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Preface

In this thesis I examined the effects of a parametric
family of strakes on the longitudinal and lateral stability
of an F-15C aircraft‘equipped with CFT's. The test was
performed in the AFIT 5 foot wind tunnel using a specially
congtructed 1/32nd scale injection molded, plastic aircraft
model.

This thesis continued a test program begun at
Wright-Patterson AFB by the F-15 Systems Project Office.
The previous work showed the specially constructed, plastic
model produced stability data which compared favorably with
data from a much more costly model tested in the Ames 12
foot pressurized wind tunnel.

It should not, however, be construed that plastic
models may be indiscriminately used and still produce
reliable results. Great credit must go to the AFIT Model
Shop where Mr. Jack Tiffany, model maker, converted the
hobby kit into an accurate, wind tunnel test article. I
would also like to express my appreciation to Mr. Russel
Murry, machinist, for his advice and the construction of the
many test strakes. Credit must also be given to Mr. Nick
Yardich and Mr. Andy Rimenschneider, AFIT wind tunnel
technicians, whose cumulative knowledge, experience, and
concerned effort made possible the quantity and quality of

data collected in this experiment. The skill, dedication,




’l"'fl’ l"f.

L X%

. )]
»

| otoaos

¥ A

4 .:"‘

'

S
AR

A

and cooperative spirit of AFIT's technical staff are one of

its greatest assets.

Invaluable technical and material support were provided
by the program's sponser, Flight Dynamics Laboratory,
Aerodynamics and Airframe Branch. Appreciation is also
extended to my advisor, Capt. Wesley R. Cox, for his advice
and guidance, and to Professor Harold C. Larsen whose tech-
nical skill, fatherly guidance, and friendly encouragement

has helped so many of us begin our engineering careers.
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Abstract
L i
[T v o 4-'?‘ L= 'I"A’f v ! -~

o ‘ . '
<» A parametric study/of forebody strakes was made on an

- F-15C model equipped with conformal fuel tanks, in the AFIT 5

foot wind tunnel.'»Parameters of interest were thé strake
planform area and thé%strake angle of incidence. Twenty
configurations were evaluated for longitudinal and lateral
stability at angles of attack from -4 to 46 degrees.?
L Z '

Lift coefficient fet)i drag coefficient {(€p), and

pitching moment coefficient (Cﬁ) were plotted ve;sﬂgfangle
@Jj),a.. ——

of attack (k). Data indicated that an excessive positive

i, gevgotive ofF CM/devivative OF alpha
iné;EEEE—IE}§CM¢a&*can be expected at angles of attack of
20 degs’ee_s?or less. Above 20 degﬁees%, Cﬁ may be tailored
by varying the strake area and incidence angle. For each
strake examined, an angle of incidence of either -3 or -6
degteee}(depending on planform area) produced a more nearly

e I l'A.-

linear Cg vé:eqs o' turve than d degrees; therefore,
incidence angle should be considered in strake design
optimization.

Lateral stability data were taken on 12 configurations
from 16 to 44 degfeesyangle of attack. To determine spin

GV poacnable lopare ek g Lo el b g AL A

e (See Section III) was plotted for
8 DYN

the most promising configurations. Very little constructive

susceptibility,

change in lateral stability was noted for the configurations

tested.

{
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I. Introduction

Background
Beginning with the '"C" model, the F-15 was modified to

carry conformal fuel tanks, frequently called CFT's or FAST
packs. These tanks (see Fig 1) fit outboard of the engine
inlet and beneath the wing allowing the aircraft to carry
additional fuel and electronics (5). While these tanks were
originally intended for ferry missions, the flexibility they
add to the combat role makes it likely they will see combat.

Early flight testing of an F-15 equipped with the
production version of the CFT's indicated that there might
be a slight reduction in both longitudinal and lateral
stability at high angles of attack (13). Wind tunnel
testing followed at the Ames 12 foot pressurized wind
tunnel. Several armament configurations of an F-15 both
with and without the CFT's were tested. Data confirmed that
there was a small reduction in static longitudinal and
lateral stability at angles of attack greater than 30
degrees (6). While the reduction in stability is small, it
may present an undesirable difference in handling qualities
between configurations.

It is well recognized that strakes may be used to

influence the longitudinal and lateral stability of swept

LR
....................
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wing aircraft at high angles of attack (10). A combination

of nose and forebody strakes, if properly optimized, may be
used to improve the longitudinal and lateral stability, and
also increase the aircraft's lift while decreasing its drag
(10).

With this in mind, the F-15 Systems Project Office
conducted a series of tests in early 1983. The tests
evaluated the static longitudinal and lateral stability of
a 1/32nd scale F-15C in the AFIT 5 foot wind tunnel. Both
the clean aircraft and the CFT equipped model were evaluated
with several armament configurations and forebody strakes,
nose strakes, and ventral fins. Results of these tests

indicated that forebody strakes were the best candidate to

improve the overall performance of the F-15 (14).

Problem

The purpose of this test was to define the strake
effects on the overall performance of a CFT equipped F-15.
Primary importance was attached to stable longitudinal
dynamics at high angle of attack, an increase in lateral
stability at high angle of attack, and minimal degradation

of the low angle of attack longitudinal stability.

Strake Effects

Strake characteristics which will produce the desired

performance are difficult to predict. A configuration which
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R works well on one aircraft may not work on another (ll).

‘ - Additionally a forebody strake produces a forward shift in
the aircraft's center of pressure and may cause low angle of

H attack instabilities (15). For the present, wind tunnel

testing is the best means to evaluate the total

configuration (10).

Strake performance is dependent upon many parameters
such as: shape, area, fineness ratio, and leading edge
radius (references 2,3,and 15). Installation effects such
as strake dihedral and inlet mass flow can also play a part
in the overall performance (8) (2). The installed angle of <
L incidence of the strake should produce an effect that will
: allow the test engineer to change the angle of attack at
: ‘t’ which maximum strake vorticity occurs. This will change .
: both the magnitude of C; MAX and its position on a C; versus
: a curve. The ability to vary strake angle of incidence .

should allow improved tailoring of the high angle of attack
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stability and overall performance.
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Procedure
A parametric family of 20 strakes (see Appendix A) was
designed to evaluate the static, aerodynamic performance of

a CFT equipped F-15 at angles of attack of -4 to 46 degrees

of incidence and planform area of the strake were varied to

DEDR VLIRS - SRS -

4 and sideslip angles of -6 to 6 degrees. The installed angle
CA
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form the family. The angle of incidence varied from 0 to

-9 degrees, while the strake area was increased by changing
the span and holding the chord constant (see Fig 2).

Testing was performed with the original 1/32nd scale
model in the AFIT 5 foot wind tunnel. Aerodynamic data were
taken using a Task, Mkl, 6 component strain gauge balance
and a Hewlett-Packard, Model 3497A, data acquisition system.
Data were reduced on a Hewlett-Packard 85 computer.

Coefficients of 1lift, drag, and pitching moment were
plotted versus angle of attack (see Appendix B).
Coefficients of yaw and roll were calculated, and CNB DYN

was synthesized and plotted versus sideslip angle (see

Appendix C).
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II. Test Equipment

Wind Tunnel

The AFIT 5 foot wind tunnel was built in 1919 at McCook
Field, Dayton, Ohio, and moved to its present location in
1921. It is an open circuit, continuous flow type. The
tunnel has a closed test section, five feet in diameter and
18 feet in length, with a contraction ratio of 3.7 to 1.
The wooden tunnel, including the intake and diffuser, is
contained within a large building which provides a double
return passage for the air. Tunnel airflow is induced by
two 12 foot counterrotating fans, driven by four 400
horsepower, direct current motors, and is capable of
providing test section speeds up to 293 feet per second
(fps), which corresponds to a Reynolds Number (Re) of 1.876
x 106 per foot under standard conditions. Total pressure
is atmospheric. Static pressure is measured by a manifold
containing eight static pressure ports 30 inches from the
tunnel entrance and 2.5 feet forward of the test section.
Dynamic pressure is measured by a micromanometer connected

to static and atmospheric pressure (12).

Instrumentation

This test used a Task, Mkl, six component, .75 inch

outside diameter internal strain gauge balance and bridge

conditioners to acquire data. Each channel was sampled 10
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times and the readings were averaged by a Hewlett-Packard
3497A data acquisition system. The averaged data were
reduced to aerodynamic forces and moments by a
Hewlett-Packard 85 computer and then stored on cassette for

further reduction and plotting.

¢
i

(.

-

Fig 3. Model, sting, and yoke mounted in the test section.
The circular arc tracks (for sideslip control) and angle of
attack control cable are also visible.

The balance was fitted to a steel sting and "Y" yoke
support structure (see Fig 3). The two forward attachment
points of the yoke are supported on each side of the tunnel

by a roller in a circular arc track. This permits -6 to +6

degrees of sideslip. The sideslip angle is controlled from
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c&é' Fig 4. Tunnel operator's station, AFIT 5 foot wind tunnel.

the tunnel operator's station (see Fig 4) through direct
control of a D.C. cable drive motor. A potentiometer
attached to the closed loop, cable drive provided direct
readout of the sting sideslip angle. (see Fig 5). Pitch was
controlled by adjusting the vertical height of the leg of

;j the yoke. This was accomplished from the tunnel operator's
position by direct control of a D.C. cable drive motor (see
Fig 6). An open loop cable drive was used for pitch control
with lead weights providing the necessary vertical tension.
A potentiometer attached to the pitch, cable drive provided

direct readout of the sting angle cf attack.
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Fig 5. Angle of attack and sideslip drives, side view
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N Potentiometer output was recorded by the Hewlett-

~‘:-‘ ‘\‘

N tiﬁ Packard data acquisition system. Corrections for sting
a deflection and balance deflection were later applied by

A

t} the H/P 85 computer software to compute the actual angles
o . : .
o of attack and sideslip. A drawback to this system was that
Y the actual control variables differ from those requested by
2y
és the tunnel engineer by a few minutes of arc.
— Calibration
N

L3 Calibration of the strain gauge balance was done by

o
’iﬁ manually test loading each of the six components separately
- and recording the output. Interactions among components was
'ﬁ; unavoidable in balances of this type. For accurate results,
';ﬁ computer software subtracted the component interactions. A
s o

@ matrix of first order interactions was formed by reading the

.‘.‘

" output of the five "unloaded" components after each
.:‘:.
e component was test loaded. The interaction matrix was

J

- applied to all test data to compute the actual loadings.
o
50% Sideslip angle was calibrated using a '"'ray'" board and a
S . o

o~ plumb. The ray board was installed in the tunnel with its
e

. apex directly under the center of curvature of the sting
{fj with the rays extending forward. The plumb was suspended
«.e
SN from the center of the sting and allowed to come to rest
- over the calibrated ray board. Sideslip calibration was
L
e performed by rotating the sting with the sideslip drive to
:::'
Py
".n.‘.I.

u‘..l ‘.“-'

%
A

At AT e Ty AT e
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§ - reach a desired sideslip angle (referenced to the ray board)

;: :i?' and recording the sideslip potentiometer output versus sting

‘f sideslip angle.

'? Angle of attack was calibrated using a special model
leveling block and an inclinometer. The leveling block is

:é an epoxy block which was cast to fit flush on the back of

§ the test model. The top of the block was aligned parallel

_j with the model X-Y plane and ground flat. Alignment pins in

ié the block and holes drilled in the model insure accurate

IE position. An inclinometer resting on the block was used to

) determine accurately zero roll angle and all calibration

vi' angles of attack. Pitch calibration was performed by

j rotating the sting with the pitch drive to reach a desired

;~ ‘Ei model angle of attack (referenced to the inclinometer) and

;: recording the pitch potentiometer output versus the model

; angle of attack.

;: Model

ii The test model (see Figs 7-9) was constructed from a

2 1/32nd scale F-15 injection molded, plastic, hobby kit. The

:: original kit came with only the two place canopy; this

3 required the AFIT Model Shop to manufacture and fit the one

:j place canopy which was used in this test. Metal stiffeners

; were added to the wings and stabilizers prior to final

g assembly. Flow-through inlets were added with an inlet to

'; s

13
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Fig 7. Test model without CFT's and strakes.

exhaust area ratio equivalent to military power. A
stainless steel sleeve was permanently fitted into the
fuselage to allow easy installation and removal of the
balance. The sleeve was positioned so that the balance
would be secured at the aircraft's normal center of gravity
(25% MAC) (13). A high temperature epoxy casting resin was
used to fill all internal voids to further stiffen the
model. The engine inlet ramps were set to full down (-1l

degrees) to simulate operations at high angle of attack.
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The horizontal stabilizers could be set to neutral (0
degrees) or full leading edge down (27 degrees) to simulate

a full aft stick configuration. Strakes, made of .020 inch

S_remmma. a8

aluminum, were manufactured with tabs for easy installation
and removal (see Fig 2). Slots for the strakes' tabs were
machined into the wing leading edges and the gun fairings at
) 0 degrees angle of incidence. All installation gaps and

) screw holes were smoothed with modeling clay before each

run. (All angles are referenced to the aircraft's

N
'E waterline.)
;3 Once the model was assembled, it served only as a
‘ reasonably accurate blank from which a test article could be
r manufactured. Aesthetic details such as rivets and plate
;j margins which improve the appearance of a hobby kit, destroy
- 'E’ the performance of a wind tunnel model and must be removed.
z; Many hours of additional measuring, sanding, and shaping
3 went into the final, fully scaled test article.
2
2
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III. Stability Theory

Longitudinal Static Stability Theory

For an aircraft to have positive static longitudinal
stability, pitching moment coefficient (CM) must decrease as
the angle of attack (a) increases (with nose up pitching
moment defined positive). Thus for positive static
stability 3Cy/da (CMu) must be negative. In general the
wing-body combination produces a destabilizing (positive)
CM . It is the addition of the tail and its stabilizing

a
contribution that results in an overall longitudinally

stable combination. Generally the effects of three areas

on pitching moment are considered: wing, body, and tail.

Neglecting propulsion effects and assuming the existence of i
a true aerodynamic center. :
7 9C
= h - - Lt 1
Gty = Cr (b - Bp,) - Ty L (1)

where the effects of the wing-body and tail are separated.
Following a development in Chapter Six, Reference 4, this
can be simplified to:

Gy = Cp (h-h) (2)

a

where,

CL da H da (3)

17




Ky = (b - h) ()

Ky is the static margin which clearly must be positive in
sign for positive longitudinal stability. While the
pitching moment effects of the wing, body, and tail are
combined in Eqn (2), it must be emphasized that simple
superposition of the aerodynamic forces which act upon them

separately does not give the correct result (4:204-209).

¥ _l!LHQthJAAAMHI“IIVS‘.M.

i
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TVﬁna
Fig 10. Upwash pattern induced along wing by the cross-flow
past the body.

With the addition of the CFT's to the F-15, the complex
relationship between the wing-body flow fields was changed.
When the body axis is at angle o« to the free stream, there
is a cross-flow component V Sin a. The body distorts this
flow locally, leading to cross-flow components that can be
of the order 2V Sin o at the wing-body intersection. This
results in a change in the wing lift distribution (see Fig

10) (4:204-205). The original F-15 minimized this

......

-:“
Oy
I\ .
oo cross-flow by judicious placement and shape of the gun
AN
e fairings (see Fig 11). Installation of the CFT's allows the
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cross-flow to wrap smoothly around the fuselage increasing
the effect of the body on the wing. The result of adding a
body to a wing may usually be interpreted as a destabilizing
shift (forward) of the mean aerodynamic center, an increase
in the lift-curve slope, and a negative increment in CMac
(4:205).

The addition of forebody strakes to a CFT equipped F-15
will diminish the strength of the cross-flow and restore the
wing-body relationship nearer to that of the original
aircraft. Use of strakes is not, however, without problems.
The strake is a small, thin, highly swept wing installed
forward of the main wing. Its own aerodynamic center when
added to the wing's will cause the mean aerodynamic center
to shift forward. At high angles of attack, however, the
vorticity of the strake will energize the flow over the
wing and delay the forward center of pressure shift which
occurs with separation. Several researchers have tried to
predict the high angle of attack performance of strakes
using calculations of leading edge suction (7); however,
wind tunnel testing remains the best means to evaluate the

total configuration (1Q).

Lateral Static Stability Theory

For positive directional stability, a perturbation in
sideslip (8) must produce a restoring moment (Cy). The

direction of Cy must be such that the velocity of the

20
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vehicle tends to remain in the plane of symmetry. This
requires that a plot of Cy vs 8 have positive slope
(acN/as = CNB) for positive stability. The term
"weathercock stability' is aptly derived from this defini-
tion. CNB is found from wind-tunnel measurements of the
yawing moment, or it can be estimated by synthesising the
contributions of the various components of the vehicle (4).
The addition of CFT's to the F-15 causes a reduction in
the directional stability. A development from Reference 4
leads to

3¢ 3¢
c = _Ye=v _LE-v a; g - a0, (5)

Ne fin 38 V 38 B

where 30/38 is defined as the sidewash factor. The CFT's
cause a reduction in the gun fairing's ability to disrupt
crossflow (see Fig 11). This leads to an increasing
sidewash factor and a corresponding decrease in directional
stability.

Dihedral effect (C, ) is defined as 3C,/a8. 1Its
effect on lateral stability is paramount. While the primary
contribution to C2 comes from the wing, the fuselage,
horizontal tail and vertical fin also play an important
part. Consider a fuselage yawed with respect to the main
stream flow. The resulting crossflow induces vertical
velocities as it moves around the fuselage (see Fig 12).

When the induced vertical velocities are combined with the

21




2

Ei . mainstream velocity, alterations of the local wing angle of
" - attack occur (4). The addition of CFT's to the fuselage

:% results in change in the crossflow. While an increase in
ig the local angle of attack causes an improvement in lateral
. stability (CZB < 0), the effect of the CFT"s on the cross-
ES flow is difficult to predict. The vertical location of the
fs wing has a significant influence on the dihedral effect.

XS

e

S :P’/\:-_-[—H ol :“_8_

va

« ,'i.fl ‘:‘.

T\Low wing

Fig 12. Influence of the body on dihedral effect.

N2 LA

; The effect of strakes on lateral stability is also
b - difficult to predict. Several experimenters have found that
nose strakes can produce large increases in directional

stability (1Q). There is, however, little experimental

- evidence that forebody strakes have this useful effect.

g If one considers an aircraft at high angle of attack, yawed
" flight, it would be reasonable to expect a delay in the

2 separation of the flow over the wing to improve the flow

;; over the fin. Historically this has been difficult to

j& achieve. The improvement of directional stability with F/B
% strakes, if possible, requires thorough wind tunnel

investigation.
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o . Cn is a useful parameter for predicting spin entry
RSN g DYN
§ E conditions. It is defined as

N
P NI WA I e

C =C cosa - (I,/I . )C, sina (6)
NB DYN NB VAR ¢ 8 _ i

'-. .l‘ S. .n‘ )

for principal axes, and it must be positive for directional

Y

stability. Various authors have used the parameter for
predicting lateral-directional instability and found it to

_; yield a reasonable correlation with test data (1). It also

provides a single parameter which combines effects of Cy

B L
and Cls for evaluation of the overall lateral stability of

,‘;_'i R

test configurations.
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IV. General Test and Data Analysis Procedures

General Test Procedure
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: Fig 13. Model installed on hinged sting with a 20 degree
: prebend.

~ The test was performed in three segments. Low angle of
jE attack longitudinal stability was evaluated first. This was

followed by high angle of attack longitudinal stability

" .
‘2 tests and high angle of attack lateral stability tests. The :
N {
.:j experiments were accomplished at a dynamic pressure of {
A

. approximately 37 psf, and a Reynold's number of 1.14 x 10 !
E 24
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per ft to 1.16 x 100 per ft. For all low angle of attack
sweeps, ;he horizontal tail was set at 0 degrees, while a
setting of -27 degrees was used for high angle of attack
sweeps. The use of grit on the leading edges to simulate
increase& Reynold's number was evaluated by comparing
sweeps made with '"gritted" and "ungritted" configurations.
With the exception of drag, no significant differences were
noted, and "gritting'" was discontinued.

The low angle of attack longitudinal'stability tests
were performed with a hinged sting (see Fig 13) set at 0
degrees. This allowed an o range of -4 to 26 degrees (the
pitch drive's normal limits). Alpha sweeps were performed
with 8 set at 0. All test points were approached from
negative to positive a to avoid hysteresis. Data were
recorded every 2 degrees.

High angle of attack longitudinal stability tests were
performed with the hinged sting set at 20 degrees. This
allowed an o range of 16 to 46 degrees. Alpha sweeps were
performed with B set at 0, and test points were approached
from negative to positive. In some cases, where response
was linear, data were recorded at 4 rather than 2 degree
increments.

Because the configurations were expected to be
laterally stable at low angles of attack, lateral stability
tests were required only at high angles of attack. Beta

sweeps from +6 to -6 degrees were performed while holding «
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» constant. Data were recorded every 2 degrees during the

Y IRCA

a4

sweeps. The hinged sting was used to allow high angles of

—

attack. The o range was 16 to 44 degrees with increments of

a

LSS

4 degrees. All test points were approached from the same

'l

g direction to minimize hysteresis.

‘. Data Analysis

4

f' The conditions under which a model is tested in a wind
ji tunnel are not the same as those in free air. There is no
‘f difference traceable to having the model still and the air
:é moving instead of vice versa, but the longitudinal static
\J.'

pressure gradient and the jet boundaries usually present in

Ty

.
LR

the test section will produce extraneous forces that must be

subtracted out. A long list of corrections which may be

P
Caal e,

c;3 required can be found in any text on wind tunnel testing.
Jﬁ Fortunately few tests require most of these corrections (7).
léﬁ Aerodynamic data presented in this paper were corrected
- for solid blockage, wake blockage, horizontal buoyancy, and
if flow angularity. The dynamic pressure, q, used in non-
Eé dimensionalization was also corrected for total blockage.
- Data from the strain gauge balance were corrected for
vg first order balance interactions (see Section II). The 6
§ component data were then combined to arrive at the
: conventional body axis lift (L), pitching moment (M), drag
?; (D), yawing moment (N), and rolling moment (%) (see Fig 14).
=
N
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- Care must be taken to differentiate between the symbols L

D)

tola, ‘\"

e

PP
s

R (1ift) and & (roll). The H/P 85 computer performed the

© g

following calculations to arrive at the nondimensional data

EE which were tabulated and plotted. Following the convention
;E established in ref 7, data which has not yet been corrected
.Z for wind tunnel errors is subscripted "u" (uncorrected).
'Eg A blockage correction factor (¢) which combines the
;% effects of solid and wake blockage must be arrived at first.
:: Following the development of ref 7, it can be shown that
',E: €= eyp *t €gp (7)
5

" where cwp = ($/4CCp ~ and egp = KV/C 3/2,

”5 - The parameter S is the model wing area, C is the tunnel test
B cz? section area, K is a constant for the test shape, and V is
3: the model volume (7).

N Since the tunnel velocity varies with blockage, a

< corrected ''q"

;ﬁ qp = q, (1 + 2¢) (8)
X

& must be used in nondimensionalization.

§§ Flow angularity was corrected for by adding the lift
j% curves for an erect and an inverted model. The curves
:? should sum to zero. Any deviation is due to flow angularity
;g and can be treated as a constant to be subtracted from the
:5 measured a.
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Horizontal buoyancy is a correction to drag for the

ok longitudinal variation in tunnel static pressure caused by a
_ n thickening boundary layer. The change in drag can be

::.‘; calculated from

AN 8Dy = (~dp/d2)V (9)
\ where -dp/ds is a constant for the tunnel, and V is the
model volume.

_\ Aerodynamic forces and moments can now be corrected and
:\ nondimensionalized following conventional rules (see

:: references 4 and 7).

I\\ LIFT: Cp = L,/qgS (10)
\"-:

% ® DRAG: Cp = {(Dy - 8DR)/(qpS)} + (.125)C ?s/cC (11)
= PITCHING MOMENT Cy = M,/ (q,Se) (12)

% .

2:\-:3 YAWING MOMENT: CN = Nu/ (q,5b) | (13)
5;‘,: ROLLING MOMENT: Cy = 2,/(quSh) (14)
:

' Longitudinal data were evaluated by plotting C; Vs a,

- Cyq vs a, and C; vs Cp (Appendix B). Lateral data were
evaluated first by plotting CN vs g and C, vs 8 (Appendix C).
RS
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- c was calculated using the Aeronautical Systems

SN g pyn

N .‘_f:::f:‘, Division's Cyber computer. Because accurate slopes, Cy
8

: and Cz , were needed, the lateral data were approximated

\': B

: using the method of cubic splines provided by IMSL. 71he

A

o derivates of the ''splined'" data were then taken at the

original data points. These derivatives, CN and Cl , were

..:,\ 8 B8

':’3 then used to calculate CN (see Section III). CN

o g DYN 8 DYN

SA was plotted vs 8 to help evaluate spin susceptibility

- (Appendix C).
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gﬁ R V. Results

34 A parametric family of twenty forebody strakes were

i; evaluated for an CFT equipped F-15 in the AFIT 5 foot Wind
» Tunnel. The objective was to define further strake design
! and installation characteristics relevant to stability and
; performance optimization. Parameters of interest were

if strake installation angle of incidence and strake area (see
? Fig 2). Aerodynamic data collected include CM' CL' CD, CN’

gﬁ and C¢ (roll). The spin susceptibility parameter, Cy ,

‘2 was synthesized following the method described in Seciigzg
:5 III and IV. Data were plotted for evaluation of

Eg configuration performance (see Appendices B and C).

o @ Longitudinal Data

EE Previous research had indicated that strakes would

é: increase pitch stability at high angles of attack. 1In

N addition, 1lift could be increased while decreasing drag.

i; All three would be valuable improvements for the CFT

:E: equipped F-15.

oy All moments were resolved about the 257% MAC (Mean

é? Aerodynamic Chord). Since both the magnitude and direction

if of moments are directly related to the position of the

f; center of mass, care must be taken in making absolute

-;: statements about stability. An unstable configuration at

N <.

N 31
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25% MAC may be stable at 20% MAC. A standard, however, must

be defined and maintained for engineering evaluation to be

'. meaningful. All statements about pitch stability should be
oo

5§ considered with respect to the selected center of mass.

o

t?: Significant improvements in pitch stability were

-

recorded at angles of attack from 38 to 44 degrees. The
parameter CMa improved from -.005/degree to less than
-.008/degree with the addition of forebody strakes. As
documented by several previous researchers, the strake area
is the dominant characteristic in achieving large changes in
pitch stability.

While strake area controlled the magnitude of the
change, the strake angle of incidence controlled the quality
of the change. Strakes with Q0 degrees angle of incidence

‘Za generally showed undesirably strong nonlinearities at angles
of attack of 16 to 24 and 40 to 44 degrees (see Fig 15). 1In

these cases, was frequentl ositive (unstable) between
. q yP

16 and 24 degrees angle of attack. For each strake family
(see Appendix A) one of the angles of incidence always ;
produced a Cy vs o curve which was very linear. While this
configuration did not completely cure the droop in pitch
stability between 16 and 24 degrees, it did minimize the
loss (see Fig 16). 1In several cases it caused positive
pitch stability throughout the high angle of attack range.
Low angle of attack pitch stability was evaluated for

each configuration. Strake areas were limited to .65% to

)
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2.27% of wing area, and only small changes in low angle of
attack stability were expected due to the forward shift in
the neutral point. All configurations, however,
demonstrated large losses in pitch stability from -4 to 24
degrees angle of attack. The larger strake areas, which
produced the significant gains in high angle of attack
stability, exhibited the greatest losses in low angle of
attack stability. For all but the smallest strake areas,
pitch stability was either neutral or unstable in this
region.

Pitch stability at low angles of attack does vary with
strake incidence angle; however, the effects are less
obvious. Close examination of figures B-17 through B-20
shows that from -4 to +2 degrees angle of attack, CMa
becomes more positive (less pitch stable) with increasing
angle of incidence. The effect reverses, however, from 2 to
14 degrees angle of attack; in this region stability
becomes more positive with increasing angle of incidence.
The same effects occur with all of the configurations
tested; however, they are more easily seen when the strake
area is large.

Significant increases in C and CL/CD were realized.
Once again strake area controlled the magnitude of the
change, while the incidence angle controlled its quality.
Plots of CL vs a indicate an increase in C; from 1.27 for

the CFT only to about 1.38 for strakes of 2.27% wing area.
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Plots of Cp vs Cy at high angle of attack show about a 9%
increase in CL/CD with the largest strakes. Strake
incidence angles of 0 degrees produced nonlinearities in Cp,
which were visible in both plots. The same incidence angle
which produced the most linear Cy vs o graph also produced
the smoothest CL plots.

At low angles of attack the addition of strakes made very
small changes in plots of C; vs o« and C; VS Cp. Most
significant was an almost undetectible increase in CDo (drag
at zero lift) for all of the strake configurations. Even
the -9 degree incidence angle on the largest strakes did not

increase Cp noticeably.
0

J.ateral Data

Previous researchers have indicated that forebody
strakes may produce small improvements in lateral stability
if properly tuned to the configuration (10). Twelve strakes
were evaluated on the CFT equipped F-15 to determine if the
aircraft was sensitive to the parameters of interest. The

spin susceptibility parameter Cy was plotted versus g

to evaluate each configuration (SeBYﬁppendix C).

Several configurations do show improvements at angles
of attack greater than 30 degrees (see Fig 16). The same
configurations, however, exhibit decreases in stability

between 16 and 24 degrees. The Cy vs g and C;, vs g data

show the reason for this. The strakes produced either no
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changes or small losses to Cy throughout the B8 range;
however C, improved (decreased) dramatically above 30
degrees angle of attack. Examination of
c = C cosa - (I,/I,)C sina
N
NB DYN g , YARD ¢ 26

shows that with C, normally negative, and Cy normally i
g :

B
positive and small, as angle of attack increases C, Dbecomes
8
the dominant term. To generalize, at lower angles of attack
the sign of Cy will be determined by the sign of the C
8 DYN N

of the aircraft without strakes, and at higher angles of

attack the strakes will force a positive C by

Ng pyn
dramatically decreasing CR'B

The lateral data also appears to vary when strake
incidence angle is changed. Close examination of figures
C-5 through C-9 shows large changes in lateral stability at
high angles of attack. More experimentation is required,
however, before it can be concluded that strake incidence

angle is the dominant cause of these stability changes.
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VI. Conclusions

The results of the wind tunnel evaluation of forebody
strakes on a CFT equipped F-15 are presented in Section V
and Appendices B and C. These data show mixed blessings
resulting from the addition of strakes to the model in most
areas.

While the high angle of attack longitudinal stability
was improved, the low angle of attack stability decreased an
alarming amount when the small size of the strakes was
considered. Similarly the parameter Cy DYN showed
increases in high angle of attack lateral stability with the
addition of strakes; however, the strakes were unable to
improve the stability between 16 and 24 degrees angle of
attack and sometimes worsened it.

When the 1lift to drag ratio was considered, strakes had
no drawbacks. A 9% increase in CL/CD was recorded at high
angle of attack, while the drag at zero lift (CDO) showed
virtually no increase in low angle of attack drag. The lack
of change in CD0 is particularly significant when the high
negative incidence of some of the strakes is considered.

As anticipated the strake area controlled the magnitude
of the changes in the high angle of attack stability and
1lift. Surprising importance, however, can be attached to
the new parameter ''strake incidence angle."

It was originally thought that perhaps strake incidence
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) night be of some use in delaying the point at which maximum
\.h
R{ s vorticity occurs. This would allow the designer to move the o
IO y g
at which Cp occurs, and permit minor reshaping t. . CL

St MAX
f} vs o and CM vs o curves. While this does occur, the strake
AN
IS incidence angle's effect on the entire curve was unexpected.
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A Fig 17. Mean camber line of a NACA 65 airfoil.

9 In every case tested, strakes installed at the same

LN

S incidence angle as the wing resulted in data with large

o

",

." . o . o
k" deviations from a smooth curve (for longitudinal data).

Decreasing the strake incidence angle to -3 or -6 degrees
(depending on strake size) did not change the height of the
curves significantly; however, it did smooth the curve

noticeably. This probably indicates a stronger more stable
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" vortex is being generated by the strake-wing combination.

&% The reason for the strake incidence angle's effect on

¢ - Py 'y . .

W) the entire flow can be explained if one considers the mean
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f3 camber line of a fighter wing in use today (see Fig 15).

iy {Eﬁl The slope of the mean camber line becomes very steep as one

ke i

approaches the leading edge. An uncambered strake installed

Sf parallel to the wing's cord line would produce a flow

¥ discontinuity at the strake-wing juncture. This
discontinuity would likely result in a less stable vortex
M and early vortex bursting. The optimum flow pattern would
likely result from a strake whose contour smoothly matched

that of the wing. Decreasing the incidence angle of the

strake approximates the optimum contour and clearly results

¢ P
« Lo

in smoother, more predictable performance.
A An unreserved endorsement of the use of forebody
§§ strakes to improve the performance of the CFT equipped F-15
‘?' - . is not possible; however the strake characteristics which
EE ‘:b effect perfbrmance are now better understood. Strake area
ig remains the most important single variable, but the size and
X shape of the strake must be properly oriented to achieve
2 stable vortex generation. As previous research has shown,
E; an improperly optimized strake can do more harm than good
N (10).
;: Finally, the knowledge that strakes are an asset at )
é; high angle of attack, and a hindrance at low angle of attack
:; is not new. Dr. Rao (see Ref 8) investigated the use of
B hinged strakes in 1980. 1In his approach strakes are |
carried flush with the fuselage at low angles of attack. j
- When pressure sensors detect advancing separation on the '
¢ |
40 ;
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- wing, actuators actively deploy the strakes into the flow
AT} just the right amount to optimize performance. In this

{ method, however, the trailing edge of the strake may not
even meet the wing. This causes a large discontinuity in
the flow, and if these conclusions are correct, should lead
to ragged performance curves. A system which employed
actuated strakes which were contoured to the wing camber
would not likely suffer the low angle of attack problems

documented in this report.
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;E ;?E; VII. Recommendations

;;ﬁ This thesis leaves two questions unanswered. Both the

iz; high angle of attack data and low angle of attack data

iﬁf showed a large unexpected drop in CM between 16 and 20

%? degrees angle of attack whenever str:kes were installed.

-iz Several attempts were made in the wind tunnel to determine

:f the cause of this loss of stability. It is possible that

t: the strake vorticity is interacting with the horizontal

:J stabilizer changing its local angle of attack; however, no
conclusive answers were produced.

fzi Any attempt to add strakes to the F-15 will likely show

§3 this same frustrating loss of stability. A water tunnel

. C;B investigation of the CFT equipped F-15 would probably show

ki - the cause of this stability loss and hopefully lead to its

?% cure.

; As mentioned in the previous section, an actuated

g strake which was contoured to match the wing camber would

;ﬁ have all of a strake's advantages with none of its

‘ drawbacks. An investigation into this area should be made

ES to confirm or deny the importance of strake angle of

%S incidence, and add greatly to our body of knowledge on this

subject.
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Appendix A

Configurations

Previous research had indicated that gothic shaped
strakes were the most likely to produce the desired changes
in lateral and longitudinal stability. The chord length of

the strake (L) was limited By the distance between the wing

e Tl S

PLES PPN %4

L &

%%

R

-

e
-

\i.b.’

root and the gun port on the right gun fairing. With L at

its maximum length, the strake planform areas were still
smaller than desired for optimization. The chord length
could not, however, have been made longer and still
practically investigated the effects of incidence angle.
This left the strake span (S) as the variable to control
area changes. Professor Larsen suggested the function

y = (Kx / 12) (2L-x)

where K = (12S) / L. This function produces the desired
gothic shape and results in a slope parallel to the flow
at the strake-wing juncture.

! L d

x

Fig A-1. Coordinate system for strake layout.
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Fig A-2. Strake families A through E shown actual size.
Installation tabs shown.
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Five strake families (A through E) were developed by
varying the strake span as a percentage of total span. Each
family consisted of the same strake size at four different
angles of incidence (0,-3,-6, and -9 degrees). The normal
model configuration included CFT"s, the one-man canopy, and
4 AIM-7 missiles. CFT only refers to the model with a 4 AIM-7
missiles but without strakes. All low angle of attack (-4
to 26 degrees) tests were made with the horizontal
stabilizer at 0 degrees. All high angle of attack tests (16
to 46 degrees) were made with the stabilizer set at -27
degrees.

The following grid can be used to identify model
configurations with strakes. Areas are in percent of wing
area, spans in percent of wind span, and strake incidence

angle in degrees.

CONF. AREA SPAN ANGLE
A0 .65% 2.5% 0
A3 .65% 2.5% -3
A6 .65% 2.5% -6
A9 .65% 2.5% -9
BO 1.0 % 3.7% 0
B3 1.0 % 3.7% -3
B6 1.0 % 3.7% -6
B9 1.0 % 3.7% -9
co 1.4 % 5.0% 0
C3 1.4 % 5.0% -3
C6 1.4 % 5.0% -6
C9 1.4 % 5.0% -9
DO 1.8 % 6.2% 0
D3 1.8 % 6.2% -3
D6 1.8 % 6.2% -6
D9 1.8 7% 6.2% -9
EOQ 2.2 % 7.5% 0
E3 2.2 % 7.5% -3
E6 2.2 % 7.5% -6
E9 2.2 % 7.5% -9
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o Longitudinal Data
s This section contains both low angle of attack (-4 to
" 26 degrees) and high angle of attack (16 to 46 degrees)
“E} longitudinal data. All plots show the CFT Only data for
;; reference. Pitching moment versus angle of attack and lift
fi‘ versus angle of attack are presented on the same axis system
-,":"f
. for convenience. Negative pitching moment is plotted to
2.0
A avoid data intersection.
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k}% configurations with strakes. Areas are in percent of wing
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V) This section contains the high angle of attack (16 to

L&

<7
) parameter, CN (see Section III), is plotted versus side
o 8 DYN
f;; slip angle (8) for eight angles of attack (e¢). Also
f; contained in this appendix are plots of the parameters Cn
W
i’ vs 8 and C, vs 8. The CFT Only data is shown on each plot
&)
A for comparison.
RS The following grid can be used to identify model
:31 configurations with strakes. Areas are in percent of wing
34
% (}3 area, spans in percent of wind span, and strake incidence
N angle in degrees. ‘
~ |
ig CONF. AREA SPAN ANGLE
N
L AO .65% 2.5% 0
A3 .65% 2.5% -3
o A6 .65% 2.5% -6
3 A9 65%  2.5% -9 |
o BO 1.0 % 3.7% 0
N B3 1.0 % 3.7% -3
¥ B6 1.0 % 3.7% -6
B9 1.0 % 3.7% -9
N co 1.4 7 5.0% 0 !
%] c3 1.4 % 5.0% -3 |
) Cé6 1.4 7% 5.0% -6
bl C9 1.4 7 5.0% -9
: DO 1.8 % 6.2% 0
D3 1.8 7% 6.27% -3
v, D6 1.8 % 6.2% -6
# D9 1.8 % 6.2% -9
o EO 2.2 % 7.5% 0
o E3 2.2%  7.5% -3
. E 2 % 7.5% -
RN
R ' \(\.

"y -

44 degrees) lateral stability data. The stability
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