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enthusiasm and above all unlimited patience throughout

all phases of this study were invaluable. I also wish

to thank Dr. William Hankey, Jr., for his sponsorship and

continued assistance, I could not give this paper a

proper preface without acknowledging Cart James K. Hodge

for his constant interest. His support, be that in the

form of enlightening criticism or comrlke... nts, often came

as insight during times of frustrations. I will always

remember with fondness his friendly ard calm nature, and

his devotion to duty. I also appreciate the diligence of

Mrs. Cindy Boone who had immense patience to type this
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manuscript flooded with mathematical equations and greek

symbols.
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"K understanding with which she took the late hours and the

weekends not only during tho thesis, but during my whole

stay at, AFIT. I also thank my children, Hannah, Ahad
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Nomenclature

A Defined by Eq (44)

a Speed of sound

B(y) Defined in Eq (20)

cf Local coefficient of friction
C

Specific heat at constant pressure

Velocity ratio, u-
e

f(y) Defined in Eq (21)

H,h Enthalpies, defined in the expression H h+u 2

K Thermal conductivity

KT Eddy conductivity

L Characteristic problem dimension, length -f
the model in question

Defined in Eq (33)

N Math number

Pr Prandtl number

p Pressure

q Heat flux or heat flow per unit area

R Gas constant, 1716 ft 2/sec 2R for air

Re Reynolds number

Ru Sink term defined in Eq (15)

Rh Source term defined in Eq (16)

r(ro) Radial coordinate (body radius) for the case
of the axisymmetric cone, measured perpendic-
ularly from the longitudinal centerline, Fig 2

S Viscosity constant of Sutherland (198.6 R)

S Nondimensional position, x/L

viii
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St Stanton number,
PeUe R-w)

,, *T Temperature

t Transverse curvature term equal to r
r

u(v) Velocity component along (perpendicular to)
the streamwise direction

+ + Friction velocity, (Tw/p

V Transformed velocity expression defined in

X Defined in Eq (24)

x,y Body surface oriented coordinate system in
which x runs parallel to the stream direction,
point downstream, and y is perpendicular to x
and its directed into the external fl.ow

y+ Dimensionless distance, ypwu

Greek Symbols

a Defined in Eq (3L)

Defined in Eq (35)

Stream function

Defined in Eq (37)

r Streamwise inte-r-ittency distribution or
probability factor

The gas constant, ratio of specific heats

The intermittency factor of Klebanoff

A Change in variable quartityI. Boundary layer thickness

6, Displacement thickness

E: Eddy viscosity

-Eddy viscosity function defined following
Eq (38)

ix
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Eddy viscosity function defined following
(Eq 39)

n• Tranaformed perpendicular boundary layer
coordinate and nondimensional distance along
this coordinate

Static temperature ratio, TT-e

8 Momrntum thickness

viU Molecular viscosity

V Kinematic viscosity,
p

C Transformed streamwise boundary layer coordinate
and nondimensional length along this coordinate

p Density

T Shear Stress

w Exponent of the viscosity law of Sutherland

Subscripts and Superscripts

e Condition at the edge of the boundary layer,
also indicative of the input or environmental
conditions for ITRACT in the cone study

* Free stream or unperturbed condition

j Flow index, j = 1 for conical flow, j = 0
for flow over a flat surface

6*(0) When used with Re, denotes Reynolds number
based on displacement thickness (momentum
thickness)

o Total or stagnation condition except for r°

Primed quantities indicate instantaneous
departures from a mean state or condition in
the turbulence model. The accompanying bars
over the primed symbols denote a time averaged
quantity.

ref Reference

X
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ss Source sink

I t Turbulent condition

w Condition at the surface of the plate or cone

x Denotes a particular real x station along the

surface of the model
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Abstract

- This study followed the work of Dr. Anthony Fiore, of

Air Force Wright Aeronautical Laboratories, Wright-Patterson

SAir Force Base, Ohio. Dr. Fiore had carried out an experi-

mentalýstudy"" the effect of surface roughness on the

turbulent boundary layerIC3nia Fortran code, ITRACT,

written primarily by Dr. Shang, that solved for the charac-

teristics of a laminar, transitional and turbulent boundary

layer on smooth surfaces. ( ph-rpose-of'the present

study "as-tO investigateaithe influence of surface roughness

on a compressible turbulent boundary layer and then 4?

extend.ýJthe usefulness of 'the existing computer cod&, ITRACT,,_

by including in it the optional capability of rough-surface

boundary-layer calculations.

To achieve this objective, the'urface roughness was

'Il represented by distributed sources and sinks in the appro-

priate governing equations. The most important term is a

sink term in the mean momentum equation, representing

the form drag due to the roughness element. T-he Soverning

boundary-layer equations for continuity, momentum, and

energy were derived in a form to account for t4J blockage

effectlue to tle-roughness elements. The modified govern-

ing equations were then transformed using %4e transformatifn

-f Probstein-Elliott and Levy-LeesA The resulting equa-

tions, with appropriate boundary conditions, were solved

by finite-difference techniques to determine the non- -

xii
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* dimensional velocity components and temperature at a

finite number of nodes in the budrlae, field~of the

flow.

To establish the authenticity of the original code,

ITRACT, some smooth-surface results wera first computed

and compared with the experimental data of Dr. Fiore and

Dr. Cole for turbulent flows over smooth surfaces.. After

the accuracy of the code was established for smooth.-surface

calculations, the code was modified in order to render it

capable of predicting the influence of surface roughness

on compressible turbulent flow. The modified code was

then used to obtain results for rough-surface boundaryN

layers and the computed results were compared with the

experimental data of Dr. Fiore for the case of supersonic

flow over a rough flat plate. The agreement between the

computed and the measured velocity profiles was quite

satisfactory. The corresponding temperature profiles

agreed well everywhere, except very near the wall; a

possible reason for this discrepancy is offered in this

study. Unlike previous studies of rough-surface boundary

layers, the present study makes no modification to the

turbulence model employed.

xiii



*v. AN ANALYTIC STUDY OF THE EFFECT OF SURFACE ROUGHNESS

ON A COMPRESSIBLE TURBULENT BOUNDARY LAYER

I.Introduction

Preliminaries and Problem Analysis

Surface roughness can play an important role in

turbulent boundary-layer skin friction and heat transfer

for many high-speed flight applications. An understand-4

inf of the roughness effect is essential f02- accurate de-

sigh prediction in a wide variety of applications, includ-

ing ships, aircraft, compressor blades, turbine blades,

missiles and re-entry vehicles. For example, the NASA Space

Shuttle Program studied roughness as it augments heating.

At low flight altitude, the thic'kness of boundary layer on

the blunted nose region of ypersonic re-entry vehicle can

easily be less than the inherent surface roughness of prac-

tical heat shield materials, and roughness dominates the

heat transfer characteristics. Also recent experiments

(Ref. 1) have shown that surface roughness alone can sig-

nificantly influence the control effectiveness of maneu-

vering vehicle. Numerical analysis and computer programs

have been developed over the last twenty years to solve

turbulent boundary layers over smooth surfaces. A defi-

ciency, however, exists with these programs as regards

inclusion of roughness effects. Data has been accumulated
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over the last few years in this area but a need for a com-

..> . ~puter code to accurately match this data still exists.

The purpose of this study was to investigate the influence

of surface rough-ess on a compressible turbulent bcundary

layer and then to modify an existing computer code for

turbulent boundary layer over smooth surface to account

for roughness effects.

Literature-Survey

Most available models for analyzing the influence of

surface roughness on boundary-layer behavior are essentially

extension of Nikuradse's study (Ref. 2) of pipes roughened

with sand and application of Nikuradse's results to flat

plates by Prandtl and Schlichting (Ref. 3). Several cor-

relations have been proposed to relate real surface-

roughness heights, spacing and geomatries to an equivalent

sand-grain roughness height so that Nikuradse's data can

be used. Examples of such correlations can be found in

White and Grabow (Ref. 4:153-164). Dvorak (Ref. 5:1752-

1759) used integral methods in which the skin-friction

coefficient was specified as a function of boundary-layer

thickness and roughness height. Using this specification,

the moment equations were solved for the momentum and dis-

placement thickness. Chen (Ref. 6:623-629) extended this

approach to predict heat transfer, by using a Stanton nuin-

ber correlation derived from the subsonic data by Owean

and Thomson (Ref. 7:321-334). In this approach, the stag-

2



nation enthalpy profile was assumed to have the same shape

as the velocity profiles. A similar model has recently

been developed for re-antry vehicles by Dahm et al. (Ref. 8).

Here again a momentum integral approach is used, with the

skin-friction and heat-transfer coefficients based on cor-

relations of the low-speed data of Healzer et al. (Ref. 9)

and flat plate measurements of Reda (Ref. 10) at a mach

number of 2.9. The roughness augmentation of heat transfer

was found to be about 60 percent of the skin-friction aug-

mentation. More recently, effects of surface roughness

have-been evaluated by differential methods. Cebeci and

Chang (Ref 11:730-735) numerically solved the incompies-

sible boundary layer equations employing an algebraic

eddy viscosity formulation modified for surface rough-

ness, The modification was based on Rotta's (Ref. 12:1-

219) model, which displaces the normal coordinate of the

rough-wall velocity profile. An expression for this dis-

placement and the resulting mixing length is given by

Cebeci and Chang (Ref. 11) as a function of an equivalent

sand-grain roughness height. Emphasizing compressible

flows for a variety of edge and wall conditions, Hodge

and Adams (Ref. 13) numerically solved the flow equations

together with the equation of kinetic energy of turbulence.

Roughness effects were accounted for by inclusion o' a

form drag term in the momentum equation and by modification,

based on the results of Healzer, et al., of several of the

nine empirical constants in the turbulence model. A

3
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somewhat more involved approach was taken by Saffman and

,3 Wilcox (Ref. 14:541-546) utilizing a two-equation turbulence P.
model. However, the effect of roughness was treated rather '

empirically by making the boundary conditions for the pseudo-

vorticity at the wall a function of the roughness height.

This dependence was derived so as to fit the observed vari-

ation of the "law of the wall" velocity deficit with rcugh- >1

ness. Some encouraging profiles were also computed for the

mean and fluctuating velocities. However, heat transfer

was again determined by invoking a Reynolds analogy with

4 the skin friction. Finson and Clark (Ref. 15:3-6) pre-

sented a technique which accounted for the surface rough-

ness by calculating the form drac" contribution by inrdivid-

ual elements. Following the arpproach of Finson and Clark,

Christoph and Pletcher (Ref. 16:509-510) used a two-layer

algebraic mixing length modpl that explicitly accounts for

mass addition and surface roughness, in addition to the

modification of the boundary-layer equations as sugges :ed

by Finson and Clark.

Scope of Present Study

The Flight Dynamics Laboratory possessed a digital

computer code called ITRACT, which computed the character-

istics of laminar and turbulent boundary layers for either

planar or axisymmetric flow over smooth surfaces. The

'•4

~~Ž,)

.4"

................................................................ *~*%**~*~*' , '~"aa~~- '

,'.' t.. 4. _ ,W%% ?"--.* - : W "- c" " "4" "Y" " " "g4" . . . . . .



I ---..... -- 7 ,, . J ••• • • • ,• •••• • • r

.4

purpose of the present study was to modify this code for

inclusion of the effects of surface roughness on compres-

sible flow. Historically, roughness effects have been

modelled by a law-of-the-wall velocity profile expression

in terms of an equivalent sand-grain roughness height.

Physically, the equivalent sand-grain roughness concept

is not very satisfying since an equivalent sand-grain

roughness height must be contrived for real roughness

heights, spacing and geometries. A physically" --;re

meaningful method is that employed 'y Finson ar.n' Clark

and followed by Christoph and Pletcher. In the .!resent

study, the same approach is followed but without invoking

any modification of the turbulence model. Rouh.hness is

represented by distributed sources and sinks i:-he

o appropriate governing equations. The rost :.mrc--rant

term is a sink{ term in the mean momentum:: equa-i•n rep-

resenting the form drag on the roughness elei.en-S. The

governing boundary-layer equations are cast in a form to

account for the blockage effect due to the rou-n.ess

elements. Accordingly, the fluxes along the 't--eamwise

direction are multiplied by (1 - D(y)/Z) whiere --,y) is

the element diameter at height y and Z the average centre

to centre spacing of the element (Fig 1). Fluxes in

a direction normal to the streamwise direction are multi-

plied by (1 - 7D2 /4 2 ). Here, the shape of the elements

has been restricted to circular cross-sections :nly, but

the modified code would eventually have the provision to

-IN



predict the roughness effects due to rectangular elements 4

as well. The computed results obtained by employing a

Reynolds stress turbulence model in combination with a

drag description for the effect of the roughness elements v

on the flow is compared against relevant data to establish

the validity and accuracy of the theory and to offer ex-

planations for the observed trends.

The model used in this study is aimed entirely at

distributed roughness, i.e., three-dimensional roughness,

appropriate to the vast majority of practical applications.

Two-dimensional roughness such as machined grooves normal

to the flow direction are not considered here. The two

types of roughness may yield qualitatively similar trends

in terms of roughness heig.ht, spacing, etc., but a sub- ,

stantial difference in the nature of the flow may be

expected. This model makes the basic assumption that the

forces on roughness elements can be viewed as form drag.

This implicitly requires that the flow approaching an

individual element be attached, whereas with 2-D rough-

ness elements, cavity flow is likely to prevail immediately

downstream of the roughness elements.

The next step in the study was to learn as much about

the computer code, ITRACT, as possible. This step included

a study of the equations of motion, continuity, and energy,

together with the perfect gas law and Sutherland's viscos- '

ity law needed for a boundary-layer calculation. It also N'

".%
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turbulent flow over smooth surfaces to experimental data

K to establish the authenticity of the code.

After the accuracy of tae present code was established,

the next step was to modify the coda in order to render it

capable of predicting the effect of surface roughness on

compressible turbulent flow. The modified code was verified

by comparing the results predicted by modified computer code :
with the experimental data available at the Flight Dynamics

Laboratory for the case of supersonic flow over rough flat

plate. This comparison will also establish the extent to

which the modification of the turbulence model is, or is

not, needod for accurate prediction of rough-surface

boundary layer flows.

5% The major accomplishment of this study is the exten-

sion of the usefulness of the existing computer code.,

ITRACT, by including in it the optional capability ofI
rough-surface boundary-layer calculations.



.. II. Analysis of Problem

Governing Equations

This section presents the governing equations for the

compressible turbulent boundary layer together with the

required boundary conditions. In their final form. govern-

ing equations include the effect of surface roughness.

The eddy viscosity and eddy conductivity models used to

represent the apparent turbulent shea-r and heat flux terms

appearing in the mean-flow boundary-layer equations are

discussed in the latter part of this section.

Coordinate System

The coordinate system employed is shown in Figure 2.

Thc boundary-layer coordinate system is denoted by x and y

which are tangent and normal to the surface, respectively.

The origin of the boundary-layer coordinate system x, y,

as well as that of the body coordinate system z, r, for

axisymmetric configurations Is located at the stagnation

point for blunt bodies, and at the leading edge for sharp-

tipped bodies. The velocity components u and v are oriented

along the x and y directicns, respoctively. Transverse

curvature terms are retained because of their importance

in the develnpment of boundary-layer flow over slender

bodies of revolution where the boundary-layer thickness

may become of the order of the body radius r . The angle

Sis the angle between z axis and local tangent evaluated

at (x,O).

8



Differential Equations"•

The flow of a compressible, viscous, heat conducting

fluid is mathematically described by the continuity equa- ii
tion, the Navier-Stokes equations and the energy equation,

together with an equation of state, a heat conductivity law

and a viscosity law. For flows at large Reynolds number,

Prandtl (Ref. 17) has shown that the Navier-Stokes equations

and the energy equation can be simplified to a form now

recognized as the compressible boundary-layer oquations,

These equations may be written as follows:

Continuity:

_ (rJpu) + _ (ripv) 0 (1)

Momentum:

Pu[Diiv 3u1 -d +~~ 1n 9u\ (2)
TL _ dx rj 9y (2)

Energy:

Su (CpT) +v (Opt) u u
ax y d .x

+ 1 [r KZ a (CpT) + I ) 2

ou 2:

Osborne Reynolds, who was first to observe and study

the phenomenon of transition from laminar to turbulent flow,

assumed that the instantaneous fluid velocity satisfied the

9



Navier-Stokes equations and that the instantaneous velocity

"" "u 1 ) could be considered to consist of a mean (time averaged)

component u and a fluctuating component u", i.e.,

ui(xit) = u + ui,(xit) where i = 1,2,3 (4)

In order to obtain the conservation equations, the instan-

taneous quantities in the equations (1) to (3) were re-

placed by their mean and their fluctuating quantities.

By taking the time average of the various terns aypearing

in these equations and making the boundary-layer assump-

tions, the following mean continuity, mean momentu- and

mean energy equations were derived (Ref. 18, 145, 216).

-%-4 3 (ripu) + [rip( V + 0 (5)

Momentum:

u uau + v+pLv' au =-di

p rxp 3Y dx

+ 3 ri (uLu - pr77)j (6)•j ýr[, \ •

Energy:

~~(CpT) + (v+ P vCT Kk a_ F Y (CpT)1ax / d ]y Cp y

,.1+(+ (7)
3;q"

(~2+ ar (-cpp7TP)] u- @WT u

10



'1 These equations are identical to those for laminar C

a .'1 ' flows, with the exception of the correlations of the turbu-

lent fluctuating quantities which represent the apparent

mass, shear, and heat-flux terms caused by turbulence.

A These fluctuating quantities were incorporated through

mathematical modelling. The apparent rass flux term PWv',

the apparent shear stress term Eu'v' and the apparent heat

,'., flux term CppvT are represented by a new velocity compo-

lat nent •, an eddy viscosity c, and an eddy conductivity iT,

respectively.

These termn were defined by the following relationships:

= v+ () V

K T -Cp u• T v 
( 10)

The turbulent Prandtl number is expressed, in a manner :

S~analogous to the laminar Prandtl number exp.ressed, in ter~ms '

F..-

S~of viscosity and eddy conductivity as:

P r ,t O P E( 
1 ".

K T 
( 1.

TeTo this set of equations the following perfect gas law

"and the viscosity relation of Sutherland were also addedr

Ik.4

-__4.

"I' oti e feutosth olwn efc a a

,- andt e vis osit relation of Sutherland were also` addedv:,.r• <,-' .' ,,,', .,' . ,,' -,,',.' , .".,' '.-,'.. ... ',.,,, •

4 
11



Perfect-gas law:

p Cp pT (12)

-9

Viscosity Law:

V T=.5 T (air only)
1e eT+S (13)

where le denotes the viscosity at the reference Te and IS'

is a constant,' This relation is approximated in theoretical

calculation by the simpler power-law:

J =(~) Y O.5<w<1.0 (14)

It has been found that Sutherland's formula con be approxi-

mated at high temperature by adopting values of w between

0.5 and 0.75, whereas at lower temperature the value of w=I.O

appears to be adequate.

Rough-Wall Boundary Layer Model

The basic model for the rough-wall boundary-layer is

the same as described thus far for smooth wall boundary-

layer flow and free-shear flows. The roughness model makes

the basic assumption that the additional forces due to the

roughness element,, can be viewed as form drag. This im-

plicitly requires that the flow approaching an individual

12
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element be attached. This model is more eppropriate for

distributed roughness, i.e., 3-D roughness elements, since

cavity flow is likely to prevail with 2-D roughness.

The rough surface is idealized as being made up of

identical elements. The bottom of the elements, or the

underlying smooth wall, is at y=O (Fig 1). The element

height is K, and Z is the average element spacing measured

from centre to centre of two adjacent elements. The total

number of elements per unit area is given by 1 /Z The

analysis presented here is for a case of roughness elements

with circular cross-section at all heights, with D(y) de-

noting the diameter of the element at height y for O<y<K,

but any general shape may be specified. Then, viewing flow

around the element at height % ea- two di:ensional, the form

drag between y - 6, and y + 6 is:
2 2

2D

where CD is the form drag coefficient. To relate this to

drag per unit volume, it is noted that there are C-2 ele-

ments per unit area, so that the appropriate differential

volume is z 6y and, therefore, the sink term for mean

momentum is:

2
Ru = 1Pun CT ý (15)

7 29

The drag coefficient could be specified to be equal to unity

(CD 1), appropriate to infinite circular cylinders (two-

13



dimensional elements) at local Reynolds number above the

Stokes-flow regime. However, lower values such as C D = 0.6

are more appropriate for finite elements (3-D elements)

such as cones, hemisphere, etc.

In addition, there should be source terms in the equa- -

tion governing turbulent kinetic energy and its dissipation

rate in order to describe the tendency of roughness to in-

crease the velocit~y fluctuation. Specification of the~se

terms is more speculative; their contributions are generally

smaller than the natural production terms and, hence, less .

critical to the model. These terms are not very important

compared to the indirect effect of roughness to increase

the turbulent energy by increasing the mean shear. Except Z

in the Stokes flow regime, heat transfer to ali element should

be small. Therefore, the only roughness term appearin- in

the thermal equations is a source term in the mean static

enthalpy equation. This term is constructed such that, in

combination with the sink term (Equation 15) for drag, the

total enth~alpy is not altered. Accordingly, the mean static-

enthalpy differential equation must include a source term Rh

defined as:

32I
~h ~ u D Dy/.(16)

The detailed derivation of this term is given in Appendix A.

If no further modification is made in the governing

equations, it is implied that the roughness elements are

1/4



* assumed to occupy no space (Ref. 25:2). This assumption

becomes progressively worse as the roughness density in-
Screases, therefore, the model has been extended to account

for the blockage effects due to the roughness elements.

Accordingly, the boundary-layer equations are derived in a

form to account for the blockage effect. This is done in

the following manner:

(a) At a given height y,.the fraction of flow area in

the x-direction, that is open to the flow, is {1-D(y)/.},

hence, fluxes in the streamwise direction, represented via

the convective operator pu ý/9x, are multiplied by this

factor.

(b) Fluxes across a surface area whose normal is in

the y-direction, should be multiplied by {1- D2 (y)/42k.

However, the roughness terms discussed above are already

based on the total volume, rather than the available flow

volume, and need no such factor.

With the incorporation of these modifications, the

conservation equations (5), (6), and (7) are recast as

follows:

Continuity:

f(y) a (rJpu) + a (rlo' ) = 0 (17)
7x ay

Momentum:

f(y) pu Bu + pv" au = -f(y) d_
7x ay dx

15 A
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+~By F(Y) r F u-

i -! Pu CD D(y)
- - (18)

B(y), 2

Energy:

f(y)pu 3(CpT) + v D(CpT) f(j)u dE
ax Dy dx

+-~j" K 1 ) . rB(Y)rj F~ (CpTYll + iirui

+1 ju BD D(y)

y2 B(y)3y 2  (9

In equations (1 7-1 9):

B(y) = (1 - rr 2 ().T2 (20)

f(y) = {1 - D(y)/,,/B(y) (21)

Details of the derivation of equations (17) through (19)

are given in Appendix B. The function f(y) contains the

main effect of blockage. If a stream function formulation

were incorporated, f(y) may be absorbed in the definition of

16
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the stream function that is introduced to eliminate the

normal velocity.

iv'b_ = f(y)pu (22)

S= -Pv (23)
ax

However, it is not done in the present work. It should be

noted that, if the elements are packed so tightly that they

are touching over some range of y, then D = Z and f(y) = 0

over that range. This formulation forces the velocity to

remain zero up to the height where D<9 and the flow is

blocked. In such cases, Y = 0 is redefined as the lowest

point where the flow is unblocked. (Fig 1)

A major advantage of this model is that solutions are

obtained for both velocity and thermal variables. Heat

transfer is obtained directly without invoking a Reynolds

analogy. Finite-difference solut' ns are obtained using

the boundary c3nditions that, (i) Fluctuating quantities

are zero at the base of the wall, Y = 0 and (ii) At the

outer edge, fluctuating quantities are zero and the flow

variables approach the free-stream values.

Transformation of Boundary-Layer EquationsI Equations (17-19), which are expressed in the surface-

normal coordinates in the physical plane, require starting

profiles, but these equations are singular at the stagna-

17

S , A.•- -.A.A. • -t. , t-. h. ,.-.- -.. -.- -. - . . . .. . . . . .



tion point. For this reason, the equations are transformed

to a coordinate system that removes the singularity at theSh

stagnation point, stretches the coordinate normal to the

flow direction, thereby, resulting in a more gradual growta

of the boundary-layer thickness and places the equations in

an almost two-dimensional form (Ref. 15). A combination of

the Probstein (Ref. 31) and Levy-Less was used in this

analytic study. The transformed coordinates C and n are
defined as:

C(x) = xo e u e 'a e r 2Jdx (24)

and
2j

n(x,y) = Pe Ue ro fYtj dy (25)
Pe

It may be pointed out here that turbulent boundary

layers are characterized by two length scales, namely, the

boundary-layer thickness and the wall-layer thickness, which

are quite different in magnitude and vary in the streamwise

direction depending upon the pressure gradient, wall boundary

conditions, etc., thereby, making the analysis of turbulent

layers more complicated than the laminar boundary layers

where generally only one length scale is present. In com-

pressible laminar flow, when the boundary-layer equations

are expressed in terms of Levy-Lees variables, the streamwise

growth of the boundary layer is significantly reduced thereby

18
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simplifying the numerical solution of the boundary layer.

But in turbulent flow since the Levy-Lees variables do not

properly capture the boundary layer thickness, it is neces-

sary to monitor the numerical solution and add computa-

"tional points in the outer region to accommodate the 3
boundary-layer growth. To overcome this problem, it would

be better to use the new self-adaptive coordinate trans-

formation for finite-difference solution of turbulent

boundary-layer flows presented by J.E. Carter et al.

ief. 32) as this permits a uniform mesh to be used in the

computational coordinate which extends across the layer.
This coordinate transformation uses the local value of the

skin friction to scale the thickness of the wall-layer

region, and the local maximum value of turbulent viscosity

tr ale the boundary-layer thickness.

To proceed with the derivation of the equations used

in the present study, the dependent variables are non-

dimens--znalized according to:

F( u e T (26)
ue

Next, the relations between derivative in the physical

(x,y) plane and in the transformed plane (•,n) are obtained

as follows:

P u Ie r [+ (27)

19



and

[ ] Pe Ue ro i (28)

In Eqs (27) and (28), the subscript outside the souare

bracket indicates the coordinate that is held constant during

the indicated differentiation process.

The transformed variable for the normal velocity V is

obtained as:

"V 2ý f(y)F _.2D + r0  (29)

Pe ue pe ro2 T ýx

The detailed derivation of equation (29) is given in

Appendix B.

0With this, the final working form of the governing

system, prior to linearization, was obtained as follows:

(Ref. Appendix B)

Continuity:

V + f(y)F + 2ý f(y)F = 0 (30)

Momen bum:

2g f(y)FF• + 3f(y)(F 2-e) + VFn

2 .7

1 1 {B(y)t jc-F }n - ¢ .D 2 (31)

20



Energy:

'2 f (y)Fe + ve = 1 It 2 Jrj B(y)E i en

"B(y)rj

+ t2j 2 + tcsF3  (32)

Further, the additional symbols included in these equations

are defined as follows:

k = P• (33)
Pepe

2 (34)

C pTe
I-3 = 2~e

u- e- (35)

t r (36)
0

- CD D(y) C (37)

SS B(y) Z2 r 2jp e e e

X= i +E- (38)

and =r Sp r t(39)

r,t

.U..21
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The function r appearing in equations (38) and (39)H represents the streamwise intermittency distribution in

the transitional region of the boundary layer, and is a

function of the x-coordinate only.

For the purpose of this study, the boundary conditions

in the-transformed plane were as follows:

Wail Doundary:

F(0) = 0

v(c1o) 0

e(ý,O) = ew, a constant (40)

~ Edge Conditions:

F(ý,Tje)= 1
T(<,•e) = 1 (Ref 19, 20)

In the following section, the turbulent transport

models (eddy viscosity and eddy conductivity) used in

this work are discussed.

Turbulent Transport Models

The basic model used in this study was that of

Cebeci, Smith, and Mosinkis (Ref. 27:1975-76). This

model treats the turbulent boundary layer as a composite

layer consisting of an inner region and outer region as

shown schematically in Figure 3.

K -> 22
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Inner-Region Model. The eddy viscosity model used for N

the inner region is based on the mixing-length hypothesis

of Prandtl (Ref. 21). The eddy viscosity for this region,

referenced to the molecular viscosity, may be expressed as:

3y (41)

where R, the mixing length, may be written as:

S= Kly (42)

To account for the region close to the wall, Van Driest

(Ref. 22) suggested a modification for the mixing length of

SPrandtl. The correct form for the mixing length in the

viscous sub-layer was given as:

= K1 y{1 - exp(-y/A)} (43)

where the exponential term is due to the damping effect of

the wall on the turbulent fluctuations. The parameter A is

usually referred to as a damping constant. The exponential

term approaches zero at the outer edge of the viscous sub-

layer so that the law-of-the-wall, equation (42), is valid

and it accounts for the effect of kinematic viscosity on

the turbulence near the wall. The damping constant A is

given as:

23 ".4
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A 2 26)vFT w (44)

with the subscript w denoting values at the wall. Equation

(43) was developed for a f~at plate. To account for flows

with non-zero pressure gradient, the constant A is modified

as follows. From the momentum equation, it follows that

the Rhear stress close to the wall may be written as:

'r = T dx (45)

0: t]hen Eq (45) leads to:
If A were redefined to be 26vt/) t q 5o

dx p1

Then, the corresponding expression for the inner-region eddy

viscosity becomes:

inner = 1 I 2L e p -Lu (/7)

[ ' p d x p Y

Outer-Re ion Model. The eddy viscosity in the outer

region is given by Lhe expression:

£outer = "o2 of (Ue-U)dy

or / \ PU 6"

I 'l (48)

where f* = °fye [1 - v

24



In order to account for the intermittent character of

"the outer-layer flow, equation (45) is modified by an inter-

mittency factor obtained by Klebanoff (Ref. 28).

= K2 P11e 6*y (50)

where the transverse intermittency factor y(y) is defined as:

y = ½ 1 - erf{5(y/6 - 0.'/8))

and app' 'ximated by

nY {1 + 5.5 (y/6)6}-1 (51)

which is a convenient and sufficiently accurate approxima-

tion to the error function.

The choice of K1 and K2 in the eddy-viscosity"_ formulae

depends slightly on the definition of the bound,,iry-layer

thickness 6. In several previous studies, (for example

Ref. 29:174-191), the values of the constants K and K2

are taken to be 0.4 and 0.0168 respectively, and 6 is

defined as the normal distance from the surface to a point

in the field at which F was equal to 0.995.

The constraint used to define the inner and outer

region is the continuity of the eddy viscosity. Starting

from the wall, the expression for the inner-eddy viscosity

applies until c. = c , provided that Y¾>50. If Y <50 when

i o, then the switch point is delayed until Y becomes 50
1

and Ei becomes equal to c- at Y=50. This prevents the

25
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suppression of the fully turbulent portion of the velocity

Sprofile that can occur at lower values of R This effect

persists to higher and higher values of R as the mach

number increases. Figure 3 shows a typical eddy-viscosity

variation across the boundary layer for flow over a flat

plate.

Eddy Conductivity

The eddy conductivity is formulated in terms of a

static turbulent Prandtl number Pr.t and the eddy viscosity

s (see equabions (9) to (11)). The two-layer concept for

the eddy viscosity model suggests that there should also

be a two-layer model for static turbulent Prandtl number.

Numerous assumptions have been made concerning the eddy

conductivity, and one of the earliest assumptions, which

Chas been used extensively, employed a constant value of

unity for the static turbulent Prandtl number. However,

experimental data definitely shows that Pr,t is a function

of (y/ 6 ); hence, this assumption is expected to lead to

error.

The incompressible data indicates that Pr,t ranges

between 0.7 and 0.9. Simpson, Whitten and Moffat (Ref. 30)
found that P ranges from approximately 0.95 at (y/6)

foundthalr,t

= 0.1 to 0.45 at (y/6) = 1.0. The data in this region were

predicted well by the expression

2I 2Pr't = 0.95{1 - 0.5(v/6)

as proposed by Rotta (Ref. 23).

26



For compressible flow, where very limited experimental

data are available, P has a value very near unity in the• ~r, t

outer region of the boundary layer and a value between 0.7

and 0.9 at the wall boundary (Ref. 24). Meir and Rotta

(Ref. 25) found that for 1.75 < M 5< , Pr,t increased

-- 4 +above unity for Y <50 and ranged between 0.8 and 0.85 as

the outer edge of the boundary layer was approached.

:he assessment of the current value for P must ber,t
based upon the agreement between experimental and calcu-

lated temperature profile over a wide range of flow vari-

ables. Due to inconclusiveness of much of the experimental

data which exists to date, a constant value of Prt equal

to 0.? is utilized in the present analysis.

:-he following chapter, discusses the linearization

San- dis-retization of the governing equation, followed by

the c-mnutational technique to solve the system of non-

linear -arabolic finite-difference equations.

27
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Fig. 3., Matchin the Inner and Outer Eddy Viscosity
" -" Models (From Ref 19:21)
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III. Method of Solution

The system of governing equations for compressible

laminar, transitional and turbulent boundary layers consists

of three coupled non-linear partial differential equations

(Equations (30) to (32)) and two algebraic relations

(Equations (13) and (14)). The most important feature

of this system is that it is parabolic and, therefore,

can be numerically integrated in a step-by-step prczedure

in the streamwise direction. In order to cast the equa-

tions into a form in which the marching procedure can be

efficiently utilized, the derivatives with respect .to

and n are replaced by linear finite-difference quotients.

In constructing the difference quotients, the sketC of

the grid-point distribution presented in Figure Z A

useful for reference.

The solution is obtained in the transformed plane for

arbitrary grid-point spacing in the C-direction and for a

spacing in n-direction such that the ratio of the sracing

between any two successive pairs of grid pcoin-s is a con-

stant.

The advantage of having variable grid-point spacing in

the C-coordinate becomes clearly apparent for problems in

which either the rate of change of the boundary conditions

is large or discontinuous or the mean flow profiles are

changing rapidly. Variable grid-point spacinr in the

31
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C-direction is implemented by having very small steps in

the initial region where the flow gradient is very severe

"- and again in some downstream region where transitional flow

exists. In the present analysis, certain stations in the

Z C-direction were designated where the streamwise step was

doubled from its value at the preceding station. Hence,

larger AC step sizes are utilized as the flow progresses

downsbream. Variable spacing in n-direction is even more

critical since the flow graiients near the wall are ex-

tremely large, whereas these gradients vanish near the

edge of the boundary layer. T]:e relationship between AT)

for the chosen grid-point soacing is. given by the following

equation (Ref. 19:32-33)

A i = (k)- 1  Ai (i = 1, 2, 3 .... N) (52)
0

where k is the ratio of any two.: successive steps.

Difference Equations

Three-point central-difference relations in p-direction

and two-point backward or t--.ree-roint backward difference

relations in the C-direction are used to reduce the trans-

formed continuity, momentum, and energy equations (Equations

(30) to (32)) to a system of courled difference equations.

Following the quasilinearization (see Appendix C) of the

non-linear terms, the difference quotients produce linear

difference equations when substituted into the continuity,

momentum, and energy equaticns. The resulting difference

32
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Wi, difference equations are written symbolically as follows:"9,,

Momentum:
A l (n ,1 )Fn .i + Al (n ,2 )Fn + A l (n ,3 )F n1

n -

n 
Bln 

) n1
+B1(n,1)e ni+ B1(fl,2)Gn + B1(n,3)One

+ Ci(n,1)Vn- 1 + Ci(n,2)Vn + C1(n,3)Vn+I = D1(n) (53)

Energy:

A2(n,1)Fn-1 + A2(n,2)Fn + A2(n,3)Fn+1

B2(n,1)E 1 + B2(n,2)e + B2(n,3)e+ 1

+ C2(n,-)Vin1 + C2(n,2)Vn + C2(n,3)Vn+ = D2(n) (54)

Continuity:

+ A3(n,2)F + A3(r_ 3)F

n% n+1+

+B3(n, 1)e n-1 + B3(n,2)e n + B3(n,3)en+l

+ 3(n,1)V + C3(n,2)V , + C3(n,3)V P3 r3(n) (55)

+ '( , )n-i + 3( 2)n 
, n+1

The coefficients A1) I)..., B1(n, )..., C1(n,i)..., and

Di(n)..., e bc., arcs functions of known quantities at

stations i-I and i-2 and are detailed in Appendix D. The

dependent variables F , and V appear in a linear form

as unknown at station i but are assumed to be known at

stations (i-I) and (i-2). Since, the equations comrrise

33
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a system of parabolic partial differential equations,

they can be solved by marching along • and a Gaussian

S• ,•,, elimination technique along n.

iod Computer Code

Dynamics Laboratory computed the characteristics of lami-

nar, transitional and turbulent flow: for either planar or

axisymmetric flow over smooth surfaces. This code was

modified to include the present analysis for rough sur-

faces. To initiate this codle, the following quantities

were specified as inputs:

y - the ratio of specific heat

P - laminar Prandtl number
r

Pr,t - turbulent Prandtl nurfer

W - the exponent in Suthe"la.r-a's viscosity law

BO - ratio of wall temperat.ure (T ) to frce
stream stag7nation tem-er.ture (T

Xtr - the streamwise location of transition from
laminar to turbulent flow i

SIDIFF - a flagged cuantity, tc s-ecify the three-

point or two-point differencing scheme for
the streamwise derivativ.e

J2DA - a flagged quantity, to specify a 2-D or

axisymmetric fl.oi,

The data regarding the size, shape and density of the

roughness elements was provided to the program in sub-

routine RUFVAR (Appendix E). The computer code provided

description of the boundary layer characteristics. Some

.' of the output of interest in the computer code consists

:"i
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of the boundary-layer profiles for Mach number, static

temperature, velocity, density, eddy-viscosity, enthalpy

• ,and pressure. It also provides values of boundary-layer

thickness, boundary layer momentum thickness, the coeffi-

cient of friction, eddy viscosity, and Stanton number

which is a description of heat-transfer at the surface.

The transformation from the (x,y) plane to the (•,n)

plane casts the boundary layer into a rectangular grid of

nodes with the surface of the model located at the level

j=1, as shown in Figure 4 where subscript (i,j) refers

to ý,n indices. The mesh spacing in the i,j direction

are 6ýi and Ani, respectively, which are not constant,

for reasons explained earlier.

The computer code solves the linear difference

equations (53) to (55). The solution of this system of

equations was determined '-y computing values of F, e, and

V at each of the nodes w4-thin the grid. With all the

values of these variables known at station i-2 and 1-1,

the values of F, 6, and V were solved at all points j at

station i using a three-point differencing scheme and a

Gaussian elimination technique. With the boundary-layer

solution completed at the station i, the computer code

marched to station i+1 in the streamwise direction and

the dependent variables F, 6, and V were determined in a

similar manner at the preceding station. The entire pro-

gram was therefore a sequential solution at a series of

c-stations frem the leading edge to the trailing edge of

35
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the model. Hence, the computer code followed the step-

by-step procedure depicted in Figure .. With a program

"" listing included in Appendix E, the main portion of the

logic presented in Figure 5 required further explanation;

hence, Appendix F was included to discuss four important

portions of the code. These included the non-dimension-

alization of the working variables, the computation of

eddy viscosity, Stanton-number, skin-friction coefficient

. and the roughness variables f(y), B(y), ani i s A Fortran

computer code key is also included as Appendix G.

63
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Inputs including y, Pr, P t' M't , Tco, stepping
"data is transformed plane, , T /T , turbulenttransition and intermittency considration, L,

PI dimensions and density of rouqhness elements.

, m .ue Rei

Nonaimensionalize
the key workin, variables

Initialize the
grid profile

Do to label 115
for each nodal
point in a ver- Compute nondimensional
tical direction properties at edge
at station sii of boundary layer

Return from labe Compute Fe ,

115 to recompute step length f.n2.tiýns,
at station s.+1 C, a.d

Label 6998
--.- - Set the total number

of modal points in
I one column of t:;e grid

IComput e

Return coefficients A,B,C, and D
from for finite difference

label 7005 equations

Compute

current station s. valuesof F. •.aný V

Continued on following
page
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Compute Tcurrent F=-F

If Tprevious step - 1 < convergence criterion,

T current .001 5

Labe
Return to --- False- 7005 Note: If convergence
label 6998 criterion not met in

100 successive checks,
True program was aborted.

lCompute 6, 6*, and 0 I

IIf iteration has reached
transition, compute eI

If AF between the 15th and 16th nodal points
below the edge of the boundary layer > .0001,

add one more point in n grid

Compute St
cf , Re 6 , ang Ree

e'

Profiles shifted back one station
in ý, as in F•i-2 Fi-11 and

i-I 
= F.1

! 1Print profile data
for selected stations

Return to __ab_115 Continue_
beginning of-- ab 15

main loop

Fig 5. Flow Diagram of the Logical Steps to Solution With ITRACT



IV. Results and Discussions

The modified analysis and computer program are

. capable of predicting the effect of surface roughness on

turbulent boundary layers. Prior to using it as a valid

predictive method, it was necessary to establish the

authenticity of the original code. For this purpose,

results were first obtained using the original code, for

turbulent flow over a smooth flat plate and cotpared with

A the experimental data of Dr. Fiore at the Air Force

Wright Aeronautical Laboratories and Dr. Donald Coles,

at the Jet-Propulsion Laboratory, California. Thereafter,

calculations were made for the case of turbulent flow,: :ver

rough surface and the computed boundary-layer profiles

for velocity, static temperature, pitot pressýre, .a..

number, density and stagnation terperature were comparsd

with the corresponding experimentally obtained boundary,-

layer profiles. Further, the computed profile for the

rough surface were compared with the computed profiles

for the smooth surface, so as to appreciate the effect of

surface roughness on the flow.

In these studies, a number of Xmportant assunptions

were made. First, the boundary-layer computation and the

comparison were performed for flow over a flat plate;

hence, the effect due to the stagnation region at the

leading edge and the shocking phenomena were neglected.
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Shapiro has alluded to the validity of the assumption of

free-stream conditions existing at some distance down-

stream of the leading edge of a plate (Fig 2 -21(c) and

the subsequent text (Ref. 35:1149-1150). Hence, free-

stream conditions were assumed to exist downstream the

shock wave. Further, the angle of incidence of the

model was assumed to be zero with respect to the flow in

the free stream. Second, the boundary-layer thickness,

6, was minutely small comroared to the characteristic

length L. Further, the pressure change across this

boundary layer thickness was negligible. Third, the

problem was limited to experimental cases where pressure

change along the streamwise direction was also negligible.

Numerically, dp was considered zero. Also, the flow was
dx

considered fully turbulent at the station where the com-

parison of the results were made. Fourth, the flow was

considered inviscid and potential beyond the edge of the

boundary layer. Finally, the Navier-Stokes equations

were simplified to the boundary-layer equaticns to des-

cribe the flow characteristics for y<6 (Ref. 3:117-121).

In all cases presented herein, the gas is taken to

be air and is assumed to behave as a perfect gas with a

constant ratio of specific heats (-y= 1.4), a constant

Prandtl number (P. = 0.72), and a constant static turbu-

lent Prandtl number (P rt = 0.9). The molecular viscosity

V is evaluated from Sutherland's viscosity law. The

external pressure distribution used is either experimental
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or obtained from an exact solution of the full inviscid

Enter equations.

Turbulent Flow Over Smooth Flat-Plate

Comparison With Dr. Fiore's Data (Ref 37). For the

purpose of this study, the results obtained from the orig-

inal computer were compared with Dr. Fiore's data for tur-

bulent flow over a smooth flat plate. The experiment was

conducted at a Mach number of 5.92 and a Reynolds number

Re of 3.6(10)7 The free-stream stagnation temperature

and stagnation pressure were 1098 0 R or 1995.38 psia,

respectively. The free-stream conditions and the data

of this experimental study are tabulated in Table I.

The computer code results were obtained for the sane

free-stream conditions. The point at which the transition

0 from laminar flow to turbulent was initiated, was obtained

n 6-rom the transition Reynolds number of 1.5(0) he wall

temperature was 602 0 R. The length of the model was 17.15

inches, and the boundary layer profiles c-mputed at the

end of the flat plate (i.e., X/L = 1.0) were compared

with the experimental profiles.

There is excellent agreement between the computed

and the experimental boundary-layer profiles as shown in

Figures 7 through 12, except in the region close to the

wall. The velocity profiles as shown in Fig. 7 compared

very well, except in the sub-layer region where the

computer code overpredicts the velocity slightly. On
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the other hand, the temperature profile (Fig. 8) is slightly

K '.- underpredicted in the same region, which is quite under-

standable due to the fact that the stagnation temperature

remains constant. The same trend is observed in the

boundary-layer profiles for density, Mach number, total

temperature and pressure is depicted in Figures 9, 10,

11, and 12, respectively. The discrepancy in the sub-

layer region could be associated with either of the fol-

lowing two sources of error:

(a) The Cebeci-Smith-Mosinki's model used in this

study to describe the sub-layer region of the boundary

layer was not adequately taking into account the inter-

mittent nature of the turbulence in this region.

(b) The boundary-layer probe installed at the base

of the model could influence the force-balance measure-

ments. This could result in a lower experimental pressure

ratio near the wall, thereby causing some error in the

temperature profiles (Ref 39).

The tv') possibilities mentioned above were examined

further. It was observed that the Cebeci-Smith-Mosinski's

model has been used extensively in many previous studies

4 (Ref. 19) and has been found to predict sub-layer region

very accurately. While investigating the classical eddy

viscosity models in an attempt to establish a benchmark

for future development of turbulent boundary layer re-

search, Shang, Hankey, and Dwoyer (Ref. 19) founa that

the Cebeci-Smith-Mosinski's model was adequate to predict
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On the boundary layer in the sub-layer region. Hence, the

first possible source of error was discarded. The size

of the probe used in the experimental study was of the

order of the sub-layer thickness which could influence

the flow, thereby leading to a lower experimental pitot

pressure ratio near the wall (Ref. 39).

To correctly establish the cause of the error in the

sub-layer region, it was decided to carry out another

comparison of the computed velocity and Mach number

profiles with the experimental data of Dr. Cole (Ref. 38)

for turbulent flow over a smooth flat plate.

Comparison With Cole's Data (Ref. 38). The comparison

with Cole's data was carried out to check the accuracy of

the original code, since the comparison with Dr. Fiore's

data showed some discrepancy between the computed and

the measured results in the sub-lcyer region. The data

of Dr. Cole, as Labulated in Table II, was obtained from

experimental investigation of turbulent flow over a

smooth flat-plate for the test conditions as follows:

MI = 4.554
Po = 8132.788 16f/ft 2

To = 522.64°R

Tw/To = .6764

The length of the flat-plate was 21.48 inches and

the boundary-layer profiles were compared at X/L = 1.0.

In Figs 13 and 14, the comparison between the computed
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and experimental velocity and Mach number profiles is

presented. It is observed that excellent agreement

exists between the computed and experimental profiles

everywhere, including the sub-layer region near the wall.

Via this comparison, the authenticity of the origi-

nal computer code was established. The next step was to

%A4 verify the roughness model and the modified computer code

by conducting a comparison of the boundary-layer profiles

predicted by the modified computer code with the ex:peri-

mental data of Dr. Fiore (Ref. 20) for flow over a rough

flat plate.

Turbulent Flow Over Rough Flat-Plate

Comparison With Dr. Fiore's Data (Ref. 40) After the

authenticity of the original code was established, the

next step was to modify the computer code and then verify

its results. Prior to comparing the results of the modified

computer code with the experimental data for turbulent

flow over a rough flat-plate, results for turbulent flow

over a smooth flat-plate were obtained from the 2cdified

code, by epecifying roughness elements in the coie to be

of zero dimension. The results obtained were in complete

agreement with those from the original code discussed in

the previous section and plotted in Figs 7 through 12.

This showed that the inclusion of the roughness moiel to

the code has not affected the computer code for turbulent

flow over smooth surfaces.
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Next, to verify the roughness model used in this study,

the results computed by the modified code were compared with

the experimental data of Dr. Fiore (Ref 40) of AFWAL, for

turbulent flow over a rough flat plate.

The experiment was conducted at the following test

condi.. -

Mo = 5.534

Po = 2003.53 psia

T = 1122.94°R

T /Tw = .5829

Re = 3.665(10)7

The roughness element distributed over the flat plate

had the following dimensions (Fig. 6)

0(i) Height of the element = k = 0.02 inches

(ii) Breadth of the element = b = 0.04 inches

(iii) Depth of the element in the flow direction = C
= 0.04 inches

The density of the roughness elements was specified

as follows (Fig. 6):

(i) Spacing between two adjacent elements loca 3d

along a line perpendicular to the flow direction = B

.08 inches.

(ii) Spacing between two adjacent elements located

along a line parallel to the flow direction = C = .08

inches.
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'S The length of the flat plate was 17.15 inches, and

¾ the boundary-layer profiles computed at X/L =1.0 were

compared with the experimentally obtained boundary-layer

profiles. The free-stream conditions and the experimental

data are tabulated in Table III.

The results presented here are quite encouraging,

in that a rather basic model yields results that are in

good areeement with many of the observed trends regarding

the influence of surface roughness. Figure 15 shows the

excellent agreement obtained for the velocity profiles.

The computed profile shows the expected increase in thick-

ness and change of shape due to the presence of the

roughness elements. The maximum error in the computed

and the experimental velocity is about 1.88 percent and

9 occurs near the wall, and is attributed to the same cause

as for the smooth-wall case as discussed earlier in this

chapter.

The predicted and the measured temperature profiles

shown in Fig. 16 show the same trend, except that the

computer code has overpredicted the static temperature.

The distributed roughness elements over the surface

cause the flow to slow down due to form drag in the wall

region of the elements. This results in a higher static

temperature in order to keep the total temperature thep same.
The initial rise in the static temperature to about

827 0 R occurs in the region corresponding to the height of
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the roughness element, i.e., for y < .02 inches. At y > h

(height of the element), the flow is no longer obstructed

by the roughness elements and the temperature profile

follows the same decreasing trend as that for the smooth

surface profile. In the experimental results, the static

temperature is approximately 6700R at y = .02 inches and

the error is about 20% - 7 point. This discrepancy

occurs in the sub-layer reg.wa and could be traced back

to the influence of the probe on the flow (Ref 39). The

thin wall region plays a very dominant role in determining

the entire structure of the boundary-layer.

The density profiles shown in Fig. 17 depicts a

trend consistent with that of the static temperature

profiles since the density at a point in the boundary-

9 layer is simply the reciprocal of the corresoonfing

static temperature. The profiles are in reasonably good

agreement, except in the region close to the. edge of the

boundary layer.

The experimental boundary-layer thickness (6) is

.383 inches and the measured data exhibits a r..notonic

increase in the density from the wall to the edge of the

boundary layer. The same trend is observed in the ccm-

puted profile also. Hence, if the density were plotted

against y/6, for 0 < y16 < 1, then the profiles would

appear to be in reasonable agreement. As y increases

slightly beyond 0.4 inches, there is a sudden decrease

in the experimental density values, with the free-stream

I-
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I' density value being attained shortly beyond y =0.4..

Actually this trend is not consistent with the static

temperature profile given in the experimental data

(Fig. 16).

,Comparison of Computed Rough and Smooth Boundary Layer

,Results

The velocity profiles with and without roughness are

compared in Fig 21 . Both the profiles are for turbulent

flow over a flat plate. The twto cases have slightly

different free-stream conditions, as tabulated in Table

IV. The smooth-wall profile exhibits fully developed

turbulent flow characteristics and a smooth monotonic

increase in velocity from zero at the wall to the free-

stream value at the edge of the boundary layer.

Q The effect of distributed surface roughness on the

boundary layer development can be ovserved as a rea'uction

in the values of the velocity in the wake of the roughness

elements. In the roughness model, the rough surface is

idealized as being made up of identical elements. The

form-drag description of the roughness element causes the

flow to slow down in their wake region; hence, the rough-

wall profile is not as full as that corresponding to the

iw" smooth wall. Table V shows a corresponding increase in

all the boundary-layer integral thicknesses when roughness

is :included.

Semi-empirical analysts of turbulent boundary layers
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are often based on some form of law-of-the-wall correlation.

.• The law-of-the-wall is defined most simply in terms of the

dimensionless parameters

U+ = U and Y+ =y T (56)
r °-

t w

where U = ('Ww/w)A (57)

Within the boundary layer, three distinct regions are found

to exist; the sub-layer, the logrithmic region and the

velocity-defect region. The general form of the relation-

ships governing smooth-wall boundary layer is given by:

U+ Y+ for Y < 11 (58)

U ln Y + C for Y+ > 11 (59)

The effect of roughness on the law-of-the-wall equation

has been shown *o result solely in a shift in the inter-

cept, C, in equation (59). The same trend has been

predicted in the computed smooth and rough velocity

profiles. The rough-wall profile looks similar to the

corresponding smooth-wall profile, except that it is

shifted towards lower values of velocities. This trend

is consistent with the rough-wall results where the shift

in the profile is directly related -to the size and density

of the roughness elements. The computed boundary-layer

profiles show the expected increase in thickness and

1: 49
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change of shape due to roughness.

>1 Skin Friction and Heat-Transfer

S The addition of roughness elements to the smooth

surface can significantly affect turbulent skin friction

and heat transfer. The roughness model used in this

study was tested for prediction of skin friction augmen-

tation due to addition of roughness element to a smooth

surface. A comparison between the computed skin friction

values for a smooth surface and a rough surface was

accomplished. The predicted skin friction coefficient

for the two cases was plotted versus dimensional distance

along the flat plate in Fig 29. In this study, square

roughness elementf with K = .02" b = d = .04h and B = C

.08" were used. Fig 29 shows the expected increase in

the skin friction. For rough surface the skin-friction

was 40-60% higher as compared to smooth surface. The

validity of the skin friction augmentation by the model

could not be confirmed due to non-availability of any

experimental data.

As regards heat transfer, the original model for

calculation of Stanton number was not modified in this

study, hence, the expected -.ncrease in the heat transfer

due to roughness elements was not predicted by the code.

On the other hand, a decrease in Stanton number was noted

sinoe smooth surface had a higher pressure gradient

compared to the rough surface near the wall. Hence, a
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need for incorporation of a suitable model for accurate

prediction of heat transfer augmentation was felt. It may

oe noted, that, one particular useful aspect of this rough

wall turbulence model is that the results can be examined N

to determine the nature of the roughness influence on

turbulent boundary-layers. One rather consricuous con-

clusion is that the Reynolds analogy between friction and

heat transfer is not preserved with significant roughness.

This result is well known and derives from -he absence of

a heat transfer analogy to form drag on eleslents. The

computation shows that the velocity flu-ctuaui`ns increase

in proportion to friction velocity U+ = (¶',w)• but the

temperature fluctuations are hardly chanrged by roughness.

Since T w 7rv and q v _v T , the heat transzfe-r augmenta-
w

tion is the square root of the skin fric_ r' augmentation:

st f

st c- - (60)0 0

where subscript ?ot denotes smooth wall.
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Fig. 6. Dimensions and Distribution

of Roughness Elements with
Rectangular Cross-section
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Table I

:, Data for Smooth Flat Plate (Ref 37) Probe
Boundary Layer Profiles

Pt(y) T(Y) + T(y) U(y) f(y)x10 4

Y t
2 4Inch psia 0R M(y) OR ft/sec #sec /ft

0 1.385 604.62 0 604.62 0 1 9234
.021 5.65 963.35 1.666 619.37 2032.11 1.8776
.053 12.52 1034.0 2.578 443.87 2661.67 2,6199
.083 19.98 1066.0 3.292 336.54 2959.25 3.4555
.087 20.73 1069.0 3.355 328.75 2981.07 3.5374
.112 26.25 1089.0 3.789 281,28 3113.96 4.1345
.138 32.01 1094.0 4.194 242.12 3197.95 4.8031
.148 35.75 1097.0 4.438 222.13 3240.80 5.2352
.169 42.39 1099.0 4.840 193.35 3297.33 6.0147
.204 52.14 1100.0 5.375 162.27 3355.21 7.1667
.205 53.94 1100.0 5.469 157.57 3363.61 7.3804
.232 60.53 1100.0 5.797 142.47 3390.-6 8.1627
.255 61.23 1100.0 5.831 141.03 3393.00 8.2458
.272 63.50 1100.0 5.939 136.57 3400.88 8.5153
.284 62-73 1100.0 5.903 138o05 3398.27 8.4239
.322 63.18 1100.0 5.924 137.18 3391).80 8.4773
".328 63.00 1100.0 5,915 137.53 3399.19 8.4560
.359 63.10 1100.0 5.920 137.33 3399.53 8.4678
.378 63.31 1100.0 5.930 136.93 3400.24 8.4928
.395 63.09 1100.0 5.920 137.35 3399.50 8.4666
.411 62.90 1100.0 5.911 137.72 3398.85 8.4441
.445 63.37 1100.0 5.933 136.82 3400.45 8.4999
.447 62.97 1100.0 5.914 137.58 3399.09 8.4524
.476 63.18 1100.0 5.924 137.18 3399.80 8.4773
.503 63.91 1100.0 5.959 135.79 3402.25 8.5640
.512 63.18 1100.0 5.924 137.18 3399.80 8.4773
.535 63.50 1100.0 5.939 136.57 3400.88 8.5153
.565 63.58 1100.0 5.943 136.42 3401.15 8.5248
.569 63.65 1100.0 5.946 136.28 3401.39 8.5331
.596 63.17 1100.0 5.924 137.20 3399.77 8.4761
.631 63.24 1100.0 5.927 137.06 3400.01 8.4845
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~ Table II

Data of Dr. Cole's Experiment for Turbulent
Flow Ove- Smooth Surface (Ref 38)

Y/O Nu/ue Y/e M/Me

0.60 0.500 0.60 .275

0.80 0.555 1.19 .355

0.98 0.60 1.60 .385

1.50 0.645 2.20 .412

2.10 0.687 2.80 .439

3.80 0,750 3.70 .480

5.20 0.790 5.50 .535

6.10 0.815 6.65 .575

6.80 0.030 7.85 .610

7.85 0.845 9.45 .659

9.45 0.880 10.70 .700

10.55 0.900 12.30 .756

13.60 0.950 13.65 .799

15.60 0.975 15.70 .880

16.25 0.985 17.19 .939

19.20 1.00 19.30 .980

21.20 1.00 21.20 .992
22.80 1.00 22.80 1.00

24.75 1.00 24.75 1 .00
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Table III

Data for Rough Flat Plate (Ref 40) Probe
Boundary Layer Profiles

Y Pt(y) Tt(Y) + T(y) U(y) f(v,)x10 4

Inch psia 0R M(y) 0R ft/sec #sec /ft 4

0 1.632 654.52 0 654.52 0 2.0936
.024 4.97 925.0 1.3992 664.72 1767.63 2.0614
.065 9.19 1000.50 1.9980 558.84 2314.34 2.4521
.092 10.93 1035.0 2.1962 526.80 2470.01 2.6012
.103 13.05 1045.0 2.4156 482.22 2599.26 2.8417
.126 14.34 1060.0 2.5398 462.86 2677.44 2.9605
.147 16.50 1072.0 2.7351 429.47 2777,34 3.1907
.171 20.61 1085.0 3.0724 375.70 2918.07 3.6473
.181 20-50 1089.0 3.0639 378.46 2920.62 3.6208
.212 26.28 1098.0 3.4845 320.27 3055.59 4.2786
.230 27.50 1104.0 3.5670 311.46 3084.56 4.3997
.246 30.05 1106.0 3.7334 292.00 3126.03 4.6928
.267 34.80 1110.0 4.0251 261.77 3191.08 5.2348
.297 44.20 1114.0 4.5476 216.89 3281.73 6.3179
.299 44.10 1115.0 4.5424 217.49 3282.47 6.3005
.332 55.70 1116.0 5.1147 179.07 3353.78 7.6522
.355 62.50 1117.0 5.4222 162.35 33.85.34 8.4404
.364 64.09 1117.0 5.4917 158.85 3391.54 8.6263
•383 65.08 1117.0 5.5344 156.75 3395.26 8.7420
.412 67.25 1117.50 5.6271 152.40 3403.83 8.9917
.426 67.60 1117.50 5.6419 151.71 3405.05 9.0326
.447 67.50 1117.50 5.6377 151.90 3404.70 8.6703
.475 64.50 1117,50 5.5094 158,05 3393.85 8.6002
.480 63.90 1117.50 5.4834 159.34 3391.57 8.4819
.503 62.92 1118.0 5.4407 161.56 3388.52 8.5601
.530 63.59 1118.0 5.4699 160.08 3391.14 8.6704
.547 64.60 1119.0 5.5137 158.05 3396.51 3.5968
.565 63.97 1119.0 5.4864 159.40 3394.12 8.5968
.590 63.77 1119.0 5.4778 159.83 3393.35 8.5735
.607 64.50 1119.0 5.5094 158.26 3396.13 8.6587
.670 64.27 1119.0 5,4995 158.75 3395.26 8.6319
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Table IV

Free Stream Condition for Smooth and Rough -

Experimental Data (Ref. 37, 40)

Smooth Surface Rough Surface

M ® 5.92 5.534

To (OR) 1087 1122.94

Po (psia) 1980 2003.53

Tw/To .5538 . 5829

L (in) 17.15 17.20
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Table V

Comparison of Thickness for Smooth and Rough Cases

Parameter Smooth Rough

Me 5.92 5.54

Po (psia) 1995.38 2003.53

T (0 R) 1098.38 1122.94

Tw/T .5538 .5884

Re 16701.92 62954.7

6(in) .2069 .4735404
6*(in) .0992 .3792

e (in) .00793 .0295
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SD V. Conclusions and Recommendations

The original computer, ITRACT, solved the con'pres-

sible turbulent boundary layer over smooth surface. The

purpose of this study was to extend the usefulness of the

computer code by incorporating a modification for inclu-

sion of the effect of surface roughness on compressible

turbulent boundary layer. In this study, the roughness

model proposed by Finson and Clark and followed by

Christoph and Pletcher was employed without invoking

the modification of the turbulence model. Roughness

was represented by distributed sources and sinks in the

appropriate governing equations. The most important term

was a sink term in the mean momentum equation reprasenting

form drag due to roughness elements. The governing

boundary equations were cast in a form to account for

blockage effects of the roughness elements. With the

computer code modified to include the effect of surface

roughness, compressible turbulent boundary layer flows

perturbed by the roughness elements could be solved.

The roughness model employed and the modified computer

code were verified through comparison of the calculated

results with the experimental data of Dr. Fiore for

compressible turbilent flow over rough surface.

As a result of incorporating a roughness model in

the computer code to predict the effect of surface
:i _
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roughness on the compressible turbulent boundary-layer, the

Q jQ.. following conclusions were reached:

1. The results presented here are quite encouraging,

in that a rather basic model yields results that are in

agreement with many observed trends regarding the influence

of surface roughness.

2. The assumptions inherent to this model are limited

to the basic nature of the flow around the roughness ele-

ments, and no ar-roximations have been made regarding

profiles of the boundary layer quantities, tur'bulence -+

level, or relations between the momentum and energy ,

fluxes.

?3. The cCrTuter code is capable to handle roughness

elements cf an-- zeneral shape. It is not restricted to

0 roughness e.-e.ents with circular cross-section only.

The folloir½cazreas are identified for further study and

improvement to :he method described and the computer code:

1. The Levy-Lees transformed coordinate system could

not properl:y zarture the turbulent boundary layer thick-

ness, srecific+aily, for the rough surface case. The trans-

formed cocriinate n became too large and it was necessary

to monitor the numerical solutions and add points in the
I,

outer region tc accommodate the boundary layer growth.

A better turbulence grid generation for this type of flow r

can be used, suýhi as that proposed by Carter et al. •

2. The f'cr. drag coefficient and spacing between the

elements be allowed to vary.
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23. The effect of one element on another be included.

<'• 4. It would be useful to have better data to s~udy

on the effects of roughness density and shape for distri-

buted roughness.

5. The combined effect of roughness and mass addition

and the effect of roughness at strongly supersonic or

hypersonic edge Mach numbers may be examined.

6. A model to accurately predict the heat transfer

augmentation due to roughness elements be incorporated.

Moreover, the calculated skin friction augmentation due

to roughness elements be comparei with experimental data

to establish its accuracy.
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Appendix 'A'

Derivation of Source Term for Energy Equation

Including a sink term R - in the mean
2 2 .

momentum equation (equ. ) requires inclusion of an appro-
priate source term Rh = p3CD in the stati4c enthalpyrm

2 2 "
equation such that the total enthaipy is not altered.

The mean static enthalpy equation after additio, of

source term, Rh, may be written as

p- D + pu 3_•h u n + a __ y y r - Th'v']

3xay dx ayLTr -
+_ - uv �_a+ +I (C.1)
Dy 3y 2 k

Rewriting the mean momentum equ

dx 7y --yT y

2

Substitute (A.2) in (A.1) to get,

_" 3-E + -u 3j) + pý (Th + u ua

a [u -u p- u' '71 + -"- _-y - 'h'-TT] (A'3)

L a Pr 3yJ

To express •-h'v', ýF in term of total-enthalpy, the fluctu-
3y

ating total enthalpy may be expressed as: (Ref 3c'76-77)

H' = h' + U u' (A.4)
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Multiplying both sides (A.4) by Pv' and averaging,

Hp p ht v- + u P u'v (A.5)

Noting that,

DR= D. + 1 3-u (A.6)
7x ýx DX,

and,

__=a~+ -U (A.7)

Substituting equations (A.5), (A.6O,, and (A.7) in (A.3)

puH+p H= uH + 0 -W ----tvl

+ L -: - u • ] (A.8)
Pr Pr

Heat transfer normal to the ma'-in l, is given by

(Ref 36:66)

-, ._ - au (A.9)
Pr oy :-r 3y

Substitute (A.9) in (A.8) to :et'

Pu DH + pý 3H 3 U. l - HI (A.10)

It is evident from eauation (A.1O), which is the total-

enthalpy equation, that the addition of the source term, Rh,

to the static enthalpy equation, has not altered the total

enthalpy equation.
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Appendix 'B'

Derivation of Conservation Equations icl.0inp:

the Roughness Effect in Levy-Lees Variables

(BI) Roughness Effects

Equations (15), (16), (20), and (21) are repeated here

for zonvenience:

Sink term included in the mean momentum equaticn:

Ru = -1 pu CD DLLY (B.1)
2 2

Source term included in the mean static enthalpy equation:

Rh = +1 Pu 3 CD D (B.2)
2 •2

""Blcckage terms:

B(y) = - 2 (B.3)

4P, 2/

f(y) 1(1 - D41) /B(y) (B. )

(K2) Conservation Equations in Physical Plane

(a) Continuity Equation:

Introducing the blockage effect in continuity equation

as explained earlier in Chapter II, Equation (4) becomes

1 - a_ (rJpu) + 1 - 7D 2(y) a (rJpý) = 0 (B.4)
P 9 x 42 ay

Dividing thru by B(y), (B4) becomes:

Sf(y ) a (ripu ) + a (rip -) = 0 (B.5)
ax ay
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e (b) Momentum Equation:

Introducing the blockage effect and adding the sink term,

the momentum equation (equation (5)) becomes:

ax• 4Z2 9y
dulEj2 u+ 1 1 iT 1u a 2wu ~v

1 -u "(B.6)

411 Du GD ( B
2 2 2

Dividing thru by B(y), (B.,6) becomes:

f(y) pu au + p' au =
ax ýy

-f(y) dx y [B(y)rJ - pu-vi)]

.- 1 2 CD D(y)

2 B(y) k 2B7

(e) Enerpgy Equation:

introducing the blockage effect and adding the source

term, the energy equation 'eauation (6)) becomes:

1 D(y) Pu ,(CpT) + }P(y)c 3 (CpT)

U 11d v' + 1 DBy)r K2k ______

Y, dx rj Dy Cp @y

N+B(y) ui (,u)2 + 1 [By)1'-pTF-

B(y) ouv-- 3u + 1 u CD D(,•i (B,.8)
ýy 2 L2
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Dividing thru by B(y), Equation (B,6) becomes:

f(y) pu 8T + p• 3T = f(y) u d

•TTrT [Cp y rT-Cp y Cp @y

+ 1 r~cp • B(y)rJ(-Cppvv-r'TT) - l

+ 1 pu3 CD D(y) (B,9)

27 cp Z2

(B3) Transformation to Levy-Lees Variables

The transformation of Probstein-Elliott and Levy-Lees

(Ref 31) is used to transform equations (B.5), (B.7), and

(B.9). The Levy-Lees variables F,, are defined as follows:

(x) pe ue ve ro 2 J dx (B.10)

and

n(x,y) P •e ue roe fY tj p dy (B.11)

2ý pe

The partial-derivative opt, rator in the new coordinate system

( ,n) becomes

[] i = ue ue2rcJtJ (B.12)

[•]rl = pe ue ve ro2j[3] + x [3] (B.13)
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Equations (B.1O) and (B.11) gives a transformation
pe ue Ve ro 2 j

"•:a •x (B.14)

an tJ ue 'oJ
D- - (B .1 5) M,

The dependent variable F, 0, and V are defined as: i

F = u , e T .-7e T• "
V ... 2 j r f y) F Ix + (B .16 )

pe ue we ro 2t ;

Continuity Equation

Equation (B.5) may be written as:

a (rio-V} - -f(y) .2 (rJou)
7y ax

Integrating both sides from wall (y=O) to sour-ce point y

in the field:,I

rip = oY f(y) (rJpu)dy + rej pwo vw
ax

Using Equation (B.!3)

r J P - x o- ) +y oI x fyfy(o~~ opuvW

Expanding,

rJP•: • tJ e rue

-•~r x ( orr f(y)(rojpu) 2ý dn

[Ify)oFnu 2 + dn) + ro( BL v6

pe ue jjerouer2j

9f) 3u) a (r3 p

Ine•atn oh ie fo al yO t ore on

•€ •-•. 4f .<:4 ;4•4',•4.,,'in t.he field:-;.-..- .""•' ••--, .'..-,'.-"-.-.. /.;



Using Equation (B.16)
P,( 0- l f (y) F dn

-n (f'f(y) FiJa +n rc3 pw vw,"qx otj

This equation can be re-written as:

rp =4 ~x [ 2C ( Of T' f (y) Fr

+ roj OW vw 2t tJ - L r f F' (B.17)ýx x •x C "

Simplifying, the first two terms on the RHS cf -'e above

equation are defined as:

v = 2' 27 0 I f( y) Fdn +r o~ J W w (B.18)

0 Substituting (B.18) in Equation (B.17)
r~•= •x

tj nx o0  f(Y) Fc-

rJp~tj tx v 2 x 0 f9 f(y) Fdr
2ý

v is given by:

v E. v 2t , f(y) f (B.19)
riptj[ 2&
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solving for the dependent variable V,

V = 2 {rJptj + 2C nx f(y) F)

substituting for C and re-arranging,

V = 2 f(y) Fnx + rJtJp3]

pe ue le ro2j 2 J

which is the same as Equation (B.16).

To obtain the continuity equation, differentiate equation

(B.17) w.r.t. rn, as follows:

Vri= - 2 f 2E f(y) F) + 0

.a1

Simplifying

v= -2P f.y F'• - f(y) F

Rearranging the above equation as

Vri + f(y)F + 4r f(y) Fý = 0 (B.20)

The continuity equation in Lev:.-Lees variable including the

blockage effect is obtained.

Momentum Equation

Rewriting the momentum equation (B.7) as:

f(y)pu au + p• 3u = -f(y)dp + 1 1 9 [B(y)rj
ax 7y dx B By7 7y

(I-uS P7-7O--v)- 1 pu 2 CD D(y)
95 2 B(y) X2
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Equation (B.21) is divided into small terms I, II, III, and

IV for convenience. Each term will be tackled individually.Considering term I,

I= f(y) PU u + 0' au

f(y)-pue F xx + + _otJ

4ro

x v - 24 px f(y)F nx f(y) D ue F2• a

f(y) pue2 FEx F + f(Y) pue 2 FTI Ft

+ f(y) Pue F ue + p

roJptj 2C
xv ue F - 2 qpx f(y) ue F F

2&

I = f(y) pue2 F x F + f(y) pue 2 /Fn F

4 + f(y) pueF 2 Ex ueC + ue 4vx F - f(y)» x -ue/F1

24 24

I = f(y) pue2 F 4x F + f(y) pue x F2ue

+ pue2 xv FT1 (B.22)

24

Considering term II,

:IT =-f(y)
dx

From invicid flow

dpe -pe ue due
d& d4
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-I- -- 7-

Substituting in II above,

II +f(y) pe ue ue = f(y) pe ue xue

II = f(y) pe ue xue (B.23)

Considerinig term III now,

111 1 1 (B(y) r i~ Wu 2 - PUIVj

~.IBut; C= -P u'

Where r is the intermittency factor.

1 1 n B(y) r! (iu + EP)au

1 1 n [B(Y) r3 (ij + El') u-

r

=1 1 rtjueroip B(y) rJ N~ + :,F)

B*y 3i 2-ý 2

II=1 ue ro 2j {tj (pj Er) D F)
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Finally, considering term IV,

IV= -1D -D y ue2

2 B(y)k 2

2 F 2
-.V 1 CD D(y) p ue F

2 2

IV =-1 C ~y ue2  2
B(y).Q (B.25)

Substitute Equation (B.22) to (B.25) in Equation (B.21)
f(y) Pue2 F xF• + f(y) pue xF2 u ore2

2ý

f(y) pe ue F ue uF + u 2jp f 2  N + e Fri

x B(y) 2x {1 n

'-1 C D(y) pue F (B.26)" B(Y)k2 ( .6

Simplifying:
LN 2

ue pF x {2ý f(y)F• + f(y) 2 F ue•}S2--g ue

D+ ue E x VF, f(y) pe ue x ue + ue3ro2JO

2E B(y) 2ý

2J + Er) pF C D(y) pue 2 F2
,,,2 2

2 B(y)k
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Dividing the above equation by ý ue 2

2C f(y) F F &+ f(y) ýF 2 ue &+ VF T
ue T

f (y) R( a ue~ + uero 2 j fB(y) t2 j v + :)p
P ue B~T C T T

x

- D y 2ý F 2
2 B(y)&2 2 ýx (B.27)

Substituting a, as defined earlier by eqn (35):

2& f(y) F F &+ f(y) BF 2 + VFI = fYe

+ uero 2jP 2j {t 2 i B(y)(ji + FFp IIr

- c D - ~ 2E 2j7

B~y~t peuewero2

Simplifying further,

2C f(y) F F + f WF2 _e) + VF -

1 [B(Y)ti _r) + EF 1 F~ CD D(y) &

1 {B(y)t2 j(1 + gr)t F 11D y)E 2

B ýYT )i TIB (y)R2. peueviero 2 j
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2j CD D~)•2
1 {B(y)t 2J k F) 29 2j

SB(y)Z9 peuejiero

Hence, the momentum equations become:

2
_ =) + F {B(y) t2 J-kFq

2C f(y)FF + F(y)B(F - 0) + VFC I t I

13 DD(y) 2C D~W7TE

B(y)Z Qeueuero .j
.A

The source-sink term is defined as follows:

¢ss = CD D(y)

2 2jB(y) Z ro peuee (B.28)

To obtain the final form of mear--momentum equation inc-u>3ng

the effect of surface roughness, in the Levy-Lees varis.les,

substitute (B.28) in the momentum eqn above,

2C f(y)FF + f(y)B(F 2  e) + VF = 1 {B(Y) t }

-¢ssF 2 (9.29)

Energy Equation:

Rewriting the Energy equation (B9) as:

f(y)pu 3T + p• LT = f(y) u d_ + 1 3
3-x 3Y Op dx B77yr Cp3y

[B(y)rJ Ki 3 (CpT)+ 1 3u)2 +1

[BYr (OT) 7L. OP 3y 3y _Bý y r PDy

{B(y)rJ(-cpvp-T')) - pu-v' Tk + 1 LuCn D(y) (3.30)
Cp gy 2B(y) L2 Cp
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Eqn (B.30) is divided into small terms I, II, III, and IV

for convenience. Each term wil.l be considered individually.

First, considering term I,

I =f'(y)pu DT + Pý DT

f(y)pueF a (Tee) + [ v Ln ~)~~ (Tee)

=f(y)pueF[ x L+n Tee+Ter) y ~xV 2 2) x f(y)F e T

-f(y)pueFý Te e + f'(y)pue Fý 8 Te t T er y Vx x T

+ f'(ypue~en e Y Tex ,f, F6~

ro'j

But T1 ,r2 rox =u ro2- euelic

Term I becomes:

I=f(y)pueFTe& x + f(y)pue& x FO Te + Te rojtjpue yen~
6, 2 rojt~j4

+ f(y)pue-n xTeF T - Te- 1 _x t~~ f(y) FO

rojt3  2-

I =f(y)pue F Te & e + f(y)pue ý Fe Te

+ pue Teý x VO 9 (B-31)
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fI (Y uv ud + 1 3 (B(y)rJ KRk (CpT))} ~ U'
7p 377yrJ Cpay TP TpY 7

But: x p eU eU e and KR.
dx 7p Pr

Hence, term II becomes:

*II -fq') UeF p Ut
Cp xe "e e ) a

B(y)rjCp

Sb (Y) rJJLC PTeyTi(iUe7 n 2 (B.32)

But: -Op rjv'T' = +K T ýT

IB y~r Opy r ( '

y {B(y) rj KT T ey0 T1 + E: U (T1 y 2

B(y)rjp 3nCp (B-33)

IV 1By u23 C D D(y) 1By CD Dy) Puel F3  (B.34)
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6 ~ Substitute (B.31) to (B.34) in (B.30)

f)Pe F e Cx er ()~ x e e Pue e Ex mer

=-f(y) ueF (C Pe u u +

BCprC Y "a.-(r, rCpTm e y I

+2 Tj (u3j + {,B(y)rj 'T TjI-LT fyOi
Op e ) 7TyTrj~ C;

+ ~(u F~ n + 1 ~D ~

Multiplying the above equn by 2ý/pT e u (I

2ý f(y) F 9+ 2ý f(y) F eT + V8
IC,e

-f(y) 2EF u Ue + Y-- B(y)rj i p ,.(
pe~~ eB~)~o e~--

pT Cx an Pr PPeux

I T- - - e B(y)rjCp ; Ueý

A 'B

+2&c Ue Fn 2 IY2+ 1 c D D(y) 2t, Ue 2__F_3 (B-35)

I7- joTeEx -CP9%2p e ýx

II B IA
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From invicid flow

2 =

T + 1 'e Te e u e

Te -p 
rCp

2 2

or2 -T 2 = -cuý (B.36)

pTe u e
pTe e CpT Ue e CpT--

2ý f(y)F O6 + VO IA + IIA + IB + "B + II" A (B.37)

22
'A + 'B 1 2 [(y)rj KT y T y

Pr ucp pu • rB(y)r y Pr Ue x e x

*0 1 D .L B (y ) rji7+ K T'aPr OpD 7u ex
: B(y)rj

But KT c
Cp Prt

ri2C ro 2j t2j p 2
IB(y)ri ±i PUe

B(y)rj 'TLr P-r 2 E pu e ro 2 j eU

12
B y I •Et 2 J B(y)rJ (1 + E r pp

By) ri a' Beye

a, [t2Jr B(y) k (B.38)

B(y)rj 7' T- T
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Where +E Pr
SPrt

p ue e

F 2  2 F2 2IA + IIB 2C 1L e j 'y+ 2c u T1 y
A BCp pT C.p epT

e x e x

I& -2 + E. F 2
pT e 2x QTC[p Op

p~pT e Cro 2 jt p2 e Ii e+o022

.oil 2

~C p

22

e x

her + U and•rra

"'I A 1e D(y) eUe 2F,

213(y)r 2 jO p Te ýx

I•l = Dy) u= t2•aF3  (.9

liA B = )I pT e~y) r 2• De e e
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F.-•, U.- .. , -. J •' ,,* . ' . ;'t °. . .• - J, - '. ¶• -. 3 ;• .- •, * ,: A• U.•. , • .U . .,. • -. r. -r. ,'- • • W , .',u . •

Using definition for a and s

•" IliA ass F

=D F (B.40)

Substituting (B.38) to (B.40) in (B.37) we have:

2C f(y)FeO + Ven = ; {t 2 JrJB(y'• £Z e }
B(y)rj P

t2Ji C- F 2 + a¢ p2
ss

2ý f(y)Fe + Ve - 1[t2rj i B(y) eq l
B(y)rJ[ Pr n1T

t- 2 - cx,' F3  = 0 (B.!/1)

.06
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I;
I Appendix C

Difference Relations

Three point central differencing relations for ri and

three point or two point backward differencing relations

are used to reduce the transformed continuity, momentum

and energy equations to finite difference form. It is

assumed that all data are known at the solution station

i-2 and i-i (Fig 3), and the unknown quantities need to

be determined at the grid points for "i" station. The

finite difference equations were derived with the stipu-

lation that a function could be described at any point by

t. Taylor series expansion about another roint. For the

present study the approximation was niade that frr -.r-y

functional value F,

F(i-1,j) = F(i,j) A•. L(i j) + Ai12 a 2
(,-i_,j i-1___ 2F(i,J) (C.la)

2 2

and

F(i+l,j) = F(i,j) - (A• + )-F(ij)

+(A'i-1 + A i-2)2 a2F(ij) + (C.lb)

27,2
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The scaling factor for t derivative are defined as follows:

Y1 = 2(At. 2 + 21iC) (0.2)

(At+ Ati 2

Y2 = 2(A•_ 1 + A•. 2 ) (0.3)

(A i"
i-2~

Y3 = 2A t2 )i-I (c.k)

i-2(A~i-1+ A i- 2 )

Y4 = (A~i_ 2 + Ai_ 1 ) (0.5)

~i-2

Ati_

i-2 i

Using scaling factors defined in eqn (C.2) to (C.6), Equation

(C.la) and (C.1b) can be solved to yield

;F] = Y3 F(i-2,j) Y2 F(i-1,j) ± Y1 F(i,j) (C.7);t i,j 2At iI

and

F(i,j) : Y4 F(i-1,j) - Y5 F(i-2,j) (C.8)
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Terms of the order AEi_1 A&i-2 or smaller are neglected.

This procedure produces truncation errors of the order of

Ai-2 i-19

For obtaining expression for ,etc, the Taylor

series expansions are next written about the unknown grid

point (i,j) in the n-direction as follows:

2
F(i,j+1) F(i,j) + Arnj F (i,j) + LL F (i,j) + ... (C.9a)

22

2
F(i,j-1) = F(i,j-1) - Anj_1 Fn(i,j-1) + An i-i F (i,j-1)..2 TI T

(C.9b)

Equations (A~a) and (A8b) can be solved to yield expres-

sion for F anc. 'F as follows:

F (i,j) = Y6 F(i,j+1) - 2Y7 F(i,j) + Y8 F(i,j-1) (C.10)Tm A •2 2
jn An 2 An 2

and

F rn(i,j) = Y9 T(ij+1) - Y O.F(i,j)- Y8 F(i,j-1) (C.i1)
2 t'- • An 2An.

where the coefficients Y6, Y7, .... Y10 coefficients are defined

as follows:

!i = ~ AnJ•"z (C. 12)

Y6 2/1 1 + A(

ýz

109



Y7 Arj/Anj-1 ~ (0.13)

Y8 = 2/ il1 + A (C.14)
And An1 Li

Y9 = 2/1 + (0.15)
Aqj-1

An.Y10 = • c16)
Aj - 1

Finite-difference representations for 30, 92e •e, 6 V are

derived simultaneously. 
33n

All of these are substituted in equations (30) to (32)

to obtain the corresponding finite-difference equation. Due

to their recurring appearance, the follow.ing symbols and

their definitions are introduced:

FM1 Y4 F(i-1,j) - Y5 F(i-2,j)

TM1 : Y4 T(i-1,j) - Y5 T(i-2,j)

and (C.17)

FM2 = Y2 F(i-1,j) - Y3 F(i-2,j)

TM2 = Y2 T(i-1,j) - Y3 T(i-2,j)
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%

Non-linear terms of the form, ( H wh),where G' and H represent

"any typical dependent variable, appearing in the governing

equations need to be linearized in order to obtain a system

of linear difference equations. Quantities of this type

are linearized by using equation (C.7) and (C.8), i.e.,

(O •-~)i = {YA G(i-1,j) - Y5(i-2,j)}{Y3 H(i-2,j)

-Y2 H(i-1,j) + Y4 H(i,j)}/2A.i_I + iI A~i 2 ) (0.18)

For example,

(F -L{) F f1Y2 1,,. - -3 FM2} (c.19)

The procedure used to linearize these rn:cn-linearized product

terms such as (DH)(ý11) is as follows:

{~ ~ ~~~T •o HI( •_, .,l.

D i D i- j " , Dj \-• -1,j_ a -1,j

+ (•.Z•(ýGa) (c.20)
"an'i_1,: an ~

where the terms (G) and H are discretized

ac or n it,j " ( 1 ibI , pI according to eqn (C.ii) but evaluated a- proceeding station
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2
(i-I). The linearization for quantities of the form ()2.

is obtained by setting H to G in eqn (0.19).

For example:

{aF(i,.i) 2 =2FY F(i,.i) - FY2  .21)

F2  2::-(i,j) F(i-1,j) - F(i-1,j) ýC.22)

44

where FY denotes :F.i-1,j), a known quantity whereas aF(i,j)
* 4and F(i,j) are un a:n r:.:n.

All terms had ".een represented in finite difference

form, and the final step incorporated these linearized models

into equations (32), (31), and (32) to derive the overall

system of finite -- _erence equations (Ref 19:67-71).

I,,

6-Ni
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"Appendix D

Coefficient in Difference Equation

Equation (33) to (55) are the difference equations used

to represent the partial differential equation for the con-

servation of momentum and energy and continuity respectively.

These equations are repeated here fo" convenience.

Momentum:

A1(n,1) Fn-1 + At(n,2) Fn + Al(n,3) Fn+1

+ B1 (n,1) On-1 + B1 (n,2) en + B1 (n,3) en+i
+ C1 (n,1) Vn-1 + CI (n,2) Vn + C1 (n,3) Vn+1 D1 (n) D.1)

Energy:

A2(n,i) Fn-1 + A2(n,2) Fn + A2(n,-) Fn+1

+ B2(n,l) en-i + B2(n,2' en + B2(n,3) 6n+1

+ C2(n,1) Vn-1 + C2(n,2) !n + C2(n,3) Vn+1 D2 (n) 'P.2)

Continuity:

A3(n,I) Fn-1 + A3(n,2) Fn + A3(n,3) Fn+1

+ B3(n,1) en-1 + B3(n,2) en + B3(n,3) en+1

+ C3(n,1) Vn-1 + C3(n,2) Vn + C3(n,3) Vn+1 - D3(n) '\D.3)

*1

I.
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These equations are obtained fro-- eouý.ticns (48), (49), and

,~ (50) and the difference quotients presented in Appendix 'Cf.

The coefficients Al (n,l), Bi (n,l) and so forth in equations

(D.1)~, (D.2), and (D.3) are functions of known quantities

evaluated at station i-1, and i-2.

The coefficients are as follows:

Al (N,l ) =Y8*XL* (2. *XLM1 *EM1 /DY-(C.:.41 -:Y" -7~'.'l *XLPM14 -TY+(D4
BYPP*EM1 *XLM1 /BYM1 -VM1))

AS 1~A (N, 2 =( 4. IX L*X LM1 *E M1 EY 7/DY +2 X L (X L -'YMM1 BPý
EMi *XLMl /BYM1 +EMl *XLPM1 *TY~~ ýY ~.:c~Ml*(XFY (N)* (D.5)
XBE+XSS (N))ý *SEP+ SEP *(2. *Y1 *F'.1 -F-2) 7 --X)
Al (:N, 3 )=X L* (2. *XLM1 *E Ml*Y6 /DY +(XL .l M ¶VU1 *X LP M 1TY+ (D.6)

k, No BYPP*EM1 4EXLMl /BYMl -VMl ) *fY9)
Bl N.1 =-XL*EM1 *XLPM1 *FY*YS (D.7)
Bf (N , 2DX2 *XBE *X-FY (NJ -ý2. *XL X ""LP 1 TYi 10 (D.8)
Ti (N,3) =XL*EMl *XLPMl *FY*IY9 (D.9)
Ci (N,1'=Cl(N,-3)-=. (ID. 10)
C1( N2)=DX2*FY (D. 11)

***2 N,1=--2.*XL*XA -L X L M 1 "'E M 1 , 8 - (D,12)
A2 N,2)=-(/f.XLý,XAL*XLMl1*EM1'lFN' YC+ý> -11 ~TI,';I' ~T'-,2)* (.
XFY(N) 3*DX2*ýXAL*ýXSS(N) -7?Ml _________________

A2'N, 3) =*. 'XL`XA LiXLM1 *,EM1 -`FYý (ID.14)
B2 N, 1 = XL*Y8 *(2. *XLM1 -ET M! (F F.-Y 1,1 +2. ~ (D.1,5)
XLPM1 *ETM1 *TY+BYPP*XM ?R) ~"~____
XLPM1 *EETM1 -*'TY+BYPP*XLM1 *K:M1 B.*L*1020 (D. 16)

-~~~ ~PR+SEP*X*Yl *XFY (N) *FM1 ) ~r> 2*Lr~*(.

ETMi *TY+BYPP XIlM -*BFTr41 /B3Y'.1 -PY> 9 (D.1 7)~

ýG,-C2(N 2 =- X *TY (.1~
Irv C2N1=2(N.3ý=0.____________ (D. 19)

A (N, 1 ) =3 ('T, 3) =0. - (). 21'))
A3 (N,2) = DX2+XEY1 *X7FY N) (D.21)___________

F-B3(i 1)=33N,2)=B3'kN3)=0T (D.229)
03 N1)-L*Y-8 (D.23)

_C3 _ ___ __ __ __ __ __ __ __ __ __ __ __ __ __ _ (D.24)

03 N j3)XL*y9 ____ (D.25)
D , N) DX2*IFY* (EMi -*XLPM1 ý'TY~V: .ý T"XFY (J)~D2 (.
+X*YI+D;X2*XSS(N) )*SEP

D2(N)=D2'*(XLPMl *ETM1 *TY/P?,V..:l?-'l TY+:-:2-<'--:A,-'LI.xlM1 *-E141 *

FM **3*SEP
D 3TF N=- MITM 2 4'X FY N (D.28)
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The additional quantities appearing in equations (D.4) to

• .(D.28) are defined as follows:

FM1 = Y4 F(i-1,j] - Y5 F(i-2,j) (D.29)
TMI = Y4 T(i-I,j) - Y5 T(i-2,j) (D.30)

VM1 = YL T(i-1,j) - Y5 V(i-2,j) (D.31)

FM2 = Y2 F(i-1,j) - Y3 F(i-2,j) (D.32)

TM2 = Y2 T(i-1,j) - Y3 T(i- 2 oj) (D.33)

XLM1 Z= (PliI/P1)e which may be written as

1 + (S_.,

XLM1 TM1 T e i (air only) (D.34)

TM1 + Tei

XLP!,1 = p = XLM1 e (D.35)
+j2TMI (.%)* +±V

ENI = T(i,j) = - + [(±+(i,+) (D.36)

3

ETMI = 1 (i,j) (D.37)

BYM1 = B(y)(i,j) (eqn 20) (D.38)

FY = Y9 F(i-1,j+1) - Y1O F(i-lj) - Y8 F(i-1,j-1) (D.39)
2An An) 2 A
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TY= 2T~-~jl -Y0 _ -1J - -8 F( i-i ,j-1 ) (D..40)

TYM = Yj ~ -1T+1' 1 (i-1,j4) - Y8 FE(i-l,j)1 (D412An 2A 7Fr

EY1 .2.. (i-l,j+l) - Y10 -(i-1,j) - y8 F(i-i,j-i) (D.42)

2An r 2Afl

BYPP Y9 BY(i-1,j+i)-YiO BY(i-1,j)-Y8 PY(1-1 ,1-1 ) (D.43)
2nAnI 2ATI

XDE =6(i~j) e)d (D-44)
u dEe i

NXAL = a(i,j) (.e) (D.245)

x 1 (D.246)

XFYV = f(y)(i,j) (eqn 21) (D-47)

X S = s0i,j) (eqn 37) (D.-48)I

Equations (D.1), (ID.2), and (D.3) are solved sirmultancously

by Gaussian elimination technique.
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PROGRAM ITRACI (INPUT, OUTPUT, TAPE5-INPUT, TAPE6=OUTPUT)

C
C THIS PROGRAM SOLVES COMPRESSIBLE TURBULENT BOUNDARY-LAYER

* C INCLUDING THE EFFECT OF SURFACE ROUGHNESSI THE SHAPE.HEIGHT
C AND DENCITY OF THE ROUGHNESS ELEMENTS IS SPECIFIED TO THE

C CODE IN SUBROUTINE RUFVAR.
C

COMMON 6, PR, REV, XMINF, OMEGA, BC, TW, PLO, T1O, RIO. VISIOy TE.
1 PE.REUEVISINFSUEP'SOrSDYW,SI,ERROR,TC.TA,IEDGE.IENDI,INTACT,
2 PRT.XXK.1DTRXXLAM,VARPRT,XINTER,SEPOICHS(S).IPRN(9).EO(300),
3 EN(300),EP(300),ETC(300),ETN(300),ETP(30C)),FO(300),FN(300).J2DA,
4 FP(300),TN(300),TO(300),XNNA(300),VN(300),VC(300)pVP(300),TP(300).

5 D1(300),D2(30Q).D3(3O0)
DIMENSION Y(300),A1(3O0,3),A2(~30C).3),A3(3O0,3),B1(300.Zý),
1 B2(300,3),B3(300,3)ý.CI(300,3),C2(300.3).C3(300.3)

N COMMON/CPDATA/ CP(24)qXP(24.),DP(24),IPRES
A COMMON/BLRVAR/BYO(300).BYN(300) ,BYP(300).XFY(30)O) ,XSS(300).

jj~~ uoXBRE.Xi4RE,XLS,XCD

1101 FORMAT(1X,3(4-,E15.9))
2008 FORMAT(IX.$PROFILE FAILED TO RELAX AT M *,5

9002 FORMAT (5EIO.6)
8003 FORMAT (1015)
9002 FORMAT(IHI .47X*INTERACTING BOUNDARY LAYER SOLUT 1CN$
9003 FORMAT (7HOGAMMA-F6.3..4H PRwF6.3,5H MFS=F6ý3.7H REYFS=EIO.4,BH rFS

1(K)nF7. 1,1 1H BOmTW/TIQ-F6. 4. 5H EPS=FE. 5)
9004 FORMAT(5HOPIO.,E1O.4.7H RHL,10zEIO.4,5H Tl0w,E'IO.4.7H YIS10-.ElO..A

1,4H SI.,EI0.4)
9005 FORMAT(7HQOMEGAa,F7.4,2-X,.6HPRT - ,F7.4,2X.7HBTRX - 1F7.4)
9019 FORMAT(I0X1 *WITH INTERMITTENCY CORRECTION*
9020 FORMAT(1OXU $WITHOUT INTERMITTENCY CORRECTION$
9021 FORMAT(10X, *TWO-DIMENSIONAL BOUNDARY LAYER*)
9022 FORMAT( lOX, $AXISYMETRICAL BOUNDARY LAYER*)
9023 FORMAT(10X,/1$---- SOLUTION NEEDS MORE POINTS FOR CONVERGENC --- *1)
C
C INPUT INITIAL CONDITIONS
C

READ(5.8002) G, PR, XMINF, REY. TA
* READ(5,8002) DS, SI, OMEGA. ERROR. XXI<

READ(5,8002) BO,BTRX. PRTo, XINTER: ~D1 S, 2A* PE

READ(5o8003) (ICHS(I), I1 1, 9)
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READ(n,8003) (IPRN(I), I1 1. 9)
XLAM-.5*BTRX
IF(IPRES.EQ.0) G0 TO 20
READ(5,8002) DPMAX
READ(5,8002) (CP(IJ),IJ3=1,IPRES)
READ(5,8002) (XP(IJ),IJ-1lPRES)
WRITE (6, 1100)
XMSQ=XMINF*XMINF
DO 10 131I,IPRES
PDPINF-1 *0+0. 5*G*XMSD*CP (13)
WRITE(6vl101) XP(IJ),CP(IJ).PDPINF

10 CPCI3)=PDPINF
CALL SMTHPR(BTRXpDPMAX,G.XMSO)

-. C

C COMPUTE NONDIMENSIONALIZING QUANTITIES
C
20 ZI- 1. + (6 - I.)/2.*XMINF$*2

PLO a (1./(G*XMINF**2))*(Z1**(6G/(G-1.)))
TIO a(1,/((G - 1.)*XMINF*A2))$Z1
RIO w G*PIO/(T1O*(G - 1.))
TINF - TlO/Zl
TW = BO*T1O
IF(OMEGA .EQ. 0.) G0 TO 101

"iIO= TIO**OMEGA
EP") (((G - 1.)*XMINF**2)**(OMEGA/2.))/SQRT(REY)
"t'SINF aTINF**OMEGA
G0 TO 102

101 'Cw19B. 6/((G-1.*) *XMINF**2*TA)

ý'IS10 * (TIO*f~l.5)*(1. + TC)/(TlO+TC)
FPS a((((1.+(198.6/TA))*(((G .*MN*2*1~)(S-- .*
JhINF**2)+(198.6/TA) ))/REY)**.t
VISINF w (TINFW*.5)*(i. + TC)/(TINF+TC)

102 SUw198.6
C
C OUTPUT INITIAL CONDITIONS

K.,. C
WRITE (6, 9002)
WRITE(6.I9003) G. PR, XMINF. REY. TA, BO, EPS
WRITE(6.9004) PLO. RlOq Ttb, VISIO, SI
WRITE(6,9Q00) OMEGA,PRT,BTRX
IF(XINTER.Eg.1..) WRITE(6,9019)
IF(XINTER.EQ.O.) WRITE(6,9020)
IF(J2DA.EQ.0) WRITE(6.9021)
IF(J2DA.NE.0) WRITE(6.9022)

C
C INPUT INITIAL PROFILE

'U C

12 MSTARTW2
C INITIALIZE THE STREAMWISE LOCATION

DS2-DS1=DS
DX2DS-DX1DSu-DXDS-0.
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SEPO-1.
C INITIALIZE THE STREAMWISE LUCATION

DO 201 LL-2,300
DYnXXK** (LL-2) *DYW

201 Y(LL)uY(LL-1)+DY
DO 700 LL m 1, 300
DI (LL)-D2(LL)-D3(L'-JuXNN(LL)=0.
VP(LL)-VN(LL)-VO(LL) a-Y C.L)

* ~~FP(LL)uFO(LL) -FNi..L)-TP(LL)-TN(L.L) -TO(LL)-EP(LL) -EO(LL)nEN(LL) *
1 ETP(LL)uETO(LL)SETN(LL)-BYP(LL).BV0(LL)UIBYN(LL)=.10

**700 Wý"NTINUE
DO 701 J - 1. 300
DO 701 1 - 1, 3

* ~~701 Al (3,I)*A2(J, I)uA3(J, 1)-BI (3,I)-B2(3, I)=B3(J, 1)-Cl (3,I)
1 =C2 (J. I) -C3(W,I1.=0.
PREF'mG*XMINF**2
TREF - (G - 1.)SXMINF**2

C
C INITIALIZE COUNTERS
C

ICOUNwMSTART
I0-lEDGE
I '*,= 1

I N.jCH-0
ITCNTI w1
IIN=0

C
C BEGIN FIRST-OR0DEIR 11NIDIAIGONAL MATRIX A OLUT ION **

DO 115 t'IMSTARTIENDI
IF(M.EQ.MSTART) MPOMSTART
IF(M.EQ.IENDl) MP-M
IF(M.EQ. (M/MSP)*MSP) MP-M
S-S+DS52
DX20S - DX1DS

- * DXIDS = DXDS
C
C COMPUTE LOCAL PRESSURE AND PRESSURE GRADIENT
C

CALL PRESSM(SJXMINF,,G,PPG1,DPBG1,TETNF,XME)
C
C COMPUTE LOCAL EDGE PROPERTIES
C

PE a PBGI/PREF
N PP aDPBG1/PREF

TE a TETNF/TREF
UE a SQRT(2.,$(T1O - TE))
RL-G*PE/ ((6-1.0) *TE)
TR-SU/ (TETNF*TA)
IF (OMEGA) 642,676,642



642 XNUEmTE$*OMEGA
GOT0688

676 XNUEmTE**1.5*(i.+198.6/(TA$TREF))/(TE+198.6/(TA$TREF))
688 CONTINUE
C
C COMPUTE LOCAL XI AND STEP LENGTHS
c,

DXDSoRE*UE* XNUE
IF(J2DA.NE.0) DXD6'DXDS$S**2
IF (M. EQ. 2) DXIDB"DX2D8-DXDS
DX2=.5*DS2*( (1.+DS2/DB1)*DXIDS+DS1*DXDS/(DS1+DS2)-DS2*D62I*DX2DS/
1 (DS1*(DS1+DS2)))
REYNDE=RE$UE*S/ XNUE
REYEXT-R'Y*VISINFSREYNDE
IF(M.EU.2) DXI.uDX2
IF(M.EQ.2) X-DXtDS$SI
X-X+DX2

C COMPUTE STEP' LENGTH FUNCTIONS
C

Y1=2. *(DX 142. *DX9) / (DXI+DX2)
IF(IDIFF .EQ. 1) Yl - '24
Y2-( (DX1+DX2) /DXI) p2.0
Y3-(DX2$DX2/(DX1*(DXI+DX2) ))*2.C1
Y4o(DXI+DX2) /DXI
Y5-DX2/DXI
TWTE m TW/TE

c
C COMPUTE ALPHA, BETA., AND LAMBDA
C

DUED=-P ( tRE * 1lE 'bD XDe)

XALmUE*UE/TE
XBE=2. 0*XSDUEDX/UE

C
C ASSIGN ROUGHNESS VA.RIABLES TO ELMATX
C

CALL RUFVAR(X. XNUE)
C
6998 LENGTH= lEDGE

C
C ASSIGN THE MATRIX ELEMENTS FOR THE FINITE DIFFERENCE EQUATIONS

CALL ELMATX( MXýpA.XETDF,1Y.Yp4.5TTTNI
1 AlA2,A3,Bl,B2oB3,CI&,CA2,C3)

C ASSIGN THE MATRIX ELEMENTS FOR THE FINITE DIFFERENCE EQUATIONS
C
C
c MATRIX INVERSION. SOLVE FOR F, THETEA AND V

CALL MATEQN3(FP,TP,VP,D1,D2-,D3,AI,B1,Cl,A2,52t,C2-,A3,53,C3,3,LENGTH
1 .300)

C
C MATRIX INVERSWCN, SOLVE FOR F.. THETEA AND V
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ITCNTI=ITCNT1+l
N- IEDGE4-I
DY-DYW$XXK**(IE2ODGE-2)
VK-(VP(IEDGE) /(YXK$ ( .+1. /XXs) ) -VP(IEDGE-1) *(1.-I. /XXK) $XXK-

I '/P(IEDGE-2)*XXK/(1.+1./XXK))/DY
DYuDYW$XXKS* (IEDGE-1)
KONwN+5
DO65IQ-N, KON
DV-DYW*XXK** (N-I) 4DY
FP (I Q) TP (I Q) * .*

65 VP(IQ)nVP(IEDGE-1)+vK*DY
C INITIATION OF SIMILAR~ SOLUTIONS

IF(M.EQ.2) GO TO 8020
GO TO 8018

8020 DO 8019 ImiKON
VO(I)-VN(I) -VP (I)

83019 TO (I) wTN (I) =TP (1)
C INITIATION OF SIMILAR SOLUTIONS
8018 IQ-IEDGE41

c U AND THETA PROFILES ITERATIONS

TAU2*(FP(2)-FP(1) )/DYW
IF(ITCNTI.EQ.2) TAUI=-10.*TAU2
RT12=TAUI/TAU2-1.
TAU I TAU2
IF(ITCNT1 *LE. 100) GO TO 7005
WRITE(6.2008) M
CALL EXIT

7005 IF(ABS(RTl2)eGT;ERROR) GO TO 69
C U AND THETA PROFILES ITERATIONS

C COMPUTE BLT, BDT(DELTA STAR) AND BMT(THETA)

55 COwTP(I)
* ~TP I 0.

BLT=BLDT-BLMTM-0.
XNN(1)-0.
DO 57 N=20KON
VY-DYW*XXK** (N-2)
CxTP (N)
TPInTPI+.5*DY* (CO+C)
CO-C
XNN(N)a'TPI$SQRT (2. *X) /(RE*UE)
IF~(J2DA.NE.0) XNN(N)-XNN(N)/S
BLDT=BLDT-e(2.-FP(N) /TP(N)-FP(N-1)/TP(N-i))*(XNN(N)-XNN(N-1))/2.

I *(XNN(N)-XNN(N-1))/2.
IF(BLT.GT.0.) GO TO 57
IF(FP(N).GE.0.99) DLT-XNN(N)-(FP(N)-.99)$(XNN(N)-XNN(N-1))
1 /(FP(N)-FP(N-1))

57 CONTINUE
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BLTaBLT*EP'
BLDTmBLDT*EPS

C""BLMT-BLMT*EPS
"'C COMPUTE BLT, BDT(DELTA STAR) AND BMT(THETA)

C COMPUTE THE EDDY VISCOSITY CUEFFICIENT
IF(S.LE.BTRX) GO TO 58
CAL•L REYSTP (KONTRXTREFXNUEXBESlITCNTI) "

C CQ.IPUTE THE EDDY VISCOSITY COEFFICIENT
C

58 ITCNT1=I
C
C ASSESMENT OF GRID PONITS IN ETA
C

IF(INDCH) 71. 71, 732
71 CONTINUE

IF(M - 20) 732, 732, 72 J
72 IF(ABS(FP(IED6E-15)-FP(IEDGE-16))-0.0001) 73,73.74
73 IF(ABS(TP(IEDGE-15) - TP(IEDGE-16)) - .0001) 732, 732, 74"*

c
C FOR TURBULENT FLOW SOLUTION NEEDS TO BE MONITORED CLOSE
C TO THE OUTER EDGE.WHILKE ADDING MORE POINTS THE MAXIMUM
C VALUE OF IEDGE BE RESTRICTED TO MAX. DIMENSIONS MINUS 25.
C

74 IF(IEDGE.GT.275) GO TO 75 .-
IEDGE=IEDGE+I

IQ=IoI+
C• WRITE (6. 9023)

75 DYUDYWtXXK** (IEDGE-2)
Y(IEDGE) w Y(IEDGE-1) + fY.

732 IQ w IQ- I
C ASSESMENT OF GRID PONITS IN ETA
C
C
C COMPUTE WALL STRESS AND HEAT TRANSFER AND OUTPUT STATION

CALL CFSTNO (TRXNUEX,SXBE,MBLDTBLMT,BLT,PBGIDPBG1,REYEXT.
1 XMEMP)

C COMPUTE WALL STRESS AND HEAT TRANSFER AND OUTPUT STATION
C
C
C SHIFT PROFILES BACK ONE XI STATION
C

NN a IQ + 5
DO 118 N=1,NN
FN(N)"FO(N)
FO(N)=FP(N)
TN(N) -TO (N)
TO(N) -TP (N)
VN (N) =VO (N)
VO(N)lVP(N)
ETNtN) "ETO(N)
ETO (N) =ETP (N)

1 21w - -* - - - - - . .. . . . . . . . . - - . - . . - ' - - - - - - - - - - - - - -



EN (N) .EO(N)
EO(N)uEP(N)
DYN(N) uBYO(N)
DYO(N)uDYP(N)

119 CONTINUE
DX~wDX2
DSIwDS2
IF(M+1-ICHS(IG) ) 1149113,114

113 DS2w2.O*DS1
16 w 6+1
INDCH - I
IF (M.EO.IENDI) GO TO 237
60 Ta III

114 DS~uDS1
INDCH a 0
IF (M.Eg.IEND1) GO TO 237
60 TO III

I1I CALL PRNCHS (ICOUN,IPI6,IQMSTARTIlINM,SYBLTXME)

115 CONTINUE
STOP
ENDI
SUBROUTINE PRESSM (5,XMo 6,P. DPDX, TYM)
COMMON/CPDATA/ CP(24)pXP(24),DP(24).IPRES

100 FORMAT( 5Xq*WARNINGI....CALCULATION IS OUTSIDE OF THE PRESCRIBED PR

IESSURE DATA, S IS LESS THAN XP(1)*)I
200 FORMAT( 5X.*WARNING....ICALCULATION IS OUTSIDE OF THE PRESCRIBED PR

IESSURE DATA. 5 IS GREATER THAN XP(END)*)
300 FORMAT(1x,5EI5.9)

* IPMIwIPRES-I
IF(IPRES.EQ.0) GO TO 40
DO 20 Iw1,IPRES
IF(9.LT.XP(1)) WRITE(6.100)
IF(8.GT.XP(IPRES)) WRITE(69200)
IF(6.LE.XP(1)) IRNI
IF(IR.NE.0) GO TO 30
IF(S.GE.XP(IPM1)) IRuIPRES
IF(IR.NE.0) G0 TO 30
IF((9.GE.XP(I)).AND.(S.LT.XP(I+1))) IR=I
IF(I'R.EQ.0) SO TO 20

C SEEKING THE BEST FIT
RS-(S-XP(l))/(XP(1+1)-XP(I))
IF(RS.GT.0S5) IR=I+1

C SEEKING THE BEST FIT
IF(IR.NE.O) GO TO 30

20 CONTINUE
30 IF(IR.GT.IPM1) LR-IPM1

IRP-IR+I
IRMWIR-1
IF(IR.EQ. 1) IRMuIR+2

C COMPUTE THE CUBIC SPLINE COEFFICENTS

122



*~~~ ~~~ k '7. - - - -. .4 -- 4 4?. .--- -

4-(PIP+PIR)20X(R)(X(R)X(R)

X2=(XP(IRM)-XP(IR))*(XP(IRM)-XP(IR))
X3-(XP(IRP)-XP(IR))*(XP(IRP)-XP(IR))
X4-XP(IRM)-XP(IRP)
X5-XP (IPM) -XP(CIR)
X6uXP (IRP) -XP(IR)
DETSuX5*X&wX4
C2-(DP(IR)*XI+DP(IRP)2X2-DP(IRM)*X3)/DETS
C3-(DP(IRI*X4-DP(IRP)*X5+DP(IRM)*X6)/DETS

C COMPUTE TýW CUBIC SPLINE COEFFICENTS
DXP=S-XP CIR)
DXP2uDXP**2
DXPF=DXP/20.
DPDXI-DP CIR)
P=CP(IR)
DO 10 I=1,20
XmI*DXPF

-' .~X2-X*X

N- ~DPDX2-DP (IR) +C2*X+C3*X2
PuP+0.5*(DPDX1+DPDX2)*DXPF

10 PPDXl-DPDX2
DPDXvDP(IR)+C2*DXP+C3*DXP2
T=P**( (G-1.0)/G)
YM-SQRT(2.0*((2.0+(G-1.0)*XM*XM)/(2.0*T)--1.0)/(G-1.0))
WRITE(6,300) S,P.DPDX,TIYM
GO TO 50

40 P=1.0
DPDX=C0.

low ~T=P** ( (G-1. 0) /G)
YM-SQRT(2.0*i(2.0+(G-1.0)*XM*XM)/(2.C0*T)-1.0)/(G-1.C))

50 RETURN
END
SUBROUTINE SMTHPR (BTRX. DPMAX, G, XMSQ)
COMMON/CPDATA/ CP(24)qXP(24),DP(24)q IPRES

4 4100 FORMAT(1X.*FIRST CP DATA POINT YIELDS ADVERSE PRESSURE GRADIENT TO
10 STEEP FOR CALCULATION TO CONTINUE*)

200 FORMAT(IHC),i1X,3HS/L,15X,2HCP,11X.6HP/PINF.14X,4HDPDX)
300 FORMAT(lX,4(4XE15.9))

DPTOLuDPMAX*1. 01
c COMPUTE THE TRAILING EDGE DPDX

IPM1=IPRES-i
IPM~wIPRES-2
DXIaXP (IPMI)-XP(IPRES)

-: DX2=XP(IPM2)-XP(IPRES)
DX12mDX1*DXI
DX22nDX2*DX2
DP(IPRES)-(Cýý(IPM2)*DX12-CP(IPM1)*DX22-CP(IPPES)*(DX12-DX22))/
I (DX1*DX2*(DX1-DX2))

C COMPUTE THE TRAIL-NG EDGE DPDX
10 IMAXwO

C COMPUTE THE LEADING EDGE DPDX
DXI=XP(2)-XP(1)
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DX2=XP(3)-XP(I)
DX12uDXI*DXI

* ~~DX 22-D X2*D X2
DP(i)=(CP(3)*DX12-CP(2)SDX22-CP(1)*(DX12-DX22))/(DXI*DX2*(DXI-
1 DX2))
IF(DP(1).GT.DPMAX) WRITE(6, 100)
IF(DP(1).GT.DPMAX) CALL EXIT

C COMPUTE THE LEADING EDGE DPDX
DO 20 Im2oIPMl

* IMINI-1
IPlwI+l
L'X1"XP(IM1)-XP(I)
DX2uXP(IP1)-XP(I)
DX&I12-DX1*DX1l
DX22aDX2*DX2
DP(I)-(CP(IPi)*DX12-CP(IM1)*DX22-CP(I)*(DX12-DX2&) )/(DXI*DX2*
1 (DXI-DX2))

20 IF((DP(I).GT.DPTOL).AND.(XP(I).LE.BTRX)) IMAXzI
IF(IMAX.EO.0) GO TO 50

C SMOOTHING THE CP DATA IN THE LEADING EDGE REGION :
IMMI&IMA'A-1
IMPlwIMAX+1
DX1=XP(IMMI)-XP(IMAX)

DX2-XP(IMP1)-XP(IMAX)

DX22uDX2*DX2
CP(IMM1)=(CP(IMP1)*DXI2-CP(IMAX) *(DX12-DX22")-DX1*DX2l*(DXI-DX2ý)
1 *DPMAX)/DX22 q
w - TO 10

C SMOOTHING THE CP DATA IN THE LEADING EDGE REGION
50 WRITE(6.200)

DO 30 I11.IPRES
PC-2.0*(CP(I)-1.0) /(G*XMSO)

30 WRITE(6,300) XP(I) ,PC,CP(I) ,DP(I)
RETURN
END

C
C ** ** *
C
C THIS SIR HAS BEEN MODIFIED TO INCLUDE THE
C EFFECT OF SURFACE ROUGHNESS *aa~~
C
C $******

SSUBROUTINE CFSTNO (TRU.XNUEX,S,XBEIM,BLDT,BLMT,BLT.PBG1,DPSG1,.
1 REYEXTXMEqMP)
COMMON Go PR, REV, XMINF, OMEGA, BO, TWo P10, Ti~o R10, VISIO, TE,
1 PEREUEPVISINF,SUpEPSpDýý.DYWpSIERRORTC,TA,1ED)GEpIENDI,INTACT,
2 PRT,XXK,BTRXXLAM,VARPRT,XINTER,SEPO,!CHS(8),IPRN(9),ED(30C0,
3 EN(300),EP(300),ETO(300),ETN(300),ETP(300),FO(300) .FN(300),J2DA,
4 FP(300),TN(300),TO(300),XNN(300),VN(300),VO(300),VP(300),TP(3C")).
5 DI(300),D2(300)oD3(300)

COMMON/BLRVAR/BY0O(300) , BYN (300) , BYP (300) , XFY (300') ,XSS (300) .
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I XBREXHREqXLSXCD
J 2000 FORMAT(11b0,IOX,SHSZ/L u,EI5S.)

2001 FORMAT(2),7HXME wpE15.8p2X,7HPE *,El5.8,2X,7HDPPINFw,E15.8,
I 2)%7HXBF. ¶oEl.8,2X,7HTW/TE OEIS.13)

2002 FORMAT(2'ý,7HBL.T WpE1S.8p2Xp7HBLMT -,E15.8,2X,7HBLDT noE15.8,
1 2X,7Ho'*EYMT *,EIS.8,2X,7HREYDT -,EMS.)

2003 FORMAT(2Xp7HCFNO -,EI5.8p2X,7HCFENO ,pEl5.8,2X,7HSTNO mpE15.8,
I 2X,7HSTENO n,El5.8,2X,7HREYEXT=,E1S,8)
TAUR-0.

FP(1)0.
COwFP(1)**2
DO 100 Nz2, lEDGE
XYY=XNN (N) *EPS
IF (XYY-XHRE) 853,853.854

8353 DY=DYW*XXK**(N-2)
CaFP (N)**
FPSInFPSI+. 5*DY* (CO+C)
TAUR-FPSI*.5*XCD*XBRE*UE*SORT(2.*X)/XLS**2
CO-C

100 CONTINUE
854 TWTE-TP(1)

IF(OMEGA.Eg.0.) GO TO 855

IF(OMEGA .EQ. 1.) GO TO 8551

XLM1 = 1./(TWTE**(1. - OMEGA))I
GO TO 856

855 XLM1 = (1.0+TR)*SQRT(TWTE)l(TWTE+TR)

GO TO 856

8551 XLM1 a 1.

Yll-((2.+XXK')*(1.+XXK+'AXKt*2)+1.*XXK')/((1.+XXK,)*(1.+XXK+XXK$*2))
Y12m(1.+XXK+XXK**2) /XXK**2
Y13-(1.+XXK+XXK$*2)/(XXK$*3$(I.+XXK))
Y14a1./(XXK**3*(1.+XXK+XXK*2))I TAU-XLM1*RE*XNUE*UE*UE*(-Y11l$FP(1)+Y12$FP(2)-Y13$FP(3)+Y14*FP(4))
1 /(DYW*6QRT(2.*X))+TAUR
QS a XLM1*RE*XNUE*UE*TE*(Y11*TP(1)-Y12*TP(2)+Y13*TP(3)-Y14*TP(4))
1 /(DYW*SQRT(2.*X)*PFP)
IF(J2DA.NE.0) TAUsmTAL)4S
IF(J2DA.NE.O) QS=QS*S
STNO -=0.
IF(BO .NE. 1.) STNO = EPS*QS/((l. -BO)W(F .5*UE**2))
STENO a STNO/(RE*UE)
CFN0 m 2.*EPS*TAU
CFENO a CFNO/(RE*jE*UE)
REYDT-REYE XT*BLDT/S
REYMTuREYEXT*BLMT/S

C SELECTION OF THE OUTPUT
IF(M.NE.MP) GO TO 1000

C SELECTION OF THE OUTPUT
C
C OUTPUT STATION DATA
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C
WRITE(6,2000) S

-~ WRITE(6,2001) XME,PDGIDPBGI,XBE,TWTE
WRITE(6,2002) BLTDLMT,BLDTREYkITREYDT
WRITE(6,2003) CFNO,CFENOwSTNO,STENO,REYEXT

1000 RETURN
END
SUBROUTINE ELMATX( M,DX2,XXAL,XBETRIDIFF,Y1,Y2,Y3,Y-,"YSTWTE,
I !TCNT1, AIA2,A3,Bl,82,B3,C1,C2,C3)
COMMON 6, PR, REY, XMINF, OMEGA, Bo, TW, P10, TIC, R10, VIS0o, TE,
1 PEIREptIEVIBINF, SU, EPS, DS, DYW,6SIIERROR, TC, TA, IEDGE, IEdD1,0INTACT,
2 PRTXXK,DTRXXLAM,YARPRT,XINTER,BEPOZCHS(6),IPRN(9),EtC(300),
3 EN (300),1EP (300),1ETO (300),pETN (300),1ETP (300) pFO (300),ýFN (300),1J2DA,
4 FP(300).TN(300).,TO(300);XNN(3-00);YN(300),VO0(300)),VP(3,00),TP(300),
5 D1(300),D2(300),D3(300)
COMMON /BLRVAR /BYO (300), BYN (300) ,DYP (300) ,XFY (300) ,XSS (300) ,
1 XBRE,XHRE,XLS,XCD
DIMENSION A1(300,3),A2(300,3),A3(300,3),Bl(300,3),62(30)0,3),
1 83(300,3),C1(300,3),C2(300,3),C3(300,3)

C
C THE INNER EDGE BDUNDAPY CONDITION
C

DO 6011 1-1,3
'48011 Al1(1,1)sxA2 (1,I1)a=A3(1,1)s='&l(01,)=-B2(1,1)u-B3 (1 1)uMCI (1,1)=C2 (1,I1)

AI(1.1)1l.0

21. (1) cc).

D2(i)aTWTE
IF (SEPO. E0.0.) GO To 6012,

D3(i)=.0
N GO TO 6013

6012 XL-DX2/(2.0*DYW)
A3(1, i)=DX2+X*Yi
C3 (1, 1) -2. *XL* (2.+XXK)/(1. +XXK)

.4. C3(1.2)=2.*XL*(1,+XXK)/XXK
C3(1,3)p=-2. *XL/(XXI3(i.+XXK))
D3 (1) a0.

C
C THE INNER EDGE BOUNDARY CONDITION
C

-'C THE FIELD POINTS EVALUATION
C
6013 NM1-IEDGE-1

DO 8014 NZ2,NM1
DY-XXK$*(N-1)$DYW

DYM1uDY/XXK
XL-DX2/ (2. 0*DY)
Y6m2./(i.+DYMi/DY)
Y7=DY/DYMi
YB-2./((DYMi/DY)$(1.+DYMI/DY))
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Y9=2l.,(1.+DY/DYMI)
Y10a1.-DY/DYMI
SEPol10
IF(FO(N.LE.0.) 8EPw0.
IF(ITCNT1 .GT. 1) GO TO 7000
IF(IDIFF ED. 1) GO TO 7501
FMt-Y4$FO(N)-Y5*FN(N)
TM1-Y4*TO(N)-Y5*TN(V~)
VMloY4$VO(N)-VSSVN(N)
IF(SEPO.Eg.0.) VMI=YO(N)
EMI u(Y4*(EO(N-1)+EO(N)ý-EO(N+,1) )-YS*(EN(N-l)+EN(N)+EN(N+1)) )/3.
ETMI u(Y4*(ETO(N-1)+ETQ(N)+ETO(N+1))-Y5*(ETN(N-1)+ETN(N)+ETN(N+l
1 M)/3.
BYMI -(Y4*(BYO(N-1)+BYO(N)+BYO(N+1))-Y5*(BYN(N-1)+ByNl(N)%+DYN(N+1i
1 M)/3.
GU TO 7001

750)1 FM1 a FO(N)
TMI u TOWN
VM1 a VOWN
EMI=(ED(N-l)+EO(N)+EO(N+1)) /3.
ETMim(ETQ(N-1)+ETO(N)+ETO(IN+1))/3.
BYMim(BYO(N-1)4BYO(N)+B'Y0(N+l) )/3.
GO TO 7001

"10 00 FMI= FP(N)
*TM1 TP(N)

- .*.VMl V P(N)

* EMI=(EF'(N-l)+EP(N)+EP(N+1))/'.7
ETM1-t(ETP(N-1)+ETP(N)+ETP(N+1) )/3..
BYMI-(BYP(N-i)+-BYP(N)+BYP(N+1) )/3.

7001 IF(OMEGA .EQ. 0.) GO TO 684
IF(OM~EGA .EQ. 1.) GO TO 6841

XLPMlm(OMEGA-i. ) XLMI/TMI
G0T0625

6841 XLM1-I.
XLPMI-0.

G8O6T0625

XLPM1-XLMI*(TR-TMI)/(2.*TMI*(TMI+TR))
625 IF(ITCNT1.GT.1) GO TO 626

- . PY=(Y9*FD(N+1)/2,-Y10*FO(N)-YB*FO(N-1)2". )/DY
TY-(Y9*T0(N+I)/2.-Y10*TO(N)-Y8*TO(N-l)/26. )/DY

V EYMI=(Y9*EO(N+1)/2.-YIO*EMl-Y8*EO(N-1)/2.)/DY
ETYMI-(Y9$ETO(N+-1)/2.-Y10*ETM1-YB*ETO(N-1)/2. )/DY

* ~BYPP-(V9*BYO(N+l)/2.-YIO*BYM1-Y8*BYO(N-1) /2.) /DY
GO TO 627

626 FY-(Y19tFP(N+1)/2.-YIO*FP(N)-Y8*FP(N-1)/2. )/DY
TY=(YY*TP(N+1)/2.-Yl0*TP(N)-YB*TP(N-1)/2.)/DY
EYM1. (Y9*EP (N+1) /2. -YIO,*EM1-Y8*EP (N-i) /2.) /DY
ETYMla(Y9*ETP(N+I)/2.-Y10*ETM1-Y8*ETP(N-1)/2. )/DY

0 ~BYPPm(Y9ýDYP(N+1)/2.-Y10$BYM1-Y8*BYP(N-1)/2. )/DY
627 IF(IDIFF.E0.1) GO TO 7502
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FM'41=Y4'51F(Nr rr rv-N

FM2=Y2*FO(N) -Y3*FN(N)

60 TO 7505
7502 FM2 -2.*FO(N)

TM2 *2.*TO(N)4
7505 CONTINUE

AI(N,1)=YGSXL*(2.*XLMI*EMI/DY-(XLM1$EYM1+EM1*XLPMI*TY+BVPP*
1 EM1*XLM1/&v'M1-YM1))
AI(N,2)--(4.*XL*XLM1*EM1*Y7/DY+2.$XL*(XLMI*EYM1+BYPP*EMI*XLM1
I /BYM1+EHI*XLPM1*TY-VM1)*Y1O+2.*DX2*FM1*(XFY(N)*XBE+XSS(N))*BEP4ý
I SEP*(2.*Y1*FMI-FM2)*XFY(N)*X)
A1(N,3)-XL*(2.*XLMI*EM1*YS/DY+(XLM1*EYM1+EM1*XLPM1*TY+BYPP*
1 EM1*XLPII/BYM1-VMI)*Y9)
81 ( N, I)-XL2EM4*lXLPMI*FV*V
DI (N, 2)uDX2*XBS*XFY(N)-2. *XL*Et'1I*XLPMI$FY*Y10 N

81 (N,3)uY(L*EM1*XLPM1*FY*Y9
Cl (N, 1)-Cl (N,3)-0.

Cl (Ž,2)w-DX2*FYI
A2(N, l)=-2.$XL*XAL*XLMI$EtI1*FY$YB
A2(N,2)--(4.SXL*XAL*XLMl*EMI*FY*Y1O+SEP*X* (Y1*TM1-TM2)*
I XAFY(N)-3.*,DX^2*XL*K.SS(N)tFM1**2.,.*SEP)
A2(N.3)m-2.t~XL*XAL*XLMI*EMI*FY*Y9
92(N,1)=XL*Y8*(2.*XLiIL*ETM1/(PR$DY)-(XLM1tETYMl+2.*XLPMl*ETM1*TY
1 +BYPP*XLMI*ETMl/BVMl-PR*YMI) /PR)
B2(N.2)--(4.*XL*XLMI$ETMI$Y7/(PR*DY).(XLM1*ETYMI+2.*XLPM1*ETMI*TY
1 +BYPP*XLMI*ETMI/BYM1-PR*VMI) *XL*YlO:2, O/PR+SEP*X*YI*XFY(N) *FMl)
B2 (N. 3) XL* (2. *XLM1*ETtiltY6/DY+ (XLMISETYM,1+2. *XLPMI*ETMI*TY

0) 1 +DYPP*XLM1*ETM1/BYMl-PR*VMl)*Y9)/PE;
C20JN 2)=-DX2*TY

A3(N, l)uA3(N,3)inO.
A3 (N. 2)-(DX2+X*Y1) *XFY (N)
83 (N,1)-83 (N, 2) -83(N, 3) -0.
C3(N, 1)=-XL*YB
C3(N,2)=-2. *XL*YIO
C3 (N, 3) =XLIY9
DI(N)=DX2$FY*(EMI*XLPMI*TY-VM1)-FMltI2$l*X8E*XFY(N)*DX2+X*XFY(N)*YI
1 +XSS(N)*DX2)*SEP
D2(N)=X2" '-M1*ETM1*TY/PR-VM1)*TY*DX2$'XAL$XLM1*EM1$FY**2-X*YI

VM (N)*BEP+DX2*XAL,*2.*XSS(N)*Fmi**3*SEP
D3(N) -X*FM2*XFY (N)

2014 CONTINUE
C
C THE FIELD pr-"AT9 EYALUATION
C
C
C THE OUTER EDGE BOUNDARY CONDITION
C

DO 8015 1-1,3
8015 A1(IEDGE,I)aA2(IEDGE,I)=A3(IEDGE.I)=Bl(IEDGE,I)-82(IEDGE,I)=B3(

I IEDGEI)-CI(IEDGEI)-C2(IEDGE,I)-C3(IEDGE,I)-O.
-- A1(IEDGE,3)=1.0
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B2(IEDGE.3)=1.0
DI(IEDGE)=I. 0
02( lEDGE)OL.0
IF(SEP0.Eg.0.) GO TO 8016
XLuDX2/(2.*DYW*XXK'**(IEDGE-1))
FM2-Y2$FO (IEDGE) -Y3*FN (IEDGE)
IF(IDIFF. EQ.1) FM2xt2.*FO(IEDGE)
A3(IEDGi, 3)-DX 2+XSYI
C3(IEDGE, 1)-2.*XXK*$3*XL/(1.e.XXK)
C3(C EDGE, 2) --2. *XXK* (1. XXK) *XL
C3(IEDGE,3)u2.SXXK$XL*(2.*XXK+1.)/(1.+XXK)
D3(IEDGE)sX$FM2
6O TO 8017

6016 VM1.VOCIEDGE)
*IF (ITCNT1. GT. 1) VMI=VP(IEDGE)

C3(IEDGEo3)-i.0
D3(IEDGE) -VM 1

6017 CONTINUE
C
C THE OUTER EDGE BOUNDARY CONDITION

RETURN
END
SUBROUTINE PRCSIONloGIgSATINMSYBTXE
COMMO~N G, PR, REY, XMINF, OMEGA, B0, TW. P10, Tl$, RIO, VISlO. TE.
I PE,RE,UE,VISINF,SUEPSDSDYW,SI,ERROR,TC,TA,IEDGE.IENDIINTACT,
2 PRTXXKBTRX,XLAMpVARPRT,XINTER,SEPOpICHS(8),IPRN(9),EO(300),
3 EN(300),EP(300),ETO(300?),ETN(300O),ETP(300),FO(300),FN(300C).J2DA1

* 4 FP(30O),TN(300),TO(300),XNN(3OO),VN(30O).VO(3OO),VP(3OO)1 TP(3OO).
4 5 D 1(300) ,D2 (300) ,D3 (300)

D I M11E ION Y(300) ,Z(7, 16)
25 FORMAT (lHO,45X,23HPROFILE FOR STATION S mF14.e)

*40 FORMAT(BHON- 15F8.4)
41 FORMAT(SH ETA= 15F8.4)
42 FORMAT(8H Fla 15F8.4)
43 FORMAT(SH Ti- 15Fe.4)
44 FORMAT(SH V1= 15F8.2)
46 FORMAT(SH ED= 15FS.2)

-:507 FORMAT(8H Y/BLT= 15F8.4)
509 FORMAT(SH RO/ROE=15FB.4)
510 FORMAT(SH ML/ME- 15F8.4)
511 FORMAT(6H PT/PTEul5F8.4)
512 FORMAT(BH PT/PEE 15FS.4)
513 FORMAT(BH H/HE- ISFS.4)

IF(ICOUN-IPRN(IP)) 51,36,51
C
C OUTPUT PROFILE DATA
C

36 KONT-IO--1
J2=0
WRITE(6.25) S
D05031u1,KONT, 15
32.32+1
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KON=J2* 15
WRITE (6,40) (XNN(N),NaJIOKON)
WRITE (6,41) (Y(N),NuJI,KON)
WRITE (6,42) (FO(N)f N-J1,KON)

-~WRITE (6943) (TV(N), NnJI,KON)
WRITE (6s44) (VO(N), N-31,KON)

K WRITE(6,46) (EO(N),N=JI,KON)
I ~ -
lF(M.EQ.MSTART) 6O TO 50
D0530JX-1, 15

Z(1,3X)-EPS$XNN(I)IBLT
Z (2, 3X) nFO (I)
Z(3#JX)-TO(I)
Z (3,3JX)ul. /TO (I)
PTPEDu(G-1.0)*TE*TO(I)
IF (PTPED) 777,777,778

777 PTPED=I.
778 Z(4.JX)=UE*Z(2eJX)/(PTPED)*$.5

PTPEaZ (4, JX) *Z(4, JX)
lF(Z(4,JX)-1.0)504,504,505

504 PTPE=(I.0+(((G-1.0)/2.0)$PTPE))**(G/(G-1.0))
PTEPEu(1.0+(6-i.0)/2l.)*XME**2))**(G/(G-i.))
GOT0506

505 PTPEw(((+1.0)sPrPE/2.o)c*G/(G-1.o))*((G+1.o)/u2d.OsG*PTFPE)-G-

PTEPE-(((G+1.)*XME**2/2.)**(G/(G-1.)))*(((G+I.j/(2.*G*XriE**Z-)-(G-

506 Z(5.JX)=PTPE
C Z(6,JX) -PTPE*PE/PIO

* Z(6,JX)-PTPE/PTEPE

Z(7,JX)=(TE*TO(I)/(UE*UE)+;5O1)FO(I)r-())/(TE/(UE$UE)+.5)

Z(4,jX)-Z(4,J#-)/XMINF4

WRITE(6o509) (Z(3,N)gN=Ipl5)

WRITE(6,510) (Z(4,N),N-1, 15)

WRITE(6,512) (Z (5, N),INui,i15)
WRITE(6p513) (Z(79N),N=1.15)

50) CONTINUE
IF(IIN .EQ. 1) RETURN
I COUNN0

51 ICOUNwICOUN+1
IF(M+1-ICHS(IG)) 3601,3600,3601

-~3600 IPwIP+1
ICOUNuIPRN(IP)

3601 CONTINUE
RETURN

%4 END
-~ SUBROUTINE REYSTR (KON,TR,X,TREF,XNUE,XBE,S, ITCNT1)

COMMON G, PR, REY, XMINF, OMEG~, BO, TW, PIO, TIC), RIO, VISIO, TE,
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I PE,RE,UEVISINF,SU,EPSDSDYWSIERROR.TC,TAIEDGEq IENDI,INTACT,
2 PRT,XXK,BTRX,1XLAMtVARPRrvXINTER,SEP0,ICHS(6),IPRN(9),EO(30o),
3 EN(300),EP(300),ETO(300),ETN(300),ETP(300),FO(300),FN(300),J2DA,
4 FP(300)pTN(300),TO(300),XNN(300),VN(300),VO(300),YP(300)rTP(300),
5 Dl (300) ,D2(300) ,D3(300)
TTRm (TAN 12.) /(TA*TREF-1 12.)
COu'P (I)
DDmEP(l)=XNN(1)wTPIwBLTmO.

C SHEAR STRESS AT THE WALL AS THE SCALING FUNCTION
Y11-((2.+XXK)*(1.+XXK<+XXK**2)+1.+XXK)/((1.+XXK)*(1.+XXK+XXK$*2))
Y12n(1.+XXK+XXK**2) /XXK$82
Y13 (1. +XXK+XXK**2) /(XXK**3* (1. +XXK))
Y14al./(XXK**3*(l.+XY~K+XXK*$2))
FETW-(-Y11*FP(1)+Y12$FP(2)-Yl3*FP'%3)+Y14*FP(4))/DYW
FETWABS(ETW

XLMIWuk(l.+TR)*SORT(TP(1))/(TP(1)+TR))
P12=XLMlW*FETW

C SHEAR STRESS AT THE WALL AS THE SCALING FUNCTION
DO 1 Nm2,KON
DYaDYW*XXK** (N-2)

XLIF(F(N).GE.T9) LT=XNN(N)-/(FP(N)-.99)*(N()XN(-

XPLUS.SQTPI1*SPIT2.)/(RE~*ULM)

IF(PLUS.ET.50.) GO LUTO 2

C EICE-SMITH-MONSINKI EDDY VISCOSITY MODELNNN)-NN(-1

C TRUPNCATETHE NNE- EGO CLULTO
C TRUNCATE THE N)TPNER RE ION CALCULATIO (N -)DY2

C I=QT2**E/TE*15TT)*P*2'XU*PN*''
I F(CONTINUE.0 I

DYDO 3 N1K**N-
DYItY/X

YS2/(DMID .%+DM/D)

Y92.. +D/DMI

13
Yi-.DYDp

C 1..IE(l*B(9F(+)/.YOFN-BF(-)2)D

S.

C CEIESIHOS I EDD VICST-OE



XLM1-( (1.+TR) $SQRT (TP(N) ) /(TP (N) +TR))
DD1u.O168*SQRT(2.*X*REY/(TREFS*1.5*TTR))*DD/(XNUE*XLM1*TP(N)**2ý)

* ~IF(J2DA.NiE.0) DDIa.DDI/S
IF(DDI.LE.EP(N)) EP(N)uDDI
XXXX-. 412* ((S-BTRX) /XLAM) $*2
IF(XXXX.GT.50.)XXXX-5O.
EP(N)-EP(N)*(1.-EXP(-XXXX))
IF(XINTER.Eg.O.) EP("N)m'1.+EP(N)

I EP(N) /2.75
3 ETP(N)=i.+PR*(EP(N)-1. )/PRT

RETURN
END
SUBROUTINE MATEPN3 (XI.XA.qX3,YlY2,Y3,AI1,A12,A13,A21,A22.,A23,
*A31,A32oA33,LC,LN,LQ)

C

C THIS SUBROUTINE SOLVES THE THREE SIMULTANEOUS BAND MATRIX
C EQUATIONS
C

*C AII*XI + A12*X2 +A13*Xw a Y
C A21*XI A22*X2 +A23*X3 - Y2
C A31*X1 + A32*X2 +A33*X3 Y3
C
C FOR X11. X2, AND X3
C
C Ali ARE 9 BAND MATRICES OF LENGTH Lge WORKIN5 LENGTH LN.
C AND WIDTH LC
C (THESE MATRICES ARE ASSUMED TO BE CORNER ADJUSTED, I.E. THE
C CORNER ELEMENTS ARE STORED IN (1.1) AND (LNqLC). ETC.)
C
C XI AND YI ARE VECTORS OF LENGTH LO AND WORKING LENGTH LN

DIMENSION
$ XI(LQ),X2(LQ),X3(LQ) ,Yl(LGQ),Y2(LQ),Y,-;(LQ).
*AlI(LQ,LC)pA12(LQ,LC)tA13(LQLC),
$A21(LQ,LC) A22(LQLC),A23(LQ.LC),
*A31(LQLC),A32(LQ,(-C)pA33(LO,LC)

C
C INITIALIZATION
C - - - -
C

LP-LN+l
L=(LC-1) /2
LMwLN-L-1
IF(LC.GE.LN) L-LN
DO 3 ImIo1LN
XI(I)uYl(1)
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X2(I)mY2(U
X3(I)-V3(I)

3 CONTINUE
C
C DOWNWARD GiAUSSIAN ELIMINATION ;E1TH PIVOTING
C-- - -- - - -- - - - - -- - - - - -
C

DO 401 K"1,LN
IF(L.EQ.LM) LwLN
IF(L.LT.LN) LfL+1

C U-ABS(A11 (K, 1))

DO 113 JwK,L

IF(J.EQ.K) GO T0 Ill
V-ABS(A1I (3,1))
IF(V.LE.tu) GO TO Il1
UMV
Me 1
IJJ

IF(V.LE.U) GO TO 112
US-V
mm')
In3

112 V=ABS(A31(J,4))
IF(V.LE.U) GO TO 113

M=3
I -J

113 CONTINUE
IF(I.EQ.K) GO TO 115

IF(M.NE.1) GO TO 116I

UwA1I(IK,J)
All (K .J)-A11 (1,3)
All (i,3)-U
U-A12 (Kp3)
A12 (K, 3) aA12(IpJ3)
A12(I,J)=U
UmA13(Kp,l)
A13 (K, 3) -A13 I, 3)
A13(1, 3) U

114 CONTINUE
U=Xi (K)
XlI (K)-XI1 (I)

GO TO 120
115 IF(M.EQ.1) GO TO 120
116 IF(M.NE.2) GO TO 118

DO 117 J1I,LC
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UsAl I (Ko J)
AII(KpJ)-A21(I,J)
A21(IpJ)-U
U-A12(K,J)
A12(K,J)-A22(I,J)
A22(1,J)uU
U=A13(K,J)
A13 (K, 3)uA23 (I, 3)
A23(IPJI=U

117 CONTINUE
U-Xi (K)
Xl (K)012(I)
X2(I)-U
GO TO 120

118 DO 119 j-1,LC
U-All (K,3)
All (KJ)-A31 (I,J)
A31 (I.J)-U
U-A 12 (K,J3)
A12(K,J)-A32(I ,J)
A32(IIJ)-U
U-A13 (K,J3)
A13(K,J)-A33(I, 3)
A33(IJ)=U

* 4119 CONTINUE
U-Xi (K)

X3(I)-U
120 CONTINUE

C
DO 128 I=K,L
IF(I.EQ.K) GO TO 123
U-All (1,1)/All (K, 1)
DO 122 Ju1,LC

All (I,J)-A12(IJ)-Al2(K.J)*U

122 CONTINUE
Ai3(I,LC)-0.
X1(I)=Xl(I)-XI (K)*U

123 CONTINUE
U-A21 (1, 1) /All (K,ý 1)
DO 125 J-1,LC
IF(J.HE.1) A23(I,J-1)-A21 (I,J)-Aii(KpJ)*U
A21 (I,3)-A22(I,J)-A12(KpJ) *U
A22(I,3)-A23(I,J)-A13(K,J) *U

125 CONTINUE
AA3(IoLC)-0.
X2(I)mX2(I)-X1 (K)*U
UuA31(I,1)/AII(Kol)
DO 127 J-1,LC
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A31 (Ip3luA32(I,3'-Alz(Kpa)$u
A32(I,3)-A33(Ioa)-A13(K,3) *U

17CONTINUE

X3(I):rX3(I):X1 (K)*U
126 CONTINUE

C
U*ADS(A21 (K, 1))
InK
Mm2

N ~DO 213 3mKLj
IP(3.EG.K) GO TO 212
Y.ADS(A11 (3,1))
IF(VSLEPU) GO TO 211
Urny
Mali

211 VeASS(A21(3,1))
IF(V.LE.U) GO TO 212
URV
M1=2

212 V-ABS(A31(3,1))
IF(V.LE.U) GO TO 213
umv
M=3

213CNIU
23 IF(I.EO.K) GO TO 215

IF(Mr.NE.2) GO TO 216
DO 214 J=1,LC
U=A21 (K,3)
Al (K, 3) m ( I, 3)
A21 (1,3)-U
U-A22(K, 3)
A22(K,3)=A22(1,3)
A2&2(I,3inU
U=A23 (K, 3)
A'3 (K, 3) =23(I, 3)

214 CONTINUE
U=X2 (K)
X2(K)uX2(1)
X2(I)-U
GO TO 220

215 IF(M.NE.3) G0 TO 220
216 IF(M.NE.1) GO TO 218

DO 217 3-1,LC
U-A21 (K,3)a
Al (K,3).Al1 (I,3)
All (I,3)uU
UuA22(K, 3)
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A221 (K, J) =A12 (1, J)
A 12 (II3)-mU
U4A23(Kv3)
A23 (K, 3) A13(I, 3)
A13(I,3)-U

217 CONTINUE
U=X2(K)
X2(K)-XIl ()

GO TO 220
218 DO 219 31l,LC

U=A21 (K,3)
A2i (K,3)-A31(I,3)
A31 (1,3)-U
U-A22(K,3)
A22(K,3) -A32CI. 3)
A32(CI, 3)m
U-A23 (K, 3)
A23(K,3)-A33(I,3)
A33 (I,3) mU

219 CONTINUE
Us-X2 WU)
X2(K)-X3(I)
X3(I'-U

220 CONTINUE

C O j2 -.
0 IF(I.EO.K) GO TO 223

UrAII(Iafl/A21 (K,4)
DO 222 jaLLCr

IF(3.NE. 1) A13(I,3-l)=AlI (I, 3)-21 (K,J)*U
All (I,3)=A12(I,3)-A22(K,3)*U
A12(I,3)=A13(l,3)-A23(K.3) *U

222 CONTINUE
A13(I,LC)=0.
Xl (fl=XI (I)-X2(K)*U
U=A21 (I, 1)/A21 (K, 1)
DO 225 3in1,LC
IF(3.NE. 1) A23(I,3-l)-A21 (I,3)-A21(K,3) *U
A21(Ip3)nA22(I,3)-A22(K,3)*U
A22(I,3)-A23(I,3)-A23(K,3) *U

225 CONTINUE
A23(1,LC)0O.
X2(I)-X2(I)-X2(K)fsU

223 CONTINUE
U=A31(I, 1)/A21 (K, 1)
DO 227 3-1,LC
IF(3.NE. 1) A33(I,3-1)=A31 (I,3)-A2l (K,3) $U
A31 (I,3)=A32(I,3)-A22(K,3) *LJ
A3"2(I,3)-A33d(I,3)-A23(K,3) *U

227 CONTINUE

A33(I,LC)=C',
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X3(I)=X3'I)-X2(K)tU
226 CONTINUE

C IF(K.EQ.LN) GO TO 401

U-ABS(A31 (K, 1))
I-K
MM3
3L-K+1
DO 313 33JLL
Y=ABS(A11 (3,1))
IF(V.LE.U) GO TO 311
U-v

I3j
311 V=ABS(A21(3,1))

IF(V.LE.U) GO TO 312
UaV

312 V-ADS(A31(3,1))

IF(V.LE.U) GO TO 313i
Umv
Ml=3

1=3
313 CONTINUEI

IF(I.EO.K) GO TO Z20
IF(M.NE.3) GO TO 316

LiDO 3-14 31l,LC

A31 (K,3)mA3i (13)
A31 (1,3)-U
U=A32 (K, 3)
A32 (K,3) =A32 (I, 3)
A32(I,3)-U
U-A33(K, 3)
A33(K,3)-A33(I,3)
A33(I,3)wU

314 CONTINUE4
U-X3(K)
X3(K)-X3(I)
X3(I)=U
GO TO 320'

316 IF(M.NE.1) GO TO 318
DO 317 3-1,LC
UwA31 (K,3)
A3i (K,3)-A11(I,3)
All (1,3)=U
U-A32(K, 3)
A32 (K, 3) A12(I, 3)
A 12 (I,3) -U
U=A33(K, 3)

a-at'.A33(K,3)-A13(I,3)
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A13(IJ)=U
317 CONTINUE

UmwX3 (K)
X3(K)-X1 (I)S ~Xl (I) mU
G0 TO 320

316 DO 319 3w1,LC
U*A31 (K,3)
A31 (K,3)=A21 (1,3)
A21 (I,J)aU
U=A32 (K, 3)
A32(K,J)sA22(I,3)
A22 (I, 3) U
U-A33 (K, 3?
A33(K,3)uA23(I,3)
A23 ( I,3)U

319 CONTINUE
V- U*X3(K)

X3(K)=X2(I)
X2(I)=U

320 CONTINUE

I LnK+ 1
DO 326 IwILL

DO 322 3=1,LC
* ~IF(3.NE.1) A1Z(I,3-1)=A1I(I,J)-fr3IiK, 3)*U

322 CONTINUE
A13'TILC)=O.
(IJ=X 1 (I) -X3 (K) *U

U=A2I7(I,1)/A31(KIJ
DO 325 3=1.LC
IF(3.NE.1) A23(I ,J31)A21(IJ)-A31(K.J)*U
A21 (I,3)A22(I,J)-A32(K,3)*U
A22(I,3)=A23(I,3)-A33(K,3 *U

325 CONTINUE
A23(ILC)=0.
X2(I)-X2(I)-X3(K)*U
U'A31(1.1)/A31(K,1)
DO 327 31,pLC
1F,3.NE. 1) A33(I,3-1)zA3t (I,3)-A31(K,3)*U
AM J(1,3)uA32(I,3)-A32(K,3)*Ug A32(!,3)nA33(I,3)-A33(K,a) *U

327 CNIU
$4 A33(ILC)'0).

X3(I)-X3(I)-X3(K,)*U
328 CONTINUE

401 CONTINUE
C
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-~~~ ~~~ -- 7-~~''~ Y 7~7

AC UPWARD GAUSSIAN ELIMINATION
C --- - - - - - - - - - - -

C
LuI
DO 507 Ku1,LN
IwLP-I<

C
U-X3(I)
IF(I.EQ.LN) GO TO 502
DO 501 3u2,L
13-1+3

501 UnU-A32(I,3-i)*X1(IJ-1)-A33(1.3-1)*X2(IJ-1)-A31 (I,3)*X3(IJ-1)
IF(L.GE.LC) UNU-A32(IpLC)*X1(I+LC)-A33(I,LC)*X2(I+LC)

502 X3(I)-U/A3I(IqI)

U-X2(I)-A22(I, 1)*X3(I)
IF(I.EO..LN) GO TO 504
DO 503 3-2,L
IJ=1+3

503 U-U-A23(1,J-1)*XI(IJ-1)-A21(I.3) $X2(IJ-1)-A22(I,J)*X3(IJ-1)
IF(LIIGE.LC) U=U-A23(ILC)*Xl(I+LC)

504 X2(I)-U/A21(I,1)
C

U=Xl(I)-A12(I,1)*X2(I)-A13(I, l)*X3(I)
IF(I.EQ.LN) GO TO 506
DO 505 3=2,L

IS505 U=U-A11(I,3J)*Xl (IJ-l)-A12(I1J)*X2ý(IJ-1)-AI3(I,J)*X3(IJ-1)

IF(L.LT.LC) L=L+1
C

507 CONTINUE
C

RETURN
END

2 SUBROUTINE RUFVAR(XXNUE)
COMMON G, PR, REY, XMINFo OMEGA, BO, TW. PIC), TIO, RICO, VISIO, TE,
1 PERE,UEVISINF,SUEPSpDSpDYWSIERRORTC,TA, lEDGE, IEND1.INTACT.
2PRT,XXK,BTRX,XLAM,VARPRT,XINTER,SEPO,ICHS(e),IPRN(9),EO(3CO0).

3 EN(300),EP(300)pETO(300),ETN(300~,$ETP(300),FO(0(300),N300).J2DA,
*4 FP (300CýTNC(300) ,TO (300) 0XNN(300) 0 N (300),1VO (30) .VP (300) ,TP(300) ,

5 DI (300) ,D2(300) ,D3(300)
* ~COMMON/BLRYAR/BYO(300) ,BYN(ýý00) ,BYP(300) ,XFY(300).,XSS(300O),

I XBREXHREXLSXCD
DIMENSION XD(300)
DATA PI/3.1415926535/

C
C
C INPUT DATA DIMENTIONALIZED BY L, THE
C LENGTH OF THE MODEL ........ *9.9..s
C

XSR-0.
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XL~m. 0046
XLDSu. 0046
XBREU. 0023
XDRE=. 0023
XHREw.00 115
XCD-0. 6
XDO-0. 00023

C
NMI-IEDGE-l
00 99 Nal,NMI~
XBREE-XBRE

C XBREE IS A DUMMY VARIABLE
C *####k###*##########*###########

XYYuXNN (N) *EPS
IF(XSR.EQ.1) GO TO 95
IF(XYY.LE.XHRE) GO TO 94
XBREE=O. 0

94 BYP(N)-1.0-(XBREE*XDRE)/(XLS*XLDS)
XFV (N) 3(1 * -XBREE/XLS) /BYP (N)
XD (N)=XBREE
GO TO 96

95 DFUNCT=SORT( (XDO**2) /4.-(ýYY*$2)
XD(N;=DFUNCT
BYP(N)-1.0-(PI*XD(N)**2) /(4.*XLS**2&)
XFY(N)=(1.0-XD(N)/'XLS)/BYP(N)

96 IF(J2DA.EQ.1) GO TO 97
XSS(N)=(XCD*XD(N)*X)/(BYP(N)*XLS**2*RE*UE*XNUE%
GO TO 99

97 XSS(N)-(XCD*XD(N)*X)/(S*BYP(N)*XLS**2*RE*UE*XNJE)
99 CONTINUE

RETURN
END
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Appendix F

Four Key Subsystems Within Computer Code

SNondimensionalizing the Variables and Initializing the Grid
J

Prior to entering the computational loop the working

variables were nondimensionalized or normalized. These

variables were listed below along with a ucinition of each.

The format selected was to present the coded variable on

the left side of the equal sign and the real or physical

definition on the right side of the equal sign. No explan-

ation was included as to choice of normalizing factors.

2
21 a 2 To o= 1 + -I M2

a o2
CO

1
P10 = T = 1 o

T10 1 r T o
•2[ H 2 (F.1)

(y-1) ""O T.(y-1)M;oo "

1 0o5Y -

RI10 T - P0
(y-1) 0o
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TINE To/(T (Y-1)M 2 ) 1

(To/T•) (y-)

Tw

T (-1)2

With Eq (F.1) defined for all cases, some others depended

on the value of v were not equal to zero, then

vlu- = T 0°

Too = y-1 )M.ý2o (y -12),

7Re5o)l/2 (F.2)

VISIN',F=[ 1 ] = T_ -
[•(Y-1)M2 t-ro[jf]W

2
where the reference temperature was taken as Tj(y-1)M2o

However, for the case where w was equal to zero, the quan-

tities of Eq (55) plus one were defined as follows:

TC = S 198.6
To (y-1) M TTref

To(y-1)m

- T O] T (y-1 )14M 2 + To (Y-y1).1 2
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1.ref 198.61 0 J

To + 198.6 ref

(T + 198.6) (y-1)M 2  1.5 1/2
CO 00

EPS ( (_2 + 198.6

[ ref T1 r + 198.6] 1!Jref/U1 2/2

E i 5r re + 198.6- r]
• vRe, Re(F )

VISINF [ _Tref ]l1.5[ Tref + Iq8.6 ] 9.

T ref To + 198.6]

These quantities were, frequently u:cd in the grid computation

and provided a summary of the nondiiensionalizing techniques

used throughout the code. Before beginning this computation

within the grid, however, there had to be an initialization

of the profile.

Initialization began by defining Y in the code as the

distance measured along the n axis. Any Ar-j was defined

as (AK+ ) j-1 A. which yielded a fine mesh of nodal points

near the surface and an adequate spacing toward the edge.

Y values were assigned by successively adding all An values

from the surface, to the point in question. Then, three

hypothetical si"ccessive columns of nodes were created by

the following statements:

143N7'<- I3
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D1 = D2 = D3 = 0., from the surface to the edge of the

boundary layer. Incorporating the notation of fig 1,

V.= V - -Y. for all j from the surfacei-j Vi ., V

to the edge of the boundary

layer.

In a similar manner, three successive stations of F, 0, c,

and E were assigned values of 1.0. Finally, all coeffi-

cients of the system of finite difference equations were

set ecual to 0.

This initialization provided the primer to begin the

backward differencing along the C direction and the central

differencing along the n direction. The finite differencing

system -.:as unconditionally, stable for incre.ents of An and

Aý, and the iterative step.,in7 orocc.-ure alone.g ` amned. the

error due to the grid initialization within a few steps.

Subroutine Reystr

:his routine was called from the main program at each

station, s., at and beyond the point of transition to tur-

bulence. The purpose of this subroutine was to calculate

an eddy viscosity for the inner and outer reions of the

two-layer turbulent boundary layer model.

Computation within Reysur began with Taylor series

expansions of F to the third order partial term about the

first station at the wall. With values for F,=I, rj=2'

F j=3, and Fj=4 a four-point finite difference exnression

1 44
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was formed for DIw and the coefficients of the F terms at.
Dpj w'

each node, one through four, were represented by Y11, Y12,

Y13, Y14 in the code. Next, a nondimensional molecular

viscosity-density term was calculated for the wall with a '

shear stress term that followed:

T 1/2 T + 198.6] (PiO)T + 19.6 •e(F.5) :
[Tk K DIP -7 (P11)

An iterative loop was begun to generate the nondimen-

K C.sionalized inner eddy viscosity model, inner, of Cebeci-

Smith-Mosinskis for each node in the ri direction for the

current s.. In thiý actual code and the following the calcu-

lation of a number of interim quantities that, did not neces-

sarily represent any real boundary layer characteristic,

three important computations were made. First, 6/L was

calculated. Next, an intermediate quantity, DD, to be used

later in the outer eddy model, was calculated. Finally,

P11, another intermediate quantity used in the inner model,

was computed:
[. - .995 [XNNj_(j_

1
6/L =XNN j = I._

[uJj-(j-1)."

I'.
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edge of the -o- (F.T
bounda a yefr _ 

U1i + ,e..

j=2_eT _ u= e [T e 2

PI1= 2XRe.2 2 9Te Tej

IT(Yo (--)1M 2 [198.6] [Tref[Te

where the s was included for the case of conical flow only.

Again, a _F term was generated, but using only a three-point

central differencing scheme on this occasion. The final

step of the loop was the actual computation of inner at

the current node j: U

inner .16(PI1)(1 - exc(-{"TI1)(P12))1/2!(26 020

(F.8)

[2Y9 F (i,j+1 Y1 F(i,j) - ]P9 F(i, j-1)]

where Y8, Y9, and Y1O were coefficients obtained through

Taylor series expansions of F(,i,j-1) and F(i,j+1) about a

point F(i,j). As the calculation of cinner progressed from

the wall out into the field of flow, e. 0 retained
inner. +1

its own computed value or that of F. whichever wasinner.

greater.

The outer law, cot was computed through an iterative
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loop similar to that of the inner model. It culminated

with the expression

touter = .0168 2XRe 1/2 DDr r ue n H-jtj)12 1. ,+1 98.6 e](PP T.,,

(y-1)M2}1"5uref+198 . rLdeeJ

where the s was included only for the case of conical flow.

In order that a compatible combination of computer viscosities

were retained, the values of eddy viscosity from the outer law

replaced those of the inner law from the point of intersection

of the graphs to the edge of the boundary layer. Graphically,.

this was depicted in Fig 3.

Having calculated the initial eddy values for the inner

and outer viscous regions of the boundary layer, it was appro-

priate to subject this model to two more factors. Both were

factors of degradation and were included to better describe

the character of turbulent activity within the boundary

layer.

Objections have been raised to the use of an eddy vis-

cosity term, a, in place of, or in addition to the molecular

viscosity, W, of a fluid, Uj is a real property of a fluid,

a is only an effective description when a fluid is in motion,

and it is clearly not a property of the fluid. But, with

reservation, it has been used to express the behavior of

turbulent stresses in terms of mean velocity gradients of

a flowing fluid. It has been possible to obtain a satis-

factory description of mean properties within turbulent
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flows by assuming this flow to behave as a Newtonian fluid,

incorporating an eddy viscosity model along with 1j, and in-

cluding two factors of intermittercy when appropriate (Ref.

38:25-26). A laminar and irrotational flow became turbu-

lent as it passed through a region of transition in which

only a fraction of the time was spent in a turbulent state.

During that time in laminar motion, the Reynolds stress,

hence E, would have been zero. Then, to adequatel•, describe

the effects of e at any point by the relative fraction of

time that that point would be engulfed in turbulent flow 'j

(Ref 34:117). Therefore, the first multiplicativ:e factor,

called an intermittency factor, was applied to e tD more 4
accurately describe the c within the transition region.

The intermittency or probability factor cf Dha'.:a,: and

Narasimha was used for this program. The factir '-as

computed as follows (Ref. 13:28-29):

r(s) = -. 412 Scurrent -Stransition poon 1oint. (F.10)

Then, the computed c n was renlaced by

16 modified Ev original

The second factor was then considered. It was observed

by Klebanoff that in a turbulent boundary layer .ith a free

boundary, as the free stream was approached the turbulence

became intermittent. This intermittent nature was observed
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",N first at y/6 greater than .4 with less turbulent intensity

-'I as y/6 grew larger. It was thought that a good prediction

of turbulent intensity probably depended on a correct

weighting of the probability density for the turbulence

of the free stream with that within the boundary. It was

found that a good description of y' was a Gaussian integral

curve given by

-' 4 (1-erf(y')) (F "i2)2%

where

w- .78) 5( - .78 (F.13)

These expressions indicated that the edge of the boundary

7 ~~layer had a random character with a mePan position at y//6

equal to .78. The edge vacillated from y/6 equal to .4

to y/16 equal to 1.2. Finally, if it were assumed that the

r free stream contributed little to the measured turbulent

quantities of the boundary layer, an allowance could be

made for the effect of intermittency by dividing by the

factor y' (Ref. 28:15-19).

Cebeci used the approximate expression for Eq (F.12)

to give a multiplicative version:

"" 1 6 -1 (Ref. 20:96) (F.14)

Y which led to the coding for this second factor. If Y' were

not included, then a newly defined viscosity was

14.9
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-= 1 + - (s) (F.15)

. Including Y', Shang formed the following model:

= +1

[V ] 1+"+1(F.16)1+5.5 [ .7-5

For purposes of this study Eq (F.15) became eddy model zero,

and Eq (F.16) became eddy model one. Then, whether or not

Y' was included, the quantity C was defined by

S = 1 + Pr (7-1) (F.17)
Pr-t

In a final note, the decision of whether to use eddy model

zero or eddy model one depended on thf Driginal assumption

that either the free stream turbulence had an effect on the

c of the boundary layer, or it did not. This fac.o-r, y'

"was to have a definite effect on the analytical results,

and this entire subroutine was included with program listing

of Appendix E.

Subroutine Cfstr

Like Reystr this routine was called from the main pro-

gram. But unlike Reystr, Cfstno performed its comýutation

"throughout the laminar, transition, and turbulent regions

of flow. The purpose of this routine was tc calculatea

"Stanton number, a measure of heat transfer; the local

coefficient of friction, in&,cative of shear stress at the

surface; and Reynolds numbers br-sed on displacement thick-

150"'- 1 50
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"1j ness and momentum thickness.
-.;

Computation began with W, coded XLM1 in the program.
(012e

The ,ormula by which XLM1 was computed depended on the value

of the exponent in the viscosity law of Sutherland, the

value of this exponent being specified by the programmer.

If the exponent were zero, then

=r M11/2 FT+198. 61 (F.1 8)
v~T [T j T+198.6u

If this exponent were one, then XLM1 was one. Otherwise,

T w-1
XLM1 = T -w (F.19)

e

Next to be calculated were 'ransformed quantities similar to

q or heat flux and T or shear stress. First, the same four-

point finite difference scheme used in Reystr for 3F was
aT- W

repeated at this point to calculate @F and d6 Then
7 1w 1w"

the transformed T, coded TAU, was computed:

TAU ( Pw Pe [I I + TAUR (

TpfY Pc ref LPUj -Jlw (2x)7,7 2  (F.20)

wh6re

"½ L TI' Fdm T 'F .21 )TAUR .5 X k) ( )r(2X)-2 o j

is the value of q at y = h (height of the roughness

element).
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or. 7 4r.. r . ýr* .w.r .w.'._U ( ~ r{ tlw..r. .7ý q- _,_frlU C r

The skin-friction coefficient is increased by the

addition of the roughness elcment and it mnr' be defined as:

c sw +D/BC (F.22)
-I' cfw 2

2a

where D 0 f b ofh 1 u2 CD dy dz. Tsw and D/BC may be

written in dimensional variables as follows:
V.-,

Tw+ D =viw 9 u + 1 D fu2d
B-C w 2 BC o

The dimension of the element is constant along y for

the case of rectangular roughness elements. Non-dimension-

alizing the variables and stretching the y coordinate,

T + D= Hew 'ref L w/ ±jTw ~ e-C •rf Lc 9 (y/WkL•)w

'-'k 2 2 -

• D L L b I ~ ppu u Y--LE .

Converting to transformed coordinate rj, ."

U

(UP _. Ue ref IT F ,

T 7 BC ref Pco U La 2X 2X qw+

4,-

U2 L k F2Lb u2-kCD4 YL L e o 2X f Fdn (.3 '

D a To (F.23)

Consider: 1ref u = ref U Q U

S La p uI T
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Therefore,

'"" (PU) (Uey2 1 •Fj .
Tw + D = £(p• U2) w

2r2 X

Finally,

¶f=T + D_ _ _ u
w BC 2c _______e_2X

1 p• U2 00 COrefA 00 -

+ CCD L L b Ue U °X F dk2 (F.25)
B C L O

In the program, the increased - ue to rou,-ýh:Zs elements n

is defined as TAUR, by equation (F.21).

Following T, the transformed q, coded QS, was replaced by

the following expression:

QS 1 (P)w Pe lIe Ue (eF.2611 PW uj' (F.26)
(2X)I/ 2 Pr - e P ref UO I ()-I M4 9- [

or,

QS + (eU Te 1  1 2SUe e Pr-1(2X)-1i _..•
poref co To (y 1)2.O
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For the case of the axisymmetric flow, both TAU and QS were

derived by the non-dimensional station, si, With this,

preliminary calculations were completed.

A Stanton number and coefficient of friction followed

next in the computation. If T equaled T , there was no

heat transfer and ST, coded STMO, was zero. Otherwise,

11ref _[ _ __-. _w e e pr- 1 (2X)-' Ue-
00 r uf( m 21

LL-V J PreL u' T±(y I)M2 •c w
S TT-w[ T1 -e l 2]

The model from which this expression came was

St - g (F.28)
e (H-hP1 eue (H -h,.

For the calculation of cfllocaI station' coded CFNO,

CFO ref ½p u OL- (PV)._ 11 e) 2 (2X)-i 3 FCFNO 2 • 1 2ref • w0, ~ 2X~F

000r erefV'L) .. Tw

( p.i.L CD (XBRE) UE (2x)½ r F2 d,

.U11 0u ) (XLS)(XLDS) 0 (F.29)

With St and c al computed, only the transformed expressions

for Re 6,* and Re0 remained. Coded as REYDT and REYMT, these

quantities were computed from the following statements:
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REYDT = PeUeXreal V

UL

e

(F.30)

REYMT = Pe"e'xreal e

%4 e

"X? Subroutine RUFVAR

The effect of surface roughness on compressible turbu-

lent boundary-layer is modelled by distributed sources and

sinks and blockage-terms in the appropriate governing

equations. This subroutine was called from the main pro-

gram at each station, si, throughout the laminar, transition

and fully turbulent regions of the flow. The purpose of

this subroutine w.as to calculate the source/sink ter-. (¢ )

H and the blocka:e terts (f(y) and B(y)).

To initiate this subroutine, the following quantities

were specified as input.

XSR - a flagged ouantity to specify whether the
roughness elements are of spherical or
rectangular shape N

XBRE - the breadth of the rectangular element

XDRE - the depth of the rectangular element in the
direction of flow

XHRE - height of the roughness element

XLS - centre to centre spacing between adjacentelements facing the flow

XLDS - centre to centre spacing between adjacent
elements in the direction of the flow

-*5
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p

"XCD - coefficient of drag

A --.- XDO - the diameter of the roughness element with circular
"cross section at y = 0

%I. DFUNCT - the shape of the spherical element

44

>4 The detailed dimensions of the roughness elements for

rectangular cross-section are given in Fig 5. The input

data is non-dimensionalized by the length of the model.

After the size, shape, and the spacing of the roughness

elements are specified, the subroutine calculates the block-

age terms f(y) and B(y) along n as follows:

(a) For Elements with Rectangular Cross-Sections

BYP(N) = 1.0 - XBRE * XDRE

XLS " XLDS

and

XFY(N) = 1.0- (XBRE)/ XLS)
BYP(N)

(b) For Elements With Circular Cross-Sections

BYP(N) = 1.0 - XD(N)2
2A

4XLS 2

and

XFY(N) = 1.0 - XD(N)/XLS
BYP(N)

After calculating iGhe blockage terms, the subroutine

further computes the source/sink term as follows:
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XSS(N) = X*XCD*XDCN)

BYP*p e *U e*1 *XLS 2

For elements with rectangular cross-section, D(y) was

set equal to XBFE.

This completed calculations within this routine, and

further, completed the formal description of four impor-

tant subsystems within ITRACT. Again, this subroutine

was included with the program listing of Appendix E. In

this appendix consideration was given to the important

concepts of the nondimensionalizat-'on of working quanti-

ties, and initialization of the grit. Also included was

a brief description of the three subroutines used in the

computation of eddy viscosity, heat .ransfer, and skin

friction and roughness variables. 7`e theory presenwed

in this appendix should provide a ½,:ter understanding of

Sthe code in general, and the modif-cation for surface

roughness specifically.

S5
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To establish the authenticity of the original code, ITRACT, some smooth
surface results were first computed and compared with the experimental data
of Dr. Fiore and Dr. Cole for turbulent flows over smooth surfaces. After
the accuracy of the code was established for smooth-surface calculations,
the code was modified in order to render it capable of predicting the
influence of surface roughness on compressible turbulent flow:. The modifiedcode was then used to obtain results for rough-surface boundary layers and

he computed results were compared with the experimental data of Dr. Fiore
or the case of supersonic flow over a rough flat plate. The agreement

between the computed and the measured velocity profiles was quite satis-
factory. The corresponding temperature profiles agreed well everywhere
except very near the wall; a possible reason for this.discrepancy is offered
in this study. Unlike the previous studies of rough-surface boundary layers,
the present study makes no modification to the murbulence model employed.
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