
viously. The amount of computer programming required by
this analysis 1is minimal due to existing software available
for the development of a Kalman filter.

The computer software used in this analysis is a Monte
Carlo Simulation for Optimal Filter Evaluation (SOFE) avail-
able at Wright-Patterson AFB (6,7). The program was devel-
oped under contract by the Air Force Avionics Laboratory
(AFAL) and is well documented by Musick (6). SOFE is invalu-
able when designing Kalman Filters. The normal method used
is a Monte Carlo analysis (4) whereby a suboptimal (reduced
order) Kalman filter is evaluated against a "truth model".
The suboptimal filter is adjusted to achieve the best pos-
sible performance when compared to a much higher order "truth
model”. The idea is to track the important characteristics
of a physical system adequately using a simpler model. Such
a reduced order filter could then be implemented in an opera-
tional system where computer capability may be limited.

For the purpose of analyzing the rocket car data, SOFE

is used to integrate the dynamics equations and update the
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states of interest at measurement times. There is no truth
model available for tuning purposes, nor do we have the
ability to generate sample statistics. SOFE implements the
Kalman filter equations for either the linear or extended
Kalman filter presented in Chapter II. The user simply sSpec-
ifies the dynamics and measurement relations for his system.
SOFE propagates the state and covariance estimates forward
from the specified initial time, using a fifth order Kutta-
Merson integration algorithm (6). Updates of state and co-
variance estimates based on available measurements are pro-
vided at user-specified intervals. The user can specify
any number of measurements to be incorporated at a given up-
date time. Use of SOFE greatly reduces the amount of com-
puter programming necessary in developing a Kalman filter and
allows the user to concentrate on the finer details of his
particular problem,

The fifth-order Kutta-Merson integrator implemented in
SOFE requires a step-size no greater than approximately two
milliseconds for the chosen integration tolerances. The in-
tegrator uses a variable step size to automatically maintain
the integration error below a specified value. The user can
specify a fixed step size mode if exterior factors, such as
a high measurement rate, cause the step size to remain small
regardless of dynamics. If, in order to handle severe dynam-
ics, the integrator reduces its step size to a minimum spec-
ified value without satisfying error tolerances, an integra-

tion failure occurs and the program stops. The default
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parameters for the integrator are variable step size, error
tolerance of .0001, maximum step size of 1.0 E + 9, minimum
step size of .0001, and initial step size of .0l. We are
unsure of exact vehicle dynamics but expect rapid changes in
acceleration over a very short time interval. We desire to
allow the integrator to automatically adjust its step size
in order to reduce integration error and avoid "stepping-over"”
any fluctuations in the solution. A variable step size also
reduces computer time. For these reasons, we interpolate
the accelerometer data to ,002 second intervals for integra-
tion purposes.

SOFE implements user-supplied data records from one ex-
ternal tape and expects the same number of records every time
the tape is read. The external data provided for the rocket
car includes accelerometer, range, azimuth, and elevation
data. This data is interpolated to .002 second intervals
using the cubic spline interpolator implemented in SOFE. Thus,
accelerometer data for integration purposes is available every
.002 seconds while the specified measurement update interval
of .05 seconds insures that actual, not interpolated values

for the radar measurements are used.

Accelerometer Calibration

The first run through the data using SOFE is made to
check the calibration of the accelerometer data. The seven
state extended Kalman filter as implemented in SOFE is run

without incorporating any radar measurements. Integration
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of accelerometer data provides state estimates of X position
and velocity. We desire to compare the estimate of x veloc-
ity from SOFE at FIM trap entry time to the actual value
recorded by the FIM system. The FIM officials had used a
small radio transmitter to record the time of vehicle entry
into the first trap. This constant frequency transmitter was
designed to stop transmission while the car was in the first
trap, and then begin transmission upon trap exit. Based on
frequency data from this transmitter, AFFTC engineers cal-
culated trap entry time as 18.65 seconds from the start of

the run (3). The estimate of state X3, velocity along the
x-axis, based on integrating the accelerometer data is checked
against the trap reading at this time. The vehicle trajectory [
generated by integrating the accelerometer data is presented

in Figs. 4.1 through 4.8. The speed as measured by the FIM !
speed trap at 18.65 seconds is 666.234 mph or 977.1432 ft/sec. ’
The state estimate of X-velocity at this time based on inte- ’
gration of accelerometer data is 978.582 ft/sec. The FIM

system showed that the vehicle was in the first speed trap

for .108 seconds (3). At an average speed of 978.582 ft/

sec over the trap distance of 105.6 ft, we confirm a time of
.1079 seconds in the trap. The peak speed based on integra-
tion of accelerometer data alone is 1080.05 ft/sec or 736.4
mph. This velocity occurs at 16.85 seconds into the run and
results in a Mach number of 1.006 when referenced to the speed

of sound of 1073.536 ft/sec. The accelerometer data indicates
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the rocket car was above the reference Mach number of one
for approximately 1.25 seconds.

Figure 4.2(a) indicates that there is no deviation from
center-line due to our model for y velocity. Without any
measurements, no estimate of y position or velocity can be
made. Note also that the standard deviations of state esti-
mates increase over the time interval. No reduction in our
initial values for standard deviation is possible without in-

corporating measurements.

Calculation of Measurement Noise Variance

Before incorporating the available radar measurements of
range and azimuth it is necessary to determine the errors in-
herent in these observations. Although the specifications
for the radar are available, one has sufficient reason to
doubt the validity of these numbers. The main reason for con-
cern is the way the radar is used to track the vehicle. This
particular radar is located up to 4.5 miles from the vehicle
on a hill overlooking the lake bed. A tracking radar normally
used to track airborne vehicles equipped with transponders
is being used in a "look-down" hode into ground clutter at a
target not equipped with a transponder. As described in
Chapter I, we know the range measurement has a two-second-long
interval when the radar picked up a larger vehicle. In addi-
tion to the known error in the range measurement this data
is highly suspect for the reasons outlined above. Certainly

we cannot rely on the specified range RMS error of 15 feet.
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Nor is the azimuth measurement expected to maintain the
specified RMS error of .005 radian.

The manual tracking adjustment used to align the radar
dish with the car is subject to operator errors. An AFFTC
review of the video-tape from the television monitor used to
ad just azimuth tracking rate shows that the.Operator was able
to keep the cross-~hairs on the vehicle for most of the run
(3). However, at the beginning of the run when the car is
accelerating the most, and immediately after engine burn-out
when the car is reaching maximum deceleration, the operator
is off the vehicle by up to three car lengths (3). This very
subjective estimate of azimuth deviation corresponds to ap-
proximately 108 feet. At the minimum range of 18000 feet,
this deviation contributes an error in azimuth of up to about
.006 radian. This error is therefore the best we could hope
for, assuming no inherent azimuth bias error. To estimate
the accuracy of range and azimuth measurements, some compari-
son of actual to expected values iS necessary.

Using equations (3-22) and (3-23) for radar range and
azimuth based on estimates of X and y position, we desire to
compare actual measurements of range and azimuth to filter
estimated values without incorporating radar measurements.
The dynamics model using accelerometer data is used to
derive the estimated range and azimuth trajectories. Based
on this model, y position remains at zero while the estimate
of x position is provided by twice integrating accelerometer

output. By comparing actual to estimated measurements we not
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only can find the noise strength of the measurements, but
check our equations for range and azimuth used in the filter.
Figures 4.9(a) and 4.9(b) are plots of actual range and
estimated range. Figure 4.9(a) includes a plot of the dif-
ference between these two values for radar range. It is
obvious from these plots that between 16 and 18 seconds the
range is tracking a larger vehicle beyond the rocket car. It
is also apparent from these plots that the range measurement
is indeed extremely "noisy" and has significant errors.
g The azimuth measurement, however, appears to be much
better. Referring to Fig. 4.10, we can see that the actual
and estimated azimuth values are very close. This confirms
our assumption that the radar operator did a good job of track-
ing the car in azimuth.

The purpose of comparing actual to estimated measurements

is to determine realistic values for the diagonal terms in

the measurement noise matrix, g(ti). To accomplish this, we
sum the "residuals", or difference between actual and esti-
mated measurements, over the entire time interval. We then
calculate a mean and variance for the residual values using

the following equations

N N
Mean, breg = 1/N-1 .21 r; (4-1)
1:
| . 2 N 2 2
Variance, Oles = 1/N-1 z (ri -u7) (4-2)
i-=1

where r, is the residual measurement at a given sample time

and N is the number of sample periods used in the calculations.
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An inherent assumption in this residual analysis is that we
can employ the princiéle of "ergodicity” (4). This principle
: says simply that we can determine the statistics of a random
process using only the results of one run through the data
rather than a Monte Carlo analysis. We assume that the sta-
tistics o% the residual measurements can be adequately de-
scribed using data over the 24 second time interval of in-

terest. The residual sequence can be shown to be a white

Gaussian sequence with zero mean and covariance

Gzres = [ﬂ(ti)g(ti-)ﬁ?(ti)+3(ti)] (4-3)

Thus we can solve for an estimate of the measurement noise,

A
R(ti)’ for each observation using:

2

- R
res"i(ti)z(ti )E (tl) (4-4)

A
“ ' R(ti) =g

Once the filter calculated values for error variance g(ti—),
reach "steady state"” conditions, the second term in (4-4)
becomes negligible when compared to the residual variance
Gzres' Thus, we use the calculated residual variance from
(4-2) to yield the initial estimate of measurement noise,
A
g(ti).

In calculating the range error variance no residuals in
excess of 300 feet are used. This effectively "blocks" the
erroneous range measurements between 16-18 seconds, resulting

in the use of 450 of 487 total measurements between 0 to

24.3 seconds. All of the azimuth measurements between 0 to
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24.3 seconds are used to calculate the mean and variance of
the azimuth residual.

The result of this residual analysis indicates an error

variance on the range residual of 22455.82 ftz. The azimuth

residual analysis shows an error variance of .5389 x 10"4

radz. These variances yield calculated RMS errors of 149.85

ft and 0.734 x 102

radian for the range and azimuth measure-
ments, respectively. As expected, the range measurement

error is much greater than the specified error due to the

way the radar is used to track the vehicle. The azimuth
error is very close to the first guess of .006 radian.

The actual and estimated radar range measurements appear
to diverge after approximately 20 seconds. Referring to Fig.
4.9(b), the actual radar range looks fairly good between 20
and 24 seconds. This divergence of filter computed and ac-
tual range values caused some concern. In fact, the initial
extended Kalman filter runs indicated that the state Xy ¥
position, grew unrealistically to approximately 300 feet by
24 seconds. This growth in X, is caused by the range measure-
ment which appears accurate between 20 to 24 seconds. It
would seem that perhaps our initial assumption of the test
track heading is incorrect. In fact, if the actual track
heading is 179 degrees true, not due south, this one degree
deviation would cause an approximate change in y position of
300 feet if the car is 17000 feet down-track. Thus, it is
necessary to correct the relations between radar measured

components, X_ and Y.» to the earth-fixed coordinate system.
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Referring to Fig. 4.10(a), the coordinate translation be-

comes:
X, = DELX + (cos 179°)x, + (sin 179°)x2 (4-5)
. ] o
Yy, = DELY + (sin 1 )x1 + (cos 1 )x2 (4-6)
or
xr = DELX -~ .99985x1 + .01745x2
Yr = DELY + .01745x1 + .99985x2

When these corrections are applied to (3-22) and (3-23) and
the residual plotting and variance calculations are made,
the actual and estimated range measurements are much closer.
The corrected plots of range and azimuth are shown in Fig.
4.11(a), (b) and 4.12. With these corrections, calculated

2

\ residual variance for range becomes 16807.66 ft“ and azimuth

variance reduces to .3573 x 10-4 radz. These lower variances
result in RMS errors for range and azimuth of 129.88 feet and
.005977 radian, respectively. Note that we have calculated
an error for the azimuth which matches our initial guess of
.006 radian. It is apparent that the one degree correction
is closer to the true track heading and reduces the majority
of modeling error. Thus, we have computed the estimated

A
measurement noise strength matrix, g(ti):

A 16807.66 0]

0 .3573E-4
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Fig. 4.10 (a) Corrected Coordinate Frame
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Fig. 4.11(a),(b) Residual range analysis based on assumed
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63




Check of Filter Implementation

Based on the vehicle trajectory generated from the ac-
celerometer data, we desire to check the calculation of the
observation matrix, g[ti;g(ti'ﬂ. The model we are using to
describe the propagation of x velocity, X3, relies heavily
on the accelerometer measurements of specific force. The
filter receives very good information on the behavior of x
velocity and position, but relatively poor information on y
velocity and position. To check our implementation of range
and azimuth measurements in the filter, we desire to remove
accelerometer specific force from the model for X3. If the
range and azimuth measurements independently track the basic
trajectory of the vehicle, we can be reasonably sure the
observation matrix linearization has been calculated cor-
rectly. Noée that we are looking for trends and not specific
confirmation of state estimates. Thus, we expect the range
and azimuth to show a similar trajectory for the car to that
generated by the accelerometer, but not a one-for-one com=-
parison. The purpose of such an analysis is simply to in-
sure that we have correctly incorporated the measurements
into the extended Kalman filter state and covariance update
relations. The model for the radar range and azimuth measure-

ments is repeated here for reference:

z, = [(DELX-.99985x1+.01745x2)2+(DELY+.01745x1+.99985x2)2

2q%
‘z_ ] +Xg vy

64




z, = arctan[(DELY+.01745x1+.99985x2)/(DELX-.99985x1

+.01745x2)]+x7+v2

Applying (2-15) to these equations we form the observation
sensitivity matrix, g[ti;g(ti')] . It is the model for
measurement incorporation, g(ti), and the calculation of
g[ti;g(ti-)] that we desire to check. By comparing state
trajectories of position and velocity independently obtained
from each measurement, we hOpé to confirm our calculations
and modeling techniques.,

The primary reason for deviations between measurement
trajectories and the accelerometer profile is due to the
rather crude model we substitute for the x-velocity state,
Xge We now choose this state to be modeled as a random walk
of the form

:23 = wy(t)

where the driving noise, w3(t), has a relatively high strength '

to account for our uncertainty in such a model and allow

closer tracking of actual data. Modeling this state as we

have, the x velocity is considered a constant. Any change -,
to its value based on measurement updates is done in a step-

like manner. Therefore, we do ﬁot expect to get exact agree-

ment with accelerometer results.

The model for x-velocity is incorporated into a six
state extended Kalman filter where accelerometer error, x5,

has been removed. The filter is run using range mneasurements
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only, azimuth measurements only, and both measurements com-
bined. The results of these three runs of the extended Kalman
filter are shown in Fig. 4.13 to 4.16. Plots are made of the
estimates of x and y position and velocity. Part (a) of each
figure is the depicted state estimate generated using range
measurements only. Part (b) is the state estimate generated
using azimuth measurements only, while part (c) of each fig-
ure shows the result of combining both range and azimuth. We
see, in fact, that position and velocity along the x-axis be-
have as we would expect from the accelerometer tra jectory
shown in Figs. 4.1 through 4.4. However, the geometry of the
radar position to the vehicle is not conducive to accurate
estimates of deviations along the earth-fixed y-axis. The
range measurement is the only means by which we can hope to
estimate position and velocity along the y-axis. The state
estimates of these values are subject to any errors in the
range measurement and indicate only weak observability of these
states. The range measurement is ignored between 16-18 seconds
to account for the known error in this measurement during this
interval. Due to the geometry of the problem, the range
measurement is even less likely to track the vehicle along

the x-axis correctly. This can be seen from comparing the
plots of x-position and velocity for range only to the plots
of these states with azimuth only and both measurements com-
bined. From these plots, it is apparent that the azimuth

does a credible job of trackinc changes in position and

velocity along the x-axis. Conversely, tI. azimuth
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Fig. 4.13(c) Random walk model for Xq = Range and Azimuth
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measurement can tell very little about y-axis changes of
position and velocity. Again, the geometry of the radar and
vehicle track causes this observability problem.

Figures 4.13 (c) through 4.16 (c) are generated by
utilizing both azimuth and range measurements. Again, the
estimates of x position and velocity are fairly consistent
with the estimates of these values generated by using ac-
celerometer data. Deviations from track centerline are less
severe but still subject to range measurement errors. It
is apparent from this analysis that the basic trajectory of
the vehicle generated using accelerometer data is reconfirmed.
Thus, we conclude that the extended Kalman filter is cor-
rectly calculating the observaﬁion matrix, g[ti;g(ti°)],

and that our model for z(t;) is correct.

Extended Kalman Filter Performance Analysis

Having calculated measurement noise strengths for range
and azimuth and also having checked the calculation of the
observation matrix, we are now ready to run the extended
Kalman filter modeled in Chapter III. The initial condition
for the propagation of the state vector is chosen as zero-

mean Gaussian random variable with mean

A
E [}_{(to)]= x, =0 (4-8)
and covariance
A A
T4 _
EC (x(t ) -x,) (x(t)-x,)"] = Bg (4-9)
where the initial covariance matrix from (3-16) is specified

as:
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10000 7
10000
100
go = 100 (4-10)
.0259
225
L .25E-6J
The initial values for the diagonal entries of the system
noise matrix, Q(t), are repeated here for reference:
0
0
0
Q(t) = .01 (4-11)
.0518
1.0

. 1E_7J

The extended Kalman filter as implemented in SOFE is

run with several different combinations of Q(t), and

20’
g(ti). This analysis is necessary to monitor the behavior
of the error variance of each state estimate in order to

check filter performance. We desire to obtain the lowest

possible error variance on each state after 24 seconds of j
filter operation, using realistic values of initial covari- j

ance, P system noise, Q(t), and measurement noise, g(ti). ’

_0’
This performance analysis can be thought of as "tuning" the
extended Kalman filter. The results obtained from a large

number of noise and initial covariance combinations are sum-

marized here.
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The initial value for the error variance matrix, go,
proved to be adequate for all the states except range and
azimuth biases. The initial covariance for range bias and
azimuth bias had to be increased to 1600 ft2 and .5E-4 radz,
respectively, to see some reduction in the error variances
of these states. After 24 seconds of filter operation, the
filter only reduces the error variance on these states to

2 and .88E-5 radz, respectively due to limited obser-

1190 ft
vability. The filter's ability to estimate accelerometer
error is relatively unaffected by changes to driving noise
on this state. The error variance on the filter estimate of
accelerometer error coverges very quickly to its minimum
value regardless of changés in driving noise or initial co-
variance. Likewise, chénges to the pseudonoise values on
states Xg and X, range and azimuth bias, do not effect the
filter's ability to estimate these states.

The greatest reduction in error variance on all the
states of interest results from the recalculation of the
measurement noise matrix, g(ti), based on analysis of the
range and azimuth measurement residuals. This is expected
since the filter now "puts more stock"” in the measurements
of range and azimuth than it did for higher values of g(ti).
Since we are most concerned with estimates of vehicle veloc-
ity, X3 and x,, we present the results of the tuning process
on the error variance of these state estimates. The minimum
error variances for these states occur after 24 seconds of

filter operation. The error variance of x and y velocity
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estimates and associated driving noise strengths and measure-

ment noise is presented in Table I. The initial variance
on each state is 100 (ft/sec)z, or 10 ft/sec.
TABLE I
Filter Performance Analysis
Driving Noise q Measurement Noise, R(ti) P(t 24 sec)

g = .2E-2 22456/.5388E-4 P3 2.4
dg = .0518 " " Py 6.36
qg = 10.0 " "
q7 = USE_S " "
d4 = ,1E-2 22456/.5388E-4 P3 3.193
dg = ,0515 " " Py 6.43
q6 = 1.0 " "
q, = .1E-7 - "
Qg = .1E-3 22456/.5388E-4 P3 2.57
a5 = .3E-1 " " P, 6.24
q6 = .10 1) ”
q; = .1E-7 " "
q, = .1E-7 16808/.3573E-4 P3 2.27
dg = .3E-1 " " Py 5.92
q6 - .01 " ”
q7 3 . 1E_7 L1} "

The combination of system noise, initial covariance, and

measurement noise chosen as a result of this performance

analysis is presented here:
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710000 1 o i
10000 0
100 0
B, = 100 Q(t) = .1E-7
.03 .03
1600 .01
i .5E-4 L 1E-7
16808 O
R(t;) =
0 .3573E-4

Results of One Iteration of the Extended Kalman Filter

State estimates and error standard deviation in these
estimates for the "tuned” extended Kalman filter are pre-
sented in Fig. 4.17 through Fig. 4.25. These plots are
generated using the values for Py Q(t), and g(ti), specified
above. Figure 4.24(a) is a plot of the range measurement
residual bracketed by the residual standard deviation. The
azimuth measurement residual and associated residual standard
deviation is plotted in Fig. 4.24(b). It should be noted
that a "residual monitoring"” routine has been included in
the basic software for SOFE. This routine calculates the

residual standard deviation at each sample time from:

Ires ~ [-Ii(tj_)B(ti-)E_T(ti)+B_(ti)]/2

and compares the residual measurement to this value for

OLes® If the residual measurement, gg(ti), is greater than
30 the measurement is ignored. As a result of residual

res’
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monitoring, 40 measurements between 16-18 seconds, and three
measurements near sSix seconds, are ignored.

Figure 4.25 (b) is a "blown up" version of Fig. 4.25
(a) which is the magnitude of the velocity vector converted
to Mach number.

The plots ot standard deviation for range bias and
azimuth bias indicate weak covergence of the standard devia-
tion for these states. As mentioned previously, this is due
to limited observability of these states. The standard de-
viations of the other state estimates show good covergence
and indicate that even the "noisy"™ range measurement provides
some information on state values which can be used to improve
state estimation. From the plot of range residual standard
deviation it should be apparent that the residual monitoring
routine is rejgcting measurements of range which have a

residual value greater than 3¢ or approximately 390 feet.

res’
The straight line segment between 16-18 seconds and the "“spike"
at six seconds in Fig. 4.24 (a) show where the range meas-
urements have been ignored.

The large deviation in y position shown in Fig. 4.18 (a)
at approximately 10 seconds is due to range measurement
errors which are significant between 6-10 seconds. The fil-
ter weights these measurements lightly due to relatively
high measurement noise, but does not totally reject them.
Thus, the estimated y position shows unrealistic values for

this state due to inaccuracies in the range measurement. It

appears from Fig. 4.11 (b) that during this four second
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interval between 6-10 seconds, the range is indicating short
of actual vehicle position.
The extended Kalman filter indicates a peak speed

estimate at 16.85 seconds of

A

X3max - 1089.49 ft/sec
X = 376

X 4max -.—11. 5 ft/sec

Calculating the scalar speed of the vehicle from
A2, h 2k
Vv = (x3 Xy, )

we find a maximum scalar velocity of

Vmax = 1089.55 ft/sec

resulting in a maximum Mach number of

Mmax = 1.015

when referenced to the speed of sound, a,
a = 1073.536213 ft/sec

The extended Kalman filter indicates that the rocket car was
above the reference speed of sound for approximately 1.9
seconds.

A run of the extended Kalman filter using only azimuth
measurements was made to check the influence of incorporating
the inaccurate range measurement. The estimate of velocity
from this run is much closer to the estimate of x velocity,
X3, obtained from integrating accelerometer data without in-

corporating any measurements., This reconfirms the
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observability problems previously mentioned associated with
estimating X3 from range measurements. The azimuth only
run of the extended Kalman filter indicates the following

vehicle performance:

A

X3max - 1080.26 (16.85 sec)

§3 = 977.081 (18.65 sec, trap entry)

Time above Mach 1 = 1.30 sec
The azimuth only run, however, does not provide very good
estimates of y position or velocity due to the observability
of these states from azimuth measurements alone. It should
be noted, that the apparent error in x velocity caused by
observability problems using range measurements is corrected
by using the fixed-interval smoother algorithm. The time
history of state estimates and error variances from the run
of the extended Kalman filter incorporating both measure-
ments is stored for use in the smoother algorithm. The re-
sults of the smoother analysis will be presented in the next

chapter.
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V. Optimal Smoother Results

Chapter II describes the Meditch form of the optimal
“fixed-interval"” smoother algorithm in detail. A simple
FORTRAN program was written by the author to incorporate
this smoother algorithm. The output of the extended Kalman
filter, detailed in the previous chapter, is stored for use
by the smoother program. The FORTRAN code used in the smoot
program is listed for reference in Appendix B. The results
obtained from this program are presented in this chapter.

The output of the optimal smoother at the initial time,

t is used to correct the initial conditions for another

o’
iteration of the forward extended Kalman filter. Such a
"forward-backward" iteration scheme is used to correct model
errors and initial conditions of the extended Kalman filter.
After each iteration of the forward-backward estimator a
comparison of state values is'made. When the difference in
state estimates from one iteration to the next is less than
some arbitrarily specified value, €, the estimator is said
to have '"converged". Since our main area of concern is in
the estimate of vehicle speed, we compare the peak estimates
of velocity for each run of the smoother. When the differ-
ence between peak speed estimates from one iteration to the
next is less than 2 ft/sec and the standard deviation of
this estimate allows at least a 99 percent confidence that
the vehicle exceeded the speed of sound, we stop the itera-

tions. The latter requirement for standard deviation
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becomes the driving factor due to time limitations and suf-

ficient confidence after two iterations.

One Iteration of Smoother

The plots of the "smoothed" state estimates after one
smoother iteration are presented in Figs. 5.1 (a) to 5.7 (a).
The variance for each state estimate calculated by the
smoother are presented in Figs. 5.1 (b) to 5.7 (b). Note
that the smoother works "as advertised" in reducing the error
variance of state estimates when compared to the standard
deviation plots of the extended Kalman filter in Chapter IV.
Some very interesting results are obtained and need to be
discussed. The plot of y position, Fig. 5.2 (a) indicates
that the vehicle track is indeed a straight line. However,
the figure indicates that y position begins approximately
250 feet east of the assumed origin and decreases in a
linear-manner to 60 feet east of centerline. This indicates
that the starting position of the vehicle is displaced east
of the earth-fixed coordinate frame and that the assumed
track heading of 179 degrees true is incorrect by approxi-
mately .209 degrees. The smoother estimated state values
and variances of x and y position at the start of the run,

t are shown to be

O’

2

A
xl(to/tf) 167.78 ft Pll(to/tf)

3746 .5 ft

A 2
xz(to/tf) = 255.85 ft P22(to/tf) = 3649.5 ft
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Fig. 5.1(a),(b) Smoother estimate and variance of x-position
after one iteration.
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after one iteration.
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and at the final time, tf = 24,3 seconds:
A _ 2
xl(tf/tf) = 16771 ft Pll(tf/tf) = 3186.3 ft
X = 61.2 - 2
x2(tf/tf) = 61.21 ft P22(tf/tf) = 1428.0 ft

Figure 5.2 (a) indicates that the vehicle track is indeed a
straight line but not aligned with the x-axis we have chosen.
The estimate of y position at the final time is used to re-
correct the track heading of 179 degrees. The y position at
t. is 61.21 feet. This deviation in position indicates that

f

we have "over-corrected" track heading previously by:

) _, 61.21
£ =¢tan™ [ ] = .209 degree
xq (£ /) 16771

A
-1 [xz(tf/t

tan

The corrected track heading now becomes 179.209 degrees. We
can apply this corrected heading to the measurement rela-
tion (4-5) and (4-6) so that the bracketed terms in these

equations now become:

(DELX - .9999x, + .0138x,)

(DELY + .0138x1 + .9999x2)

By adjusting the track heading by this amount and recalcu-
lating the residual variance, as in Chapter IV, we should be
able to reduce the amount of measurement noise, g(ti).

These adjustments should help reconfirm our knowledge of
vehicle trajectory and allow the next forward-backward itera-

tions to converge to the "true" state values.
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In additioﬁ to resetting the initial covariance matrix,

P

P, to reflect smoother covariance g(to/tf), we also correct

the initial conditions of the state vector and adjust the
amount of driving noise, Q(t). We should note here that
several methods are available to adjust Q(t). The backward-
recursive smoother can be used to generate an estimate of
system noise at each sample time, a(ti/tf) (4)., One can also
"tune" Q(t) in an "off-line" manner and allow the system
noise to vary over the time interval of interest. If one

has knowledge of the time-varying nature of a particular
state, this knowledge can be used to adjust the strength of
driving noisg. For example, we might desire to relate the
amount of drivirflg hoise on the azimuth bias error state to
incorporate our kaowledge of r%dar operator tracking perform-
ance versus vehicle acceleration. As a side note, we should
also mention that the smoother glgorithm can be used to gener-

ate an estimate of the applied #ontrols, ﬁ(ti/tf). An esti-

mate of the controls applied t ;the system at any time, ti,
is not the concern of this anggysis. We also choose to
iteratively adjust Q(t) and use constant noise levels over
the time interval of interes}. Such an iterative adjustment
to Q(t) provides adequate smoother performahce and simplifies
the algorithm.

Figure 5.4 (a) is a plot of the y component of veloc-
ity obtained after one iteration of the smoother algorithm.
It is apparent from this plot that the y velocity indeed be-

haves as a constant with a value of approximately -8.0 ft/sec.
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This constant negative velocity is caused by the erroneous
initial conditions we used in the extended Kalman filter.
As seen in Fig. 5.4 (a) the smoother is able to detect small
deviations from the constant y velocity. This is seen as
small "bumps® in the plot of y velocity. Thus, our model of
random walk with small driving noise is reconfirmed and
will be used for the next forward-backward iteration.
The\smoother estimated value for accelerometer error,
Qs(ti/tf), can be seen in Fig. 5.5 (a). The error appears
to grow with time and seems to be related to velocity (i.e.,
the higher the velocity, the more error). The error does
appear to be time-correlated and does not behave as a constant
bias error. Thus, the time-correlated model for accelero-
meter bias appears to be valid. We can, however, adjust the
driving noise on the propagation of this state by using the
smoother calculated steady state variance. Figure 5.5 (b)
shows a constant variance of 0.14937(ft/sec2)2 after only a

very short transient period. We can adjust the driving noise

on this state by using this steady-state variance:

qg = Pg(=)2/T = .029874 (ft/secz)z/sec

The initial variance value for this state, PoS’ is also set
to .014937 (ft/secz)2 to insure a stationary accelerometer
error state process.

Figure 5.6 (a) is a plot of smoother estimated radar
range bias error, §6(ti/tf). This figure indicates that

this state indeed behaves as a constant with only slight
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variations from the initial estimate, §6(to/tf) = =177.49 ft.
Thus, a reduction in the amount of driving noise on this
state appears valid. We now reduce the strength of driving
noise on this state to indicate more confidence in its be-
havior as a constant. The value of gg for the next itera-
tion of the  extended Kalman filter-smoother combination is

\

obtained by "tuning"” the extended Kalman filter in a sensi-

tivity analysis. The new value for dg is determined to be:

g = -0001 £t2/sec

This amount of driving noise is two orders of magnitude less
than the value used in the first iteration. The new initial

variance for Xg becomes:

_ 2
Po6 = 1186.1 ft

and the new initial condition on this state obtained from

the smoother becomes:

xo6 = "177-49 ft

Referring to Fig. 5.7 (a) we see that the azimuth bias
error, §7(ti/tf), does not behave entirely as a constant.
It appears that during the first five seconds of the run
the bias error is greatest and reduces to a minimum value as
the vehicle achieves peak speed (minimum acceleration). As
the vehicle begins to decelerate, the azimuth bias error
again grows to a larger value. This result is consistent

with our knowledge of radar operator tracking error. The
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amount of driving noise on this state appears adequate to
allow the filter to track deviations in its value. Thus,
q5 is left unchanged for the next iteration of the forward-
backward estimator. We adjust the initial condition and

variance of this state, as before:

p .91619 E-5 rad®

o7 ~

§o7 = ,0066051 rad

The extended Kalman filter and smoother are used again
with new initial conditions on the states and adjusted ini-
tial variance. The amount of driving noise on accelerometer
error, Xg, and range bias, Xg» are also ad justed for the next
iteration of the forward-backward estimator. As a result of
the first iteration of the smoother we make the following
ad justments to our model for measurements and initial con-
ditions:

1) The track heading is corrected to 179.209 degrees
true.

2) Based on the corrected model for measurement in-
corporation, we recalculate measurement residual variance to
reduce the estimate for g(ti), g(ti).

3) Initial conditions on the state vector are corrected
to reflect the smoother calculation of g(to/tf) such that

167.78 |
255.88
1.1896

= | ~g.0108
~.003834
~177.49
| ~.0064

&>

—d
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4) The initial covariance matrix, go, is adjusted to

reflect the smoother calculated value of g(to/tf):

3746 .5
3649.5
. 2.315 0
= 5.91
— ) .015
1186.1
L .916E~-5

5) Finally, the system noise matrix, Q(t) is corrected
to indicate increased confidence in our model for range bias,

and adjusted steady-state variance on the accelerometer error:

0
0
0 o]
Q(t) = | 0 .1E-7
.02987
.1E-3
L .1E-7 |

The residual variance analysis detailed in Chapter IV
A
now produces an estimated measurement noise matrix, 3(ti),

such that:
A 16235.4 0

R(t;) =
0 .39006 85E-4

The fange residual variance is calculated from 415 of 487
total measurements which have a residual magnitude less than
300 feet. These variance values result in calculated RMS
errors for the range and azimuth measurements of 127.42 ft
and .006245 radian, respectively.

Incorporating updated values for measurement noise,

initial state and variance conditions, and system noise, we
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rerun the extended Kalman filter. The results of this run
are shown in Appendix A. The state and covariance time
histories are stored for use in a second iteration of the

smoother algorithm.

Second lteration of Smoother

The second iteration of the optimal smoother algorithm
provides refined state estimates as shown in Figs. 5.8 (a)
to 5.14 (a). The basic behavior and values of these states
remain unchanged from the first iteration of the smoother.
The smoother state estimates at the initial time, t,, are
refined from those obtained in the first iteration.

To illustrate the convergent properties of the smoother,
we present a comparison of state estimates and variances be-
tween the first and second smoother iterations in Table II.
This table includes the percentage difference between the
two iterations for each state and variance value and the
overall percentage change between the second and first itera-
tion. We choose to compare these values at the time of peak
vehicle speed at 16.85 seconds. Table II indicates good
reduction in error variance for all the states. This is due
to the improved initial conditions supplied to the extended
Kalman filter after the first run of the smoother. The
smoother is able to reduce error variance from the first to
second iterations due to improved state estimates from the
forward filter. The convergence of the velocity state esti-

mates and reduction in error variance on these states 1is
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sufficient to stop the iterations at two. Another iteration
of the smoother using refined initial conditions for the ex-
tended Kalman filter based on g(to/tf) and g(to/tf) was not
made due to time limitations and sufficient confidence in
our estimate of vehicle performance. A third iteration of
the smoother would provide only limited refinement of state
estimates and better reduction in error variance. However,
it will be shown in Chapter VI that only two iterations meet
our confidence level requirements.

Figures 5.8 (a) and 5.9 (a) show the starting position
of the vehicle to be approximately 400 feet east and 200 feet
north of the assumed coordinate origin. The x velocity esti-
mate (Fig. 5.10 (a)) at ty again indicates that the vehicle
has already started down the track at the assumed initial
time. The smoother estimate of X velocity at ts is 2.72 £t/
sec. Comparing this to the accelerometer only run, the point
in the radar data chosen as to appears to be in error by ap-
proximately one sample period or .05 second. The y velocity
estimate again shows a constant value of approximately -8.33
ft/sec. This constant negative velocity is caused by the

orientation of the test track with respect to the chosen co-

ordinate frame of reference. To illustrate the actual vehicle

track in the assumed frame of reference, Fig. 5.15 shows
smoother estimated y position plotted against x position.
This plot indicates the estimated trajectory of the vehicle
in the earth-fixed coordinate frame of reference. The

trajectory is indeed a straight line, but not along the

117




X-axls we have used. However, an exact starting position
and track orientation are not the goals of this analysis.
Our main interest is to obtain a good estimate of peak
vehicle speed along the track. We are not concerned with
where this peak speed occurs but more with the value and
error of this estimate.

The second iteration of the smoother yields a maximum
velocity of 1082.028 ft/sec at 16.85 seconds from chosen
initial time. The scalar speed estimate at 18.65 seconds,
FIM trap entry time, is 975.043 ft/sec. The reason we do
not get better agreement between the smoother and FIM esti-
mates of velocity at the trap is due to the time skew in the
radar data previously discussed. The time scale we have used
shows trap entry between 18.60 to 18.70 seconds but we are
not sure exactly where trap entry occurs in this interval.

The behavior of the error states indicated by the first
iteration of the smoother is reconfirmed by the second itera-
tion. The radar range bias error behaves very much as a
constant with only slight deviations from a steady value of
-255.68 ft. The smoother estimate of range error is plotted
in Fig. 5.13 (a). Radar azimuth error in Fig. 5.14 (a) is
again shown to be "slowly-varying"” over the 24 second inter-
val. Our initial assumptions about the radar operator azimuth
tracking error are again reconfirmed. The error in azimuth
starts out high as the operator lags behind the vehicle due

to rapid acceleration, decreases as the operator "catches up"
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to the car near peak speed, and again increases upon vehicle
deceleration as the operator "jumps"” ahead of the car.

The accelerometer error state estimate shown in Fig.
5.12 (a) indicates that this state varies between approximately
0 to 0.08 ft/sec2 or 0 to .0025 ¢g's. Maximum error in the ac-
celerometer occurs at approximately ten seconds into the run
and the error decreases to near zero by 24 seconds. Perhaps
the behavior of this error state can be explained by referring
to Fig. 3.2 which is a plot of raw accelerometer data in g's
versus time. Figure 3.2 indicates that maximum sustained
g's on the vehicle occur between O to 10 seconds and slowly
decrease from that time on. It appears from Fig. 5.12 (a)
that the accelerometer error is a function of the time of
application and level of sustained g's on the vehicle. This
figure indicates a time-correlated behavior of the accelero-
meter. Such behavior may have been adequately modeled as a
random walk. One way to model this behavior might be to re-
late the amount of driving noise on the accelerometer error
state to the level of acceleration units at any given time.
Thus, dg» could be modeled as time-varying for use in a
random walk model of accelerometer error. Certainly, it can
be argued that a correlation time of one second is too short
from the behavior of the accelerometer error shown in Fig.
5.12 (a). Nevertheless, the forward-backward iterations
have provided better information on the "true" behavior of
the states of interest. Another iteration of the smoother

could be made with updated initial conditions and perhaps a
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different model for accelerometer error, but two iterations
have provided sufficient reduction in variance values for
our purposes,

Figures 5.8 (b) through 5.14 (b) are plots of smoother
calculated error variances for each state. These plots show
that the backward filter is able to reduce the errors in
state estimates from those obtained from the first iteration
of the smoother. After two iterations of the forward-backward
estimator, the error in state estimation is reduced by an
average of 45% over that obtained in the first iteration of
the smoother.

The results of this second iteration of the smoother are
now used to test the hypothesis that the rocket car did, in
fact, exceed the reference speed of sound. This will be shown

in detail in the next chapter.

120




Y VNS WS TS

VI. Hypothesis Testing

The previous chapter presented the results of the ex-
tended Kalman filter - fixed interval smoother estimation
scheme. The resulting state estimates and error covariance
after two iterations of the smoothing method will now be
evaluated to yield the best estimate of peak rocket car
speed and a confidence level for this estimate. Before we
can analyze a hypothesis test of the peak vehicle speed, it
is necessary to calculate the scalar speed estimate standard

deviation.

Development of Scalar Speed Standard Deviation

The values for X4 and Xge X and y velocity, are given
in terms of mean values, §3(ti/tf) and §4(ti/tf) and variances
P33(ti/tf) and P44(ti/tf) and the covariance P34(ti/tf).
Under our assumptions of approximately Gaussian error models,
these mean and variance values completely describe a two;
dimensional Gaussian probability density function which pro-
pagates forward in time from the initial to final time. The
state estimates of x and y velocity provide the components
of a two-dimensional conditional mean vector, m, the magnitude
of which is the estimate of scalar speed at any time, t;.
This mean vector in the x-y plane, shown in Fig. 6.1, locates
the peak of the density function. Surfaces of "constant like-
lihood” (4) are generated by passing planes through the den-

sity function parallel to the x-y plane. These surfaces are
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Flg. 6.1 Velocity vector and one sigma ellipse of
constant likelihood
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ellipses parallel to the x-y plane and when viewed from above,
the one sigma surface of constant likelihood appears as in
Fig. 6.1.

The covariance matrix for the two-dimensional velocity
density function determines the spread of the density about
m as in the figure. This covariance matrix also determines
the angular orientation of the "principal axes" (4) of the

ellipses of constant likelihood,

2
033 P34934943
Pyglty) = (6-1)

T 442

Pa3943%34 44

where p is the correlation factor. If there were no correla-
tion between state estimates of x and y velocity (i.e.,

P34 = Ry3 = 0 ), the covariance matrix would be diagonal,
and the principal axes of the ellipse would be paralliel to
the x and y axes. The magnitudes of the semimajor and semi-
minor axes of the one sigma ellipse are determined from the

eigenvalues, Xi, of the covariance matrix

T3 (6-2)

T4 =

A A

(6-3)

where the primed notation indicates the lengths are defined
in the principal axes frame of reference. We desire to re-
late the calculated scalar speed estimate from the optimal

smoother:

- A A 25
vies /e = Dl /e ) 2eix, (8 /6)) 2] (6-4)

123




to its associated standard deviation. To do this we must
find the associated representation of the normalized veloc-
ity vector estimate in the frame of the principal axes of
the one sigma ellipse shown in Fig. 6.1. The velocity vec-

tor in the x-y coordinate frame can be represented by:

v = v _i_+

xy <ix Vyly (6-5)

The same vector can be specified using the unit vectors, e,

and 52, in the principal axes frame of reference:

=v_ e, tv_ e (6-6)

Vele2 el - Te,2

From the smoother-generated variances and covariances
for x and y velocity we solve for the associated eigenvalues
and eigenvectors of this matrix. The square root of the
eigenvalues of this 2-by-2 matrix will be shown to be the
length of the semiminor and semimajor axis of the one sigma
ellipse. The associated eigenvectors determine the angular
orientation of the principal axes of the one sigma ellipse.

We solve for eigenvalues and eigenvectors in the fol-
lowing manner. For simplification, we define the covariance
matrix of the velocity states at any time, ti’ as:

P
- 33 P3q7)
By,(ty) = . (6-7)

Py3 Pyq |

Forming the matrix [AI-P] and solving for the determinant

we can find the eigenvalues of Bayt
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A-P ~P
P‘I"Piz 33 34f _ >\2_(

-Pg3 A-Pyy

P33*Pyg) A+ (P33P 0 -P3 Py3)  (6-8)

This "characteristic polynominal" is set equal to zero and
the resulting roots are the eigenvalues, Xl and Kz, of the
velocity covariance matrix. Noting that this covariance

matrix is symmetric so that:

Py, = P43 (6-9)
we define the characteristic polynominal as:
2 2y .
A —(P33+P44)X+(P33P44-P34 ) =0 (6-10)
The resulting eigenvalues are
. 2 7
>‘1’2 E(P33+P44)i'\/(P33+P44) --4(13‘33P4'4-P34 )]/2 (6-11)

Substituting these eigenvalues, A;» into the matrix [lil—g]
and noting that the eigenvectors are in the "null space" of
this matrix, so that

Mi-P33

=0 (6-12)

-P34 Xi-P44 e,

results in two eguations for each eigenvector of the form:

a ei1 + bei2 =0 (6-13)
either one of which is related to the other by a constant.
Thus, we have one equation and two unknowns from which to
solve for the eigenvector, éi‘ for a given eigenvalue, Xi.

We need another relation between the components of the eigen-
vector in order to solve for the individual elements. Noting

that the "normalized" eigenvector is the unit vector we find

the other equation: 2 2
e. “+e, “ =1 (6-14)




[ S ¥)

With two equations and two unknowns we can solve for the in-
dividual components of each eigenvector.

The resulting eigenvectors determine the angular orienta-
tion of the principal axes of the one sigma ellipse. The
angle, 61, between the x-axis and the semiminor axis of the
ellipse (associated with x velocity error variance) can be
found from:

1

6. = tan~! (®127%11) (6-15)

1
where €5 and e,, are the components of the eigenvector which
describes the orientation of the semiminor axis. This angle
specifies a coordinate transformation matrix, L, for a rota-
tion about the z axis, such that:

cosd sinf Q
L =|-sin® cos® O (6-16)
0 o 1|

This coordinate transformation matrix is used to relate the
orientation of the normalized velocity vector to the princi-
pal axes of the one sigma ellipse. Transforming this veloc-
ity unit vector into the frame of reference of the principal
axes, we obtain a length from ellipse center to the one sigma
ellipse in the direction of the velocity vector. It is the

magnitude of this length, Ove in Fig. 6.1, which determines

1
scalar speed standard deviation.

Calculation of Peak Scalar Speed and Standard Deviation

After two iterations of the smoother algorithm we arrive

at the following estimates of x and y velocity at 16.85

126




seconds. As in the previous iteration, this time is found
to be the point at which peak x velocity is obtained. The

associated error variances and covariances for X3 and x, at

4
this time are also given:

Velocity State Estimates Covariances

n
]

A
x5(16.85/t.) = 1081.996 fps P 1.117148 (fps)?

33
2.140282 (fps)?

-8.335287 fps P

A
x4(16.85/tf) 44

i

P P 071 (£ps)?

34 43 ~

The magnitude of the velocity vector or scalar speed estimate
is:

|¥] = 1082.028 fps (6-17)

From the covariances for the velocity state estimates at

16.85 seconds we form the two-dimensional covariance matrix:

1.117148 .071
Pyy = (6-18)
.071 2.140282

The eigenvalues and associated eigenvectors for this matrix

are found from (6-11), (6-13), and (6-14):

) .99852 |
A, = 1.11328 g =
.0544
- - (6-19)
_ .06894 |
X, = 2.14453125 &, =
99762 |

The lengths of the semiminor and semima jor axes of the one

sigma ellipse of constant likelihood become:

127




e

I,

1.05512 ft/sec

1.464422 ft/sec {(6-~20)

The eigenvector associated with Xl determines the angular
orientation of the semiminor axis of the one sigma ellipse

in the x-y coordinate frame of reference:

0, = tan~1(.0544/.99852) = 3.11843 degrees (6-21)

This angle, 61, defines a direction cosine matrix, L, in
order to transform the nomalized velocity vector

v = 1081.996i -8.3352871 =5.99997i -.0077i, (6-22)

into the frame of reference of the one sigma ellipse such

that .99852  .0544 0O
L =|-.0544 .99852 0 (6-23)
\ 0 o 1
and
| i = .99852e, + .0544e,
i, = -.0544e; + .998528, (6-24)

The normalized velocity vector in the principal axes frame
- becomes

vé1éz = .99997(.99852e1+.0544e2)—.0077(-.0544e1+.99852e2)

= .9989§1+.0467§ (6-25)

2

The angle of this normalized vector with respect to the x-axis
becomes:

6, = tan”1(.0467/.9989) = 2.6767 degrees (6-26)
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Subtracting (6-26) from (6-21) we find the angle between the
51 eigenvector and the velocity vector in the principal
axes frame:

61 - 62 = ,44172 degrees (6-27)

This knowledge will become helpful in a moment.

We need to find the distance from the one sigma ellipse
center to the ellipse itself, in the direction of the veloc-
ity vector, Gé s+ To accomplish this, we have the general

172
equation for any point (xl, x2) on the ellipse:

e e (6-28)
1 M2

where ¢ is a constant. For the one sigma ellipse ¢ is equal
to one. We also have the familiar relationship between two
vectors Vir ¥yt

v ® Vv

.:l-————:z = cos y (6-29)
) (%

where y is the angle between the vectors. Let Xy and X,

describe the coordinates of the point where the line from

ellipse center in the direction of the transformed velocity

unit vector intersects the ellipse. We apply (6-28) and ‘
(6-29) to the point on the ellipse described by these points

X, and x,. In (6-29) we are interested in the 51 eigenvector

direction of length Jkl, and the transformed velocity vector

V = x (6-30)
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of length Jxlz + x22. It is this length which describes the
one sigma deviation of the scalar speed estimate. From

(6-28)

2 2

X
+ =5 = ] (6-31)
A A

»
-t

—

and from (6-29)

Srep . [xpe +xye, ]

= cos y = cos(.44172) = .99997
’Jxlel lee1+x2e2

%y
Jx.2+x.2 = .99997
1 Xy
x, = 129.095572x, (6-32)
From (6=31)
2 2
16665.67x,” , x,° _ (6-33)
M Ao

we find

X, = .008173

and from (6-32)
x1 = 1.055098
Thus,

x2+x22

1 = 1.05513 (6-33)

This value is the standard deviation of the scalar speed esti-
mate, 1082.028 ft/sec. Note that we expected the standard
deviation of the velocity estimate to be only slightly higher

than the one sigma deviation of the X velocity estimate due
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to the small off-diagonal terms of the P matrix, and rela-

34
tive magnitudes of the x and y velocities.

Hypothesis Test of Peak Speed and Confidence Level

We are now prepared to apply a hypothesis test of the
peak vehicle speed. We wish to test the hypothesis that the

peak speed estimate is above the reference speed of sound, a:

a = 1073.536213 fps
From our assumptions of Gaussian models, the estimate
of peak speed and associated covariance describe a condi-
tional normal distribution. The appropriate one-sided 'con-
fidence interval" (8) for this hypothesis test is given by

(8):

X - z (confidence level) o (X) > (6-34)
where
X - mean of normal distribution = 1082.028
z - area under the standard normal distribution
curve
6(X) - standard deviation of normal distribution =
1.05513

4 - lower bound of confidence interval = 1073.536213

For X = 1082.028 fps, u = 1073.536213, o(x) = 1.05513:

z(conf idence) = §§E = 8.048 (6-35)

To eight significant figures (6-35) yields a probability

that the vehicle was below Mach one of:
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1 - P(x) = 3.4346578 E-15 {(6-36)
from which P(x), the probability that the vehicle was above
Mach one, is found to be:

P(x) = .9999999999999965653422 (6-37)
For all intents and purposes, we have achieved a proba-
bility or confidence level of one that the vehicle exceeded
the reference speed of sound. Of course, this confidence
level is based on the assumptions and modeling techniques we
have used in this analysis. Such a high confidence after
only two iterations of the forward-backward estimator illus-
trates the power of optimal smoothing theory in post-run

data analysis.
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VII. Conclusions and Recommendations

Cconclusions

Two iterations of the forward-backward estimator have
provided improved state estimates and lower error variance
than is possible with a forward filter only. The backward
recursive fixed-interval smoother provides updated initial
state and variance values which yield improved state esti-
mates from the forward extended Kalman filter. The forward-
backward estimation method has reduced the error variance
from the forward filter by more than half after only two
iterations. Based on the second iteration of the smoothing
algorithm we make some general comments.

The improved initial time conditions from the smoother
indicate an inaccurate assumption of the starting position
of the run. We used an origin based on very inaccurate range
measurements. It appears that the initial x and y position
are, in fact, displaced approximately 200 feet north and 400 ft
east of the assumed starting position. The vehicle is also
already moving at our assumed initial time. This can be ex-
plained by an error in the initial time chosen for the radar
measurements. The point in time in the radar data chosen as
tO appears £o be off by approximately 0.05 second. In other
words, the actual starting time of the run is about one radar
data sample before the time chosen as the starting time.
This causes the smoother to estimate an off-zero velocity at

our declared initial time. This also explains why we do not
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see exact correlation between filter estimated velocity and
FIM trap speed at 18.65 seconds. On the time scale we have
used, the FIM trap occurs somewhere between 18.60 and 18.70
seconds. In spite of this time skew, the estimated values
are close enough to trap speed to allow the comparison shown
in Table III.

The actual starting position of the vehicle is really
not the information we desire. We set out primarily to get
the best estimate possible of peak vehicle speed no matter at
what time or where on the track this occurs. In terms of
vehicle velocity, the smoothing algorithm used in this analy-
sis after two iterations has provided excellent convergence
to the "true" peak speed.

We also have come close to the maximum velocity estimate
obtained on the day of the run from AFFTC radar data analysis.
It appears that the AFFTC method used to correct erroneous
range data was valid and even averaging only three radar
points came very close to the "true" peak speed. We now
summarize the estimates obtained of the peak vehicle speed
by AFFTC, accelerometer data only, and one and two iterations
of the forward-backward smoothing method incorporating range
and azimuth measurements. These velocity estimates are con-
verted to Mach number using the calculated reference speed
of sound of 1073.536213 ft/sec. These results are summarized
in Table 1IV.

Two iterations of the optimal smoother also provide some

information on the behavior of the error states of the
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TABLE III

Speed Estimate at FIM Trap (18.65 seconds)

Method Feet/sec MPH
FIM Recorded Speed 977.1432 666.234
Accelerometer Data Only 978.582 667.215
First Run of Extended Kalman
Filter 979.22 667.649
First Run of Smcother 972.91 663.35
Second Run of Extended Kalman
Filter 978.568 667.206
Second Run of Smoother 975.043 664.802

TABLE IV

Peak Scalar Speed Estimates

Method Used Feet/sec MPH MACH

Time Above

Mach 1

AFFTC Computer Analysis
of Corrected Radar Data 1084.835 739.66 1.0105

Integration of Longitud-
inal Accelerometer Data 1080.05 736.4 1.006

First Run of Extended
Kalman Filter 1089.5 742.84 1.0149

First Run of Smoother 1080.006 736.34 1.006

Second Run of Extended
Kalman Filter 1086.71 740.94 1.0123

Second Run of Smoother 1082.028 737.75 1.008
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accelerometer and radar. The accelerometer error varies be-

tween 0 and .08 ft/sec2

(0 to .0025 g's) during the 24 second
time interval of interest, achieving its maximum value at ap-
proximately ten seconds into the run. From ten seconds on,
this error slowly decreases t0 approximately zero by 24 sec-
onds. The sustained g's on the vehicle are fairly high
(Fig. 3.2) up to ten seconds and then begin to decrease after
this time. It would appear the accelerometer error is a
function of the length of time sustained g's are applied to
the accelerometer and the magnitude of these acceleration
units. Depending on one's definition of "slowing-varying",
one could make a case for using a random walk model for the
accelerometer error. Certainly, it could be argued that a
correlation time of one second is too short for the behavior
of this error. Another study of the rocket car data could
use on-line "tuning" of the system noise matrix, Q(t), by
allowing the smoother to calculate an estimate of its value
over time, a(ti/tf). One could also calculate smoother esti-
mated inputs G(ti/tf). In terms of the rocket car analysis,
such estimation of accelerometer input at any time ts based
on the entire measurement time history would yield improved
state estimation. Nevertheless, the smoother has provided a
better "glimpse" of the "true" behavior of this state than
is available from a forward filter only, especially without
more knowledge about inherent accelerometer errors.

The random walk models for radar range and azimuth bias

errors prove to be very adequate. These errors are shown as
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nearly constant over the 24 second interval with only slow
changes from the behavior of true constants. Certainly, we
are somewhat surprised at the magnitude of the radar range
bias error. Considering the size of the vehicle being tracked,
lack of transponder, ground clutter, and distance from the
radar site, it is conceivable that the radar range has a
large inherent error. The azimuth bias error behaves as we
expected based on our knowledge of operator tracking perform-
ance. Perhaps "bias" is a misnomer, as most of the error in
azimuth is operator-induced. The azimuth error shows that
the operator lags behind the vehicle initially but is able to
regain good tracking as the acceleration decreases. After
engine "flame-out" at approximately 18 seconds, the azimuth
error again increases, indicating the operator has probably
" jumped"” ahead of the vehicle. For another iteration of the
estimator, a better description of the azimuth error could
be used. One could relate the strength of driving noise on
this state, d4, to the acceleration of the vehicle. When ac-
celeration is high g, would be increased. The amount of driv-
ing noise would decrease as vehicle acceleration decreases.
This analysis has shown that state estimation can be
significantly improved if the estimation algorithm has access
to future measurements. This is the real benefit of a
smoother algorithm in post-run data analysis. The method
used in this analysis requires a straightforward incorpora-
tion of existing theory and available software with only

limited additional programming required. The forward-backward
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iteration scheme is a simple yet effective way to provide
improved state estimates in an “off-line” application. It
can be applied to almost any system of interest no matter

what dimension, with only computer workload becoming a driv-

ing factor. Good dynamical and error models are a require-
ment, but not a necessity. The iterative method used in
this analysis can help "fine-tune" very simplified models to
provide improved state estimates.

The reader familiar with estimation of unknown para-
meters using a "maximum likelihood" estimation technigue may
wonder if such a technigue could have been employed in this
analysis. The answer is a guarded "yes" if we can make some
valid assumptions. The inherent assumption in maximum likeli-
hood estimation is that the parameters to be identified can
be accurately modeled as constants over some time interval
of interest. 1In this analysis, we are concerned with accur-
ate estimates of state values at discrete points in time (i.e.,
peak speed at some time, ti)' If we assume the parameters ’
affecting this problem, such as accelerometer and radar errors,
are constant over time, a maximum likelihood estimation algo-
rithm will yield a best fit of a constant to the data. If
the parameters are not true constants, a better (non-constant)
model would inherently allow better estimation accuracy.

This analysis has shown that the error states do not behave
as constants. Therefore, one cannot accurately model these
errors as constant unknown parameters for implementation in

a maximum likelihood estimation algorithm witaout non-negligible
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estimation performance degradation. Without a priori informa-
tion on the behavior of the errors to be modeled, the deci-
sion was made to model the errors as states in the forward
extended Kalman filter-backward smoother estimator.

If there is a "bottom-line" to this analysis it has to
do with the peak speed of the Budweiser Rocket Car on 17
December 1979. Rather than "eyeballing" the peak speed of
the car based on poor data, we are able to provide an esti-
mate of the speed and a confidence level for our estimate.
In fact, after only two iterations of the forward-backward
smoothing technique, we can state with probability of nearly
one that the vehicle did achieve the reference speed of
sound, based on the assumptions and modeling technigues used

in this analysis.

Recommendations

The position estimates and off-zero velocities calcul-
ated by the smoother at the initial time, tor indicate a
rather poor choice of origin for the vehicle frame of refer-
ence. Relying on the radar to provide a good initial "fix"
of vehicle position, no matter how long the radar is aimed at
the vehicle, is only "wishful thinking". Perhaps a better
origin could have been located at remote camera site A8
shown in Fig. 1.1. This point has been surveyed and "exact"
latitude and longitude coordinates of both A8 and the radar
site are known. Using these coordinates one could calculate

a much better DELX and DELY from which to reference changing
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radar measurements to vehicle motion in the frame of refer-
ence. If the information on track alignment with respect to
A8 is correct, a frame of reference at A8 should indicate a
vehicle track parallel to the x-axis. The starting position
of the vehicle within a frame of reference centered at A8 is
Still unknown, however, and only iterative methods could
"zero-in" on the "true" starting position.

An adjustment could be made in the initial time chosen
in the radar data to find the "true" sample time as ﬁhe
vehicle starts to move. At 20 samples per second, however,
one can only get within 0.05 second accuracy. Also, the
radar data 1s constant until the azimuth suddenly increases
very rapidly. We chose one sample time before the first
change in azimuth as the initial time. One could "back-up"
the radar data until the smoother estimate of x-velocity at
tO approaches zero.

Other possibilities for further study include some off-
line tuning of system noise to account for the time-varying
nature of accelerometer and azimuth errors. One way to ac-
complish this might be to use the smoother estimate of sys-
tem noise, a(ti/tf), based on the measurement data to provide
a time history of driving noise for each of the affected
states. This would provide the forward extended Kalman fil-
ter with improved knowledge of state behavior.

Finally, it might be beneficial to allow the smoother
to calculate an estimate of the applied controls, in this

case accelerometer specific force. This smoother estimated

140




control input, G(ti/tf), could be used to better determine
accelerometer errors and improve state estimation. These
possibilities were not explored in this analysis due to time
limitations and a feeling that confirmation of peak vehicle

speed was the critical area of concern.
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Appendix A, Plots from Second Iteration
of Extended Kalman Filter

This section presents the results of the second itera-
tion of the extended Kalman filter developed in Chapter III
and IV. State estimates and error variances at the initial
time from the first iteration of the Meditch (5) smoothing
algorithm are used to update the initial conditions of the
extended Kalman filter for this run. In addition, a slight
correction to the assumed test track heading provides closer
filter correlation to range and azimuth measurements, allow-
ing a reduction in the estimated measurement noise for radar
range.

Figure A.1 shows a plot of estimated and actual radar
range obtained with the corrected test track heading. This
figure indicates that the divergence of actual and estimated
range between 20 to 24 seconds has been removed.

The extended Kalman filter shows improved convergence
of the standard deviations of the state estimates due to im-
proved initial conditions from the smoother. This can be
seen by comparing to part (b) of Figs. A.2 through A.8 to
part (b) of Figs. 4.17 to 4.23, Figures A.9 (a) and A.9 (b)
are plots of the range and azimuth measurement residuals
bracketed by the residual standard deviations. From Fig.
A.9 (a) it is apparent when the residual monitoring routine
bypasses range measurements in excess of three times the re-

sidual standard deviation. Figure A.10 (b) is an expanded
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version of Fig. A.10 (a) which is the scalar speed estimate

(magnitude of the velocity vector) converted to Mach number.
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Fig. A.?(a.),_(b) Extended Kalman filter state estimate and
standard deviation after two lterations
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Fig. A.8(a),(b) Extended Kalman filter state estimate and
standard deviaton after two iterations,
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Appendix B. Optimal Smoother Computer Program

This appendix includes a listing of the computer pro-
gram used to incorporate the Meditch (5) backward-recursive
optimal linear smoother algorithm described in detail in
Chapter II. The data required for this program includes the
current sample time, ti’ state estimate vector before update,
covariance matrix before update (stored in upper triangular
form), state estimate vector after update, and covariance
matrix after update (stored in upper triangular form) from
to to tf.

For this analysis the state estimates and covariance
before and after each measurement update are stored as a re-
sult of one run of the extended Kalman filter implemented in
SOFE. A short data reformating program was used to put the
data at the final time first and the remaining data records
in backward-recursive form to the initial time. This enables
the smoother program to read forward through the data but
actually compute quantities "backward" in time. The Meditch
algorithm requires g(ti+) and %(ti+1-) for one calculation
at =2ach sample time. The data was put in the following order
to allow for a step-by-step "read" of the required gquantities
for each time of calculation. Each data record contains the
following information in the order shown:

1. time, t.

i
. A
2. state vector at time ti after update, §(ti+)

154




3. covariance matrix at time t. after update, g(ti+)

4. state vector at time t, before update, g(ti')

5. covariance matrix at time t, before update, g(ti-)
The order of the system used in the rocket car analysis al-
lowed for storage of formated records. A higher order sys-
tem will probably require more efficient data storage and

improved formating of smoother printed output.
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