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Preface
.9-

The subject of low-thrust, ion rockets has interested

me since I first learned of such vehicles in an under-

graduate astrodynamics course. Air Force duties prevented

me from keeping abreast of new developments over the past

few years, however. I welcomed the opportunity of working

on this subject for my thesis.

I would like to acknowledge the help of my advisor,

Dr. William Wiesel. But I especially want to thank my

wife and typist, Jan, for her understanding and help over

the past 18 months. I also hope my two daughters, Laura

and Leslie, will forgive me for the lack of attention they

have had to experience.

Bob Cass
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AFIT/GA/AA/83D-1

Abstract

This paper examines the use of discontinuous low

thrust for orbital transfers between two non-coplanar,

circular orbits. The vehicle is assumed to be a solar-

powered, ion rocket that cannot operate when it is within

the earth's shadow. Two timescales are used to derive

a minimum fuel trajectory. The fast timescale solution

madmizes a change in inclination.when given a change in

semi-major axis for a single orbit. The slow timescale

solution combines fast timescale results to obtain the

minimum fuel trajectory. Results are presented for

three specific transfers requiring varying amounts of

shadow penetration. It is shown that the fuel penalty

caused by discontinuous thrust is very small. However,

'there can be a moderate increase in total trip time if

the time within shadow is large.
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DISCONTINUOUS LOW THRUST ORBIT TRANSFER

I Introduction

Electric propulsion research continues to seek new

methods rnf accomplishing future missions in space. Elec-

trically propelled vehicles offer two important advantages

for anticipated missions dealing with large space struc-

tures. One advantage is an increase in payload ratio

which will allow more massive structures to be propelled.

The other advantage comes from the extremely low accelera-

tion available from electric thrusters. The large space

structures being proposed will be flimsy and unable to

withstand large accelerations. Electric propulsion offers

a way of moving these large structures around in space.

Although there are many versions of electric thrusters,

they all have common characteristics. The most notable are

high specific impulse, low mass flow rate and low thrust.

These devices provide thrust by electrically accelerating

charged ions and then exhausting them into space.

Several authors (Alfano2, Moeckel3 , Ehrike4 , and

Stuhlinger5 ) have shown that the optimal trajectory for

orbital transfers using continuous low thrust is an out-

ward spiral. Alfano has derived an optimal control law

to perform traLsfers that include changes in both inclination

r. : v . '•.f ( .. ,, -. - ',, . , .,..'-. - - . . .. ' ,- i/ ,a - . -. ". .' .. . - .',"



and semi-major axis. All these solutions have been based

on the use of continuous low thrust.

But continuous thrust may not be available. The electric

power used to drive these thrusters will probably be produced

by solar cells or a nuclear power plant. Since nuclear power

sources weigh more per kilowatt than solar cells and since

nuclear power is becoming less attractive in general, it is

reasonable to assume that many of these vehicles will be

solar-powered. 6 A solar-powered rocket has one serious dis-

advantage, however. It will not work when it is in the earth's

shadow. Therefore, such a craft could not provide continuous

- thrust.

If tangential thrust were applied only when the vehicle

*; is in sunlight, a circular orbit would not remain circular

very long. Since the previous control schemes all assumed

circular orbits would remain circular, they are not valid

for discontinuous low thrust. This paper addresses the

problem.of using discontinuous low thrust for non-coplanar

transfers between circular orbits.

The derivation is divided into two problems of differing

time scales. The fast timescale problem optimizes the

changes in orbital elements over one orbit with vehicle mass

held constant. The slow timescale problem uses the results

of the fast timescale optimization, while updating the mass

and acceleration on each orbit.

2
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II Fast Timescale Problem

The fast timescale problem addresses the changes in

orbital elements that occur during one revolution of the

central body. The solution should produce a thrust profile

which will maximize a change in either inclination or semi-

major axis when a particular change in the other is speci-

fied. Thrust application is only possible when the solar-

powered spacecraft is in sunlight.

Derivation

The following derivation assumes two-body motion with

the earth as the central body. Electric engines produce

low thrust and hence cause only small changes in the orbital

elements during one orbit. Consequently, general perturba-

tion theory is used in that all the orbit elements are con-

sidered constant during each orbit. Also, fuel consumption

is low enough that mass is considered constant during one

orbit.

The equations of motion are given by Lagrange's planetary

equations in their acceleration component form:
7

dQ W (I-e2 ) sin(f+W4)

dt n a ( + e cos f) sin i (1)

di W (1-e2)Icos(f+A)-- = (2)
dt n a (1 + cos f)

3



i 2 2

d(.W -U (-e2)i Cos f V (1-e2)z(2 + e cos f) sin f
_ -+

dt n a e n a e (1 e cos f)

W (1-e2)I sin(f+03) cot i

n a (1 + e cos f)

de U ( 1 -e2) sin f

dt n a

V (l-e2)i [ I - e2 1
1+ e cos f- (4)

n a e 1 + e Cos f

da 2 U e sin f 2 V (1 + e cos f)
-- 1 + (5)

dt n (I-e2)i n (I-e2)5

where a is the semi-major axis; e is the eccentricity; i is

inclination; (& is the argument of perigee; Q is the longitude

of the ascending node; f is the true anomaly; U, V and W are

the radial, tangential and normal acceleration components,

respectively; and n is the mean motion.

n = (M/a3 ) (6)

where

=GM (7)

and G is the universal gravitation constant and Me is the

4
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mass of the earth.

For transfers between circular orbits with continuous

low thrust, many authors have shown that the optimum thrust

profile requires negligible radial thrust. It has also been

shown that the use of purely tangential thrust causes only

negligible changes in eccentricity for transfers to geosyn-

chronous altitude when the thrust acceleration is less than

1O' 3 g's. 5 But when thrust is applied over only part of the

orbit, eventual changes in eccentricity can be expected. It

is also possible that the optimum thrust profile would re-

quire that eccentricity be allowed to vary from zero. But

the planetary equations can be greatly simplified if the

dependence on eccentricity can be eliminated.

To eliminate eccentricity from the planetary equations,

an additional constraint is added to the problem. It will

be required that the change in eccentricity for each orbit

be equal to zero. Since the initial orbit is circular,

this constraint forces e to remain zero for the entire pro-

file. Radial thrust will be used to negate changes in e

that would be caused by pure tangential thrust.

Although this profile may not be the absolute optimum

because of the additional constraint, it will be shown that
it is at least near optimum.

The requirement that e = 0 causes the planetary equa-

tions to become

5
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di 'W sin(f+O)
___ (8)

dt n a sin i

di W cos(f+LO)

dt n a

dW
- is undefined for a circular orbit (10)
dt

de U sin f 2 V cos fS- + (11)

dt n a n a

da 2 V
- =- (12)
dt n

An explanation is in order as to why Eqs (8) and (9)

contain Cd, when the argument of perigee is undefined for

circular orbits. In most problems dealing with circular

orbits, W0 is set equal to zero and then dropped from the

equations. Implicit in this operation is that f will be

measured from the ascending node, since (A in Eqs (8) and

(9) represents a phase shift from the ascending node. In

the derivation that follows, f will be measured from the

point at which the spacecraft exits the earth's shadow.

In this paper, shadow entry and exit points are considered

the boundaries of the umbra. To avoid confusion, s will

be used as the phase shift from the ascending node to the

1* 6
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Fig. 1. Shadow Boundaries

shadow exit point. Also, g will be a measure of the angle

from shadow exit to the next shadow entry and m will be

one-half of the angle of shadow. See Figure 1 for a depic-

tion of these angles. Substituting s for (A) gives

- W sin(f+s)

dt n a sin i

di W cos(f+s)"-:-' -- =(14)

dt n a

Since n = df/dt , a change of independent variable can be

7



made from t to f. Substitution yields

df- W sin(f+s)
-.. .. ( 5

df n2 a sin i

di W cos(f~s) (6

d n 2 1

de U sin f + 2 V cos f
'" 2-(17)

df n a

da 2 V
d - (18)df n2

Substituting Eq (6) gives

d W a2 sin(f+s). ,- - ( 19)
- df 1A sin i

di W a2 cos(f~s)
(20)

df /

de a2

- =- (U sin f 2 V cos f) (21)
df JA

Ji

da a3 2 V

- = (22)
df /A

8



To determine the changes in the orbital parameters

for one orbit, these equations should be integrated from 0

to 27T . But U, V, and W are zero when the spacecraft is

in shadow; so these equations can be integrated from 0 to
. .' g where g is the true anomaly at the point where the shadow

-: is entered. The changes in orbital elements are then

an 9 W a2 sin(f+s) df

=f ASin i

,g W a2 cos(f+s) df
Ai j=o (24)

"4.

ii~ a 2
Ae f(U sin f +2 V cos f) df (25)

I ~a=fo2 /A~
= 0 g 2 V a 3 df

Aa (26)

The thrust accelerations U, V and W can be modeled as

functions of f. From Figure 2,

" U = T cos7 cosCX (27)

V T cosr sin0 (28)

W = T sinT (29)

.4.
I"'..
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Fig 2. Acceleration Components

where

a= 7e(f) (30)

Substitution yields

T a2
& Q = fsinT sin(f+s) df (32)

i =sinT cos(f+s) df (33)
5. Jo

10



Ta g
Ae f(cosT cosU sin f

+ 2 cos'T sin 0 Cos f) df (34)

2 T a 3 f
Aa - sin 0 df (35)

A

To find the optimum thrust history for one orbit, the

approach used is to maximize Ai for a given Aa, subject to

the additional constraint that Ae 0. The performance index

with constraint relationships is

J((,X sinT cos(f*s) df

+ X- cosT  sinol df - A

+ X2f Ta (cosT cosa sin f + 2cosy sinl Cos f) df (36)

where and X2 are Lagrange multipliers. Simplifying,

4" 11
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2

J(e,,) =f1.n. cos(fs) +X, a 2 cosT  sinOa

% x(Cos1 cosU sin f + 2 cos" sln0 cos f df

- X1Aa (37)

Call the integrand F for convenience. The calculus of

variations can be used to show that the above functional

has a stationary value when the following Euler equations

are satisfied.8

F d F
-0--1 (38)BOI dfL~'

a F d [aFI
-- 1- = 0 (39)

* df

where primes indicate the derivative with respect to the in-

dependent variable, f. Since (X' and ,', do not occur in F,

The Euler equations become algebraic equations rather than

differential equations. Therefore, J has an extremal when

-= 0 (40)

and

-= 0 (41)

12
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After performing the differentiation,

BF X 1 2 Ta&3 csrc

(2 S os'CosC os f -COST~ sin~k sin f) (42)

~F Ta?- X12- T aj.
AN-c s4 TCOS(f+-S)- ama sn~

X2 T a2 (sin7 cos0I sin f + 2 sin7 sinO! CoB f) (43)

Substituting Eqs (42) and (43) into Eqs (40) and (41) and

then simplifying gives

tan. 2(X + X 2 cos f) (4
tan ~ X2 sin f 14

tan') [ sn 2 f (45)s) ~o

2nf+ 4( X1 a + 2 ) (45

Therefore, the optimal control law becomes

13



oe an. 1 [(Xia +X~cos f)](6

Ge tan-' (46)

X 2 sin f

cos( f+s)
t= a'n- Lx n + 4(X[a X2Co f) 2] ] (47)

Substitution of Eqs (46) and (47) into Eqs (32) through (35)

gives

T a2  9 sin(f+s) cos(f-s) df

~&sin ifo [X\?sin2 f+4( X~a+ X2 cos f) 2+cos2 (f+s)]k 48

T a2  g cos2 (f+s) df

A L. JA fo [>,?Sdn'f+4( X~a+ X.cos f) 2+cos2 fs)(9

,e T a2  f[x2sin 2f.4cos f ( Xla4 X2cos f)] df
/.Ae F JO[Xsin2 f 4 ( Xa+ X 2 cos f) 2 cos2 (f+s)]* (50)

.5,L

4 T a3  (Xa~X 2 cos f) df (51)
1A s X in f.'4( X~a+ X2cos (51)CO2(~s

The two constraint relationships, Ae = 0 and Aa

as given, can be used to solve for the two Lagrange multi-

pliers, \ 1 and X 2 " But these equations must be solved

numerically. Before they can be solved numerically, how-

ever, s must be determined,

14
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Fig 3. Sun-Orbit Geometrical Relationship

As mentioned earlier, s is a phase angle measured in

the orbit plane between the ascending node and the point
where the spacecraft exits the earth's shadow. Link9 has

. derived the following expressions for the orbital coordinates

. of the anti-sun point to the orbital plane.

.. sin B =-sina coo i +cos3 sin i sin(O.- )(52)

s q:',in tL -cos(O~e- Q)_ -(53
cos B

where B and L are angles as shown in Fig 3, Oqand @are

the right ascension and declination of the sun. The same

..

refrene FigiSunri eesome ricalf ltonshpo
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Fig 4, Shadow Geometry

anlgle at  :

COS M z o T (54)
cos B

where 00o is half of the maximum shadow possible for a

'o.

gi en ltitude.

a 0

Swhere 7re and 7rs are the parallaxes of the sun and sat-

~ellite respectively and R is the angular semi-diameter
of the sun, See Figure 4. It can be seen in Figure 3 that

S :-f .L + m ( ,Sanle1

*-4 ° O . + 'o ° ° o 
"

. . . - ° . - . .' ° . "..." .° .q . - .



When making the preceeding calculation, care must be exercised

in choosing the proper quadrant for L. Once s is known, the

upper limit of integration, g, can be found:

g = 27T- 2 m = 2(7T- m) (57)

But first, for convenience, define

U X, a (58)

and

D = Xsin2 f + 4(u + XzCos f)2 + cos 2 (f+s) (59)22

Now the optimum control history for a single orbit can

be found in the following manner. Given the orbital elements

and the sun-earth geometrical relationship, s and g can be

computed from Eqs (56) and (57). Then the two constraint

relationships,

9 Xsin2 f 4 cosfcos f) df

D/\2 0 (60)

and

A.4

f 9 2(u +X 2Cos f) df Aa/

DI 2 T a3  (61)

can be solved numerically to determine u and 2" These

two values can then be substituted into the control law

17
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which is repeated here;

2- (u + X2cos f) I(6C1 tan-' 2 n f (46)

-y = tan'l [[X2sin2f + 4(u + X 2cos f)2]i ]
to find the control profile. This profile will maximize

Ai for a given Aa, subject to Ae = 0.

Examples

Several examples are presented here to show the effects

caused by various amounts of shadow and varying values of u.

In all the examples, sun-earth relative geometry is assumed

such that

31T
s=- + m (62)

2

This value of s corresponds to the following conditions:
a 1.0OL DU c,: 2700

180w -23.470

These conditions would exist if the spacecraft were established

in a 200 km parking orbit on the first day of winter.

Figure 5 shows the effect of shadow width on X2"
Notice that when there is no shadow (m = 0), then N2 = O.

When X2 = 0 , the constraint equation, Ae = 0 , is not

necessary.

18
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Fig 5. Shadow Effects on X2

Figure 6 shows the effect of shadow width on Aa and

Ai. As would be expected, decreasing shadow width is

accompanied by increasing Aa and Ai as a result of longer

thrust application. Notice that u = 0 corresponds to

inclination change only and that u = oo corresponds to

semi-major axis change only. For computational purposes,

u = 100 can be used for u =oo , with good numerical

accuracy. A plot of AQ versus u is not shown since A

was very near zero for all cases that were examined. Also,

since AD was always at least three orders of magnitude

less than Aa and Ai, its equation will be neglected in

the remaining derivation.

19
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Fig 6, Shadow Effects on &a and Ai
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A comparison of the no shadow case and Alfano's results

will help verify the derivation in this paper. As mentioned

previously, when m = 0 , then X 2 = 0. For X2 -0,

CI =7r/2 and = tan-' [cos(f+s)/2u]. These values corre-

spond exactly with those presented in Alfano's paper.

Additionally, consider using the control to cause semi-

major axis change only. This case corresponds to u = oo.

By taking the limit as u-oo, it can be shown that

Aa /T a3 = 27r. Finally, when only change in inclination

is desired, Aila/ T a2 = 4. Both of the last two results

also agree exactly with those presented in Alfano's paper.

Therefore, the control law is validated for the special

case of no shadow.

Figures 7 through 9 show the effect of the control, u,

for different values of m, the half-shadow angle. The

curves appear as would be expected; for u = 0, all thrust

is directed normal for the orbit plane; for greater values

of u, less thrust is directed in the normal direction. The

Oe curves may appear contradictory at first. As u increases,

one would expect more thrust to be directed tangentially to

achieve a greater ha. But the figures indicate that

greater values of u demand even greater divergence from

pure tangential thrust (C =7T/2). Recall, however, that

O only determines the direction of the thrust component

in the orbit plane.

The magnitude of that component is T cos7. As u

21
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increases, cos'Y increases. So even though it appears that

the tangential component decreases due to , the coupling

through the ^ dependence insures that the tangential force

is increasing. Of course, the increasing tangential accel-

eration requires more radial accelerations to maintain

he = 0; thus causing it to appear that less tangential force

is being applied.

.7 -

.-. ,,
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III Slow Timescale Problem

Problem Statement

The purpose of solving the slow timescale problem is to

determine how much to change semi-major axis and inclination

on each orbit so that final boundary conditions are reached

in minimum time. Fast timescale results are used to ensure

optimal control during each orbit and to define the amount

of change possible on a given orbit. Mass is recomputed

for each orbit to compensate for propellant loss.

Derivation

Before the minimum time control problem can be solved,

a few preliminary steps will be taken. An expression is

needed for da/dt and di/dt for the slow timescale problem.

Since the orbital elements change so little on each orbit,

these rates can be approximated by

da Aa
d(63)dt 6t

di Ai
-I - (64)
dt At

where At is the elapsed time for the particular orbit. For

a circular orbit,

P 27T (65)

But the presence of shadow makes the above approximations
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inaccurate. The elements a and i will only change when the

spacecraft is in sunlight. Therefore, At must be adjusted

to only cover that portion of the orbit when thrust is

being applied.

At =--TP 2(7T- ) (66)
2 7r

Substitution yields

da 2 T a3/2 g (u .X2 cos f) df

dt / 7(7Tr-m)JD (67)

d T a f cos2 (f+s) df
dt 2 ' i ( 7r - m) 0  D-i (68)

Since the problem is to find a minimum thrusting time and

hence minimum fuel, successive orbits will combine as if

there were no coasting time through the shadow. The coast-

ing time will be computed so the total transfer elapsed

time will be known at the end.

As mentioned previously, corrections will be made for

each orbit to compensate for increased acceleration caused

by decreasing mass. For a constant thrust ion rocket, pro-

pellant flow is constant. Acceleration as a function of

time can be modeled as

To

T(t) = (69)
1 -& t

Vs. 27
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where To is the initial vehicle acceleration, t is the time

and hp is the specific mass flow rate (mass flow rate divided

p
by initial vehicle mass).

Since Eqs (67) and (68) can be solved more easily if

there is no time dependence, a change of variable can be

made. A new independent variable T can be defined such that

FTO
dT= LT 

- dt (70)

Integrating, with T= 0 when t = 0 yields

T
T = -- ln ( - &pt) (71)lip

M p

Tie the total accumulated velocity change. Minimizing

7 will minimize thrusting time and fuel expended.

Converting from t to T gives

da 2 a3/2 9 (u *\cos f) df

dT /4s(7rTm)Jo (72)

di a g cos2 (f+s)

Bryson and Ho 10 have shown that a minimum time

solution satisfies the following conditions:

H(tf) = 0 (74)
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- - 0 k 1,2,3,...,r (75)

- j = l,2,3,.o.,q (76)

where H is the Hamiltonian, Xj's are Lagrange multipliers,

x 's are the state variables, and the UkIs are the control

variables. In this problem, r = 1 producing only one

optimality condition and q = 2 because the simplified

system has only two degrees of freedom. These equations

will now be applied to this specific problem.

For this problem, the Hamiltonian is

da di
H xa +Xi + 1 (77)

Since t does not appear explicitly in H,

A= 0 (78)

Therefore, H(tf) = 0 implies

H(t) = 0 (79)

for all t - 0. So

da di

X-a + 1 0 (80)a iT d7

for all time. Substitution produces

29
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3/2 [9~) 1  (u X;cos f) df]

X a COB2-M 1

+ xi2/Ai(7r-M)j df 1* + = (81)

Ithis problem, Eq (75) becomes

a[da] [di]
Xa 2[-J + xi T 0 (2

But

Sda 2 a3 /'2 g [ 2sin2f + O (s)d1. J (83)
21u diT = MiT-rn) fgD 3/ 2

and

a da =-2 1a- fg (u + X2 cos f)CO 2( f+s) df 84
B u dT'm/ Mi)m J f312  (4

Therefore,

I. 9 3 0
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l

Eq (76) becomes

aH
Eq (6 (86)

1 .
. I ~aH

Xl = -(87)

where the prime indicates differentiation with respect

to T. Now

aH a d a,][d~i(88)

But, remembering that s is a function of m and m is a function

of both a and i,

a - a m a(89)
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da 3 a'g (u +X 2 cos f) df

3a XT /A i Ur-M) J0 D-

Since g is also a function of m

2 da 9 g a3/2(u + Xcos f) df

3m dT f, a IA(7r-m)D

2 a3/2(u + Xacos f) - g
+ (91)

/A*(IT-r) Di 9 am

And, finally

a da 2 a3/2 g (u +\ 2 cos f) df

3 a dT /A2r-m) D+

+2 (a3/2 . f 0 (u +X 2 cos f)sin(f+s)cos(f+s) df

4 g a (u X2 cos 2=)

1( 1r-)[X26in22m+4(u+ X c2 )2+c052 (s.l.rn)] . (92)

Now, to find am/3a, recall Eqs (52), (54), and (55).

Substitution of the appropriate physical constraints gives

cosCo = - (93)
a2 a
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.... 

where Fo and Goare constants depending on the size of the

earth and sun and the distance between them.

Fo = .99994668 Go = .0046229536

Also,

cos B = [I -(cos6 e sin i sin(c -O)- sin6 cos i)2]I (94)

= F [ (_coso\.1
- - COS I (95)

aa ~a [c co sB/]

FO
G0

2 2 1 (96)
Ba a 2 [cos2 B cos2o](

For convenience, let

201a m GO- F,(a-1-
a-aa a2 [cos 2B - cos 20j (

Continuing to construct more terms of Eq (88),

di di (98

a- [ ] + a(98)
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Bdi -l 1 sino(f~s) dosfs)d

~a dT 4b4A (lr-m) 

al 9 sin(f~s) COS(f~s) d

am f 3/2(~) i

21 2~(7r 0)D

1(7r-M) sin -(u+s cosfm)2 +Csdi' --m

+22

(100)
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Substituting Eqs (90), (92)9 (97), (99) and (100) into

Eq (86) yields

Xa p+(r..m)[a[3cr~ma a]~g(u + X2COs f) df

X,' ~ 3/ gx U17T 2D

2 X a31 g (u +\,o f) sin(f+s) cos(f+s) df

1A (l-M) 5/

4 X a312 (u+X Cos 2m)

/A ,(r-f) [,\?sin 2m+4(u+ X Cos-M2Cos (s-2m)

(7r-m) + 2 X a r O2 (fs df

X a' sin fs cos(fs)d

X a-f sin(f~s) cos(f'-s) df

JA L(7Trm) D-3/2

2 asm2+o cos2 ) (s21)

ft ft - ,L4~1A(7r-m) [X'sin 2m+t+(u+ X2cosm2cr .~)

(101)
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yIn a Similar manner, can be found to be

Xi2_YX a3/2 g(u+ 2cos f) df

2 y 3/2 g (u +X\,cos f) sin(f~s) cos(f~s) df

1 (7r-r) J3/

4 Y a/ (u + X 2 cos 2m)1

/A U~(Ir ) [X8ii 2 2m+4(u+ X2corn2 cs _m2r)]

-Y a'sin(f+s) cos(f~s) df

+ Ya C 2 (f+s) df

Y a, sin(f~s) cos3 (f+S) df
S...2 / t + I T~ m J 0 D 3 / 2

-Y a' c082 (a-2M)
r\2.2~ 2 C(102)~

* where

y Bm -coso sin B cos(&j- i)

Bi5~ C08 Bo [coa2 B - cos2 cj* (1013)
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Now, Eqs (81) and (85) can be solved simultaneously

for Xa and in terms of integrals containing the state

and control variables. From Eq (85),

ag [Xsin
2 f + cos 2 (f+s)] df

Xa 2 D312

2 (104)
ai g (u +1X2  ) cos2 +s) df(

fo D3/2

Substituting this result into Eq (81) gives

Its) )2 (7r-m)fg (u +X 2 cos f) cos
2 (f+s) df

a [Q(u,s 2 a3/2 j D3/2  (105)

where

4(g u +Xcos f) df g (u+X2cos f)cos 
2 (f~) df

Q(u,s) DJ D3/2

cO2 (f~s) df f Xsn2f+ Co fsldf.1: f D ' 0 2D12 (106)

These two equations can be substituted into either equation

(101) or (102) to also produce an integral equation in terms

of the state and control variables. Now, using the new

expression for Eqs (101) or (102), and the two state Eqs

(72) and (73), the minimum time problem can be solved.

.37
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AP.

There are three equations and three unknowns: a, i, and u.

Solving these equations is not a trivial task, however.

Implementation of this solution is described in the following

section.

Implementation

The minimum time profile is determined in the following

manner. Choose Eq (101) or (102) to use. To demonstrate,

use Eq (101). Pick a starting value for xa* Given this

Xa(0), Eq (105) can be solved numerically to determine what
u would produce that Xas Remember that selecting or find-

ing u also determines \2 as a result of satisfying the con-

straint Ae = 0 . Now these values of u and X2 are used in

the state Eqs (72) and (73) to find Aa and Ai. Also, a, i

and m are used to compute At and AT. This AT is used to

find the new Xa* X a is then used to repeat the process

until final boundary conditions are met. If final boundary

conditions are not met, a new Xa(0) is chosen. This pro-

cess continues until a Xa(O) is found which causes the

final boundary conditions to be achieved. Then u will be

determined for the entire profile.

Although this method of solution may sound rather

straight forward, there can be some major problems. At

first glance, it would appear that one should choose the xi

equation to use. That equation has fewer terms and Y as a

factor in all its terms. Recall that Y is the partial of m

with respect to i. When m =, Y= 0 and

38
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, -0o (107)

Therefore

= constant (108)

It was found by experience, however, that in the range of

interest for values of Xis u is double-valued. It was

also found that Xi varied dramatically for different values

of a and i. See figures 10 and 11. Figure 10 shows Xa
.and versus u for a = 1.03 Dli's and i = .4974 radians.

Figure 11 shows the same functions for a = 6.6 DU's (geo-

synchronous) and i = 0. Notice that the Xa curve main-
tains its shape and only changes slightly. The Ai curve,

however, is not as well behaved. The peak on that curve

4. shifts upward and to the right. Using xi' the optimal

profile attempts to move from the right side of the peak

to the left. Numerical search schemes in the vicinity of

the zero slope diverged and therefore an optimal profile

could not be found.

By using the Xa equation, an optimal profile could

be found as long as large values of u are not encountered.

This would occur if the starting Aa was chosen where the

Xa curve was nearly horizontal. Fortunately, that region

corresponds to transfers which will be shown to not be

optimal.

The second major problem in implementing this solu-

tion is developing a search scheme to find the correct

39
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(0). For all cases considered in this paper, choosing

a Xa(O) near zero caused if to be reached before af* For

Xa(O) in the horizontal portion of its graph, af was

reached first. The optimum choice of Xa(0) for a minimuma
time solution occurs somewhere between these other values.

Unfortunately, more than one local minimum may exist in

this region. In the next chapter, it will be shown that

this does not appear to be a serious problem for the par-

ticular transfers that were considered. When more than

one minimum occured, the transfer times were very close

to one another.

In summary, the method outlined in the chapter can

be used to solve the minimum time transfer problem. The

solution may only be a local minimum, however.
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IV Results

The equations derived in the preceeding chapters were

applied to three specific transfers. One transfer did not

involve any time in shadow; another caused the spacecraft

to be in shadow for about half its orbits; and the last

transfer required shadow penetration during about 95% of

its orbits. All three transfers required the same semi-

major axis and inclination change. For all, ai correspond-

ed to a parking orbit altitude of 200 km and af correspond-

ed to geo-synchronous altitude. Beginning and ending in-

clinations were chosen to cause the varying amounts of

shadow time. In all three cases,

04D- 270 0 180" -2347°

Also, to aid compariaon, Alfano's values for specific im-

pulse (5000 sec) and specific mass flow rate (2.0 x 10-7/sec)

were used. Figures 12 through 14 show how a, i and shadow

angle vary during each of the three profiles.

4. Case I

This case was the transfer that did not penetrate the

earth's shadow at any time. This case was designed primar-

ily to validate the slow timescale solution by comparing

it with Alfano's results for the identical transfer. Using

the solution presented here, the total accumulated velocity

change (T) was only 2.7% greater than Alfano's. The differ-

ence was caused primarily by numerical problems associated

%with finding from the constraint relationship, Ae = 0.i2
a,.. 42
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Fig 15. Case II Initial Conditions

. Although should equal zero when there is no shadow,

4'4

was always found to be very near zero. Consequently, a small
~amount of radial thrust was applied throughout the transfer

4-

4 . making it less efficient, A more accurate search routine

'ifor X. should reduce or eliminate the difference. For this

reason, it is believed that this solution is validated.

Case II

j The geometry for this case is shown in Figure 15, The

"-" initial conditions would occur with a noon launch out of

.

.4

".. Cape Canaveral on the first day of winter. In this transfer,

~the spacecraft experiences an eclipse on each of its first

20 orbits,

46
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Fig 16. Case III Initial Conditions

For this transfer, T was only 1.17% greater than the

- case with no shadow. This small amount represents the

penalty associated with maintaining Ae = 0 during the orbits

when the shadow is penetrated. Even the total transfer time

including coasting periods is only 40 TU's or 5.62% longer.

Case III

K:i The initial geometry for this transfer is shown on Fig-

ure 16. These conditions would occur with a midnight launch

on the first day of winter. This transfer was chosen be-

cause it required the spacecraft to penetrate the shadow

for many orbits. As expected, this transfer required more

fuel and time. There is a 3.76% increase in T. The total
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time experienced a large 24.8% increase, however. Again,

this is not surprising, since the spacecraft had many more

coasting periods,

Multiple Local Minima

As previously discussed, several minima may exist.

Using Case II as an example, it was found that at least two

local minima did exist. For Xa(O) = -. 69023, Tand thrusting

time were as described previously and shown in Figure 12.

For Xa(O) = -.73123, T was only .001 greater. The two

profiles were slightly different. In the second profile,

semi-major axis changed more rapidly at first causing

shadow exit one orbit earlier.

The presence of multiple minima is not really a pro-

blem, however. A reasonable step size for Xa(O) of .01

identified where the minima could be found. Also, it was

noted that there is a specific range of Xa(0) where

these minima seem to occur. If Xa(O) is such that if

is reached first, and, if thrust is used after that point

to change a only, then the amount of time needed to reach

af is an indication of whether a minimum can exist in a

neighborhood of that Xa(0). If af cannot be reached

within one orbit, then /a() does not appear to be near

a minimum. A plot of 7 versus Xa(O) seems to be steadily

decreasing in this region; see Figure 17. The same argu-

mont can be made for Aa(O)'s where af is reached first.

If if cannot be reached within one orbit using only thrust
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normal to the plane, then a minimum does not apparently

exist in that region. Again, Tseems to be steadily in-

creasing in this area. In either case, if the other

boundary condition can be reached within one orbit, then

a minimum is nearby. Also, the new Aa(O) should be

greater if if was reached first and less if af was

- ~ achieved first. Knowing these characteristics makes it

relatively easy to find the minima.

General Observations

There are two additional characteristics of these

transfers that bear mentioning. Several other initial

conditions were used to examine certain characteristics.
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Full transfers were not accomplished, but two trends did

appear.

The first trend to note is that in no case did the

control law direct an inclination change away from if*

It was thought that the minimum time solution may require

a Ai away from if to reduce shadow time. Apparently, the

cost of moving away from the final boundary condition is

more than the benefit gained from reducing the shadow.

The other trend that was noticed was that the control,

u, increases until the shadow is less than approximately

2.1 radians. If the shadow is less than that amount, u

decreases. The value at which this occurs is not constant

for all the transfers, but it is near 2.1 radians.

It should also be pointed out that these trends were not

contradicted in any of these trials.
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V. Conclusions and Recommendations

A minimum time, minimum fuel control law for a vehicle

using discontinuous low thrust has been presented. This

control is optimal, subject to the constraint that Ae = 0.

,If vehicle design prevents continuous thrust applica-

tion, there is only a small penalty over a design which

allows continuous thrust. In particular, an ion rocket

powered by solar panels would be competitive with one

powered by nuclear power, even if the former could not

operate in shadow. The reduction in weight and complexity

by eliminating a nuclear power source may more than offset

the weight of a small amount of additional fuel.

This solution assumed a spherical earth, as well as
constant Cand 8e" The oblateness of the earth would

cause the line of nodes to regress. Additionally, the

actual changes in (,and will affect the size of the
shadow. These two effects combine to make the length of

the transfer highly dependent on the launch time and in-

clination. The proper selection of when to launch into

which initial parking orbit can minimize the effect of

shadow penetration.

This solution also assumed low thrust. If thrust

is too great, this control law is invalid because Aa and

Ai would not be small on each orbit.
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A recommendation to further this study would be to find

an optimum launch time to perform a given transfer. Another

continuation would be to find the optimum control law with-

out requiring Ae = 0.

.4
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