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5 Preface

This thesis topic was proposed by Air Force Wright
Aeronautical Laboratories, WPAFB, Ohio. It is an analytic
study of the effects of surface roughness on compressible
turbulent boundary layer. It interested me because of the
mysterious nature of the turbulence, and I decided that I
ought to undertake this invesfigation anc attempt to learn
as much as I could about this subject. Thae topic is also
of current interest to USAF.

I take this opportunity to thank "Almnignty Allah"
who gave me the strength to accomplisk thris project. I
wish to express my sincere gratitude *o =y thesis advisor,
Dr. Urmilla Ghia, whose understanding »: *“rn2 subject was
very impressive. Her continued guidarce, contagilous
enthusiasm and above all unlimited paiierce throughout
all phases of this study were invaluatle, I also wish
to thank Dr, William Hankey, Jr., for his sponscrship and
continued assistance. I could not give *his paper a
proper preface without acknowledging Car* Janmes K. Hodge
for his constant interest. His support, se that in the
form of enlightening criticism or comrlirsrts, ofter came
as ingight during times of frustratiors. I will always
remember with fondness his friendly ard calm nature, and
his devotion to duty. I also appreciaste *he diligence of

Mrs. Cindy Boone who had immense patience to type this
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manuscript flooded with mathematical equations and greek
symbols.

Last but not the least, I express individual thanks
to my sweet wife, for her loving support, assistance and
undsrstanding with which she took the late hours and the
weekends not only during ths thesis, but during my whole
stay a% AFIT. I also thank my children, Hannah, Ahad
and Fahad for their patience with ”Baba"-as ha reached

for his goal of achieving higher learning.
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" 'Nomenclature

A Defined by Eq (44)

a Speed of sound

B(y) Defined in Eq (20)

Co Local coefficient of friction

cp Specif;c heat at constant pressure

F Velocity ratio, o—

f(y) Defined in Eq (21()3

H,h Enthalpies, defined in the expression H = h+23

Kz Thermal conductivity :

KT Eddy conductivity

L Characteristic problem dimension, length (f
the model in gquestion

¢ Defined in Eq (33)

M Mash number

Pr Prandtl number

P Pressure

e Heat flux or heat fiow per unit area

R Gas constant, 1716 ft2/sec2R for air

Re Reynolds number

R, Sink term defined in Eq (15)

Ry, Source term defined in Eq (16)

r(r,) Radial coordinate (body radius) for the case

of the axisymmetric cone, measured perpendic-
ularly from the longitudinal centerline, Fig 2

S Viscosity constant of Sutherland (198.6 R)
8 Nondimensional position, x/L
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Stanton number,

gq_
peug (Hy-h )
Temperature

Transverse curvature term equal to r_

r
O

Velocity component along (perpendicular to)
the streamwise direction

Friction veloecity, (Tw/pw)%

Transformed velocity expression defined in
Defined in Eq (24)

Body surface oriented coordinate system in
which x runs parallel to the stream direction,
point downstream, and y is perpendicular to x
and its directed into the external flow

Dimensionless distance, ypwu+/uw

Greek Symbols

o

o <« W

o T - » T -3

o

Defined in Eq (3.)
Defined in Eq (3%)
Stream function

Defined in Eq (37)

Streamwise inte rittency distribution or
probability factor

The gas constart, ratio of specific heats
The intermittency factor of Klebanoff
Change in varieble quartity

Boundary layer thickness

Displacement thickness

Eddy viscosity

Eddy viscosity function defined following
Eq (38)
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Subscripts and Superscripts
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Eddy viscosity function defined following
(Bq 39)

Transformed perpendicular boundary layer
coordinate and nondimensional distance along
this coordinate

Statie temperature ratio, %_

e
Momentum thickness

Molecular viscosity
Kinematic viscosity, M

P
Transformed streamwise boundary layer coordinate
and nondimensional length along this coordinate

Density
Shear Stress

Exponent of the viscosity law of Sutherland

e

6%(9)

-

ref

Condition at the edge of the boundary layer,
also indicative of the input or environmental
conditions for ITRACT in the cone study

Free stream or unperturbed condition

Flow index, j = 1 for conical flow, j = 0
for flow over a flat surface

When used with Re, denotes Reynolds number
based on displacement thickness (momentum
thickness)

Total or stagnation condition except for r g

Primed quantities indicate instantaneous
departures from a mean state or condition in
the turbulence irodel. The accompanying bars
over the primed symbols denote a time averaged
quantity.

Reference




Prmlmm"L‘ll‘ff‘ﬂm‘fﬂ'?ﬁi\k\‘ 19T, S i QLT AR RA L RE WA Tl WA V.0 Ca Rt L 1 R a" (L0 oA ST o U e B el B Bt S Ut B AR (O S/ BN
A

ss Source sink

e a.a.m m.ammrAY 2 a ¢

t » Turtulent condition

W » Condition at the surface of the plate or cone

X Denotes a particular real x station along the
surface of the model
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gf_f Abstract
LA
e © This study followed the work of Dr. Anthony Fiore, of
ki Air Force Wright Aeronautical Laboratories, Wright-Patterson
o~ p
x&: ¢7 Air Force Base, Ohio. Dr. Fiore-had carried out an experi-
3;1 (/4 P’rrvyous S—_— (/:,;}0
¥ W 'mental>studyL the effect of surface roughness on the
EAR o
gl turbulent boundary 1ayer§$<ﬁiizn‘a Fortran code, ITRACT,
Y
i R
4}j written primarily by Dr. Shang, that solved for the charac-
ﬁ teristics of a laminar, transitiomnal and turbulent boundary
S layer on smooth surfaces. ‘@heﬁpunpose»of>§pe present
b O e .
;i% study QaSWto/investigate§&he influence of surface roughness
;?3 on a compressible turbulent boundary layer and then 42

extendﬂﬁhe usefulness ofxﬁhe"existing computer codepy ITRACT, .
by including in it the optional capability of rough-surface

boundary-layer calculations. -

~

;f A To achieve this objective, thélgurface roughness was
R represented by distributed sources and sinks in the appro-

priate governing equations. The most important term is a

o sink term in the mean momentum equation, representing

S§ the form drag due to the roughness element. ~Th;f§overning
2: boundary-layer equations for continuity, momentum: and

Ly energy were derived in a form to account for'thé'blockage
Ei effectﬁ!ue to t roughness elements. The modified govern-
;§« ing eqd;tions were then transforﬁed ufing %ﬁe transformatién
"ﬁ _of Probstein-Elliott and Levy-Lééé:'vgﬁnggghiting equa- -
i? tions, with appropriate boundary conditions, were solved

:f by finite-difference techniques to determine the noﬁ: -

3 \:‘w

) i xii
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dimensional velocity components and temperature at a
.[l /")‘) %
finite number of nodes in the boundary—layer/field,of the
N ‘
flow. :

[P

To establish the authenticity of the original code,
ITRACT, some smooth-surface results wera first computed

and compared with the experimental data of Dr. Fiore and

e A ata.cas a

Dr, Cole for turbulent flows over smooth surfaces.  After

the accuracy of the code was established for smooth-surface

calculations, the code was modified in order to render it

capable of predicting the influence of surface roughness

L AL LT Y

on compressible turbulent flow. The modified code was
then used to obtain results for rough-surface boundary
layers and the computed results were compared with the

experimental data of Dr. Fiore for the case of supersonic

IR S WE S N B

b flow over a rough flat plate. The agrezment between the
computed and the measured velocity profiles was quite
satisfactory. The corresponding temperature profiles
agreed well everywhere, except very near the wall; a
possible reason for this discrepancy is offered in this
study. Unlike previous studies of rough-surface boundary
layers, the present study makes no modification to the

turbulence model employed.
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AN ANALYTIC STUDY OF THE EFFECT OF SURFACE ROUGHNESS
ON A COMPRESSIBLE TURBULENT BOUNDARY LAYER

LS S B 5T & VAR

I. Introduction

Preliminaries and Procblem Anelysis

Surface roughness can play an important role in

L PR A A ¥ ¥ e SN

turbulent boundary-layer skin friction and heat transfer
for many high-speed flight applications. An understand-
inf of the roughness effect is essential foi accurate de-
sign prediction in a wide variety of applications, includ-
ing ships, aircraft, compressor blades, turbine blades,
missiles and re-entry vehicles. For example, the NASA Space
Shuttle Program studied roughness as it augments heating.
At low flight altitude, the thickness of boundary layer on
the blunted nose region of .ypersonic re-entry vehicle can
easily be less than the inherent surface roughness of prac-
tical heat shield materials, and roughness dominates the
heat transfer characteristics. Also recent experiments
(Ref. 1) have shown that surface roughness alone can sig-
nificantly influence the control effectiveness of maneu-
vering vehicle. Numerical analysis and computer programs
have been developed over the last twenty years to solve
turbulent boundary layers over smooth surfaces. A defi-
ciency, however, exists with these programs as regards

inclusion of roughness effects. Data has been accumulated
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over the last few years in this area but a need for a com-
CQ? puter code to accurately match this data still exists.

The purpose of this study was to investigate the influence

of surface‘rough*ess on a compressible turbulent bcundary

layer and then to modify an existing computer code for

turbulent boundary layer over smooth surface to account

for roughness effects,

Literature Survey

Most available models for analyzing the influence of
surface roughness on boundary-layer behavior are essentially
externsion of Nikuradse's study (Ref. 2) of pipes roughened
with sand and application of Nikuradse's results to flat
plates by Prandtl and Schlichting (Ref. 3). Several cor-

‘j’ relations have been proposed to relate real surface- |
roughness heights, spacing and geomstries to an equivalent
sand-grain roughness height so that Nikuradse's data can
be used. Examples of such correlations can be found in
White and Grabow (Ref. 4:153-164). Dvorak (Ref. 5:1752-
1759) used integral methods in which the skin-friction
coefficient was specified as a function of boundary-layer
thickness and roughness height. Using this specification,
the moment equations were solved for the momentum and dis-
placement thickness. Chen (Ref. 6:623-629) extended this
approach to predict heat transfer, by using a Stanton num-
ber correlation derived from the subsonic data by Owean

and Thomson (Ref. 7:321-334). 1In this approach, the stag-

e
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ﬁﬁ nation enthalpy profile was assumed to have the same shape
%% 52- as the velocity profiles. A similar model has recently

.. ) been developed for re-antry vehicles by Dahm et al. (Ref. 8).
E% Here again a momentum integral approach is used, with the

&g skin-friction and heat-transfer coefficients based on cor-
P‘ relations of the low-speed data of Healzer et al. (Ref. 9)

&% and flat plate measurements of Reda (Ref. 10) at a mach

E§ number of 2,9. The roughness augmentation of heat transfer
Ei was found to be about 60 percent of the skin-friction aug-
Eﬁ mentation. More recently, effects of surface roughness

Eé have been evaluated by differential methods. Cebeci and

!i Chang (Ref 11:730-735) numerically solved the incompres-

sible boundary layer equations employing an algebraic
eddy viscosity formulation modified for surface rough-

‘:’ ness, The modification was based on Rotta's (Ref., 12:1-

PN

219) model, which displaces the normal coordinate of the

a'da a

rough-wall velocity profile. An expression for this dis-

PR

. ;‘E‘lﬁ '.. ‘n".

placement and the resulting mixing length is given by

}ﬁ Cebeci and Chang (Ref. 11) as a function of an equivalent
by

Ra sand-grain roughness height. Emphasizing compressible

N

flows for a variety of edge and wall conditions, Hodge

and Adams (Ref. 13) numerically solved the flow equations

bt 1

together with the equation of kinetic energy of turbulence.
Roughness effects were accounted for by inclusion o' a

form drag term in the momentum equation and by modification,
based on the results of Healzer, et al., of several of the

nine empirical constants in the turbulence model. A

, t'*“ .
N

e et e e tat ettt
.......... PR s R

DRI - PRI
o™ - R I R
o e AU O e L AT




FLr AR AR, PP

-

somewhat more involved approach was taken by Saffman and
Wilcox (Ref. 14:541-546) utilizing a two-equation turbulence
model, However, the effect of roughness was treated rather
empirically by making the boundary conditions for the pseudo-
vorticity at the wall a function of the roughness height.
This dependence was derived so as to fit the observed vari-
ation of the "law of the wall" velocity deficit with rcugh-
ness. Some encouraging profiles were also computed for the
mean and fluctuating velocities. However, heat transfer
was again determined by invoking a Reynolds analogy with
the skin friction. Finson and Clark {Ref. 15:3-6) rcre-
sented a technique which accounted for the surface rough-
ness by calculating the form drars contribution by individ-
ual elements. Ffollowing the approach of Finson and Clari,
Christoph ard Pletcher (Ref. 16:509-510) used a two-layer
algebraic mixing length model that explicitly accounts for
mass addition and surface roughness, in addition to the
modification of the boundary-layer equations as sugzes:ed

by Finson and Clark.

Scope of Present Study

The Flight Dynamics Laboratory possessed a digital
computer code called ITRACT, which computed the character-
istics of laminar and turbulent boundary layers for either

planar or axisymmetric flow over smooth surfaces. The
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i
purpose of the present study was to modify this code for :
inclusion of the effects of surface roughress on compres- {

sible flow. Historically, roughness effects have been

modelled by a law-of-the-wall velocity profile expression
in terms of an equivalent sand-grain roughness height.

Physically, the equivalent sand-grain roughness concept

. SR __ s a4 w—w

is not very satisfying since an equivalent sand-grain

roughness height must be contrived for real roushness

S D DR Y

heightis, spacing and geometries. A physicall: =cre

meaningful method is that employed 'y Finsorn zni Clark

A o

and followed by Christoph and Pletcher. In tle tresent
study, the same approach is followed but withou® invoking
any modification of the turbulence model. Rouzhness is

represented by distributed sources and sinxzs In “he

41}

caFiaie W & § X

appropriate governing equations. The rost Inxncrtant
term is a sinx term in the mean momentuun ejuzzi:tr rep- S

resenting the form drag on the roughness eleranzz. The

P ey

form to

"
Ay

governing boundary-layer equations are cast in
account for the blockage effect due to the rougiress
elements. Accordingly, the fluxes along the :ztrsamuvise

direction are multiplied by (1 - D(y)/%) wherzs Zly) is

M

the element diameter at height y and & the =zvsrzce centre
to centre spacing of the element (Fig 1). TFluxss in

a direction normal to the streamwise direction zre multi-
plied by (1 - ﬂD2/422). Here, the shape of the elements
has been restricted to circular cross-secticns :-nly, but

the modified code would eventually have the provision to
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predict the roughness effects due to rectangular elements
¢§3 as well. The computed results obtained by employing a B
Reynolds stress turbulence model in combination with a i
drag description for the effect of the roughness elements &
on the flow is compared against relevant data toc establish §
X

the validity and accuracy of the theory and to cffer ex-

.1

planations for the observed trends.

The model used in this study is aimed eutirely at

distributed roughness, i.e., three-dimensicnal roughness, i
appropriate to the vast majority of practical applications. ﬁ

LY
Two-dimensional roughness such as machined grooves normnal N

to the flow direction are not considered here. The two
types of roughness may yield qualitatively similar trends
in terms of roughness height, spacing, etc., but a sub-
w stantial difference in the nature of the flow may be
expected., This model makec the basic assumption that the
forces on roughness elemenis can be viewed as form drag.
This implieitly requires that the flow approaching an

individual element be attached, whereas with 2-D rough-

R ness elements, cavity flow is 1lilkely to prevail immediately
B downstream of the roughness elements,

§ The next step in the study was to learn as much about
9 the computer code, ITRACT, as possible. This step included

a study of the equations of motion, continuity, and energy,

s R/

together with the perfect gas law and Sutherland's viscos-

i v ot

ity law needed for a boundery-layer calculation. It also

included the comparison of the computer code results for
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turbulent flow over smooth surfaces to experimental data
to establish the authenticity of the code.

After the accuracy of tae present code was established,
the next step was to modify the cods in order to render it
capable of predicting the effect of surface roughness on
compressible turbulent flow. The modified code was verified
by comparing the results prgdicted by modified computer code
with the experimental data available at the Flight Dynamics
Laboratory for the case of supersonic flow over rough flat
plate. This comparison will also establish the extent to
which the modification of the turbulence model is, or is
not, needed for accurate prediction of rough-surface
boundary layer flows.

The major accomplishment of this study is the exten-
sion of the usefulness of the existing computer code,
ITRACT, by including in it the optional capability of

rough-surface boundary-layer calculations.
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II. Analysis of Problem

Governing Equations |

This section presents the governing equations for the
compressible turbulent boundary layer together with the
required boundary conditions. In their final form., govern-
ing equations include the effect of surface roughness.

The eddy viscosity and eddy conductivity nodels used to
represent the apparent turbulent shear and heat flux terms
appearing in the mean-flow boundary-layer equations are

discussed in the latter part of this section.

Coordinate System

I

The coordinate system employed is shown in TFigure 2.
The boundary-layer coordinate system is denoted by x and y
which are tangent and normal to the surface, respectively.

The origin of the boundary-layer coordinate system x, vy,

TP

as well as that of the body coordinate system z, r, for
axisymmetric configurations is located at the stagnation :
point for blunt bcdies, and at the leading edge for sharp-

tipred bodies. The velocity compcnents u and v are oriented

along the x and y divecticns, respectively. Transverse

curvature terms are retained because of their importance

A
4
4
{4
¢
d
d

in the develnpment of boundary-layer flow over slender

bodies of revolution where the boundary-layer thickness

i ™ ot e ol

may become of the order of the body radius r_.. The angle
¢ is the angle between z axis and local tangent evaluated

"ot at (x,0).
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Differential Equations

The flow of a compressible, viscous, heat conducting
fluid is mathematically described by the continuity equa-
tion, the Navier-Stokes equations and the energy equation,
together with an equation of state, a heat conductivity law
and a viscosity law. TFor flows at large Reynolds number,
Prandtl (Ref. 17) has shown that the Navier-Stokes equations
and the energy eéuation can be simplified to a form now
recognized as the compressible boundary-layer cquations.
These equations may be written as follows:

Continuity:

(ripu) + 3 (rdpv) = 0 (1)

-
X 9

<

Momentum:

4

Loafrd ke (epm ]+ wfam\® ()
J oy Cp oy y

ke

l'—ﬁ

Osborne Reynolds, who was first to observe and study
the phenomenon of transition from laminar to turbulent flow,

assumed that the instantaneous fluid velccity satisfied the
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Navier-Stokes equations and that the instantaneous velocity
(ui) could be considered to consist of a mean (time averaged)

component u and a fluctuating component u’, i.e.,
ui(xi,t) = ui(xij + ui’(xi,t) where 1 = 1,2,3 (4)

In order to obtain the conservation equations, the instan-
taneous quantities in the equations (1) to (3) wers re-
placed by their mean and their fluctuating quantities,

By taking the time average of the various terns arvearing
in these equations and making the boundary-layer assunp-
tions, the following mean continuity, mean monentur and

mean energy equations were derived (Ref. 18, 145, 216).

a_ (rlou) + §_[r‘]o(v + o )] =0 (5
ax oy e
Momentum:
udut fv+pvi\3u |= -dp
Y x P y dx
+ 13 rd (ﬁgg - pu'v ) (6)
pd OV oy
Energy: !
uafopT) + fv +p'v Y3 (CpT)|= v dp + 1_ 5 L K 3 (CpT)
ax o )9y dx  _J 3y Cp 3y
Hu oy ) * |+ 1 Q_[rj(-Cppv’T’)] - pT VvV~ 3u (7)
d L~ 8y 3y

10
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These equations are identical to those for laminar \
flows, with the exception of the correlations of the turbu- \
lent fluctuating quantities which represent the apparent i
mass, shear, and heat-flux terms caused by turbulence,

These fluctuating quantities were incorporated through

mathematical modelling. The apparent mass flux term p’v_,

the apparent shear stress term pu v  and the apparent heat
flux term Cppv T  are represented by a new velocity compo-

rent ¥V, an eddy viscosity e, and an eddy conductivity Koo

|
-l
!
1
3
o
.!

respectively.

These terms were defined by the following relationships:

<
i}
<
34
<

Il ’ ( 8 )

Y S (9)

=
1
|
(@]
o
<
»
=3
A Y

aT/ay (10)

The turbulent Prandtl number is expressed, in a manner

analogous to the laminar Prandtl number expressed in terms

of viscosity and eddy conductivity as:

)

Py © —}—-ﬁ‘e (11)
T

ARy Vs

To this set of equations the following perfect gas law

o s o7
]
PR

and the viscosity relation of Sutherland were also added,.
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Perfect-gas law:

p = Cp gx-1!pT (12) i

Y e

N

~

W

Viscosity Law: g
N

u_ =f{T_\.5 T ts (air only) B

uy, \ T TS (13) 3

=

where y_ denotes the viscosity at the reference T, and 'S!
is a constant, This relation is approximated in theoretical

calculation by the simpler power-law:

_ w
p__~(_£_) 0.5<w<1.0 (12)
e

It has been found that Sutherland's formula c°n be approxi-

mated at high temperature by adopting values of w between

0.5 and 0.75, whereas at lower temperature the value of w=1.0

i
)
Al
) appears to be adequate.
Rough-Wall Boundary Layer Model
E The basic model for the rough-wall boundary-layer is

the same as described thus far for smooth wall boundary-
layer flow and free-shear flows., The roughness model makes
P the basic assumption that the additional forces due to the
roughness element, can be viewed as form drag. This im-

plicitly requires that the flow approaching an individual

12
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by element be attached., This model is more eppropriate for

3

.

Aistributed roughness, i.e., 3-D roughness elements, since
cavity flow is likely to prevail with 2-D roughness.

?ﬂ The rough surface is idealized as being made up of

. identical elements. The bottoﬁ of the elements, or the
underlying smooth wall, is at y=0 (Fig 1). The element
height is K, and % is the average element spacing measured
from centre to centre of two adjacent elements. The total
number of elements per unit area is given by1/22. The
analysis presented here is for a case of roughness elements
with circular cross-section at all heighis, with D(y) de-
noting the diameter of the element at height y for O<y<K,
but any general shape may be specified. Then, viewing flow
around the element at height v &< two dimensional, the form

drag between y - 8y and y + 8y is:
2 2

ou® Gy D(y)sy

hT B

where CD ie the form drag coefficient. 7o relate this to
drag per unit volume, it is noted that there are 2'2 ele-
ments per unit area, so that the appropriase differential
volume is lzéy and, therefore, the sink term for mean

momentum is:

2
Ru = -%_ pu CD D(zx) (15)
2

The drag coefficient could be specified to be equal to unity

(CD = 1), appropriate to infinite circular cylinders (two-

:\'.: ~

‘:::3 e

oy

£ 13
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J dimensional elements) at local Reynolds number above the
E . Stokes-flow regime., However, lower values such as Cp = 0.6 ,
i e are more appropriate for finite elements (3-D elements) i
: such as cones, hemisphere, etc, i
S In addition, there should be source terms in the equa- %
ﬁ tion governing turbulent kinetic energy and its dissipation a

rate in order to describe the tendency of roughness to in-

P

P
. S
o tafalala

crease the velocity fluctuation. Specification of these

terms is more speculative; their contributions are generally

smaller than the natural production terms and, hence, less

critical to the model. These terms are not very important

R N 208 UL DR g

compared to the indirect effect of roughness to increase

the turbulent energy by increasing the mean shear. Except

B IJ-':‘.L‘A_‘M- -L".f'." ®

in the Stokes flow regime, heat transfer to au element should
dib be small. Therefore, the only roughness term appearin: in
| the thermal equations is a source term in.the mean static
enthalpy equation. This term is constructed such that, in
combination with the sink term (Equation 15) for drag, the
total enthalpy is not altered. Accordingly, the mean static-
' enthalpy differential equation must include a source term R

h!
' defined as:

| _ 3 2
) Rh = +1 pu CD D(y)/l (16)

The detailed derivation of this term is given in Appendix A.

If no further modification is made in the governing

g equations, it is implied that the roughness elements are

G SRR R N L, S SRR Y R ISR .'.:"_--"‘ - - ; PR
RGNS ‘\M*.'.'A-‘:ﬁ'.h AT,
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assumed to occupy no space (Ref. 25:2). This assumption
becomes progressively worse as the roughness density in-
creases, therefore, the model has been extended to account
for the blockage effects due to the roughness slements.
Accordingly, the boundary-layer equations are derived in a
form to account for the blockage effect. This is done in
the following manner:

(a) At a given height y, the fraction of flow area in
the x-direction, that is open to the flow, is {1-D(y)/:},
hence, fluxes in the streamwise direction, represented via
the convective operator pu 3/9x, are multiplied by this
factor.

(b) TFluxes across a surface area whose normal is in
the y-direction, should be multiplied by {1- Dz(y)/Alz}.
However, the roughness terms discussed above are already
based on the total volume, rather than the available flow
volume, and need no such factor.

With the incorporation of these modifications, the
conservation equations (5), (6), and (7) are recast as

follows:

Continuity:

£(y) (rdp%) = 0 (17)

Momentum:

£f(y) pu 3u + o¥ 3u = -f(y) dp
ax y dx

--------------------------
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+1 1 38 B(y)rd 3u - pu’v’
i B(y) Yy [ Dlay ]]

r

;
5 P —=——  (18)

Energy:
f(y)pu 3(CpT) + v 3(CpT) = £(,)u dp
ox 3y dx
v 1 o Bt rre agcem] ¢+ wfaw 77
Bly)r? oy | [Cp 3y ] [ b’]
+ 1 . g__-B(y)rj (~Cppv' T )| - pu’v’ [ou
B(y)rd 3y I [BY]
3 Cn D(y)
+1 D
'2' pu P (19)
B(y)e
In equations (17-19):
B(y) = {1 = nD°(y) /48" (20)
!
¥ £(y) = (1 - D(y)/2)/B(y) (21)

Details of the derivation of equations (17) through (19)
are given in Appendix B. The function f(y) contains the
main effect of blockage. If a stream function formulation

4 were incorporated, f(y) may be absorbed in the definition of

16
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B3 the stream function that is introduced to eliminate the

»id, normal velocity.
N

n 2y

————

£(y)ou (22)

‘J.‘
<

-

s

2y = -y (23)

27 B

?ﬁ However, it is not done in the present work. It should be
noted that, if the elements are packed so tightly that they

éi are touching over some range of y, thenD = g and f(y) = 0

‘j over that range. This formulation forces the velocity to

remain zero up to the height where D<f and the flow is
blocked. In such cases, Y = 0 is redefined as the lowest
point where the flow is unblocked. (Fiz 1)

A major advantage of this model is that solutions are
obtained for both velocity and thermal variables. Heat
transfer is obtained directly without invoking a Reynolds
analogy. Finite-difference solut® ns are obtained using
the boundary conditions that, (i) Fluctuating quzntities
are zero at tre base of the wall, Y = 0 and (ii) At the
outer edge, fluctuating quantities are zero and the flow

variables approach the free-stream values,

Transformation of Boundary-Layer Equations

Equations (17-19), which are expressed in the surface-

normal coordinates in the physical plane, require starting

profiles, but these equations are singular at the stagna-
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tion point. For this reason, the equations are transformed

.
~-
'4
"

i

to a coordinate system that removes the singularity at the
stagnation point, stretches the coordinate normal to the
flow direction, thereby, resulting in a more gradual growta
of the boundary-layer thickness and places the equations in
an almost two-dimensional form (Ref. 15). A combination cf
the Probstein (Ref. 31) and Levy-Less was used in this
analytic study. The transformed coordinates £ and n are

defined as:

_ X 2j
£(x) = ffo, ug w, r “ldx (24)
and
u T Rj .
ni(x,y) = Pe “e %o ofytJ p_ dy (25)
2E Pe

It may be pointed out here that turtulent boundary
layers are characterized by two length scales, namely, the

boundary-layer thickness and the wall-layer thickness, which

? are quite dAifferent in magnitude and vary in the streamwise
E direction depending upon the pressure gradient, wall boundary
ﬂ conditions, etc., thereby, making the analysis of turbulent
E layers more complicated than the laminar boundary layers

%f where generally only one length scale is present. In com-

% pressible laminar flow, when the boundary-layer equations

are expressed in terms of Levy-Lees variables, the streamwise

faita O

LA 2

growth of the boundary layer is significantly reduced thereby
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simplifying the numerical solution of the boundary layer.

sut in turbulent flow since the Levy-Lees variables do not

o
&ty

properly capture the boundary layer thickness, it is neces-
sary to monitor the numerical solution and add computa-
tional points in the outer region to accommodate the
boundary-layer growth. To overcome this problem, it would
be better to use the new self-adaptive coordinrate trans-

formation for finite-difference solution of turbulent

-
N
“
=
)
K
é
K
N
g

boundary-layer flows presented by J.E. Carter et al.

tef. 32) as this permits a uniform mesh to be used in the
computational coordinate which extends across the layer.
This coordinate transformation uses the iocal value of the
skin friction to scale the thickness of the wall-layer
region, and the local maximum value of turbulent viscosity
e‘) te ale the boundary-layer thicknress.

To proceed with the derivation of the equations used

in the present study, the dependent variables are non-

dimens. ynalized according to:

F= (26)

u
uy ’ v s
e

P: Next, the relations between derivative in the physical
P
(x,y) plane and in the transformed plane (£,n) are obtained

as follows:

2J
a_ =p_,u_p_r 2 +
[ax ]y e e e e [ 8€]r1 [

212

][%ﬁ]i (27)

19
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and

=Y [&] - fetere’™ o g (29)
Ay RE an £

X

In Eqs (27) and (28), the subscript outside the sauare j
bracket indicates the coordinate that is held constant during
the indicated differentiation process.

The transformed variable for the normal velocity V is
obtained as:

I4o3
V= 2t £(F 3 + To POV (29)
2] X &

The detailed derivation of equation (29) is given in
Appendix B,

'E’ With this, the final working form of the governing
system, prior lo linearization, was obhtained as follows:

(Ref. Appendix B)

Continuity:

Vo4 £(y)F + 28 £(y)¥F, = 0 (30)
1
Momen cum: %
2 £(y)FF, 4 BF(y) (FR-8) + vE,
_ 2.=, - ) 22
= B1y (B(y)t"jear } - o (31)

A AR n
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Energy:

RE f(y)FeE + Ve,
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Further, the additional symbols included in these equations

are defined as follows:

e e
_ 2
G . Uy (34)
CpTe
iU
B = 2¢ e
ﬁ; 3z (35)
e
t = r .
T (36)
0
b = Cp D(y) £ (37)
2 2]
By) 2% r Yo  u_
e = 14 Er (38)
u
and € = 1 +F¢€
o (39)
r,t
)
N
21
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The function T' appearing in equations (38) and (39)

represents the streamwise intermittency distribution in
the transitional region of the boundary layer, and is a
function of the x-coordinate only.

For the purpose of this study, the boundary conditions
in the-transformed plane were as follows:

Wail Boundary:

F(&.O) = 0

V(E,O) =0

6(g,0) = 6, & constant (40)
Edge Conditions:

F(E’ne) = 1

6(g,ne) = 1 (Ref 19, 20)

In the following section, the turbulent transport
models (eddy viscosity and eddy conductivity) used in

this work are discussed.

Turbulent Transport Models

The basic model used in this study was that of
Cebeci, Smith, and Mosinkis (Ref. 27:1975-76). This
model treats the turbulent boundary layer as a composite
layer consisting of an inner region and outer region as

shown schematically in Figure 3.
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Inner-Region Model.. The eddy viscosity model used for

~EMER M f_*_"."a"a2 =

the inner region is based on the mixing-lerngth hypothesis

L

of Prandtl (Ref. 21). The eddy viscosity for this region,

ANt

referenced to the molecular viscosity, may be expressed as:

LRSS AR

e. = T 3u
i By (41)

S B S S

where %, the mixing length, may be written as:

= Kqy (42)

To account for the region close to the wall, Van Driest
(Ref. 22) suggested a modification for the mixing length of
Prandtl. The correct form Zor the mixing length in the

viscous sub-layer was given as:

T = Kyl - exp(-y/A)} (43)

where the exponential term is due to the damping effect of

the wall on the turbulent fluctuations. The parameter A is
usually referred to as a damping constant., The exponential
term approaches zero at the outer edge of the viscous sub-

layer so that the law-of-the-wall, equation (42), is valid

and it accounts for the effect of kinematic viscosity on

the turbulence near the wall., The damping constant A is

given as:

IR | CALUNPAPIE
-
-

AN

"
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A - 26v[1y_] -2 (44)
Pw

with the subscript w denoting values at the wall. Equation

(43) was developed for a flat platé. To account for flows

with non-zero pressure gradient, the constant A is modified

as follows. From the momentum equation, it follows that

the shear stress close to the wall may be written as:

e A=

T, (%E).V (45)

- .
If A were redefined to be 26v(T/p) " then Eq (45) leads to:

A =[26v[5._.r +dp y ]-v}.]

0 dx p

Then, the corresponding expression for the¢ inner-region eddy

viscosity becones:

bl )
2.2 T “ -

£, ={K."y" |1 - exp )} -y w tdp y auyl (47)

inner L 3 %33(;) dx o layl

Quter-Region Model. Tre eddy viscosity in the outer

¢

region is given by the expression:

wr e o]
€outer - 12 of (ue-u)dy
or Y = X PUs g
vt W (48)
Ej where 83 = ofye [1 - u_ 18y
&%‘ u ] (49)
o
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In order to account fer the intermittent character of
the outer-layer flow, cjuation (45) is modified by an inter-
mittency factor obtained by Klebanoff (Ref. 28).

= PU, g
£ Ko —= 8™y (50)

where the transverse intermittency factor y(y) is defined as: |
Yy = %1 -~ erf{5(y/8 - 0.78)}
and epp- ~ximated hy
y = {7 + 5.5 (y/ﬁ)é}_1 (51)

which is a convenient and sufficientiy accurate avproxima-
tion to the error function.

(:p The choice of K1 and K2 in the eddy-viscosiity formulae
depends 3lightly on the definition of the boundurv-layer

thickness 8. Ir several previous siudies, (for exarple

Ref. 29:174-191), the values of the constants K1 and K,
P;ﬁ are taken to be 0.4 and 0.0168 respectively, and 5 is
Eﬁj defined as the normal distance from the surface tc a point
‘; in the field at which ¥ was equal to 0,995,
N The constraint used to define the inner and outer
§§3 region is the continuity of the eddy viscosity. Starting
Fiﬁ from the wall, the expression for the inner-eddy viscosity
9 applies until e, = ¢_, provided that Y'»50. If Y <50 when
Eg €5 = €4 then the switch point is dclayed until v becomes 50
;;: and €i becomes equal to € at Y+:50. This prevents the
2 Y
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suppression of the fully turbulent portion of the velocity

profile that can occur at lower values of Re . This effect
B 6
¥ persists to higher and higher values of R_ as the mach
S
number increases. Figure 3 shows a typical eddy-viscosity

variation across the boundary layer for flow over a flat

plate.

Eddy Conductivity

The eddy conductivity is formulated in terms of a
static turbulent Prandtl nunber Pr,t and the eddy viscosity
e {sse equations (9) to (11)}. The two-layer concept for
the eddy viscosity model suggests that there should also

be u two-layer model for static turbulent Prandtl number.

PR,

Numerous assumptions have been made concerning the eddy
conductivity, and one of the earliest assumptions, which !
‘ﬂ’ has been used extensively, =mployed a constant value of
unity for the static turbulsnt Prandtl number. Eowever,
experimental data definitely shows that Pr,t is a function
of (y/6); hence, this assumption is expected to lead to s
error,
The Incompressible datza indicates that Pr,t ranges 4
between 0.7 and 0.9, Simpson, Whitten and Moffat (Ref. 30)
found that P.  Tenges frou approximately 0.95 at (y/§) g
= 0.1 to 0.45 at (y/8) = 1.0. The data in this region were

predicted well by the expression

SSNComToe ek st

i 2
Pr,t = 0.95{1 - 0.5(y/8)%}

as proposed by Rotta (Ref. 23).
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For compressible flow, where very limited experimental
data are available, Pr,t has a value very near unity in the
outer region of the boundary layer and a value tetween 0.7 '
and 0.9 at the wall boundary (Ref. 24). Meir and Rotta
(Ref. 25) found that for 1.75 < M, < 4.5, P, increased

above unity for Y+<50 and ranged between 0.8 and 0.85 as

the outer edge of the boundary layer was approached.

“he assessment of the current value for P must be

r,t

based upon the agreement between experimental and calcu-

- —— -

lated temperature profile over a wide range of flow vari-

ables. Due to inconclusiveness of much of the experimental i

data which exists to date, a constant value of P equal

r,t
to 0.2 is utilized in the present analysis.
“he following chapter, discusses the linearization

G ar3d clscretization of the governing eguation, followed by

tre computational technique to solve the sysilem of non-

P -

linea> varabolic finite-difference equations.
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Fig. 1. Dimensions and Distribution
of Roughness Elements with
Circular Cross-section
(From Ref 15:8)
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% Fig. 2. Coordirz=:s System and Notation
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Finite Difference Grid for Boundary _szyer
(From Ref 19:33)
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Figo 3Q

Matching the Inner and Outer Eddy Viscosity
Models (From Ref 19:21)
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The system of governing equations for compressible
laminar, transitional and turbulent boundary layers consists

of three coupled non-linear partial differentizl equations

1 VLIS RS- 4 WP

(Bquations (30) to (32)) and two algebraic relations
"(Equations (13) and (14)). The most important feature

AT LN

of this system is that it is parabolic and, therefors,

can be numerically integrated in a step-by-step prccedure

in the streamwise direction. 1In order to cast the ssua-
tions into a form in which the marching procecure can be
efficierntly utilized, the derivatives with respeét-io £
and n are replaced by linear finite-difference quotisnts,
In constructing the difference quotients, the skezwe of

the grid-point distribution presented in

useful for reference.
The solution is obtained in the transforred plaae for
arbitrary grid-point spacing in the &-direction and for a

spacing in n-direction such that the ratic of the srzcin

m

between any two successive pairs of grid roin=s 1s = con-
stant.

The advantage of having variable grid-point syzzing in
the E-coordinate becomes clearly apparent for problenms in
which either the rate of change of-the boundary conditions
is large or discontinuous or the mean flow profiles are

changing rapidly. Variable grid-point spacing in the

S
l- o
»

‘r
b
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E-direction is implemented by having very small steps in

v -t“

4

Qﬁ the initial region where the flow gradient is very severe
AT <

J o~ > "f-

TN and again in some downsiream region where transitional flow
sy exists., In the present analysis, certain stations in the
&

‘."Ci

g-direction were desigrated where the streamwise step was

N
PR

doubled from its value at the preceding station. Hence,

¥ X

g larger AZ step sizes are utilized as the flow progresses
s downsoream, Variable spacing in n-direction is even more
critical since the flow greiients near the wall are ex-
tremely large, whereas thess gralients vanish near the
edge of the boundary leyer. Tlke relationship between'Ani

for the chosen grid-point svacing is given by the following

equation (Ref. 19:32-33)
an. = (x)*7 an. (1 = 1, 2, 3....0) (52)

where k is the ratio of any twe successive steps.

Difference EBEquations

Three-point central-differer.ce relations in n-direction
and two-point backward or tiree-roint backward difference
relationsg in the £-direc*tior arse used to reduce the trans-

formed continuity, momentum, and energy equations (Equations

ﬁj (30) to (32)) to a system o7 courled difference equations.
o Following the quasilinearization (see Appendix C) of the
ﬂ non-linear terms, the difference quotients produce linear
S

difference equations when substituted into the continuity,

‘momentum, and energy equaticns. The resulting difference

32
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DO 12

”

e
s A

----------
----------
..................

difference equations are written symbolically as follows:

Momentum:
A1(n,1)Fn_1 + A1(n,2)Fn + A1(n,3)Fn+1

+ B1(n,1)6,__4 + B1(n,2)8  + B1(n,3)6 ,,

F 01 (n, 1)V, 4 + 01(n,2)V, + C1(n,3)V, 4 = D1(n) (53) |

Energy:

A2(n,1)F 4 + A2(n,2)F  + A2(n,3)F ,

1

+ B2(n,1)6 4 + B2(n,2)6  + B2(n,2)6 .,

+ 02(n, 1)V _, + 02(n,2)V_+ 02(n,3)V_,, = D2(n) (54)

Continuity:

COE, 4 A3(n,2)F + A3(n,3)F
+ B3<n’1)en_1 + B3(n,2)9n + BB(nv3)6n+1

+ CB(n’1)Vn_1 + CB(n,Q)Vn + CB(n'B)Van“I = I\S(n> (55)

The coefficients A1 1)..e, B1{(n, Juuv., C1{n,1)..., and

D1(n)..., eic., arc functions of known quantities a%
stations i-1 and 1-2 and are detailed in Appendix D. The
dependent variables F , and V appear in a linear form
as unknown at station i but are assumed to be known at

stations (i-1) and (i-2). Since, the equations comrrise

33
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a system of parabolic partial differential equations,
i they can be solved by marching along £ and a Gaussian

S elimination technique along n.

Computer Code

~ |
The computer code, ITRACT, available in the Flight , {
Dynamics Laboratory computed the characteristics of lami- |

nar, transitional and turbulent flow for either planar or

axisymmetric flow over smooth surfaces. This code was
modified to include the present aralysis for rough sur-
faces. To initiste this code, the following quantities

were specified as inputs:

the ratio of specific heat

T
!

laminar Prandtl number

Pr % turbulent Prandtl nurtex

w - the exponert in Sutherlzard's viscosity law
BO - ratio of wall ‘termperztura (T ) to frce
. r X N W
strean stagnaticn texversziure (TO
Xtr - the streamwise locaticn of transitiocn from

laminar to turbulent flow

ify the three-

IDIFF - a flagged cuantily, to srs
ancing scheme for

ge}
o
[._.lo
o]
cr
Q
=~
o
o
I
o]
O
}_h
3
d-
Q
’_l-
LIRTY
=
M
a1
(l
jo e}

the streamwvise dsrivati-e

J2DA - a flagged quantity, to syecify a 2-D or
axisymmetric flow

The data regarding the size, shape ard density of the
roughness elements was provided to the program in sub-
routine RUFVAR (Appendix E). The corputer code provided
description of the boundary layer characteristics. Some

of the output of interest in the computer code consists

34
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of the boundary-leyer profiles for Mach number, static
temperature, velocity, density, eddy-viscosity, enthalpy
and pressure. It also provides values of boundary-layer
thickness, boundary layer momentum thickness, the coeffi-
cient of friction, eddy viscosity, and Stanton number

which is a description of heat-transfer at the surface.

e | R I L .4 RO I

The transformation from the (x,y) plane to the (&,n)

-

1
-
!
.
.

-

plane casts the boundary layer into a rectangular grid of
nodes with the surface of the model located at “he level
j=1, as shown in Figure 4 where subscript (i,j) refers
to £,n indices. The mesh spacing in the i,j direction
are AEi and Ani, respectively, which are not constant,
for reasons explained earlier,

The computer code solves the linear difference
equations (53) to (55). The solution of this system of
equations was determined ty computing values of F, 6, and
V at each of the nodes witain the grid. With all the
values of these variables xnown at station i-2 and i-1,
the values of F, 6, and V were solved at all points j at
station 1 using a three-point differencing scheme and a
Gaussian elimination technique. With the boundary-layer
solution completed at the station i, the computer code
marched to station i+71 in the streamwlise direction and
the dependent variables F, 6, and V were determined in a
similar manner at the preceding station. The entire pro-
gram was therefore a sequential solution at a series of

E-stations frem the leading edge to the trailing edge of
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,w‘ the model. Hence, the computer code followed the step- 5
I~‘ ‘1
> by-step procedure depicted in Figure 4. With a program |
~ AN ) .‘.
TN listing included in Appendix E, the main portion of the i
\ logic presented in Figure 5 required further explanation; %
; hence, Appendix F was included to discuss four important

3
RPN

portions of the code. These included the non-dimension-

2 b

ﬁ alization of the working variables, the computation of ﬁ
N A
% eddy viscosity, Stanton-number, skin-friction coefficient "

and the roughness variables f(y), B(y), aai 5__. A Fortran

computer code key is also included as Appencix G.

- T

1

ool
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Inputs including y, Pr, P g Moy Tw, stepping
data is transformed planel’, Tw/T , turbulent
trangition and intermittency cOnsfderation, L,
O, dimensions and density of roughness elements.

. X X A BT % A A__."_ "

| Compute Re |

Nondimensionalize
the key working variables

nitialize thg]
grid profile

Py SR04 WREEN TR TEVRAY L ¢ S R

Crintia Ll SRR S MAa S ekt ADILRAE e Y

A
-

Enter the Main Loop ]

Do to label 115 l

for each nodal

point in a ver- Compute nondimensional

tical direction properties at edge

at station 8y of boundary lsyver
o Return from labell Compute %2,AZ, Fe_,

115 to recompute step lensth functifns,

at station si+1 a, and B

l

Label 6998
premncmeceee-=| Set the total ruzber

! of modal poinzie in
! one column of the zrid
' |
‘ . !
; ! Compuze
Ret coefficients A,B,C, and D
;rg;n for finite difference
label 7005 equations
Compute

current station s. values
of F, 8. and V

1

Continued on following
page
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, _ T, _-F._
Compute Tourrent - j=2 " j=1 :

If =

previous step _ 1 < convergence criterion, !
Tecurrent .0015 .
Y .
Labe ;
Return to ---False 7005 Note: If convergence u
label 6998 criterion not met in !
l 100 successive checks, t
True program was aborted. E

\j

| Compute 8, &%, and 6 |

— B T

If iteration has reached
transition, compute ¢

If AF between the 15th and 16th nodal points
below the edge of the boundary layer > ,0001,
0 add one more point in n grid

'
Compute St _,
Reé* and Re
» ?

I o S WX Ra s M A A

Cf

o 8

1 L
L
Profiles shifted back one station
in &, as in gi_2 = Fi-1’ and
i-1 = F.l
'
Print profile data
for selected stations

' '
Return to _
3 beginning of«==<=~ Label 115 Continue
= main loop 1

X

e

il il B

g' .&L Fig 5. Flow Diagram of the Logical Steps to Solution With ITRACT
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IV. Results and Discussions

The modified analysis and computer program are
capable of predicting the effect of surface roughness on
turbulent boundary layers. Prior to using it as a valid
predictive method, it was necessary to establish the
authenticity of the original code. For this purpose,
results were first obtained using the original ccde, for
turbulent flow over a smooth flat plate and conmparecd with
the experimental data of Dr. Fiore at the Air Force
Wright Aeronautical Laboratories and Dr. Donalc Coles,
at the Jet-Propulsion Laboratory, California. Thereafter,
calculations were made for the case of turbulert flow over
rough surface and the computed boundary-layer rrofiles
for velocity, static temperature, nitot pressurs, Maxh
number, density and stagnation temperature were conmpar:d
with the corresponding experimentally obtained boundar;-
layer profiles. Further, the computed profile for the

rough surface were compared with the computed profilss

e

for the smooth surface, so as to avpreciate the effect of
surface roughness on the flow.

In these studies, a number of .mportant assunptions
were made. First, the boundary-layer computation and the
comparison were performed for flow over a flat plate;

hence, the effect due to the stagnation region at the

leading edge and the shocking phenomena were nasglected.
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Shapiro has alluded to the validity of the assumption of

free-stream conditions existing at some distance down-

Iy
<
SO

S
LI

stream of the leading edge of a plate (Fig 2 -21(c) and
the subsequent text (Ref. 25:1149-1150). Hence, free-
stream conditions were assumed to exist downstream the
shock wave. Further, the angle of incidence of the
model was assumed to be zero with respect to the flow in
the free stream. Second, the boundary-layer thickness,
8, was minutely small comvared to the characteristic
length L. Further, the pressure change across this
boundary layer thickness was negligible. Third, the
problem was limited to experimental cases where pressure
change along the streamwise direction was also negligible.
Numerically, dp was considered zero. Also, the flow was
‘j. considered fug§y turbulent at the station where the com-
parison of the results were made. Fourth, the flow was
considered inviscid and potential beyond the edge of the
boundary layer. Finally, the Navier-Stokes equations
were simplified to the boundary-layer equaticns to des-
cribe the flow characteristics for y<¢& (Ref. 3:117-121).
In all cases presented herein, the gas 1s taken to
be air and is assumed to tshave as a perfect gas with a
constant ratio of specific heats (y= 1.4), a constant
Prandtl number (Pr = 0,72), and a constant static turbu-
lent Prandtl number (Pr,t = 0.,9). The molecular viscosity

U is evaluated from Sutherland's viscosity law. The

external pressure distribution used is either experimental
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or obtained from an exact solution of the full inviscid

Enter equations.

Turbulent Flow Over Smooth Flat-Plate

Compvarison With Dr. Fiore's Data (Ref 37). For the

purpose of this study, the results obtained from the orig-
inal computer were compared with Dr. Fiore's data for tur-
bulent flow over a smooth flat plate. The experiment was
conducted at a Mach number of 5.92 and a Reynolds number
Re  of 3.6(10)7. The free-stream stagnation temperature
and stagnation pressure were 1098°R or 1995.38 psia,
respectively. The free-stream conditions and the data

of this experimental study are tabulated in Table I.

The computer code results were obtained for the sare
free-stream conditions. The point at which the transition
from laminar flow to turbulent was initiated, was obtained
from the transition Reynolds number of 1.5(10)6. The wall

temperature was 602°R. The length of the model was 17.15

inches, and the boundary layer profiles crmputed at the
end of the flat plate (i.e., X/L = 1.0) were compared
with the experimental profiles.

There is excellent agreement between the computed
and the experimental boundary-layer profiles as shown in
Figures 7 through 12, except in the region close to the
wall. The velocity profiles as shown in Fig. 7 compared
very well, except in the sub-layer region where the

computer code overpredicts the velocity slightly. On

3 i1
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the other hand, the tempevature profile (Fig. 8) is slightly
underpredicted in the same region, which is quite under-
standable due to the fact that the stagnation temperature

remains constant. The same trend is observed in the

s 3 A SN amEmsi

boundary-layer profiles for dsnsity, Mach number, total
temperature and pressure is depicted in Figures 9, 10, i
11, and 12, respectively. The discrepancy in the sub-
layer region could be associated with either of the fol-
lowing two sources of error:

(a) The Cebeci-Smith-Mosinki's model used in this
study to describe the sub-layer region of the boundary
layer was not adequately taking into account the inter-

mittent nature of the turbulence in this region.

(b) The boundary-layer probe installed at the base
o of the model could influence the force-balance measure-
ments. This could result in a Zower experimental pressure

ratio near the wall, thereby causing some error in the

temperature profiles (Ref 39).

The tvy possibilities mentioned above were examined
further. It was observed that +the Cebeci-Smith-iosinski's
model has been used extensively in meny previous studies
(Ref. 19) and has been found to predict sub-layer region

very accurately. While investigating the classical eddy

viscosity models in an attempt to establish a benchmark

for future development of turbulent boundary layer re-

search, Shang, Hankey, and Dwoyer (Ref. 19) found that

the Cebeci-Smith-Mosinski's model was adequate to predict



the boundary layer in the sub-layer region. Hence, the
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first possible source of error was discarded. The size
of the probe used in the experimental study was of the

order of the sub-layer thickness which could influence

o I . N )

the flow, thereby leading to a lower experimental pitot

pressure ratio near the wall (Ref. 39).

5
:

To correctly establish the cause of the error in the
sub-layer region, it was decided to carry out another
comparison of the computed velocity and Mach number
profiles with the experimental data of Dr. Cole (Ref. 38)
for turbulent flow over a smooth flat plete.

Comparison With Cole's Data (Ref. 38). The comparison

with Cole's data was carried out to check the accuracy of
the original code, since the comparison with Dr. Fiore's
data showed some discrepancy between the computed and

the measured results in the sub-layer region. The data
of Dr. Cole, as tabulated in Table II, was obtained fron
experimental investigation of turbulent flow over a

smooth flat-plate for the test conditions as follows:

M, = 4.554
P, = 8132.788 16£/£4°
_ 0
T, = 522.64°R
Tw/To = ,676}

The length of the flat-plate was 21.48 inches and
the boundary-layer profiles were compared at X/L = 1.0,

In Figs 13 and 1.4, the comparison between the computed
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and experimental velocity and Mach number profiles is
presented. It is observed that excellent agreement
exists between the computed and experimental profiles

everywhere, including the sub-layer region near the wall.

Via this comparison, the authenticity of the origi-

nal computer code was established. The next step was to
24 verify the roughness model and the modified computer code :
N by conducting a comparison of the boundary-layer profiles
J predicted by the modified computer code with the experi-

mental data of Dr. Fiore (Ref. 20) for flow over & rough

flat plate.

Turbulent Flow Over Rough Flat-Plate

Comparison With Dr. Fiore's Data (Ref. 40) &L2ter the

authenticity of the original code was establishez, the
next step was to modify ths computer code and then verify
its resuvlts. Prior to comparing the results of tls modified
computer code with the experimental data for turbulent
flow over a rough flat-plate, results for turbulernt flow
over a smooth flat-plate were obtained from the mciified
code, by specifying roughness elements in the cole to be
of zero dimension. The results obtained were in complete
agreement with those from the original code discussed in
the previous section and plotted in Figs 7 through 12,
This showed that the inclusion of the roughness moiel to

the code has not affected the computer code for turbulent

flow over smooth surfaces.
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Next, to verify the roughness model used in this study,
e the results computed by the modified code were compared with
the experimental data of Dr. Fiore (Ref 40) of AFWAL, for
turbulent flow over a rough flat plate.
The experiment was conducted at the following test

condi’.. . . -

MO = 50534
P, = 2003.53 psia
_ o
T, = 1122.94°R
T, /T, = .5829
Re, = 3.665(10)7

The roughness element distributed over the flat plate

had the following dimensions (Fig. 06)

0 (i) Height of the element = % = 0,02 inches
(ii) Breadth of the element = b = 0.0/ inches
(iii) Depth of the element in the flow direction = C

= 0.04 inches

The density of the roughness elements was specified
as follows (Fig. 6):

(i) Spacing between two adjacent elements loca. 24
along a line perpendicular to the flow direction = B =
.08 inches.

(1i) Spacing between two adjacent elements located
along a line parallel to the flow direction = C = .08

inches.
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The length of the flat plate was 17.15 inches, and
the boundary-layer profiles computed at X/L = 1,0 were
compared with the experimentally obtained boundary-layer
profiles. The free-stream conditions and the experimental
data are tabulated in Table III.

The results presented here are quite encouraging,
in that a rather basic model yields results that are in
good areeement with many of the observed trends regarding
the influence of surface roughness. Figure 15 shows the
excellenf agreement obtained for the velocity profiles.
The computed profile shows the expected increase in thick-
ness and change of shape due to the presence of the
roughness elements. The maximum error in the computed
and the experimental velocity is about 1.88 percent and
occurs near the wall, and is attributed to the same cause
as for the smooth-wall case as discussed earlier in this
chapter.

The predicted and the measured temperature profiles
shown in Fig. 16 show the same trend, except that the
computer code has overpredicted the static temperature.
The distributed roughness elements over the surface
cause the flow to slow down due to form drag in the wall
region of the elements. This results in a higher static
temperature in order to keep the total temperature the
same.

The initial rise in the static temperature to about

827°R occurs in the region corresponding to the height of
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the roughness element, i.e., for y < .02 inches., At y > h
(height of the element), the flow is no longer obstructed
by the roughness elements and the temperature profile
follows the same decreasing trend as that for the smooth
surface profile. In the experimental results, the static
temperature is approximately 670°R at y = .02 inches and
the error is about 20% =* i point. This discrepancy
occurs in the sub-layer regisa and could be traced back
to the influence of the probe on the flow (Ref 29). The
thin wall region plays é very dominant role in detérmining
the entire structure of the boundary-layer.

The density profiles shown in Fig. 17 depicts a
trend consistent with that of the static temperature
profiles since the density at a point in the houndary-
layer is simply the reciprocal of the corresvonding
static temperature. The profiles are in reasonably good
agreement, except in the region close to the edce of the
boundary layer.

The experimental boundary-layer thickness (§) is
.383 inches and the measured data exhibits a ronotonic
increase in the density from the wall to the edge of the
boundary layer. The same trend is observed in the ccm-
puted profile alsc. Hence, if the density were plotted
against y/8, for 0 < y/6 < 1, then the profiles would
appear to be in reasonable agreement. As y increases
slightly beyond 0.4 inches, there is a sudden decrease

in the experimental density values, with the free-streanm
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density value being attained shortly beyond y = 0.4.
Actually this trend is not consistent with the static
temperature profile given in the experimental data

(Pig. 16).

Comparison of Computed Rough and Smooth Boundary laver

Results

The velocity profiles with and without roughness are
compared in Fig 21. Both the profiles are for turbulent
flow over a flat plate., The two cases have slightly
different free-stream conditions, as tabulated in Table
IV. The smooth-wall profile exhibits fully developed
turbulent flow characteristics and a smooth monotonic
increase in velocity from zero at the wall to the free-
stream value at the edge of the boundary layer.

The effect of distributed surface roughness on the
boundary layer development can be ovserved as a reduction
in the values of the velocity in the wake of the roughness
elements. In the roughness model, the rough surface is
idealized as being made up of identical elements. The
form-drag description of the roughness element causes the
flow to slow down in their wake region; hence, the rough-
wall profile is not as full as that corresponding to the
smooth wall. Table V shows a corresponding increase in
all the boundary-layer integral thicknesses when roughness
is included.

Semi-empirical analysts of turbulent boundary layers
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I
are often based on some form of law-of-the-wall correlation. E
The law-of-the-wall is defined most simply in terms of the
dimensionless parameters ﬂ

v = U enatt = 1x (56) :

UT \)w K

[’

l

where UT = (Tw/pw)% (57) N

Within the boundary layer, three distinct regions are found
to exist; the sub-layer, the logrithmic region and the
velocity-defect region. The general form of the relation-

ships governing smooth-wall boundary layer is given by:

gt = ¢? ror YV < 11 (58)
AN 4 +
7 InyY + C for Y > 11 (59)

The effect of roughness on the law-of-the-wall equation
has been shown o result solely in a shift in the inter-
cept, C, in equation (559). The same trend has been
predicted in the computed smooth and rough velocity
profiles. The rough-wall profile looks similar to the
corresponding smooth-wall profile, except that it is
shifted towards lower values of velocities. This trend

is congistent with the rough-wall results where the shift
in the profile is directly related to the size and density
of the roughness elements. The computed boundary-layer

profiles show the expected increase in thickness and
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g The addition of roughness elements to the smooth
:
L)

change of shape due to roughness.

Skin Friction and Heat-Transfer

\ surface can significantly affect turbulent skin friction
and heat transfer. The roughness model used in this
study was tested for prediction of skin friction augmen-
tation due to addition of roughness element to & smooth
surface. A comparison between the computed skin friction
values for a smooth surface and a rough surface was
accomplished. The predicted skin friction coefficient
for the two cases was plotted versus dimensional distance
along the flat plate in Fig 29. In this study, square
roughness elements with K = ,02" b =4 = ,04" and B = C =
.08" were used, Fig 29 shows the expected increase in
the skin friction. For rough surface the skin-frictionr
was 40-60% hicher as compared to smooth surface. The
validity of the skin friction augmentation gy the model
could not be confirmed due to non-availability of any
experimental data.

As regards heat transfer, the original model for
calculation of Stantcn number was not modified in this
study, hence, the expected'fncrease in the heat transfer
due to roughness elements was not predicted by the code.
On the other hand, a decrease in Stanton number was noted

w sinvce smooth surface had a higher pressure gradient

compared to the rough surface near the wall. Hence, a

*
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need for incorporation of a suitable model for accurate
prediction of heat transfer augmentation was felt. It may

oe noted, that, one particular useful aspect of this rough

B B T U W RV S

wall turbulence model is that the results can be examined

- e

to determine the nature of the roughness influence on

turbulent boundary-layers. One rather consricuous con-

clusion is that the Reynolds analogy betweer friction and

£ L _ V. ", _'EEmK ..

heat transfer is not preserved with sigrifizant roughness.

This result is well known and derives frorm ks absence of

a heat transfer analogy to form drag on elenents. The

(r X X ¥

computation shows that the velocity fluctuaztions increase

&

in proportion to friction velocity Ut = (Tv/ow) but the

temperature fluctuations are hardly chargec bty roughness.
—r7

. b —wd .
Since Tw ~u'v® and g v v'T", the heat ITransfer augmenta-

tion is the square root of the skin fricticn zugmentation:
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(60)

O
o

where subscript 'o' denotes smooth wall.
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Fig. 6. Dimensions and Distribution
of Roughness Elements with
Rectangular Cross-section
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Table I g
3Q@ ' Data for Smooth Flut Plate (Ref 37) Probe o
< Boundary Layer Profiles by
- ]
y  Pyly)  Tu(y) + T(y)  U(y) f(y)§104 i
Inch psia Og M(y) Op ft/sec  H#sec/rth 2
LY
0 1.385 604,62 0 604.62 0 1.9234 N
.021 5,65 963.35 1.666 619,37 2032.11  1.8776 &
.053  12.52 1034.0  2.578  443.87 2661.67  2.6199 -
.083 19.98 1066.0 3.292 336.54 2959.25 3.4555 “s
.087  20.73 1069.0 .3.355 328,75 2981.07  3.5374 2
112 26.25 1089.0  3.789  281.28  3113.96  4.1345 :
.138 32,01 1094.0  4.194  242.12  3197.95  4.8031
148 35,75 1097.0 L.438 222,13  3240.80 5.2352
.169 42.39 1099.0 4.840 193.35 3297.33 6.0147
204 52.14  1100.0  5.375 162.27  3355.21  7.1667
.205 53,9,  1100.0 5.469  157.57  3363.61  7.380,
232 60.53 1100.0 5.797  142.47 3390.46  8.1627
.255  61.23  1100.0 5.831  141.03  3393.00 8,2458
272 63.50 1100.0 5.939  136.57 3400.88 8,553
.28, 62,73 1100.0 5.903 138,05 3398.27  8,4239
.322 63,18  1100.0 5.92  137.18  3399.80  8.4773
.328 63,00  1100.0 5,915  137.53  3399.19  8.4560
359 63,10  1100.0 5.920  137.33  3399.53  8.,678
® 378 63.31  1100.0  5.930 136.93  3400.2L  8.4928
' 395 63,09  1100.0 5,920  137.35  3399.5) 8,666
411 62.90 1100.0 5,911 137,72 3398.85  8.4441
445 63,37 1100.0 5,933 136.82  3400.45  8,4999
447 62.97  1100.0 5.914  137.58  3399.09  8.4524
476 63,18 1100.0 5,92,  137.18  3399.80 8.4773
.503  63.91 1100.0 5,959  135.79  3402.25  8.5640
.512 63,18  1100.0 5,924 137.18  3399.80  8,4773
535 63,50  1100.0 5.939 136,57 3400.88 8.5153
565 63,58 1100.0 5.943 136.42 34L01.15 8.5248
.569 63,65 1100.0 5,946  136.28 3401, 8.5%31
.596 63,17  1100.0 5,92  137.20  3399.77  8.,761
631 63,2,  1100.0 5,927  137.06  3400.01  8.4845
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a5 - Table IT
Data of Dr., Cole's Experiment for Turbulent
Flow Over Smooth Surface (Ref 38) |
Y/e 2/ % /e "
0.60 0.500 0.60 WR2175
0.80 0.555 1.19 . 355
0.98 0,60 1.60 . 385
1.50 0.645 2.20 412
2,10 0.687 2.80 + 439
3.80 0.750 3.70 . 480
5.20 0.790 5.50 + 535
0 6.10 0.815 6.65 . 575
6.80 0.030 7.85 L0610
7.85 0.845 9.45 " .659
9.45 0,880 10.70 . 700
10.55 0.900 12,30 756
13,60 0.950 13.65 +799
15.60 0.975 15,70 . 880
16.25 0.985 17.19 . 939
19.20 1.00 19.30 . 980
21,20 1.00 21,20 . 992
22,80 1.00 22.80 1.00
RL.T75 1.00 24,75 1.00
®
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R Table III :

Data for Rough Flat Plate (Ref 40) Probe N

Boundary Layer Profiles )

g

3

|

Y P (y) T (y) ¢ T(y) U(y) £(y)x10% N

Inch psia Op M(y) Op ft/sec #secz/ftz’ N

:

0 1,632 654,52 . 0 654 .52 0 2.0936 |
.024 he97 925.0 1.3992 664,72  1767.63 2,061
.065 9.19 1000.50 1.9980 558,8, 2314.34 2.4521
.092 10.93 1035.0 2.1962 526,80 2470.01 2.6012
.103  13.05 1045.0 2,4156 482,22 2599.26 2.8417
126 14.34 1060,0 2.5398 462.86  2677.44 2.9605
147 16,50 1072.0 2.7351 429,47  2777.34 3.1907
71 20.61 1085.0° 3,072, 375.70 2918.07 3.6473

.181  20.50 1689,0 3.0639 378.46 2920.62 3.6208 .

.212 26,28 1098.0 3.4845 320,27 3055.59 4.2786 3

.230  27.50 1104.0 3.5670 311.46  308..56 4.3997 ﬁ

246 30,05 1106.0 3.733 292,00 3126.03 4.6928 j

0 .267  3,.80 1110.0 4.0251 261.77 3191.08 5,238 ;

297 44.20  1114.0  4.5476 216.89  3281.73  5.3179 "

«299 44,10 1115,0 Le5424 217,49 3282,47 6.3005 o

.332 55,70 1116.0 5.1147 179.07 3353,78 7.6522 %

.355 62.50 1117.0 5.4222 162,35  3385.34 8.4404 N
.364 64,09 1117.0 5.4917 158.85  3391,5) 8.6263
.383 65,08 1117.0 5.5344 156,75  3395,26 8.7420
412 67.25 1117.50  5.6271 152,40  3403.83 8.9917
426 67.60 1117.50  5.6419 151.71  3405.05 9,0326
AT 67.50 1117.50  5.6377 151.90  3404.70 8.,6703
475 64.50 1117.50  5.509, 158,05 3393.85 8.6002
.L80  63.90 1117.50  5.4834 159,34,  3391,57 8.4819
.503 62,92 1118.0 5.4407 161,56  3388,52 8.5601
.530 63.59 1118,0 5.4695 160,08  3391.14 8.6704
547 64.60 1119.0 5,5137 158,05  3396.51 3.5968
565 63,97 1119,0 5.4864 159.40  3394.12 8.5968
.590 63,77 1119.,0 5,4778 159.83  3393.35 8.5735
507  64.50 1119.0 5.5094 158.26  3396,13 8.6587
o670 64.27 1119.0 5.4995 158,75 3395,26 8.6319
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Table IV N

Free Stream Condition for Smooth and Rough a
Experimental Data (Ref. 37, 40) N

"~

N

:

g _\"aF

Smooth Surface Rough Surface ;
<
o
M 5,92 5.534 5
To (0p) 1087 1122.94 %
Po (psia) 1980 2003.53 A
Tw/To .5538 . 5829
L (in) 17.15 17.20
\
|
§
\ éﬁs
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Table V

Comparison of Thickness for

.............

Smooth and Rough Cases

Parameter

1995.38

1098.38

NP WUV SO WO P

Rough

5.54

2003.,53

1122.94

5884

62954.7

4735
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V. Conclusions and Recommendations

"l CL® L, ST a" "5 s I L H e

The original computer, ITRACT, solved the comrpres-
s8ible turbulent boundary layer over smooth surface. The
purpose of this study was to extend the usefulness of the
computer code by incorporatiing a modification for inclu-
sion of the effect of surface roughness on compressible
turbulent boundary layer. In this study, the roughness

model proposed by Finson and Clark and followed by

i R AT N I TR L e T e T

Christoph and Pletcher was employed without invoking

(]
=
j
~

the modification of the turbulence model. Roughness

was represented by distributed sources and sinks in the
appropriate governing eguations. The most important term
was a sink term in the mean momentum equation reprssenting
form drag due to roughness elements. The governing
boundary equations were cast in a form to account for
blockage effects of the roughness elements. With the
computer code modified to include the effect of surface
roughness, compressible turbulent boundary layer flows
perturbed by the roughness elements could be solved.

The roughness model employed and the modified computer
code were verified through comparison of the calculated

results with the experimental 22tz of Dr. Fiore for

compressible turbailent flow over rough surface.
As a result of incorporating a roughness model in

the computer code to predict the effect of surface é

81
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roughness on tre compressible turbulent boundary-layer, the
following conclusions were reached:

1. The results presented here are gquite encouraging,
in that a rather basic model yields results that are in
agreement with many observed trends regarding the influence
of surface roughness.

2. The assumptions inherent to this model are limited
to the basic naiture of the flow around the roughness ele-

ments, anc r.c ersroximations have been made regarding

profiles of tize boundary layer quantities, tuibulence

level, or relations between the momentum and energy
fluxes.
3. Ths ccoouter code is capable to handle roughness

elements ¢f an; zeneral shape. It is not restricted to
roughness elemen®s with circular cross-section only.
The following =»eas are identified for further study and

improverert to =~he method described and the computer cod

(]
.o

evy-Lees transformed coordinate system could
not prorerl: cariure the turbulent boundary layer thick-
ness, srecilizzily, for the rough surface case., The trans-
formed cocriinz<s n became too large and 1t was necessary
to monitor ks rnumerical solutions and add points in the
outer region %ic accommodate the boundary layer growth.

A better turbulence grid generation for this type of flow
can be used, sucx as that proposed by Carter et al,

2. The fcrn drag coefficient and spacing between the

elements be allowed to vary.
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and the effect of roughness at strongly supersonic or

o .
‘.‘c! L]
N .
i !
3 3. The effect of one element on another be included. .
Q g;& L. It would be useful to have better daila to siudy ;
i on the effects of roughness density and shape for distri- !
» ;
jﬂ buted roughness. .
\ N
:@ 5. The combined effect of roughness and mass addition :
' l

hypersonic edge Mach numbers may be examined.

.
.
.
.
T
-
A
B

6. A model to accurately predict the heat transfer
augmentation due to roughness elements be incorporated.
Moreover, the calculated skin friction augmentation due
to roughness elements be compared with experimental data

to establish its accuracy.

“
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Derivation cf Source Term for Energy Equation

Including & sink term R, = -% puzCD Qi%l in the mean
momentum equation (equ. ) requires inclus%on of &n appro-
priate source term Ry = % puBCD Qi%l in the static enthalpy
equation such that the total entha&py is not altered.

The mean static enthalpy equation after addi<ion of

source term, Rh' may be written as

pu dh + pu 3h = udp + 3_| u_8h - ph'v!
X 3y dx dy | Pr oy
+ (7 25 - puv) 2w + 1 ¢y Fu° Dy) (4.7)
y Yy 2 22

PPt

BRATS PR ARS : PPPIEENS - | ARSI | LIPS _J WA

® dp = 3 _fu 3u - o wv'f - pu du i+ oV 3u
dx oy y X ay
2 A
| - 15 ou® Gy  D(y) (A.2)
1 Q2

i Substitute (A.2) in (A.1) to get,

1
o uf 8h + W au\+ oV {dh + U 3u )=
X X y y

- -

-~

To express ph'v', 3h in term of total-enthalpy, ths fluctu-
3y
ating total enthalpy may be expressed as: (Ref 3¢:76-77)
H' = h' + U u' (A4)
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Multiplying both sides (A.4) by ev' and averaging,

p H'v' = p h'v! + u p u'v (A.5)
RS
-8
Noting that,
3H = 9h + U 3u (A.6)
X 9x X
and,
9H = 3k + T 31 (A.7)
oy a R
Substituting equations (A.5), (A.5), and (A.7) in (A.3)
pu 8H + p¥ 3H = 3 _|U W 3u - ¢ITv!
ax y oy y
+ L 3T - u_ u (A.8)
Pr ax Pr oy
c;b Heat transfer normal to the meir 1 :, Yy, is given by
(Ref 36:0606)
VRTINS QAR i (8.9)
Pr 5y or oy
Substitute (A.9) in (A.8) to get,
pu 3H + p¥ 3H = 5 [ W 1% - iy - pHIVV {(A.10)
ox y ay s
It is evident from equation (A.10), which is the total-
enthalpy equation, that the addition of the source ternm, Rh,
h
3 to the static enthalpy equation, =as not altered the total
j enthalpy equation,
| &
89
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Appendix 'B!

Derivation of Congervation Ecuations Including

L M Gy & S B A s S rmmme m

the Roughness Effect in lLevy-Lees Variables !

(B1) Roughness Effects

Equations (15), (16), (20), and (21) are repeated here

B P P A . smmmm— .+ .

for convenience:

Sinx term included in the mean momentum equaticn:

Ru = -% ou? ¢y Diy) (B.1)
)2

e ——

Source term included in the mean static enthalpy equation:

R, = +1 ou’ Cy Dly) (B.2) |
5 )2

Blceiage terms:

407

B(y) = (1 - ﬂD2§x2) (B.3)

'L

£(y) =(1 . m) /B(y) (5.0)

(32) Conservation Equations in Physical Plane

(a) Continuity Equation:

Introducing the blockage effect in continuity equation

as explained earlier in Chapter II, Equation (L) becomes

1 -D(y) 3 (vdpuw) + 1 - 1D%(y) 3 (edo¥) =0  (B.4)
L ax 2 oy
5
Dividing thru oy B(y), (B4) becomes:
fly) a_ (rdou) + 3 (rdp¥) = 0 (B.5)
oX oy
90
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(b) Momentum Equation:

Introducing the blockage effect and adding the sink term,

the momentum equation (equation (5)) becomes:
pu {1 - D(y) {3u + p¥) 1 - wD2§¥2 du =
L | ox ) Ay

, 2 j —
-1 -Diy){dp + }J1 - aD 5%2 1 13 rJ(pdu - putv')
z 2 z dx { A 2 rj 9y ay

Dividing thru by B(y), (B.2) bvecomes:

f(y) pu 3u + p¥% du =
X oy
-f(y) dp + 1 1o | 3y rd (udu - oTTVT)
dx  _J B{y) 3y oy
2 G D(y)
Toeur DT (B.7)
~ B(y) &°

(¢) Energy Eguation:

intreducing the blockage effect and adding the source

term, the energy equation ‘eajuation (6)) bacomes:

{1 - QM)% ou 3(CpT) + R(y) ov 3_ (CpT)
L oXx 0

Cp oy

Yy
= u 33 - Dly)({de + 1 3_ [B(y) 3 K2 8(CET)]
| dx ] oy
+ B(y) 11(@_11)2 + 1_ L{B(y)z‘j(—Cpp-v'T')]

Ay pd OV
- B(y) ou'™T 3u + 1 Qu3 Cp D(y (B.8)
y 2 L2

d ) .
st e T L
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Dividing thru by B(y), Equation (B.6) becomes:
R £(y) pu 3T + p¥ 3T = f(y) u_ %g
ver X y C
2
a_IBy)rd k2 3 (cpD| + p_rau 77
E( ) JCp oy p oy Cp L 9y ]
+ 1 erp ) B(y)rJ( Cppv'TV) pu ' vl du
B(y) 3y - ay
P 3 Cp D(y)

AR

(B3) Transformation to Levy-Lees Variables

The transformation of Probstein-Elliott and Levy-Lees

(Ref 31) is used to transform equations (B.5), (B.7), and

"':~ rT-T"‘~“

Y

(B.9)

(B.9). The Levy-Lees variables &,n are defined as follows:

(x) = OIX pe ue pe ro<dax
and
nix,y) = ge ue rod fy 4d g_ dy

RE

The partial-derivative op»rator in the new coordinate systen

(£,n) becomes

9 = ue ue rodt [ -
oy| & oF pe 9y ] &

9_ = pe ue pe rozj 3 t+ 9n o
9x In 3E I n oX ay | &

(B.13)

::w'" v*‘.*.’ N »v'\"';’\":!

MEE A, £ A + & 5§ 5 FamE 4
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Equations (B.10) and (B.11) gives a transformation

2] :

e of = pe ue ye ro .
l

an = tj ue rojg i

) , (B.15) "

13 ]

The dependent variable F, 6, and V are defined as:

s | THIR

F = u , 0 =T

Te Ts ;
V = 28 _ | £(y) Fng o+ it oy (B.16) i
pe ue ue ron &

H
‘
'
'

Continuity Equation

Equation (B.5) may be written as:
3 {rdp¥) = -f(y) 3_ (ripuw)
oy oX
Integrating both sides from wall (y=0) to source pecint y
in the fieid:

J = y
= -] fly) 3

——

09X

(rdpu)dy + rod oW VW

Using Equation (B.13)

oV = ) N, 2. Iy f(y)(rojpu)y 4, + rodpuvw
8& n oy o N

Expanding,
rdo¥ = LI ofn £(y) (rofpu) __2¢ __ dn )
oL td e roJo
-N, 3 Ofn £(y)(rodpu) 2& dn\+ ro! pw vu
an 4 J
uerovp

\.1\\
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Using Equation (B.16)

rdp¥ = -E, ,Q_(Of” £(y) FJ dn)
)3

N, _a__(ofn £(y) FJ__;_ dn) + re? pw ve
an

This equation can be re-written as:

r‘jp?} = gx |- RE (’2€ M f(y Fdr>

2F 9

+ 1ol pw vw 2 9] - 28 n_ IV F() FO (8.17)

X C
£, £,

Simplifying, the first two terms on the RES c¢f <xe above

equation are defined as:

v = -JEE-%E(Eng " f(y;\Fdn + rojggw y J28 5 (B.18)
/ X

Substituting (B.18) in Equation (B.17)

Joy =
rhev = -8 n, 0 fly) Fa-
,/zg‘ta YV Ny T )
rdp¥td = Ex v - 28 n, ofn f(y) =ar
2E

is given by:

=1 | Sxve 2o s F (B.19)
riptd | 2¢
94
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solving for the dependent variable V,

vV = ;%g trlpstd + 220 £(y) B
X

substituting for € and re-arranging,

vV = 2E £(y) Fn, + rjthV
pe ue pe ro2J 2E

which is the same as Equation (B.16).

To obtain the continuity equation, differentiate equation

(B.17) w.r.t. n, as follows:
Vn = - 26 3_ { 26 f(y) F} + 0
13
Simplifying
Vn = -2¢ £y =g - £(y) F

Rearranging the above equatiocn as

Vn + f£{y)F + 2 £(y) Fg =0 (B.20)

The continuity equation in Lev; -Lees variable including the

blockage effect is obtained.

Momentum Equetion

Rewriting the momentum equation (B.7) as:
f£(y)pu du + p¥ 3u = -f(y)dp + i_ 1 _ 3 |B(y)r?
09X y dx rj B(y) 3y
(pau - putv';| -1 ou? Op Dy

B(y) %
95
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Equation (B.21) is divided into small terms I, II, III, and ‘

- IV for convenience. Hach term will be tackled individually.
T,

Considering term I, |

I=1(y) pu du + po% 3

du du '
3){ 3y ;
r 5
‘ = f(y) pue F £ 3 + n. a + 0 '
* 3 X3 i <3
root
A !
= fx v - 2 Ny T(YF n, £(y) 3 ue F !
2F o |

2 2
f(y) pue FE_ Fg + £(y) pue Fn, Fn

; + £(y) pue inx ueg + 0 tduerod
] n 0
rontJ RE
E v
X' ue Fn - 2, f(y) ue F Fn

RE

5
I=1+7(y) pue® F EX Fg + f(y) puez/an F

+ £(y) pueF2€X ue, + uezg ExV Fn - f(y)nX oue/FFq
2E 2E

- 2 2
I = f(y) pue® F £y Fg + £(y) pue g, F ue,
2
4 Pue e v p (3.22)

n
<E

Considering term II,

=~
—
1
|
Hy
—
<
~
jeNieT
s

From inviecid flow

Q
oy
ml

A

B‘




Substituting in II above,

IT =

+£(y) pe ue ue = f(y) pe ue £, ue,

II = f£(y) pe ue £y ueg

Considering term III now,

I1T =

But;

B

11 ([ B(y) rd [ du - pu' jj)
. rj (l y U o u'v

el = -p uiv'
au7ay

Where T is the intermittency factor.

I1I

IIT

.
BZy}

3 —
<
<

Ny [B(y) rd (b + er) i&]

j Y T ey
1_3_ ny [B(y) rY (u + er) uel J] n
r

tJuerod 3(v) rd (p 4 el)
RE

. .
uetvverc oF
n

oo
-
&<

ool—
4
iJFJ

2E

ueBrosz {t2j (u + €l') o Fq}.1

RE

’
B(y)
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Finally, considering term IV,

2
IV = -% CD D(x}z oV
B(y)s
= -1 C D(y) »o ue2 e
D 5 g
B(y)#
IV=1x1C. D o ue? F2
5 D 5
B(y)& (B.25) '

Substitute Equation (B.22) to (B.25) in Equation (B.21)

5 2
f(y) pue F £ Fg + £(y) opue £, F2 uey 4 PveTE v Fn
RE

= £f(y) pe ue £_ ue, + ue3r02j {B(y) %
% & B{y) 2&

\ R R
-1 CD D(v) pue” F (B.26)

2] (v + eI‘)an}n

2 B(y)22
Simplifying:
2
ue” oF £ {2t £(y)F, + £(y) 2& F ue,}
2E X & ue £
2, .
3 QU8 Sy YR = 2]

= f(y) pe ue & ue_ + ue ro
2E n X 5 B3y5 RE

(%9 (u + em) PR} - 1 Cp D(y) oue F?
B(y)a”
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Dividing the above equation by Ex

2 P
Py
(518
2 f(y) F Fp ot £(y) 2¢ F? uey + VF_
= f(y) pc 2t ue, + uero~s {B(y) £23 (u + er)oF )
p ue B(y5§x nn
~ 2
"3 % B, =5 o
B(y)4 ’
Substituting B, as defined earlier by eqn (35):
26 £(y) F Py + £(y) BF® + VF = £(y)es
+ _uero®dp (12 B(y)(u + €T)pF. )
2‘.] nn
Q B(y)peueperc

Yo
N

- Cn D(y) 2
D S >3
B(y)e peuepero”d

Simplifying further,
2 £(y) F Fp + £(y)B(F° - 8) + VF, =

: [B(y)tzj(u fer) p 1 Fn] - o, Diy) £5?
Bly pe ue n B(y)l2 peueueron
=1 {B(ytY(1 +ene P} - oy D(y) £F?
Bly) u L D 2 2]
B(y)2“ peuepero”?

o

“»
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= 1 BT e - o by gF° X
. BTy) B(y)z2 peueueron j
5y :
"
Hence, the momentum ejuations become: ok
2e £(y)FF, + F(y)B(F? - 8) + VF_ = 1 (B(y)t*JEir ) -:7
n ) Y nn .
_ Cp D(y) S Af;
23 '
B(y)% peuzpero”?d :
The source-sink term is defined as follows:
bss = CD D(y) £
B(y) lz ronpeueue (3.28)
To obtain the final form of meari-momentum equa®ion incluiling
the effect of surface roughness, in the Levy-Lees vari=ztles,
ll) substitute (B.28) in the momentum eqn above,
- 2 2j= .-
2 F + f - + vV =1 B I
£ f(y) Fr (y)8(F 6) F, ﬁTVT{ (y)t<9%€ 2 n}“
-9ssF” (3.29)
Energy Eguation:
Rewriting the Fnergy equation (B9) as:
f(y)ou 3T + p¥ 3T = f(y) u_dp + 1 3
X Yy Cp dx BIy’rJCpay
B(y)rd K& 3 (CpT)| + L 3
CP ay B(y)rJCpay
B(y)rd (-CppvTTT)} - o™ oy + 1 pu’Cp (y) (3.30)
Cp sy 2B(y) (2 '
s T
ey
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Eqn (B.20) is divided into small terms I, II, III, and IV

A A Bl AR A o L

for convenience. Fach term will be considered individvally,

i - First, considering term I,

! I = fly)pu 3T + p¥ 3T |
\ ox oy |
: |
' = f(y)pueF 3 (Teb) + D 5 v - J2£ U £(y)F| 2 (Teb) |
; oX orod t RE oy |

=t(y)oueFle. 5 + n. 5 |Teo + 20y 5V L 2en f(y)F 8
X 5F X 5= o» A X n
rodtd J2€

Te
= f(y)pungx Te 6E + £(y)pue ng 8 Te. + ‘VTX X Ve

+ f(y)pueFTcnxen - Teny 2% ?x £(y) Fe,

- — e — - ——— ¥ — FO—_ " T
H

. s
But ny = rthJgue £ = ro“dpeueue

N3 '

Term I becomes:

I = f(y)pueFTe&xeg + f(y)QUegx e Teg + Te rojtjpue .V?ngx
Jza ro? tI\RE
t f(y)puen_TeF6_- Tei25nx rojtjpue f(y) Fe
X n T n
rodtd \’25
I =

f(y)pue F Te £, B * f(y)pue £, o Teg

+ pue Teg Vo, (B.31)
RE

kX
»
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II = £(y) u dp + 1 3 (B(y)rd K& 5 (CpT)}+ u_ [ 2u¥
Cp ax B(y7rITray Cp 3y P W)
But: ~dp=§&_ p_ u, u, and KL = p_
ax x Ve "e “eg S br
Hdence, term II becomes:
IT = -f(y) U (g p_ov_u_ )+ 1 n, 9
_—Cp X e e eg ——_J_ Y -é'-y"
B(y)riCp
() el ~ + 7 2
{B(y)1 }1;—5 p T ny 6.} (}CJ:_D' ue»nny) (B.32)
ITI = 1 ;9 {B(y)rj(-Cp oviT')} - pulv' 3
B(y)riCo 3y Cp 2y
But: -Cp pv'T' = tKp 2T
_ dy -pu'v' = ¢ 352
A ¢V
ﬁ III = Dy 3 (B(y)rd(xp 37)) + g (_a_p_)2
3
R
:j = n 5 {B(y) r K, T_n_6) + e (u )2
bi ——YT-— = T “e y n & ety
E B(y)ricp ’ (B.33)
' S
§§
2 = __ 1 pud Sp D). 4 Cp DIy) oMt g3 (B.34)
i 2B(y) Cp 12 2B(y) Q2 Cp
|
1
fz*
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\
) Substitute (B.31) to (B.34) in (B.30) g
b :
) flyou, F T, €, 6, + flylou, & Fo Teg topu, T E VO p
2t ‘
A
1 = -f{y) uF (g P Ug Uy ) + ’ n 9 . N
B —— X £ —_—y -é—{B(y)er__CpTen en} :}
. P B(y)rdcp 4 Pr v N
) N
2 ( )2+ N (B(y)rd ) :
: .t p (u F on + . o (B(y)r? o T n_#® o
> Cp e n 'y m—yy_frJCp T T e 'y 'n N
:'
\ +e (u_ F_n 2+ 1 Sp D(y)w
H cp & MY 2By Tgp2
o
' Multiplying the above equn by 2&/¢T_u_ £,
‘ Q 8 + Ve
i 26 £(y) F 8, + 28 £(y) E_ 8T+ Ve =
. le S
. j n (2
5 - (y) 25F (ogugu )+ "y 3 By L Cp n,(2¢)
{ T £ j on r ou, %
3 pre? B(rion N jomm 22 e =
) *
+2eu Ye FT] N2 Ny 9 [B(")rJ Ky <€ 6 ]
~ v Cp e Te gy B(y)rdcp " Puy &y nJ,
'1 | . I -i ----- J an om s D s WP B A s A an En o e ab - - s ws aw e @ e
A A B
: 22 2 .3
\ ]
B\ po2e Yo TaNyT 4 1 Cp DUy) pp S F
Lp Ple 5)( 2B0yT CpSL"2 pTe Ex \
L T, 11T,
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- From invicid flow
N
N
;\l \ )
' To=Te+1ue Te=-f_g_ue
X 2 Cp 3 Cp ¢
3
» 2 4 2
i or 26 T, ="e 2cu_ =-_e B =-aB (B.36)
CpTe £ GpTe ug £ CpTe
w4
-3
B 26 £(y)F 6, + V6 =TI, + II, + Ip+ IIg+ III;  (B.37)
. 2y 2
_ j n, (2€) , K. R¢&n,
I, + Ip = _1 1__g_[*&z(y)r yr_ﬁ_g__4 il e]
B(y)rs °V e "x P PUgsy, M
a2 [Bed o+ B 2y
B(y)rJ an Pr Cp ouet:x n
But E{_T_ = _E€
p rt
rood 421 R
b = __1 3 [B(y)rJ (.E_ + & =§¢ ro’T 17T pu, o
o) j on Pr Prt J ; n
3 B(y)r R€ pu, ro”Y o m u,
N
i = _1 3 [tzJ B(y)r? (1 + E)Jr 1, ]
;§ AL e S
3
R
]
i = _1 3 {tIrd B(y) & 2 ] (B.38)
',:: B(y)rj on Pr "n
B
! 2
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g Where £ =1 +¢g Pr
,’j u Prt
.’;"I ‘:. | :
l::| 2 = pu !
o p_u y
'k'c e e ‘
4 4

' 2 2 2 2 y

- u F " n F “n
IIA + IIB =28y e n 'v + 2E&e u, 0 N !
Cp P T e E X C P P T e E X

AU U . S

4]
[
ct
™
e
ko]
N
n
48]

J
b
\i
\
\
N
Ni
[
a
\
.

C
X : -
N = tzJR a e F_°©
1 n
>
: i
) h =1t d o= 0
:.‘ wnere [ E_ an (o €
? u CpT,
% 2 .3
3 111, = 1 Op DWy) pp ou." F
\ 2B(y) 22 Cppo T, &
i
X Re-arranging
11T, = Cp D(y) u ? gF’
e v al v it
o B(y)s Ple ro~d Pe Uy Mg

ot - 7 D e D MR oL
.
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Using definition for o and ¢ss !
\
!
. ™ {
. _ 3 :
- Iy = by F (B.40) i
:
Substituting (B.38) to (B.40) in (B.37) we have: i
;
g |
26 £(y)Fe, + Vo = __t 3 (t29rdB(yie o 0 ) :
n 3T, Pr " :
B(y)rd ] :
. .25 -2 2
t7YL a e F + Q¢SS I :
)
oy
¢ f£(y)Fe, + Vo - _ 1 23 B(y)é 2 e] ‘
£ n 3 7 "IN

B(y)r i
|
0 St T PR e P = :

. n £8

106




Appendix C

»
AN
‘“‘L"’

Difference Relations

Three point central differencing relations for n and
three point or two point backward differencing relations
are used to reduce the transformed continuity, momentum
and energy equations to finite difference form. It is
assumed that all data are known at the solution station
i-2 and i-1 (Fig 3), and the unknown quan:ities need to
be determined at the grid points for "i" station. The
finite difference equations were derived with the stipu-
lation that a function could be described at sny point by
t. Taylor series expansion about another point. For the
present study the approximation was made that for any

functional value F,

N

F(i-1,3) = F(1,3) £ 1 AF(i,3) + ag” -1 azF(i.j) (C.1a)
T RE z .
£ and
X
N F(i+1,3) = F(1,3) - (8g,_5 + A&, _4)3F(1,j)
g ; of

)2 2 ‘
HAEL 4 4 88, 5)" 3%9(4,35) + .... (C.1D)
5
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The scaling factor for £ derivative are defined as follows:

5% :
o Y1 = 2(pg, , + 248, ) i
i-2 i-1 (.2) :
(B85 1 * BE5 o) :
{
Y
I
‘
Y2 = 2048, 4 * 285 ) (c.3) i
(AE, ) ;

(C.4)

RE, L(BE, 1 ¥ BE; o)

Y4 = (ag; 5 + a8, _4)

., (C.5)

Y5 = AE,
i-1 “
0 R, (C.56)

Using scaling factors defined in egn (C.2) to (C.6), Equation

(C.1a) and (C.1b) can be solved to yield

[QE-]i,j = 13 F(4-2,§) - ¥2 F(i=1,3) + Y1 F(.3) (g7

2BE,

¥y

and

F(i,j) = Y4 F(i-1,3) - ¥5 F(i-2,]) (c.8)
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Terms of the order AEi-‘l Agi-2 or smaller are neglected.

a%#) This procedure produces truncation errors of the order of
RN
ARio 8844
3F  3°F
For obtaining expression for e ——5’ etc, the Taylor
on

series expansions are next written about the unknown grid

point (i,j) in the n-direction as follows:

2
Jd n 5 nn
A 2
F(1,3-1) = F(i,5-1) - an; 4 Fn(d,3-1) + 2" 41 F (4,3-1)..
J- —5— "nn

(C.9V)
Equations (A8a) and (A8Db) can be solved to yield expres-

sion for an eni Fﬂ as follows:
i

F _(i,j) = Y& F(i,j+1) - 2Y7 FP(i,j) + ¥8 F(i,i-1) (C.10)
nn 2 A2 A2
Ay " N
and
F (1,j) = Y9 7(:,3+1) - Y10 F(i,3)- ¥8 F(i,ji-1)
n 2An;’ An, 2An3 (c.11)

where the coefficients Y6, Y7,....Y10 coefficients are defined

as follows:

J-1

PR
W
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Y7 = Ang/ang (C.13)
¥8 = 2/ 8031 -1
——=21 + =] (C.14)
an .. An .
] i
Y9 = 2/ An.
[1+ ) (6.15)
Ns_q
J
_ An .
0= (C.16)
on . 4
J
Finite-difference representations for 36, 829, 388, 3V are
N  4p% 9 2N
derived simultaneously.

All of these are substituted in equations (30) to (32)
to obtain the corresponding finite-difference equation. Due
to their recurring appearance, the following symbols and

their definitions are introduced:

FM1 = Y, F(i-1,3) - Y5 F(i-2,j)
TM1 = Y4 T(i-1,3) - Y5 T(i-2,j)
and (C.17)
FM2 = Y2 F(i-1,j) - Y3 F(i-2,j)
TM2 = Y2 T(i-1,3j) - Y3 T(i-2,3)
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?% ) Non-linear terms of the form, (G‘%%), where G and H represent
o any typical dependent variable, appearing in the governing
!! equations need to be linearized in order to obtain a system
E% of linear difference equations. Quantities of this type

ﬁi are linearized by using equation (C.7) and (C.8), i.e.,

(¢ &

£y, = (YA G(i-1,3) - ¥5(1-2,3)3{¥3 H(i-2,))
-Y2 H(i-1,3) + Y4 H(d,§)} /208, 4 + Clagg 4 aE, ) (C.18)

For example,

(F %g). .= TMI{Y2 TUi - T3 FM2) (C.19)

The procedure used to linearize these r:n-linearized roduct
P p

Tt 'vj.
Uil

P
g0, 4, 4
. 2

-

terms such as ,9Gy,8H, is as followse:
(25 (&)

B~
B ((28)(2Hyy = (ay (2E. - 2T (28
= MUy T,y T i, Nl
Xy
"
o + (3E 3G
3 Miiar,: Ny
where the terms (gg) and (gg) are discretized
N5, ni-1,;

A=,

according to eqn (C.11) but evaluated a- proceeding station

ii 111




(1-1). The linearizsaiion for quantities of the form (gg)z

on
is obtained by setting H to G in eqn (C.19).
For example:
{aF(i,j)}‘z =2FY 9P(i,i), - FY° 5.21)
ou on
F? = 27(1,j) F(i-1,3) - F(i-1,j) 0.22)

where FY denotes , a known quantity whereas 3F(i,])

an

and F(i,j) are unlincun,
A1l terms hsd T2en represented in finite difference
form, and the finel s*tep incorporated these linearized models

into equations (37), (31), and (322) to derive the overall

system of finite iiffsrence equations (Ref 19:67-71).
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o Appendix D

Coefficient in Difference Equation

Equation (53) to (55) are the difference equations used
to represent the partial differential equation for the con-
servation of momentum and energy and continuity respectively.
These equations are repeated here for convenience.

Momentum:

L SR REAIGS  AAALNGL

i

>
55 A1(n,1) Fn-1 + A1(n,2) Fn + A1(n,3) Fn+1
* + B1(n,1) ¢n-1 + B1(n,2) 6n + B1(n,3) 8n+1
E + €1(n,1) Vn-1 + C1(n,2) Vn + C1(n,3) Vn+1 = D1{(n) 'T.1)
28
2
o Energx:
I
\
ﬁ A2(n,1) Fn-1 + A2(n,2) Fn + A2(n, ) Fn+1

+ B2(n,1) 6n-1 + 32(n,”?" 6n + B2(n,3) 6n+1
+ €2(n,1) Vn-1 + c2(n,2, 'n + Cc2(n,3) Vn+1

1

D2{n) 'TL.z)

ety V.

Continuity:

.{‘

A3(n,*) Fn-1 + A3(n,2) Fu + A3(n,3) Fn+1

AL

+ B3(n,1) 6n-1 + B3(n,2) 6n + B3(n,3) 6n+1

-

+ €3(n,1) Vn-1 + C3(n,2) Vn + C3(n,3) Vn+1

tl

D3(n) [1L.3)
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;;;

il These equations are obtained fro- equszticans (48), (49), and

""n B

",‘f o (50) and the difference quotients presented in Appendix 'C'.
The coefficients A1(n,1), B1(n,1) and so forth in equations

:::"; (D.1), (D.2), and (D.3) are functions of xrown quantities

~..“

f_.\‘,'g: evaluated at station i-1, and i-2,

u The coefficients are as follows:

o AT(N,1)=Y8*XL*(2, *XLMI#EM1/DY- (T LM #ZY M- +E M1 #XLPM1¥ TY + (D.2)

O BYPP*EM1*XLM1 BYM1 - VM1 .

el : XL (XT’T’“Y T+BYPP ™

et EM1*XLM1/BYM1+EM1*XLPM1*T1 ""1“V1o -2, ""‘FM1*(XFY(N)* (D.5)

*SEP+SEP* (2, “Y?‘FL.-F[Z)“IF_ X )

X L FXLM] *EM] ¥Y /DY+( T i~ TR LPMT ¥ TY 4 (D.6)
gen BYPP*EM1*XLM1/BYM1 -VM1)#YQ) .
Vi BT(N,1)=-XL*EM1*XLPM1*FY*Y6 (D.7)
t; 'E_‘ljé_LN 22_—'DX2*XBE*XFY(N) 2. FLLYE L P LP 1% {10 (D.8)

" " BI(N,3)=XI *EMI *XLPM1*FY*Y9 (D.9)

“C1(N,1)=01(N,3)=0. (D.10)
s C1(N,2)=DXR¥FY (D.11)
03 AZ(N, 1)—-2.*XL*XAL*XLM1*EM1*FY* "2 (D.12)
7?3 A2(N,2)== (4, FXLFXALFXLMAFE A F 1 Y1CFioo o TIRTRI-TH2)® (43
3 ~ XFY(N)-3,#DXRH*XAL*XSS(N) o #s2, #8xz ] e
\) A2(W,3)=2. AL XAL*XLM1 ¥ EM1 Fo: t‘ (D.14)
@® B2 (N, 1)=XL¥YB% (2, FXLMITRTN: [ (Fa o2i- i T YNIi2.7 (D.15)
ey - XLPM1*ETM1 #TY 4 BYPP¥XLM1 *E~ M1 /37 “.-PE“VU" 2R) L
X BR2(N,2)= (4, "KLFXLI FETHI Ay 7/ (PR 2] Lo "Z YMI+2,*
el U XTPM1#ETM] *TY+BYPP#XLM1#E™M1 /3w 01T 57 s “XL¥Y10%2,0/ (D.16)
ne PR+SEP*X*Y1#XFY (N) *FM1)
SN B2 (W, 3)=XL¥(2, "XLMI *ETM1¥Y&/ DY+ LLI] Zosn =2, FLLPHI® (0.17)
l‘ *ETM1*TY+BYPP*XLM1%ETw1/BY /1P VM1 )73 /== .
% "CA(N,2)=-DX2*TY (D.1%)
¢J TC2(N,1)=C2(N,3)=0. (D.19)
N A3(N,1)=A3(T,3)=0, (n,20)
::“:J A3(N,2)=(DX2+X*Y1) *XFY (W) (n.21)
hAy _EB._(N!’I):BB(NLQ):BB(—EL-‘j O (D-22)
!! C3(N,1)=-XL*Y8 (D.23)
03D C3(N,2)=-2.%XL¥Y10 (D.24)
X 'E?&ﬂs%éxn*y9 (D.25)
DT(N)=DX2 FVF (EM] FXLPM1 F T T J oz 17 2 ® == " XFY (47 0%2 (D.26)
. XY 4DZX2*YSS(N) ) *SEP Py
“D2(K)=DX2¥(XLPMI¥ETM1*TY/oF - vr1; FTY4TX27 L P XLHTRELT
FY##2_X*XFY (N)*Y1#TM1#FM1 #*XFY (1 ) ®*STT+D0 2+ TAL*2 . XSS(N)* (D.27)
FM‘] "G%&B*SEP
D3 (M) =X FM2*LFY(N) (D.28)
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The additional quantities appearing in equations (D.4) to

(D.28) are defined as follows:

FM1 = Y4 F(i=1,§) - Y5 F(i-2,3) (D.29)
TM1 = Y4 T(i-1,3j) - Y5 T(i-2.j) (D.30)
VM1 = Y4 T(i-1,j) - ¥5 V(i-2,j) (D.31) |
FM2 = Y2 F(i-1,j) - Y3 F(i-2,]) (D.32) |
TM2 = Y2 T(i-1,j) - Y3 T(i-2.j) (D.33)
XLMT = (DU)/(DU)e which may be written as
1+(--
XLM1 = TM1 e i (air only) (D.34)
(~-0
™1 + CT_7.
1 (%—) - T
YLPH1 = 2p = XLM e
S (§_) P (D.35)
Tel
EM1 = £(i,j) = e(d,4-1) + ?(iéi: + (i, j+1)  (D.36)
ETM1 = € (i,)) (p.37)
BYM1 = B(y)(i,j) (egqn 29) (D.38)

FY = _V9 F(i-1,j+1) - g_g F(i-1,3j) - Y8 F(i-1,j-1) (D.39)
2An 2

I>
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bl TY = ¥9 T(i-1,3+1) - Y10 F(i-1,3) - ¥8 F(i-1,j-1) (D.40)
>, 24n An An
. .‘:‘.'\.
N O
X EYM1 = Y9 e(i-1,3+1) - Y10 €(i-1,j) - ¥8 €(i-1,j-1) (D.41)
:ﬁ An An ' 24N
¥
3
ETYM1 = Y9 e(i-1,3+1) - Y10 €(i-1,j) - ¥8 €(i-1,j-1) (D.42)
= 2An An 2An
<
I;ll
AL
BYPP = Y9 BY(i-1,j+1)-Y10 BY(i-1,3)-¥8 BY(i-1,3j-1) (D.43)
- 24N An 2An
.:.‘
"y
%4 . . du
\.; XBE = B8(1,j) = (4_5_ e) (D.44)
. at
e 1
N
" . u 2
N YAL = af(i,j) = (=) (D.45)
- T 7,
0 o
l ‘
¥ XL = AL
?! 2% (D.46)
XFY = £(y)(i,j) (eqn 21) (D.47)
2
ca _ A
! XSS = st(i,j) (eqn 37) (D.48)
¢
3
1 Equations (D.1), (°.2), and (D.3) are solved sinul<ancously
]
- by Gaussian elimination technique.
N
<
N
.
b
_—
N
N 115
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PROGRAM ITRACY (INPUT,OUTPUT, TAPEI=INPUT, TAPEL=OUTPUT)

Y % LR ] A e

ERREREEE R KRN RRRRR RS KRR RRERR RN RRRNRRARERRAERY
THIS PROGRAM SOLVES COMPRESSIBLE TURBULENT BOUNDARY-LAYER
INCLUDING THE EFFECT OF SURFACE ROUGHNESS.THE SHAPE,HEIGHT
AND DENCITY OF THE ROUGHNESS ELEMENTS 18 SPECIFIED TO THE
CODE IN SUBROUTINE RUFVAR.
EEEEEKERRKKRNKRERARRRRK KKK ERKK AR RN KRR KRN KK KRR KRR RKKKK
COMMON G, PR, REY, XMINF, OMEGA, BO, TW, P10, T10, R10, VvIS10, TE.
i PE.RE,UE,VISINF,SU, E®S, DS, DYW, SI, ERROR, TC, TA, IEDGE, IEND1, INTACT,
2 PRT, XXK,BTRX, XLAM, VARPRT, XINTER, SEPO, ICHS (8) , IPRN(9) , EQ(300) ,
T EN(300) , EP (300) ,ETO(300) , ETN(300) , ETP (300) , FO (300) ,FN(300) , J2DA,
4 FP(300), TN(300),TO(300), XNN(300) , UN(300),V0(300), VP (300}, TP(300) .
S D1 (300),D2(300), D3 (300)
DIMENSION Y (300),A1(300,3),A2(300,3),A3(300,3),B1 (300,3),
1 B2(300,3),B3(300,3).C1(300,3),52(300,3).C3(300,3)
COMMON/CPDATA/ CF(28),XP(28),DP (24) , IPRES
COMMON/BLRVAR/BYD (300) , BYN(300) , BYP (300}, XFY (300) , XSS (300) .
1 XBRE. XHRE, XL S, XCD
1100 FORMAT (1HO, 12X, 3HS/L, 15X, 2HCF, 15X, &HF /PINF)
1101 FORMAT (1X,3{4%,E15.9))
2008 FORMAT (1X, 8PROFILE FAILED TO RELAX AT M = %,15)
8002 FORMAT (SE10,4)
8003 FORMAT (1015)
9002 FORMAT (1H1,47XXINTERACTING BOUNDARY LAYER SOLUTIONKX)
9003 FORMAT (7HOGAMMA=F&.3,4H PRsFé,3,5H MFS=F&.3,7H REYFS=E10.4.8H TFS
1(K)®F7.1,11H BO=TW/T10wFé,4,5H EPS=FE. %)
9004 FORMAT (SHOP10=,E10,4,7H RHL10=,E10.4,%H T10v,E10,4.7H VIS10=,E10.4
1,4H SI=, E10.4)
9005 FORMAT (7HOOMEGA=,F7.4,2X, 4HPRT = ,F7.4,2X, 7HBTRX = ,F7,4)
9019 FORMAT (10X, XWITH INTERMITTENCY CORRECTIONX)
9020 FORMAT (10X, SWITHOUT INTERMITTENCY CORRECTIONK)
9021 FORMAT (10X, 8TWO~DIMENSIONAL BOUNDARY LAYERX)
9022 FORMAT (10X, $AXISYMETRICAL BOUNDARY LAYERK)
9023 FORMAT (10X, /%-—~- SOLUTION NEEDS MORE POINTS FOR CONVERGENC--~k/)

~
-
~

D000 0O0n

INPUT INITIAL CONDITIUNS

o000

e READ (5,0002) G, PR, XMINF, REY. TA

” READ(5,8002) DS, SI, OMEGA, ERROR., XXK

- READ (5, 8002) BO,BTRX, PRT, XINTER, DYW

READ (%,B8003) IEDGE, INTACT, IDIFF, IEND1, MSP, J2DA . IPREE
- READ (5,8003) (ICHS(I), I = {, 8)
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20

104

102
c
c
C
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ii-l.l l‘i‘l PAT VPR PV PEPR LW PPN PV VYV W PR VEFL VR PT VL VR e PR VR WA PP

READ(5,8003) (IPRN(I), I = 1, 9)
XLAM=, SEBTRX

IF (IPRES.EQ.0) GO TO 20
READ (%, 8002) DPMAX

READ (%, 8002) (CP(1J),1J=1, IPRES)
READ (%, 8002) (XP(1J), 1J=1, IPRES)
WRITE (&,1100)

XMEGi=XMINF K XMINF

DO 10 1J=1, IPRES

PDPINF=1,0+0. SXGKXMSQXCP (1J)
WRITE(6,1101) XP(IJ),CP(IJ) . PDPINF
CP (1J)=PDPINF

CALL SMTHPR (BTRX, DPMAX, G, XMSQ)

COMPUTE NONDIMENSIONALIZING QUANTITIES

1= 1. + (G - 1.)/2.kXMINF&¥2

P10 = (1./(GKXMINFXX2))X(Z1x&({G/(6-1.)))
TIO = (1,/7((6 - 1.)¥XMINF&%2)) %7}

R10 = G¥P10/(T10%(G - 1.))

TINF = T10/24

TW = BOXT10

IF (OMEGA .EG. 0.) GO TO 10%

Y1510 = T10%xOMEGA

EP5S = (((G = 1.)KXMINF&¥2) XX (OMEGA/Z.)) /S50RT (REY)
V{SINF = TINFXXOMEGA

GO TO 102

Cx=198. &6/ ((G-1.) ¥XMINFXX2XTA)

VIE10 = (T10X41.5)% (1, + TC)/(T10+TC)

EPS = ((((1,+(198.46/TRAIIK(((G = 1.)RXMINFRKZ) k) T)) /7 ((8G*~ 1,)%X

IMINFREZ)+(198.4/TA))) /REY) %X, S
VISINF = (TINFx¥i.5) k(1. + TC)/(TINF+TC)
SU=198.¢&

OQUTPUT INITIAL CONDITIONS

WRITE (&, 9002)

WRITE(6.9003) G, PR, XMINF, REY. TA, BO, EFS
WRITE (6, 9004) P10, R10, T10, VIS10, SI
WRITE (&6, 9005) OMEGA,PRT, BTRX
IF(XINTER.EG.1.) WRITE(&£,9019)
IF(XINTER.ER,0.) WRITE(4,9020)

IF(J2DA.EQ.0) WRITE(6.9021)

IF(J2DA.NE.O) WRITE (6,9022)

INPUT INITIAL PROFILE

MSTART=2

INITIALIZE THE STREAMWISE LOCATION
g=SI

D82mDS1=DS

DX2DS~DX1D8=DXDS=0,
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o0

aonon

o N wle]

201

700

701

SEPO=1,

INITIALIZE THE STREAMWISE LUJCATION

Y(1):0,0

DO 201 LL=2,300

DY=XXK&&(LL-2)%DYW

Y(LL) =Y (LL=-1) +DY

DD 700 LL = §, 300

D1 (LL)=D2 (LL)=DI(L'.) =XNN(LL) =0,

VP (LL) sUN(LL) =VO(LL) ==Y (LL)

FP(LL)»FO(LL) =FN(LL)=TP (LL)=TN(LL) =TO(LL) =EF (LL)=EQ(LL)=EN(LL) =
1 ETP(LL)=ETO(LL)=ETN(LL) =BYP(LL)=BVO(LL)=BYN(LL)=1.0
CTONTINUE

00 701 J = 1, 300

DO 701 I = 1, 2

A1 (3, 1)=A2(J, 1) =AZ(J, 1) =Bl (J, 1) =B2(J, I)=B3(J, 1)=C1(J, 1)
1 =C2(J, I)=C3(J,1'=0,

PREFaGXXMINF %2

TREF = (G - 1.)SXMINFXxX2

INITIALIZE COUNTERS

ICOUN=MSTART

IQ=1EDGE

Ih=]

Ti=]

INLCH=Q

ITCNTY! = |

IIN=0

OLUTION KRX

¥x¥  BEGIN FIRST-ORDER TRIDIAGONAL MATRIX

w

DO 115 M=MSTART, IENDI
IF(M.EQ.MSTART) MP=MSTART
IF(M.EQ. IEND1) MP=M

IF (M.EQ. (M/MSP) ¥MSP) MF=M
§=8+DS82

DX2DS = DX1DS

DX1DS = DXDS

COMPUTE LOCAL PRESSURE AND FRESSURE GRADIENT
CALL PRESSM(S.XMINF,G,PEG1,[PBG1, TETNF, XME)
COMPUTE LOCAL EDGE PROPERTIES

PE = PBG1/PREF

PP = DPBG1/PREF

TE = TETNF/TREF

UE = SERT(2.x(T10 - TE))
RE=GXPE/ ((G~1.0) XTE)
TR=SU/ (TETNFXTA)

IF (OMEGA) 442,476,642

;." B o e




P

raEdes

T % 2 s 5 5 EEEmY vV VT

WA B ok WS 7 J 3 XK ¥V J 7

v ‘l’ 'I

inl

642 XNUE=TEX¥0OMEGA

476
6886

c
c
C

0

onNno

ann

4998

| p M

oOonNnoOnNo

[

6070688
NNUE=TEX®1.5%(1.+198.4/ (TAXTREF)) / (TE+198. 6/ (TAXTREF))
CONTINUE

COMPUTE LOCAL XI AND STEP LENGTHS

DXDS=REXUE& XNUE

IF (J2DA,NE. Q) DXDE=DXDEXEX%2
IF (M.EQ.2) DX1D8=DX2DE8=DXDE
DX2=.33D82% ((1,+DS2/D81) *DX1DS+DS1%DXDE/ (DS1+DS2) ~-DS2¥DS2%DX2DS/
1 (DS13¥(DS1+DE2)))
REYNDE=RE UE XS/ XNUE
REYEXT=RIYXVISINFEXREYNDE

IF (M.EG. 2) DX1=DX2

IF(M.EQ.2) X=DXDSXSI

X=X+DX2

COMPUTE STEF LENGTH FUNCTIONS

Yi=2, ¥(DX1+2, ¥DX2) / (DX1+DX2)
IF(IDIFF .EQ@. 1) Y1 = 2,
Y2=((DX1+DX2) /DX1) ¥2.0

Y3= (DX2%DX2/ (DX1% (DX1+DX2))) %2, 0
Y4=(DX{+DX2) /DX1

YS=DX2/DX1

TWTE = TW/TE

COMPUTE ALPHA, BETA, AND LAMEDA

DUEDX=-PP/{REXUCXDXDS)

XAL=UEXUE/TE

XBE=Z.0xX*DUEDX/UE

ASSIGN ROUGHNESS VKRRIABLES TO ELMATX

CALL RUFVAR (X, XNUE)

LENGTH=1EDGE

ASSIGN THE MATRIX ELEMENTS FOR THE FINITE DIFFERENCE EQUATIONS
CALL ELMATX( M,DX2,X,XAL,XBE,TR,IDIFF,Y1,Y2,Y3,Y4,Y5, TWTE, ITCNTI,
1 Al,A2Z,A3,BY,B2,B3,CL,C2,C0)

ASSIGN THE MATRIX ELEMENTS FOR THE FINITE DIFFERENCE EQUATIONS
MATRIX INVERSION, S8OLVE FOR F, THETEA AND V

CALL MATEGN3(FP,TP,VP,D1,D2,D3,A1,B1,C1,A2, B2,C2,A3, BY, C3, 3, LENGTH
1 ,300)

MATRIX INVERSICN, SOLVE FOR F, THETEAR AND V
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ITCNT1=ITCNTi+14
N=IEDGE+1
DY=DYWSXXK3 & (IEDGE-2)

VK= (VP (IEDGE) / (XXK& (1, +1, /XXK))=VP (IEDGE~1) & (1.~1. /XXK) §XXK-

1 YP(IEDGE~2) #XXK/ (1.+1./XXK)) /DY

DY=DYW XXK&¥ (IEDGE-1)

KON=N+3

DO4LSI@=N, KON
DY=DYWEXXKE ¥ (N-1)+DY

FP(IM =TP(IQ)=1,0

VP (IQ)=VP(IEDGE~1) +vKEDY
INITIATION OF SIMILAK SCLUTIONS
IF(M.EQ.2) GO TO 8020

GO TO 8018

D 8019 I=1,KON
VO(I)=VYN(I)=VP(I)

FOCI) =FN(I)=sFP(I)

TO(I) =TN(I)=TP(I)

INITIATION OF SIMILAR SAOLUTIONS
IQ=IENGE+1

U AND THETA PROFILES ITERATIONS
TAUZ=(FP(2)-FP (1)) /DYW
IF(ITCNTLLEQ.2) TAUL=10. %TAU2
RT12=TAUL1/TAU2-1.

TAUL=TAU2

IFCITCNTI JLE, 100) GO TO 70035
WRITE(6.2008) M

CALL EXIT

IF(ABS(RT12) .GT,.ERROR) GO TD 4Q9%

U AND THETA PROFILES ITERATIONS

COMPUTE BLT, BDT(DELTA STAR) AND BMT (THETA;

CO=TP (1)

TP1=0.

BLT=BLDT=BLMTx0,

XNN (1) =0,

DO 57 N=2,KON
CY=DYWKXXKKE (N~2)

CxTP (N)

TPI=TPI+. SKDYK(CO+C)

CO=C

XNN (N) = TP §SQRT (2, ¥X) / (REXUE)
IF (J2DA.NE.O) XNN(N) =XNN(N) /S

BLDT=BLDT+(2,~-FFP(N) /TP(N)-FP(N-1) /TP (N-1)) ¥ (XNN(N)-XNN(N-1))/2,
BLMT=BLMT+ (FP(N) 2 (1,-FP(N)) /TP (N)+FP (N=1) ¥ (1. -FP(N-1)) /TP (N-1))

1 X (XNN(N)-XNN(N-1))/2.
IF(BLT.G7.0.) GO TU 57

IF(FP(N).GE.0.99) BLT=XNN(N)=(FP(N)=.99) % (XNN(N)-XNN(N-1))

1 /7(FP(N)-FP(N-1))
CONTINUE
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BLT=BLTXEPE

BLDT=BLDTIEPSE

BLMT=BLMTSEPS

COMPUTE BLT, BDT(DELTA STAR) AND BMT (THETA)

COMPUTE THE EDDY VISCOSITY CUEFFICIENT
IF(8.LE,BTRX) GO TO S8

CAL REYSTR (KON, TR, X, TREF, XNUE, XBE, 8, ITCNT1)
CCAPUTE THE EDDY VISCOSITY COEFFICIENT

ITONTi=1
ASSESMENT OF GRID PONITS IN ETA

IF(INDCH) 735, 71, 732

CONTINUE

IFM - 20) 732, 732, 72
IF(ABS(FP(IEDBE~15)-FP(IEDGE~16))~0.0001) 73,73.,74
IF(ABS(TF (IEDGE-1S) - TP(IEDGE-14)) - .0Q001) 732, 732, 74
S e b et Rt it i iR ettt et tsitssistsssl
FOR TURBULENT FLOW SOLUTION NEEDS TD BE MONITORED CLOSE
TO THE OUTER EDGE.WHILKE ADDING MORE POINTS THE MAXIMUM
VALUE OF IEDGE BE RESTRICTED TO MAX. DIMENSIONS MINUS 28,
KRRk AR RN KX K
IF(IEDGE.GT.275) GO TO 75

IEDGE=IEDGE+1

IQ=1G+1

WRITE (6,9023)

DY=DYWEXXK&k (IEDGE-2)

Y(IEDGE) = Y(IEDGE-1) + DV

I = IQ - 1§

ASSESMENT OF GRID PONITE IN ETA

COMPUTE WALL STRESS AND HEAT TRANSFER AND OUTPUT STATION
CALL CFSTNO (TR, XNUE,X,S,XBE,M,BLDT,BLMT,BLT,PBGL,DPBGI,REYEXT.
1 XME,MP)

COMPUTE WALL STRESS AND HEAT TRANSFER AND OUTPUT STATION

SHIFT PROFILES BACK ONE XI STATION

NN = I0 + 5
DD 118 N=1,NN
FN (N) =F0O (N)
FO(N) =FP (N)
TN (N) =T0 (N)
TO(N) =TP (N)
YN (N) =V0 (N)
VO (N} =VP (N)
ETNN) =ETO(N)
ETO(N) =ETP (N)
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EN(N) =ED (N)
EO(N) =EP (N)
3 BYN(N) =BYO(N)
RN BYO(N) =BYP (N)
118 CONTINUE
DX1wDX2
DS1=DE2
IF (M+1-ICHS(IG)) 114,113,114
113 D82=2.04DS1
16 = 16+1
INDCH = 1
IF (M.EQ. IEND1) GO TO 237
60 TO 111
114 DS2wDE!
INDCH = 0
IF (M.EQ. IEND1) GO TO 237
6O TO 111
237 1IN = |
111 CALL PRNCHS (ICOUN, IP, 1G, 16, MSTART, 1IN, M, S, Y, BLT, XME)
115 CONTINUE
gTOP
END
SUBROUTINE PRESSM (S, XM, G, P,DPDX, T, YM) \
COMMON/CPDATA/ CP(24) , XP(24) ,DP (24) , IPRES 3
100 FORMAT ( 5X, SWARNING....CALCULATION IS OUTSIDE OF THE PRESCRIBED PR y
1ESSURE DATA, § IS LESS THAN XP(1)¥) '
200 FORMAT ( 5X. $WARNING. .. .CALCULATION IS OUTSIDE OF THE FRESCRIEED FK ‘
Q 1ESSURE DATA, S IS GREATER THAN XP(END)X)
300 FORMAT (1X,5E15.9)
IR=0
IPM1=1PRES-1
IF (IPRES.EQ.0) 6O TO 40
DO 20 I=1,IPRES
IF(8.LT.XP(1)) WRITE(6,100)
IF (8.6T. XP(IPRES) ) WRITE(&,200)
IF (B.LE.XP(1)) IR=1
IF (IR.NE.0) GO TO 30
IF (B.GE.XP(IPM1)) IR=IPRES
IF (IR.NE.O) GO TO 30
IF ((8.GE.XP(I)) ,AND. (S,LT,XP(I+1))) IRel
IF (IR.EQ.0) GO TO 20
C  SEEKING THE BEST FIT
RE=(8-XP (1)) / (XP(I+1)=XP(I))
IF (RE.6T.0.5) IR=I+1
C  SEEKING THE BEST FIT
IF (IR.NE.O) GO TO 30
20  CONTINUE
30  IF(IR.GT.IPM1) [R=IPM1
IRP=1R+1
IRM=IR-1
IFCIR.EG. 1) IRM=IR+2
C  COMPUTE THE CUBIC SPLINE COEFFICENTS
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. X1m(XP (IRP)+XP (IRM) =2, 04XP (IR)) ¥ (XP (IRP)~XP (IRM))
N X2= (XP (IRM)~XP (IR) ) X (XP (IRM) =XP (IR) )
AT X3=(XP (IRP)~XP (IR) ) ¥ (XP (IRP) =XP (IR) )
o Xa=XP (IRM) -XP (IRP)
XS5=XP (IRM) =XP (IR)
X6mXP (IKP) =XP (IR) |
DETS=XSkX&¥X4 |
C2=(DP (IR) ¥X1+DP (IRP) £X2~DP (IRM) ¥X3) /DETS |
C3=(DP (IR} *X4~DP (IRP) XXS5+DP (1RM) kX&) /DETS
c COMPUTE THr. CUBIC SPLINE COEFFICENTS
DXP=§=-XP (IR)
DXP2sDXP¥ %2
DXPF=DXP/20.
DPDX1=DF (IR)
P=CP(IR)
DO 10 I=1,20
X=IXDXPF
X2mX KX
DPDX2=DP ( {R) +C2kX+C3%X2
P=P+0. 5% (DPDX1+DPDX2) KDXPF
10 DPDX1=DPDX2
DPDX=DP (IR) +C2¥DXP+C3¥DXP2
T=PkX ( (6-1.0) /G)
YM=SART (2, 0K ( (2. 0+(G=-1,0) ¥XMEXM) / (2. 0KT)=1,0) /(G=1.0)}
WRITE(6,300) S,P,DPDX,T,YM
3 60 TO 50
40 P=1.0
@ DPDX=0.
' T=PXR((G~1.0) /G)
YM=SQRT (2. 0% ( (2,04 (G=1, 0) KXMKXM) / (2, OKT)=1,0) / (G-1.0})
50  RETURN
END
SUBROUTINE SMTHPR (BTRX, DPMAX, G, XMSQ)
COMMON/CPDATA/ CP(24) ,XP(24) ,DP(24) , IPRES
100 FORMAT (1X, XFIRST CP DATA POINT YIELDS ADVERSE FRESSURE GRADIENT TO
10 STEEP FOR CALCULATION TO CONTINUEX)
200 FORMAT (1HO, 11X, 3HS/L, 15X, 2HCP, 11X, 6HP/PINF, 14X, 4HDFDX)
300 FORMAT (1X,4(4X,E15.9))
DPTOL~DPMAX 1, 01
c COMPUTE THE TRAILING EDGE DPDX
IPM1=IPRES~1
IPM2=IPRES~2
DX1=XP (IPM1)-XP (IPRES)
DX2=XP (IPM2) =XP (IPRES)
DX12«DX1%DX1
DX22=DX2%DX2
DP (IPRES) = (C (IPM2) ¥DX12-CP (IPM1) ¥DX22-CP (IPRES) X (DX12~DX22)) /
1 (DX1%DX2%(DX1-DX2))
C COMPUTE THE TRAIL'NG EDGE DPDX
10 IMAX=0
c COMPUTE THE LEADING EDGE DPDX
DX1=XP (2)-XP (1)
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DX2=XP (3) -XP (1)
DX12=DX1%DX1
DX22=DX2%DX2
DP (1) = (CP (3) XDX12-CP (2) §DX22-CP (1) % (DX12-DX22) ) / (DX1 XDX2% (DX1~-
1 DX2))
IF(DP(1),GT.DPMAX) WRITE (4, 100)
IF(DP(1).GT.DPMAX) CALL EXIT
» COMPUTE THE LEADING EDGE DPDX
DO 20 I=2, IPM1
IMi=l-1
IP1=l+]
DX1XP (IM1) =XP (1)
DX2=XP (IP1) =XP (1)

DX12=DXi2DX1{

DX22=DX2%DX2

DP(I)=(CP(IP1)XDX12~CP (IM]) XDX22-CP (1) x(DX12-DX22) )/ (DX1XDX2¥

1 (DX1-DX2))
20  IF((DP(I).GT.DPTOL).AND. (XP(I).LE.BTRX)) IMAX=]

IF (IMAX.EQ.0) GO TO S0

c SMOOTHING THE CP DATA IN THE LEADING EDGE REGION

IMMI=IHAX-1

IMPi=IMAX+]

DX1=XP (IMM1) =XP (IMAX)

DX2=XP (IMP1)-XP (IMAX)

DX12=DX1%DX1

DX22=DX2¥DX2

CP(IMM1)=(CP (IMP1) xDX12-CP(IMAX) ¥ (DX12-DX22)-DX1 ¥DX2¥% (DX1-DX2)

1 ¥DPMAX)/DX22

80 70 10
c SMOOTHING THE CP DATA IN THE LEADING EDGE REGION
S0 WRITE(4.200)

DO 30 I=1,1PRES

PC=2,0%(CP(I)-1.0)/ (GXXMSQ)
30 WRITE(6,300) XP(I1),PC,CP(1),DP(I)

RETURN

END

KXRKKEXKNKKKKXK KXKKKEKKXRREK KK KEXKEKKKRKAXKKKKK

THIS 8/R HAS BEEN MODIFIED TO INCLUDE THE
EFFECT OF SURFACE ROUGHNESS addaeaas@aee

onoDoOon0oon0on

FIKKRKERKRKKRKE  KXKKKKKXKAKELK 933233331232883

SUBROUTINE CFSTNO (TR, XNLE, X, S, XBE, M, BLDT, BLMT,BLT,PBG1, DPBG1,

1 REYEXT, XME, MP)

COMMON G, PR, REY, XMINF, OMEGA, BO, TW, P10, Ti0, R1G, VISi0, TE,

1 PE,RE,UE, VISINF, 8U, EPS, D.., DYW, 81, ERROR, TC, TA, 1ENGE, IEND1, INTACT,
2 PRT, XXK, BTRX, XLAM, VARPRT, X INTER, SEPO, 1CHS (8) , IPRN(9) , E0 (300)
3 EN(300),EP (300),ETO(300) ,ETN(300) , ETP (300}, FO(300) ,FN(300) , J2DA,
4 FP(300),TN(300), TO(300) , XNN (300) , UN(300) , VO (300) , VP (300) , TP (300)
% D3 (300),D2(300),D3(300)

COMMON/BLRVAR/BYD (300) , BYN(300) , BYF (300) , XFY (300) , XS5 (300) ,

..................................
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1 XBRE, XHRE, XLS, XCD

2000 FORMAT (1HO, 10X, SHS/L =,E1%,8)

2001 FORMAT(2¥,7HXME  =,E15.8,2X, 7HPE =, E15,8,2X, 7HDPPINF=,E15.8,
1 2Y,7HXBE. =, E15,8,2X,7HTW/TE =,E15.8)

2002 FORMAT(2(,7HBLT  =,E15.8,2X,7HBLMT =,E15.8,2X,7HBLDT =,E1S.8, Y
1 2X,7HEYMT =, E15,8,2X, 7HREYDT =,E1%.6) 3

2003 FORMAT (2X, 7HCFNO =,E15.8,2X, 7HCFEND =,E1%5.8,2X, 7HSTNO =,E15.8, :

1 2X,7HSTEND =,E15.8,2X, 7HREYEXT=,E15,8)

TAUR=0,

FPE1=0,

FP(1)=0.

CO=FP (1) §%2

DO 100 N=2, IEDGE

XYY=XNN (N) KEPS

IF (XYY=XHRE) 853,853, 854

DY=DYWEXXKXX (N-2)

C=FP (N) ¥%2

FPSIFPS8I+. S¥DYX (CO+C)

TAUR=FPSI %, SXXCDXXBREXUEXSERT (2. XX) /XLSKX2

CO=C

CONTINUE

TWTE=TP (1)

IF (OMEGA.EQ.0.) GO TO 855

IF (OMEGA .EQ. 1.) G0 TO 8551

XLM1 = 1./ (TWTEXx (1. - OMEGA))

GO TO 856

XLM1 = (', 0+TR) XSERT (TWTE) / (TWTE+TR)

GO TO 85&

XLM1 = 1,

CONT INUE

YILm (2, +XXE) & (1, +XXK#XXKEED) +1, #XXK) /( (1, +XXKI K (1, +XXK+XXKEKD))

Y12= (1, +XXK+XXKERD) /X XK KD

Yi3m (1, +XXK+XXKEK2) / (XXKEKZR (L, +XXK) )

Y14m1, / (XXKERZK (1. +XXK+XXKEXX2))

TAU=XLM1 XREXXNUEXUEKUE X (=YL 1KFP (1) +Y12KFP (2) =Y 13KFP (3) +Y14XFF (4))

1 /(DYWKEQRT (2, %X)) +TAUR

@S = XLMIKRESXNUEXUEXTEX (YL11KTF (1) =Y12kTP(2) +Y134TP (3) ~Y14XTF (4))

1 /(DYWKSGRT (2. XX) %PR)

IF (J2DA.NE.O) TAU=TAUKS

IF (J2DA.NE.O) @8S=Q@5xS

STND = 0. .

IF(BO .NE. 1.) STNO = EPSXQS/((1. - BO)X(TE + .SKUEXX2)) .

STEND = STNO/ (REXUE) .

CFNO = 2, SEPSXTAU ’

CFEND = CFNO/ (REXZEXUE) q

REYDT=REYEXT#BLDT/S .

REYMT=REYEXTXBLMT/S

SELECTION OF THE QUTPUT -

IF(M.NE.MP) GO TO 1000 2

SELECTION OF THE OUTPUT 4

oo G, IR
=i

v -3 VUSRS
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WRITE (4,2000) §

WRITE (&,2001) XME,PBG},DPBG1,XBE, TWTE

WRITE (&,2002) BLT,BLMT,BLDT,REYMT,REYDT

WRITE (6,2003) CFNO,CFENO, STNO, STENO, REYEXT

1000 RETURN

END

SUSROUTINE ELMATX( M,DX2,X, XAL, XBE, TR, IDIFF,Y1,Y2,Y3,Y4,YS, TWTE,
1 ITCNTH, A1,A2,A3,B1,B2,B3,C1,C2,C3)

COMMON G, PR, REY, XMINF, OMEGA, BO, TW, P10, T10, R10, VIS10, TE,
1 PE,RE,LE, VISINF, 8U, EPS, DS, DYW, SI, ERROR, TC, TA, IEDGE, IEND1, INTACT,
2 PRT, XXK, BTRX, XLAM, VARPRT, XINTER, SEPO, ICHS (8) , IPRN(9) , EG (300) ,
3 EN(300),EP(300),ETO(300) ,ETN(300), ETP(300) , FO(300) ,FN(300),J2DA,
4 FP(300), TN(300), TO(300) , XNN(300) , UN (300}, VO (300) , VP (300}, TP(300) ,
5 D1(300),D2(300),D3(300)
COMMON/BLRVAR/BYO (300) , BYN (300) , BYF (300) , XFY (300) , XS5 (300) ,

1 XBRE, XHRE, XL§, XCD

DIMENSION Al(300,3),A2(300,3),A3(300,3),B1(300,3),B2(300,3),

1 B3(300,3),C1(300,3),C2¢30C,3),C3(300,3)

THE INNER EDGE BOUNDARY CONDITION

DO 8011 I=1,3

8011 AL (1, D=A2(1, 1) =AZ(1, )aRI (1, 1)=B2(1, )=B3(1,)=Ci (1, )=C2(1, 1)
1 =C3(1, =0,

AL (1,1)=1.0

B2(1.1)=1.0

Di (1) =0,

D2(1)=TWTE

IF(SEFPO.EQ.O.) GO TO 8012
C3(1,1)s1,0

D3 (1) =0,

GO TO 8013

XL=DX2/ (2. OXDYW)

A3 (1, 1)=DX2+X8Y1
C3(1,1)m=2, XXLK(2. +XXK) / (1, +XXK)
C3(1,2)=2, kXL¥ (1, +XXK) /XXK
C3(1,3)==2, AXL/ (XXKEK(1,+XXK))
D3(1)=0,

8012

THE INNER EDGE BOUNDARY CONDITION
THE FIELD POINTS EVALUATION

8013 NMi=]EDGE-1

DO 8014 N=2,NM!

DYuXXK&X (N-1) $DYW

DYM1=DY/XXK

XL=DX2/(2.0%DY)

Yém2,/(1.+DYML/DY)

Y7=DY/DYMI1

YBm2, / ((DYM1/DY) % (1,+DYM1/DY))
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7501

7000

7001

4841

&84

625

b26

627

¥9=2,/(1.+DY/DYMD)
Yi0=1,-DY/DYM!

8EP=1.0

IF(FO(N).LE.O.) SEP=0,
IFCITCNTL .GT. 1) GO TO 7000
IFC(IDIFF JEQ., 1) GO TO 73501
FM1=Y42FO (N) -YSEFN(N)
THiaY4&TO (N) =YSKTN (H)
VM1=Y4&V0 (N) ~YSEVN (N)

IF (S8EPD. EQ. O.) VM1=VO(N)

EM1 = (Y4X(EQO(N-1) +EO(N) +EOQ(N+1))-YSK (EN(N=1) +EN(N) +EN(N+1)) ) /3.
ETM1 = (YAR(ETO(N-1)+ETQ(N)+ETO(N+1)) =YK (ETN(N=-1) +ETN(N) +ETN(N+1

1)0/3,

BYM1 = (Y4X(BYD(N-1)+BYO(N)+BYD (N+1))-YIk (BYN(N-1) +BYN(N}+BYN
1 1)/3.

GO TO 7001

FM1 = FO(N)

ML = TO(N)

VML = VO(N)

EM1=(EQO(N-1)+EQ(N) +EO(N+1)) /3.

ETM1= (ETO(N-1)+ETO(N)+ETO(N+1) ) /2,
BYMi=(BYQ (N-1) +BYD(N) +23YO(N+1)) /3,

GO TQ 7001

FM1 = FP(N)

TML = TP(N)

VML = VP(N)

EM1=(EFP (N-1)+EF (N) +EF (N+{)) /3.
ETM1=(ETP{N-1)+ETP(N)+ETP(N+1)) /2.
BYM1=(BYP(N=-1)+BYP (N)+BYP(N+1)) /2.

IF(OMEGA .E@. 0.) GO TO &84

IF(OMEGA .EG. 1.) GO TO é841
XUMi=1./(TM1x%(1.-0OMEGR))
XLPMl=(OMEGA-1. ) ¥XLM1/TM}

6070625

XLMi={,

XLPM1i=0,

60T0625

XLMi=((1,+TR) ¥SQRT (TM1) /(TM1+TR))
XLPM1=XLMIX (TR~TML) /(2. XTMIX(TM1+TR))
IF(ITCNTL.67.1) GO TO 626
FY=(YPRFO(N+1)/2.-Y10%FO(N) -YBRFO(N-1) ,/2.) /DY
TY= (YPXTO(N+1)/2,~Y10kTO(N) -YBXTO(N-1) /2.) /DY
EYMi=(YPIEDO (N+1) /2, -Y1OXEM1-YBREQ(N-1)/2.) /DY
ETYM1= (Y9XETO(N+1) /2.~Y10%ETM1-YBXETD(N~1) /2,) /DY
BYPP=(Y9XBYO(N+1)/2.-Y10%BYM1-YBXBYQ(N~1) /2.) /DY
GO0 TO 627

FY= (V9RFP (N+1) /2. -Y10KFP (N) ~-YBXFP(N-1) /2,) /DY
TY=(Y9RTP(N+1) /2.-Y10XTP (N) -YBXTP(N-1) /2.) /DY
EYM1=(YPREP (N+1) /2, -Y1OKEMI-YBXEP (N-1) /2.) /DY
ETYMi= (YPUETP(N+1)/2.-Y10BETMLI-YBXETP(N-1)/2.) /DY
BYPP= (Y93BYP (N+1) /2, -Y10%BYM1-YBX¥BYP (N-1) /2.) /DY
IFCIDIFF.EQ.1) GO TO 7502
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FM2=Y2%F0 (N) =YIXFN(N) :
TM2=Y2%TO (N) =YSETN(N) :
GO TO 750%

7502 FM2 =2, $FO(N)

TMZ =2.$TO(N)

7505 CONTINUE

AL (N, 1)=YBEXLE (2, §XLMIKEM1/DY- (XLM1 KEYM1+EMIXXLPM{ ¥TY+BYPF &
1 EMIKXLM1/uGYML1=VM1) !

AL (N, 2) == (4, $XLEXXLMIXEM1&Y7/DY+2. XL ¥ (XLMi KEYM1+BYPPXEM1 KXLM}
1 /BYMI+EM1XXLPMLETY-VM1) #Y10+2, 8DX2¥FM1 X (XFY (N) kXBE+XSS (N) ) RSEP+
1 SEPK (2, KY1¥FM{~FM2) KXFY (N) £X)

AL (N, 3) =XLE (2. KXLMLKEMIXY4/DY+ (XLM1KEYMI+EM1KXLPMIXTY+BYPPX

1 EM1&XLM1/BYM1i~VM1) &Y9)

B (N, 1)=-XLEEM' £XLPMIEFY1YE

B (N, 2) uDX2%KXBEKXFY (N) =2, $XLKEMI KXLPML KFYKY10

B1(N,3) =XLKEM1XXLPMIXFYRYS

C1 (N, 1)=C1 (N, 3) =0,

C1 (N, 2) =-DX28FY

AZ (N, 1)==2, KXLEXALXXLM1XEM1 ¥FYXYS

A2 (N, 2) == (4. KXLAXALXXLMIXEMIXFYRY1C+SEPRXE (Y1XTM1-TM2) &

1 XFY(N)-3.&DX2&XALEXSS (N) &FM1 %2, XSEF)

A2 (N, 3) =2, XXLEXALKXLMIXEMLAFYRYS

B2(N, 1) =XLAYBK (2. KXLi1 KETM1/ (PRXDY) = (XLM1KETYM1+2, KXLPMI XKETM1 &TY
1 +BYPPXXLM1XETM1/BYM1-PREVML) /PR)

B2(N,2) =~ (4, KXLXXLMLKETMIKY7/ (PREDY) + (XLM1 KETYM1+2, KXLPM1KETMI ¥TY
1 +BYPPXXLMIXETM1/BYM1-PREVML) KXL¥Y 1032, O/PR+SEPKXXY1XXFY (N) XFM1)
B2 (N, 3) =XL¥ (2, KXLMIKETALRYS/DY+ (XLMISETYNML 2, KXLPMIKETMLXTY

1 +BYPPRXLMLIXETM1/BYM1-PRXVM1) XYQ) /PR

C2(N 2)=-DX2KTY

£2. ,1)=C2(N,3)=0,

AZ(N, 1) AT (N, 3) =0,

AZ (N, 2) = (DX2+XKY1) KXFY (N)

BX (N, 1) =B3 (N, 2) =B3 (N, 3) =0,

C3(N, 1) =-XLKYB

C3(N, 2)==2, XXLAY10

C3(N, 3) =XLRYO

D1 (N) =DX2XFYX (EM1 KXLFM1KTY=UM1) -FM1 Kx2X (XEEXXFY (N) KDX2+XXXFY (N) XY 1
1 +XSS(N)XDX2) XSEP

DZ(N)=DX2¥ *~ “MLIXETM1KTY/PR-VM1) XTY+DX2XXALXXLM1KEMI XFYXK2-X XY

Ci. TMY L (N)XSEP+DX2KXALK2. KXSS (N) KFM1 K8 3XSEF
D3 (N) mXkFM2KXFY (N)
8014 CONTINUE

PR

‘q‘
L]
N
H]
!
~
N
N
K
X!
s
.1

THE FIELD P~"'7T8 EVALUATION

THE QUTER EDGE BOUNDARY CONDITION

oOoOo0o0o0On

DO 8015 I=1,3

8015 AL (IEDGE, I)=A2(IEDGE, I1)=A3(IEDGE, 1)=B1 (IEDGE, 1) =B2(IEDGE, I)=B3(
{ IEDGE,I)=C1 (IEDGE,I)=C2(IEDGE,I)=C3(IEDGE, I)=0,
Al (TEDGE, 3)=1.0
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B2(IEDGE, 3)=1.0

DI (JIEDGE)=1.0

D2(IELGE)=1.0

.. IF(SEPQC.EQ@.0.) GO YO 8014

a0 XL=DX2/ (2. $DYWKXXK& ¥ (IEDGE-1))
FM2=Y2%FQ (IEDGE) -Y3*FN (1EDGE)
IF(IDIFF.EQ.1) FM2=2.3FO(IEDGE)
AJ(IEDG™, 3)=DX2+X%Y1
CI(IEDGE, 1)=2, SXXKXEIRXL/ (1, +XXK)
CI(IEDGE, 2) m=2., AXXK& (1, +XXK) kXL
C3I(IEDGE, 3) =2, SXXKEXLE (2, KXXK+1.)/ (1. +XXK)
DI (IEDGE) =X&FM2
GO TO 8017

8016 VM1=VO(IEDGE)
IF(ITCNTL1.GT. 1) VM1=VP(IEDGE)
C3(IEDGE, 3)=1.0
DI(IEDGE) =VM1

8017 CONTINUE

o0

THE OUTER EDGE BOUNDARY CONDITION

RETURN

END

SUBROUTINE PRNCHS (ICOUN, IP, 16, IQ,MSTART, IIN,M,S,Y,BLT, XME)

COMMON G, PR, REY, XMINF, OMEGA, BO, TW, P10, T10, RO, VISi0, TE,
1 PE,RE,UE, VISINF, SU, EPS, DS, DYW, ST, ERROR, TC, TR, IEDGE, IEND1, INTACT,
2 PRT, XXK, BTRX, XL.LAM, VARPRT, XINTER, SEPO, ICHS (8) , IPRN(9) ,EQ(300),
EN(300), EP(300),ETO(I0C) ,ETN(3ICGO) ,ETP(300) ,FO(300) , FN(200) . J2DA,
FP(300), TN(300), TO(300), XNN (300}, VN(300),V0(300),VP (300}, TP (300!,
D1 (300), D2 (300, DI (I00)
DIMENSION Y(300),2(7,16&)

25 FORMAT (1M0,435X, 23HPROFILE FOR STATION & =F14.8)

40 FORMAT (BHON= 15FB8.4 )

41 FORMAT (BH ETA=  15F8.4 )

42 FORMAT (BH Fi= 15F8.4 )

43 FORMAT(8H Ti= 15F8.4 )

44 FORMAT (BH V1= 15F8.2 )

46 FORMAT (BH EO= 15F8. 2}
307 FORMAT (BH Y/BLT= 135FB.4 )
S09 FORMAT (BH RO/ROE={GFE.4 )
510 FORMAT (BH ML/ME= 15F8.4)
S11 FORMAT (BH PT/FTE=135FB.4 )
512 FORMAT(BH PT/PE= 13FB.4 )

513 FORMAT (BH H/HE= 13FB.4 )

IF (ICOUN-IPRN(IP)) 3§1,38,31

3
4
]

QUTPUT PROFILE DATA

onNnon

38 KONT=IQ-1
J2=0
WRITE(4,25) S
DOS0J1=1,KONT, 15
J2uJ2+4
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KON=J2%15

WRITE (&,80) (XNN(N),N=J1,KON)
WRITE (b,41) (Y(N),N=Ji,KON)
N WRITE (&,42) (FO(N), N=Ji,KON)
' WRITE (6,43) (TO(N), N=J1,KON)
o WRITE (&,44) (VD(N), N=Ji,KON) 4
v WRITE(&,44) (EO(N),N=J1,KON)
I=J1-1
IF (M.EQ.MSTART) GO TO %0
DOSIOIXw1,15
; ImI+1
N Z(1,JX)=EPSKXNN(I) /BLT
2(2,3X)=FO(I)
c 1(3,J5%)=T0(I) .
. 2(3,JX) =1, /TO(D)
- PTPED=(G-1.0) *TEXTQ(I)
2 IF (PTPED) 777,777,778
< 777 PTPED=i.

778 1(4,JX)=UEXZ(2,JX)/(PTPED)%X%.5

e, . K- KN

L. s KRS

——d g.)n“.‘;-li‘-"

A PTPE=Z(4,JX)%Z(4,JX)}
s TF(Z(¢4,3X)~1.0)3504,504, 505 !
fQ 504 PTPE=(1.0+(((G~1.0)/2.0)¥PTPE) ) 8% (G/ (G-1.0))
j; PTEPE=(1.0+(((B~1.0)/2.) kXMEX¥2)) XX (G/ (G~1.))
) GOTOS06

305 PTPE=(((G+1.0)¥PTPE/2,0) ¥X(G/(G-1.0) ) ) ¥(((G+1.Q)/ ((2,OkG¥PTFE) - (G-
11,01 xx(1.0/(G-1. 00 ))

PTEPE=(((G+1.) KXMEXK2/2,) ¥k (B/(6-1.)) ) K (((G+1,)/ ( (2, KGKXMEKKD) - (G~
K1) Rk(L./7(G-1.0 )

906 Z(5.JX)=PTFE

RNRRRY

PIe 3 WS

c 2(6,3X) = PTPEXPE/P10

a (b6, JX)~PTPE/PTEPE R
" 2(7,3%)=(TEXTO(I) / (UEXUE) +.S¥EQ (1) $F0 (1)) / (TE/ (UEKUE) +.5) A
- Z{4,d%1=2(4,3%) /XMINF

N 530 CONTINUE

¥ WRITE(6,507) (Z(1,N),N=i,15)
WRITE(6,509) (Z(3,N),N=1,15)
WRITE(6,510)  (Z(4,N),N={,15)

N WRITE(6,511)  (2(&6,N),Ne1,15)
%) WRITE(6,512) (Z(%,N),N=i,15)
» WRITE(6,513) (Z(7,N),N=1,15)
- %0 CONTINUE

IF(IIN .EQ. 1) RETURN
- ICOUN=Q
;1 51 ICOUN=ICOUN+1
N IF(M+1-ICHS(IB)) 3601, 3400, 3401
o 3600 IP:IP+1
N ICOUN=IPRN(IP)

3601 CONTINUE

RETURN
N END
-g SUBROUTINE REYSTR (KON, TR, X, TREF, XNUE, XBE, S, ITCNT1)
; COMMON G, PR, REY, XMINF, OMEGA, BO, TW, Plv, T10, R10, VISiO, TE,
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1 PE,RE,UE,VISINF,SU, EPS, DS, DYW, SI, ERROR, TC, TA, IEDGE, IEND1, INTACT,

2 PRT, XXK, BTRX, XLAM, VARPRT, XINTER, SEPG, ICHS (8) , IPRN(9) , E0 (300) ,

3 EN(300),EP(300),ETO(300) , ETN(300) , ETP(300) , FO(300) , FN(300) , J2DA,

4 FP(300),TN(300), TO(300) , XNN (300} , UIN(300), V0 (300} , VP (3C0) , TP (300) ,

% D1 (300),D2(300) , D3 (300)

TTR=(TA+112.)/ (TAXTREF+112.)

CO="P (1)

DD=EP (1) =XNN(1) =TPI=BLT=0,
c BHEAR STRESS AT THE WALL AS THE SCALING FUNCTION

Y1im( (2, +XXK) K (1, +XXK+XXKEED) +1, +XXK) / ( (1, +XXK) & (1., +XXK+XXKEX2))

Y12= (1, +XXK+XXKER2) /XXKER2

Y13m (1. +XXK+XXKEX2) / (XXKXKSK (1, +XXK))

Y14m1, / (XXKEXIK (1, +XYK+XXKEE2) )

FETW= (-Y11&FP (1) +Y124FP (2) ~Y13¥FP {3) +Y14KFP (4) ) /DYW

FETW=ABS (FETW)

XLMIW=\ (1, +TR) XSGRT (TP (1)) /(TP (1) +TR))

PI12=XLMIWAFETW
c SHEAR STRESS AT THE WALL AS THE SCALING FUNCTION

DO 1 N=2,KON

DY=DYWKXXKKK (N=2)

XLM1=( (1. +TR) KSART (TP (N)) /(TP (N) +TR))

CwTP (N)

TPI=TPI+,SKDYX (CO+C)

CO=C

XNN (N) =TP1XSORT (2. ¥X) / (RE$UE)
. IF (J2DA.NE.O) XNN(N) mXNN(N) /8
e IF(BLT.ET.0.) GO TO 2
Y \ IF (FP(N) .GE. 0. 99) BLT=XNN(N) = (FF (N) =, 99) X (XNN (N) =XNN (N=1) )

1) 1 /(FP(N)-FP(N-1))

7
RO
S, -'.1
.
. Swty fe te

o DD=DD+( (1. ~FF (N) Y KTP(N) + (1. =FP (N-1)) $TF (N-1) ) KDY /2.
Fuﬁ 2 PI{=SQORT (2, ¥XXREY/(TREFXX1,SXTTR)) KTPIX¥2/ (XNUEKTP (N) ¥X3)
o IF(J2DA.NE,O) FIL 1/§

3
P

DY=DYWEXXKEX (N-1

o DYMi=DY/XXK
Y92, / ((DYM1/DY) X (1. +DYM1/DY))
N Y92, /(1. +DY/DYM1)

s
275’

Yi0o=1,~DY/DYM!

:? ’('7
! Y
P

c PI2nXLMLXEP (M) XABS(YPKFP (N+1) /2. ~YI1OXFF (N)-YBXFP (N~1) /2.) /DY
[ C
> c CEBICE~SMITH-MONSINKIS EDDY VISCOSITY MODEL
o YPLUS=SART (PI12PI2) /7 (26, KXLM1)
i IF (YPLUS.GT,50.) YPLUS=S0,
L EP(N) =, 16¥PI 1K (1, ~EXP (=YPLUS) ) XX2XABS (Y9
R 1 FP(N+1) /2, -Yi0%FP (N) =YB&FF (N-1) /2. ) / (DYXXLM1)
! c CEBICE~SMITH-MONSINKIS EDDY VISCOSITY MODEL
C .
o c TRUNCATE THE INNER REGION CALCULATION
i:i IF(EF () LLE.EP(N-1)) EP(N)=EP(N-1)
o C TRUNCATE THE INNER REGION CALCULATION
o c
L {  CONTINUE
ﬁ DO 3 N=1,KON
AN
\::\ e
NN
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e XLMi=((1.+TR) ¥SART (TP (N)) / (TP (N) +TR))
o DD1=,016B%SGRT (2. $X4REY/ (TREF&X1, S8TTR) ) #DD/ (XNUEXXLM1KTP (N) ¥%2)
S IF (J2DA.NE.0) DDi=DD1/S
L IF(DD1.LE.EP(N)) EP(N)=DDI

XXXX=. 412K ( (S-BTRX) /XLAM) %2

IF (XXXX.GT.50.) XXXX=50,

EP (N)=EP (N) # (1, =EXP (=XXXX))

IF (XINTER.EQ.0.) EP(N)=i.+EP(N)

IF¢(XINTER.EQ. 1.) EP(N)=mi,+ (1,75/(1,+5,5K(XNN(N) /BLT) kX&) +1,) &

1 EP(N) /2,75
I3 ETP(N)=1i.+PRK(EP(N)~1.) /PRT

RETURN

END

SUBROUTINE MATEGN3 (X1,X2,X3,Y1,Y2,Y3,A11,A12,A13,A21,A22,A23,
$ A31,A32,A33,LC,LN,LQ)

EEKRERAR IR RN KK AR KRR KKK KRR AR KRR KRR KRR KRNI KA KKK KK KK

THIE SUBROUTINE SOLVES THE THREE SIMULTANEOUS BAND MATRIX
EQUATIONS

ALLIXXL + AL12KX2 + AL3XT = Yi
AR21XX1 + A22XX2 + A2IXXT = Y2
AJLEX1 + AJ2KXZ + AJIXXT = Y3

FOR X1, X2, AND X3

ATJ ARE @ BAND MATRICES OF LENGTH L@, WORKING LENGTH LN,
AND WIDTH LC
(THESE MATRICES ARE ASSUMED TO BE CORNER ADJUSTED., I.E. THE
CORNER ELEMENTS ARE STORED IN (1,1) AND (LN,LC), ETC.)

XI AND YI ARE VECTORS OF LENGTH LG AND WORKING LENGTH LN

KRR KRR KRR KKK KR KKK KRR KKK KRR KKK KRR KRR K KRR KRR KK KKK KK

TO0OTTOoONDOO00OoO0O000O0n00N00nN0o0o

DIMENSION
$ X1(LEY, X2(LGY, XI (L), Y1 (LAY, Y2(LA),YZ (L),
$ ALL(LQ,LEC),AL2(¢LA,LE),AL3(LE,LEY,
$ A21(LQ,LC) -A22(L0,LC),AZI(LA,LE),
$ A31(LQ,LC),A32(LA,LC),A33(LA,LE)

INITIALIZATION

noon0oon

LPaLN+1
L=(LC-1)/2
LM=LN-L~1
IF(LC.GE.LN) L=LN
DO 3 I={,LN

X1 (I)=Y1(D)

-, .
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111

113

114

115
116

AT, NV wamgw, v W

112

MR I e e IR I A R e

X2(I)=y2(I)
X3 (1) =y3(I)
CONT INUE

DOWNWARD GAUESIAN ELIMINATION wITH PIVOTING

S S e 1 S R G s M s ) PR g 0 e G R b S B S w2 s S S = G S . e g -

DO 401 Kmi,iN
IF (L.EQ.LM) L=LN
IF(L.LT.LN Lml+y

U=ABS (A11(K,1))

I=K

M=)

DO 113 J=K,L
IF(J.EQ.K) GO TO 111
VsABS(A11(J, 1))
IF(V.LE.L) GO TO 111
Usy

M=1

Ix=]

V=ABY (A21 (J, 1))
IF(V.LE.U) GO TO 112
Umy

M=2

I=J

VaABRS(AZ1(J, 1))
IF(V.LE.U) GO TO 113
U=V

M=3

I=J

CONTINUE

IF(I.EQ.¥) GO TO 115
IF(M.NE.1) GO TO 116
DO 114 J=1,LC
U=ALl (K, )
ALL(K,J)=AL1(1,)
Al1(l,0)=U
U=Ai2(K, J)
AL2(K,J)=A12(1,d)
Al2(1,J) =Y
U=AL13 (K, )
AL3(K,J)wAL3 (I, )
AL13(I,J)=U

CONT INUE

U=X1 (K)

X1(K)mX1 (1)

Xi(I)=U

GO0 TO 120

IF(M.EQ.1) GO TO 120
IF(M.NE.2) GO TO 118
DO 117 J=1,LC
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UsAl (K, 3)

Al (K, J)mA2L(1,d)
A21(1,3)=U
UmA12(K, J)
A12(K,J)=A22(I,d)
A22(1,d) U
UmA13 (K, J)
AL3(K,J)=AZ3(I,d)
A23(1,J)sU

CONT INUE

UsX1 (K)

X1 (K)=X2(I)
X2(1)=U

G0 TO 120

DO 119 J=1,LC
Us=A11 (K, J)

ALl (K, J)=AS1(I,d)
A31(I, )=l
U=A12(K, J)

A12 (K, J)=A32 (I, )
A32(1,J) =y
U=AL3 (K, J)
AI3(K,J) =mAZI (T, J)
A33(I,0)=U

CONT INUE

UsXi (K)

X1 (K) =X (1)
X3(I)wi

CONT INUE

DO 128 IsmK,L

IF(I.EQ.K) GO TO 123

UsA11(1,1) /A1 (K, 1)

DO 122 J=i,LC

IF(J.NE.1) ALX(I,J-13%A11(1,J)~A11(K,J)&U
AL1 (T, =A12(I,3)-A12(K,J) KU
A12(1,5)mA13(1,3)-AL3(K,J) kU

CONT INUE

A13(1,LC) =0,

X1¢I)®X1 (1) ~X1 (K) KU

CONTINUE

U=A21 (I, 1) ZAL1 (K, 1)

DO 125 J=i,LC

IF(J.HE. 1) A23(I,J-1)=A24(I,J)~Ai1(K,J)&U
A21(1,J)=A22(1,3)~A12(K,J) KU
A22(1,3)=A23(1, ) ~A13(K,J) KU

CONT INUE

A23(1,LC)=0.

X2(I)=X2(1) =X1 (K) XU

U=AS1 (I, 1) /A11 (K, 1)

DO 127 Jei,LC

IF(JLNE.1) A33(I,Jd-1)=A31(1,J)=A11(K,J)%U
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A3L(1,3V®A32(1,J)=A12(K,J) 8 ;
A32(1,J)=A33(1,J)-A13(K,J) &U \
CONT INUE )
AS3(I,LC}=0,

XI(I)=X3I(1)-X1(K)sU I
CONTINUE ‘

U=ABS (A21 (K, 1)) ’
1aK |
Ma2 ;
D0 213 J=K,L i
IF(J.EQ.K) GO TO 212 :
VeABS(A11(J,1)) :
IF(V.LE.U) GO TO
Usy _
M=l !
1=J

VeABS (AZ1(J, 1))
IF(V.LE.U) GO TO 212
U=y

M=2

1=J

Y=ABS (AZ1(J, 1))
IF(V.LE.U) GO TO
Uy

M=3

IsJ

CONT INUE
IF(I.EQ.K) GO TO 215
IF(H.NE.2) B0 TO zié
DO 214 J=1,LC
U=A21 (K, J)

A21 (K, J)=A21 (1, )
A21(1,J)=U
UsAZ2(K, J)
A22(K,J)=A22(1,J)
A22(1,3)=U
U=A23 (K, J)

A23 (K, J)=A23(1,J)
A23(1,J)=U

CONT INUE

U2 (K)

X2 (K)mX2 (1)

X2(1) =y

60 TO 220

IF(M.NE.3) GO TO 220
IF(M.NE. 1) GO TO 218
DO 217 Jm=1,LC
U=A21 (K, J)

A21 (K, J)=A11(1, )
AL1(1,0) =y
UsA22 (K, J)

211 :
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217

218

219

&y
N
N

225

227

A22 (K, J)=A12(I,J)
A12(1,0)=U
UmA23 (K, J)
AZ3(K,J)=A13(1,d)
AL3(I,J)sU
CONTINUE

U=X2 (K)

X2 (K)=X1(I)

X1 (1) =y

GO TO 220

DO 219 J=1,LC
U=A21 (K, J)

A21 (K, J)=A31 (1, )
A3 (1, D)=l
U=A22(K, J)
A22(K,J)=A32(1,J)
A32(1,J) =
U=A23 (K, J)

A23 (K, J)=A33(1,J)
A33(1,J) =l

CONT INUE

UmX2 (1)

X2 (K) =X (1)

X3 (1Y=U

CONT INUE

DO 228 I=K,L

IF(1.EQ.K) GO TO 223

UrAL1 (1,17 /A21 (K, 1)

DO 222 J=1,L0

IF(J.NE. 1) A1Z(I,J~1)=A11(1,3)~A21(K,J) U
A11(I,d)=A12(1,J)~A22(K,J) *U
AL2(1,3)=A13(L, ) -A23(K,J) kU

CONTINUE

A13(1,LC)=0.

X1 (I eX1(I)=X2(K) KU

UsA21(1,1) /A21 (K, 1)

DO 225 J=t,LC

IF(J.NE. 1) A23(1,J~1)=A21(I,3)=-A21(K,J) KU
AZ21(1,J)wA22(I, ) =A22 (K, d) kU
AZ2(1,J)®A23(1, ) ~A23 (K, J) *U

CONTINUE

A23(1,LC) =0,

X2(1)=X2(I)=X2(K) %

CONT INUE

U=A31¢I, 1) /A1 (K, 1)

DO 227 J=i,LC

IF(J.NE. 1) A33(I,J-1)=A31(1,J)~-A24 (K,J) KU
A31(1,0)=A32(1,d)-A22(K,J) kU

A32(1,J) =A33(1,J)-A23(K,J) §U

CONTINUE

A33(I,LC) =0,
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228

311

312

313

-

316

-,

X3(I)=X3{I)=X2(K)*U .
CONT INUE

IF(K.EQ.LN) GO TO 401
U=ABS (AJ1 (K, 1))
I=K

M=3

JL=K+1

DO 313 J=JL,L
V=ABS(A11(J,1))
IF(V.LE.U) GO TO
U=V

M=1

I=J

V=ABS (A21(J,1))
IF(V.LE.U) GO TO
Usy

M=2

I=J h
V=ABE (RZ1(J, 1))
IF(V.LE.U) GO TO
Umy

M=3

I=J

CONTINUE
IF(1.EQ.K) GO TO
IF(M.NE.3) GO TO 31¢
DO Z14 J=1,LC

1 A4 402 LAY

EMOL AR )
A3L(K,J)=ATi(I,J)
AZL(I, )=y
U=A32(K,J)
A32(K,d)=R32(I,J)
A32(I,J) =l
UsAZ3 (K, J)

T3(K,J)=AZI(I, )
A33(1,J)=U
COrTINUE
U=X3 (K)
X3(K)=X3(1)
X3(I)=U
GO TO 320
IF(M.NE.1) GO TO 318
DO 317 J=1,LC
U=A3L (K,J)

A31 (K,J)=AL1(I,J)
A11(I,J) =y
Usa32 (K, J)
A32(K,J)=A12(1,J)
AL2(1,J) =y
U=A33 (K, d)
AS3(K,J)=A13(1,J)

(S -~V SRS OV PR PR gy LN S

z

313

220
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A13(1,3)=U
CONT INUE

=X 3 (K)

X3 (K)=X1 (1)
X1(1)=U

GO TO 320

DO 319 J=i,LC
U=A31 (K, J)
A31(K,J)=A21 (1, d)
A21(1,J) =l
U=A32(K, 3}
A32(K,J)=A22(1, )
A22(1,d) =U
UmA33 (K, J)

A33 (K, ) =A23 (1, J)
A23(1,J)=U
CONTINUE

UsX3 (K)

X3 (K)=x2(I)

X2(1) sl

CONTINUE

IL=K+1
DO 328 I=IL,L

UmA11 (1, 1) 7831 (K, 1)

DO 322 Jel,LC

IF(J.NE. 1) AI3(I,J-1)=A11(T,d)-AZ1 (K, J) XU
ALL(I,3)=A12(1,d)~A32(K,J) XU

CONT INUE

A1371,LC) =0,

X100 =X1 (1) ~X3(K) $U

UsAZ1 (1, 1) /A1 (K, 1)

DO 325 J=1,LC

IF(J.NE. 1) A23(1,J-1)=A21(1,J)-AZ1L (K, J) *U
A21(1,) =A22(1,d)-A32(K,J) XU
A22(1,0)=A23 (1, J) -A3I (K, J) KU

CONT INUE

A23(1,LC) =0,

X2(1)=X2 (1) =XZ(K) KU

UmAZL (1, 1) /A3 (K, 1)

DO 327 J=1,LC

IF J.NE. 1) A33(1,J-1)=A31(1,d)~A%1(K,J) KU
AZL(1,0)mA32(I, J)~A32(K, ) $U

AS2(1,) =A33(1,J) =A33(K, ) KU

CONTINUE

A3I(1,LC) =0,

XI(1)=XI () -X3(K) kU

CONT INUE

CONTINUE
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< Lul
DO 507 K=i,LN
[=LP~K

UmX3 (1)
IF(I.EQ.LN) GO TO 502
DO 501 J=2,L
IJ=1+J
501 U=U-A32(I1,J-1)%X1(1J-1)~A33(1,J-1)¥X2(1J-1)~A31(I,J) ¥X3(IJ-1)
IF(L.GE.LC) UsU-A32(I,LC) X1 (I+LC)=-A3I(I,LC)AX2(I+LC)
902 R3(I)=U/A31(1,1)

UsX2(1)=-A22(1, 1) ¥X3 (1)

IF(I.EQ.LN) GO TO 504

DO 503 J=2,L

1J=1+J

U=U-R23(1,J-1) kX1 (1J-1)-A21(1,J) ¥X2(1J-1) -A22(1,J) kX3 (1J-1)
IF(L.GE.LC) U=U-A23(I,LC) kX1 (1+LC)

504  X2(I)=U/A21(I,1)

4]
(o}
(& ]

U=X1 (1) -A12(1, 1) ¥X2 (1) =A13 (I, 1) kX3 (D)

IF(I.EQ.LN) GO TO S50¢

DO 05 J=2,L

13=1+J

UsU-A11 (T, ) X1 (1J=1) -A12(1,J) X2 (1J-1) -ALZ (1, J) ¥XI(1J-1)

SC&  RI(DisU/ARLLI(I, 1)

IF(L.LT.LC) Ls=L+y
907 CONTINUE

RETURN

END

SUBROUTINE RUFVAR (X, XNUE)

COMMON &, PR, REY, XMINF, OMEGA, BO, TW, P10, T10, R10, VISI1O, TE,

1 PE,RE,UE,VISINF,EU,EPS,DS,DYW,81,ERROR, TC,TA, IEDGE, IEND1, INTACT,
2 PRT, XXK, BTRX, XLAM, VARPRT , XINTER, 8EPO, ICHE8(8) , IPRN(9) ,EO (Z00),
i 3 EN(300),EP(300),ETO(300) ,ETN(300},ETP(300),FO(300),FN(300),J2DA,
(o 4 FP(30C), TN(300),TO(300), XNN (300) , VN (300) ,VO(300) ,VP(300), TP(300),
- 5 D1(300),D2(¢300),D3 (300)

COMMON/BLRVAR/BYQ (300) , BYN (300), BYP (300) , XFY (300) , XS5 (300) ,

1 XBRE, XHRE, XLS, XCD
DIMENSION XD (300)
DATA P1/3.1415926535/

RS - ADWONOERY. oL
o
o
¢

PP P

EREERRARRR RN KRR RN RE KRR KRR R RX KK KK
INPUT DATA DIMENTIONALIZED BY L, THE

LENGTH OF THE MODEL....ceovsnnoses
EERERERRRRARXARRARRZRAKANRERRRRRRRAARRRERRXKE
XSR=Q,

a0
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anu

94
9s

C!b 26

97
99

......................
..........................

XLE=,004¢
XLDS=, 0046
XBRE=. 0023
XDRE=, 0023
XHRE=, 00115
XCD=0. 6
XDO=0Q, 00023

NMi=IEDGE-1

DO 99 W=1,NNMi

XEREE=XBRE
A ERRRRNIRRHEERRR RN ERR RN

XBREE IS A DUMMY VARIABLE
HEREASHERRABREERRNRRNRNRNNNHEGY
XYV=XNN (N) XEPS

IF(XSR.EQ.1) GO TO 95

IF (XYY.LE.XHRE) GO TO 94
XBREE=0.0

BYP (N)=1,0-(XBREEXXDRE) / (XLS*XLDS)
XFY(N)=(1,0-XBREE/XLS) /BYP (N)

XD (N) =XBREE

GO TO 96
DFUNCT=8SQRT ( (XDOX%2) /4., - YY%%2)

XD (N;sCFUNCT
BYP(N)={,0-(PIKXXD(N) X%2)/ (4, ¥XLSKk¥2)
XFY(N)=(1,0-XD(N)/XLS)/BYP(N)
IF(J2DA.EQ.1) GO TO 97

XSS (N) = (XCD¥XD (N) ¥X) / (BYP (N) kXLSKkX2%¥REXUEXXNUE®
60 TG 99

XGS (N) = (XCDXXD (N) kX) / (SkBYP (N) XXLS¥x2¥RE XUEX XNUE)
CONT INUE

RETURN

END

.

.....
.....
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Appendix F

Four Key Subsystems Within Computer Code

Nondimensionalizing the Variables and Initializing the Grid

Prior to entering the computational loop the working
variables were nondimensionalized or normalized. These
variables were listed below along with a e ™inition of each.
The format selected was to present the coded variable on
the left side of the equal sign and the real or physical
definition on the right side of *the equal sign. No explan-

ation was included as to choice of normalizing factors.

Tyl 2
2 oo
=)
- 1 f__q
v
YMS e
] ~ T
ol = 0
"o Tm(y-1)H§ (F.1)
N
T (y-1)H
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o G R

{5;
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...............

2
Tine = Lol (Te(y-10M0) =
T,/ 1s) (y-1)M°
T

A
P
T (y-1)MS

With Eq (F.1) defined for all cases, some others depended

on the value of o . were not equal to zerc, then

V1i.0 = T = Yo 1 ©
T (y-11 Ve [(y-1)h§ ]

2 2
EPS = [(Y‘1>“m ] o/
Re )77 (F.2)

. : w T w
VISTEF = [ 1 B
(y-1)M° Trer

where the reference temperature was taken as T_(y-1)M

1

vt

2

"
However, for the case where w was equal to zero, the quan-

tities of Eq (55) plus one were defined as follows:

¢ = 5 - 198.6
T _(y-1 )M; Trer
14 s
T T (y-1u7
VISIO = - .
T_(y-1)M° T s
- T (y-1u2 T (ya1)7
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TN NI T TR T AN T AT RTRTAT AT MR AR N R RCASIL LSS LS LIPS
1.5
- _:P_Q__ Tref+ 198.67 _ T
N T of To + 198.6 Hpgr
A
(T_+ 198.6) (y-1)2 1% 772
EPS = § (T_(y-1)M2 + 198.6
Reo, (F.3)
_ [Tref]1.5 [Tw + 198.6] 1/2
T T ¥ 198.5 _ uref/um] 1/2
) Rem Rem (F 4)
VISINF =[ _Te ]1°5 [ Trep * 178-6 ]
T T 7 798.6
These guantities werc frequently usced in the grid computation

and provided a summary of the nondimensionalizing techniques

used throughout the code.
within the grid, however,

of the profile.

Before beginning this computation

there had to be an initislization

Initialization began by defining Y in the code as the

distance measured along the n axis,

as [ SK+1
AN

Any Anj was defined

)‘]"1 Anj which yielded a fine mesh of nodal points

near the surface and an adequate spacing toward the edge.

Y values were assigned by successively adding all An values

from the surface, to the point in question.

Then, three

hypothetical svccessive columns of nodes were created by

the following statements:
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3

\

D1 = D2 = D3 = 0., from the surface to the cdre of the -

e boundary layer. Incorporating the notation of fig 1, i
‘!‘:‘-V ;
- . - - o surfac i

Vi,j = Vi—T,j Vi-2,j 'Yj, for all j from the surface .

;' "A'-'

to the edge of the boundary

layer.,

In a sinilar manner, three successive stations of F, 8, €,
and £ were assigned values of 1.0, Finally, all coeffi-

clents of the system of finite difference equaticns were

set ecual to 0.

:
_!4
:1
“
ol
!
4
1
:

This initialization provided the primer to tegin the
backward differencing along the & direction and the central
differencing along the n direction. The finite aifferencing

sys*ter was unconditionally stadie for increments of An and

‘[) AE, and the iterative sterping vrocedure along

~
o

£ darved the

errocr due to the grid initialization within a few steps. :

Subroutine Reysatr

This routine was called from the main progrew at each
staticn, CHy at and beyond the point of itransiticn to tur-
bulence. The purpose of this subroutine was to calculate
an edcCy viscosity for the inner and outer regions of the
two-layer turbulent boundary layer model,

Computation within Reysir began with Taylor series
expansions of F to the third order partial term zbout the
first station at the wall, With values for Fj:1’ Fj:Z’
Fj=3. and Fj=4’ a four-point finite difference expression

.
LYY
-
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was formed for 3T and the coefficicnts of the F terms at N
anlw’ -

each node, one through four, were represcented by Y11, Y12, ;
Y13, Y1/ in the code. Next, a nondimensional molecular q
viscosity-density term was calculated for the wall with a ;E
shear stress term that followed: %
2 T + 198.6 N‘

XLMIW = EE 1 8 7861, (p“)w (F.5) ﬂ

Te Tw + 198.6 (pu5e ‘ B

pr2 = (PW) op

——

(pu5e an

W (F.6)

«
v

An iterative loop was begun to generate the nondimen-

. . . . . €, .

sionalized inner eddy viscosity model, _inner, of Cebeci-
U

Smith-Mosinskis for each node in the n direction for the

currend Sy In th actual code and the following the calcu-

lation of a number of interim quantities that did not neces-

i

sarily represent any real boundary layer characteristic,

three important computations were made. TFirst, §/L was

— i ~
RIS ARh

calculated. Next, an intermediate quantity, DD, to be used

Y

later in the outer eddy model, was calculated. Finally,

A

PI1, another intermediate quantity used in the inner model,

[Ei - .995] [ AXNNj_(j_1ﬁ
XNN, = Yo L .

o
e

was computed:

"y
-

i

§/L

i

i A ﬁ.—-

~ .

R “1i-0-1)
I-‘

Ly
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edge of the

boundary layer u. J\T, u, T, An

. R B S S ) SN i o AT

DD .zf (s !’T ‘ 4 ’1 o (F.7)
j=2 e e e

| edge T,
£ o 2]
PI1= 2XRew i=2 2 e Te

{(y-1)M§}T15 ' Tm+12§i6 M [31]3 .
T_(y-1)1u+198.6] Mrerl Te

where the s was included for the case of conical flow only.

Again, a 3F term was generated, but using only a three-point
an
central differencing scheme on this occasion. The final

step of the loop was the actual computation of e, at

inner
. U
the current node j:

einner
u

J OU)e

A6(PT1) (1 - exe(={7211)(P12)) 2/ (26 (Pu)5. )2

(F.8)

[1% F(i,541) - ¥1¢ F(i,j) - %2 F(i,j-1)]

(on)
kean

where Y8, Y9, and Y10 were coefficients obtained through

Taylor series expansions of F(i,j-1) and F(i,j+1) about a

point F(i,j). As the calculation of €innepr PTO&Tessed from

the wall out into the field of flow, g. M retained
inner., .,

U
its own computed value or *that cf r,.
£ inner.
?

whichever was

greater, u

The outer law, Eouter,

H

was computed through an iterative
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loop similar to that of the inner model. It culminated

ék; with the expression §
{
€outer = .0168 2XRe,, 1/2 DD :

* Tm(Y—1)Mw+198.ﬂ ref :p“:e Te S

Yyl ML Ch .

where the s was included only for the case of conical flow.

S

S ANERAL Y, e

ek A

In order that a compatible combination of computer viscosities
were retained, the values of eddy viscosity fror the outer law
replaced those of the inner law from the point of intersection

of the graphs to the edge of the boundary layer. Graphically,

this was depicted in Fig 3.

Having calculated the initial eddy values for the inner

and outer viscous regions of the boundary layer, it was appro-
‘[L rriate to subject this model to two more factors., Both were

factors of degradation and were included to bettar describe

the character of turbulent activity within the boundary

layer.,

Objections have been raised to the use of an eddy vis-
cosity term, €, in place of, or in addition to the molecular
viscosity, u, of a fluid, u is a real property of a fluid,
€ 1s only an effective description when a fluid is in motion,
anc it is clearly not a property of the fluid. But, with
reservation, it has been used to express the behavior of
turbulent stresses in terms of mean velocity gradients of
a flowing fluid. It has been possible to obtain a satis-

factory description of mean properties within turbulent

147

AN OO (R LR AT A A S e e e e S e SRR N AT T NN T R N T ) A U R Y
" e P o - PRI DAY FOAERER N G N ORI P AL R SR W A 1('\.'."_.‘\.‘!.:\}\_\}\}':}-.:"'..‘§l



flows by assuming this flow to behave as a Newtonian fluid,
:?i incorporating'an eddy viscosity model along with p, and in-
cluding two factors of intermittency when appronriate (Ref.
38:25-26), A laminar and irrotational flow became turbu-
lent as it passed through a region of transition in which
only a fraction of the time was spent in a turbulent state,
During that time in laminar motion, the Reynolds stress,
hence €, would have been zero, Then, to édequately describe
the effects of € at any point by the relative frzciion of

time that that point would be engulfed in turbuleni flow

L L . " " %" 5 FEEEK e - C X P S EIRL. T LT . aTu AN _ ey

(Ref 34:117). Therefore, the first multiplica*iwve factor,
called an intermittency factor, was applied to € to more
accurately describe the € within the transitior rezion,
The intermittency or probability factor ¢f Dhawan =nd

!:’ Nerasimha was used for this program. The facicr wv=s

computed as follows (Ref. 13:28-29):

3
R
N
N
i
|

T(s) = |1-exp |-.412 Scurrent “®transition poin- 2 (Fr.10)
(-5)8¢ ransition point
L ) -
Then, the computed g was renlaced by
ploriginal
= (r(s)) g (F.11)

€
u|modified yloriginal

The second factor was then considered. It was observed
by Klebanoff that in a turbulent boundary layer wizh a free
boundary, as the free stream was approached the *urbulence

became intermittent. This intermittent nature wzs observed

r
’
’
*

A AT Iy Lo s T T e



.............................

.
T 4 -

2

EQ first at y/8 greater than .4 with less turbulent intensity 5
1& o as y/8§ grew larger. It was thought that a good prediciicn .
_‘.‘. '\, ] -

of turbulent intensity probably depended on a correct i

L g

weighting of the probability density for the turbulence

Ers

of the free stream with that within the boundary. It was

found that a good description of y' was a Gaussian integral

4
» |

\ -
4
K
.

curve given by

aar

y' o= (1-erf(e")) (F.12)

o=

At taTHNL L T

where

2.

o %

£ =(J5%)—1 (;%1 - .78) = 5(‘% - .78) (F.13)

These expressions indicated that the edge of the bourndary

Ny 'Z-L’;E:‘i ~

[ ee

layer had a random character with a mean position at y/$

o equal to ,78. The edge vacillated from y/§ equal to .4

o 3
N to y/é equal te 1.2. Finally, if it were assumed that the j
m k
. .

free stream contributed little to the measured turbulent

quantities of the boundary laver, an allowance could be

T

made for the effect of intermittency by dividing by the

o Sl
L L3
I“-! P

factor v' (Ref. 28:15-19),

oL

=
af

Cebaci used the aporoximate expression for Eq (F.12)

to give a multiplicative version:

6 -1

y!' = 1 + 5.5 % (Ref. 20:96) (F.14)

SRS

- W, %
P

AL

which led to the coding for this second factor. If Y'!' were

|
N

not included, then a newly defined viscosity was
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E'}j-j e =1+ZT(s) (F.15)
o
fﬁ: ﬁ&- Including Y', Shang formed the following model:

Tafl il B 8 . 8x0 Am—E k. "

) ~ 1.75 £
E‘g',‘ e =1 + 3 + 1 - :
7 [1 +5.5 [%/'%]6] [’2 .4'7'5] (F.10)

For purposes of this study Eq (F.15) became eddy model zero,

¢ =

and Eq (F.16) became eddy model one. Then, whether or not

Y' was included, the quantity € was defined by

g =1+ Pr (=
K (€—1> (F.17)

j]
i
h
a
g

In a final note, the decision of whether to use eddy model
zero or eddy model one depended on the »riginal assumpticn

that either the free stream tuarvulence had an effect on the

a) e of the boundary layer, or i% did not. Tais factor, y',
" AR
kol
’dh . . 1 kg
pﬁ was to have a definite effect on *ixs analytical results,
iy
fodl . 4 . . . . .
o and this entire subroutine was included with program listing

of Appendix E.

L NS
LI

Subroutine Cfstr

<‘ . *
ATty

Like Reystr this rouvine was called from tke main pro-

L thv

i gram. But unlike Reystr, Cfstno performed its computation
]
:ﬁ' throughout the laminar, transition, znd turbulent regions

<.

mlxs.

of flow., The purpose of this routine was tc calculate a

o Stanton number, a mcasure of heat transfer; *the local

e :

oo coefficient of friction, incdicative of shear stress at the
|_‘il

surface; and Reyrolds numbers boged on displacement thick-

S
R
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ness and momentum thickness.

Computation began with (pU)w, coded XLM1 in the program.

PU/ o

The formula by which XLM1 was computed depended on the value
of the exponent in the viscosity law of Sutherland, the
value of this exponent being specified by the programmer.

If the exponent were zero, then
A 1/2
LM = EE To+198.6 (F.18)
Te Tw+198.6
If this exponent were one, then XLM!1 was one. Otherwise,

T w -1
M4 =

e
Next to be caiculated were "ransformed quantities similar to

g or heat flux and 1t or shear stress. First, the same four-

point finite difference scheme used¢ in Reystr for 3F was
on | w
repeated at this point to calculate 3JF and 96 Th
~ -~ . nen
on | w on
the transformed 1, coded TAU, was computed:
(ew),, o,
] = '
e Con) "_e'u - G—" —r}%i : —75 t TAUR (F.20)
Yo “ref )

vhere

2 ,_ ,
TavR = 5L\ LY (Pres) o Ce Yot \ gyt N Fan o (r.21)
2 L Au, e, n_ " o)

ng is the value of n at y = h (height of the roughness

]

element).
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The skin-friction coefficient is increased by the

\:' N addition of the roughness elcment and 1t mav be defined as: .
RN 5
. BT .J
c. = Tgu'D/BC (F.22) [
Ny fw 5 K
w! q
4 1o, T N
:::: 2 . ® N
N -
_ ¢ h 2 .
| where D = OI of % u” Cpy dy dz. Tt and D/BC may be g
o N
'{-j written in dimensional variables as follows: -
":, '3
B + D sul +1 %P 2 J
T £ T H, U L
; v C “3ylu 2 BC of ur dy
: n
ng :
.f*‘ The dimension of the element is constant along y for g
W the case of rectangular roughness elements. Non-dimension-
- alizing the variables and stretching the y coordinate,
e
S .t D = Hy Hror U;-o 9 (u/uw)
i ¥ BC T Te 3 (y/Le)|w ¥
1.
‘ . e n
5 DL L b1 o, op oogu “uly . \
PN 2 B C LULo o u Le
(A [} fe o)
2
N Converting to transformed coordinate n,
iy
' A
& T, + D = (“p)w E_g “  rpef U oF 4
! BC Hror P Joo Le 22X 9n|w
‘ Ny
4 o Lok Yo, Ule 2x J Foan (F.23)
i 2 B C u_
. Consider: “ref " = Yref Yo Po Yo
L € Le P Us
&
A .
::: '.;-."l =k poo UCD
i
by
“
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Therefore, \
N
(TR IO UL () (I §d ;
BC Po Href Yo ‘[Ei'an'w !
2, C U "k o ':
te(p, UZ) D L L b _e_\lzx of T oan (F.24) :
2 B C I T, .
!
Finally, :
O = T..t D
£ VBT = 2e Py _[_I_g)z(zx)f? 6
10, U° (o Mrer?\ T or [w
2
U "k o
teCy L L b e 42X S F°an (F.25)
B T T T, ©

Ir the program, the increased 7 Cue 1o rougtrness elaments

is defined as TAUR, by equation (F.21),

Following 1, the transformed q, ccded QS, was replaced by

the following expression:

- @ = ___1 (ou)y 0o Mo Yo "o 30 (F.26)
!! (2X)1/2Pr lou)y 0, Uopp Yy 1, (y=104% 3nlw
I

r

o

CJ

N

Ei or,

::.'q QS + (DU)W BE Te o -1(2}()_1/2 30

:::\ Polrer Yo T (Y-1)M°2° anjw
éi

I
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3 For the case of the axisymmetric flow, both TAU and QS were
§;.ﬂ3 derived by the non-dimensicnal station, Sy With this,

L preliminary calculations were completed.

{ A Stanton number and coefficient of friction followed
5 next in the computation. If Tw equaled To’ there was no

f heat transfer and ST, coded STMO, was zero. Otherwise,

N

: [uref]%-pmumL]'% ou)y ve _ Te pr' (2x)"% 22

ﬁ Moo I Hoo Pl rer Ha Tﬁ(y-1)M§ ' anfw

(
<

+3

= i T T 2
N 1 —_— o Mu
\ | ;][T (y-1)M2 2(u;) ] (F.27)

The model from which this expression came was

" St = Q _—
:E © peueﬁe'hw) (F.28)
v Q - s ~ 243 Itk
\ For the calculation of Cf!local station’ cod=d CFLO,
o
v CFND = , Yref b opgu,Ll -2 fpu)u Ue)? (2x)"* IF
Moo M PoHro s \ Yo an|w
: o.u L\-% Cy (XBRE) UE oy K 2
A t (Lref)¥(Lelew )™ Tp M7 (20)F U FT dn (a0
3 Moy Moy (XLS) (XLDS) © ¥
| With St and Cp computed, only the transformed expressions
K local
4 for Reé* and Ree remained. Coded as REYDT and REYMT, these
; quantities were computed from the following statements:
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3\ .

N : REYDT = Pee*real o :

R ~u, 1 :

(F.30) i

\. .1

> :

5: REYMT = PeYe*real o :

s L o

S He :

q

. Subroutine RUFVAR .

" ..

}; The effect of surface roughness on compressible turbu- ?

NG N
lent boundary-layer ic modelled by distributed sources and 1

f sinks and blockage-terms in the appropriate governing 2

;ﬁ equations. This subroutine was called from the main pro-

i gram at each station, Sy throughout the laminar, transition

i and fully turbulent regions of the flow. The purpose of ;

! b

~ this subroutine was *o calculate the source/sink terx: (¢SS) E

i a and the blockare termz (f(y) and B(y)). !

e LN I 3

5 To initia<e this subroutine, the following quartities A

: were specified as input. .

» XSR - a flagred ocuantity to specify whether the

ﬁ rouzhness elements are of spherical or

. rechangusar shape

-

) XBRE - tre breaith of the rectangular element

- XDRE =~ the depth of the rectangular element in the

6 direction of flow

.

N XHRE - height of the roughness element

XLS - centire to centre spacing between adjacent
elements facing the flow

XLDS - centre to centre spacing between adjacent
elements in the direction of the flow

-
i
h
i
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XCD - coefficient of drag

XDO - the diameter of the roughness element with circular
cross section at y = 0

DFUNCT - the shape of the spherical element

The detailed dimensions of the roughness elements for
rectangular cross-section are given in Fig 5. The input
data is non-dimensionalized by the length of the model.

After the size, shape, and the spacing of the roughness
elements are specified, the subroutine calculates the block-
age terms f(y) and B(y) along n as follows:

(a) For Elements with Rectangular Cross-Sections

BYP(N) = 1.0 - XBRE * XDRE
XLS * XLDS

and
XFY(N) = 1.0 - (XBRE)/(XLS)

BYP(N)

(b) For Elements With Circular Cross-Sections

BYP(N) = 1.0 - 7 XDgN)2
LXLS?
and
XFY(N) =

1.0 - XD(N)/XLS
BYP(N)

After calculating the blockage terms, the subroutine

further computes the source/sink term as follows:
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LN

£t

XSS(N) = X#XCD*XD(N)
2

Ry Hy Hy R
BYP P Ug Mg XLS
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5 A

“a’
L

For elements with rectangular cross-section, D(y) was

2

“a~s"
AN

set equal to XBFE,

g

L)
o

'.

This completed calculations within this routine, and

Bt

a4 -

further, completed the formal description of four impor-

A A

tant subsystems within ITRACT. Azesin, this subroutire

]

was included with the program listiIng of Appendix E. In

ik 1

- alu’a

this appendix consideration was given to the important

»

by gt

concepts of the nondimensionalization of working quanti-

2 5
-

ties, and initialization of the grid. Also included was

XA

XA

a brief description of the three subroutines used in the

LA X

MY ¢
:,-‘g

computation of eddy viscosity, =ne=? =ransfer, and skin
friction and roughness variables, Ti1e theory presenzad
o in this appendix should provide a t=z=ter understandirg of

. the code in general, and the modification for ‘surface

! roughness specifically.

/

v

o
3 1‘1'»"
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