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Transverse and Quantum Effects in
Light Control by Light

(a) Parallel Beams:
Three-Level Superfluoresence Calculations;

and
(b) Counterflow Beams: An Algorithm for Optical Bistability

F.P. Mattar

Abstract

1. Methodology

Computational methodologies were developed to treat rigorously

(i) transverse boundary in an inverted (amplifying) media; (ii) to

*4 treat quantum fluctuations in an initial boundary condition in the

light-matter interactions problem; (iii) construct a two-laser three-

level code to study light control by light effect; (iv) construction of

a data base that (a) would manage the production of different types

of laser calculations: cylindrical, cylindrical with atomic frequency

broadening, cartesian geometry; (all of the above with quantum me-

* chanical initiation), (b) allow parametric comparison within the same

type of calculations, by establishing a unifying protocol of software

storage, of the various refinements of the model could be contrasted

among themselves and with experiment; (v) construct an algorithm for

.* 'counterbeam transient studies for optical bistability and optical oscil-

lator studies.

A. Transverse propagation effects in an inverted medium were

studied. Special care had to be taken to treat the boundary reflec-

tion conditions. If ill-posed, they can obscure the emergence of any

new physical results. The two transverse effects considered are (1) the

C. ". I



'spatial averaging' associated with the inl atomic inversion density being

radially dependent (since the pump which inverts the sample has typically

a Gaussian-like profile); and (2) the "diffraction coupling" (which permits

the various parts of the cylindrical cross-section to communicate, interact

and emit at the same time). The first effect is important for large Fresnel

numbers, whereas the second predominant for small Fresnel numbers.

The study of ouput energy stabilization between diffraction spreading

and nonlinear self-action due to the non-uniform gain of the active media

was also carried out to reach an understanding of the various physical pro-

cesses that take place in coherent resonant amplifiers.

B. Physical Results

i. The Study of three-level systems exhibited that injected

coherent-pump initial characteristic (such as on-axis area, temporal and

radial width and shape) injected at one frequency can have significant

deterministic effects on the evolution of the superfluorescence at another

frequency and its pulse delay time, peak intensity, temporal width and

shape. The importance of Resonant Coherent Raman processes was clearly

demonstrated in an example where the evolving superfluorescence pulse tem-

poral width ts is much less than the reshaped coherent pump width t
s p

even though the two pulses temporarily overlap (i.e., the superfluores-

cence process gets started late and terminates early with respect to the

pump time duration). The results of the three-level calculations are in

quantitative agreement with observation in CO2 pumped CH3 F by A.T.

Rosenberg and T.A. DeTemple (Phys. Rev., A24, 868 (1981)).

LI



ii. Additional calculations incorporating fluctuations in both

pump and superfluorescence transitions were carried out to study the out-

put pulse delay statistics. The fluctuations operators were introduced as

langevin operators in the matter (density matrix) operators. In the av-

erage c-number semi-classical regime the fluctuations appear as additional

driving forces in the Bloch equations acting for all p, z and t.

ti. Two color superfluorescence was subsequently studied in

collaboration with Professor F. Haake. The propagation theory of M. Feld

was shown to prevail over the Mean-Field theory of Bonifacio et al. The

main result of the calculation displayed for the plane wave regime is a

pulse synchronisation which ascertains Eberly et al's theory of 'simultons.'

However for quantum fluctuations during the initiation and strong phase

evolution in the beam (i.e., large Fresnel number) the synchronisation de-

creases and the standard deviation of the delay difference between the two
.4

peaks normalized to the average delay becomes larger.

iv. Elucidating the physical processes [namely, (a) the dyna-

mic diffraction, (b) the non-uniform absorption (i.e., refraction) and

(c) beam stripping] that lead to the on-axis manification predicted by

Boshier and Sandle calculation [see Optic Commu., 42, 371 (1982)). This

effort was carried out in collaboration with Professor I. Teichmann.

V. The development of an implicit algorithm which self-adaptive

non-uniform computational grids. This effort was carried out in collabora-

tion with Dr. B.R. Suydam. These new codes represent a combination of

Snydam code in Los Alamos and Mattar stretching and rezoning techniques

to treat self-lensing effects.

4.
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- Two-level amplifier output stabilisation and three-ievel pump

dynamics

B. Professor Michael S. Feld (MIT) - The 'gaussian radial
average' or 'shell model' as an important transverse varia-
ion included in the modeling (private communication)

The 'tipping angle' (average uniform) initiation of the super-
fluorescence process [J.R.R. Lerte, R.S. Sheffield, M.
Incloy, R.D. Sharma and M.S. Fled, Phys. Rev. A, 14,
1151 (1976)]

C. Professor Fritz Haake (Essen, F. R. Germnay) - two
colour superflourescence

D. Professor Jiri Teichmann and Mr. Yve Claude (University
of Montreal)

- Development of analytical perturbative treatment which eluci-
dates the onset of on-resonant CW self-focusing of very in-
tense laser beams in a two-level atoms

(ii) Numerics

- Prof. Gino Moretti (Polytechnic Institute of New York)
for the Counter beam propagation

- Dr. B.R. Suydam (T7 -Los Alamos National Lab) for
the Implicit code

(iii) Structure software and system programming

- Richard E. Francoeur (Mobil International Division)

- Pierre Cadieux (system routine for data bases)
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ADAPTIVE STRETCHING AND REZONING AS EFFECTIVE COMPUTATIONAL
TECHNIQUES FOR TWO-LEVEL PARAXIAL MAXWELL-BLOCH SIMULATION*

F.P. Matter
" and M.C. Newstelnt

"

Polytechnic Institute of New York
Brooklyn, NY 11201 USA

Received 6 December 1979, MS 867

The coherent interaction of short optical pulses with a nonlinear active resonant med-
ium Is calculated. The rigorous and self-consistent solution of the coupled nonlinear
Maxwell-Bloch equations including transverse and time-dependent phase variations
predicts in absorbers the onset of an on-resonance self-focusing and predicts in
amplifiers beam degradation. The self-focusing result agrees very well with a pre-
vious perturbation treatment and with recent experiments in sodium and neon, where-
as the severe beam distortion was observed in high power lasers utilized in inertial
fusion experiments. The formation of dynamic self-action effects is elucidated as
being due to the combined effects of diffraction and the inertial response of the
active media.Accuracy and computational economy are achieved simultaneously by redistributing

the computational grid points according to the physical requirements of the problem.
Evenly spaced computational grids are related to variable grids in physical space by
a range of stretching and rezoning techniques including adaptive rezoning where the
coordinate transformation is determined by the actual physical solution.

SUMMARY: The mathematical modeling of the by experimental observations in sodium and
SUMMRn Thens hemaoticamoling ofpthce neon. On the other hand, calculations con-coherent transmission of ultra-short optical cerning amplifiers depicted longitudinal pulse
pulses in a two-level atomic gaseous media, break-up, which degraded the beam quality,
which can sustain amplification and/or absorp- as substantiated in high power laser experi-
tion, Is presented. The main motivation was ments. The significant phase modulation and
to achieve an understanding of the inertial transverse spreading may explain the mechan-
(cumulative temporal history) nonlinearlity on ism that limits the useful output of long ampli-
the propagation of intense ultra-short light fiers. Parametric computations illustrated that
beams. Previously, this effect had been these self-action phenomena can be controlled
untractable and unapproachable. by tuning the various system parameters.

The results of this analysis served as a guid-
ance to real-life coherent light-matter interac- Accuracy and computational economy are ach-
tion experiments. The equations with both ieved simulaneously by redistributing the*radial and phase variations included, arerilmned uhsn vatio-dnsinl , tie computational Eulerian grid points according to
implemented using a two-dimensionl time- the physical requirements of the nonlinear
dependent finite difference computer code with interaction. Evenly spaced computational grids
two population densities, an inertial medium are related to variable grids in a physical
polarization density and adaptive propagation space by a range of stretching and rezoning
capabilities. The importance of dynamic trans- spce b r estreting nd oihe
verse effects in the evolution of both initialeithergrund-stat and ted medluian wibth difert an a priori coordinate transformation or an
ground-state and inverted media with different adaptive transformation based on the actual
Fresnel numbers has also been assessed. physical solution. Both stretching transfor-
The memory requirements for a two-dimensional mation in time and rezoning techniques in
calculation are greater than those in a one- space are used to alleviate the computational
dimensional case, consequently, the compute- effort. The propagation problem is then
tional mesh is predictably coarser. Unfortun- reformulated in terms of appropriate coordi-
ately, this may cause a lack of fine resolution. nates that will automatically accommodate any
But through the innovative implementation of change in the beam profile.
stretching and rezoning techniques as outlined

- below, the coarse nature of the Eulerian code The dynamic grid obtained through the self-
is adapted to a most sensitive and economical adjusted mapping techniques removes the main
grid. disadvantage of insufficient resolution from

which Eulerian codes generally suffer. Fur-Calculations using this code have predicted thermore, the advantages of grid sensitivity
and elucidated an on-resonance transient are t he circumen t raditional
whole-beam seif-lensing phenomenon in absorb- are obtained while circumventing te traditional

ers. This effect was subsequently ascertained impediments associated with the Lagrangian
er_._Thsefe____assbseuentysceraine methods. Thus, the convenience of an Euler-
• Work jointly supported by F.P. Mattar, te Ian formulation has been combined with the

Research Corporation, the International Divi- desirable zoning features of a Lagrangian code
' sion of Mobil, the University of Montreal and in a systematic and simple way.

1P%, the U.S. Army Research Office.
Aerodynamics Laboratories

t+Electr.cal Engineering
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I. INTRODUCTION points required would need to be increased
tremendously if the transient beam undergoes

When an intense laser beam propagates through severe self-divergence (self-expansion) or
a resonant active medium, the absorptive and self-convergence (self-narrowing). It is
dispersive properties of the medium will affect therefore imperative that the transverse mesh
the shape of the laser beam profile, which, be sufficiently small to correctly sample the
consequently, alters the characteristic struc- oscillations of the field amplitude and phase.
ture of the medium [1-6]. This modified
matter will reaffect, in turn, the field profile. If, for self-focused beams, a fixed transverse
The resulting cross-modulation of light by mesh is used, there may be in the vicinity of
matter and matter by light is a continuous the focal region a lack of resolution as dis-
self- sustained phenomenon. played in Figure (2a) and Figure (2b). A

non-negligible loss of computational effort in
The subject of optical transmission is an inter- the wings of the beam will also occur. The
disciplinary one. It draws on certain aspects total required computer storage could become
of wave propagation, fluid flow, atomic physics quite large. In an effort to maintain accuracy
and on both geometrical and physical optics. and efficiency, it has been decided to inte-
In addition, because many aspects of the grate the governing equations using a simple
problems of interest are analytically intract- coordinate transformation which was revised at
able, one finds that a complete study often suitable intervals to allow the numerical grid to
requires extensive computer analyses of coup- follow the pulsed-beam behavior. The mesh
led optical field-matter equations; more specifi- network will expand or contracts accordingly.
cally, the coupled optical propagation and The successive implementations of coordinate
atomic dynamics equations. The coherent mappings, which redistribute the points in the
behavior predicted on this model is in several most appropriate manner, correspond to a
important respects, quite different from that series of renormalization procedures.
given by earlier treatments. The interdependent nature of each aspect of
The current research was undertaken in an the problem requires a thorough comprehension
effort to answer more detailed questions relat- of the total relevant physics. In setting up
ing to the coherent exchange of energy, variable grids there is an important factor to
nonlinear phase distortion and beam quality in be considered: one must address simultaneous-
high power laser transmission; the method was ly any transverse energy distribution while
chosen to develop a suitable theory and reali- analyzing the longitudinal alterations as shown
tic numerical computer code based on close in Figure (3) and Figure (4). If a variable
collaboration with experimentalists [8-38). The longitudinal mesh, an, is introduced without
motivation of this work arises from the belief carrying a variable radial mesh, 4, to handle
that real life experiments would depart from large increments along the direction of propa-
the predictions 6f previous plane wave analysis gatlon, one inevitably faces a steadily decreas-
as it is sketched in Figures (la) and (1b). ing an step as the beam becomes more per-
The interplay of diffraction coupling and the turbed and starts to break up. This effect
medium coherent response will inevitably redis- will intensify to such an extent that an
tribute the baam energy both spatially and crashes (162] to an increasingly smaller value
temporally (39-431. This transient beam and the calculation must be discontinued.
reshaping can profoundly affect a device that
relies on this nonlinear interaction effect. In addition to the coordinate modification, a

-e change in the dependent variables is intro-
Essentially, this study seeks to minimize the duced in terms of the renormalizing factors
number of simplifying assumptions associated (such as the reference beam waist, wave-front
with previous analyses. Specifically, this curvature and field amplitude) to extract the
modeling encompasses self-phase modulation, radial dependence of the phase front and any
dynamic longitudinal and transverse reshaping important source of amplitude variation. As a
and coherent energy exchange in an inertial result of the factorization of the radial phase,
medium. Effective mathematical transformations the new dependent functions vary more gradu-
which are consistent with the physics make ally in the new coordinate system: what one
attainable a heretofore unachievable solution calculates, therefore, is a deviation from a
[44-741. reference Gaussian beam; any troublesome
When light propagates in free space, it exper- radial phase oscillation is hence removed. As
iences diffraction spreading which alters the soon as the localized computational mesh de-
beam shape (75, 771. In the more complicated parts significantly from the physical beam
nonlinear problem, the interaction intertwines waist, the renormalizaton procedure is re-
the various parts of the beam; the transverse freshed and redefined using pertinent moment
dimensions of the beam change drastically. As properties of the physical quantities. The new

4 the transmission distance increases from the grid coincides with the actual expansion and
launching aperture; one is faced inevitably contraction of the beam. Thus, the grid can
with substantial numerical difficulties. For be coarser, less extensive and more efficient. .
example, a numerical paraxial code using a
uniform radial grid can suffer a serious draw- Another major obstacle to circumvent is the
back which would make the cost of the calcu- cumulative memory effect in the response of

• iation prohibitive. Namely, the number of the medium to the laser beam. For computa-
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tional efficIency, the temporal grid will be ing-wave effects. The effect of the dynamic
non-uniformly stretched as indicated In Figure transverse variation, the time-dependent
(5). To conduct such a study one must resort phase, the boundary conditions for the propa-
to mscldna ca culaton as the equations are far gating field are also included. None of the
too complicated for any known analytic method- simplifying approximations (such as adiabatic
olaogs. In such large and Involved comput- following, rate eqution or mean-field limit), is
atbonal problem the calculatlonal efficiency of introduced; instead an exact numerical ap-
the algorithm chasen is of crucial Importance; proach is developed. This Investigation is
it can well make the difference whether the accomplished by using a novel algorithm in-
physical problem is actually solvable or not. spired by a similar line of attack in complica-
A brute force finite difference tment of the ted studies in Fluid Dynamics which has achiev-
governing equations is not feasible. Instead, ed substantial success. Such self-consistent
by judiciously making the salient details of the methodologies have permitted the construction
physical processes the determinant factors of of a computer code capable of being physically
where to concentrate the computational effort, meaningfu" at every node point.
one can achieve both accuracy and economy.

This first non-planar study simulates more
The adoption of non-uniform meshing techni- accurately the experimental configurations than
que defined in connection with aerodynamics the previous restrictive one-dimensional theore-
problem has proved to be a very foresighted tical attempts. This complete model takes into
decision. In particular, these numerical me- account rigorously the interplay of diffraction,
thods, designed by Moretti (50, 591, discrimi- nonlinear atomic inertia and both initial matter
nate between different domains of dependence and field boundary conditions.
of different physical parameters; as a result a
higher degree of accuracy in the actual physi- This modeling, which evolved from a close
cal problem became feasible. collaboration with different experimentalists,

can lead to a better understanding of the basic
II. PHYSICAL BACKGROUND and fundamental cooperative effects in light-

matter interactions. A quantitative evaluation
The great interest in understanding the trans- and clarification of some of the recent experi-
mission of intense ultra-short pulses through a mental advances has been reached. This
nonlinear medium is due to their application in study helped define novel laboratory experi-
laser-induced energy release via fusion of ments which yield additional subtleties in the
hydrogen isotopes. The pulses of Interest are physical processes. Also, extensions of this
assumed to be so short that no appreciable study may help select optimum design configu-
pumping (or other enargy-exchange process- ration for superfluorescence [79-82], X-ray
ors) can occur during the pulse. -The reson- lasers (86-911, optical bi-stability [92-100],
ant medium is thus left in a non-equilibrium double coherent transients (101-1091 and
state after the pulse passes. The behavior of real-time holography [110-1171. Further
the pulse is therefore different and more benefits may include the development of new
complex. When designing a high power laser methods to generate ultra-short pulses as
system, one must verify that no beam distor- required for optical information transmission
ion could evolve. Any departure from the and optical communication (118].
desired uniform illumination of the target could
prevent the fusion mechanism from taking III. EQUATIONS OF MOTION
place. One should control the cumulative
interplay of beam diffraction with the medium In the slowly varying ervelope approximation

the dimensionless field-matter equations (8, 39,inertia to avoid triggering the onset of any 4]whcderieorstmnacynrca
substantial self-action phenomena, such as 42] which describe our system, in a cylindrical
temporal and radially dependent phase modula- geometry with azimuthal symmetry, are:
tion and associated transverse energy current
and self-lensing phenomena. This chain reac- -iF V e + Le - (1)
tion can contribute to undesired self-induced
aberrations of the beam. The focal properties
of the laser pulse on target will inevitably be a /at= eW - (i .Q + l/t,) (2)
degraded. and

This model is readily deduced from the Ntax- -W -1/2(e* + e *) - (W-W0 )/tl .(3)
well-Bloch equations while taking into account
the mutual influence of the transient beam and where
the resonant two-level atoms. The intense
traveling electric field is treated classically, e = (2i1/h)r e', and (2,,u)
whereas, the two-level system is analyzed
quantum mechanically. In particular, the E = Re (e' exp fi(i/c)z-wt)}];

%. medium response is described using the den-
sity matrix formalism (761. Furthermore, only
a forward wave (i.e., moving in the direction with k/c = w and e =-[! (p L-)]; after ap-
of the incident wave), is present is this analy-
sis; backward waves are neglected. Conse- plying L'Hopital's rule, the on-axis Laplac~an
quently, we shall not be concerned with stand- reads:

v, . . .w " .';,'.L,. ,--, . . . . ... * . . . .* ..- .
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To" _ and ta assumptions and approximations. Equation
z (3) shows clearly that the product'e ' of the

a- electric field, e, and the poLarization,

P = I Ret ' exp ((K/c)z-Kt)]. causes a time rate of change of the population
difference (or equivalently, of medium energy)

The complex field amplitude a, the complex leading to saturation effects: Inertial effects

polarisation density, and the energy stored are considered.
per atom W. are normalized functions of the
transvere coordinate p a r/rp, t IV. ENERGY CONSIDERATION
dinal coordinate q a a aeff, and the retarded

a Te time scale is nor- From the field-matter relations (1)-(3) one
tie (t-m/ p)/p. obtains the energy current equation:

malized to a characteristic time of the input
pulse, tp and the transverse dimension scales 2

to characterlstic spatial width of the input T
puls rp. The longitudinal distamce is normal- a(ee +ee)
Imed to the effective ab orptlion length,

'- -1
(em) 1" where v • 3 [* W * (W-Wo)/t 1 ] (5)

2-_

VC [ ]I p Ola'tp] (4) where, using the polar representation of thecomplex envelope, we have

In this expression, u Is the angular carrierfrequency of the optical pulse, p Is the dipole a = A explti 1 (6)
moment of the resonant transition, N is the i A 2 ;and
number density of resonant molecules, and n is z ;  (7)
the index of refraction of the background
material. The dimensionless quantities a • JT a 2F i A2  8
(w-wo)xp, x, = T 1/cp, and t2 a T2/t p measure
the offset of the optical carrier frequency w The components 7z and 'T represent the
from the central frequency at the molecular longitudinal and transverse energy current

ceo the thermal relaxation time T1 , flow. Thus, the existence of transverse
and the polarization dephadng time T 2  e- energy flow is clearly associated with the

21, radial variation of the phase of the complex
field amplitude a. When TT is negative (i.e.,

It is perhape worthwhile pointing out that, 84/bp ) 0], self-induced focusing dominates
even in their dimensionles forms, the various diffraction spreading. Since 8/Sp determines
quantities have a direct physical significance. the direction and speed of energy flow, it is

. Thus Is a measure of the component of the reasonable to monitor either a phase gradient
transverse osciUatng dipole moment ( has the or the transverse energy current for a central
proper phase for energy exchange with the diagnostic as the calculation proceeds.
radiation field). In a two-state system, in the
absence of relaxation phenomena, a resonant One may rewrite the continuity equation (5) in
field will cause each atom to oscillate between the laboratory frame to recover its familiar
the two state, W -1 and W a I. at a Rabi form:
circular frequency fR • e/zp = (h)e'. Thus ea fo
measures how far this state-exchanging pro- [ +W n A2 - 2 o (9)
cess proceeds in a FWHM pulse length tp. -= Ctpoef

The dimensionless parameter, F, is given by
F (a ff)'/(4mr;) The reciprocal of F is SMALL TRENDS CALCULATION AND SIMPLE
the Fresnel number associated with an aperte PHYSICAL PICTURE
radius rp and a propagation distance (eaff) . There are at least two ways of visualizing the
The magnitude of F determines whether or not coherent transient on-resonance self-lensing
it is possible to divide the transverse deper- phenomena. The first is to see that phase
dence of the field into "pencils", (one pencil variations can lead to a frequency offset, so
for each radius p),which may be treated in the that index arguments used for off-resonance
plano-wave approximation. The diffraction self-focusing apply. By Eq. (1) the in-phase
coupling term and the nonlinear interaction component of the polarization leads to phase
terms alternately dominate depending on whe- changes with propagation. If the input is
ther F > 1 or F < 1. transversely uniform and on resonance (hence

also unchirped), the in-phase component of
As outlined by Haus et al (381, the acceptance always vanishes, even when integrated over a
of equation (3), as describing the coupling of symmetrical inhomogeneous line width, so no
the material to the electric field, implies car- intensity-dependent phase changes or focusing
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occur. If the input is transversely nonuni- is given by the second term on the right hand
form, the in-phase is initially zero. Through side of the equation (14). The behavior in an .
the ordinary diffraction term, however, phase amplifier is illustrated in Figure (6a) where
variations begin immediatly. These phase the '2W, *a, field and total field elD after a %-

changes lead to defocusing. They also lead to small distance n) are compared with the cor- %:
chirps which appear as a frequency offset. responding pair, 4 a 1.6n and eD .  The
This allows for an intensity-dependent in-
phase to arise which can result in focusing advance of the peak is less in the smaller
or defocusing. area-.'The corresponding cGies for an as"or-

bar are shown in Figure (6b). In contrast, the

* ~To establish a second argument based on more delay for the peak in greater for the smaller
physical intuition let us derive the relative de- area.
pendence of pulse velocity on the input field
area foar a given pulse length in the uniform Thus, in each case, absorber or amplifier, the
plane wave limit. The diffractionless field smaller area pulse moves more slowly than that
equation reads as follows: of the larger area pulse.

11 elD = (10) It is noteworthy that the relative delay for ad-

while the energy equation Jacent pulses in resonant absorbers is larger
than the relative advance for adjacent pulses

2 a 2eiD (11) in amplifying media as illustrated in Figure
8,i aID (7a) and Fig. (7b).

using the Bloch equations, obtained from thedensity matrix, one obtains V. PERTURBATION APPROACH TO THE2 sin (12) INITIAL BEHAVIORq aiD t 2 eD si ID (12)

The three-dimensional beam can be thought of
with 9 2D %f eID dil (13) as a composite set of one-dimensional plane-

wave pencils (a pencil for each radius). This
idea may be used to construct a picture of the

The minus/plus sign refers to absorber/ampli- physical processes that produce the phenome-
fier. If one assumes that for small propaga- non of transverse reshaping, as in the follow-
tion distances the induced polarization, , is ing example. A comparison of the distinct
driven by the field at the input plane, ea an temporal evolution of two separate pencils will

"V analytic expression for the field energy can be be made for short propagation distances. One
obtained as follows: pencil is on-axis, where the intensity is at
obtaie as fmaximum, while the second, which is just

e 2- 2off-axis has a smaller intensity. The InducedeID 2 - ea 2n ea sin e (14) nonlinear polarization that results will make the
with ea and B the field and Its time-integrated group velocity of the pulse peak at the center

a  a  pencil exceed the corresponding off-axis grouparea at the input, (or aperture plane), respec- velocity. This is sketched in Figure (7a) for

tively. For large values of t, •a tends to a pre-excited medium and in Figure (7b) foran absorber. For the particular nstant of
zero causing al to be bound and finite,.nasre. Frte atclrisato

%t- iD time t,. the off-axis field is larger than the
The electric field is now given by: on-axis field.

el1 ; (e2 t 2q ea sin Ba) (15) Associated with this relative motion between
adjacent pencils, there is a variation in theBy direct integration, one finds that in the sign of the on-axis transverse coupling (Lap-

case of the absorber the peak is delayed rela- lacian) term. At the input plane its contri-
tive to the speed of light, whereas in the am- bution is negative. As the pulse propagates
puifier It is advanced. This follows because in along n, at a later instant of time x the
the first case, the leading edge is absorbed 0
and in the second situation it is amplified. In transverse coupling term eventually vanishes.
the case of the '1n' pulse the behavior in the Still further away, its contribution for time t0
trailing edge for either media is the reverse of becomes positive. Thus the sign of the Lapla-
the leading edge. This leads to the possibility cian is a function of time. [ts value at the
of distortionless '2n' pulses traveling with a front of the pulse is different from that at the
velocity greater or less than c/n, the speed of tail of the pulse. Along with these changes in
light in amplifiers and absorbers respectively, amplitude, the phase also varies. These ampli-
The speed of the peak of a smaller area, in tude, A, variations and phase, s, delays lead
both types of media, is less than the speed of to larger phase accumulation on-axis. Radial
gre peak of the larger '2n' pulse. A way to variations of the phase will induce a dynamic
express it mathematically is to determine the transverse energy current, (defined by JT 2
change in the field from one plane to the next T"
as determined by the polarization. The contri- F i A' /apl, flowing inwardly at some times
bution of the field radiated by the polarization and outwardly at others.

. " . . .. .t i,.3 .. .. 2



The parameter F, which is the coefficient 3 of C 72 0 (18)
the Laplacian term, s a small number O(10). 11 0
Its reciprocal is the Fresnel number per active
characteristic length. F corresponds also to which i certainly true for smll enough n, we
the reciprocal of the on-resonance small signal get our working equations:
gain given in a diffraction length as defined
by Lax et al in their paper on the analysis of
the paraxial approximation (118]. Further- 1l a f d, [vT so]  (19a)
more, the small longitudinal field that Lax has 0
found as a first order correction to the purely The rate of growth of e1 i and its sign depend
transverse field is negligible for our case.

on the radial variation of e0 .
%.1 It is therefore suitable to use F as an expan- -an"1

sion parameter for the relevant variables. t = t Fe1 1/e 0 ]  (19b)I.. When keeping only the first order term, one
obtains: Numerical computation showed that the latest

approximation (18) is a valid one. The new
a e•0 + F(elp + Jell); value of the perturbation field and of the

F(e related phase are in very good agreement with
0 + F( 1r i) and those evaluated previously. By taking Iter-

atively into account the affect of 11 one
W •W 0 + FW. (16a) obtains:

where e0 and 0 are the numerical real (phase- n T
% less) solutions of the uniform plane-wave ec  f " dn[(Ye + f dt'(W0 eli)] (20a)

propagation problem. li 0 0
Thus, when substituting in the coupled wave-
material equations and separating the zeroth and
and first order, one gets: 40 c tan-l(F e li/eo)  (20b)

ST 0 , e0 W0: and The second term in the right-hand side of
at W0  - e0 0 (16b) (20a) being a functional of W0, will change

sign according to the initial stage of the med-III elr lr ium. Should the medium be initially at groundstate, W0 is negative; on the other hand, if

I ir Wo eIr 0 Wlr the medium is pre-excited, the population is
aW 0 +60 inverted, and W0 is positive. Accordingly,

Wr )  the sign and the value of the phases will
V2e0 + = vary. This contribution will be reflected in

iT n 1 the transverse energy current, JT"
a. 1 1 aW0 eli Thus, the wavefront curvature is directly

attributable to the on-axis pencil moving faster
It is easy to see that if initially, (for all q and than the off-axis rays, as sketched in Figure
for r < 0), and at the input plane (for n = 0 (8), inducing the Laplacian to alternate sign
and alT t) the perturbations terms are zero, as a function of all the Independent variables.
the real parts will remain zero all the time. The validity of this procedure is limited to the
As the pulse propagates, the imaginary parts range of propagation distances where one-di-
of both the three-dimensional field and the in- mensional pulses do not differ significantly
duced polarization grow. from their three-dimensional counterparts.
Thus, we have from (16) A significant prediction of the perturbation

theory is the development of a substantial
focusing curvature of the wavefront in the tail

1-f d- eli (17 of the pulse. This occurs well within the
L 11 0  reshaping region before any substantial focus-ing (or defocusing) begins to occur. The

Equations (16c) can be integrated to obtain the results of the perturbation theory are in good
perturbed field eli in terms of the known agreement with the corresponding rigorous

three-dimensional results [39, 41). This issolutions of the one-dimensional problem: e 0  illustrated for absorber in Figure (9a) and for

and W0 . By making a further approximation amplifier in Figure (9b). These graphs refer
to a situation well within the reshaping region

-,.- , where no substantial self-lensing has yet

* , * %'..''' .5 ... ... . ..p~' . % * ?
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occurred. Nevertheless, there is already temporal peak cut would only focus after aeff'
substantial phase variation on the tal of the = 38.75, which is in the far field of the input
pulse. This is indicated by the curves labeled aperture. On the other hand, if the propaga-
#(3D; pso) and s(3D; p=o). These give the tion continues in the nonlinear medium, the
phase variation for the three dimensional case focus occurs much sooner, at afft = 8.875,
(3D) as determined by the full numerical calcu-

lation for two values of p. In the input plane, which Is the near field. Thus, the presence
the pulse area is 2n at p a 0 and is 1.Sx at of the active medium triggers the self-lensing
P mechanism sooner. The reciprocity between

the physical processes in absorbers and in
amplifiers, is further lost, as the transverse

The fact that in absorbers the phase to smaller boundary begins playing an important role for
at p a ap than at p - 0 shows that energy is amplifiers.
flowing radially toward p = 0 in the tal of the
p-ls, wherea, in amplifiers, the phase do- As a summary note, one finds that the move-
creases as a function of t, and this decrease ment in time of the pulse's energy (i.e., peak
is stronger at p a 0 than at p = ap The absorb- amplitude) relative to the focusing (or defocus-
er and the amplifier appear to behave in ing) phase is the most critical mechanism for
Inverse ways In the reshapin reuion; the tail the development of any self-action phenome-
of the absorber couses and the tal of the non.

.cwdouses. The reciprocity is lost asitto propagate. It is particularly appropriate to study the
Is because the pulse In absorbers moves with a origin and evolution of the energy current
speed o than the velocity of light in the since it determines the appropriate conditions
medium. c/n, while the pulse in the amplifier responsible for the onset and development of
moea with a speed greater than c/n (this fact the coherent self-lensing phenomena.
does not contradict special relativity since the
energy flow rate never exceeds c/n). Thus, VI. FURTHER ANALYTICAL WORK
when focusing does occur in the absorber, the
peak pulse intensity corresponds to a value , By combining the previous small trends calcu-
where the phase curvature was significant in a Jation and pencils approach, one obtains a
previous plane. In the case of the amplifier, completely analytic expression for the phase 0
the peak field moves away from the tail of the as well as for JT' the transverse energy
pulse. Therefore. even though the on-axis current 141,43).
phase indicates defocusing in the tall, there is
.' time-flow of energy into this region. The From equation (19) to equation (30) namely
anergy in the tail of the beam wings remin at Feci/
the i place for a considerable propagation ii (21)
dstae. Furthermore, in an amplifier the
medium repres+nth a contilious source of 2Denmgy; this a In cmaatrOt to the absorber JT:Fe (ap)=FelD(pei)- e (3pe D)) (22)
situation where only the initial electric field --

ts the total available y Thus, a The various self-action processes arise through
defocusing eect in an amplifier WWI always be the combined effects of diffraction and the
competing ainst this amplifying action, and nonlinear inertial response of the medium.

teeiieno significant self-defocusing could
r onably be observed. For illustration, an absorber example is

considered. The specific dependence of
the pulse delay on the nput area is

Instead, focusing does occur in the time shown in Figure (lOa) and Figure (10b).
tail of a coherent pulse propagating in Consequently, one expects that little
the s amplifying medium. As it will focusing occurs in the reshaping region
be shown subsequently in this paper, a while each annular ring of the input
pulse break-up occurs on-axis; only the Gaussian profile evolves (see Figure (10c)
second pulse of the double peak seems to and Figure (lOd)) according to the uni-
be associated with focusing. The three- form plane wave theory; the conventional
dimensional numerical calculation for the outward energy flow takes place (as
amplifier -Indicate that longitudinal pulse shown In Figure (11a)). However, as the
break-up occurs, but the first pulse is three-dimensional calculation will show,
indistinguishable from the correspondinq since the more intense rings propagate

- one-dImensional pulse. This Is consistent more rapidly, the tail of the pulse has
%0 with our theory since phase modulation more intensity in the outer rings (causing

does not become significant durinq the the appearance of an indentation near the
passage of the first pulse. axis). However, linear diffraction will fill

the profile as displayed in Figure (1ib).
One sees that the phase variations due to Light diffracting towards the axis from
transverse coupling are not only a function of the trailing edge of the pulse in the rim
the space coordinates but also evolve in time. of the beam (at larger radius) interacts
As a result, if the propagation beyond the with those atoms which were excited by
reshaping regime (where field phase builds the preceding pulse (which was closer to
up), occurred in free space, the beam at the the axis) and can experience net amplifi-
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cation as illustrated in Figure (12a) and amplifiers than in absorbers. As the beam
(12b). Because of this always-present propagates into the medium, its characteristics
Interaction with population-inverted may significantly change temporarily causing a
atoms, the amount of energy arriving in larger field off-axis than on-axis.
the absorber at the axis is significantly
higher than what it would be if the In the reshaping region, the radial field distri-
remaining medium were linear. This bution in the tail of the amplifier differs from
boosting mechanism continues as energy that in the absorbers. In the amplifier pulse
flows towards the axis, making a positive tall, the field remains peaked on-axis whereas
contribution to the center of the beam. in the absorber pulse tall, a depression devel-
The leading portion of the pulse in the ops on-axis. Thus outward diffraction contin-
rim of the beam continually sees an ab- ues to dominate in the amplifier pulse tail,
sorber and thus experiences net absorp- whereas inward energy flow starts to occur in
tion. the tail of the absorbing pulse.

Consequently, the resulting expression for JT This trend to focusing in nonlinear absorbers
is a power series in q with coefficients of is significant in that It is opposite to the

alternate sign. For small enough rl (where effect shown by a conventional diffracting
higher order terms of q can be neglected), the free-space signal. In amplifiers, a stronger
energy current is positive indicating an out- diffraction is set up at the front of the beam.
ward transverse energy flow in agreement with Light that thereby diffracts outwardly, exper-
the spreading due to a near-field diffraction lances nonlinear amplification by the pre-
effect. As q increases, the second term must excited resonant medium which has not yet
be considered also. Since Its contribution is, interacted with the slower moving pulse off-

in absorbers, a negative quantity, JT event- axis as shown in Figure (14). The subsequent
behavior of this diffracted light will be strong-

uslly changes sign and begins flowing inward ly influenced by the boundary conditions at
towards the axis forming a converging lens. the edge of the medium.
The latter may counteract and overcome the
diffraction, giving rise eventually to the VIII. OUTLINE OF NUMERICS
coherent self-focusing. If q increases further,
the third term contribution becomes important: The retarded time % refers to the actual time
its effect will tend to reduce the inward trans- in a stationary frame of the time of arrival of
verse energy flow associated with the second the front of the pulse at the position z. The
term. The third term can be interpreted as advantage of this coordinate transformation,
the manifestation of additional diffraction due from t to t, illustrated in Figure (15a) is that
to the narrowing of the optical beam. In ampli- it allows an accurate numerical scheme to be
fier. however. the second term is flowing developed for which the increment in n and t
outwardly enhancing the diffraction spreading. need not be related in any special way.

* In Figure (13a) and Figure (13b) T 1s dis- Herein, the equations of motion are solved in

played for absorber and amplifying media the near-field region of an optical pulse,
respectively, initially Gausslan in both p and r. This

amounts to a mixed initial boundary-value
Due to the approximations used, the expres- roblem. The initial configurations of the

sions obtained can at best suggest trends of beam and the resonant medium are spec-

what really occurs, which can only be studied fled subject to certain conditions for r > 0
by rigorous three-dimensional numerical compu- which must be satisfied at all space points.
tations. However, the present results were Furthermore, the field boundary condition at

found to be qualitatively consistent with the n a 0 is time-dependent. This is sketched in
full three-dimensional calculation results. Flgure* (15b) and (15c). For the numerical

solution, a temporal-spatial mesh of grid points
is used to represent the p-q-t space. At a

VII. SUMMARY OF THE PHYSICS given plane q, the values of the various depen-
dent variables are obtained for all stations.

We have verified that in an amplifier, energy This procedure is repeated until the desired
is transferred from the medium to the electric propagation length has been traversed.
field in the front of the pulse, and back to
the medium in the tail of the pulse; and tht The basic numerical algorithm consisted of a
the converse applies for absorbers. Only for combined explicit and implicit method. The
the case of a '2n' pulse is all the energy MacCormack (481 two-level predictor-corrector
returned to its sources. non-symmetrical finite -differencing scheme is

used to advance the field equation along the
The propagation speed of the peak of the direction of propagation, q, while the modified
pulse exceeds the speed of light in amplifying Euler three-level, predictor-corrector scheme
media; whereas, it is less than the speed of is used to update the material variable in
light In absorbers. In both cases, the propa- time-retarded time t. The mutual light-matter
gation speed is greater for the more intense influence is a mixture of a boundary value (for

pulse than for the weaker pulse. The differ- advancing the field) and an initial value prob-

ence in speed among adjacent radii is less in lem (for calculating the atomic responses)



[11]. To improve accuracy and to speed up marching the electric field F along n and U.e
the convergence, cross-coupling is accentua- three-level modified Euler scheme to integrate
ted. With such steps, the scheme becomes as along t the material variables), special atten-
flexible as a strongly-implicit algorithm. The tion is given to ensure second-order accuracy
final field value, rather than the predicted one in all space and time increment steps simultan-
as done classically (8-11, 25, 39 40), is used eously for all the dependent physical, field
to correct the material variable, and the final and material variables.
material values Instead of the predicted ones
are used to correct the field. The final vari- This goal is achieved by using the final field F
ables are obtained as solutions of a set of instead of the predicted F to evaluate the final
five, simultaneous, algebraic equations. M; and the final M instead of the predicted M

to correct the field variable F. A set of two
IX. DETAILS OF NUMERICAL PROCEDURE transformed simultaneous, nonlinear, algebraic

equations in two complex variables is obtained
An outline of the numerical method is illus- and can be easily solved. For simplification a
trated using two simplified equations that are well-known quasi-linearization, an example of
representative of the full set describing the which can be found in Moretti's treatment of
propagation and atomic dynamics effects. In the chemical kinetics problem [53], is intro-
this context, the material variables are denoted duced as follows:
by M, whereas either of the electric field
variables is denoted by F. Both variables are F = -F i Mi  F1 M F M1  (26)
complex quantities which are functions of q
the propagational coordinate, q, the transverse where I means the "initial value" and can
spatial coordinate and t, the retarded time. reasonably be denoted by the predicted val-
With M , the equilibrium value of M, one can ues. This approach follows readily the Taylor
write tiRe representative equations as: expansion of the product 'FM':

i F + M (23) FM (FM) + L (FM)]i (F-Fi)

w i t h ( 2 4 ) ( M -O F
w Th F aP ap (p (24 (FM) 1 (MMi (27)

F3MC FM + M + Me  (25") truncated at first-order terms.

subjected to the initial and boundary condi- Mathematically, this algorithm reads as follows:
tions. with
I. for t > 0: F = 0, M = MO known function F(j n, map, kAt) (F2""- -m,k (28)

-". to take into account the pumping effects;
LF = i 7 F = (i/p) {l8p(pF)} (29)

2. for n = 0: F is given as known function T

of t and p; The predicted field can be written as:

V,'. 3. for all n and t: [aF/ap] and j j + a(Mj k k (
.aF/api vanishes as with pmax m,k L m ,k +  

-"F F
w h max max i o k w e a e c k r a k] (3 ws

defining the extent of the region over
which the numerical solution is to be whereas the corrected field reads as follows:
determined).

* The derivatives appearing in (23) are only Fj+ 1  [(Fmk r I+1
with respect to space variables; in this equa- m,k ,k m,k

- tion, time enters only implicitly, through the i -L

right-hand side terms. On the other hand, % L ()m,k m,k
the derivative in (25) is a time derivative
only, and the space influence is provided by F B
the right-hand side terms. This situation L and L are the forward and backward
entities us to consider the two equations as differencing of the transverse Laplacian opera-
somewhat uncoupled and to adopt special tor cylindrical coordinates with azimuthal
integration procedures for each of them sepa- symmetry.
rately. This assumption, though not rigor-
ously correct, has proven to be very useful in The material variables are integrated in the
practice. We cannot be sure that the accuracy following manner. The predicted values are
of the integration procedure is of the second defined as:
order in an and AP as well as in at for the
material variables. A similar remark may be
made for the field variable with respect to at. =m ='+ ,2(a)[F 1 vM j. %jiM1 ](32)

. En this algorithm (which uses the two-level m. "m,m - ink ink ink. e
, .nonsymmetric XacCormack explicit predictor-

corrector finite difference scheme for while the corrected values are given by:
4.,

•
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7.

+ 1 +1 state, experiences resonant absorption and
3 1 ,k.I-- '1 mk"'mk •  losses. A more significant portion of the pulse

energy is diffracted outwardly in the amplifier
+ 1l k"1 j+ than In the absorber. This point has been

m, k+1 , k+1" m, k+1 m, k+1 previously discussed in the section on pertur-
bation.

m -mk+lnk+l (.Kk+l+Me) In resonant, nonlinear, light-matter interac-
tions, the velocity profile will not be uniform

Rearranging, one has across the beam. The local intensity at a
particular radius as well as the initial state of

F' J*1 a+ F J+1 + q 1 (34) the transition (pre-excited as opposed to-; , m~k+l 1 1l b m, k+ 1<k+1 34 ground state) will dictate the distinct delay/

advance that the "pencil" [pulse] will exper-
F], 1 ience at a particular radius. Consequently,

a2 b2 %,k+1 + q2  (35) these boundary reflection conditions tends to
k ,k (3 play a substantial role in the amplifier calcula-

ions and could, if ill-posed, obscure the
(with locally constant coefficients) that can ewhas, therefore, to be particularly careful inreadily be solved by straightforward elimina- simulating amplifiers.tion.

Special care is required to reduce the bound-
It is noteworthy that when this differencing ary effect to a minimum. By using non-
procedure forward-predictor, backwrd-correc- uniform grids (in all physical variables), andtion at 1j+11, is followed, at 'j 21, by its cor- confining the active medium by radially-depen-responding reverse backward predictor-forward dent, absorbing shells one can construct an
corrector, the overall amplification of the error effective and reliable algorithm that Is locally
wavelets is smaller. This results from the fact consien withte ahysicsho the prolm

that when one alternates the two reverse consistent with the physics of the problem.

procedures, the amplification matrices (one for More specifically, the boundary condition to be
each procedure), have different eigenvalues discussed below describes, in effect, an ab-
and egnvectors for the same Fourier compo- sorbing surface. This condition is a repre-
nnt of the solution [49]. sentation of an actual experimental approach in

which the laser amplifier is coated to circum-
The numerical code has been tested ystemat- vent any spurious reflections. Various at-
cally by insuring the reproduction of analytical tempts have been made to simulate this ab-
results of problem such as free-space propa- sorbing surface.
gation [76), Galssian beams propagation
through lanselike media (77], Bloch's solution Mathematically, this approach is

.' -s at the input plane for an on-resonance real by introducing a radially-dependent loss dis-

field [81 and coupled uniform plane-wave yinbuton. The loss coefficients obey a Gaus-
calculations for an input 2h hyperbolic secant sian dependence peaking at the wall itself.

[81. Identical results were obtained solving
these problems expressed in the eikonal and Three forms of losses were studied: an Ohmic
transport form [1], and the three-dimensional linear form, a cubic Kerr loss, and a reduction
results have been compared qualitatively and in the nonlinear gain of the active medium.
quantitatively with an analytic perturbation in
the reshaping region [39,40]. For strongly amplifying media, the transverse

X. IMPORTANCE OF BOUNDARY CONDITIONS boundary could still cause computational diffi-culties for self-diverging beams, because it is

In this section we will discuss the role played difficult to select, beforehand, the functional
location of the boundary. An alternate ap-Sthe problem.oundaPrevonditions the importance of proach to the problem would be to extend theth rbe.Prvosy h iprac f transverse grid to nfinity as displayed in '"

careful handling of boundary conditions was
not stressed. For all physical problems, Figure (16a) and Figure (16b). With this new
particularly those in fluid mechanics, that have mapping method, the mesh density is reason-
Sbeen treated numerically so far, acceptable ably uniform in the region occupied by the

results have been achieved only by coupling beam, while outside this region the mesh
an accurate analysis of the internal points with density falls off rapidly with the final pointoccurrng at infinity. In practice, the most
a careful numerical treatment of the boundary efctie tratm ntfinthe dnpaic, tnerms

points (54]. effective treatment of the dynamic, ransverse,
boundary consists of implementing an absorb-

When the laser beam travels through an ampli- ing surface while concurrently considering an
fier, the transverse boundary has an increas- infinite physical domain and mapping it on a

ingly crucial effect in contrast to the absorber finite computation region.

situation.-In particular, the laser field, which Hence, the desired transformation process for
resonates with the pre-excited transition will the transverse coordinate is similar to that
experience gain; whereas, the laser which used in constructing the nonuniform on'oral% encounters a transition initially at ground grid.

AA2

, a.
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°
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Specifically, enough mesh points to assure proper resolu-
tions where phase gradients (wavefront curva-

= tasnh (00) 0 < t < 1; NB > NA (36) ture) change very rapidly.

- x (k-1)/N B  1 < k < NB (37) While there is no maximum amount of mesh
points that can be used, it would be costly topmax a p(NA), (38) reduce the entire mesh size to assure values

~ ( I which allow sufficient accuracy at the critical
p .( )log( ) (39) plane.

1with 1 l -(NA) (40) A compromise solution can be found, however,wihP TW A7 1-4(N A) ]  in a variable mesh that is defined by widely-

spaced computational nodes in the area most
with p(NA) denoting the actual maximum radius distant from the plane of interest and densely
where the active medium is still present. In clustered nodes in the critical region of rapid
the region extending from p(NA) to p(NB) change; the latter being in the neighborhood

of maxima and minima or, for multi-dimensional
there is no amplifying medium; instead, there problems, in the vicinity of saddle points.
is an absorbing layer.

Consequently, resolution is sought after only
The derivatives of the mapping can also be where it is needed. The costs involvingdefined analytically as follows: computer time and memory size will dictate the

maximum number of points that can be econo-
mically employed. In planning the use of such

= (- 2)  sech (pp) (41a) a variable mesh size, the following points,
ap outlined by Moretti (501 in connection with
and aero-dynamics shock calculations, must be kept

in mind:

M -2 t(I- . (41b) (A) The stretching of the mesh should be
ap defined analytically so that all the addi-

tional weight coefficients appearing in the
on axis . a (41c) equations of motion in the computational

p space and their derivatives can be eval-
Therefore, the diffraction coupling term be- uated exactly at each node. This avoids
comes: the introduction of additional truncation

errors in the computation.

Tp ~ ~ (~) (41d) (B) To assure a maximum value of aT, the2 mathematical grid step, the minimum value
at Op at of 4t, the physical time increment, should

be chosen at each step according to
necessity. This means that the minimumwith the on-axis contribution reading as value of at must be a function of the

steepness of the pulse function.

~2
Ta 2 e lim 1 e 9 (C) The minimum value of at should occurSPao0 •  p ap-O inside the region of the highest gradient

which occurs near the peak of the pulse.
a2 e 1 4e82 2 (41e) To reiterate the above discussion, the most

at ap suitable nonlinear transformation is one in
which more points are concentrated near the
peak of the pulse. The derivatives with

In Figure (17a), Figure (17b), Figure (17c) respect to T are greatest around the peak
and the first, second radial derivation and the rather than in the wings. By this choice, the
Laplacian term are drawn. Figure (18) con- desired fineness of the mesh is achieved with a
trasts In the stretched radial coordinate sys- minimum number of points. For example,
tem, the transverse coupling and the electric following Moretti's approach, if T=tanh(at)
field. (42a) and a must be larger than 1, the entire

semi-axis t greater than zero can be mappedOne can appreciate the sensitivity of the on the interval 0 F T F 1 with a clustering of
numerical domain and the dependence of the points in the vicinity of t = 0, for evenly-physical parameters to the boundary condi- spaced nodes in t. Mapping of this kind has• . tions. several advantages. They introduce into the

equations of motion new coefficients which areXI. PRESCRIBED STRETCHING defined analytically and have no singularities.
They also avoid interpolation at the commonA proper handling of the differential equations border of meshes differently spaced. From the

of motion is possible provided that there are viewpoint of coding, not much additional work

V Z
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is required. The computation is formally the desired stretching is similar to the one defined
same In the 'T' space as it was in the z space. for treating the radial boundary conditions.
Some additional coefficients, due to the pre- The mesh points are clustered near the begin-
sence of the stretching function, appear and ning (small i); their density decreases for
are easily defined by coding the stretching large value of r (near the end of the temporal
function in the main program. Obviously, by window).
a proper choice of the function and by letting

* ,. some of their parameters (such as a, above)
vary as functions of the propagation distance XII. ADAPTTVE STRETCHING IN TIME
according to the physical needs, the accumula-
tion of points can be obtained where necessary Due to the continuous shifting of energy from
at any distance of propagation. In the laser the field into the medium and then back from
problem, we use a slightly modified stretching e
function: the medium to the field, the velocity of the

pulse is modified disproportionately across the
t =c (a/2) log(T/(1-T)) (42b) beam cross-section. This retardation/advance

phenomenon in absorber/amplifier can cause

where a is a stretching factor which makes energy to fall outside the temporal window.
points more dense around T, the center of Furthermore, due to nonlinear disperson, the
gravity of the transformation. In particular, various portions of a pulse can propagate with

"znw - "different velocities, causing pulse compression.
"= -'lg(Nu-2)(43) This temporal narrowing can lead to the forma-

tion of optical shock waves. The quality of
with N is the number of uniform points in the temporal resolution becomes critical. ToUP maintain computational accuracy a more sophis-

.the mathematical grid, and tdow is the ticated stretching than that described in

temporal window (duration of shutter opening) Section XI is needed. It is therefore neces-
sary that the center of accumulation of the

%d. 'window ' (Tmax min )  (44) nonlinear transformation used to stretch the
time coordinate be made to vary along the

I c is an arbitrary point used to define the direction of propagation. This adaptive stretch-
ing will insure that the redistribution of mesh

center of transformation so that the change of points properly matches the shifted pulse. It
the coordinate will be optimum for more than is displayed in Figure (20).
one plane along the direction of propagation.
Figure (19) illustrates the transformation and
its different dependence on the particular This time, the transformation (42) from r to T
choice of its parameters, is applied about a center Tc which is a func-

tion of q:
It is noteworthy that derivatives of the map-
ping functions produced by the gradual varia- lo g() + T (45)
tion along the 'T' axis is also defined analyti-
cally namely SO/sT a (a/2) iT(1-T)J 1 (44b). The stretching factor a could also be a func-

The computational grid in response to these tion of q as illustrated in Figure (19b).
transformations remains unchanged while the
physical grid (and the associated weighting The equations are very similar to those of
factors) can change appreciably. In particular, Section III, except that an extra term is
it is noteworthy that t c' which can be a added:
function of Z, defines the location of the
minimum 'A' and Its value. Consequently, the 2 3e 3T d c
stretching can be adjusted, in cantering and -IF V - a c - (46
strength, at every step according to specifica- TTp I ie (46)
tion. While ido defines the extent of the

' physical region to be computed using the The role played by the time coordinate is
nonuniform stretching, the same adequate different. Previously the field equation did
resolution around the peak of the pulse can be not contain an explicitly dependent term.
obtained with only one fifth of the points
should their distribution have been uniform. T (n + Ali) = c(q) X + [p([) -

The improvement is dramatic. In contrast, the c c p k pk(n_ Al)], (47)

uniform grid wo Ld have required five times weet(l sdtrie rmtepeiu
the computer time and significant extra stor- where pk(r) is determined from the previous
age. plane n as the time at which the electric field

on axis is a maximum. The time delay/advance
Should one need to study the laser field build- accumulated in the interval .%
up due to either initial random noise polariza-
tion (for super-radiance), or due to an initial all p(r) -Ipk(n - ) (48)
tapping angle (for super-fluorescence), one
must utilize a different stretching [173]. This

measures the velocity of the peak relative to"""" the speed of Uight:
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-v (AtI~ (49) e(p,r.n) = a(q,z) expf*(q,t)

_P I +L. (51)
a. (n7) 2R(n,)XIII. REZONING

where

The main difficulty in modeling laser propaga-
tion through inhomgeneous and nonlinear C(n) = arctan(n/ka0 ) (52)
media stems from the difficulty of pro-assess-
Ing the mutual Influence of the field on the aq, ) a 0 sec * (53)
atomic dynamics and the effect of the induced and
polarization on the field propagation. Strong R(q,t) = n cosec (54)
beam distortions are expected to occur based
on a perturbational treatment of initial trends. The parameter a is the measure of the trans-
Hence, In practice, any rigorous, self-consis- verse scale, and-
tent algorithm requires particularly flexible
numerical strategies to avoid insufficient raso- a0 = &(0. T) (55)
lution within a reasonable number of grid
points. Thus, one must normalize the various, is the width of the initial intensity dlstribu-
critical oscillations to overcome the economical tion. The parameter "a" shrinks or expands
burden of an extremely fine mesh size. To as the beam converges or diverges from the
insure such accuracy and speed in the compu- focus. It Is logical to require the transverse
tation, a judicious choice of coordinate system mesh to vary as a varies. Therefore, the
and appropriate changes in the dependent variable
variables must be considered as plotted in0 Figure (21). Evenly-spaced grid points In a P p/a(Qn.) (56)
computational space are related to variable
grids in the physical space. The paraxial is introduced. It is displayed in Figures (21a)
equation is, thereby, transformed into a more and (21b). To reiterate, it is well known that

4 suitable form for computation. These numeri- a linear stability analysis of the numerical
cal strategies can either be chosen a priori discretization of the propagation equation
and prescribed at the start of the computation imposes a pertinent condition relating two
or automatically redefined and adapted during spatial meshes Ap and Ap. This stability
the computation, condition must be satisfied so that the numeri-

cal solution asymptotically approaches the
The basic rationale behind the transformations analytical solution of the linearized partial-
is to restrict the computation to the departures differential equation. More specifically, stabil-

. on the Gaussian beam rather than requiring ity and convergence are assured if the ratio
calculation of the complete amplitude. This [&/(P)2  I

,le" procedure removes the necessity for sampling
the high frequency oscillations induced in the constant throughout the calculation.
phase by self-lensing phenomena. The coor-
dinate transformation alters the independent For this purpose it is necessary to introduce a
variables and thereby causes the dependent new axial variable z so that this parameter
variables to take a different functional form. automatically remains constant as p varies.

h e e t a a u cThis should increase the density of q planes[.t. The new dependent variables are numerically

identical to the original physical amplitudes at around the focus of the laser field where the
equivalent points in space and time in the two Irradiance sharply increases in magnitude
coordinate sytes causing a more extensive and severe field-

material Interaction to occur. The above Is
The requirements of spatial rezoning will be accomplished by introducing
satisfied by simultaneously selecting a coordi-
nate transformation (from the original coordl- 2 = (57)
nates p and n to new coordinates t and z) and
an appropriate phase and amplitude trans- and using a constant Az. This transformation
formation. The chosen transformation will has the effeciir7-aking the extent of real
share the analytical properties of an ideal space related to the size of the vacuum beam.
Gaussian beam propagating in a vacuum. It may be worthwhile to recognize that
Using Kogeinik and Li's notation (75], the [Az/(.A2]1 is just the Fresnel number asso-
Gaussian solution of the free-space ( =0) ciated with a range az with respect to the

S.. equation aperture of radius at.

P "In terms of t and z the field equation
21 ae+V 2 e 0 (50) now appears asn Tp

is well known and may be written as: 2 121 aze-21t(tan2)8te VTte]ici (58)
a (z) T 1

•4
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where c, is a constant. The new axial coordinate z is defined, as
before, as

It is imperative to remove these rapid oscilla- 2
ions that would necessitate very fine mesh zuarctan(ri/ka 0 ); (61)

samplings in the transverse direction. For the
field and polarization envelopes, the variables and a z(1/ka 2 ). (62)
B and S are defined as: r

I a alCos 1{ep[ Ftan z _ iz) (59) Previously, the center of the transformationl;s La B11 where the radial mesh points were most tightly

bunched, was at the focus (z = n= 0). Now
this will no longer be the case, and the trans-

he beedremoved The new flten akesn formation will be defined in terms of an auxil-the form: iary axial variable z as a function of z, which

is calculated adaptively in a way that reflects
2 and compensates the changing physical situa-

{1/a2(z)}[21 zBeV B ]-B lcS (60) Lon. For the moment, the relationship z,(z)
will be defined later in this section.

B and S vary more slowly in their functional
values than their predecessors allowing the The radial coordinate is then defined simi-
numerical procedure to march the solution larly as
forward in a more economical fashion by using
larger meshes. They are numerically treated p/a (Y (63)
in an almost identical fashion to e and (1701.
However, for strongly nonlinear media, those a with an auxiliary axial coordinate z different
priori changes in the basic equations are not
sufficient. A more sophisticated approach is from z. For, stability reasons, it is required
needed. The desired method should automati- that (az should be a onstant from
cally adjust the coordinate system in compli- z a * (64). This leads to:
ance with the local wavefront surfaces and
actual beam features. a (z) a0 /cos z (65)

d= ka2  tnz~z°a z] (66)
XIV. ADAPTIVE REZONING d= ka( (tan(z+dz)-tan z (66)

The concepts of the previous section may be t tz t (
generalized by repeating the simple coordinate which gives:
and analytical function transformations along
the direction of propagation at each Integration 2-
step. Figure (22a) and Figure (22b) illustrate 2 z /a
this sef-adjusted mapping in both planar and (68)

isometric graphs. The resolution of the compu- and also leads to an expression for "dz,"*.
tational grid is thereby defined according to

e the actual requirements of the physical prob- 2
lem. tan(dz = a2tan(dz)/{a2

N. The feasibility of such automatic rezoning has + tan(dz)[a tan z - a2

+ t tn atan z]) (69)
been demonstrated, without requiring anyguesswork, by Hermann and Bradley in their This enables one to find appropriate values forCW analysis of thermal blooming (601 and by 2 2 a is then defined by writing:

Moretti in supersonic flow calculations [51, 52, a /as, 0t
571.

a (z dz) a aO/COS(Z + dz ) (0
In particular, the change of reference wave- t os t V (70)
front technique consists of tracking the actual
beam features and then readjusting the coordi- In this adaptive rezoning scheme, the physical
nate system. An adaptation of Hermann and solution near the current z plane is described

Bradley's technique to a cylindrical geometry better by a Gaussian beam of neck radius a,0
is presented herein, whose focal point is a distance z away than by

an initially assumed Gaussian beam with para-
The transverse mesh is forced to follow more meters a0 and z. With this transformation the
exactly the actual expansion or contraction of f
the beam. The reference phase front is altered field equation (50) in terms of z and becomes
at each integration step (and for every instant a (",e-2i~tanz(3te)] ic1 a (

2

of time) in the propagation direction, hence 2iaze +e
coinciding more precisely with the physical
wavefront at that point; moreover, by locally
referring the waveiront to a new focal point To remove the unwanted oscillations, new de-
one has smaller phase changes with which to pendent variables B and S are introduced by
contend. e z GB and =GS where

1*.
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G x a exp{+2 tan z- izt1. (72) M1 = f{M2 B 2I tdt;

all the values at the end of the previnus M2  f N{ 4 B 21 td;
interval (qi plane) are indicated with a sub-
script p. The electric field e is given in the X3 

= fit B ) tdt;
old representation as e = GpBP, and in the B21-

,." new representation as e GB; where G s = f { B 2i s }d4
p 2 3

dependent on z and G on z,, and B is given 2 f B 43 at!) dt (80)by Ztp
by, 4using the relation

Bp a B exp [ i(at + A )] (73) 2 (B •
B " = -I1{m B } (81)

*' The best match is obtained by requiring that
. *(B), the phase of B, should vary radially as by taking partial derivatives with respect to

little as possible. the a's and P's, one obtains

(b) a (Bp) + *(G ) - *(G) , ImfB*a
Z a , .. ((1/2)A2tanZtp.Ztp) =i -ImfJB * a Bt} ) dt, :

2 42 t.)- ((1/2)t 2 taz E  z) (74)

a = -" M3 y1)/E, and
where a Is the curvature.

and p are determined in an appropriate P M

manner from B so that a new variable B has where E = 2( - M M3 ). (82)

no curvature. It is clear that the new value The distinctive advantage of these stretching-. "z at the present new plane under consider- and adjustable rezoning techniques stems, as

aign is derived from the old value by suggested by Moretti, from the fact that they
automatically define the mapping and all related._-

z arctan(2a + tan z (75) derivatives analytically (that is, exactly) as it
t- is determined by the calculation itself.

with the new neck radius a0 4  XV. NON-GAUSSIAN REFERENCE BEAMS

%a cos (76) The phase transformation was readily general-

ized by Breaux (641 to be as convenient as
possible. Consequently one is not restricted

The equation for B is then: to a Gaussian beam as a reference. The
+a 2  _t2 2~ (77) transformations utilized for adaptative coordi-

2  
B + (2.4)B) ic a ( nates and phase removal become:

p = p/a(z) (83)

By using this final differential equation, signi- e=B Gz[B/a(z)]exp[(l/2)Ip2 (aa/az)/a(z))] (84)
ficant improvements in numerical computational
cases have been achieved: i.e., this new n 2 -1
equation varies less in its functional values z = f (pa ) dq (85)
than does the orig-inal one. 1O

The instantaneous local parameters a and p of the application of these transformations to the
the quadratic wave front are determined by free space wave equation results in:
fitting the calculated #(Q) of B to a quarticPB (86)
In 4; a reasonable approach is that the inten- 21 B + B + g(p,z) B = 0
sity weighted square of the phase gradient

where
f B 2[(P( 2 +2td4 = minimum (78) 2 2 'a3 a

g(P,z)z-Pp (a - )(87)
where * is the phase of the field variable az
B = A exp (-i*) (791. The minimization of
ViW h s4oVIWAnt is weighted by the beam

a simple structure for the
3r uato of ay subseguent

such as BP, that would otherwise
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appear in the transformed equation have been (ii) The spatial beam width of the (per-
eliminated by this particular choice of varia- fectly smooth) Gaussian provile pO
bles. These specific transformations are a (to avoid any additional diffraction
simple generalization of the transformation from the edge as well as possible
designed by Hermann and Bradley (60]. small ripples that could cause beam

distortion and small-scale self-
Furthermore, for strongly self-lensing beams, focusing);
it appears that the relation

(iII) The absorbing length per unit time

a(z) Z [-z)2 + (Nz/f)2]1/ 2P)0 (a') "1 that enters the gain of the
active medium;

has all the prerequisite characteristics neces-
sary for the treatment of a self-expanding (iv) The carrier wave length X.
beam. In particular, this form is similar to
the z-dependent beam waist for a focused (2) The material relaxation times 1 and
Gaussian beam. However, its scale expands N (the effect of atomic memory). 1
times larger than that of an ordinary Gaussian
beam. The equation relating q and z becomes (3) The carrier frequency offset W.

z = N 1 arctan(Nq/(1-i)] (88) (4) The input on-axis (time integrated field
amplitude) area.

and
Furthermore, prior to the experiment in sodium

r tan z/(N + 5 tan z) (89) [119], a family of calculations was made to
verify that the coherent self-focusing predict-
ed for a sharp line would remain in a broad-

XVI. NUMERICAL RESULTS line atomic system.

In this section we outline some basic results, In furtherance to this study, the transmission
which have been obtained with and without the characteristics in pre-excited media was anal-
use of rezoning and stretching, and which il- yzed by varying the previously cited parame-
lustrate why the more sophisticated techniques ters. The effect of the boundary condition
required less computational efforts. was carefully investigated.

The first part of this investigation which dealt The computed pulse-breakup on axis agrees
with absorbing material has led to the dlscov- with laboratory observations carried out on
ery of interesting new physical phenomena high power laser chains for fusion [153, 154,
which promises to have significant applications 133]
to proposed optical communications systems. It
had been shown that spontaneous focusing can B. Scaling
occur in the absence of lenses, and that the
focusing can be controlled by varying the In order to facilitate the interpretation of our
medium parameters.The second part of this numerical results, we have considered a class
analysis dealt with amplifiers, of problems n which the input field has a

given functional variation in time, T, and
A. Pertinent Parameters transverse coordinate, p, namely a Gaussian in

each variable with the additional input condi-
Since the Fresnel number F.1 associated with a tion T dt e(pzO, q=0, t) = 2n, i.e., a '2n'
characteristic length, the "area" of the input .
pulse on axis, the relaxation times and the
off-line center frequency shift are the perti- pulse on axis. Once one specifies the relaxa-
nent parameters describing the temporal and tion times, the resonance frequency offset and
transverse evolution of these coherent pulses the pulse area on axis, the factor F becomes
in the absorbing media, we have studied the the sole parameter distinguishing one family of
dependence of the propagation characteristics physical situations from another. Since the
on these parameters. In particular, the depen- mathematical expression in normalized coordi-
dence of the location of the focusing in absor- nates p, r and t for all input fields character-
bers and the sharpness of its threshold, as izing different situations is the same, this
well as the appearance of the multiple foci gives us the ability to interpret the numerical
on-axis along the direction of propagation, are results with some flexibility.
dependent on the specific choice of the follow-
ing characteristics: By studying the numerical results, one can

identify several physical effects which seem to
(1) The reciprocal of the Fresnel number play important roles in the evolution of the
associated with a characteristic absorbing focusing process by affecting the relative
length through its different constituents: motion (among adjacent pencils) and the trans-

verse energy flow. Some of these effects have
(i) The temporal length of the pulse tp been separately studied by others, e.g.,

adiabatic following [331, strong self-phase
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modulation (6,251, spectral broadening (251 between adjacent radii is greatly reduced.
and self-steepenlng (27], but in our problem The pencils tend to move together and the
they combine to affect the behavior during resulting interaction grows weaker. A reduc-
different parts of the pulse evolution, both in tion in x translates into a broadening of the
space and tiSe. pulse frequency spectrum. This will make the
C. Choice of P ter resonant propagation look more like the free-

space solution since the interaction is substan-

Finally, since the imaginary part of the elec- tially reduced. For exceptionally short pulses,

tric field grows in proportion to the product of the question of the validity of the slowly
the diffraction term and the factor F (as varying envelope approxImatIon arises [23-25].
outlined by the perturbation approach), it D. Sample Cases
follows that the sign of this quantity and its
value changes as the pulse propagates in the
resonant medium. Eventually, this forces a (I) ABSORBERS
curvature in the wave-front of the electric
field to occur. The latter is the mechanism (1) One-dimension effects in Absorbers
that induces transverse energy flow that In our discussion of absorbers, we first
underlines the self-focusing phenomenon in consider the case of one-dmensonal pulse
absorbers and the beam degradation in ampli- posider the p duraton much
fier. The coherent self-action processes may propagation with the pulse duration much
be repeated at other sites as the pulse contin- shorter than both T1 and T2 . Analytic dis-
ues to propagate and interact further. tortionless solutions of the material-field equa-

tions are known [91 of the form

By changing the parameters constituting F,
one alters the growth and development of the 2 t-(z/v)
field phase. For example, reducing F will e '_ sech t- (90)
tend to retard the threshold of the focusing P
phenomenon in absorbers while increasing it
will stimulate the focusing sooner and strength- (equivalently e = 2 sech(T)) where v is the
en it. These remarks are not intended to pulse velocity given in terms of the pulse
imply that the physical mechanisms are simple length x by
and well-defined. The effect of this particular p
variation in F is a rather complicated matter. 1 n
The competition between refraction (through - eff tp (91)
the inertial response of the resonant absor-
ber), and normal near-field diffraction (as in This is the 2n pulse:
free-space) results in a transverse energy
flow. The latter may lead to self-focusing or a

self-expansion. This means that for a limitedf dt [C e'] dt e= 2n (92)
useful range of F, the resonant absorber acts -. P -a
as a nonlinear converging lens; whereas, the
pre-excited medium, by effectively behaving as In Figure (23) we present the results of
a diverging lens, limits the useful output of numerical integration of the one-dimensional
the incoming laser beam. Each of these three field equation for the case that the input pulse
mechanisms (near-field diffraction, refraction is a Gaussian in time of input area 2n.
and nonlinear absorption) will strongly affect
the relative motion among the different adja- Figures (23a) through (23d) show the pulse
cent pencils. reshaping. As defined earlier in Section III,

the symbol stands for the time counted from
While it may be useful to consider each of the instant when a signal traveling at the
these three physical processes as independent speed of light in the medium reaches the point
units. Each mechanism plays an overlapping z, normalized to the pulse length Tp thus
role in the overall physical picture. Hence,
the precise dependence of the focusing behav- (93)
ior on a particular physical parameter such as C
TP, P0' A, TV, T2 , a', iw and on the input The units of t are nanoseconds. After 300
area is difficult to predict beforehand with any cm the pulse shape closely matches the sech
elementary system. For example, let us at- form. From the measured width after 300 cm
tempt to predict the influence of a decrease in the analytic expression for the pulse velocity
the pulse duration xp, (i.e., an increase in F) is (v/c) = 0.7. In Figure (23e), we have
on the self-focusing. If the interaction bet- plotted the integrated intensity (Energy/cm"
ween adjacent pencils is ignored, one may
arrive at the erroneous conclusion that adja- f di e U), pulse area, and time delay of the
cent pencils fall out of step faster for nar- peak all against the propagation distance z.
rower pulses than for broader ones. In real- The time delay is the difference between the
ity, for short pulses the exchange of energy local and input plane values of ' at the peak of
is very fast, so that the relative time delays the pulse. This quantity measures the velo-

city of the peak relative to the speed of light.
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v (94) on-axis time-integrated 'energy' per unit area,
C C(AT/&) + the total field energy (integrated over the

whare At is the time delay accumulated in the beam cross-section), and a quantity that

interval an. We note that the pulse area characterizes the beam cross-section. This

remains at the input value 2n and the pulse quantity Pef is the ratio of the total field
energy decreases linearly with distance as the energy to the on-axis field energy per unit
pulse reshapes from Gaussian toward sech. area:
This decrease is associated with the non-
vanishing (but small) value of (I/T 1 ). The rm 2

pulse peak moves more slowly than the speed f" dp pf e(prt) di

of light. After 300 cm, the numerical pulse Peff 0 -. (95)
velocity is 0.7 times the speed of light. This 2
corresponds to the speed of sech pulse of the die(p,r, ) dt
same width. " '

(2) Three-dimension effects in Absorbers Here rm defines the extent of the region over

We present the results for a typical calculation which the numerical solution is to be deter-
of a 2R pulse area on-axis. The temporal and mined.
transverse variations of the electric field are
Gaussian. The choosen parameters were This graph represents the most striking des-

3 cription of coherent self-focusing since the
consistent with: F =.592 6 10 " , (X = contraction of the beam produces a consider-

-3 et 2 1/20cm p a 1cm; 4 a 0.0; ably amplified field intensity on-axis of the20b . 20 and tj focal region and its immediate vicinity.

The effect of coherent self-focusing is illustra- It is noteworthy that the total field energy per
ted in Figure (24). The time integrated pulse transverse plane is a smooth decaying function
'energy' per unit area is plotted for various of the propagation distance in the resonant
values of the transverse coordinate, as a absorber. This is in agreement with the
function of the propagation distance. Two physics of the problem even in the presence of
orientations are shown to display the energy strong magnification on-axis and provides
redistribution as the laser beam is transmitted additional confidence in the computation.
in the nonlinear resonant absorber. The
necessity of non-uniform mesh is quite evi- Figure (26) contrasts the transverse distribu-
dent. At the input plane, on the left of the tion of the time integrated energy per unit
figure, the profile is Gaussian. After a re- area at the focal plane with the one at. the
shaping period, during which the relative input plane to illustrate the coherent narrow-
retardation of adjacent pencils leads to the ing of the beam. The development of self-
development of a curvature of the phase front, focusing is clearly evident.
strong focusing occurs which leads to substan-
tial magnifications of the on-axis energy per The three-dimensional numerical calculations
unit area. There appears to be a rapid atten- [39,40] substantiate the physical picture based
uation of the total field energy after the focal on time changes in the phase. in Figure (27)
plane is passed. Most of this attenuation is the field amplitude is plotted versus the retard-
due to substantial pure diffraction spreading ed time for three stages of the propagation
of the narrowed beam while some is due to the process: (a) the reshaping region; (b) the
temporal retardation in the peak of the pulse build-up region; and (c) the focal region.
associatee with the coherent interaction. For The transverse energy current is plotted
later distances, not all of the pulse energy (or versus the retarded time for the same three
pulse area) fails within the time interval in the distances in Figure (27d), (27e) and (27f).
co-moving frame over which the numerical In each case the plots are given for several

* integration was performed; (alternatively ex- values of the transverse coordinate p. Posi-
pressed, the tail of the pulse could escape tive values of the transverse energy flow
from the temporal window), correspond to outward flow and negative

values correspond to inward flow. Figure (27)
Furthermore, with uniform radial nodes the clearly illustrates the following features of the
transverse sampling was not as good in the seif-focusing. In the earliest stages of the
focal region as it is in the input plane. The propagation (Figures (27) and (28)) the near
calculation was repeated with twice as many axis energy current is outward for most of the
transverse sampling points (58 instead of 29) puise time, but becomes inward (self-focusing)
and obtained consistent results. When rezon- toward tne rear (-2.4). For this value of t
ing was implemented only 32 points were suffi- the field amplitude (Figure (29a)) is already
cient to adequately sample the rapid variations past its peak and has a small value. As we
associated with the self-lensing phenomena. proceed beyond the reshaping region (Figures

(29b) and (29e)), the near axis peak amplitude
Figure (25) gives the pulse characteristics as moves back in time (corresponding to the fact
a function of the propagation distance: the that the group velocity is less than c/n) while

the temporal location of the change from focus-



Ing to defocusing energy flow remains the This same pattern of pulse compression and
same. This leads to a large increas in the beam narrowing was clearly observed in the
value of the transverse energy. in Figures first experiment conducted in Na, illustrating
(29c0 and (29f) (in the focal plane) the peak SIT-S with transverse eeg lw h
amplitude occurs at z 2.4. drastic changes in spatial and temporal profiles

are shown in Figure (30) for the maximum
in graphs (a), (b) and (c) In Figure (27) and off-resonance (a and aW and on-resonance Cb
Figure (28) the profile of the field amplitude is and bi) coherent self-focusing. Figure (31)
plotted for several instants of time in the* displays clearly the observed longitudinal
leading part of the pulse or in the lagging reshaping. The significant contribution of the
parts of the pulses respectively, for the same transverse effects in SIT experiments is clear-
three stages of the propagation process. In iy displayed in Figure (32) where we contrast
the plots of Figure (28a), (28b), (28c) one the temporal behavior for both uniform-plane
can notice the distinct deviation of the profile wave SIT and non-uniform SIT.
from the input Gaussian shape. The beam
splits into more than one lobe, indicating the For additional clarity, in Figures (33a), (33b),
different concentration of energy in more than (33c0, (33d) the field energy is isometrically
one ring around the axis outwardly due to plotted against the retarded time for various
diffraction. The quantitative agreement of the transverse coordinates at four specific regions
hole formation and in filling up (see Figure of the propagation process: (A) the reshaping
(29)) with the simplified physical picture region where the perturbation treatment holds
predictions presented earlier is evident. (b) the build-up region; (C) the focal region;
Graphs (d), (e) and (f) of Figure (29) and in and (D) the post-focal region. A rotation of

*Figure (2)display the transverse energy the isometric energy plots is displayed in
current for earlier and later instants of time, Figure (34a), (34b), (34c) and (34d) versus p
respectively, at the main stages of the propa- for various instants of time) to emphasize the
gation process. In the earlier stage of propa- radially dependent delay resulting from the
gation. the energy current flows outwardly coherent interaction. Graphs (34e), (34f),
(see Graph (d) of Figures (27), (28), (29) (34g) and (34h) describe the same position
according to traditional diffraction spreading illustrated previously. The plots a, b, c, d,
(Figure (11a)). Once a sufficient relative of Figure (33) and Figure (34) are contrasted
motion between neighboring pencils arises,* a against their counterplotted isometric represen-
burn in the poieapas Bydfrcon tation of the transverse energy current for the
radial energy flows in both directions, out- same four distances. Plots (34e)-(34h), how-
wards and inwards. Consequently, part of the ever, are displayed in Figure (35) in contrast

*beam experiences self-focusing whereas another to the rotated isometric drawings of the energy
part shows self-defocusing. More specifically, current. Positive values of the transverse
diffraction (from the tail of the pulse in the energy current correspond to outward flow and
wings of the beam), into the forward central negative values correspond to inward flow.
region, still in an. amplifying mode, results in The results of Figure (33a), (34a) and (33e),
a continuous boost of the inward flow of ener- (34e) are in agreement with the physical
gy. This interaction with those atoms which picture associated with the analytic perturba-
were excited by the preceding pulse, that was tion previously discussed in this paper.
closer to the axis, make the inwardly dif-
fracting light experiences a net amplification. The computational grid has to be shaped
Moreover, this boosting phenomenon continues around each cross-section (p. t) to optimize
as energy flows more towards the axis; it the calculation: Therefore the spatial mapping

* ,.leads to a positive contribution to the center which is needed is complicated and must be
of the beam. This means that the leading continuously changing, (i.e., adapting locally
portion of the pulse in the rim of the beam in to the physics). A proper pattern of grids
an Initially ground-state medium sees an ab- indicating temporal stretching and spatial

* ,sorber and thus experiences net absorption (as rezoning provides the necessary resolution.
shown in Figure (12a) and Figure (12b)).
Because of this always-present interaction with The burn pattern, iso-irradiance level contours
population-inverted atoms, the amount arriving (against T and p) for different propagation
at the axis is significantly much higher than it distances are shown in Figure (35). Severe
would be if the remaining medium was linear, changes in the beam cross-section are taking

*This energy intensification on axis is the new place as a function of the propagating dis-
coherent self-focusing phenomenon. Immed- tance. At the launching front, the beam is
lately after the focal plane, both inward and smooth and symmetric; as the beam propagates
outward transverse energy flow occur within into the nonlinear resonant medium the effect
the same pulse at different slices of time, the of the nonlinear inertia takes place: relative
outward occurs in the leading portion resulting velocities across the beam (for different radii)
from the diffraction of the focused beam while arise causing tails to occur in the wings. The
the inward flow occurs and prepares the strong pulse propagates faster than the weak
second (but weaker) focusing. pulse. Consequently, a hole near the axis

appears, but linear diffraction causes the beam
This intuitive physical picture is clearly rein- to gradually fill. Due to a boosting mechanism

*forced by the projection graphs illustrating the the inward flowing energy current gets magni-
rigorous three-dimensional calculation, fled. This is clearly an initial self-focusing
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phenomena followed by a beam expansion. The The experimental F value of 10 -2 corresponds
temporal shift of the beam gravity illustrates to a Fresnel number of about 3, i.e., strong
the delay associated with the coherent ex- enough diffraction to provide radial communica-
change of energy between the field and active tions, but weak enough tha4t the induced
medium. nonlinear self-lensing effect overcomes the

spreading associated with diffraction. Numer-
(i) EXPERIMENTAL VERIFICATION ical simulations predict, for sharp-line atomic

systems, maximum magnification of almost 10
We have studied these processes numerically: -4

0, Change In shape, temporal length, spatial self-focusing calculatons were done in sharp
'.,' width and amplitude of the input pulse were line. Experiments deal only with essential

considered. Pulse development, when the
inhamogeneous broadening 2' the character- broad-line. To predict whether or not the

."1 ac y experiment will work, it would be necessary to
Istic length aeff and the frequency offset repeat all the calculations with a broad line
a a , o v W e psystem, which is a very expensive proposition,• are varied, was observed. We have compiled since it involves an additional dimension.
universal output curves illustrating the ex- sence, snvolve anuadditoa i e. petted output from the absorber as one Dodi- Therefore, a sufficient number of broad line

Sfltec the characristic of the input field and simulations were done, from which was derivedfie the ar eisics of4 theina calibration curve to correlate the essentialthe active media (42,431. features of both families of calculations.

As an example, from Figure (36), we predict Based on this curve, the main feature of is
the observation of coherent self-focslng Can effective absorption, we can deduce the pro-thonaxsemagnifation of axrener p usinit parties of self-focusing in broad line. Inon-axis magnification of axial energy per unit particular, if one adjusts the absorption in the-aa of 10) when the F parameter has the numerical simulation for sharp line two-levelvalue 0.4 x 10"3 . The distance to the focal atomic systems, in such a manner that it is
plane will then be 10(ailf)"  equal to the effective absorption that one gets

,., i~f~in the broad line case (which is the situation

Until quite recently, the work whose physical of most of the experiments), one would find
parameters most closely match the situaion n that on-resonance coherent SF does indeedaour computstions was the experiment of Gibbs occur at an aL of 7.5 with a magnification ofand Slusher w9. Unfortunately, the length of about 2.45. This is an astonishingly goodtheir cell and the range of operating pressures qualitative and quantitative agreement between
were such that the focal distance exceeded theory and the Na experiments for the ob-

S. their effective cell length. served magnification of aL a 10 and F 10.

.More recently, the SIT near-resonanc SF end Attempts to observe on-resonance magnifica-
defocusing was first observed by Gibbs and tons greater than 2 with large-diameter beams
Bolger at Philips Laboratory [1191 In inhomo- resulted In hot spots In the output even for
geneously broadened Na. An increase i a . 15. These probably result from focusing

* energy per unit area (fluency) at the center of smaller diameter regions with F - 10
of the beam was used as definition of focusing initiated by input phase and intensity varia-
as shown in Figure (32). The experimental tions (small ripples) differing from the theoret-
dependence of coherent transient SF upon ically assumed perfect Gaussian input. Conse-
absorption and magnetic detuning in Na is quently, SIT self-focusing is unavoidably
shown in Figure (38); CW light has no tran- important in the propagation of coherent opti-
slent SF and focuses for ua < 0 and defocuses cal pulses through thick absorbers (aL > 15)
for 4w < 0 (Figure (37), curve g) (1221. For even when large-diameter beams (large 5 are
2-ns pulses and aL > 3, slight SF occurs used on resonance.
peaked on-resonance (Figure (37), curve a). The second experiment was conducted in
At higher absorption the maximum SF occurs Heidelberg by Toschek [1201 et al. They
for w > 0 but SF is still seen on resonance investigated the propagation of linearly polar-
(Figure (37). curve a-d). Only for very high ized 1.15 Ipm light pulses in an absorbing
absorption (aL -20) is there no magnification inhomogeneously broadened quasi-non-,, on resonance (Figure (37), curves a and f); degenerate neon discharge (uL <9) and ob-
presumably absorption destroys the pulse after served both SIT and SF. The transmission
it passes its focus. The observation of focusing T(or magnification) is determined by graphic
on resonance for coherent pulses and not for integration of about forty superimposed pulses.
CI light cleariv illustrates that coherent tran- Particular care is taken to produce a perfect
sent self-tocusing is different from previous Gaussian beam with less than 30 variation of
efocusin (123,1251. This conerent contri- diameter along the absorber (as shown in

bufion has been disregarded in the past In the Figure (38)) to avoid small-scale self-focusing
analysis of High Power Laser. This Na obser- [121,1261. Comparison with numerical simuia-
vation has shown that the disregard of this tions of uniform-plane-wave Maxwell-
inertial term is not justified in a system within Schrddinger equations with T, = 33 ns and
which the pulse length is comparable with the 10 ns calibrates the squared pulse area
inverse linewldth. This dependency on the T_2 .e
frequency mismatch agrees perfectly with the a , in agreement with power measurements.
trend predicted theoretically. Data and simulations are compared in Figure

. . .--



(39). For t 3 ns, experimental T's slightly This could be expressed in an another manner:
exceed thosefrom uniform-plane-wave theory; how to keep the fill factor high without gener-
for 1-ns pulses the discrepancy Is even larger. ating diffraction fringes at the edges. Thus,
This increase in SF with increased Ti/,p one would want to determine the effects of

nonlinear propagation on the spatial and tem-
agrees perfectly with the three-dimensional poral profile of the output, (to be focused on
calculations (128] and emphasizes the coherent target), laser beam.
nature of the effect. The shorter the pulse
length t compared to the relaxation times TI To minimize a crucial loss of focusable output
and T2 ,p the stronger the SIT-SF will be. power, various experimental strategies have

Magnifications up to 40% and more recently up been implemented. The use of spatial filtering
to 60% [1291 were seen (see Figure (40)). allows control of the growth of phase variation
Note that the experimental transmissions in- [131, 132, 153, 154]. More specifically, long
crease and the uniform plane-wave simulations path spatial filtering (120], pinhole spatial
decrease with increasing eL. filtering [123] and, more recently, apodisation

[131], and optical imaging relay [131] seem toData and theory agree that coherent SF can be be the key schemes in maintaining as smooth a
as large on resonance as off; on-resonance SF beam shape as possible. The performance of
can occur, for a wide range of input areas present and committed laser systems can be
above n, SF is most effective with the relaxa- greatly improved by compensating for [1321
tion times are long compared to the pulse any departure from the desired equi-phase
length. There is no doubt that the recently uniform plane wavefronts. Furthermore, the
experimentally observed SF [122,127] is the development of new types of material, such as
new mechanism recently predicted numerically, phosphate glass [132], have helped in reduc-
Coherent transient SF may explain previously ing the nonlinear properties which are respon-
not understood observed transverse effects. sible for damaging the light beam. If the
Perhaps the reason this effect has not been beam Is not perfectly smooth initially, the
seen clearly before and hence received due at- fluctuation amplitudes may oscillate, decay or
tention, is that it becomes significant only af- grow exponentially with spatial and temporal
ter the reshaping region, i.e., aeffI < 5, on rates determined by the nonlinearities and the

nature of the initial fluctuations. Further-
which most SIT experiments have concentrated, more, fluctuations may lead to further self-
Much higher absorption (aeff? - 25) was used action phenomena before the beam collapses as
by McCall and Hahn [8] in the first SIT exper- a whole. It is this type of theoretical analysis
iment; they reported bright spots in the output (that was performed initially by Bespalov and
(also seen in the Na experiment for large input Talanov (134-136], and later by Suydam [137-
diameters) which they attributed to transverse 139] and others [140,155], which has gained
instabilities. The experiment of Zeipbrod and importance in studies of high power laser
Gruhl [22] was characterized by Oeff - 11 and performance. To reach definite answers such

as the location of self-focusing filaments for aF - 102 so self-focusing should be beginning; fluctuation of given amplitude, one has to treat
their Figure 1c has an output about 14% higher the nonlinear growth more accurately than this
than the input and most of their data have linearized analysis. The latter was generalized
higher transmissions than that expected by into several possibilities: First, by consider-
uniform plane-wave simulations. Rhodes and Ing nonsinusoidal transverse fluctuation pro-
Szoke [28] also reported transverse effects files, Suydam [137] has proven that any
seen in SF6 for ?aff! - 20 which may have eigenfunction of the transverse Laplacian such
resulted once again from self-focusing. as a Bessel function, can be a solution.

Clearly, such solutions form a complete set.
Further experimental and theoretical studies of These are referred to as normal modes of the
coherent self-focusing could thus clarify the perturbation. Thus, any linear combination
best procedures for maintaining near-uniform will constitute a solution. Among these modes,
wavefronts in thick absorbers, certain ones are unstable and grow exponent-

ially. However, beyond certain characteristic
ii) AMPLIFIERS growth lengths, the most rapidly growing mode

will outstrip the others and ultimately be the
1) Background only significant one (137]. Recently, a useful

physical picture of small-scale self-focusing,
The main difficulties encountered in high based on the idea of interference between a
power laser construction are due to small scale strong background and a weak wave launched
and whole beam self-focusing. To achieve at an angle, was presented by Trenholme in
fusion one needs a perfect uniformity of target his reviews of the state of the art (1441.
illumination (1261. This requirement is so The degree of nonlinear phase accumulation
critical that even the slightest phase variation (B: break-up integral) determines the useful
must be avoided. Thus, the major design output power. Further investigations (a) have
problem challenge could be summarized as extended the theories to handle any polariza-
follows: how to keep the shape together while tion state [141] in the background beam; and
minimizing the small-scale self-focusing? Any (b) allowed the inclusion of additional effects
phase gradient would lead to an energy redis- such as linear gain (1331, saturable gain
tribution and self-lensing phenomenon which [1421, or stimulated Brtllouin or Raman scatter-
3re detrimental to optimum target illumination.

VI
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Ing (143). More recently, using Vlasov et al's commendably recognized the relevance of
moment theory (155], Suydam (1391 intuitively interplay of small-scale and whole beam self-
extended the plane-wave theory for small-scale focusing, it is logical as recently summarized
self-focusing to describe finite-apertured by Brown [1461 to address the temporal depen-
beams that can initially converge or diverge, dance of active medium with inertial memory on

the beam evolution. This analysis can be done
Tonfirst separately and then as an addition toThe two types of sel-focusing are not mu- previous analysis a la Suydam (1391 and d I&tually exclusive 145]; they can be complemen- Fleck [154]. One ought to expect that (since
tar y enougheet es oete. the modulation of the beam profile grows
by Campllo at al [ 149-151 conflm the sound- exponentially with intensity and the loss fromness o ya wr u49 dam1 con real the nd- the focal spot increases nonlinearly with modu-ness of Suydam's work. Suydam realized the lation depth), the fraction lost from the tm- "
interplay of both whole-beam nonlinear lansing landph), teac o s the tem-and small-scale sel-focusing 137]. He con- poral and spatial peak of the pulse is consider-and mal-scae slf-fcusng [371 He on- ably larger than the average over the whole
cluded, however, his analysis by pointing out pulse. In other words, severe temporal or
that since temporal effects were not included, spaual distortion could occur as a result of
it was impossible to quantitatively predict beam preferentially depleng the high intensity
degradation. Independently, Fleck has devel-
oped a cw numerical code, which treated parts of the pulse, thus, when coherent tran-

- simultaneously mal-scale and whole-beam sient effects are additionally present, self-

. .. self-focusing, that he used to study trans- action phenomena arise at distances less than
verse variations in the beam evolution of those predicted by either theory considered
Cyclops [154]. Combining Suydam's elegant separately 1119, 1201.
generalization of Bespalov and Talanov's linear 2) One dimension effects in Amplifiers
stability to Frantz-Nodvik's [1471 flux satura-
tion equation, Elliot [147,1481 provides another
refinement description of uniform pulse-wave We present the one-dimensional propagation

small-scale self-focusing. We believe it would data and summaries then the contrasting three-
b v e o i l s wdimensional calculations for the same parame-be advantageous to combine Elliot's work with ters. Like the absorber, observations relevant
Suydam's most recent analysis of finite effects. to the theory of self-action will be noted. The

numerical solutions are presented and dis-
Since the extent of this profile distortion cussed for the three-situations where the
varies with time, as the pulse intensity rises on-axis ray has area n, 2n and 3n.
and falls on each shot, complications occur
when pulses are used. The temporal distortion Figure (43) shows the one-dimensional propa-
is hence produced beam filaments which grow gation in amplifying medium of a pulse whose

,*1 in intensity at the expense of the main beam; input area is x. The relaxation times T2 and
* .% the main beam gets depleted by the scattering T are ten and twenty times the FWHM 2p (4

process which transfers most of the energy to 1

filaments. Therefore, some energy may be lost nsec) Gaussian shaped input field. After five
completely from the beam, and get absorbed linear amplifying lengths (1/aeff ' 40 cm),
nonlinearly. Present theoretical efforts are several characteristic features are apparent.
unable to predict and estimate the beam quality

" degradation as observed by experimentalists at The pulses "real area" f e(tz)dt remains at
Livermore (Bliss at al (411) and at Rochester

-. ,. by (Soures at al ]43]). Figures (41) and
Figure (42) represent an example of the severe 2n even though the energy is increasing. The
temporal distortion which can be caused by eet og te energ is rea sin be
nonlinear propagation. One reaches the un- electric field envelope is real but can become
avoidable conclusion that beam breakup in negative. The "absolute area" (replace e by
laser systems containing optically thick non- a ), which is always the area referred to in

linear material can lead to a severe reduction the figures, does increase with distance z as
in the fraction of the output which can be does the energy. The development of theushel fraoen osecond pulse is the result of leaving the
usefully focused. medium in a partially amplifying state after
In some extreme cases of advanced stages of most of the pulse has past. The tendency issel-focusing, essentially al of the power can the same as a ringing linear oscillator circuit.be scattered out of the primary beam and Introducing a larger damping term T1 sup-
become unfocusable for a fusion-size target. presses the phenomenon.
Furthermore, since the nonlinear propagation 3) Transverse Effects in Amplifiers
of instabilities causes growth of small-scale
amplitude perturbations which reduces the
focusing properties of such beams, rigorous The general format for presenting three-
computer calculations with real-life parameters dimensional coherent pulse propagation in
are necessary. Quantitative analytic predic- amplifying medium will be the same as part A
tions are too complicated to be easily charac- for the absorber. We now propose results of

terized in detail. Much of this complexity the three-dimensional computation correspond-
arises from the fact that sources for dust~ing to the one-dimensional case just discussed.
particles, small damage sites and various In Figures (44) and (45) the field energy
material imperfections. Now that Suydam has amplitude and the transverse energy current

. . . . . . . . . . . . . . . ....... . .. .
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are displayed as a function of retarded time T pulse length is not much shorter than the
for various small and largeradil. The profile medium relaxation times. This situation is an
is plotted for small instants of time in Figure intermediate one between the coherent and
(46) and in large instants of time in Figure rate-equation-approximation limit. It enables
(47). one to consider an alternative more implicit me-

the field e and radial thod to solve the Bloch equations. The numer-

current are displayed isometrically against the ical integration method is based on an exact

retarded time for various radii at the previous- formal solution of the equations in question.
ly defed four critical regions of propagation; This method is a generalization of an approach
their profile is plotted in Figure (49) for previously used by Suydam (681. Goldstein
various instants of time. In Figure (50) from and Dlckman (159], to solve the four-level CO 2
the contour energy level, one sees clearly that atomic dynamics in the rate equation limit.
the peak of the pulse is advanced with respect This technique is particularly appropriate when
to a frame moving with the velocity of light. the rate constant can become very large. It
I s h e e a awas subsequently realized (1621 that Fleckslower than the stronger areas. Fro te (163] has independently reached the sameenoer curnth grpone fs ro th a conclusion when studying Q-switching of pulse' energy current graphs, on* finds out that a laes

focusing phase is not an exclusive property of lasers.
Sa resonant absorber.-- In particular, one can attempt to express the

The effect of the radial boundary is illustrated differential variable appearing on the left-hand
In Figure (51) to Figure (57). Non-uniform side of a given material in terms of an integral
radial stretching was adopted during the over the right-hand side. The integral can
computation. Projections of the field energy then be handled formally and exactly. The
and the energy current are plotted versus ! scheme is implicit and has been linearized by
for different radii in Figures (51) and (52), assuming that the field is known. The field
and versus p for small instants of time in can be guessed at the new time then corrected

,' Figure (53) and large instants of time In through iteration. , * and W can be readily
Figure (54). The four characteristic regions evaluated as the solution to three simultaneous
of propagation are clearly illustrated in iso- linear algebraic equations. Even though this
metric plots in Figure (55) and Figure (56); implicit method takes longer to calculate, it is
whereas Figure (57) displays the contour particularly advantageous since its stability
energy level, does not limit its usefulness to a restricted

range of parameters.
XVII. MODIFICATION OF THE BLOCH EQUA-

TION ALGORITHMIC SOLVER In particular, this method can be easily out-
lined in the following manner: The material

This work is not, as it has appeared, a model coupled differential equation has the form
1%, of any restricted specific situation. Rather,

what we have attempted to study is a situation 8A (96)
where coherent interaction leads to strong 'r 'A = f(T)
deviation from the conditions in plane-wave
propagation. We first dealt with a simplified where y can be either a real or a complex
model (scalar-wave equation coupled to a decay constant. By introducing
two-level sharp-line atomic system without
degeneracy) where transverse effects will A : B exp(-yT), (97)
enhance inhomogeneties, and lead to nonlinear
dispersion and nonlinear absorption. The i.e., B A exp( y¥), (98)
significant role of the dynamic transverse
energy flow is expected to play the same one obtains
physical role in more realistic situations, where
it might be somehow modified by other effects A B = B exp(-yT) f (99)
but still will not be washed out. Coherent F-T" f()
phenomena are not confined just to the situa-
tion where the pulse duration is much shorter integrating both sides:
than the relaxation time: They will also ap-
pear whenever the field is large enough so T+4t T+AT

that significant exchange of energy between (A exp(yT)] = f f(t)exp(yt)dt (100)
the light pulse and matter takes place in a T T
time short compared to a relaxation time.
When this situation is combined with a suffi-
ciently rapid spatial variation in the input exp(yT)[A( t-T) exp(y4T)-A(T)]
plane, significant self-action phenomena are

More specifically, for certain laser fusion t+At
chains, such as the Los Alamos CO2 system [ (1/q] . f(t)dJexp(f)J (101)

end the Garching Iodine laser system, the



-+ Nonuniform stretching from : to T can also be
=[1/Y][f()exp(Y¥)] -[1/] f exp(yt)f'(t)dE implemented. If the stretching weighting

*- I 1function is g(,T), the new source becomes
'f(t)g(,T)' while the time decay constant
becomes 'yg(YT)'. The procedure remains the

A(,t+c)exp('4t)-A(z) [f('+A1&)exp(yx)-f(x)]/y same; only the algebra becomes more tedius
(1651.

f f'(t) dfexp(yt)] (102) XVIII. CONCLUDING REMARKS

Most of the features of the numerical model
-fEIp ) f / used to study temporal and transverse reshap-

[f( t+A-f(,)]/,y - (f1(,c+4)exp(y&c) - fl(-)/y) ing effects of short optical pulses propagating
in active non-linear resonant media have been
presented. The motivation for choosing the

2 te t various numerical techniques was explained on
+ [exp(-y)/y 2 ] f f"(t)exp(yC)dt (103) physical grounds. The rigorous analysis of

this non-linear interaction was attempted to be
achieved with maximum accuracy and minimum

. These formal solutions, which are exact, will computational effort. The applicability of
be the basis of the finite difference approxi- computational methods developed in gas and
mation scheme. Assuming that f(t) is a linear fluid dynamics to the detailed evolution of
function of t between x and tz~t (hence, f"(W) optical beams in non-linear media has been
vanishes), one can stop carrying the process demonstrated. The Introduction of adaptive
of integration by part further. stretching and rezoning transformations con-

*. Using fnl for f(1 t1a) and fn for f(r[) and the siderably improved the calculations.

approximation: In particular, self-adjusted rezoning and
stretching techniques consisting of repeated

S -(1x) applications of the same basic formula were
S n (104) reviewed as a convenient device for generating

computational grids for complex nonlinear
one can evaluate the integral explicitly with interaction such as in coherent light-matter
the result: energy exchanges. The techniques are well-
A a suited for easy programming mainly because

+" An.,.= exp(aYt)Ane[fn+lfnmnP(aY4t)]/At the mapping functions and all related deriva-
,, . tives (weighting factors) are defined as much

[] )as possible analytically. Enhancement of
accuracy of speed was realized by improving

AA ()the integration technique/algorithm which
An+, 2 exp(' t)An+t[(urexP(-y&%))/y/x rned out to be general and extremely simple

in its application when compared with its
-exp(-¥ t)]/y) fn analogue, the two-dimensional Lagrangian

+ (1[-(1-exp(-Y&)/YetJ/YI (106) approach [172]. Furthermore, this method has
{n~ 06 been applied to a number of situations with

-1 and without homogeneity in the broadening
" as ((ax) ) is allowed to approach 0, (i.e., properties of the resonant medium. It may be
, (ya) * ), A, 1 approaches [fne/i ]. This worthwhile to mention that theoretical predic-

means that in the limit of large time incre- tions defined with this code, when applied to
ments, the numerical solution of the Bloch absorbing media, were quantitatively ascer-
equations can approach their 'rate-equation' tained by independent experimental obser-
form. vations [119,1201 and recent independent

perturbational (166,167] and computational
Using this approach to solve the Bloch equa- analysis (168]. One should also re-emphasize
tions, one can identify the driving term 'f' as that the self-action phenomena predicted with
'-1/2(e + e* )' for the population inversion the algorithm described here are distinct from
equation, and f' as 'ew' the polarization equa- that discussed by other researTF Th. The
tion. main characteristics that distinguish this

system are (I) the non-instantaneous polariza-
The result is three linear equations for the tion response; (2) the fact that this coherent
three unknown quantities: interaction can occur at exact line center

(while all the other theories exclude the possi-
,j *Jl and Wj+l  bility ot-self-lensing action whenever the pulse
m,k~l ' e,k+1 m,k~l wavelength is exactly tuned to the center of a
m m,1resonant absorption line), and (3) that the

Assuming that the field is known, one can angle of the slowly varying electric field pha-
solve this system in a straightforward manner. sor depends on time a well as position.

-. 7
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Although the topic of this paper has been most 4. 0. Svelto, Progress Optics XII, E.
widely received in optical radiation physics, it Wolf, Ed. Amsterdam, The Netherlands:

- our belief that this methodology, drawn from North Holland, 1974, pp. 1-52.
aerodynamics, will prove functional for a wide

; variety of nonlinear time-dependent equations 5. J. Marburger, Progress in Quantum Elec-
in such fields as chemical kinetics and oil tron., vol. 4, pp. 35-110, Pergamon
reservoir simulations. Press, 1975.

ADDENDUM 6. J.A. Fleck, Jr., and C. Layne, AR1.
Phys. Lett., 22, pp. 467-469, 197 and

It is noteworthy that a recent research effort Appl. Phys. Lett. 22 pp. 546-548 (1975).
which dealt with resonant light beam interac-
tlion has been recently reportec (169]. Rezon- 7. E.L. Hahn, Phys. Rev. 80, 580 (1950).
ing was also incorporated; however, an implicit
Crank-Nickson, algorithm was used for march- 8. S.L. McCall and E.L. Hahn, Bull. Am.
ing the field; whereas the multi-line atomic Phys. Soc. 10, 1189 (1965).
dynamic were solved using Heun method. No Phys. Rev. Teitt. 18, 908 (1967).
temporal stretching was used. Phys. Rev. 183, 437-485 (1969).

Phys. Rev. LT 870 (1970).
For details of the numerics, kindly refer to %
Reference [1701; for the physics, please refer 9. H.M. Gibb and R.E. Slusher, App!.
to [171]. Phys. Lett. 18, 505 (1971)

Phys. Rev. AS, 1634 (1972).
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FIGURE CAPTIONS

Figure 9 Comparison of pencil perturbation
Figure 1 The stte of the art in coherent theory with rigorous three-dimen-

pulse propagation is displayed. The sional calculation for (a) absorbers,
theoretical effort was restricted to and (b) amplifier. (Curve 9b from
uniform plane wave prior to Newstein Wright dissertation, ref.[15]).
et al's efforts; whereas the usual
experiment was carried out using Figure 10 Graph (a) illustrates the pulse delay
Gaussian beam. To simulate a uni- to be experienced by the peak of the
form plane wave, the detector diame- pulse when propagating in a reson-
ter was selected as small as possible ant absorber. Graph (b) displays
when compared to the Gaussian beam the dependency of iD on the input
diameter.

area; corresponding value of the
input energy is given at the top

Figure 2 (a) Isometric representation of the horizontal scale. The solid curve is
beam cross-section as it exper- for the case T2 > Ip, T1 > Ip and
lances self-focusing: The zero detuning. The dot-dash curve
cross-section decreases as a is for T1  150 nsec and the dashed
function of the propagation
distance, curve is for T 2 = 50 nsec. Other

parameters are the same as for the
(b) An isometric display of the time solid curve.

integrated field energy as a
function of p and n to illustrate Graphs (c) and (d) display distor-
the resolution limitation associa- tionless pulse propagation in absorb-
ted with uniform mesh. ers. Isometric plots of a family of

2n hyperbolic-secant pulses with
radially-dependent pulse-widths

Figure 3 Two-dimensional prescribed rezoning (equivalent to some pulse-length r
for p and q. As the beam narrows
the density of transverse points and but of different area strengths). In
the transmission planes increase graph (c) the relative motion is
simultaneously. displayed whereas in graph (d) the

hole formation near the axis at the
trailing edge of the pulse is clearly

Figure 4 Self-adjusted two-dimensional rezon- substantiated.
ing for p and n to follow more close-
ly the actual beam characteristics. Figure 11 Graph (a) illustrates the spreading
The (normalizing) Gaussian reference effects of linear diffraction on the
beam is redefined during the calcula- propagation of a Gaussian beam
tion. profile.

Whereas Graph (b) illustrates the
Figure 5 Non-uniform prescribed temporal effects of linear diffraction on the

stretching. propagation of an intensity profile
with a hole near the axis. This
input profile is achieved by the

Figure 6 The smeller area. 1.6n, moves more subtraction of two Gaussians with
slowly than the larger area 2n in different beam widths.
both (a) amplifier and (b) absorb-
ers. The peak of the pulse propa- The propagation follows the analy-
gates with a speed larger than the tical work of Kogelnik and Li.
velocity of light in amplifier and
smaller in absorbers. Figure 12 (a) An isometric time evolution for

three distinct radii representing
three 2n hyperbolic-secant

Figure 7 Relative motion among adjacent pen- pulses (with radially-dependent
cils propagating coherently in reson- pulse-width) after a propagation
ant (a) amplifiers, and (b) absorb- distance q. This plot illustrates
ers. the relative motion as well as

the boosting operation that the
light diffracted from the tail of

Figure 8 Isometric representation illustrating the pulse on the rim of tie
the relative motion among adjacent beam, experiences while flowing
pencils after a certain propagation toward the axis.

distance ii.
(b) Results of rigorous three-dimen-

sional computations illustrating
the hole formation at the trail-
ing edge and its successive
filling thr-ough boosted diffrac-
tion by nonlinear interaction.

a%
Q . .-... . . .. . ."



Figure 13 Analytic predictions of energy cur- Figure 24 The energy per unit area

rent JT evolution for (a) absorber e 2

and (b) anplifters. If e(pd^ ) 2dz
0

Figure 14 As the light diffracts outwardly in the fluency is displayed as a func-
..- Fettion of the distance in the direction. the leading edge of the pulse, it of propagation for various values of

interacts with the slower moving the coordinates transverse
pulse off-axis and experiences gain, to the direction of propagation. To

Figure 15 Graph (a) displays the retarded te illustrate the gradual inward energy
conce pts rflow the n/2 reorientation is alsoconcepts, displayed. The longitudinal orienta-

tion illustrates the gradual boosting
Graph (b) outlines the numerical mechanism that the field energy
approach: a marching problem along experiences as it flows radially
r . for the field simultaneously with a towards the beam axis (while l
temporal upgrading of the material towads The be a (le divarible alog ~increases). The second angle dis-
variables along it. plays the severe beam distortion in

Figure 16 Graph (a) shows non-uniform stretch- its cross-section as a function of rI.

ing of the transverse coordinate. Figure 25 The principal characteristics plotted
Graph (b) contrasts the Gaussian against the dimensionless propagation
b d n e h n idistance for a particular value of F:

Sform epennc r is. nnuthe on-axis energy density, the totalfm hi ra .field energy and an effective radius
Figure 17 This graph illustrates the depen- defined as the square root of the

dence of the radial mapping and the total field energy divided by the
derivation on the different parame- on-axis energy density.
ters versus the uniform mathematical Figure 26 The profile of the energy per unit
radius.

area for both the input and focal
Figure 18 This figure contrasts the Laplacian planes.

dependence for a given Gaussianprofile for various non-uniform radialpoint densities. Figure 27 The absorber field amplitude (a,b,c)
and the transverse energy current

Figure -9 D(d,e,f) for several radii versus the
Figure 19 Dependence of prescribed stretching retarded time for three stages of thedensities and the center of transfor- propagation: the reshaping region,ntien d n the build-up region and the focal

mation. region (as a function of the trans-

Figure 20 Adaptive stretching with different verse coordinate).
centers of transformation.

goFigure 28 The profile of the absorber field am-
Figure 21 The concept of the prescribed rezon- plitude (a,b,c) and the profile of'. ing are presented in Graph (a);whereas Graph (b) is a close-up of the transverse energy current (d,e,

the non-uniform mapped grid of f) for several earlier (small) instants
Figure 2(b). of time for three stages of the
F'ue2b.propagation: the reshaping region,

Figure 22 Graph (a) illustrates the self-ad- the build-up region and the focal
justed rezoned grid. region, as a function of earlierretarded time (slices in the front of

Graph (b) illustrates the usefulness the pulse).
of the adaptive two-dimensional
mapping through an isometric repre-sentation o the field fluency. Figure 29 The profile of the absorber field am-

plitude (a,b,c) and the profile of

Figure 23 One-dimensional propagation in the transverse energy current (d,e,
absorbers. Figures (a) to (d) f) for several later (subsequent)
illustrate the time behavior of a IT instants of time for the three stages

" input pulse at various planes. The of the propagation: the reshaping
retarded time is measured in nano- region, the build-up region and the
seconds. Figure (e) gives te time focal region as a function of subse-

.,,, quent retarded times (slices in the
integrated intensity (energy/cm = trailing edge of the pulse).
'dt e 2), pulse area, and time delay
at the peak all against the propaga-
tion distance.

. .. . i - - -Cd *i..*-



Figure 30 Changes in spatial and temporal pro- Figure 38 Experimental Gaussian profile care-
files for pulses undergoing self-in- fully prepared to eliminate any ripple
duced-transparency with transverse larger than 3% variation to avoid the
energy flow, that lead to coherent additional small-scale self-focusing to
self-focusing, a and al, maximum the transient whole beam break-up
off-resonance SF; b and bl, on- under study.
resonance.

Figure 39 Pulse energy transmission (output
per input in Ne vs. squared pulse

Figure 31 Temporal behavior of pulses. Break- area for 3ns (full dots) and ins
up of a 4n input pulse is shown (open dots) pulses. Curves are the
under (a) self-focusing and (b) corresponding plane-wave computer
uniform plane-wave conditions in Na. simulations.
In (a) the integrated output is 35%
larger than the Input. Figure 40 Energy-density magnification vs.

peak intensity for 0.Bns pulses,
showing increase of self-focusing

Figure 32 Cross-section of beam at cell exit in with Ne absorption aL. Curves are
the first experiment: curve a, plane wave computer simulations with
without Na, and curve b, with Na T z I0ns.
on-resonance, with input area of 3n
to 4n and magnetic field of 3.5 kG. Figure 41 Graph (a) displays an example of

the severe temporal distortion which
can be caused by nonlinear propaga-

Figure 33 Isometric plots of the absorber field tion in the Lawrence Livermore Labs
energy and transverse energy flow, Cyclops laser chain.
against the retarded time for various
transverse coordinates at four re- Graph (b) displays the correspond-
gions: (a) reshaping, (b) build-up ing plots of the fraction of the pulse
region, (c) focal region, (d) post- power which is focused through two
focal region. different diameter apertures as a

function of the break-up integral B
(see Bliss et al, IEEE J. Quantum

Figure 34 Isometric plots of the absorber field Electron, July 1976).
energy and transverse energy flow
profile for various time slices at the The focused output beam does not
four regions of interest, contain all the energy which entered

the experiment.
Figure 35 Absorber field energy contour plots

for the four propagation regions of Figure 42 Example of the temporal distortion
interest. Notice the temporal delay due to small-scale beam break-up on
associated with the coherent ex- the Beta prc otype of the University
change of energy between light and of Rochester Laser Fusion Laboratory
matter, as well as the beam cross- (LLE) (see LLE program report to
section narrowing. ERDA, January 1977).

Figure 36 Principal characteristics of the focal Figure 43 One-dimensional amplifier: Graph

plane as a function of the parameter (a) shows the input pulse as being a
F: the dimensionless focal length 4 nsec Gaussian with integrated area
(eff • L(focal) = A(focal); the ratio 2n. Graphs (b) and (c) correspond
M of the axial energy per unit area to the pulse propagated to 40 andIat the focal plane to that at the 200 cm. Graph (d) is the summar-
input plane; the time delay at the ized propagation data of the pulse

focal plane of the peak of the pulse versus the amplifier length (a-f =
on axis; the ratio of the total field 200 cm).
energy to the axial energy per unit

area e2 Figure 44 Longitudinal projection of amplifier
-. a ea energy field amplitude and trans-

- Figure 37 Experimental energy-density magnifi- verse current for near-axis (small)
cation and diameter reduction in Na radii at the four critical regions (a)
as a function of detuning. Curves a reshaping, (b) build-up, (c) focal
to f are for 2-ns, 5 pulses of 125um region, and (d) post-focal.
diam in an 11-mm cell. The absorp- Figure 45 Longitudinal projection of amplifier
tion increases from curve a to curve
f; curve g is self-focusing of CW energy field amplitude for large
light; curve h shows the atomic (off-axis) radii at the four critical

absorption. Above, Curve a is the regions.
diameter for the conditions of curve
a, etc.

a'... a .. .. . ,
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Figure 46 The profile of amplifier energy field Figure 55 Isometric plots of the amplifier field
amplitude and transverse energy energy and transverse energy flow,
current for small slices of time (in against the retarded time for various
the front of the pulse) at the four transverse coordinates at four re-

-' critical propagation regions of in- gions: (a) reshaping, (b) build-up
tarest. region, (c) focal region, (d) post-

focal region, with stretched radial
*'. Figure 47 The profile of amplifier energy coordinate for proper accounting of

amplitude and transverse energy the transverse boundary condition.
current for large slices of time (in
the trailing edge of the pulse) at the Figure 56 Isometric plots of the amplifier field
four critical propagation regions of energy and transverse energy flow
nteret. profile for various time slices at the

four regions of interest, with
Figure 48 Isometric plots of the amplifier field stretched radial coordinate for pro-

energy and transverse energy flow, per accounting of the transverse
against the retarded time for various boundary condition. No severe
transverse coordinates at four re- reflection or abrupt variation in the
gions: (a) reshaping, (b) build-up field energy, at the wall boundary,
region, (c) focal region, (d) post- is observed.
focal region.

Figure 57 Amplifier field energy contour plots
Figure 49 Isometric plots of the amplifier field for the four propagation regions of

energy and transverse energy flow interest. Notice the temporal ad-
profile for various time slices at the vance associated with the coherent
four regions of interest, exchange of energy between light

and matter, as well as the beam
Figure 50 Amplifier field energy contour plots cross-section narrowing, with

for the four propagation regions of stretched radial coordinate for pro-
interest. Notice the temporal ad- per accounting of the transverse
vance associated with the coherent boundary condition. No severe
exchange of energy between light reflection or abrupt variation in the
and matter, as well as the beam field energy, at the wall boundary,
cross-section narrowing. is observed.

Figure 51 Longitudmnal projection of amplifier
energy field amplitude and trans-
verse current for near-axis (small)
radii at the four critical regions,
with stretched radial coordinate for
proper accounting of the transverse
boundary condition.

Figure 52 Longitudinal projection of amplifier
energy field amplitude for large
(off-axis) radii at the four critical

* regions, with stretched radial coor-
dinate for proper accounting of the

-transverse boundary condition.

Figure 53 The profile of amplifier energy field
amplitude and transverse energy

% current for small slices of time (in
the front of the pulse) at the four

*o critical propagation regions of in-
terest, with stretched radial coor-
dinate for proper accounting of the
transverse boundary condition.

Figure 54 The profile of amplifier energy
amplitude and transverse energycurrent for large slices of time (in

the trailing edge of the pulse) at the
four critical propagation regions of
interest, with stretched radial coor-
dinate for proper accounting of the
transverse boundary condition.
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Figure 1 The state of the art in coherent puise proaaaatoon is dis-
played. The theoretical effort was restic-ed to uniforn
plane wave prior to Newstein et al's efforts; whereas the
usual experiment was carried out using Gaussian beam. To
simulate a uniform plane wave, the detector diameter was
selected as smail -as possible when compared to the Gaussian
beam diameter.

-." ,..Z.

%.

zo

% %

'S."

beam diameter. . --



NI

Figue 2 (a) Isoe~ri re~reenta-tiyi f te bam cosssecon s 7i

'fcsn :Tecos-eto.dc-ae

exeiness4L.

asafnclnofdc-,ne



I".

AL

°.4

.o..

~6. .(w

4'I',

(b) An isometric display of the time integrated field energy
as a function of p and ni to illustrate the resclutior
limitation asscclatei with trnifrr'. riesh.F-d
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~Figure 6 The smaller area, 1.6t, moves more slowly than the larger

area 2n in both (a) amplifier and (b) absorbers. The peak of
the pulse propagates with a speed larger than the velocity of
light in amplifier and smaller in absorbers.
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!! ~Figure 10 Graph (a) illustrates the puise delay to be experiencE ~
~~the peak .of the pulse when propagating in a :sonant"

absorber. Graph (b) displays the dependency of z. on the i
input area; corresponding value of the input energy s given

. at the top horizontal scale. The solid curve is for :.ne case :
T2 > rp, TI > -rp and zero detuning. The dot-aash cuirve is

-, for T-= 150 nsec and the dashed curve is for T 50 nsec. ?
Other parameters are the same as for the solid curve.
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Graphs (c) ana id) display Llistortionless pulse propagation
in absorbers. Isometric plots of a family of 2T hyperbolic-
secant pulses with radially-dependent pulse-widths (equiva-
lent to some pulse-length - but of different area strengths).

In graph (c) the reiauve motion is displayed whereas in
graph (d) the hole formation near the axis at the trailing
edge of the pulse is clearly substantiated.
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Figure 11 Graph (a) illustrates tie spreading effects of linear diffrac-
tion on the propagation of a Gaussian beam profile.

Whereas Graph (b) illustrates the effects of linear diffraction
on the propagation of an intensity profile with a hole near the
axis. This input profile is achieved by the subtracton of two
Gaussians with different beam widths.
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PERTURBATIONAL DERIVATION OF TRANSVERSE
ENERGY CURRENT JT (b) AMPLIFIERS

ETA YMIN = YMAX=
8 1667 98669 6039 ETA: YMIN: YMAX=

.=844167 087 88127 "

• ""' .- :2 -p a=.1071 ,.: m

' 3-p .1607 5

4- p z.214 3

5 p.2679.

T (P-0 0•0

ETA- YMIN= YMAX=
8 6667 8648 98238

ETA: YMIN= YMAX=
89167 88137 a63a58

4 4
-s

13(b) Analytic prediction of energy current JT evolution for amplifier. Note that

diffraction is greater here than in the absorber -counterpart situation (13a). For
illustration purposes the current was derived beginning with the field equations

* as opposed to the energy equations. Only when the energy equation is used is
the expression JT valid for largeZ . (Plots constructed beginning with the enerax
equation czn be found in ref. (171; 1975] ).
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Figure 39 Pulse energy transmission (output per input in Ne vs.
- squared pi 'se area for 3ns (full dots) and ins (open dots)

*pulses. Curves are the corresponding plane-wave computer
simulations.
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Figure 41 Graph (a) displays an example of the severe temporal
*distortion which cnbe caused by nonlinear propagation in
* the Lawrence Livermore Labs Cyclops laser chin

Graph (b) displays the corresponding plots of the fracticn of
* the .pulse power which is focused th~rough two different

* dameerapetues as a , ~ction of the break-up integral B
* (see Bliss et al, IE.EE J. Quantum Elec-6on, July 1970)

.The focused output beam does not contain all thle energy

whc etre i epriet

T. We WPM

77?77.



7 'D-i36 906 TRANSVERSE AND QUANTUM EFFECTS IN LIGHT CONTROL BY 2/
LIGHT; (A) PARALLEL BE --(U) POLYTECHNIC INST OF NEW
YORK BROOKLYN DEPT OF MECHANICAL AND R.. F P MRTTAR

UNCLthSSIFIED 1983 POLY-M/RE-83-4 NO884-80-C-Oi74 F/G 28/6 NL

*LullluuuudlIIIIIIIIIIIIII
EIIIIIIIIIIIhl
EIIEEEIIEEEEEE
IIIIEIIIIEIIEE
EIEEEIIIIIII
EIIIIIIIIIIIIIl



1.8

'.K

iiiii , __ ,

1111IL2
IIIII

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

%4

*,- ., ,, : -,, ,, ,- , , , ,* , .... .~ - , , -. ..- ,.- . ....-..- . , ... , .. . -.



'~ 7.

V"I

~*% ~k
- I-

PAN evAMM u t*AM aoS* 4roOR~t
I Mue~~~~ONWmMu s M ueuu ~

t.%

' .9

no 
4

I a

break-up on th Bet prttp of the Univesity obeaC-

ester Laser Fusion Laboratory (LLE) (see Universitroam
to ERA, 1&anuar LL1pora7!---4

'S7 
_ _ _ _

S . . ; 
V.7



4.4

.6he

4. -de

4so

e soa m-la:arp~)shw h nu

the puse verus th *ampiferleg
260 cm)

S~ .z~~-Iv

T~~:r~ tt

4fig ureI %tn i e s o a m i f ~ G a h ( ) s o s t i n u

pus sbig OscGusinwt negae ra2

'.P4



___ " .. -

0 ~118~0.68750 1
SMALL P (SEAM AXIS) 9

.._ _ _-__ _,_ . ?

-::I

*L23750 
9

"-3.

4. -750.

.,::,-0:, - ,,- -- -.

a 1.

'I.-. ',". I

I': - .1 !...." an tra sv rs :I ... ""I '
a d

Vi o

I * - -

° " "8. 8750 !



MZ7 -30.

~ A.... .... 4...

3.7

'7'0675

.14 h.Ih

;.~ -'.s.1:,. a-z*. Z~rC



VF -- - -

SMALL TAU

-:2 3750-

S It

lew Je*
Fiur 46Te1c-eaci~raeT l mltd n ,,n

vre?0 enr. urn -rsalscas r e z

the_ _ _ _ _ pus )a1-- ' s.



LARGE TAU

4. .. 4.8-50

.4.

Figure___ 47T A4

ene y L.::.vA a~es4- tm n!he-a!:-ce

Fgr4ithe Driil e O~ =",=C31e -ner actc nd recnsv.efrn:s



ft. ..

rN~. 
-

-Il 'ft
F.' 

jftJ~
V

ft~ft

Il.:
[ii -- ft

~ ~ L.

a.. 

.
- 0 

1./ SL.~
-

~' '~'
ftft~ ft~C4ft.t 

.

-~ oft
I'-.-

r~'.j~P ~ 

-
ft- 

I

-~ 

I
,~1

ft%.' 

I

~Ud-IC.I. 
-

* 

~3a~~-~ft 
I

4 .4; ~-ft

0ai~

I-

ft.~

ft% 

'J-,- 
I

ft.j xlI
4

ftq. ft 
ft'

.1*, 
ft

ftp 

I -

- i I
ft.'

'ft... 

ft

*1 I
1

'.4 /1 
ft

1 1 
-~

'ft

* 
~.

F' 

'ft.

I

_______________ 
ft 

ftt~fl*..ftft~ Sft.ftftft - I a..- ~ ~ ftdSih.~ft.ftft.ftft....tft~~ft ~ft ft ft-ft **Mj~ft ~ -.- -
~.ft ft.

ftft.ftftftftih ~ 
~ *.*ftF.'ft.* '~ *ftft~ftJft'ftftftft 

. . -



- - ~m- .~. ~ - -- -.. - -
T'~ AT1'~ .Z. h A W~Z. ~ ~A .*' -. - - - .-. * -~ .. *' . . . ..

-~ - -.

p.

*.~ -~

Iso
Ot

'II

II ______

[.7
(

*1 4JL.

-~ C
P.
1 0102

t- ~

4~9A!
* Y *

.1. 0~--- i ~.,

;-I .~ -

CJ01

- GJ C

-* I *' I
* . ~, I...

- l~1
'4

*

4 1.~
'9

4.

- a . ...-. -. . I



k IN

to.,.

~4.j

cu:

4CU L 4

%*" X.g~q.q~r'.~ t ~ ~ * 2

A. .. '-to

-, I .i-g,

'4 ~If
-. o

4..a

.4, 0

.4 ~II - --

U IF



4 ~i 4~i.C.?50

-all,

Fiur 51 Logtuia prjcino mpiireeg fil mltd

and trnves curn "cr near-jxs (smll rdi a &e ou

crtia reios wit s--t.-- raiz coriaefrSr

-cou t13f*h :-seseIonaycr;mn



LARGp

2. 750

iL 8~750 -

IFI
trnves %qgpgqar .. ,di-.



77-.

9,9

-i.675

I "I tO

transverse~ bona- critn

3A



6.1

J.-.

SLL? r. %

4- 4875

'U' . .'. 1 . 3750

PS

z Ij

Figue 5 Theproileof apliier nery aplitde nd tansers
-a-li- edge of

enrg curren fo large. slcso imIih

energ currtcent frdilag soorinaes o pimr(ipe auning edgte o

I ~ transverse bounda-v condition. .



'~aO.875O

_ •____.__,____

ov i.'-- .•o o

_ _ _ _ _.__ _ i je.n "" "

T'w2.3750

-' o i II-

00

~ ~~ d, i ;- ,,

I x

os 03.r Z

ra r

4;,

, , , .. ,

* hi*_!'o -.,I>

-V --- a (U_ - . . .- : .;

211.8750 u

,billl " ,.. ~ L. C >. . ... . . "-

- --. t- ,. . . .. ., .

o -k

* . . - p . ,..

w .4. •". .

I ;.- _.; :.,, . . .,. :..-

-U' ; - Il
'.' .i " " - : ".

" , - ., -. .



780.8750 :j

'.. c

4.75 
-Z ~.

zjX
*0 

to in1

caa

low 1211
on - Pag . c c

71 8.75 --. 1- t- - 0 ~ cmw

J 77'.8750 -e-

-!go1 Lz

or J.l
02c..w. .



FI

4.II _

4.gw 57 A~~mpliirfedeeg cotu plots* fori th-e" ou prp- g' -. ty '

hio regon of iners. Notice th emoalavac

asscite with th.oeetexhneo4neg ewe

lih n mteaswl s h emrs-ecinn r
ing wih treche rdia cordnat fo pope acoutin o

the ransersebounary ondtion No ever refectin o

abrupt ~ ~ ~ ~ ~ ~ ~ ~ -. vaito ntefil nry tte albudri

obseved

II U T



-aC-

riae oua a -3 ~ n fta &In bvv t. wear 6o

he 34 a. %wntn vea0.6aM *nUC-oa~

&06 *S 114C been

d L d

Ad WO -60 ama foam iEwe .
st.o" mi begom ow mt-v.

Sbav~ *41 L-10

.1 lik .*atotlaetal twb.

i ~~ ~. Inns amswaaao weaust, duo to %us mt. of wartiru to U"
* *.. * -A tam. Augb me 3*uw. EVL9. L9VE1 3M. a"701001 two 3?

- ~. - - rnelS t" Imo.. Lel oao v L .e.. a 32 We wid M&SO &A@ %05 03V
""awI. mer~j o ee aw O ioifteeila Oflaus Mvt "I:-- u 0"

meof ,sm.sega %U %% tM. LM taM mROW :43 11410 - Lf taj*%J %wem ort et.,s. ab t uJP1110t-2-4 t L

MAO fte. A2. Xe -IO 3 4h 11 me tA is "Ab row ta

mil a" Soes to oe es,~am b btL .we.tos10
ale o a 0I10510 tm tti. i La t e 4e vw ?V tl.

4. ntwwn .Sw $ ev~n ee we e u LSS

"4.M U SMlln 4s4 MRO

vrmd t "A* Salem

h.~ 8Coc fpx~eeso h rpsdse!i _eieta-

reae icsinpirt a5-jigcttee-eiet

!M M7.~ 14,KAl



.4'.

.... ..... .

.44..

too ~ ~ ~ .P-0 . .I

A-.

jile-032.. a. .G,

al 130-Q 49.S.. -1

ot~ 4
.4~~~ae iltm haf pe-,o ,m. wV" . ~*ft

59 Sl i-ue tr"sae 7 f,4;. a unt --me u e

4 O24,..,. 3 t-j--ne e ~l w e h lie!a

f~ctcn o th =r-e~z-i= l-sa~ceUS.)in !:Yscalccen 1li

mees (b)4 ~i= o~aie cc.'*ae ofo i'ee

efetv abc.c £L74OVU3(

"777,777"-77777777777 7-7



4 
-7 

-

'Al.0

k ts 
06 

-as 
* 3

It

Figu-r 60 Suer-f :uo resce ce i= a _me-exc ted =ed i4 = fo n f = :a

vuve and for omon1aar wa-e vith =t ,rse Ce
Output mwr(vagdacr*oss the bea res. buId-Up over an

&i distance o'A 1, 72 frm an nitial tipping aangle --

eff-*O.OO3~~,a~ (a con~~~he iuatiom a' a uniform in
,mve F~w and .7lwth a rdially dependent gai, In graph (b)

" It ~ the gaini ridial2'7 imdeoemdent4 -while the tiprpigangle has
a Gasia rofile. Grsa' (c) and gra-p (d) resteci7e!7

shae h isic.2. s±6a: p ;of ans (a) an=d (b) bu: 41.t
an aditioal rd- ^ azgz.e.



Tc~ (a+bc c~'2ab 2 ~(a b -Yaub) +2(Xba +Yba

Perturbation:

ea strong beam; eb weak beam lebi <<« a

x + iy= eao (Xa+iYa e(aX -PYa+) eO +r
Ab 'b a~t$ a a a e a+ a)

where e << 1; a,o,e real; a,p,e > 0

(a+ip) the polarization constant

Then

2X =X +e e X+a aO +eal + a2 '
y -y +y +eY *'..

a aO +e al a2

Xb = +- eYb1 + e2 Xb 2 +...

y +eY + 2y +..
be bl eb 2

2u =u 4e + -e +a aO al + a2 "

U =a + eva + e 2 4...

Ub = ebl 2

Vb = + evb1 + evb2 +...

=c + ev 1 + e2 v -

Wa = aO +eal +eWa2 + ...

Wb = + eW + 4e W 4...

-2-1



Zero order e0  (single stream S.1. T.)

a X + FV 2 y gu
ql ao, T o a a,

nYao T xa 0 gaVa 0

a u =X W +a v -U ITx ao ao ao a ao, ao 2a

atvao =ao, o Aa uao, -Va 2a

I wao ~(ao ao + ao ac, a-( aWla

First ordere

a xa +FV 2 Yn al + Tal=g l

n al Tba = ga UI:l

a - F V2T

T al al Wao ao, al 'a val ual/!2a

a-cv al y al Wao + Yao Wal +'a ualvlI -V 2 a

a a

T bla1='&baOb1 + Xau +cYV 1 +l) V )(Wl4i)2i

1
=l -b Ub 2 (Xao cl + ao c) -b2

3 rb2Xao al + alaoyao val + lal ao) -WiWO /

-3-1



U.8 1
xucl a= (+b)vcl -uc1/"2ab - (Xaovbl + Yaoubl)

+ (a~xa- py )vao + (PXa+ovYo)Uaol

atcl=(Aa+Ab)Ucl - vcl/T2ab + 2 (Xaoubl - Yaoubl)
I 1[(axaopy )u -(X+ aY )v

2 ao ao ao p ao ao aol

with W0  Wo, 0

al bi =

Second Order2

a 2+ F V2Y gu
T a2 aTa2

8ri a2 T 2g a

rlXb 2  T F vj b2 9b %Ub 2  :A

-F b2 Tb 2  9b~ Vb2

3 u =(XW +XW + Wi a2 aoa2 + alal + a2Wao) )+ ava2 (ua2T2a)
+ !(Xbl ul+bllCW + Yai i +X W)

2 b1C1 blUcl) = (XaY 2+Xla a2Wao)

+ aa2 (ua2/!2a) + 2 aao Pya)uci l~(PXa + uy 0 )vc

r a2 (aoa2 + ala 1 Ya2 Wa aaa2 -(v 2 /T12a)

1v 'T+7a -p v 1(O y)

+ Aua2  (a 2 /r 2 a) +a ao )vl -2ao ao~ )uCl

a rWa2 (Xa2uaa + Xaiuai + Xaoua2 + Ya 2vao + Yalval + Yaova2 )

+ l(aXa - pyao)ub + 1(pX + o )vb IT "2 a ob 2 o ao l[a2 lal

aTuc 2  (cIXao - Pyao)Wbl + 'bvb 2 - [vb2/r2b]
~~[Xaoc2 +Xlu 1 + Yao c2 +Yic

ao c lvcl

'--4-



3 2(OXao I~aao )bi b Abb2 -[b2/12bI

-(ao c2 + al C1 YaoUc2 -YaiUci)

ab 2 - (Gao - ao )ub1 +~ (ao + ctYao)vbl] - b2lb)

a2 2 ao al Xal~ + a2)~ )+ (Ya2vao +Ya1 v 1 +Yaova2)]

T c2 =(Aa +Ab)vc 2 -Uc2/T2ab - 2((Xaovb2 + alvbl)

+ (Y aoUb2 y Y lUb) + (aiXa 0 ~o yda P ao dal

T c~2 =(Aa + Ab)uc2 - v/i I+b] [2ao b2 + alubl)

* - (Y~ao b2 + Yalb) (a - ao)Ual

+ ao(p + ay )v
2 ao ao al

.LA



UNIFORM PLANE SITUATION

2 lasers eab, a,b' Wab

ea - B.C. ea,b, Pa,b ' 0 T 4
.,-_2'.. 41, wa

N"eb ,_ eo 2 W W( 0 ) = (const.) Twa,b a,b

with infinite relaxation time

ae = P (g real constants) (A)

n~ ab g e a, a l

a Pa= e eBQ (B)
;!i azPb= ebWb + *

a P eb b+ eB Q

arQ = (eaPb - Paeb) (C)

" Wa = -2(eaPa + eaPa) + 4(ebPb + P ebEb) (D)

1. * * 1 * *

-TWb = " ;(ebPb + ebPb) + 4(eaPa + Paea)

I. Real Solution

e P Q iO*a,b' a,b'

for steady-state solution assume

Ea,b aa,b sech (KItI ) with tI= T-XI

using (A), (D), we get

ga,b P a,b K1 X1 aa,b sech (KIt I ) tanh (KItI)

W" W(0) + a sech 2 Kjj(D')a,b a,b 1 1 a,Ib
* .',

S-6-
.to .



a".
a..

,P._.a 2  a 2

where b = , a
a, b

ga,b 2b, a

From (C) we assume Q =i

= 1 sech2 ri>1 +F 2

and get

-2r 1 K1 sech 2 Ki 1 , tanh KI 1

_ 1aaab (or -1) sech (KItI) tanh (KI 1 )
2 2 gb ga

r1  (1/4) aaab (1 1 ) (1)
gb a

From (Bi)

ga 1a

a

2;£K a- 1I

I b 0a) 1 a r (3)

1 ab 2 a a 2b1

From (B2) "-

-XlK r - W a a F (4)"'" gb""

2" b_ ' 1 of-

1 K gb 2 b" b "2 a 1

KI AIl a, ab, rI , F2  6 parameters .-.

5 equations = > so one parameter, say K1 is free

re 
'
i -7.
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Note: By combining (3) and (5) get r1 and comparing with (1)
one obtains:

*2 2
+ a (unless g gb-gb a

II. Complex Solution

Assume:

eab aa,b sech Kl 1t exp[ i K

Using A

ga,b Pa,b = aa, b[lK1 sech KIt 1 tanh KI 1

_ i K2X2 sech [KIt 1 ] exp [ iK

Using D, A

b W( 0 )  A, sh 2
a,b a,b 2 a,b s IeI

From (C) one can assume

Q = i[ 1 sech 2 KI I  r2] + r3 tanh KIt I

Consistency conditions (using B and C):

bl- -4r 1 (1
4( gb gb

f of ) = 2F3 K1  (2)ab 1K2 gb gb 3

% (A1 + X2 )KIK 2 = r 3  (3)

-8-
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nrr. wrr - - -. -. 71- - 74 .. -7,77.-w

a 2 bai a

9 (2A K1 ) aa2 + Tb r (5)

a a

ab_ a

( +A2 )K 2KI 1b a _ + (6)

ab (0)-
1 2 2  aa

ab.(2___ 2 a --l b ] F1-r (8)
(2bbK -- 2--[b 2g~

c ~ b a

Note: From (3) and (6), one gets as for the situation of real solutions

(;l+ 2  2  23

[€ -b + a (unless ga = " gb ) (9gb

Here instead we have 9 parameters:

aa' ab' A',K 2 , KI, K2, rl' r2 (3

and 8 equations. We expect to have two free parameters, hence 2

equations must be equivalent.

Indeed from (1) = > "-%

aaabxl 1 1 2 (10)

And combining (5) and (8): ,(using (q)) we get the same equation.

aa

rl- +4 ( uls g)9
gb aa

Indeed (10)(1

-9-



-. ' - -- •

So we can discard either (5) or (8) and hence we have 7 equations

and 9 parameters => 2 free parameters correspond to complex solu-

tion. Namely,

K1 , K2 are free parameters.

If K2 =0 then the solution tends to real solution as before.

. Physically this solution may be explained as two pendulum coupled

to each other. At some point, levels are excited by each other.

By simplifying, one gets:
2 2

4K= a b

4

Ir

Xla aab 1 1

F1  4 gb ga

A2 -:> 3A2  "A1
4

a
F3 = 8 12K1K2  * a

'0b ab

,aa (0)+ -b

a g aa 2 2
a gb

ga ab a )
aaa 2 2

2aa 2aaF2  a (K 2 -K I ) --2 (0)
abg a  ab

a2 2
a b

ga gb

Note that if K2 0 => =0

-10-
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Summary

rleab -ga, ba,b.

aiPa e W eb

a& aTPb ebWZ - a1

a1Q = (eaPb - ebPa)
1W=_ * * 1 "* *

8 ra ~(eaPa + eaPa) + (eb b  ebPb)

TWb  (eP +eP)+ (eP +eP)

Conservation Laws: -

a )ip1 2 + IPb2 + IQ 2  W W W2 0
TatIa 2  'bI a b b

lea 2 4 a(2'a + Wb) 0

le a2
.""aqiebi 12 8.(2Wb  Wa)""

"i b -b T

Consider Real solution

ea, b' a,b' Q i, Wb

From the previous note, the steady propagating solution has the property >.

E2 E2Ea + b
ga gb '

This implies Wa Wb.
So if we apply Wa = Wb W, (or ea a = ebPb) then defining

Se a =4ga e, eb -z4gb e
Pa - gb p Pb - g (consistent)

one can reduce the original equations to

-11-



a n e 4 g gb e

11p1ga'gb.
a P - W

a-4ggb

a = - gagb eP

This is equivalent to a single laser problem.
From the conservation laws:

2 __ 2g W = const.
p2 + gagb.."

Define

-Po sn2 ga+gb W2

W Wo cos -Po o .

a2
= a sin * : Sine-Gordon eq.

Ban

a (ga + gb ) Wo""

Complex case: If one applies Wa = Wb = W

=> i.e. , e P + eP = ebP + ebPb
a a a a b b bb

and then define

ea = 4g a e, eb =g b e•
a b 4b e consistent.

Pa = /ga P  Pb =  a P -.

One reduces the original equations to:

a e = 4g P
n 1 gb g

atP- 1(4La + 4 ) We
a g

. Q = (ga-gb)eP

aW = - 4 4gagb (eP + e P)

'.°12
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.. .1*

" ":ga gb

r 1Since the number of eq. is one more than the number of unknown function,
qi the last equation has to be derived from the first four equations. But this

"situation is not, only steady propagation solution case. O.K. as shown

" :before.

-13
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Particular case lea 2 = eb 2

[J +J ]-V •(J + ) > w= V J

Jai lea 12  Jb/I = lebI 2  Jai)

Ja =-k) (e a VT ea e2 VTe a )

.b - (eb VT eb "eb VTeb)

Be (JaT + OJbT) = VT T

Ti {(Viea) (* + (ve (V.e
'j 2k 2  j a ia J a

+ (Vieb) (Vieb) + (Vie b ) (Vjeb)}

+-L V1 2 e 12 + 2 _3 ylim lea14 14]
4k leb2ij +- - +Ieb

1 .ath superposition of (T..) + (Ti) iff one renormalize yim, the
~o1tarnij a ijb

.

-14
- -•*- .4-



Yim 3y~im

Trace T =~Ib {(V~I-ea)e* (V2,e )e +leaI~ij 2ky b Ta a T a aa

~Trace T =j - Q?

Tim 2 * im

Trace Ti VT - fl (e Q? efe (~
, ---~a ai a * a! {aT(ea

8z Tr ik a 4k3  T V a

+ (Vtea) (V2 e*) - e V (*e)-(VTe *(ea)]
a T a a TT Ta a

+im 2 Ve[eT2 b**

ik 2 T b ( ebVTeb - e b VT e b )]

1 * *
+ V ebV vTeb)+ ( VT e b V( eb

3 eb T b)- T b (VTeb (be))

e V ea-2 e (V[ea)T Ta Tea) }

4ika a (e a* T( T a Tea)a"

+ a {e*V (V2 e )+V e )(V 2 e*)-e V (V2 e*)-(V e )(V e
bT Tb Tb Tb bT Tb Tb Xb

* 4 jim k I ea I (eaVTea-eaVTea)

* 4 jim k eebI (ebVTeb-ebVTeb)]

One can write an analytic expression for the average beam waist as a function of the
2 2a a + 2 clZ + c z"_

aeff =a 0 c_2

with a2 = al(z=O)
* 0

1c1 =Wo- f n dv
0

21 W fdVr{eaVTea eaVTea)+a(ebVTeb eb Teb) } z =0
0

-15-
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c1 fdV[(V2 e )e*+(v 2 e) '-in leI2 Tea a T a a aW 0 2k lb

+ (V2 e+V-*e+jml 4

W0 =fle aI~ dS'
a

-16



----

Theory of moments- , e "

2 Beams '4

'2  ~ y fie I + 21e )
Tea e a a a 2 I ea

"kT e= 2 e 2
2k-T eb + a e b  b fleal + 21ebI leb
a = ± 1 +1 parallel beam (concomitant propagation)

-1 counterwave (antiparallel propagation)

First moment equation:

-i * V2  * e 2 2 2
ea T ea aTZea Ya {leal + 2jebi2}leal

+i * * 22eb 2
}  2

2k a  e a+ e a  ea = aeal + Iea

(e *e * I 2 2 2} ea2
'k+ - leal = y a{Ie a 2 +eJ 21e

• 2 e2}le 2
+ Ya{leal + 21 l-

+ .2.2 =2 2 2V (ea -aeavTea) + le I ay){iea 2 + 2Ibliea12  -

Similarly
*-o2

2k' V e 2eb-* Jeb) + a lel [21e 2 eb2]ie
b T Oz [bIalJ

defining energy currents

e 1 **lea
_aT (eaVTeaeaTea); Ia// abT -1 ** l*

JbT -7_9 (ebVTeb'ebvTeb); Jb// =ebI

with 'aT , 'bT the transverse current and j and b the longitudinal

currents.

"4.-,

V
4..-

-17-
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. 4. . .

Introducing

¥a Yar + Yai

Yb _br + i ¥bi

substituting one gets

a// + VT* "aT = 2¥ar[IeaI2 + 21eb 2  2
5-z a// v T JaT yar lea + 2 e ieal

12 +eb 20 b// + VT " bT = 2Ybr[ 2Iebl 2  Ilebi 2 "

+ 2

2br leaI lebi Ybr lebi+V/+ T JT jr b lIel

ab// + T JaT + JbT' = 2 {ar ea
2e 2ll b eb b 2 2 2

2ar leal2 leb 12 2 ¥br 'la2 lYb 2 + 2 br leb 12 }

For ¥ar = ¥br = 0

The equations reduce to:

Talanov
a

8z [Ja//+ aib// I T'T > 8z w V

2nd moment equation:

L-- c2 =v •T
3z

using aT L (e Ve* *
aT 2i eaVTea eaVTea)

alaT 8ea aea 3e , e
[1/(2ki)]{e a e e aat - )-- VTeaea[VT(- 3 + -z- VTea+ea[VT(- z

Using yar ¥br 0
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2 2
and - ea (i/2k) Ve+ e i [lea I 2lebl2 ]ea

8TaT _ 1 {_i/ 2 k(VTea)(VTe a) -iyai(lea I e a)(VT e a)
3T (2ki)

2* -' * 2

-2(iyai)lebl ea(VTea)-ea( k VT(V2Tea)+iYai leaI VT(Ieal ea)

+iya e V(21e 2e* - (v 2 e *)(V e )iyaile 1 2 *(ea)
a aVT ebi ea) 2k T a T a a a eTa )

2
+iya [ea VT(21eb1 2 ea)]}

3jaT I (V2 * 2

8Z 4k (VTea)(Vea) (VTea Ta aVT(VTea)

eV(V 2 e + ai (e 2 e )(V * 2
w +ear (-T a  f I (aeIi

a-T Ta)) 2 -(ea a Tea)'(Ieal ea)(VTea)

+eV(e12e)e2e +a -I 2 1 *2 * * 2 ai*

a T a a aT( le aI a)) b )(V+eVT(le a e )+e V (le+ {(eb eb)(VTea)
-*2* 2* *2

-(lebi ea)(VTea)+eaVT(IebI ea)+eaVT( l ebl ea)}

1st term - (1/(4k 2 )) VT[ Vr(eaea)]

(1/2k 2)VT[(Vie )(Vje*)+(Vie*)(Vjea)]
ia) a a ja)MI

Yai

2nd term = Ia e 4
2R VT laI

.19,
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3rd term -r -lebl eaVTea)- lebi 2ea*(V e )+Iea 2V leb 2elel 2~a

*2 12 2
'.+ le al VTlebl +ealebl VTea)

Ya -leb2e (ve*- (Ve )-IelI 2e *
k la Ta b e aeb (VTeb)

+ le I e (Ve )+e I eb (V*)+ je 2eb(Ve*

2a 2 *

- -i {2Ieal 2 eb(VTe*)+ 2 lea 2eb(VTeb
k

2 -I 2 12)
k 2Y' a(VT eb

*T a

=VR( Iv e I2 V-(e(ea (V Vj3z a (V) -e ? a aV a)]])
4k 2k

+ Vai 4 2 )ai 12 2+ -2kVTlealI + [TF leaI VTebl I

by analogy

-2 T1b [v f[TlebJ%6i, 2VT[(Vieb)(Veb)+(Vieb)(v eb)IJ
32 4k 2kA1

bi4 'Ybi 12V 2

2b 2~l 4 [2 2e 2e 2

but V74 leal 2leb 12 lea2J lTeb 1+Ieb 2VTlea12
b alTb4

.420-



1 . 2
8z (JaT+J'bT) VT 2Tal + lebI"i1 * *""'

-" VT[(Viea)(Viea)+(Vie a)(Ve a)]

--- VT [ (Vieb)(Veb)+(vleb )(Vjeb) ]

%4

ai eai4 l 'ebi 4

2k 2k TbI I

2 2 2 2 2+ i laP ebi VTjebl +Ybileb VT leal I

NOTE: This can be expressed in form of VT T only by Ya2 = Yb2 =i

Then

z (aT + aJbT) VT T
where.. ..

-hr T (V ea)(Ve )+Ve (ee)(_ 2k' 2 iea(jea)+(V(iea)(Vjea)+(v pb(jeb)+(Vieb)(Veb)}

_e T2 2  2 2 [ .' 4 14 j

4 k 2T{eal2ebl16ij 2k eal +e

a• bea2 1 26ij• '

k a

i Yai = Ybi = 0, Ybi = Yai =im-

3rd moment relation

Y [Trace li1=-vT Q.

1 ¥im
Trace T = (2 ){( ea)ea+(Vea)ea} + lea 4

,f( eb)eb+(V-eb)e b + lea

4¥im 2  12P'+ -- I e al le b

~~-21-i"2
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"..'



1st term

a~ Ta a T a a1  a rmla-i8 {(V ea)ea+( ea)ea k a-

C., 2 k

_im Ie 2 (e. e *-e *V ea)
- VT [eal (ea a T a

:. ".i + iV*e V2e2T
. 4k le vTaT( ea)+(VTea(V ea)

- eaVT(Ta TTea T a

'4

2nd term -

"z [ - {(V 2 e )eb + (V2 eb)e +--k- lebI

¥a 1 4

3z 2k 2T b b TTeb-bITeb )

.
aeb (V2 e [e2e V2 e e ) 7

2]
2k a T3 az T b b T 3z

+: Y____ 2 v e -e~V eb

ik2  bbl T b b b T b

".
2 e*

-i--2 VT [lebi (e bVT eb -e bVT eb)]

+.. E"L [VT{V(e) + (Veb)(qeb)-ebF4qe) }V 72b

'-<

4k T %VT(#%)b

:4-4k 4y. u a [e 12 1e 2 4'yim Ie 12 a 2e le l 12,
-.k -F [la! lb I k eal Tz be b +lb-a- laI

a 2
az lea! 2k- VT (eaVTea-eaVTea)

a 2  j * *
T- 1 = VT (ebVTeb ebVTeb)

C.- 2

* C..
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4 im a 4yim

k Hz[lea l21eb 12]= 2 fleb 2VT(eaVTeaeaVTea )Sk Oz 2ik 2
|

7-, VT*

[ a. oV r •(ebVmeb-ebVmeb)}

i2k 2 VT (??)

if leal 2  eb 12 , it seems to be impossible, so far, to convert the third

term into the desired form derived for one beam by Talanov.

4
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a e(p n t) =P(p,n,c)(1

e(p,n,T) =e(p,o,T) + g I P(p,ri',r)dl' (2)
0

e(p,rj,x) =e(p,occ) -g f~sin[f e(p, n', T')dT']})dn' (3)
0 0

ri
g(p,ri,c) =e(po,t) - g f 5 sin f e(p,o,T')dT' (4)

-. 40 0

=e(p,o,t) -g n[sin f e(p,o,i'l)d-c'] (5)
0

T

(p,rl,r) =e(p,o,r) -g n f e(p,o,tr')dT' (6)
0

e(p,ovc) A eXp[-(T-T) 2  exp[.'p2  (7)

e = f e(p,o,r) =2n (8)

Ao = 24n (9)

e(p,ri,r) = 247t expt-p1 (exp[.(t- I2 g nj feXp[-(T'-TO) ]dTl)(1O)

e(p,n,r) =e(p,o,r) - g f dn'[sin{J~e(p,o,T') - gn'sin fe(p,o,T")dTt')dT'}]
0 0 0

fl T
=e(p,0,1) -g fdrn'[sine(T) cos(gn' fd-t'[sine(-t')]) -

0 0

-cose(T) sin(grn' f d-t'[sine(T')])]=
0

n T

-e(p,o,T) -g sine(T) f drg' cos [grq' f di'l sine(T')]+
0 0

+ g COSO(T) f dn' sin[gn' f di' sine(')1 (12)
0 0

-24-
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0= - gq sine g2!2 P cose (22)

I2
, z'Zo2  2T

eo  24n exp(-p 2 )exp[-(- ])2 1 (22)

0

eo = 24n e[-p 2 f exp[-(-'-ro)2 I di' (23)

0
Ar-

-'.e =24n exp(- f exp[-( -T2] d-r (24).."

,= f sine di' (25)
0

2= f ecose di (27)
0

-~ ' 2= f[-(sine) e + (cose)e] dT' (27)
4P3

T 3 2
4 = f[cose(e-e ) + sine(-382) (28)

0

e _4(1-p 2 )n + g 2 [4(1p2)ecose + 4p nq sine]

2

2 2 3 2
g r) {12cose -Pie sine + p [esine(21 2 +P1 ) +

+ cose(e2  (29)
2(29)

S2 22 2 2
ap el=8p{(2-p2 )eorl - g -- {cosO[(2-p )+p e2]- 8 sine(2-3p2)} +

0 2

+ g2 q3 [cose(-2pe2+2P3) - 2 sine(0 1 +212e) +

2 3+ p (sine(l l e + 3P2e + 3P3 6 - e ) +

+ cose(3 1l
e3 + 3 2e2 - M4 ))]} (30)

-25-



8p elD = - 2peo + 2gnpecose + g2 !2 (-2p32 cos8 + 2p 11esine)

= F(elD " e1 - e1

..tan Fel/elD
1 1

elD= 4e2 2qe sine (49)
e1 4e0 0

8eD = -2p(e2 - qf)/elD (51)8p elD01

f = eo(sine + ecose) (52)

a p f = (-2p)f1  (53)

f = e0[30cos - (1-e2 )sine] (54)

a fl = (-2p)f2  (55)

" f= eo[(78-e3)cose-(1-682)sine] (56)

I 2T el - -- + 02 2e 2r (e2-nf

V2 e = 232e +4p2 1  1 0 (57)
Ti1D 3i4p

elD elD elD

V2 e = 4e, •[-1+2p 2] - e4  p2 +
e elD

2 2e 2  ~ (4f2
--- + , [ -4f-4p2_ 2e f +fl )]_n2[p2 (4f2 (58)

SelD e3 e e
1Di1D 1D 1D

= f( VelD)dn' (59)

= 2 2 2 4 2e = [4e 0(-1+2p )l Ii-[4p e4] 1 2+[4(f-p f1)] 14
*+ [4p2 (2eto)] 15 I[p2 (4f] 7 (60)

e 2  = a+bn (61)

a = e0 (62)

b = -2e sine (63)

40

-26-
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Se I  [32pe2 (1-p2)I1 + 4
2 (-1+2p)]a1

4 2 2 4
-. - [8pe4 (1-2p 1i2 - [4p e 2] +

+ [8p(-2f1+p2f2 )]14 + [4(f-p
2f1 )]apI4 +

+ [16peo(f-2p2f-p2fl)]i5 + [8p 2eof]Ipi5 '..

[8pf(f-2p 2fl)]I7 - ]api7

-28-
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Perturbation

e Strong Beam e" Weak Beam P

Mathematically, this translates

e /e+ =0c(6) ; P /P c()2p+1 2p+1

"+p+/P +  ()
S2p+3 2p+l 13 W 2p/W2(p+l) = '(6),

and P2p+3/P 2p+1 = 0(62)

.' + +
Case A. (In the diffractionless limit (F = 0, = ) %, P10 aWo represent

the S.I.T. limit.)
" + =e+ + +6e+ 2 + 3 +

0 w1  2 3 +-e- = 6o  1 e + 6 e 2  + 6 e 3  + _
• , -_ i  +62e 2  +__

P, ++ + 2 + 622P3 + 63P33 +P= 1 0 +6 1 1  +6 1 2  +6 1 3  +

p1 6 + 62 P12  + 63 P13  +-

_ + P 2 + + 63 P+ +3 P32  3

P + +p 2 + 3+
p5  +6 5 2  +6 5 3  +

%'" P3 =  + 6 2P -  +63P+ +
P3  32 + 33+

"'"' 3P+P3 + 6 +
P + 53

3 -

+ 6W02 +6W 03 +

W2 = + 6W21  + 62 + 63W23 +

W4 = + 2W 42 + 63 W4 3  +

i ..
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Zero order of 6: 0(60) as in S.I.T.

--tif ae+ + + +

10 o 10
a TPIO0 +  PIO /2 = ooeo ""

ie +* + + +
;'8WOO + (Woo -.w 0)/TI 1 " eo PIO eo PIO)

First order of 6: o(a)

a el+ + zel + g " P II

ate, - 8ze= g P11

+ + W + +

T P11 + P11 / 2  o0eo + 1

ft.-- + • +
S 11 = Wo00e1  W2 1 e0

a P3l + P3I/t2 = W21eo

1 +, + +* +
SIWoI + Wol/tl A - (eo P11 + el P10 + c.c.)

1+ +* 1 2 o* e+ +

S" - PI + e P3 1 + e PI e PI O

2nd order of 6: 0(62)

ae+ + ae + g+ +
T 2 z2 1

- ae g P 2
f° .

a ++ A = + +W e. + +W e + WS12 12 / 2  02eo 011 0 oo2 21 1
* *+ +

a T P12 + P12/t2 = Wooe2 + Wole I + W21e 1+ W2 2 e.

a + + P+ /T2  + +We+
-3 P2 3  2 = W22e0  21e1

S. iv.5
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T P52 + P52/ 2 = 42eo

..j

a! p; + P 2/T2 w
T! P32 + P32/ 2 =22e

1 +* + +* + +*+ ,4

STW2 2 = - [(2 P 10 + e1 P1 i +eo P12 ) 1(e P1 + c.c.)

1 r + ++ * +*

e p+ e P 10) + (e+ P32  e 1 + e 1 )TW2 1- 1 21 032 e*1e

W42 = 2(el P31 + e P 2 + el P31)

5,t

5,
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Steady State

3+e+ +

P10 = 00 W e0

W We =- /2[e+ + + +*
-0 o P 0 + e0 o P 0

e rl +*( W E + e(

00o = 20 o 2 00 2  0+ e 2Wo0 e00

2 _1 + 2 + 2]
00 _ .2 00 02 0

=2 _oto WoolI eo 12

00o 1 2 ,e 0
2 +2

Wo W /[1 T 21eo1 I

e +
+ + Wo eo

+ + 00 0B zeo = T 2 1+ 1 2

(i2-1/2 +
with e = and eo real

+ + 2+1 2+d eo[+(e/e 5) ] = [ 2Wooeo]dZ

[(d/e;) + (eo/es I d eo = oodz

n 0 )]2

4p 2 es  ='2 dz)

+ g+ +

I - g PII
Be~

-gP

az

a--
W"

ao.
a.

ii1*.
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" 11 T 2 (Woleo + Wo0e)

Pz T (Wooeo +  eo)
P11 2 W221o

P - PO eT W e31 2 1 -
P~=t(We~+W e+*P

W = " rl/2(el P1O + e21 P1  + c.c.)

-e* P+ +e p+ + e eP
2 1 - 1 1 0  0 31 0 11

w Tl2( e * + +~ e +T + +e+e+ *
1 1( 1 10O0 2 21o00

'..l + +2 +
ST /2(eP 1 + - W 1 I + eP 1

21 1 1 ~ 10 e Po1

1__ 10_ o_ 11_1 1 0211

T T 1 le +I

.4'*44I.1 12 +21 2 .

+4 le4 L -

o 2
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BEST ESTIMATE FOR ONE DIMENSIONAL EQUIVALENT
TO DIFFRACTION LOSS KP.o

-(i/F) V2  K
p

.4.

p
(-i/p ) ( max(l/F)[V2t/tIdp

< K>il= max) 
.. %..1/

<i> (-i/<F Pmax(,/,,)L pLdK> = (-i/(F>Pmax). p dp

0

= (-i/<F>p) pmax (1/pt)d[p9p]

0

= (i/<F>p) [(/v)"-j p0a91-- P=

* max 1 d1/p

":'" P=Pmap=

_ Pmax,![lljpt]

Sfs0
SSince by cylindrical symmetry the on-axis field gradient vanishes, the second term

is zero.

(K> = (i/<F>p) L1/) + p(g) (1 d(p
max oax0 rmax o

-(i/<F>Pm x  (I/1/t2 ma

- (' + (11 p) (p) d (pt)
max ap P= ap

P=max 0

*€*

--. * ., *... .. . . . .
' @.. . " , ' € " , " *, ," ,'" '.', . . ' '" ' ' -' 2 , . .'. ' - . . • "'. "'" - -". " - " .. -



. .1w - .

1 , . (a .
<K> - - ma x ) 1/) 4P=Pmax

= 1z exp [i 0(P)]

one obtains

<K> = (i/<F>p max ) I --.l =P max

i.e. <K> = [A/A] (1/p max <g>) m. ,.:., p P=Pmax

with <g> the average gain across the beam.

°"p

a.,4

S.,
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Fig. 34. Comparison of planar waves
(curve 1) with three-dimensional cal-
culations (curve 2) of the super-
fluorescence for the Cs experimental

(a) data. Note the lack of agreement
between the two theories with respect
to the ringing while much consistency
occurs between diffraction calcula-

T tions and experimental observations.

(b) (c) (d)"a

is needed to reduce the asymmetry and pulse width. But when re-
laxation terms are also included in the analysis and the densities

are adjusted within quoted experimental uncertainties, a rather
good agreement, (see Fig. (34)) is obtained between theory and
experiments for a unity 7. These radial effects explain why the
observed ringing in superfluorescence is less than that predicted
by plane-wave simulations (see Fig. 34). Extensions of the present
simulations to two-way propagation and random fluctuation of the
tipping angle are planned. The agreement with experimental obser-

vations should be improved.* (Recently, Bonifacio et alId also re-
ported the suppression of the ringing by using coupled-mode mean-
field theory. However, their model does not encompass the propa-
gational effects substantiated by both experimental observation and
rigorous three-dimensional Maxwell-Bloch analysis.]

X. FLUID DESCRIPTION

Consider the polar representation of the field

e = A exp ( io) (13)

:-5...
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with A and * real amplitude and phase. Also let the nonlinear

polarization of the RHS of equation (1) be written as
gets = (XR + i xI)e + XNLe, (14)

where XR and X, are real functions of A. Using equation (13), one

gets from equation (1) the transport and the eikonal equations
( = kc/w)

5o A2 + " [V 2 VT,] :- -= xI A2 , (15)

%J c

The transport equation (15) expresses conservation of beam energy
over the transverse plane. When X, = 0, total power is conserved

along the direction of propagation. The eikonal equation (16)
. describes the evolution of the surface of constant phase. It has

the form of the Hamilton-Jacobi equation for the two-dimensional
motion of particles having unit mass and moving under the influence
of a potential 49 given by

W n2 XR* : 2k-00 0°
if kozZ is regarded as time coordinate and koxx, koyy as spatial

coordinates. Furthermore, if one adopts A2 and VT4 as new depen-
dent variables, the equations of motion become similar to the

continuity and momentum transport equations of ordinary hydrody-
namics2s' 2 . By defining

va k0  VT and (17)

p = A2  (18)

and supposing x, = 0, equations (15) and (16) can be written as

+ " vT[-1/2(72 VP)T) o Vo (Vp) (19)

+ VT. (px) 0. (0

4-t ,
"
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These equations are the momentum and continuity transport equations
of a fluid with a pressure

p = (V2 ./4). (21)

It should be emphasized that this pressure depends here solely on
the "fluid density" and not on the "velocity". Equation (19) and
(20) can be rearranged into

"a I ¥=)I
S(ov) +. VT-(pv) I [ 'Tp

0

- (rP)(VrP)] + i p(Vp), (22)

where C is the unit tensor.

XI. EQUATIONS OF HOTION FOR OPTICAL BISTABILITY

In the slowly varying envelope approximation, the dimension-
less field-matter equations* are

-i2 + a* +
e.j~~ +- + 2e-. = 4.g < P exp(ikz)> (23)

T at az

-ie 4.t- - Tz- +$" <P exp(+ikz)> (24)

with +, g as the nonlinear form of the gain experienced by the

forward (e ) and backward (e) traveling waves associated with the
pump. The quantities in the R.H.S. undergo rapid spatial varia-
tions; < ... > spatial average of these quantities with'a period of
half a wavelength

+ (-iM)+ )P + (W(e + e')) (25)+ + %I (W
S -) 1(P+ + P) (e + e) (26)

Equivalently,

+ (-i(& )+t2  = W[e exp(-ikz)+e'exp( ikz)] (27)

*As an aside, the nonlinear interface bistability effect" ,

though potentially important, is not considered.

t-
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+ ll(WJ-W) - (Pe+ exp(ikz) +. Pe *exp(-ikz) c.c.) (28)

e+  (21Jtp/Eie :± (29)

P = (p'/2p), (30)

LA ReIe±exp[i(wt ; kz)]} (31)

and

P = Rei p' exp(iwt)) (32)

The complex field amplitude e, the complex polarization density p
and the energy stored per atom W are functions of the transverse
coordinate

p U r/rp, (33)

the longitudinal coordinate

Z Z aeffz' (34)

and the physical time

= t/cp. (35)

In the standing-wave problem, the two waves are integrated simul-
taneously along the physical time, as contrasted to S.I.T. retarded
time.,s  Otherwise the physical parameters and variables have the
same meaning.

The presence of opposing waves leads to a quasi-standing wave
pattern in the field intensity over a half-wave length. To effec-
tively deal with this numerical difficulty one decouples the mater-
ial variables using Fourier series IS'19 namely,

+

Pexp(-ikz) P4 , .  exp(-i2pkz) exp(+ikz) I P. exp(+i2pk=)p- zp=) (2p+.1)
(36)

O-4

W W2 + I (W2p exp(-i2pkz) + c.c.] (37)

0 2p

•".
%.I
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.ith W a real number. Substituting in the traveling equation of

motion, one obtains

at P1++P+/ e  + + W2e; (38)

1L, 2

%:

a P t Ve + W4e"; (9motion, o e otains e3 + 4PY.'2 W2~4 (8

a P + P+ e e + Weand (40)

P (2p+l) +  (2p+l)/t2  W2p W2( )e d(

P- + 4.W 2 pe + W (41)

a P- + - •* a +  34)
w 3 3  2 W2  -*W4e (42)

a P P A W e + (43)
T (2p+l) Opij 2p al9

aW(- )/ P *- +~ e +*P+ +C.c.) (4

h .W 2 + W2/h-(e P+e + P e+P +e P-e) (45)

'..5

a Z2p +W2p AI - (e P1 4.e P 2p4 1 +.e P 2p+1 + ePI(6

The field propagation and atomic dynamic equation are sub-
jected to the following initial and boundary conditions:

1. INITIAL:

for t> 0

el 0 (47)

(48)

where We is a known function to take into account the pumping
0

effects. For S.I.T. or soliton collision

(pf2+1) = 09 for all p (49)

5~ while for the superfluorescence problem
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2p+1 )  (50)

is defined in terms of an initial tipping angle eR -

2. LONGITUDINAL

For z=O and z=L: e+ and e" are given in terms of a known
incident function

e1o (51)
and

eCL (52)

of z and p.

If enclosing mirrors delineating the cavity are used in the
analysis, one must observe the longitudinal boundary equations

•+ = 1-R eo + 4Te0 at z Z 0 (53)

e" = (-:)Cel+ at z = L (54)

* where RI, R2 , (l-R1 ) and (l-R2) are the respective reflectivity and
transmitting factor associated with each left and right mirror.

3. TRANSVERSE

For all z and r [Be/pao and [3e /ap]p=pmax vanish. The

previously described transverse boundary conditions (Section II)
apply here for each of the fields.

It is noteworthy that the presence of the longitudinal mirrors
will enhance the mutual influence of the two beam. Variations in
polarization and population over wave-length distances are treated
by means of expansions in spatial Fourier series, which are trun-
cated after the third or fifth harmonic. The number of terms
needed is influenced by the relative strength of the two crossing
beams and by the importance of pumping and relaxation processes in
restoring depleted population differences.

XII. CONCEPT OF TWO-WAY CHARACTERISTICS

An easy way to visualize the mutual influence of the two coun-
ter-propagating beams is to imagine their respective information

* carriers in the traveling wave description.

For a light velocity normalized to unity (c/n 1), by intro-

ducing



• * w, -° ,o. .- -• i . . -o- o- , - .

EFFECTS OF PROPAGATION AND TRANSVERSE MOOE COUPLING 535

o(t-r and f (t+z) (56)
. or equivalently

+and

one obtains the new derivative as

an I (a a a (57)

Consequently

a+. (58a)'."t z n 't 3z CSa

The field equation reduces to
.9.

ae =iV -2  8e i'2e+P+ (58b)
T Un- Te

This means that the field is integrated along its directional
characteristic path. With the polarization, having a dynamic func-
tional dependence on the total field the full Bloch equations are
required. Furthermore the two oppositely traveling waves must be
integrated simultaneously.

P = (p,..., l,e,e )  g)

An example of one of the material (Bloch) equations is

aPik e + -e") (60)

By identifying as outlined in Courant and Hilbert [50], the charac-
teristics variable, namely

UCs) and rl= t(s) , (61)

or equivalently

and 1:n0 s .(62)..,~ =o+3 and n no-S 61-'

one obtains

"4.
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PS + and (63)

which simplifies the Bloch equations as follows:

BPk
k k k  (64)

which can be rigorously5 4'55 integrated to give

as) PkCS)exp(ASa/Ys) + f (exp[-(s-s')y]Sk(S')ds'} (65)
a

Illustrating the method of solution (see Fig. (35), arrows
indicate integration paths for reducing differential equations to

finite difference equations. Paths AB are used for Field Equa-
tions, and while Paths CB are used for Material Equations.

T Fig. 35. Illustrates the
two-way characteristic and

* - -'.the basis of the computa-
A tional algorithm.A A .

-AZ sCOT/n

XIII. THE LAW OF FORBIDDEN SIGNALS

The effect of the physical law of forbidden signals on two-
stream flow discretization problems was applied by Moretti to the
integration of Euler equations 2 4 " 3 .

For causality reasons, only directional resolution for spatial
derivatives of each stream (forward and backward field) must be
sought. This is achieved by using one-sided discretization tech-
niques. The spatial derivative of the forward field is discretized
using points lying to the left as all preceding forward waves have
propagated in the same left-right direction; while the backward
field is approximated by points positioned to the right. As a
result, each characteristic (information carrier) is related to its
respective directive history. Thus, violation of the law of for-
bidden signals is prevented.

In any wave propagation problem, the equations describe the
physical fact that any point at a given time is affected by signals

.S .. 1. v./ ;; % ).%. ...-.-- o'o"- " -•,:""", ' , ,¢:";,," ,,. "
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sent to it by other points at previous times. Such signals travel
along lines known as the "characteristics" of the equations. For
example a point such as A in Figure (36) is affected by signals
emanating from B (forward wave) and from C (backward wave), while
point A' will receive signals launched from A and D. Similar wave
trajectories appear in the present problem, but the slopes of the
lines can change in space and time.

Fig. 36 Displays the role of character-
T istics as information carriers.

a C 0 Z
.1

The slopes of the two characteristics carrying necessary
information to define the forward and backward propagating vari-
ables at every point, are of different sign and are numerically
equal to ±c/n. For such a point A, Figure (37), the domain of
dependence is defined by point B and C, the two characteristics
being defined by AC and AB, to a first degree of accuracy. When
discretizing the partial differential equations, point A must be
made dependent on points distributed on a segment which brackets
BC; e.g., on points D, E and F in Figure (38). This condition is
necessary for stability but must be loosely interpreted. Suppose
that one uses a scheme where a point A is made dependent on D, E
and F, indiscriminately (this is what happens in most schemes cur-
rently used, including the HacCormack method). Suppose now, that
the physical domain of dependence of A is the segment BC of Figure

.(38). The information carried to A from F is not only unnecessary;

Fig. 37. Illustrates the
T 0+ A "concept of the law of for-

bidden signal for two-stream
0 9 E C F z with characteristics of dif-

ferent sign.

Fig. 38. Illustrates the
TA. concept of the causality

-1 - for two-stream flow with
characteristics of same j

0 a C £ F Z (identical) sign.

it is also undue. Consequently, the numerical scheme, while not
violating the Courant-Friedrick-Levy54 (CFL) stability rule, would
violate the law of forbidden signals. Physically, it is much
better to use only information from D and E to define A, even if
this implies lowering the nominal degree of accuracy of the scheme.

• 94

" 4
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The sensitivity of results to the numerical domain of depen-
dence as related to the physical domain of dependence explains why
computations using integration schemes, like MacCormack's42, show a
progressive deterioration as the AC line of Figure (38) becomes
parallel to the T--xis (X1.0), even if X, is still negative. The
information from F actually does not reach A; in a coarse mesh,
such information may be quite different from the actual values
(from C) which affect A. On the other hand, since the CFL rules
must be satisfied and F is the nearest point to C on its right, the
weight of such information should be minimized. Moretti's A-
scheme, relying simultaneously on the two field equations provides
such a possibility. Every spatial derivative of the forward field
is approximated by using points lying on the same side of E as C,
and every derivation of the backward-scattered field is approxi-
mated by using points which lie on the same side of E as B. By
doing so, each characteristic relates with information found on the
same side of A from which the characteristic proceeds also such
information is appropriately weighted with factors dependent on the
characteristic's slopes, so the contribution of points located too
far outside the physical domain of dependence is minimized.

A one-level scheme which defines

3e+  + +
T ( eD)/&z (forward wave) (66)= CeE

se"a = (4e - e)/Az (backward wave) (67)

is Gordon's scheme [53], accurate to the first order. To obtain a
scheme with second-order accuracy, Moretti considered two levels,
in a manner very similar to MacCormack's. More points, as in Fig.
(39) must be introduced. At the predictor level following Moret-
ti's schemq one defines

3e + (forward
(2e -3e+eG)/Az wave) (68)

= (e'-e')/az (backward wave) (69)

T I MI IA IN iP

OT Fig. 39. Displays
the computationalG 0 E F ZI-

G 0 E grid for the A-
- * scheme.

hm
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At the corrector level, one defines

(e - e)/AZ (forward wave) (70)

and

-. _-2Z + 3 )/AZ (71)

It is easy to see that, if any. function f is updated as

? = f + ft At (72)

at the predictor level, with the t-derivatives defined as in (23)
and (24) and the z-derivatives defined as in (68) and (69) and as

fv., (f++ftAt)

at the corrector level, with the t-derivatives defined again as in
-A (23) and (24), and the z-derivatives defined as in (70) and (71),

the value of f at 't+At' is obtained with second order accuracy.
The updating rule (72) and (73) is the same as in the HacCormack
scheme.

At the risk of increasing the domain of dependence, but with
the goal of modularizing the algorithm, three- and four-point
estimators were used for each first and second derivative respec-
tively. Moretti's algorithm was also extended to non-uniform mesh
to handle the longitudinal refractive left and right mirrors: the
same one-sided differencing is used for both predictor and correc-
tor steps. Nevertheless, the weights derived, using the theory of
estimation, (presented by Haming"), have improved the order of
accuracy of the spatial derivative estimator at both predictor and
corrector levels. In particular, the derivative estimators are of
second order instead of first order as in Moretti's X-scheme.
Specifically, these weights are derived using a development in
terms as a sum of Lagrangian polynomials at a set of points. As a
result, the overall accuracy of Moretti's predictor/corrector
scheme was increased"6 from second to third order. Either forward
or backward longitudinal derivatives at both predictor and correc-
tor stages are given for the point x1, x2 and x as:

/2x1 x2"x3 Xl-X3  1_x-2)) (74)
**% X 2 (X2

= x2"x3  2x 2 -x-x 3  XX1(75)D2= , n~~72(x2) , - } (5

2 T

71 n27
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D 3"3-2 x3 -x 1  2x3 -x-X 2  (76)
fl 2 ) fl(X3)}wit n.z , */(6

with WZ (x-xi) (77)i~ij=1

Here D1, D2 and D3 represents forward, central and backward differ-

encing estimators for the (first-order longitudinal spatial) deri-
vative.

XIV. TREATMENT OF LONGITUDINAL BOUNDARY

When treating any point within the cavity or at either longi-
tudinal boundary (where a partially reflecting m*rror is situated),
there is no problem. For example, at z = 0, e is determined by
equation (53) and not through previous predictor/corrector formulas
(68-71), as only e is calculated at z = 0 in that predictor/cor-
rector omaer (68-71). However, for a point one increment (6=6z)
from the left mirror, one encounters difficulties calculating the
forward wave. The second needed point, Which is vital to the
formulas, would fall outside the cavity. An identical difficulty
arises from the counterpart backward wave with respect to the right
hand mirror. The field traveling from the right is defined at z =
L by equation (54).

To deal with this situation one has to modify the predictor/
corrector schemes so the increment "62" is used instead of 6. The
loss of that second point reduces the accuracy of the derivative
estimator. To maintain the same order of accuracy near the mirror,
one must compensate for this loss by reducing the mesh size.

XV. NUIEMRICAL PROCEDURE FOR SHORT OPTICAL CAVITY

An alternate procedure to carry out the computation is to
integrate the field along the longitudinal propagational distance.
This approach is particularly attractive for a short cavity. It
was developed with the help of McCall s7 as an attempt to relax the
restrictive relation between the temporal t and spatial meshes z
and r. It is presently being implemented and will be outlined
here.

The reflecting effect of the partially refracting mirror can
be built into the determining equations. Forward and backward
field and polarization terms will appear explicitly as driving

M %; :* . C.. ._% -'% *M ; . . *. . - . .
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sources in each traveling field equation (see Fig. 40). One can
readily contrast the two physical situations of long and short
cavity. To illustrate the methodology the diffraction is neglec-
ted. For no reflection, the fields are described by

+ +~ 2 + ~1 1
e+(t+At,z) = e+(t,z-cAt) + I dz' P (t+At - - , z') (78)

z-cAt c

which applies if z > cAt. Also
z~c~t

e'(t+At,z) e'(t,z+cAt) + f dz' P'(t+At + , z') (79)
z

applies if L-z > c~t. For one reflection, the fields are obtained by

e (t+At,z) = 4Te 0 (t+At - z/c) + f dz' P+(t + At - z'..,z,)

cAt-z .c-,
+ e'W(t'cat-z) + 4 dz' P-(t+At- -c-, z') (80)

0

whenever z < cAt, and if L-z < cat, then one reflection

e'(t+At,z) IT e L(t+,&t -) + re'0 e+(t,2L-z-cAt)
e~t+Atz) = 4~TILt4t C

L Z--'

+ f dz' P'(t+At + , z')
z

+ .X e dz' P+(t+,&t -z-z' , z') (81)
2L-z-cAt c

In all of the above it is assumed that cAt < L (so that two re-
flections cannot occur in time At). To correctly include theinfluence of diffraction, appropriate weighting coefficients must

be used as summarized below:

(1) For no reflection-correct by 1 72(eo-cAt), I 2 (ecrut)

(2) For one reflection-

(a) Term .- e1O only propagates z (cAt > z) so correct only by

,10

,,*

9Z 72
T.4
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(b) Term f dz' P+ goes a distance of an average o )z; correct
0

ST

(c) Term e st,cIt-z) goes a distance of cAt; full correction by

C 12)-z ):.4

C .l;z . -zI

(d) Term 4 dz' P goes + z; correct bya distance of

L L-z V2

(e) Term f-goes *I goes a distance of (L-z); correct by

T

CU+ CT, 72, '
,(f) Term T ei e• oe full distance; correct c T --

L L-

(a) Term f" dz" "P" goes a distance of ;correct by l

~( .-z ) 7 ,2-

(h) Term X" e f dz' P+ goes a distance of CL-z)+cAt on the2T,-z-c~t2-•

d o average; correct a ." w t o.

and similarly for any time correction.

Instead of the usual predictor/ corrector weighting of 1/2 for

each of predicted and corrected values, a more complicated proce-
dure must be used.

XVI. TWO-LASER THREE-LEVEL ATOM

An extension of the SF calculations presented in Section IX
should include such pump dynamics and its depletion on a three-
level system similar to the model suggested by the Bowden et al 9 .
The simulation of the dynamic interactions of two intense, ultra-
short laser pulses propagating simultaneously through a gas of
three-energy level atons was considered". The rigorous diffrac-
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tion and cross-modulation interplay of the two laser beams with the
inertial response of the doubly resonant medium is studied using an
extension of the numerical algorithm developed for SIT analysis.
It is expected that by altering the pump characteristics, one
encodes information in the pulse that evolves in the nonlinear
media resulting in a light by light control. An intermediate study
will be Double Coherent Transients61 ' 6 2 . Another benefit of this
study would be an analysis of Wall's6 3 scheme for optical bistabil-
ity in a coherently-driven three-level atomic system. However,
som material equation modifications must be made as the novel
mechanism relies on the nonlinear absorption resonances associated
with a population trapping, coherent superposition of the ground
sublevel. When one defines dimensionless variables in a parallel
manner to SIT, the physical problems are described by the following
equations: Tpa and zpb are the pulse zp of laser a and laser b

respectively. Q is the quadrupole slowly varying envelope.

-T Tea,b iq ea,b = ga,b Pa,b (82)

with

ga,b = (PaPb) (Cpa/Apb)1/2 (83)

a a a= a a eaCb (84)
I pa : a Wa-'(&a)P a - Pa/12a b Q (

a'Pb = eb Wb'i(MDb) Pb" Pb/!2b e sea Q (85)

8Q -i[( a+&%)]Q + (e. Pb-b Pa) -q/2a b  (86)

1* -

a Wa e P + e Pa) _(Wa+()/TaT eb Pb + eb b (87)a% a- ea Pa 
+ a aa I& bb bP

a b 1 ) " (WbWw)/tlb (ea +a e ea P (88)
X b= " 1(eb Pb + ea a a a

If one uses the identity

wa b = (89)

a further equation (not absolutely necessary) is introduced:

3 ab =+ 1/4(eaPa+eaPa) + (ebPb+eb~b)] " (W ab ab (90)

when a,b and ab are the equilibrium values of W and Wa~b a Wa ~ Wab,

subjected for infinite relaxation times to a conservation of proba-
bility
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a2 2 2  W2 +W2  )) er.(1

Figure (40) illustrates W a$ Wb adWabasafntoofim
for a particular radius in the reshaping region.

9 I

&as is 1 20

Fig. 40. Contrast of the material energy for a double self-induced

transparency calculation.

Numerical Refinements

If the two laser beaus which propagate coacomitantly are se-
verely disparate from each other, the normal stretching techni'que
must be generalized into a double stretching transformationo to
ensure that the nonuniform temporal grids simultaneously match the
two different pulses. No spatial rezoning is as yet designed.

Prescribed Double Stretching

Due to the essential nonlinear nature of the cooperative
effects associated with a coherent light-matter interaction, dif-

! -- +-=, '. .-. ,. . P , +. _.. -.............i ,+ . .. . . ... .. . . ... . .'. . .-.. + .



EFFECTS OF PROPAGATION AND TRANSVERSE MODE COUPLING 545

ferent speeds are associated with pulses of different strengths.
So particular attention most be given to deal effectively with two
concomitant longitudinal speeds (one for each laser). Mathemati-

Scally this is

T = al: + b sin wc

ST

and is shown in Fig. 41. Evenly spaced grid points in T are clear-
ly related to non-uniform variable grid points in the physical time

TFig. 41. Displays the pre-
scribed double
stretching.

0 n/2 n 3n/2 2n

Cos W5! 1 0 -1 0 1

8T/au a +bws a a bw a a +bw

For w~r n, aT/8% is minim=m.

Several noteworthy facts must not be overlooked, i.e., Ci) W5
is related to the frequency of oscillations; and (ii) the steepness
of the slopes mut depend on the concentration points.

The various stretching parameters are given by

an .h. n¥i.4 . vnl spce .- pons . aecer
-c-ly-.----- -~- * ratdono - .fo vaial srdpit n-h hsclt
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a = 1/2 +ImTx I

b (1/2 ws [--... -max in

If Ed increases, w. decreases - a smaller frequency yields to a

larger b, if td decreases, ws increases - a larger frequency yields

to a smaller b parameter.

To ensure monotonicity of the function T in z (so that multi-
valued possibilities are excluded), an important condition which
must never be violated (see Fig. 42), is

S T=  a  (a -bw) > 0 •

Fig. 42. Displays the li-
,o / mitations on the parameter

too choice to the double stretch-T ing transformation.

Adaptive Double Stretching

Following the spirit of adjusted stretching for a single
pulse, described in Section V, the sampling frequency w. can vary
along the direction of propagation n.

Prescribed Triple Stretching

For a correct treatment of the pulses propagating concomi-
tantly while one of the two lasers may have broken up into two
small pulses, successive double stretchings are applied

2
Step 1 uA x + Bx

N!,

.A - ' - .
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2from " 2 x2, t Co A 2 
+ B1 2

S= ' C 2C. Ax3 + Bx3

and x = 0, t 0.

C1  C 2 = C2 - C3  0 C1

one gets, A to "3 2 and B 0 2- 3
. 1 (X3X3) (2X x2x3 ;,.3 2,2 x~x3 x2"x 3

Step 2 Y a t + b sin w s

Cumulative step Y = a(Ax2 + Bx) + b sin w. (Ax2 + Bx)

'r" Yx a(2x A + B) + bw s (2Ax + B) cos (Ax2 + B)

= (2Ax + B) (a + bws cos (Ax2 + B))

The coefficients ate readily found (see Fig. 43).

i 40 Fig. 43. Illustrates a pre-
I. scribed triple stretching.

C0 Cut C'z

XVII. CONCLUDING REMARKS

Most of the features of the numerical model used to study
temporal and transverse reshaping effects of single and multiple
short optical pulses propagating concomitantly in active, non-
linear, resonant media have been presented. The calculations
strive to achieve a rigorous analysis of this nonlinear interaction
with maximum accuracy and minimum computational effort. The appli-
cability of computational methods developed in gas and fluid dy-
namics to the detailed evolution of optical beams in nonlinear
media have been demonstrated.

By introducing adaptive stretching and rezoning transforma-
tions wherever possible, the calculations improved considerably.

5*5,1p.



.4.

SA- F. P. MATTAR

In particular, self-adjusted rezoning and stretching techniques
consisting of repeated applications of the same basic formulae were
reviewed as a convenient device for generating computational grids
for complex nonlinear interactions. The techniques are well-suited
for each programing because the mapping functions and all related
derivatives are defined analytically as much as possible. Enhance-
ment of speed and accuracy was realized by improving the integra-
tion technique/algoritha which was general and simple in its appli-
cation compared with its analogue, the two-dimensional Lagranin
approach" .

This method was applied to a number of SIT situations with and
without homogeneity in the resonant properties of the atomic medi-
um. Note that the theoretical predictions defined with the single
stream SIT code, when applied to absorbing media, were quantita-
tively found6 4 by independent exyerimental observationsas, and
recent independent perturbational6s and computational analysis"7 .
The design of the first of these experiments dealing with sodium
vapor, was based on qualitative ideas, quantitative analysis and
nPmerical results obtained with the code described in this paper.
More recently, King et al also reported" the experimental observa-
tion in iodine atomic vapor of the coherent on-resonance self-
focusing. This is a novel manifestation of the phenomenon as it
deals with a magnetic dipole instead of an electric dipole moment.

Also, the severe beam distortion and on-axis pulse break-up,
when the problem of transverse boundary is rigorously addressed,
was observed in high power lasers used in Laser Fusion experiments.

With the help of Gibbs and HcCall, we have resolved the major

discrepancies between planar calculations (as done by Hopf et al-)
and the Cs experimental observations. The main sources of these
discrepancies 60 were the occurrence of transverse effects in the
experiments and the uncertainty in the tipping angle values.

Optical bistability shares with the previous SIT and SF the
same basic physical features; however, the initial and boundary
conditions are different and complicate the problem. Nevertheless,
the similarities predominate; therefore, a unified numerical des-
cription with some modifications can apply to all these problems.
This new computational approach, based on the concept of absolute
consistency of the numerics with the physics, should be successful.

ADDENDUM

An alternate solution to eliminate rapid oscillations from the
two-made Bloch equation without recourse to harmonic expansion
could be to adopt Moore and Scully71 multiple-scaling perturbation
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expansion. They have applied the techniques of multiple-scaling
perturbation theory, described in hydrodynamics textbooks, to the
free-electron laser problem and the pico-second transient pheno-
ma.
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Abstract

Calculational results and analysis are presented and discussed for the effects of coherent pump dy-
amics, propagation, tranaverse and diffraction effects on superfluorescent (SF) emission from an optically-
pupped three-level system. The full, co-propagational aspects of tne injected pump pulse together with the
S7 which evolves are explicity treated in the calculation. It is shown that the effect of increasing the
injection signal area exhibits a similar effect on the evolved SF delay time as either increasing the gain,

or Fl, (F is the Fresnel number per effective gain). All else being equal, it is demonstrated that altera-
tion of the temporal as well as radial shape of the injected pump pulse has a profound effect upon the shape

I, ~ of SF as well as the sharpness of the rise of the pulse, its delay time, peak intensity and temporal width.
For conditions of sufficiently large gain and large injection pulse area, SF which evolves and the propa-
gating pump pulse eventually occur in the same time frame (overlap). It is shown that under these condi-
tions the SF can be significantly temporally narrower than the pump and of significantly larger peak inten-
sity. Thus, by choosing the shape of the injected pump envelope and/or its area, the SF shape, delay time,
peak intensity and temporal duration can be altered. Thus, deterministic control of the characteristics of
the evolving SF pulse is demonstrated by selecting appropriate characteristics of the injected pulse signal
at a different frequency.

Introduction

Superfluorescence[l] (SF), is the dynamical radiation process which evolves from a collection of atoms
or molecules prepared initially in the fully inverted state, and which subsequently undergoes collective,
spontaneous relaxation[21. Since Dicke's early work[2], much theoretical and experimental effort has been
devoted to this subject[3j.

With the exception of the more'recent work of Bowden and Sung[4], all theoretical treatments have dealt
exclusively with the relaxation process from a prepared state of complete inversion in a two-level manifold
of atomic energy levels, and thus do not consider the dynamical effects of the pumping process. Yet, all
reported experimental work(S-10] has utilized optical pumping on a minimum manifold of three atomic or

molecular energy levels by laser pulse injection into the nonlinear medium, which subsequently superfluo-
reasces.

It was pointed out by Bowden and Sung[41 that for a system otherwise satisfying the conditions for
suporfluorescent emission, unless the characteristic superradiance time(l], 'R' is much greater than the

pump pulse temporal duration, Tp, i.e., I p > T, the process of coherent optical pumping on a three-level

system can have dramatic effects on the SF. This is a condition which has not been realized over the full
range of reported data. Also, Bowden and Sung's analysis was restricted to the uniform plane wave regime;
it cannot account for the inevitable spatial and temporal beam energy redistribution (as in physical
system). Transverse fluency is associated with radial density variations and diffraction coupling, it leads
to commanication among the various parts of the beam.

In this paper, we present calculational results and analysis for the effects of coherent pump dynamics,
* propagation, transverse and diffraction effects on SF emission from an optically-pumped three-level system.

The full, nonlinear, co-propagational aspects of the injected pump pulse, together with the SF which evolves
are explicitly treated in the calculation. Not only do our results relate strongly to previous calculations
and experimental results in SF, but we introduce and demonstrate a new concept in nonlinear light-matter A

* * Jointly supported by the US Army Research Office DAAG29-79-C-0148. the Office of Naval Research

NOO-14-680-C-0174, and Battelle Colombus
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interactions, which we call light control by light. We show how characteristics of the SF can be controlled
by specifying certain characteristics of the injection pulse.

Equations of motion

The model upon which the calculation is based is comprised of a collection of identical three-level 0
%. atoms, each having the energy level scheme shown in Figure 1. The I - 3 transition is induced by a coher-

eant electromagnetic field injection pulse of frequency w nearly tuned to the indicated transition. The
0

properties of this pumping pulse are specified initially in terms of the initial and boundary conditions.
The transition 3 - 2 evolves by spontaneous emission at frequency wo . It is assumed that the energy level

=0spacing is such that C3 >  > > C so that the fields at frequencies w and w can be treated by separate

wave equations. The energy levels 2 .- I are not coupled radiatively due to parity considerations, and
spontaneous relaxation from 3 .- 2 is simulated by the choice of a small, but nonzero initial transverse

4 4
polarization characterized by the parameter lo - 0. Our results do not depend upon nominal deviations of
this parameter. The initial condition is chosen consistent with the particular choice of *,0, with nearly

%' all the population in the ground state, and the initial values of the other atomic variables
chosen consistently[4,11].

We use the electric dipole and rotating wave approximations and couple the atomic dipole moments to
clasical field amplitudes which are determined from Howell's equations. The Hamiltonian which describes
the field-matter interaction for this system[41 comprising N atoms, is,

3 Qi 1(~ N() i~t -k-r.) i(wt - - N
rul Jul rrr 2 32 23 2- j=1 3 1ral Jul-'I.

-i(wt - . i(Wt - S *r)
'R 13 e ,

The first term on the right-hand side of Eq. (1) is the free atomic system Hamiltonian, with atomic
level spacings trJ' r = 1,2,3; jzl,2,...,N. The second term on the right-hand side describes the interac-

tion of the atomic system with the fluorescence field associated with the 3 - 2 transition, whereas the
last term on the right in (l) described the interaction between the athmic system and the coherent pumping
field. The fluorescence field cad the pumping field have amplitudes G(J) and uJ),respectively, in terms .

thof Rabi frequency, at the position of the j atom, rJ. The respective wave vectors of the two fields are k

and ko cnd the carrier frequencies are o and w . It is assumed that the electromagnetic field amplitudes

vary insignificantly over the atomic dimensions and that all of the atom remain fixed during the time frame
of the dynamical evolution of the system.

The atomic variables in (1) are the canonical operators [4] R(j) which obey the Lie algebra defined by
the comtation rules [12-14] kA(n), .R(.

[(m) ( ' k) ) 8 - 88m) 6 6 (2)

i,j, a 1,2,3; m,n =,2"'.N" The Rabi rates, Q(J) and tJ) are given in terms of the electric field

amplitudes E)and I respectively, and the matrix elements of the transition dipole moments, I) and0 32
-4 (j)

P'31 by

.(j) 1. (j)

32 , (3a)

E(j) P (j) L
(j) o 31 (3b)

where we have considered only one linear polarization for the two fields and propagation in the positive z

direction.

" It is convenient to canonically transform (1) to remove the rapid time variations at the carrier fre-

quencies w and w~ and the rapid spacial variations in the wave vectors k and k . We assume that the fieldenvelope ( an d -
1 d J) vary much more slowly than the periods w- and w respectively. In the trans-
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formed representation, we are thus dealing with slowly varying field amplitudes and atomic operators. The
desired transformation U is unitary and is described in ref. 12.

H U H U

The equations of motion for the atomic variables are calculated from the transformed Hamiltonian ac-
cordin& to

Fa _ = [a , u ,j )

This set of equations constitutes the equation of motion for the density operator 40 for the system in the
slow-varying operator representation. By imposing the canonical unitary transformation, we, in fact, trans-
formed to a slow-varying operator representation which is consistent with the slowly-varying enveloped
approximation to be imposed later on in the Maxwell's equations coupled to the hierarchy of nonlinear,
first-order equations, (5).

The following hierarchy of coupled nonlinear equations of motion is obtained for the atomic variables:

i(J) -1 10j) Rcj).- .*(J) .(~ + ,,J1 ( jcRj-(a)
33 2 32 23 2 31 -13 33 3

(J) - - 1 O(J) R(J ) I *(j ) "RJ) - ,R(J) - R]e) (6b)=I2 32 -23 ""1 • 22 22

0 4J ) .(J ( U) R,)) y [R(i) R ))11 2 N 21 ' 13 " 11 "11 1 '6

]i(J) - O6(j) R(j) ., e(j) fnRW . RJ 1 * (J) R(J) - jR(j) (6d)

32 32 2 22 3 3  2 2m 12 32 X

0J)12 - i 6 ( ) RI2  . 1 [Q(J) + W R - (j) (6e)
12 12 2 13 45 321 -1 12 (e

i(j) - Lil(j) RCJ) + n~j) R (j) (reC) . lRW) . RI Wj  (6f)
13 13 2 12 2 -33 -11 Y1  13

In Eqs. (6), we have added phenomenological relaxation y, and dephasing y and taken these to be uniform,

i.e., the same parameters for each transition. Tor the diagonal terms, Rt )
, the equilibrium values are

3 kkkdesignated as Rj() , A.e am for all atom.

Since the equations (6) are linear in the atomic variables RU) they are isomorphic to the set of
kit'

equations of motion for the matrix elements of the density operator 4'. We shall treat the Eqs. (6) from
this point as c-number equations. Further, we 3ssume that all the atoms have identical energy level struc-
ture and also, we drop the atomic labels j, so it is taken implicitly that the atomic and field variables
depend upon the special coordinates as well as the time.

It is convenient to introduce a new set of variables in terms of the old ones. We let

WU R U-t , k > , (7a)

R (U , k > , (7b)

where Ukl , Vkj, and Wk are real variables, and UklL • Ufk, V U VIk,

0 z X + iY , (7c)

10= +o4 iY , (7d)

where X. Y, X° and Y are real variables.

The resulting equations of motion for the real variables (Wi, UkW Vki) are

1X U -V I +l I -U V Y VW-W (8a)
31 2 2 32oy32 o31 - 03 11 W31-W31

.e)

3 2 2 1X U32 - YV3 2  + 21 {XoU31- } V - Y11[32- 32 I (8b)

U32  " 6V 32 " X 32 + 2 [XoU2 1  YoV211 " "1 U32 '(8c)
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-4 4

au 8 YW3  [-X V Y yV 3 U (8d)
32 a 32 32 2 o 21 o 211 Y1 V32

AN + In e)

U31 a 31 2 I [XU+ YV211 " oW31 - I U31

V 31 s "U 31 + 1 X 21 - J211 + ¥o31 - Y1V31 ,(f

21 ' 21 " x31 "v311 " NXU32 " oV321 "v~l '(8

21, "a , -62 2 + 32 311 + 12IoV2 + YoU321 - ,, V21 (8h)

In obtaining Eqs. (8), we have made use of the invarient, tr * = I,

Q) 4( 
)  

(9)
11 22 33

It is noted that I a 0 is satisfied identically in (6a)-(6c) for y¥1 - 0. For yll 0 0, the condition (9)
together with (6s)-(6c) constitutes the statement of conservation of atomic density, i.e., particle number.

-"4 The Eqs. (8) are coupled to Maxwell's equations through the polarizations associated with each transi-
tion field. It is easily determined that the Maxwell's equations in dimensionless form in the slowly-

4., varying envelope approximation and in the retarded time frame can be written in the following form

1 2 - 1 ,UF V { o + a- d { 31 }  (lOs)
p o n 31

-1 2 d(lOb)
5 P Y an X V 3

.', °a v32

In the above equations, we have assumed cylindrical symetry, thus the transverse Laplacian which accounts
for diffraction coupling is:

S (11)7

The first term on the left-hand side in (lOa,b) accounts for transverse communication effects across
the beam with normalized radial coordinate p a r/rp where r is the radial distance and r. is a character-
istic spatial width. In (10) z e where a is the on-axis effective gain,

32~ )
SB 15

,0 0 
(12)

where I | are characteristic times for the system, N is the atomic number density (assumed longitudinally

homogeneous) and n is the index of refraction (assumed identical for each transition wavelength). The
quantity

Sd Q (13)

governs the relative radial population density distribution for active atoms and is taken as either Gaussian
with full width rp or uniform, in which case rp corresponds to pmax = 1. The Gaussian distribution would be
associated with an atomic or molecular beam with propagation along the beam axis For the cases treated

. here, it was found that there is no significant difference in the results for a uniform density distribution
with injection pulse of initial radial width at half maximum, r0 , and a Gaussian radial density variation
with r ° a r . For the latter case, the effective gain 8ef is appropriately adjusted such that both the

p f
w radially integrated lain and the total effective gain, geffL, remain invariant between the two cases, where

L is the length of the medium in the direction of propagation. In obtaining (10-13), we have extendedMatter et. al (14) Theoretical analysis for two-Level SF. Equations (10) are written in the retarded tine,
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t, frame where t = t-nz/c. From this point on, in Eqs. (8) is taken to be = 8/aT. Finally, the first
% factors oan the first terms in (10) are the reciprocals of the "gain length" Fresnel numbers defined by

flr
2

F _ (14)Fps

gef

where
a

pa (15)

It is seen from (10) that for sufficiently large Fresnel number, F, the corrections due to transverse ef-
fects become negligible. Note that F corresponds to a gain to less ratio. The "gain length" Fresnel num-

ber F are related to the usual Fresnel numbers 7a nr/A.L, where L is the length of the medium by

F/7 = golf L . (16)

*. i.e., the total gains of the medium. In the computation, diffraction is also explicity taken into account
by the boundary condition that p = p z corresponds to completely absorbing walls.

I The initial conditions are chosen to establish a small, but nonzero transverse polarization for the
3 - 2 transition with almost the entire population in the ground state. This requires the specification of

-4 -4two small parameters, z - 10 , for the ground state initial population deficit, and 8 - 10 for the tip-
ping single for the initial transverse polarization for the 3 '-' 2 transition. The derivation for the
initial values for the various matrix elements is presented elsewhere (12], and the results are as follows:

,W3 a 2 c - I (17a)

Id 32 i- (17a)
31

-
W Z (17b)

-S Z3  0 (17c)

V32 aCa (ld)

U3 1 m sin p (17e)

V3 1  cos@ (17f)

U2 1  - 2 V3 1  (17g)
. V21 =2 U31 ,(17h)

where m s cos"  (2z-I) and the phase p is arbitrary, and we have chosen the phase *s to be zero.
p

Numerical Results

Calculational methods applied to this model and discussed elsvehere[13,15] were used to compute the
effects on SF pulse evolution for various conditions for the injection signal, thus demonstrating control of
the SY signal by control of the input signal. Some examples follow.

Tn Figure 2 is shown the transverse integrated SF pulse Intensity vs. retarded time t (curve 2) to-
gather with the transverse integrated pump pulse intensity vs. I (curve 1) for a gain and propagation depth
chosen so that the pulses temporally overlap. Under these conditions the two pulses strongly interact with
each other via the nonlinear medium, and the two-photon process (resonant coherent Raman - RCR) which trans-
fer* population directly between levels 2 and 1, makes strong contributions to the mutual pulse develop-
meat['I. The importance of the RCR in SF dynamical evolution in an optically-pumped three-level system was
pointed out for the first time in reference 4. Indeed, in the extreme case, the SF pulse evolution demon-
strated here has greater nonlinearity than SF in a two-level system which has been prepared initially by an
%mpulse excitation. What is remarkable is that this is an example where the SF pulse temporal width t iss
umch Less than the pump width pI i.e., the SF process gets started late terminates early with respect to

the pomp time duration. Pulses of this type have been observed(16] in C02-pumped CH3F.

Figure 3 is a comparizon of the radially integrated SF pulses at equal propagation depth for three
different values for the input pulse radial shape parameter v, where the initial condition for the pump

transition field amplitude Xo(P) is Xo(p) a Xo(0) exp [-(r/rp)V]. Since all other parameters are identical
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for the three curves, this shows that the peak intensity increases with increasing v whereas the temporal
width and delay time decreases. Also, it is clear that the SF pulse shape varies with v. In connection
wit~h each of the SF curves shown, there is less than ten percent overlap with the injected pulse. These
results thus demonstrate the control of the SF shape, delay time, peak intensity and temporal width by
control of the injection pulse radial shape. In Figure 4, we contrast for different v (as in Fig. 3) iso-
metric of the pump and superfluoresance outputs to display the importance of spatial profile (v=1,2,3:
exponential, Gaussian and hyper-Gaussian).

The effect on the SF pulse of variation of the input pulse temporal shape parameter a, is shown in "-.
Figure 5 which compares SF pulses at the same penetration depth as given in Figure 3, for two different

values~ -ofa]eeX0(p. 0 x It is seen that the variation from a Gaussian, oy = 2, to a ...

P .5:-I

super-Gaussian, a = 4, temporal input pump pulse shape causes almst a factor of two increase in the peak SF
intensity writh a significant reduction in temporal width and n discernible shift in the time delay. This
situation is in marked contrast with that shown in Figure 3 for the effect of pump radial shape variation. ""

As in the previous case, there is les n thn p en percent overlap between the SF pulses and the pump pulse.

" w Figure 6 shows the SF pulses sAt equal penetration for various values for the initial temporal width I

of the injected Gaussian n-pulses. All other parameters for the pulse propagation are equal. Again, thereis less than ten percent overlap between the SF pulses shown and the pump pulse. Thus, reducing the initial
rstemporal width of the injection pulse causes a shift of the SF delay time and temporal width to higher

",' values, and a decrease in the SF peak intensity. -#

Fiures 7 and illustrates the Fresnel dependenct p e of we contras for7 represents the radi- :6
ally integrated output SF energy while Figure 8 displays isometrically, versus and p, the SF energy, As
the initial spatial width of the injected Gausian pump increases rp, the associated Frenel number de-'

creases, the delay strengthens, the SF peak intensity reduces and the SF pulse gets more sy me trical. --

- The effect on the SF pulse of the on-axis area of the Gaussian pump pulse is shown in Figure 9 for the
hpsame penetration depth as for Figure 3. It is seen here that the effect of increasing the initial on-axis

.,area of the pump pulse is to decrease the SF pulse temporal width and delay time and to increase the inten-.-

value s eo. Hreh ovelp in this) e c ase Ietwe isee n hat thpules aito from tan Gauin , erc 2,eto.

Figure 10 illustrates the dependence of SF output on the shape (form) of the input pump pulse whether
it is full Gaussian pump, half-front Gausian or reflected-half aussian. The shorter delay and the

stronger SF output are associated with the full Gaussian folloted by the reflected-half Gaussian pump and
Ase (rising) front half Gaussian pump respectively.

In Fig. 11, the effect of varyin N, the atomic density, on the SF build-up is sho. Note that N•

pap
ofnte injeted d auiain ft-pulse All , o The araeesfre pulsoes prpt ion l ar se equ ecl. vAgain ), ...ere

the mere intense is the SF build-up and the shorter becomes the relative delay. Thus, the overlap between
the SF and the pump pulses increases with N. Furthermore, the nonlinear contribution of the two-photon
effects increases signtficantly."

-. ~Conclus ion..,
gWe have shown here eight ways of shaping th e f he sby controlling corresponding properties of the

injection pulse in coherent optical pumping on d three-level system, where propagation, transverse effects
and diffraction are precisely taken into account. e have deonstrted also, in Figure 1, the highly non-

~linear effect of generation of an SF pulse of such narrower temporal width and larger peak Rtabi rate thanthe p pulse under conditions, where ne nsity euceean temporally overlap after suitable propaga-

tihn and pulse reshaping. An additional significant nonlinear to the SF emission in this case is due to the
competing two-photon process with the direct process[]. We have thus demonstrated by numerical simulation,
the nonlinear control of light at one frequency with light of another frequency. a o s h e

uBy changin the material characteristics such is the dipole forent of species othe associated trans-
toting frequency, one finds that the SF pump dynamics are modified b121. The effect of increasing them is

* similar to the effects associated with aui enting N.

a-,

*i The diligent eord processin efforts of sherry trarciw are joyfully acknovleded. T t o a w

. S. anif cio pd pL. A gsato, Phys. ev . u, 10m (1,th); L, ia ( b)i. o

~~2. R. H. Dick@, Phys. Rev. 93, 99 (1954). -

;" ~336 ...e i s g a

Conluson

* Wehav shwn ere igh was o shaingtheSF ulseby ontollng crreponingproprtis o th

injctin pls incohret.oticl umpng n , the-ee sysem wher propagation., trasveseeffct



/70

NI 3. See papers and references contained in Cooperative Effects in Matter and Radiation, edited by
C. M. Bowden, D. W. Howgate and H. R. Robl, (Plenum, New York, 1977).

4. C. M. Bowden and C. C. Sung, Phys. Rev. Al8, 1558 (1978); Phys. Rev. A20, 2033 (1979).

S. N. Skribanowitz, I. P. Herman, J. C. MacGillivray and M. S. Feld, Phys. Rev. Lett. 30, 309 (1973).

6. H. M. Gibbs, Q. H. F. Vrehen and H. H. J. Hickspoors, Phys. Rev. Lett. 39, 547 (1977).

7. Q. H. F. Vrehen, in Cooperative Effects in Hatter and Radiation, edited by C. H. Bowden, D. W. Howgate
%I and H. R. Robl (Plenum, New York, 1977), p. 79.

8. M. Gross, C. Fabre, P. Pillet and S. Haroche, Phys. Rev. Lett. 36, 1035 (1976).

9. A. Flusberg, F. Mossberg and S. R. Hartann, in Cooperative Effects in Matter and Radiation, edited by
C. N. Bowden, D. W. Howgate and H. R. Robl (Plenum, New York, 1977), p. 37.

10. A. T. Rosenberger and T. A. DeTemple, Phys. Rev. A24, 868 (1981).
11. F. T. Hioe and J. H. Eberly, Phys. Rev. Lett. 47, 838 (1981).

12. F. P Nattar and C. M. Bowden in preparation for Topics in Current Physics: Multiple Photon Dissociation
of Polyatomic Molecules ed. C. D Cantrell (Springer Verlag 1982).

13. F. P. Nattar, in Optical Bistability, edited by C. H. Bowden, M. Ciftan and H. R. Robl (Plenum, New
York, 1981), p. 503; in "Proceedings t 10th Simulation and Modeling Conference, Pittsburg, 1978", edited
by W. Vogt ad M. Mickle, Publ. Inst. Soc. Am. (1979), Pittsburgh, PA; and in Appl. Phys. 17, 57 (1978).

14. F. P. Nattar, H. M. Gibbs, S. L. McCall and M. S. Feld, Phys. Rev. Lett. 46, 1123 (1981).

15. F. P. Nattar and N. C. Newstein, in Cooperative Effects in Hattar and Radiation, edited by
C. M. Bowden, D. W. Howgate and H. R. Robl, (Plenum, New York, 1977), p. 139.

16. T. A. DeTemple, private comunication.

FIGURE CAPTIONS

Figure 1. Model three-level atomic system and electromagnetic field tunings under consideration. For
the results reported here, the injected pulse is tuned to the 1 '- 3 transition.

Figure 2. Radially integrated intensity profiles for the SF and injected pulse at Z = 5.3 cm penetra-
tion depth. The injected pulse is initially Gaussian in r and x with widths r0 = 0.24 cm and

4p = 4 nsec, respectively, and initial on-axis area 8 = n. Further, (&3-ci)/(f 3 -c2 ) = 126.6;
-1 -1

-4 g I7cm ;g 5  641.7 cm ; = 8400; Fs = 2505; T, = 80 nsec; T2 = 70 nsec, where T1 and

T 2 are taken to be the same for each transition.

Figure 3. Radially integrated intensity profiles of SF pulses at a propagation depth Z = 5.3 ca for
three different values for the input radial shape parameter V. The injected pulse is ini-
tially Gaussian in T, and has radial and temporal widths as for Figure 2 with initial on-axis

area 6 = 2t. In this case, gp = 14.2 =-I ; gs = 758.3 cm; Fs = 2960; Fp = 7017, with all

other parameters the same as for Figure 2. Here, curve 1, v = 2; curve 2, v = 3; curve 3,
v a 4, (see text).

Figure 4. Isometric SF intensity (T versus p) at a propagation depth Z = 5.3 cm for three different
values for use input radial shape parameter V. This figure complements Figure 3.

Figure 5. Radially integrated intensity profiles of SF pulses at a propagation dept Z = 5.3 cm for two
different values for the input pulse temporal shape parameter a. The injected pulse is
initially Gaussian in r, and has radial and temporal widths as for Figure 2 with initial

on-axis area 0 = 3n. In this case, gs = 641.7 cm1 ; Fs a 2505 and all other parameters are

the same as for Figure 3. Here curve 1, Q = 2; curve 2, a = 4 (see text).

Figure 6. Radially integrated intensity profiles of SF pulses for five different values for the tempo-
ral width, Tp of the injected signal: curve 1, Tp = 4 osec; curve 2, tp = 3.3 nsec; curve 3,

tp a 2.9 nsec; curve 4, Tp : 2.5 nsec; curve 5, Tp 2.2 nsec.

Figure 7. Radially integrated intensity profile of SF pulses at a propagation depth Z = 5.3 cm for five
.different values of the spatial width r of the injected pump (thus of the associated Fresnel

number): curve 1, 7 0.69; curve 2, 7 0.40;curve 3, = 0.24; curve 4, - a 0.17 and
curve 5, 72 0.10.
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figure 8. Contrast of SF (top line) and Pump (botton line) Energy isometric versus t and p at a propa-
gation depth Z = 5.3 cm for different values of the Pump Fresnel number (associated with the
initial spatial width of the injected signal): curve 1, 7 = 4.0; cueve 2, 7 = 2.26;
curve 3, 7 =8 .0; curve 4, 7= 0.69; curve 5, 7= 0.40; curve 6, 70 0.27 and curve 7,
7s 0. 10.

Figure 9. Rdially integrated intensity profiles of SF pulses for three different values for the ini-

tial on-axis injection pulse area 8 ; curve 1, Op = n; curve 2, 9p X 2n; curve 3, 8 = 3n.

All other parameters are the same as for Figure 2, except for ga = 291.7 €m and
S1138.7.

Figure 10. Radially integrated intensity profile of SF pulses for three different form of the injected
pump: curve 1, front half Gaussian form; curve 2, full Gaussian and curve 3, reflected half
Gaussian.

Figure 11. Radially Litegrated intensity profile of SF pulses for three different atomic density N.
]Prom cu a to curve d, the densicy ratios are: b/a - 1.4, c/a - 1.8. d/A , 2.2.
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A PRODUCTION SYSTEM FOR THE MANAGEMENT OF A
RESULTS FUNCTIONS B AK D A SPECIAL APPLICATION:

THE LASER PROJECT

M. Cormier, Y. Claude, P. Cadiaux
Dept. d'Infor tique et Recherche operationnelle

Universita do Montreal, Montreal, Canada
St., "1 "&.

F.P. NATTAR*
Dept. of Mechanical and Aerospace Engineering

Polytechnic Institute of New York, Brooklyn, New York 11201, U.S.A.
and

Spectroscopy Laboratory
Massachusetts Institute of Technology

Cambridge, Mass. 02139, U.S.A.

ABSTRACT

This documant presents the system developed to support the numerical laser
modeling project at the Universite de Montreal in conjunction witht he Polytechnic
Institute of New York. This tool represents a mechanism for practical parametric
simulation studies of real-life experiments in quantum Electronics. The goal of
this system is to offer a reliable, adaptable and easy tool to the production and
study of laser simulations, a study mainly done through drawings and comparisons
of functions. Organized around SILEES and DATSL type files, this system en-
compasses software packages which control file access, application programs and
the very laser programs. The SIMES files are self-descriptive and can store
in the same direct access file all the information relative to a simulation.
The S1MRES package is used to generate a SIMRES file while the XTRACT package
permits the reading of the information stored on a SIMRES file. The DATSL4 files
regroup on one file, permanently located on disk, a sumary of the SES files
(because of their size these must be filed away on a magnetic type). The DATSLM
package permits the reading and the writing procedures of the DATSIX files. This
document also presents three of the principal application programs: the DEFPARMI
program which helps the user to construct parameter games for the simulation pro-
grams, the DESRES program which plots the simulation results, and the SYNTH
program which makes the comparisons. Finally, the document presents the different it
laser programs.

* Jointly supported by F.P.Mat:ar, the U.S. Army Research Office, the U.S. Office

of Naval Research, the U.S. Science Foundation Research Corporation, Battelle
Colombus Lab. and the Canadian Defense Research Establishment at Valcartier.
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M-he laser umerical mesling project began over three years ago at the Universi-y of

Montreal. A first production system, which ,ermi:ted generation of laser simulations and
graphic representstion of the results was then set up.

This first system was based on a fixed structure of the result files, and the programs
using this structure were conseauentlF not very flexible.

Eventually, new needs appeared (catalogs and coaarisons) and the.r implementation
made the system more complex and less efficient as these new possibilities could not always
be adequately integrated. vinally, new models were introduced to the system for which the
fixed format was not adequate.

A second system, more flexible and more oowerful, was undertaken in May 1981. The
object of :his document is to present this new system. It consists, on the one hand, of
a nucleus, made of general packages, which nermits the creation and manioulation of result
files consisting of functions of arbitrary dimensionality; and on the other, of a set of
irograms adapted to precise tasks (graphic renrensentation of the results, comparisons).

The order of the sections goes from the general to the particular.

Section two presents the objectives which oriented the design and i-plesen:ation of
the system.

Section three gives a comprehensive view of the system.

Section four presents the different packages forming the nucleus.

Section five presents the programs which generate the various products (drawings,
catalogs) of the laser modeling project.

The conclusion returns to the objectives presented In section two and discusses to what
extent they have been attained.
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'he design of the dif.ferent packages composing the production system for the laser
numerical modeling project has .en elaborated from the following goals:

- modularity

- flexibility
- reliability
% efMIciency
- ras~orzabili ty

adequate docuaentati~on

.il MODUUAR!Tv

Hodujarity implies that a job Is divided into tasks and that execution of a given task
is confined within a set of routines.

By proceeding, such a task is isolated from the rest of the program. -he use of

packages is modular since they are indenendent iron the programs and can therefore be used
-n various ways in various programs.

"... FLEM&3ILMT

Flexibility is the quality of a software which not only answers a precise need but
also adapts to a range of similar problems.

SSoftware products must therefore be given a maximum of generality and .lexibility in
view of current and future needs. Ideally, a software should handle the general case.

But in reality, it is often neither possible nor desirable; and restrictions are
necessary.

In such cases, flexibility is then measured by the facilicy with which the sof-.are

can be modified in order to bass its imia:stions or restrict their inpa=:.

Z.3 R L:AJIL:TY

Reliability combines two major aspects.

The first aspect is that a software must give zhe :ontrol back tz the opera ing system
only if it wishes to do so. This means that a software must prevent conditions (such as
memory overflow) where the aperating svste*m would otherwise .Force it to stop.

.he second aspect is :hat when a routine or a program does return results, :hese mus:
be correct; othe.-tse no results are produced and an error message is returned.

When designing a software, the linited and often costly resources given by an operating

system, often shared by many users, must be taken into account.

dsTechniques which uinii:e factors such as conputation tiMe, memory requirements and

disk acess ire thus essential. Moreover, reduced use of the resources may have a ;osi:ive
impact on the turnaround time, and :.hen again, these optinaisations will directy. benefit
the user.

1 .S MN. CTA3 IL :
1: is often difficult to produce .erfec:yl transportable software products. Neverthe-

less, techniques can be used to increase sof.tware transportability. Thus, machine dependent
and installation dependent features mus: be banned. in some cases, it is i.mossibie to do
so (such as in :/0 routines) and critical actIons must be lsolated In routines which tan
easily be mod f ed to adapt to other environments.

:. ADEQUA7! :OCtV4TA7!0M

1 hree types of documentation are necessary :o describe a liven svs:a adequately:

Coments within :he source code are necessar-! to maintain and modify the sof:'ware.

A separate technical -anual conoleents "he Internal doc-unentatIcn with a 'niher level
description iving :e overall esign philosophy and indicating the ;iobal j:r1.'-cure and
in:erdependencies tetween the various irocedures or programs.

Finally, a user's gA'de s needed to indicate :lsarly how :he scft-4are "s to be -se.

IF.
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It: - A COMPRZESVISt! 7"' OF THE SYSTE
prgrm adpakge wte n OTL. I. Th he ao ak - '

The system supuorting the laser modeling projec: has been developped on a pair of CDC
CY39R 173 computers at the Centre do CaLcul of the Universitd do ,ontrial. It consists ofprograms and packages written in FORTRAN. 17,. The th ree .major tasks accomplished by the
system are:

-fenoration of simulation results,
sdrawings of the results of an individual simulation,

- comparisons of results between simulations.

3.1 GLM.ATON OF RESULTS

The study of lasers is done with programs simulating the spacial and temporal evolution
of a laser impulse, in conformity with a given numerical model. Initially, there was only
one program which was using a s!agle laser cylindrical model. Eventually, with developments
in the Physics theory, the initial model was improved (it now takes into account Doopler
effects, oscillatory phenomena, ... ) and new models wore developped (2-laser model, Cartesian
model). There are now many laser simulation programs, each be*ig the starting point of a
data-base of results associated with the model.

Each simulation is controlled by a set of oarameters defining the material and the field
through which the laser i2pulse propagates. These parameters are given to the laser programs
as FORTRAN X.'LISTs. For each model, simulations are identified through a unique number.

* .. This number s-included in the NAMELISTs as a special parameter. The results of a simulation
are written on SIMP-3S type files (Siulation RESults). Each file is identified through a root
to which a suffix is added; the root corresponds to the identifier of the program which pro-
duoed the simulation, and the suffix is the simulation number.

SII4ES files contain general information (name of the originating program, version number
of the program, creation late of the file, ...), the list of the simulation parameters, and
the results of the simulation. The way resultz of a simulation are handled can be summarized
in the following manner:

- The programs evaluate functions of varving dinensionality and the parameters of thesimulation determine at what points these func-.ons must be evaluated.

- Values of the functions are kept in SIMRES files for a given sample of evaluation points.

As can be seen, all the information relative to a simulation is kept on a single entity,
i.e. the SLRS file. In this basic scheme CAMELISTs, simulation programs, SIMES files),
DATSIX type files and the program DEFPAJ14 were added. The program DEFPA R, (OlFinition PARa-
Meters) is used to assist the user in writing .AH!LISTs. It is an interactive program which
allows the user to describe a simulation of a family of simulations by using a compact syntax,
and in return produces the corresponding NAMLISTs. Although this program may not be essential,
its advantage is to relieve the user of the chore of writing often repetitive .AELISTs.

It also avoids trivial errors such as syntax errors in WrIAELISTs and errors in parameter
lames.

,he emergence of DATSVI files is linked to a context of intense production. Moreover, tobe eff cient t a production level, it is necessary that any information concerning any given

produced s:mulat ion be available. SI.RES files beng too large and too numerous to be all kept
on disk, a mechanism has been laid to transfer data between disk and taue. This archival sys-
tem is essential, but it considerably slows the access to information. To be efficient, -de
must then compromise and keep on disk some high priority informations concerning all produced
simulations.

The informations art gathered in a data base consisting of DATSIH type files (.A a SIul-
ation). DATSIM files contain, for every simulation produced by the orogram:

- general informations, identical to those on SZR-S .iles,
- values of the simulation parameters,
- evaluation points and values of the functions used in comparisons.

,he program AJJTS (NIse-A-Jour-uodate, DaTSim) reads use.ful informations on a SE1RPLS fie
and writes them on the SINRES file. It -s r.oteworthy that the Information contained in the
ZATSIM file is used by the program DEUPAX t to get :he numbers to be assigned to new simulations.

The configuration of the sys:em, as regards to the prcduc:ion of simulations is ;iven a:
fi ure 3.1.

The suffixes I., :CFS, :2S, 1 S refer to he different laser acdels (these 'ill be
explained in Section 3).

-...
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Co2nsiSer mode! IC75 C1-laser Crlindric Frequency Statistics nodel). The program DEFPAXM
takes th.e speci-ica:1ons from the user, validat:es :hen and writes on the file SXICPS (Si:mul-
ations to be eXecuted) the data needed to produce the simulations requested. Then, the proTam

". LRlFS (Lase ) reaeds the appropriate date on the lile 5XIC73, generates the simulation and
produces a SM!RES file whose identifier is UtIC (no) ((no): simulation number).

Finally, the file LRICPS (no) gives :he program K'&JTS the information needed to regst:er
the simulation on the jile OTIMCS aTsi.) wh~ch contains a suary of the simulations carr ied
out with the model LCS.

3.2 DRAV?4GS OF A SMXLATICN

The study of the simulation results requires graphic support in order to visuali:e the
profiles of the !unctions evaluated by the simulation programs. The program DESRES (dessin-
drawing, siares) has been designed to offer such assistance. This program can be used either
in batch or interac:ive made.

Drawings needed are specified by using a syntax whose structure is similar to that of a
progra and allows imner loons on simulations, functions, selection criteria, etc. The user
can thus indicate in a short way what drawings he wishes to have.

The coinands given by the user are analysed by the program DESES, which breaks them up
in sing!e units, using :he package (TRACT. The SIMMRS files then Sive all the informa:ion
needed to identify and produce the drawings. There are jour types oi drawings available:

- -dieneional representaton of a function,
- 2-dimensional representation of a iunction,

- :-dimensional projection of a 3-d representation.

The 3-0 projec:ons and the level curves are performed by the program TRASURF (CA-Vt
sept /74).

Figure 3.Z presents the portion of the system which carries out the production ai
-~ drawings.

'a 3.3 C0MPARZ SONS OF USULTS 3ETnt!SN SrMU.ATI0NS

The program SYNTH (SYMPHsis) has been designed to allow comparisons of results between
simulations. A comparison is done by superposing on one drawing :-dimensional representations
of either functions coming frcm different simulations or fu.nctons ior which each point comes
fron a different simulation. The program SYMTH is a powerful :ool; it can be used in both
interactive and batch node and its scoe includes the three following applications:

- Comparison inside one simulation.

- Comparisons between simulations of a sane model. bringing out the role of certain
parameters in ' or more laser models, and the role each laser plays.

- Comparisons between the different models to demonstrate their impact. The user speci-
fits the work to be done either by defining the objects to be compared and the comparison
criteria or by indicating where to search for the objects to be compared and how to orzani:e
the comparison. In :his last case, part of tht search procedure needed ior the definition
of the comparison is done by tlre SYWT., program.

A!ter validating and ac:epting the reeuest, :he SYNTh progran iriduces the necessary
headings identifyIng the comparison rby isolating the fixed parameters from the variable ones)
then effects the dramings corresponding to the comparison.

The running of a comparison requires all the .nformation needed at the same time on one
disk. It is at this level that the DA7SIM iiles are useful as viev give acc:ss to :e para-
=Oter list of aI :he simulations already priduced and to certain functions often used in :he
comparisons. Uevertheless, the data on the DATS1N( files are not always suffi-ione, the user
:herefore 2ust revert to the archival procedures of the needed SMR.S files.

This structure is presented in fIure 3.3.

a.
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.p. The packages are the lover level of the system. 3eside answering a particular ipplica-
tion, their role is to salve a problem in a general way. Each package is made 4v of several
procedures accomplishing a precise task. The packages presented here are the following:

- S ZiMS : generation of the SZIMES files;

- XI7AXT : operation of the SIMUS files;

' - DATSIN : generation and oneration of the DATS1,1 files.

4.1 TM! SIMRS PACKAGE

The SIMS package aims, on the one hand, to keep on one single file all the information
relative to a simulation and on the other, to Drovide self-descri; tive files, or files that
carry the necessary information to describe their organization. By proceding this way, the
integrity of the information is insured (all data relating to one simulation is concentrated
in one file) and the system is given a greater flexibility when faced with changes (the orga-
ni:ation of the file varies, the key is in its description).

4.1.1 DESIGN OF TH! RESULTS FILES

The different simulation models describe the evolution of a laser pulse in a space of n
dimensions. The value of n, the number of dimensions, depends on the model. To each dimen-
sion corresponds an axis identified by a name and by units. The simulat on programs results
are func::ions defined on the reals:

f Z td i

where I a ,Z,...,M CM a number of functions)

a < di I H (N 2 number of dimensions of the simulation space).

For instance, in the 1CFS model involving a 4 dimension space defined by the STASTIC,
ETA, RHO and TAU axes, the 0 POWER function depends on the STATISTIC, ETA and TAU axes
(N a 4 and dO pPOW 3) .

The functions assessed by the simulation programs correspond co continuous phenomena.
.ut the fact of using a computer makes it important to make them discrete. Thus, the points
at which a function has to be assessed is determined by associating them to a sampling grid.
When only one sampling grid Ls used for all the functions, it can be said that this grid
constitutes the discrete space in which the simulation evolves.

- It would be very costly to keep, for each value of a function, the value of its points
of assessments. it is thus of prime importance to find a mare comoact method to describe the
sampling grids.

The simplest sampling grid is the linear orthogonal grid which can be described by giving
for each of the axes that make up that grid, a starting point, an increment and the mumber of
points on the axis. Figure 4.1 shows such a grid.

However, the linear orthogonal rid offers little flexibility. Thus, in. order to follow
more adequately the phenomenon under study, there would be a need for a grid where the dis-
tance between the points, instead of being uniform, is smaller in certain areas than in others.
This will define a tiner %rid where the phenomenon is more interesting. Such a irid is said
to be "nonlinear orthogonal" and can be described by keeping for each of the axis the value
of the chosen point: see figure 4.2.

!%reover, there may be a need for a grid even more adapted to the phenomenon under study,
for instance for a grid without the constraints of orthogonality. In this case, tle coordi-
mate of the grid associated to an axis depends on the Yalue on that axis and possibly on the
values on other axes. A grid in CRN can thus be-described by X sampling functions fez, .e .....
fen each of these functions depending of In axis or on several axes for its assessment. 'hat
is stored to describe the grid is then the values of the functions. Thus, in fizure 4.3,
which illustrates a nonlinear ortholonal grid, the sampling grid fev, depending only on the Y
axis, is cimpletely described by a . points vector and the function -ex , depencn .n axes
x and y, is described by a matrix of 7x7 points.

This last nethod Is the most advantageous and :hus, it Is the one most used here.
In fact. this method permits :he descript on of grids as general as possible whiie avoiding
the redundancy of the information at the level of :he values of the points on the axes. =or
this method, zhe use ol space Is proportional to the "o.pexity'" of' the sampling functicns.

o..
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.he definition of a sampling ;rid often requires :hat the points be sufficiently close
together and sufficiently num*eous to assure the s:ability of the nu.erical technioues used.
Thus, it is possible to store ore information than is required to visual:e the phenomena.
Even more, it is possible that the results files nay not be kept on the same disk unit:
for instance, the comlete Cartesian laser model assures four runc:ions for more than a
billion points (7 poi~ns for the SATISTIC axis x 300 for the STA axis % 95 for the X axis
x 13 for the Y axis x 54 for the TAU axis) which is far beyond the space capacity of a disk.

t: is thus essential to reduce the volume of data to be ouc on file. This is done by
introducing a selection mechanism which chooses those points of a sampling function for
which the data is effectively being stored. This selection is done by specifying the number
of the starting point and an increment in number of points. This sim.le way of proceding,
together with an as precise a grid as is required Iives enough flexibility to make a perti-
nent choice of data for storage.

4.1.- USAG! OF THE STIMES PAC.'UGE

-. e procedures of the SIMES package create the SIM.P files (SaM for simulation and
TMP for temporary) which will later be converted to SL'RE files. These procedures are:

- SflE3 : initiali:ation of the package;

- SL'XE : definition of the axes;

* - SIM!ECH : definition of the sampling functions;

-. -SIMIPC : defini:on of the funcions;

- SIMSEL : definition of the selectors;

- STMVAL : writing of the values;

- SIMAVC : positioning of the selectors;

- SMlFIN : end of processing.

Figure 4.4 is a diagram showing the sequence of the package procedure calls and the uses of
the special parameters, tha: is: those which identify the axes, the sampling functions, the
results functions and those which build the dependencies between the sampling functions and
the axes, between :he results functions and the sampling functions. All this is explained
=re fully in the folloving paragrauhs.

The SPlCE3 procedure initiali:es the writing process of a Sfl4TNP file and records the
identification and :he 2ain characteristics of the simulation. The parameters of the proce-
dure are the following:

- ULSIM : unit. number of "/S associated to the SI MMP file;

- ULPNT: unit number of S/S associated to the print file;

- IORI : name of the program creating the SIMT{.-M file;

- r : program version;

- NOSIN : simulation number;

- N3AX! : axes number;

- ISECH : number of the sampling functions;

- "FCT : number of results -unctions.

Figure 4.5 shows an example of a program when 3 functions in a 2 dimension SPace is assessed.
For this example, :he call corresionding to S:fDiE3 would be t.he .ollowing:

CALL SIT"DEB (1,6, 'SIML' , '1.0', 1, Z,., 5)

The S-*&XAZ procedure is used to declare each of :he axes defining :he simulation rpace.
The order in -which the axes are declared deteriines the order in which :he s:YVAL croce-ure
will receive the -?alues of. the functions. The trocedure receives in oarimeter the 5:i:win;
information:

- : the axis idenrtifier;

'" "
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- AX: the number Of points of the axis;

- UNITAX: the .KSA Units used for the graduation oi the axis n-eters, seconds, ... );

- EICPUT: thm exponent affecting the units, for instance: i. UXITAX 'seconds' and
!XPJNT 8 -6, we have microseconds;

- PAC=NT: the msltiplyingfac:or affecting the units.

The received information is recorded in the SfrlMTP files. In exchange, the procedure ini-
tializes the 4UKflM parameter (number of the axis) which identifies the axis in the SIMRS
sAd DEPAX! (axis dependency) package which will mark the dependency of a sampling function
with regards to an axis. It is important to note here that the value given to the DEPAXE
parameter is in the power of two, thus the dependencies can be combined by addition. For
example, the calls for SMMAX1 will be the following:

SINAXI C'', 7, '"4MRS', -Z, 1.0, .NIX,., 32PAXX)

SNAI ('y, , '-ITRS', -Z, 1.0, 2NfAXY, DEPA'()

The SD CH declares to the SINPES package the sampling function. The procedure i 4ees
in parameter:

- WFEC4 : the identifier of the sampling function;

,'- V MAI : the number of the axis twhich the function applies;

- DEPAXS : dependency in term of the axes of the sampling function, DEPAXS a DEPAX!
ke{i} k

where k corresponds to the axes of which depends the function and (i) is the
body of available dependencies for the axes.

In exchange, the procedure initializeos the .V4FEC parameter (number of the sampling function)
which identifies the sampling function when recording its values and the DEPFEC parameter
(dependency of the samplinq function) which will be used to mark the dependency of a results
function as to a sampling function. in the oxample, the calls to S114CH would be:

S NIC ('XPC', MUAXX, DEPAXX v DEPAXY, VUNFCX, DE.FCX)

SINMCH ('YVC', NUMAX, DEPAXY, NUW4CY, DEPFCY)

The SLMICT procedure defines a results function (as opposed to a samoling function). The
procedure receives in parameter the identifier of the function (IDFCT) and its dependency in

*er of sampling functions (sum of the value type DIPFFC fedback by SIMICH). The .U7MCT pa-
ramter returns the number of the function: it is the number that must be used in the calls "4
to SIWAL to identify the values of a function. Thus, in the example used here, the three
functions would be defined as follows:

S INCT ('UI DE0PFCX 0 DEPFCY, MUNFUN)

SU4PC? (17%='C, IDUpFCY, N4WPT)

s C (,P_,., oDppc, mn )

The procedure SfLMSIL changes the value of lack of selectors of an axis for one or several
functions. By their absence, all the noints of an axis are selected. The iarameters of the

-4 SNSL rocedure are the following (there is no exit parameters):

- TABPCT : vector containing the numbers of the functions; .

- DIMA : give the number of elements in TABFCT;

- NUXE : number of the axis for which the selectors ire to be changed;,

*~., - DEBISL : number of the first selected point;

- :NCSIL : increment for :he selected points.

It must be noted that changing the selec:ors of an axis affects only those functions whose
A. numbers have been received by SINSEL. Thus, in our example, the-f llowing call:

i
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iepls that the values o4 function -NEI wi* be kent only for I of 2 7oints of. the Y axis,
but :his does not touch :he fuAX unction which aliso depends on the Y axis.

T- he S:PAR procedure allows the addition to the SWTMIP file oi the simulation parameters;
ii that way, the data ieed to identify the simulation always comes with the results. The
;rocedure receives :he following information:

-": ;aramter identifler;

TYPE : complete code giving the tpe of the parameter (0 for cozulete, 1 for real, )

VALUE : list of values of the parameter (vectorial parameters are allowed);

E L-4 : number of elements in VALUE array.

Thus, in our example, there will be the two following calls:

Sr4PAR ('PHr', 1, 1.0.'3, 1)

SUMPAR ('THETA', 1, 4S.0, 1)

The SIWAL procedure writes the values of the sampling functions or results functions.
Th e SDIS package awaits the values of the functions in an order which is induced by the

axes declaration, the last declared axis varies first. As there is no order among the fu'c-
tions, and as each function can evolve at its own rytha, it is expected that the values of
a same function are dispersed in the SIMTP file. I: is thus necessary that the Sl4VAL

4 procedure precedes each block of values by a label identifying the function and the length
of the block. It is also the SIXVAL procedure which controls the application of the selec-
tors (thus it may happen that SMVAL is called and that nothing is written on the S.MTM
file). The parameters of the procedure are the following ones:

- NOFCT number of the sampling or result function;
- TAWAL: list of values;

- .BVAL : number of values in TA3VAL.

Figure 4.6 gives a valid scenario for %ne example showing the use of the SI.VAL. procedure.

The SXAVC procedure was conceived to make vre-oositionLnq and in that way contravene
the order imposed by the writing of the values of the functions. The procedure changes the
context of the require9d functions by replacing the numbers of the last points of the axes
that have been recorded by numbers entered in zarameters. This "skip" is noted in the SIM...P
!ile by a special label. Thus this procedure avoids loading the SnIT W. file with unusable
values where it is impossible to correctly assess one or several functions. The parameters
of this procedure are as follows:

- TA3FCT : list of functions numbers for which the context is to be changed;

- BFC, : number of functions;

- TABIND : list of the numbers of the points on the axes for each declared axis;

- .EI.D : number of values in TA31.D.

The SIX IN procedure, which has no parameter, must be called on to terminate the ;enera-
tion of the SITMP file. This procedure adds an end of file mark to the STHp file.

4.1.3 CCNV!15101 OF S!MTP TO SL!SS

The SD.MP file is a sequentIal file in which the position of the values associated to
:he different functions depends on :he order in which they are written. The dispersion of
the information in the SI WP file makes the search for the values of a fjunction quite long
and complex. The SIET .roram (SIM for simulation and .MT for c:eaning) has thus been
created to convert a SIMT"P fIle to a direct access file in which the values of a same .unc-
tion will be ;in cnsecut:± locations. This new file fo-mat is the SU R!S format.

.- gure 4.7 shows the functioning of the MNET program. 6: is tossible to create a -ile
where the values of each functIon are pooled because the SN.RES .program knows the number of
values of each function and can thus assess the locations where the writinz is to be made.
For this, a memory :one is divided in as .uny bufers as there are functions Cn he S;MT.P
file. The si:e of each buffer is e terined in such a way as to aini=i:e the number icc.-ss
to the disk. The program reads :he -XI.P file sequen:ial.y, pools :he "bi:s" of functions
in :he a..rooriate buffer and, when :the buffer is fuil, it is written at its .lace in the
S LSS file.

p.t



The size of the memory zone required for proper functioning has made it necessary toSe~ opt for a special conversion progria rather than directly, writing the results in the SINMS
L format. It has thus been doemed preferable to have &.program using a largo working area

during a shoT. time spread, rather than adding this tine to simulation programs already
quite loaded and using already too uch tint..

4.Z T"! !TRC . PACUIG!

The XTRAC package allows the extraction of information from the SIMMES file. The
S pakag proedue ca bedivied nto hre su-groups. The first sub-group includes the
2DIs procedure which initializes the TRCT package. The second includes the procedures

which extract the descriptive Information, that is the Information written by the SL'(AXB,
SL'ECH, SfLIC1 and Sfl4PAR procedures. These are procedures that work more or loss alone.
Finally, the procedures of the last sub-group extracts the values of the function of a
SflUE file, that Is the information written by the SL'4VAL procedure. These procedures
are interdependent and they follow a rigorous sequence.

4. .1 THE !TrDU PROCEDURE

The hXTDI procedure initializes the package and opens the SIMMBS file on which the
other procedures will work. It is thus essential to Call the EX TE procedure before trying
to extract say Information from the SIMeS file. The procedure gethas parameter the name
of the SIMMS file and the numberof logical unit of e/S associated to the printing file.
In exchange, the procedure gives h following information: the name of the progra m gne-
rating the TRETS file, the version number of this program, the sequential number of the
file and the computer on which this file has been generated.

4.2.2 PROCEDURE OF ETRACTION OF TH! DESCRrPTIVE INFOR! tTo.~

This sub-group is composed of the following procedures;

- Z= • :h gives the date and the hour of the generation of the SIMyS file;

- EXM.TN gives the axes Identifiers, the sampling functions, the result functions
or of the parameters;

- Errsxl gives the characteristics of an axis;

- .,ZC h gives the characteristics of a sampling function;

- EXTI7CT gives the characteristics of a results function;

- X7PAA gives the characteristics of a parameter.

rt is Important to note here the particular role played by the S:MTNO procedure, which rovides
the identifiers of different objects (axes, functions, parameters). The charzcteris3tics of
those objects could be later called up by the appropriate procedure.

The* running of each procedure is relatively easy. The Input parameters identify :he
needed information. This information i xtr aced from the SIMMS file and returned to the
caller through the output parameters. Figure 4.8 lives a list of the parameters of each

* of procedures of this sub-group.

4.2.5 PROCEDURE FO~R TH! EVTRCTION OF T1M !R1SULTS FUC-ON1S

The procedures which extrsc: the values not only locate and retrieve the pnformation on
the SIdS file but they also have a mechanism hich Splits the data o be extracted in sub-
groups or pages. At this oist, :he extraction loop allows the routine to recive data page
by page. this mechanism has three steps.

The first step consists establishing the field of extraction, 4.e. the set of ova-
luation points for which a value of a given function is needed. This specification is lone
by indicating the name of the function and by giving, for each of the axesuon which :he 'unc-
tion depends, a list of selection intervals. Each selection interval is defined by the numberof the first and the last point of the interval and by an increment. The specia value, in
this case 0, allows us to choose all the points of an axis. For instance, for function A
which depends an axis . e can choose the points I to Z by sets of and the points :2 to
30 by sets of 2. The order of the presentation of :he axes is important because it induces
the nesting or er of the extrzction LooJps. moreover, the choice ofF the selection inter%.a:
must .ake into account the points for which the requested function his bee, assessed and
written in the S oIRES filps.

hoe second stie establishes the segnen:apion of te extraction field and :he siec"'ca-
"ion of the tuples conigeration needed. The segmentation of the extraction fel d 's _One

"", allr trouh te ouputparmetrs.Fiqre 48 j're a istof he pra~csr o eac -.
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by giving :he number of axes that must vary to form a page. These varying axes are always
- " the las: to be declared, and they are called the internal axes. It is thus the external

axes, those left aside, which will define the loops extracting the different pages. Figure
4.- gives an example showing the extraction field and the segmentation of a function.

The information fedback by an "elementary" extraction has a list of tuples of the form
(4value of the results function>, <value of the sampling function 1,. ..., <value of the
sampling function .4>) and a list giving, for each non-identified axis in the tuple, the value
of the poizt where the extraction has taken place. In the case of orthogonal grids, the
tuples must be composed of the value of the function followed by the value of the internal
axes points. The list of the axes points should give the value of the external axes points.
Thus the varying data is separated from the fixed data, this avoids redundancies. However,
this is not always the case. In fact, when the grids are not orthogonal, it is possible
that even the internal axes may have different points for each of the values of the results
function. In order to hold the possible different cases and to permit a maximum of flexibi-
lity, the .ACT package works either by the explicit snecification o the composition of a
tuple or by a specification by default where all happens as if in an orthogonal grid. The
explicit specification of a tuple is done by giving a list of the axes for which we need the
values of the point in the tuple. In this case, the identification of the points of the

.other axes is done when possible in the list of the axes points (i.e. as this list gives
only one point per axis, if I axis varies, the value is indicated as 15300). Figure 4.10
shows the example of figure 4.9 and :he organization of the tuples and the list of axes
points.

The third and last step consists in calling the extraction procedure as many tines as
needed by the segmentatitn. The role of the package here is to control the evolution of
the loops dealing with the external axes, to retrieve the data making up a page on the St?41S
file and to organi:e the tuples and the list of axes points according to the required confi-
guration.

One option of the XTRACT package gives as an added information the minimums and the
maximums of the functions and axes making up a taple.

Indispensable for graphic applications, this piece of information can easily be obtained
if the minimums and maximums can be assessed on one page. 3ut this is not always the case.
There may be a need for the minimums and maximums for a larger set of values: fOr examule,
for the field of extractIon or even for all the SIMMS file. In these cases, the application
program must make a special extraction run to assess the minimums and maximums. This task
has therefore been given to the XTRACT ?ackage which will do it in the most efficient way.

In terms of application, by obtaining the minimums and maximums, it is possible to
establish a scale to express the values obtained in the tuples. The .TRACT package can
assess the minimums and maximums on three specific fields defining three types ox scales:

. .the global scale, the local scale and the standard scale. The global scale is defined
by all the values whether selected or not from an axis or a function. The local scale is
defined by the values of an extraction page. And finally, the standard scale is defined
by the field of extraction either by taking the whole field or by taking a sub-set of this
field. In this latter case, the sub-set is delimited by an axis, and each time the counter
of the axis is incremented (i.e. there Is a change of point), the minimums and maximums of
the points covered by the interior axes must be reassessed. Figure 4.11 gives an example
of the different scales.

The EXTRAC, LUTSUL, IXTDEF and EXTT!jP procedures show how the work described above can

be processed.

The extraction process starts with the EXTRAC procedure. This procedure specifies the
function from which we would like to extract the values. It gets in parameter the identifier
of the function. It outputs NSAXES a complete parameter giving the number of axes on which
depends the function and IERA indicating, and if it exists, the number of the detected error.

Second, the -"TSEL defines the field of extraction. A call on the EXTSEL procedure
indicates for an axis on which the function depends, the number oi the points for which we
need the values of :he function. This procedure must be called NBAXES times and :he order
in which the axes are presented is imortant for the definition oi the extraction :oops.
The procedure receives the folowing parameters:

. XAM1 : the axis identIfier;

- SELAXE : list of selection intervals, one selection interval is made uo of either
3 values (the first selected point, the last selected point and an iacre-
"ent) or the value 0 Call points are selected);

- MISEL : gives the number of intervals in SELAXE.

4-
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" +the procedure outputs the following data:

- PTSEL : indicates the total number of points chosen on the axis; II
* FIX : the boolean value which is reali:ed if the Yalu* of the points on :.e axis

does not depend on other axes, i.e. if the grid is orthogonal in relation
to that axis;

- i in case of error, writes the number of the er-or.

Third, comes the EXTI7 procedure which defines the configuration of a page, the ceupe-
sition of a tuple and the type of scale needed. The procedure receives the following data:

" - IUDIf : defines the cut by giving tee number of axes that must be made to vary to
obtain a tunle page (the innermost axes vary first);

TARBAX : explicitly specifies the contents of a tuale by giving the list of axes which
make up the tuple. This chart is only used if NBAXE • 0;

- NBAX! : if this parameter is less than , then the option by default is applied and :he
tuples are made n of the value of the function followed by the deepest BB3D.
axes. If not, then the tuples are made up of the value of the function and of
the nIAXES axes declared in TABAX;

- TY31CH : is a chain of characters which gives the type of the requested scale. The
possible values are: none, global, local, standard;

- AXI.CH : specifies, in the standard scale case, an axis which limits the scope of the
scale: i.e., the field of the standard scale is then defined only.on the axes

deeper than that axis.

The procedure outputs NBSU the number of pages necessary to cover all the field of extraction
and IERR indicating if an error has been detected.

Finally, it is the E.TTTJP which carries out the extraction of the information and the
computations of the scales. Usually, this procedure should be called up N EXT tines so that
all the field of extraction is covered. The parameters of this procedure are the following:

- TABVIA. : the array containing the tu les. For a given extraction, the structure of
the array is TABVAL (DI'fTUP, NPT ,. PTI) where DINTUP is the number of
the value making up the turde, .NFT i e number of points selected on the
deepest axis, ... ' .TW the number of points selected on the least deep axis
making the page;

- DITAB : input parameter gIving the total dimension in number of TA3VAL words;

- TAB VD : gives the numbers which identify the non-varying axes;

- * - TA3VAX : gives the value of the points on the non-varying axes;

- DIMIMD : input parameter giving the dimension of the TA3IID and TABVAX arrays;

- TABECH : array giving the zinimums and maximums for the function and the axes making
up the tunle;,

- DIMECH : input parameter giving the number of "ABEC[ columns (there is always 2 lines,
one for the minimum and one for the maximum);

- IERR : indicates the oresence of an error.

Figure 4.1Z shows the call secuence of the EXT'.AC, XTSEL, .TDE% P and ETMUP procedures.
As can be seen, it is possible to define the cut of a field of extraction, the configuration
of the tuples and the type of required scale and then to restart the extraction of the values.

4.3 THE DATSIN PACKAG!

When a group of entities (or objects) have the same information fields, the DA7SIM package
stores these fields, or a sub-set of these fields, in a same direct access file thus creatii-r
a kind of data bank. In this data bank, the model, that is: the necessary information needed
to operate the file, specifically the description of the fields of information, is kept ;n the
file heading. The recording of the data bank is made up of the information field of one entity.
3y giving a sequence number to the lifferent enti:ieos and an identifier to the different infor-
motion fields, it is possible to construct keys which will identify in a unique manner the
different recordings.

MNE
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n the DArStX file, an entity can, then have as many recording as there are in-ormation
filds. When applicable however, the DATS1X package avoids an excessive proliferation oi -i
recordings by defining a value by default for an information field. At this ;ment, all the
active entities Can entity ,ay be non-active) of :he data bani muse have the same .n.ormat4on ,
fields. If the recording of an ac:ive entity does not show up in the data bank, then it has
a value by default.

In the context of the laser nodeling orojec:, the DATSIM package keeps on disk a summary
of the Sfl1S files. It is thus possible to concentrate in one file, information which would

4 have been otherwise dispersed in several files and only a small part of this information would
have fit oan disk (the major par: of the SDMS files would be filed away on magnetic tape).

The summaries of the SLM.S files produced by a laser simulation program are regrouped in
a same DXISZN data bank. A simulation is an entity at the leve! of the data bank, and the
simulation sequence number (which is also the SIMq.S file number) identifies the recordings
belonging to a same simulation. The information fields written in the DATSIM files are:
some general information on the simulation, the parameters of the simulation and the values
of the results functions usually implicated in a comparison.

The components of the DATSM package can be divided into two sub-groups. The first is

made up of programs which generate and modify a heading of a DATSZX file. The second sub-

up is made up of the procedures that allow 
the running in reading and writ:ing mode of a

ATSl file.;

4.3.1 ,R!ATrOx AND mo0rFrcATrOc, OF A DATSX .rLE,

The generation phase of a DATS4 file is done in two steps. First, the generated file
holds La its heading only the data needed for an empty DATSUT file. Next, the description
of the data that can be recorded in the file is added to the heading. It is preferable to
write from the beginning the descriation of all the information fields, however it is also
possible to make additions to an already operational DATSIM file, :hat is: a file which
contains ocher data than the descriptive ones.

The ACU generates the base of a DATSIM file. This program reads in the input fle

the generic name of the entities composing the data bank, namely the name of the simulation
program producing the SDOMES files which feed the data bank. The !ase of a DATSI: file
includes the identifier of the current version of the aOA'SU package, the leneric name of
:he enti:os, the sequence number of the last en:ity for which data has been recorde, that
is 0, and th. number of information fields described in the heading, which is also 0.

The DATM1I program adds to a CATSIM f le heading the description of the information fields
that can be recorded in the files. The input file of the DAT1DI program include, in first
Li e, the command ADD or !40DIFY. Tis command indicates to the DATEDr program whether it is
a first addition to the heading (command ADD) or of a subsequent addition (command .ODIFY).
The description of the different information fields is found later in free form in the input
file. This description includes the field identifier, the field class, the tve of values
of the field (complete, real, boolean, chain of characters), the number of values by default
that follow (possibly 0), and finally the list of values by deiault (possibly empty). The
information field class is an identifler known by DATSIM (through an interchangeable table)
which allows the pooling and the organi:ation of the information.

For security reasons, the DATED! program procedes by tw.o runs. In the fIrst run, the
data is validated. If no error is detected, then the program runs 'the data one nore time
and writes the data in the heading of the DATSIN file. This way, it is possible to avoid
situations where an error invalidates work already done. Figure 4.1. gives an examole of
data for the DATEzD! program. It is to be noted thac the number of values by default .n no

way fixes the number of the values associated to a field: the same field could i clu.de
a varying number of information from one entity to another.

4.3.2 OPIMAT1O1 Or A DAT.sf viLE

The procedures that ran a DAT1IX file ars:

- DATDE3 : st:artng of a DATS1!1 file:

- DATNUC returns t.he list o, inden:i--ier of the inforn ation f ields;

- DATINP : returns the charc:sristics of. in info"ation field:

- DATLA : reading of a rsczrd.ng:

- DA,!CR : writint of a recordir.g;

- A7,CT: ac:i-tstion or non-ac:iation of in nnti:-;

-p' .
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-ATI. closing of a DATSPI file.

The information and the snace necessary for the manipulation of a DATSIM file are con-
centrated in a control block entered as a parameter at the different procedures of the
package. This way, an anglicaction program can work on several DATSI! files at the same
time on the condition of having a control block for each file.

Following is an overview of the onerac ion of each of the package procedures.

blTch DATORB procedure is called uson to start a DATSIV file and to initiali:e the control
block associated to this file. Any atteot to work with a DATSM file without starting first
with OATOED will be an error. The procedure will then receive as parameter the name of
DATSM file to be started, the control block, and the size in number of words of the control
block (the suggested size is ZSQQ words). The orocedure returns part of the information
composing the base oi the heading, in other woras, the generic name of the entities making
up the file, the sequence number of the last recorded entity and the .umber of fields des-
cribed in the heading.

The DAT4M procedure obtains the list of the information fields identifiers. This list
is taken from the DATSM? file heading. The parameters of the procedure follow:

- DATNLU (input) : control block of the DATSM file;

- TAB.O (output): chart containing the information fields identifiers;

- DIWTAS (input) : size of TABNOM;

- .MIMS (output): number of identifiers placed in TA3NOM.

The DAT!XP procedure obtains the characteristics of an information field. The parameters
of this procedure are:

- DATBLX (input) : control block of the DATISM file;

- IM (input) : identifier of field of which we need the characteristics;

- CLASS! (output): class of ini.ormation;

- TPE Coutput) : type of value of the information field;

T *ADRP (output): chart giving t Je values by default (if there are no values by default
for the field, the chart will he empty);

- 3rlTAB (input) : size of TABDE.';

- LGDEF (output) : number of elements placed in TABDEF;

- M (output) : gives 0 if there are no errors, if not, it Sives the number of the
error.

The DATLIR procedure reads the recording of a DATSI file, that is, it gives access to
the values contained in the information field of a liven entity. if the entity exists Ci.e.
if its sequence number is smaller than the number of the last recorded entity in the file)
and if it is active, the procedure assembles the key (entity number and field identifier)
and orders the reading of the recording. If the recording exists, then all it does is to
transfer it to the caller. If not, then the procedure verifies if there is a value by default
for the field, and if it faids one, it returns it. In case the data required does not exist
at all, an error number is returned to the an1lication program. Figure 4.14 shows sc.hemati-
cally the ruming just described. The naraneters are as follows:

P - DATULX (inut) : control block of the DATSIl file;

- 4 1SIN (input) : entity number (in this case, it is a simulation nu.ber);

- WNI (input) : field of info e.ation identifier;

- TABVAL (output): field of Lnformation values;

- DIXTAB (input) :si:e of TAAVAL;

. DIWXAL (output): number of values read and returned in .A3VAL;

• - . (output) : gives ) L! :hers is no error. If not, it gies the error number.

9%4q
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The 3AT3C, procedure cin add a recording to a DATSl fN e. sirs:. the procedure vo.-

.les if the entity at hand is now. in this case it must update the number o th.e last recor-
1ed entity in the file. iF it is an already recorded entitv, it must see If i: is active,
as there should be -to access to the information field of a non-active entity. f all works
well until this step, then the procedure checks to see if there is .o values by default for
the requested fLeLd. If none exists, then the recording is wri::en in (in som, cases, it will
be a rewriting). If however there is a value by default, then there must be a comparison
between the values by default and those received for the field. If they are equal, nothing
is written in the file, and the previous recording is deleted. If :hey are not equal, then
the recording is written into the file or th. previous recording is replaced by the new one.
Figure 4..S shows schematically how this is done. The different paraeters of the procedure
are as follows:

- DA-43LX (input) : control block of the 9ATSMh file;

. " .4USV Cinput) : entitv number for which an information field is to be written;

- OM (input) : information field identifier;

-. .VALEU (n iput) : char% containing the field values;

-N DflVAL (lnput) : number of values in the VAL.UR chart;
-- 1t (output) : gives 0 if there are no errors, if not, gives the number of the error.

The DATACT arocedure specifies the state of an entity in the VATSfl4 file. in other words,

an entity can be active or non-active. The recordings of a non-active entity cannot be re-
treived but they are not destroyed. Thus by reactivating a non-active entity, we can have
access to its recording-. The parameters of this procedure are as follows:

- OATBLI (input) : control black of the DATSL4 file;

- NWHSIM Cinput) : num'ber of the entity that has to be modified;

- AMI. CLnput) : boalean parameter with itse. -rue values if the entity is active, and
its false value if it is non-active.

- IZRR. (output) : gives 0 if there are no errors, if not, gives he number of the error.

Finallyr, the DATFIN procedure terminates the operation of the DATSN ile. It is impe-
rative to call the DATFINq procedure because the buffer associated to the 3ATSIM file must be

. . clear"d.; -T -only parameter of this arocedure is DAT3LX, the control block of the DATSAI file
that i.s to be closedi.

.*.9
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REAL EMe. (3),
Pun,
PLIT (a),
AXlY (lb,
Al!X (7),

4Establish axis T',
call SI1,VAL (4UoFCY, AX.; 6)
Do 10 Ixa 1.7

Establish a coluimn of axi X>
* call SIWAL (NUHCX, AlEX, 3)

D0 20 IT a 1's
* ENEKY IY1 x**

20 continue
call SW AL (0MWTLY. IR, 8)
PLC .E (8ER, 8)
call SIMYAL ()UMPX, MICK, 1)

tasses partial PLM[Yi,

10 continue
call SMAL (4 MIPY, PEAXY, 1)
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FIGUR 4.7 -CONVERSION OF' A S~fr1P FILE IN'TO A S" JS FILE

Procedure Paroaetr escri tion
SLVT.2f 3DATE (outut) Date of generation of the file

BNHOUR (outnut) Hou-r of generation of the file

E 'rm.%f I, Af (input) Indicaes which identirLer is mseded

(Cuu sealin g un ens
PTopCT uresults huctionsPAR param'leters

TAWL (output) Liste rfiesotionponsenrs ai
XBNO.."S (out-put) Vibaenr of identufiers put ln TABed

AXTAXHE .APM (input) Axis ifenr teer
U IM& (output) Typeo units of the axis
111710 (output) Exhibitor afecting the uniss
FACT output) Factor affecting :he uni s
RISCL (output) umier on resolution points an the axis (not to be

mistaken with the nu her o selected pointss)

r.T7CH NAM (input) Identifier of the samuling function
AEc.MEP (output) dentifer of dhe axis associated o tie function

DEP cout ut) Boolean array iivc=g he elnendenes of the
iunci on as :o es on :he eacs oaf o

DIMzP (input) iension of A.EP
3XAR NI, ( input) Identifier of the results furctions

ECHEP (Ouut) Bode inn which the : element indicates whoether
the function depends an the Ith 9amping functio.n

AXEP (output) 3oolean ar'ray in which the r element indicates
if the f unction depends on the Ith axis

WXAR NAME (input) Ide-ntif.ier of the parame~r
"E . (OUTPU) Code i.ndicating the -tpe of 2aranoeer (0: complete,

1: actual, ...)
TABVAL (output) 'alue of the -parameter (can be a vector)
31'TAB (nput) Dimension of TAVAL.'MVAL (output)} Number of ef.f.ective vailue in TAS VA.L

(111 The order of the elements is that in which they have been declared.
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Swept-gain superradiance in two- and three-level systems
with transverse effects and diffraction (*)

F. P. Mattar and C. M. Bowden (0)

Actodynamics Laboratory. Polytechnic Institute of New York. Faringdale. New York 11735. U.S.A.

te0) Resarch Directorate, US Army Missile Laboratory, US Army Missile Command. Redstone ArsenaL
Alabama 35891, U.S.A.

Abstract. - Results of numerical calculations using computational methods developed earlier to efficiently treat
transverse as well as longitudinal reshaping associated with single-stream and two-way pulse propagation and
generation effects in cooperative light-matter interactions, using the semiclassical model, are presented. Specifically,
the results are presented and discussed for the two- as well as three-level system for a traveling excitation for both
Gaussian and uniform gain distributions. Conditions are established for lethargic and highly nonlinear soliton
pulse evolution through the asymptotic large Z regime.

Sumuary. - Computational methods based upon The numerical code was extended [1] to represent a
:he Bloch-Maxwellsemiclassical model weredeveloped collection of three-level atoms in the presence of two
-arlier [I] to efficiently treat transverse as well as laser fields, consistent with the usual parity conside-
longitudinal reshaping and diffraction associated with rations [4, 51. Results are presented for traveling
ingle-stream and two-way pulse propagation and excitation corresponding to optical pumping for both
4eneration effects in cooperative interaction between Gaussian and uniform radial gain distributions and
.he radiation field and a medium consisting of a several different temporal functions for the excitation.
;ollecticn of two-level atoms. Results of the calcula- Superfluorescence is shown to occur for conditions
ion are presented for pulse evolution as a function analogous to those for the two-level case 11]; however,
)f propagation distance Z in the two-level system for two-photon (coherent Raman) effects play a strong
t traveling excitation with both Gaussian and uniform role in pulse delay and shape characteristics, as
gain distributions with a classical initial tipping angle predicted from earlier analytical work [4, 5]. Pulse
listribution. We present the conditions under which evolution characteristics are shown to depend upon
he system evolves from a superfluorescent condi- the excitation temporal function dependence and
ion [2]. where the atoms are confained within a radial function dependence as well as temporal
:ooperation volume, to an asymptotic steady-state 13] duration and total area.
or sufficiently large propagation distance Z where
oliton behavior is exhibited. The steady-state condi- We show also in this case the conditions under which
ion is interpreted in terms of the asymptotic behavior the system evolves to an asymptotic, steady-state
if the principal mode pulse area and stabilization of the condition at sufficiently large Z in terms of the prin-
ntire pulse shape. Pulse areas greater than x am cipal mode pulse area and total pulse shape stabiliza-
hown to occur because of multiple pulse generation tion. As in the case of two-level swept-gain super-
nd self-focusing. Furthermore, it is shown that radiance, strong self-focusing and multiple pulse p
iffraction plays a much greater role in the results for generation is indicated.
ie swept-gain superradiance regime [3) than for the
onditions for which superflurescence occurs [2]. Finally, results for simulton [6] behavior in the
'he results of our numerical calculations for the three-level system is presented with two injection
symptotic large Z regime are compared with the signals and also with one injection signal (the optical
ne-dimensional analytical results for swept-gain pump) and a uniform tipping angle (determined from
* zpeiance [3]. a thermal population distribution) which allows the

second pulse to evolve. The latter conditions cor-
respond most realistically in the large [71 region with

t'p Wurh jointly sponaord by the Research Corporation. the experimental conditions for swept-gain superradiance
iternaol Dr macn of Mobil Corporation. the University of
toatraL the US Army Research Offi, DAAG29-79-C.01411. reported in the literature [7, 8). Results of the calcu-

Offik o( Naval Research, NOOO14-8-C.0174. and Banele lation are presented 4nd compared with the experi-
iAhmbw Laboratories contract DAAG29 76-D-O00. mental data.
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TRANSIENT COUNTER-BEAM PROPAGATION IN A NONLINEAR FABRY-PEROT CAVITY *
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By adapting Morettis self-consistent numerical approach to integrating the Euler equation of compressible flow. a uni-
fied complete temporal and spatial description of superfluorescence and optical bi-stability was undertaken. (The simula-
tion ndudes material initialization as well as refractive transverse and longitudinal field boundary conditions appropriate to
the cylindrical laser cavity). The respecting of physical causality in Moretti's method was maintained; but by using an
improved derivative estimator at both the predictor and corrector levels, the overall accuracy was improved.

The physical model includes nonplanar two-way Maxwel-Bloch propagation with spontaneous sources. The problem
of dynamic transmse effects as they relate to soliton collisions is addressed. The calculations are based upon an extension
of Mattar's previous semi-classical model for diffraction and phase effects in self-induced transparency at thick optical
absorptions.

The computational algorithm relies on the use of characteristics, but is strictly a finite-difference scheme. This explicit
scheme involves the simultaneous integration along the time coordinate for both forward and backward wave. However,
directional derivatives must be considered to appropriately take into account the mutual influence of the two light beams
without violating the laws of forbidden signals. Particular case is exercised to maintain at least a second-order accuracy
using one-sided approximations to spatial derivatives. Each forward/backward field derivative will be related to its respec-
tie directional history. A numerical approach in which the discretization is not consistent with these physical facts will
inevitably fail. Thus the numerical algorithm must discriminate between different domains of dependence of different
physical parameters-

The physical process can now be analyzed with a degree of realism not previously attainable. Significant agreement
with experimental observations is reported from the planar or time-independent analysis counterpart confined to the cen-
tral portion of the beam.

I. Introduction

The modelling of longitudinal and transverse coherent pulse reshaping that occurs when forward- and backward-
travelling beams interact coherently with a medium resonant to the pulse-carrier frequency and with each other is
presented. The physical system is characterized by a pulse duration much shorter than all the atomic relaxation
lifetimes and dephasing times. In addition, the field is large enough so that significant exchange of energy between
the light pulse and matter takes place in a time that is short compared to a relaxation time.

The response of the resonant medium is not instantaneous but cumulative (i.e., it is associated with the past
history of the applied field). Hence, the inertial response of the medium is not describlable in terms of an intensity-
dependent susceptibility. Instead it necessitates a more general functional of the applied field. The treatment dif-
fers from earlier theoretical and experimental studies where a rate-equation approximation was considered. Conse-
quently, a semiclassical formulism, similar to the one used by McCall and Hahn [II in their analysis of self-induced
transparency, must be adopted. The physical model is based on counter-propagating travelling-wave equations,
derived from Maxwell's equations including transverse [2,31 and transient phase variation [4], and a two-model

Work supported in part by the Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-

tional Division of Mobil..PI The concept of this analys was proposed at ICO-I 1 Madrid (September 1978) ed. 1. Buescos, Proc. distributed by the Spanish
Optical Society, Madrid-
Author isal priently with Lab. Las Spectroscopy, MIT, Cambridge, MA 02139, USA.

0010-4655/81/0000-0000/$02.50 0 North-Holland Publishing Company
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2 F.P Mattar et al. / Counter-beam propagation in a cavity

[5,61 version of the Bloch's [7] equations describing a distribution of two-level homogeneously broadened atomic
systems. Furthermore, the simplifying mean-field approximation is not considered; instead, an exact numerical
approach that adapts computational methodologies gained in solving fluid dynamics problems is developed.

In the slowing-varying-envelope approximation, both the phase and amplitude variations of a linearly-polarized
field in the transverse direction are described by two scalar wave equations, one for each mode: forward-travelling
propagation. Each equation is driven by the appropriate polarization associated with the nonlinear inertial response
of the active medium. The dynamic crosscoupling of the two waves appears explictly in the two-mode analogue of
the traditional single-mode Bloch's equations describing the material system. The presence of the longitudinal
mirrors will further enhance the mutual influence of the two beams. Variations in polarization and population over
wavelength distances are treated by means of expansions in spatial Fourier series. The Fourier series are truncated
after the third or fifth harmonic. As McCall [61 and Fleck [51 outlined it, the number of terms needed is influ-
enced by the relative strength of the two crossing beams and the importance of pumping and relaxation processes
in restoring depleted population differences.

Counter-propagational studies have been previously considered for pulses with infinite transverse extent (ie.,
uniform planes) by Marburger and Felber [8] in connection with nonresonant nonlinearities. Two-mode one-
dimensional analysis involving resonant interactions have been tackled by McCall (15], Fleck [6], Saunder and
Bullough [91, and more recently by Eberly, Whitney and Konopnicki [10]. However, restrictive assumptions were

,v made relating to the allowed form of the temporal field variations. Since the experimental arrangements often do
not satisfy the uniform plane-wave condition, the detailed nature of transverse behavior (using rigorous Laplacian
coupling) must be worked out. This present three-dimensional treatment assumes azimuthal cylindrical symmetry.

Furthermore, the interplay of diffraction coupling (through the Laplacian term), and the medium response
wil inevitably redistribute the beam energy spatially and temporally [11-141. This transient two-stream beamI
reshaping profoundly affects a device that relies on this nonlinear light-matter interaction effect. Several phy-
sical e(fects such as strong self-phase modulation, spectral broadening, self-steepening and self-focusing that have
been separately studied, combine here to affect the behavior diversely during different positions and times of
the pulse evolution. Due to the essential complexity of the governing equations of motion, only effective nume-
rical methods which are consistent with the physics can make attainable a heretofore unachievable solution.

An extension of an efficient numerical approach [15-171 was developed by Mattar to study the transverse
energy flow associated with beam variations in the single mode SIT problem. The latter code, which simulates
the rigorous interplay of diffraction (Laplacian term) and the inertial two-level atom (Bloch equation) response,
had led to the discovery of a new transient on-resonance self-lensing phenomenon which was subsequently veri-
fled in sodium [181, neon [191 and more recently in iodine [201 vapour in laboratory experiments. Accurate

comparison over a wide domain of physical dependencies was reported [21]. Consequently, the numerics of
diffraction and Bloch equations will only be briefly outlined.

%4 In the standing-wave problem, the two waves are integrated simultaneously along r the physical time: no retar-
ded time [22] (or Galilean) transformation as in SIT will be introduced.

To ensure proper handling of the two-stream effect, special attention must be exercised. For causality reasons.
as advanced by Moretti [23], only directional resolution for spatial derivatives of each stream (forward and back-
ward field) must be sought. This is achieved by using one-sided discretization techniques. The forward field deri-
vative will be approximated by a different set of points than those used for the backward field derivative. The
spatial derivative of the forward field is discretized using points which lie to the left as all preceding forward waves
have propagated in the same left-right direction. The backward field is approximated by points positioned to the
right. As a result, each characteristic (information carrier) is related to its respective directive history. Thus, viola-
tion of the law of forbidden signas is prevented.

Once the basic effects are observed and assessed using straightforward orthogonal computational meshes, non-
uniform grids which alleviate the calculational effort [24-28], will be implemented. (The nonuniform grid per-
mits greater point concentrations in the temporal and spatial regions of main interest.)

The prime goals of this study are to achieve an understanding of beam effects in soliton collision [29], and to
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relate this situation to the single stream SIT problem and to observations in super-fluorescence [30-33] and
%-' optical bi-stability [34,35] experiments. Furthermore, one readily investigates the dependence of the counter-pro-

pagation transmission characteristics on pulse and beam shape, on the relaxation times, the resonance frequency
"u I offset, the input pulse area(s) on-axis and, the Fresnel number, the mirror reflectivity, the initial tipping angle.

The outline of this paper is as follows: in section 2 are the standing-wave Maxwell-Bloch equations and the initial
-*' and boundary condition. Section 3 presents the law of forbidden signals. The accuracy of the predictor/corrector

scheme is presented in section 4. The effect of improving the derivative estimator on the overall numerical scheme
is described in section 5, while section 6 presents the theory of approximating linear operators. In section 7, three-
point estimator formulae for the first derivative of a function are derived. Section 8 describes the treatment of
the longitudinal boundary condition. Section 9 presents the three-point estimate as an example for the four-point
estimator for the Laplacian of a function. Section 10 concludes the paper.

2. Equation of motion

In the slowly-varying-envelope approximation, the dimensionless field-matter equations are:

'e 3e*

8r 8z

+ - +g(P expikz)) , (2.2)a" az
with g and g- the nonuniform gain associated to the pump experienced by the forward (e ) and backward (e-)
travelling wave. The quantities in the r.h.s. undergo rapid spatial variations; ( ) represents the spatial average of
these quantities over a period of half a wavelength

+(-i( ) +{w(e e-)}, (2.3)

-w+ r w ) -) (P + )(e + e-). (2.4)
r

Equivalently

a',
+ (-i(Afl) + 7j' 1) P- W[e exp(-ikz) + e- exp(+ik.)] , (25)

8W
a'+ r"t(W - W) -'(Pe+ exp(ikz) + Pe- exp(-ikz) + c.c.), (2.6)

with

e2 "(2ur-fp/u) e±  (2.7)

P - P/2,) ,(2.8)
E' - Re {e' expfi(wt kz)] (2.9)

and

P a Re {ip' exp(kit)}. (2.10)

The complex field amplitude e', the complex polarization density P' and the energy stored per atom are func-

,

f,.-.
.4

--.
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tions of the transverse coordinate
%;'pzr/rp, (2.11)
,,P -. "~r

the longitudinal coordinate

Z at Cjf'Z (2.12)

and the physical time

7 =t/,, (2.13)

The time scale is normalized to a characteristic time of the forward input pulse rp, and the transverse dimension

p.3 ,scales to a characteristic spatial width rp of the forward input transient beam. The longitudinal distance is norma-

lized to the effective absorption length [371.

c..a a ,t8 wp2Np/fnhc. (2.14)

*..In this expression w is the angular carrier frequency of the optical pulse, u is the dipole moment of the resonant

- transition, N is the number density of resonant molecules and can sustain radial variations, and n is the index of

refraction of the background material. The dimensionless quantities

(W - Wo) rp , (2.15)

t = T 1/rp , (216)

7' T2/r (2.17)

measure the offset of the optical carrier frequency w from the central frequency of the molecular resonance wo,

the thermal relaxation time TI, and the polarization dephasing relaxation time T2 , respectively. The dimension-
less parameter F (which is the gain to loss ratio) is given by

F - f/4f 3  (2.18)

and is the reciprocal of the Fresnel number associated with an aperture of radius rp and a propagation distance
(-I). The magnitude ofF determines whether or not it is possible to divide up the transverse dependences of

the fields into "pencils" (one pencil for each radius) which may be treated in the plane-wave approximation.

The diffraction coupling term and the nonlinear interaction terms alternately dominate depending on whether

F< 1 orF> 1.
. The presence of opposing waves leads to a quasi-standing wave pattern in the field intensity over a half wave-

* "., length. To effectively deal with this numerical difficulty, one decouples the material variables using Fourier

series [5,61 namely

P= exp(-ikz) P (2,.,) exp(-i2pkz) + exp(+ikz) ri P- + exp(+i2pk:). 1)
- ,, p0 p.O

W -Wo + L [W 2p exp(-i2pkz) + c.c.] 20

with Wo a real number. By substituting in the travelling equation of motion one bOaans

aP +el/7 2  Woe + we--

h. P+ P;/r2 wje" + w~e-
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811'2 n) +P(' t)/T = W2pe + W2(p1) e- and (2.24)

"" "P'l +Pl/T2 - Woe- + W2*e, (2.25)

Parj +Pj 2  = Wse + WVe , (2.26)

al5P(1) +P,(2+)-, 2  +W te (2.27)

a, WO + (WO - WGh', "I (e-'Pi- + e+*Pl " + cc.), (2.28)

aTw1 + W2/r i-(eel + eP+ + ePr" + e-P"), (2.29)
a~ ,+ /, -- (-'P+ e,+ e e+ + + - )(2.30)

The field propagation and atomic dynamic equation are subjected to the following initial and boundary condi-

dons.

1. Initua

For r> O,

e -0, (2.31)

W= WO ,(232)

a known function to take into account the pumping effects. For SIT soliton collision

(:2p+) "0, for all p, (2.33)

while for the superfluorescence problem

P ,2p+) (2.34)

is defined in terms of a non-uniform initial tipping angle that reflects the radial variations of the atomic density -
its value can either be deterministic or fluctuating.

2. Longitudinal

For z 0 and z L: e and e- are given in terms of a known incident function

CIO (2.35)

and

e-L (236)

of r and p. Should enclosing mirrors to delineate the cavity be considered in the analysis, one must deal with the

following longitudinal boundary equations

e ='1 --RI) elo +vte- , atz=0, (237)

t- '(R --, R)eL+ -,R 2 e+ , atz=L , (2.38)

whereR1, R 2 and (1 -R1),(1 -R 2 ) are the respective reflectivity and transmitting factor associated with each

left and right mirror.

3. Transvene

For all - and r [ae±/ap],.o and [ae'/ap]papmt vanishes. Pmx defines the extent of the region over which
the numerical solution is to be determined. To avoid unphysical reflection from the transverse boundary, one

-, ."I- .
a.. ,-,- -, - . : . . . .... 2.. . . .- : .... . .-. - . . .,.: -.....-.-.-....-. .•... . . ..
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must, for amplifier calculations, use stretched (nonuniform) radial grids (i.e., consider a quasi-infinite physical
domain and map it on a finite computation region) and confine the pre-excited active medium by radially-
dependent absorbing shells [171. Note that this condition represents an actual experimental apprcach in which the
laser amplifier is coated to circumvent any spurious reflections.

3. The law of forbidden signals
The concept of the physical law of forbidden signals and how it affects two-stream flow discretization prob.

"* lems was originally written by Moretti to handle the numerical integration of Euler equations. The method,

referred to as the X-scheme, was presented elsewhere [381. However, since it represents the basis of our present
. algorithm, we felt useful to summarize here its salient features.

In any problem involving wave propagation, the equations describe the physical fact that any point at a given
time is affected by signals sent to it by other points at previous times. Such signals travel along lines which are

.-,', known as the 'characteristics' of the equations.
For example, a point such as A in fig. I is affected by signals emanating from B (forward wave) and from C

(backward wave), while point A' will be the recipient of signals launched from A and D.
Similar wave trajectories appear in our present problem, but the slopes of the lines can change in space and

time.
It is clear that the slopes of the two characteristics which carry the information necessary to define the for-

ward and backward propagating variables at every point, are of different signs; they X 1.2, are numerically equal
to ±c/n. For such a point, A (fig. 2), the domain of dependence is defined by point B and point C, the two cha-
racteristics being defined by AC and AB, respectively, to a first degree of accuracy. When discretizing the partial
differential equatioas for computational purposes, point A must be made dependent on points distributed on a
segment which brackets BC, for example on points D, E and F of fig. 2. Such a condition is necessary for stability
but it must be loosely interpreted. Suppose, indeed, that one uses a scheme in which a point such as A is always
made to depend on D, E and F, indiscriminately (this is what happens in most of the schemes currently used,
including the MacCormack method). Suppose, now, that the physical domain of dependence of A is the segment
BC of fig. 3. The information carried to A from F is not only unnecessary, it is also untrue. Consequently, the
numerical scheme, while not violating the CFL stability rule, would violate the law of forbidden signals. Physic-
ally, it would be much better to use information from D and E to define A, even if this implied lowering the nomi-
nal degree of accuracy of the scheme. In other words, to say that a given scheme, using points D, E and F, has a
second-order accuracy is meaningless since a wrong scheme has no accuracy whatsoever.

In two-wave propagation problems treated by relaxation methods, the need for a switching of the discretization

scheme in passing from forward (advanced) to backward (retarded) points is evidently related to the law of for-
bidden signals.

The sensitivity of results to the numerical domain of dependence as related to the physical domain of depen-
dence explains why computations which use integration schemes such as MacCormack's [40,41 ] show a progres-
sive deterioration as the AC line of fig. 2 becomes parallel to the T-axis (X, - 0), even if X, is still negative (381.
The information from F actually does not reach A; in a coarse mesh, such information may be drastically diffe-
rent from the actual values (from C) which affect A. On the other hand, since the CFL rules must be satisfied and

T A' + A

8 C D Z 0 a E C F Z
Fig. 1. Fig. 2.

,--
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Fil. 3. Fig. 4.

F is the nearest point to C on its right, the weight of such information should be minimized. Moretti's X-scheme,
relying simultaneously on the two field equations, provides us with such a possibility.

Every spatial derivative of the forward field is approximated by using points which lie on the same side of E
as C, and every derivative of the backward scattered field is approximated by using points which lie on the same
side of E as B. By doing so, not only is each characteristic related with information which is only found on the
same side of A from which the characteristic proceeds, but such information is appropriately weighted with factors.
These depend on the slopes of the characteristic so that the contribution of points located too far outside the phy-
sical domain of dependence is minimized. A one-level scheme which defines

-e(/az - (e - e)Ia z, (forward wave), (3.1)

ae-/5:- K - eE)/Az, (backward wave), (3.2)

is Gordon's scheme [421, accurate to first order. To obtain a scheme with second-order accuracy, Moretti con-
sidered two levels, in a manner very similar to MacCormack's [40]. More points, as in fig. 4, must be introduced.
At the predictor level following Moretti's scheme one defines

Sa$ z - (2e4 - 3k) + e )/Az, (forward wave), (3.3)

* ~ - / az - (e. - e)/l z, (backward wave). (3.4)

At the corrector level, one defines

ai lz ( + - i*)Iz , (forward wave) (3.5)

and

a&-/az - (-27 + 3a + i ')Az . (3.6)

It is easy to see that, if any function fis updated as

-f+ fAT (3.7)

at the predictor level, with the T-derivatives defined as in (2.21) and the z-derivatives defined as in (3.3). (3.4) and
as

-f(T+AT)"'i(f+7+frAT) (3.8)

at the cormor level, with the T-derivatives 6efined again as in (2.1), (2.2), and the z-derivatives defined as in (3.5),
(3.6), the value off at T+ AT is obtained with second-order accuracy. The updating rule (3.7) and (3.8) are the
same as in the MacCormack scheme.

At the risk of increasing the domain of dependence, but with the goal of modularising the algorithm, we have
used three- and four-point estimators for each first and second derivative, respectively. We have also extended
Moretti's algorithm to a nonuniform mesh to handle the longitudinal refractive (left and right) mirrors: the same

one-sided differencing (to satisfy the law of causality) is used for both predictor and corrector steps. Neverthe-
les, we derived, using the theory of estimation. conveniently presented by Hamming (431, second order deriva-

tive estimators at both the predictor and corrector levels. As a result, the overall accuracy of Moretti's scheme
was increased.

,,, ..: ,."*...- -,." . . . . . .. . .



;,,, . =o..9 ., j . , t.. ." . . . . -. .. -, - 7 . -• . - o-,, .- - . 7 ,- --1' ,j ." -.

S PP. Matter et aL / Counter.beam propagation in a cavity

4. Order of error for straiht-line predictor/corrector

We consider the following predictor/corrector scheme as suggested by MacCormack

predict: +6.,- .6,', (4.1)

correct: fi1., +A (4.)

where 7 indicates predictedi corrected and f exact values. Assume that the derivative estimator for prediction
has an error of order p and that for correction of order c, so that:

J", 3 j,+ 0(SP) (4.3)ffA+1 fnR+I + 0(6) (4-4)..

where 0(61) is a sum involving terms in 6 to the power i or higher. Combining (4.1) with (43) and (4.2) with

(4.4) we get:

predict: -A.,. + sr. + O(BP+I). (4.5)

correct: A ., =If , +f,, +6f.., +O(6c')] . (4.6)

The Taylor series expansion forfn. t is:

62
f,,, f, + 6fl + - f" + 0(63 ) . (4.7) "

Combining (4.7) and (4.5) we get the predictor error in. I as follows:

,. =f", -4., f- =j f. + +f + ( P)+-f -af,+ 0(8" )

f .2 +40(6p ') 
(4.8)

Thus
eW. = (6 1 ) , fo r a ll p > 1 (4 .9 ) '

Consider now the corrector error:

* ~ 2

U. .i(f,";

+,f ., f.a + -) + 8+, +,

gI 1f, 82 +O( ),. 5+)O(SP.i). (4.10)= 8 +L 8 0 ) + ( p l  (4.10) "'

But

f,;, -+ +I . f +0(5 " ). (4.11)

Thus

f .- A l * t 8 ,2 + 0 ( 8 ) . (4 .1 2)

2 22

^7,

t t " 
"

" "**. " " '" ;' " " " " ' U .."' "".". " "'U" ." .,• ,i.". ,



-:'-

F.. Ahttar et aL / Counter-beam propagation in a cavity 9

Whence
00 +.. =( ) 0(6"+ ) + 0(8p* 1)  (4.13)

or

*n4't •0 ~m~(3 ) (4.14)

Thus the order of error for the predictor/corrector is the minimum of 3, c + 1 and p + 1. If c 2 and p 2, their

. Comparison table between weighting coefficients for derivative estimators using Hamming's estimation theory and Moretti's law
of forbidden signals

*.Hamming: + . fi.o(62)-'.,+ o( 2)

2 2

Moretti Hamming

PmeActor

S+n-N + I a f(I) In++ fn 2 +06, f o )

f;--'. S2-.-3
2  
+ 0(8

3 )

2 2

f - , f'
9 + o()

Corrector

- - g + o( )

N+I- +7,.1 - f,.- ,,.-F-. + " 2 o(6 )
W2

A+1 22 + 2 3-

4 fn - a2 +0(62 62 _O(+) )

I ; a but

-=.-f 2+ + 0(63
2

(J, +f; +-f ) 0,(3) 06

4. -- 0 +

24

5f;+ .4f "2 +o(63)

.+,.. .*#.***.4* ,,,- .. ..... .... . .. .. .... -...... .... .. . .,,_- ..-... ,. + .',,, : :,,. :, , ", , = , ++ • = ,, q ~ . . . , ,r., , .. - - .. , .. ,, . . . .. * .. .. + , - . , . .
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second-order errors effectively cancel out. From the above, it is clear that for maximum accuracy with the
.straight-line predictor/corrector, the derivative estimators for both prediction and correction should guara-tee

at least second-order accuracy. Anything above second-order accuracy, however, will not necessarily improve
the results.

S. The effect of prediction error on correction error for a weighted formula estimator of the correction derivative

We investigate derivative estimator formulae of the type:

, ".(5.2)

so that (5. 1) has error c.
In applying a straight-line predictor/corrector with such an estimator for the corrector, we observe that the

error in the estimated corrector derivative, since it based on predicted values, will also depend on the error of
prediction. From (4.9) we know that the error in predicted values is O(2) for any reasonable derivative estima-
tor. Thus we may write:.

Yn -I (I) A -I (I) 00(5.3)

Applying formula (5.1) to (5.3) we get:

rcti = f"f.,(X) ra~ +1(xd +OW) (5.4)

Thus, using (5.2):

A+*1  A"+ t I +0(81 ) +0(ha)s +e0(8minc.2) (5.5)

_ ITherefore the effective error of the corrected derivative cannot be increased beyond 2 for a straight-line correc-
tor. It makes no sense to use a formula of type (5.1) with c> 2. From the theory of estimation, conveniently

- presented by Hamming 43), this means that only three weighting factors ay, r, a need be used. See table I
for comparison between weighting coefficients.

* 6. Approximiating linear operators

Let 7., (X IX, - 3 , x,),x, < x1 for i *. Consider the functionfand let Ax) and W be the column vectors

Ax2) W2
iG) A x,) () W (6.1)

Let L be a linear operator. We seek a vector Wsuch that:

f= W - . ,) '+. (8.)

-. * - '*".
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where 6 u maxi (jxj.I - xil), i 1, .... m - 1. We approximate f by a polynomial P1 of order m - I which agrees,
exactly withfat pointsx 1 , x 2, x 3 , ..., xm:

P.(x) L L(x) fx) , (6.2) -

where Lir, are the Lagrange polynomials for x. It can easily be shown that

x) -Pr(x) + R. 3F; x) , (6.4) P

where the remainder term R(f, X; x) is

I1 ;x) - (x -x1) X Q(5") (6.5)

for some 0: x 1 4 9 <x.. Let X11 be thG coefficients of Lim so that

Lim,(x) = )fix', (6.6)
1.0

~ yielding

m rM-

• ",'AlX) as j A~Xj) ri Afi + R(f' x; x) . (6.7) -

, Applying L to both sides of(3.7), we get

f(j1- E flxi) E X, Lx' + LR(f. X x) . (6.9)-
i.-"nrI

/=I 1-0
r

Define the column vector MM as:

[~aJ.Mm (X

and let Am(X) be the matrix of coefficients of the Lagrange polynomials on .Then (6.8) may be rewritten as:

Lx) ff- (Am(X)Lm(X))T (9)) + L(,f;x), (6.9)

where superscript T represents the matrix transpose operation . We propose the vector

.% W = Am()LM,(X) (6.10)

as our weighting vector. Note that this vector is independent of the function f.
*Eq. (6.9) represents a formula for estimating a linear operation on a function given the function's values at a set

of points. Unfortunately, little can be said at this point about the error term LR(f , .x) for arbitrary L. Let us
concentrate our attention now on derivative operators. In this case:

-R(f, X;:x)=- d-- H] (x-x i "
dx d- M! 1=.

.%°

.4

% 4 . - • . , • . . . .. . .
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.''N

81( (x - xn) +Am)(o)- 1
M~l) Xi)x+xiOj

" f~m~l)( 1 (X-.,)+f1-)(0) F(x-x,)+Z=  l=I(x-x,) ,(611 .

M!L &.LG i-l lial /-1 i1

since e is in general a function of x. Let us further restrict ourselves to cases where x = Xk for some k. If we assume
that f')(0(xk)),fJ'Nl)(8(Xk)) and (dO/dx)Xx-,xk are defined, then the first term above cancels yielding

dR(X -X) + ZF - Xi) (6.12)
/=i *1

If k = Ithen all the terms under the summation sign will vanish yielding:

,R(f, X;x)l ., ( (x, -x ) (6.13)

d m)(O(x 1 ))

-R(f X =x ( [I) (x I-xi). (6.14),X)x z M k*i=

The absolute value of this error term is clearly < 0 (6 '- 1). Thus if m is the order of approximation of formula
(5.7), then m - 1 is the order of approximation of formula (5.9) for the first derivative operator. Similarly, it can
be shown under suitable conditions on 0(x) andf(0(x)) that

[. R(rT;x) 0(a"-"). (6.15)

7. A three poin t estimator formula for the first derivative of a function

From the results of section 6, we know that a three point formula of type 6.9 should yield an error of order
2. To define the Lagrange coefficient matrix, define the fundamental polynomials as:

V Wrx) H (-x,. is (7.1)
/woli

~~Then the three point Lagrange coefficient matrix is..

•X2X 3  -X 2 - X 3  1"

A3 XJ gil -XI -X3 I 1 "7.2

'rf(X2) 1r2(x2) f2(@) I(7.2)

. xJx2  -Xt - X2  I
"', Ii (.'¢3) -7(X 3) flX ) .,

Let DI, D 2 and D 3 be the weighting vectors of formula (6.10) for the derivative at points x1, x, and x3 , respec-
tively. Since

d (o)
13() (7.3)%

in 
%

... . _', . ". , €'
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we have

A '0 X'xt

- .2A3. 1 . (7A

or

DIA3jJ (7.5)

which yields the forward, central and backward differencing estimators, respectively,

(2x 1 - x 2 - x 3  xt -x 3  x 1 -x 21
D,= (7.6)

2 Ix2 - x 3  2x2 -XI -x 3  X2 -x, (7.7)
wr1(x,) nr2(X2) ' i 3 X)

-X ( 3 X2  X3 -XI 2X3 -XI-X2\D 3  - - (7.8)
, (x,) ' ,r(x2) 'r 3( 3) /

To simplify the expressions, we introduce the following

6 1 Ox 2 x- , 62 =x3 -x 2 , 6=J(x3 -xi)= (61 +62), (7.9)

* --- 2p,+l
On,1(I- )_L 2P, + 1 ,  P2 __(2 -- = 2p2 + •

* ~ 2\ I 62

The fundamental polynomials then become:

'F(XI) =(XI -X2)(CI -X3)-61(61 + 2), 7f(X) (X2 -XL)(X -X3) =-6162 ,

lr] (X3) - (X3 - x* -)X) -) (61 + 62) 82 (7.10)

The weight vectors for our estimation formulae then become:

-26,-62 61+ --6, =(6__6_)2 () (7"11)D, 1(2 L2 (' +2)' 31)(7.11)

(-(+ -P),2p 162 + 2p2 + I -(I ( 6( +p6),2+(p +p2),-( +PI))

66

(___2_ 62 -61 )1
D2 (1(8 +62)' 8182 (16 2) 2

-1 +62 82-61 611= 1 2,P IT I (7.12)
TI+8 71'6162 '2 1 -(.p)p -z7P)

( 62 6-1+62 (S 26 I6)-66 + (662)62

, 2+ -+ P), -+ ) - + pi+P2), +PI) (7.13)

,+-8 k 6,' -6162 T 6±=(~P)

,,-. . ' , .. ,.-. --, . .. :. -j -.. ... ...- - . ,- . ,*.. ** ., i.-,.. . , . , .. ,-
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8. Treatment of longitudinal boundary

When treating any point within the cavity or at either longitudinal boundary (where a partially reflecting mirror
is situated) there is no problem. But, for example, at z = 0, e is determined by eq. (2.35) and not through pre-
vious predictor/corrector formulae (7.1 l)-(7.13) as only e- is calculated at z = 0 in that manner. However, for a
point one increment (6 = Az) from the left mirror, one encounters difficulties calculating the forward wave. The
second needed point, which is vital to the formulae, would fall outside the cavity. An identical difficulty arises
from the counterpart backward wave with respect to the right hand mirror. The field traveling from the right is
defined at z = L by eq. (2.36).

To deal with this situation one has to modify the predictor/corrector schemes so that an increment 82 is used
instead of 6. The loss of that second point, which reduces the accuracy of the derivative estimator maintains near
the mirror the same order accuracy. One must compensate this loss by locally reducing the mesh size.

9. A three point estimator formula for the Laplacian of a function

We seek a weighting vectorL-= L !2such that
V- atf

8x + L -I.. ,X2 . (9.1)

Because of the linearity of all operations, this may be rewritten:

21, - 2 D -• f(.f) + A-. A-) , (9.2)

where D is the weighting vector for the first derivative derived in the previous section, and 2 D is the weighting vec-
tor for the second derivative. To find 'D, we note:

D x2 0 (9.3)

so that our equations become, using the notation of the previous sections:

A3 2DX] 3]= ( 2- -2 2 2) 1

2= +L ,  +I L2 = (I + , (2 +P P , + ). (9.4) P2,

Note that this formula is independent of x. Combining (9.4) with previous results, we get the following weighting
vectors for our Laplacian: "

4 6 \+P2 6 (0 1 + +P2 )I \\ I\ p 1 \

4
a2 l - I 4) 2, 2. 6) 1 - +L I + p )(9.6)

ZV -2

L3=2+ L 1-),-221.1(
2 X -c 2ZV
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(2) (9.7)

If we introduce the variables

(9.8)

2 " 2(9.9)
2. +26

d- = ,+6 2). (9.10)

The formula simplifies to:

1 1 3 d 2 x d (2 dx I
£,= 1-2t+r 1 ,- 2- 2- d+Q' 1 +r)(x), 1 -+r

( l)+ d
2 X2

+3 d
- L3 =1 (I +1± +, (i4) (2 + 2. -+ (r, + r2 ) (+ -A))_ +~ 7  (1rAi) (9.13)

It should be noted that, since the Laplacian involves a second derivative and only three points are used, the above
formulae will lead to error term of first order in 6 (or d).

This section can be readily extended to a four-point estimator. The details of the derivation can be found in ref.
(441.

4 10. Concluding remarks

Most features of the numerical model used to study temporal and transverse reshaping effects of short optical
pulses counter-propagating in a nonlinear Fabry-Perot entry have been presented. The derivation of the differen-
cing formulae was summarized. The experiment strives to achieve a rigorous analysis of this nonlinear interaction
with maximum accuracy and minimum computational effort. The applicability of Moretti X-scheme developed in
gas dynamics to this laser physics problem has been demonstrated. Extension of his method to nonuniform grids
were carried out. To facilitate the legibility, maintainability and portability of the program, as well as the imple-
mentation of further extensions of the planar wave theory, structural modular programming techniques have been
used. The resultant code is concise and easy to follow. Results of this algorithm will be presented elsewhere.
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* "The complete mathematical modeling of nonlinear light-matter interaction is presented in a hydrodynamic context. The
*" , field intensity and the phase gradient are the dependent variables of interest. The resulting governing equations are a gener-

alization of the Navier-Stokes equations. This fluid formulation allows the insights and the methodologies which have been
gained in solving hydrodynamics problems to be extended to nonlinear optics problems. To insure effective numerical treat-
ment of the anticipated nonlinear self4ensing phenomena, a self-adjusted nonuniform redistribution, along the direction of
propagation, of the computation points according to the actual local requirements of the physics must be used. As an alter.
native to the application of adaptive rezoning techniques in conjunction with Eulerian coordinates, Lagrangian variables are
used to provide automatically the desired nonlinear mapping from the physical plane into the mathematical frame. In this
paper we propose a method suitable for the solution of the described problem in one-dimensional cases as well as in two-
dimensional cans with cylindrical symmetry. To overcome the numerical difficulties related to the inversion of the Jacobian,
an analytical algorithm based on the paraxial approximation was developed.

1. Introduction

When sufficiently strong optical beams propagate through nonlinear media, significant self-action phenomena
[II can occur and the propagation characteristics are significantly altered from the vacuum propagation [2]. In
particular, self4ensing associated with the nonlinear index of refraction of the medium appears. The correspond-
ing nonlinear beam distortion due to the nonlinear interaction can be rigorously solved only by using appropriate
numerical methods ;-ce the equations are far too complicated to be handled by any known analytical techniques.

Should the beam focus along the direction of propagation, its transverse dimensions will drastically change at
the focal point from what it was at the aperture. It becomes necessary that the transverse dimensions of the three-
dimensional grid shrink/expand in size as the focal point is approached/passed [3-8,17].

For the nonlinear interaction, the actual desired shrinkage/expansion of the transverse mesh cannot be guessed
a priori; it must be locally determined by the solution to the problem itself. It is therefore necessary to have the

% A numerical algorithm associlted with the hydrodynamic analogy of quantum mechanics was previously developed by the
same authors, uslin explicit finite differeicing methods in Eulerian coordinates as well as splitting and self-adaptive rezoning.
The a was presented at the Second International Symposium on Gas Flow and Chemical Lasers, Western Hemisphere
(1979) heMl on 11-15 September 1978, at the Von Karman Institute of Fluid Dynamics in Belgium.

*e P.,s spported by tit Research Corporation, the Army Research Office, the Office of Naval Research and the Interna-
tioal Division of MoiL Prsant address: L2ar Spectroscopy Laboratory, MIT, Cambridge, MA, USA.
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2 F.P. Mattar, J. Teichmann / fgh intensity later beam propagation

three-dimensional space grid changing concomitantly with the actual beam shape and size and the local wave-front.
To avoid oscillatory behavior associated with the decomposing of the electric field into its real and imaginary
parts, it is necessary to describe the field using the modulus and the phase [9-121.

The present paper deals with the hydrodynamic analogy [11,12] of the problem of nonlinear propagation.
In this approach, the evolution of the beam is interpreted in terms of a flowing fluid whose density is propor-

tional to the gradient of the phase. This description allows the treatment of more slowly varying dependent
variables and yields equations of motion that are similar and equivalent to those obtained by the method of mo-
ments used for the average description of the beam propagation characteristics [ 1,1 3-15]. Furthermore, this
scheme could allow even larger and coarser marching mesh sizes if it were used simultaneously with an auto-
matically adaptive nonuniform rezoned coordinate system. The set of governing equations thus obtained is a
generalization of the Navier-Stokes equations [16-18] that describe a compressible fluid subjected to an internal
potential which depends solely and nonlinearly upon the fluid density and its derivatives. This internal potential
is often referred to as the quantum mechanical potential.

A further transformation of the dependent variable, namely the use of the natural logarithm of the density, is
also introduced [17] to simplify the numerics. To generate an effective and reliable computational code with
modest storage requirements, one usually introduces mapping techniques which consist of various function and
coordinate transformations. An alternative method to this systematic is the adoption of Lagrangian coordinates.
The Lagrangian approach (19] operates with the displacement of a fluid element, following the temporal evolu-
tion of its trajectory. In this way, one easily finds the evolution of the phase and the energy in the plane trans-
verse to the direction of the beam propagation. Hence, the system of Lagrangian trajectories corresponds to the
automatic self-adaptive nonuniform rezoning and mapping techniques used in the usual Eulerian system; it
should also ensure an optimum redistribution of the computational points during the calculation in the various
regions of interest. Furthermore, the number of equations is reduced (in comparison to the Eulerian description),
and the coupling between the different variables is strengthened, thus accelerating the rate of convergence of the
algorithms.

The organization of this paper is as follows: section 2 presents the equations of motion. Section 3 is devoted
to the energy conservation and the motivation for an identification of physical variables. Section 4 introduces
the fluid description. Section 5 reviews the method of moments. Section 6 summarizes the proposed algorithm
based on the Lagrangian formulation. Section 7 presents the conclusion.

2. Equations of motion

For the class of problems describing the propagation of optical signals, the slowly varying envelope approxi-

mation is usually adopted, namely I ]

where z designates the-propagation direction. Assuming that the complex amplitude e(r, r) changes by a small
fractional amount, temporally in the optical period 21r/wo and spatially in the optical wavelength 2,rc/wo, the
field equation becomes first order in z and t and reduces, for a linearly polarized light, to the quasi-optics equa-
tion

io . noa.,,;" - --2€€o I T~ e +- - - e - -tle: le.( )

Here, no is the linear index of refraction of the background material, - is proportional to the nonlinear part of
the refractive index n2 , n = no + n 2 let2 e. The differential operator V72 is the transverse Laplacian in Cartesian
coordinates. The time scale is normalized to a characteristic time of the input pulse and the transverse dimen-

, Et
!" '.
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sion scales to a characteristic spatial width rp of the input pulse. The input beam is supposed to have azimuthal
symmetry. By introducing a moving frame of reference,

7 "Z, 7- t - (n/c)z (3)

the quasi-optics equation (2) reduces to the nonlinear Schr6dinger equation:
i Vc~ + -e -t 1e2e. (4)

3. Energy relations

By multiplying eq. (4) by e" and adding the complex conjugate, one obtains (with -7 I + i-)'2 )

i C_i c(eV2te" - e*VTe) + -leal =2-Tile41 5 l
21yo no (5)

or equivalently

VT" JT + aJz/aq - 27h le'l, (6)

where J, 1e2 1 "A 2 ,

r JT (2wene)'cVT (eVTe* - e VTe) (c/no~o)[A2 (VTO)].

In the last relation, the polar representation of the complex envelope was used:

e -A exp(iO), (7)

where A and 0 are the real functions of coordinates.
The components J, and IT represent the longitudinal and transverse energy density flow. Thus, the existence

of the transverse energy density current is related to the transverse gradient of the phase 0 of the complex field
(7). When JT < 0 (i.e., VTO < 0), self-induced focusing dominates the spreading due to diffraction [201. The
choice of the intensity A2 and the gradient of the phase 0 as new variable is physically enlightening and elimi-
nates most of the oscillatory phase difficulties (21 associated with the use of real and imaginary parts of the
electric field.

4. Fluid description

Let the nonlinear polarization on the r.h.s. of eq. (4) be written as

pt." -N (XR + iXt) e - XNLe,  (8)

,, where XR and X, are real functions of A. Using eq. (7), one obtains from eq. (4) the transport the the eikonal
equations (no a koc/wo) (211:

2 A2 4€ rw(
ko!A VT01-- 25 xIA 2 ,  (9)

2ke ±0 + 0vTo)" A 20 (10)

The transport equation (9) expresses the conservation of beam energy over the transverse plane. When X, = 0. the

4, - ¢.+. ,,-, ,.. . -%-... • . _., - . . -* . - . . .. . - . . , -. . - . -. . .. . -. -
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total power is conserved along the direction of propagation. The eikonal equation (10) describes the evolution of

the surface of constant phase. It has the form of the Hamilton-Jacobi equation for the two-dimensional motion
of particles having unit mass and moving under the influence of potential [I] given by

I 1wr,.'V v - (V2TAM,-' - -2XR, (11) -

if kotz is regarded as time coordinate and ko.x, koyy as spatial coordinates. Furthermore, if one adopts A2 and
VTO as new dependent variables, the equations of motion become similar to the continuity and momentum
transport equations of ordinary hydrodynamics.

By defining

usko-'VTO, P"A 2  (12)

and supposing Xi - 0, eqs. (9) and (10) can be written as
au) I-V l-]+2(T)

- ( [ - ( ,7 + ( ,, (13)
o ko

S V(14)

a-, These equations are the momentum and continuity transport equations of a fluid with a pressure P = (VNH )/vi.
It should be emphasized that this pressure depends here solely on the "fluid density" and not on the "velocity".
Eq. (13) can be rearranged into

.-- VTV (VIP) I (VTPXVTP) +2a (V7 P). (15)

where I is the unit tensor.

S. The averaged description of wave beams in nonlinear media, the method of moments

The existence of constants of motion and conservation laws, even in a limited number, is very useful for
obtaining insight into the dynamics of the self-action phenomena associated with the propagation process. To

- analyze the nonlinear quasi-optic propagation, Vlasov et al. [131 extended the method of moments, originally
developed in connection with the transport theory. In this theory the problem of finding a certain distribution
f(t) is replaced by that of determining the moments Mn f: "ft) d of this distribution, which are usually
more easily calculated than the function f(t) itself. Knowledge of all the moments allows the use of known
methods to reconstruct the form of the function f(t). A simple expression for estimating the width of the dif.
fracted beam is derived in terms of the zero, first-order moment and second-order centrifugal moment integrals
of the incident field. These moments are integrated over the full beam cross-section and are, therefore, functions
of the propagation coordinate only. The theory of moments only holds when the susceptibility is a function of

2eJ, (i.e., when the nonlinear index of refraction is a cubic or fifth-order power in the field).
The starting point of the method of moments is the recognition that the existence of a hierarchy of conserva-

tion equations (13,15]

aw a
" . - J ,  TJc 2VT, -[Tr(T)] -V.Q, (16)

implies a relation between the conserved quantities and the time derivatives of the moments of w. Here, w is
scalar, J and Q are vectors and T is a symmetric tensor of second rank having the trace Tr(T). The first three

a.JS
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moments of w are deffed as follows:

w-fdV w, S fdVnv, f d Vr2w. (7)"". w .Qd)2:fvrw 17

1eintegrals ar ae vrtevolume in which the field quantities are defined, and r is the position vector.
Using the Gauss theorem, it can readily be shown that

dW 42S d3--- -- I,,f) - 0. ...

In deriving these results, it was assumed that

i.sJh- Q i.t- T=0

on the dosed boundary Z with normal ; of the volume V. If E is at infinity, all integrals converge. It thus follows
that

WWo, SSo+ut and (Q,2ff)-Q~o+2c t+c 2t, (18)

where So = S(ta 0),Q- Q(to) and

0- fdvJI,.o, c, -- fdvF.fl,,o = --- fdVTr-.. 0 .

The relations (18) have a simple physical meaning: the energy W of the field is conserved, the energy center S
moves along a straight line with a constant speed u and the square of the effective radius of the bunch, Qr,
varies according to a parabolic law (for t -' 0e Qffr t). It can readily be verified that the conserved quantities
satisfy

,vuj-JdV~w and c2mafdVr'w. (19)
V V

The hierarchy of conservation laws is satisfied by Maxwell's vacuum equation when W is the density of electro- .'-,

magnetic energy, J is the Poynting vector and T is the Maxwell stress tensor.
Using the transformation (7) and introducing the fluid quantities (12), one obtains for the quasi-optics equa.

tion (4) where t-.1, v VT and- 1  0..

w=p, J=pu,

Tpi = [(-- PXVp ) p U + )4)+-. .50p2], ,p=x~y, .

Tr(T) [(Vlp) - t 1 (Vp)2 - 2 "g.. ) + 2koP 2 ], -

p1 2k P( .--I

(Vr[VT " (pu)l -(VTP)(VT • 1+(V4P)- 0P- +(VP)l -V(T .) } + L-P . (20)

The equation of the effective beam radius is now

Q2' -L0 + 2hCn + C2n2 (21)

with the following constants of motion:

W. fdapIlls0

,

...I ., : , 0 -,r . , , , , ' i .% - , - -- - ..-



6 F.P. Maftar. J. Teichmann / High intensity laser beam propagation

Q20 6 f4o r2, oP .

C-I fdo. r- 

Jdo {(V2p) - p (VT/) 2  2k2 p(V U) + 2-%k 0 9} ., (22)

The beam quantities (20) verify the conservation relations (16). The invariant c1 is related to the transverse
energy current. In terms of amplitude and phase, the integrand is A 2(r. VTO). This shows that when the trans-
verse current of energy, which is proportional to the transverse gradient of the phase 0, is negative (VTO < 0),
self-induced lensing dominates diffraction spreading. It should be pointed out that these results only are valid for
a nonconfined beam of finite power. The integrals in the x, y plane around the outside boundary of the beam

.. cross-section can only vanish if both e and VTe vanish. This is not possible on a finite boundary unless e
vanishes everywhere. For a finite beam the boundary should recede to infinite. In the numerical solution it is
necessary to introduce a perfect conducting wall. The surface integrals remain finite, although small. For this
reason numerical solution will disagree with the average mean square radius calculated from the method of mo-
ments by a small finite difference.

A similar hierarchy of moments was derived via the quasi-particle approach [22]. An alternative to the
Schr~dinger picture [13] discussed here is the Heisenberg picture proposed in ref. [23]. Although both methods*%~give the same expectation values, the Heisenberg picture is believed to be simpler.

The method of moments as outlined here represents a local check to the numerical analysis giving the average
estimate for quantities related to e2 .

6. The Lagrangian formulation

Let us summarize the fluid equations taking the quasi-optics relation (4) with the nonlinear polarization term
in the form (9). One has for X, * 0 (nonzero gain or absorption)

*VT = X p. V+(u- VT)] =2k- PVT[PVT (p (23)

The second equation can be rewritten as

1V + (U .VT)v] =4 o VT[pV2.(n p)] + VTXRN17 ~~ U1T ko2*

or, by analogy with usual "fluid" equations, as

P[± + (U - VT)] f VTP + P2 VTXR, (24)

where the scalar function P is defined as

P [pV-(ln p)]. (25)

To elaborate the appropriate computational code, we transform eqs. (23) and (24) into the Lagrangian coordi-

nates [19].

,.%

• °,
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The two hydrodynamic equations (23) may be rewritten in the Eulerian coordinates (X= 0) in the form

D D
" +P VT U O,  P V VTP ,

where DIDr = - + u • VT is the Eulerian derivative describing the motion of the fluid element in a given point
of the laboratory frame of reference. Let us transform eq. (23) into Lagrangian coordinates in which the observer
moves with the fluid element. In this way, the local derivative a/a€ becomes equal to the total derivative D/I7
although the new coordinates will be related to the initial position of the fluid element [241.

6.1. The one.dimensional case

* Let X, nI be the Eulerian coordinates and X = Xo (1 =0 define the Lagrangian coordinate Xo. The speed v is
defined in the one.dimensional case as v aX/a/i.

The transformation relations are as follows:

nL

XWX(XO,10WXO +f drqv(Xo,€/L), 7
71L (26)

0
It thus follows that

Oa ax-, a a a axaa" ,aXo! axo' al.lL n x

The first equation (23) gives for X, = 0

Sap /aX\ - ' a ax

which integrates to the mass conservation law

3 pO(ax/axo)-'. (27)

The second equation (24) transforms with the help of (27) into

a2X a 1 /ax I- a
P u a- x P 4 ,OPjOj - Xi. (28)

Using eq. (27), the scalar function P reads in Lagrangian coordinates

a ax (~x F a \ ( ( ]} (29)

4,t(2(W) (Ta4 axO a
and eq. (28) gives, using eq. (29),
a2x I Yax1a xr 2ax\-' ( 2x V apx

atc a ) a L xax 'j'a x \(a+xx (ax- 2  a'x" (X.x-\1+,(ax' a
+ /-7 J Lfiio! fi~V~a )8 i)- i \+ o -ax~ -- o a-Sig XR (30)

The system of fluid equations (23) reduces to a single equation in X which has a second-order derivative in
variable 17 and derivatives in Xa up to fourth order.

For a nonlinear media with a nonvanishing XL, the first equation (23)

a a a I

WE 45xP p1Xo a1p X

U - U ,U ...-,

" +* ° 'oo m m','),- 2 3 ~ 2 2 3 4 ° " - , , s, , +,g' ;"+"+'","-" .TX OF) T,,X:-"".'.....''',',,,....O kiya ax a , a ,..-.,'."'"- ,1 a,-,, :.-.-+ ,- .-.. ,. ,:,:,,+ ax ,-,.... a.. (.,30).,.
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is transformed into

[~lnap X)] I

which by integration gives }L
(.) =Po exp J di'L XI• (31)

With this dependence of p onJIL, the second equation (24) reads

c.;exa L d 2xa 2 ax I XR exp(o d-qf XL}. (32)

6.2. Two-dimensional case in cylindrical geometry

In cylindrical coordinates, the system (23) reads
-' a a t a

3-1 p+ p r-p+ rar("Jr) PkX0

P,.7: tar ' 4k2 8r r ar a.J2 a
.4-

Introducing the Lagrangian variables roL, 7L

-E- rE(rOL, 0, 1?E-17L,

We find the solution of the first relation (38) in the form (for X, =0)

P=Po( 3  )'i Y FOL (34)

*2 4Let us define the fluid "pressure" by analogy with previous cases as

la- rp E (in i . (36)
400 1 E 'EL aE )

The scalar P is explicitly

1 /. -L I 2  IrE -2 a2 rE) 2 'arE 1'a3rE I a2rE,'-'.+.'kT _L _"o# L(i [a- -,o+ _,~,.- Ta-"oLJ" (37)

*.'.'% Finally, the eq. (36) becomes
a2,E ,raE )-' 2F F )-4a 2, 3 3 VL

aE - .aE rE  arE r arE Q rE

4 _-- a L rE . - - 8a -

I ( a ) - 3 E ( a r ) -2J[7( a 3a3rE)(J. rJ ) 8( E )-4(a 2E rA3
FE r "tFO Ll TLrOL ar.L ar8MO O L

I r...(E' /a 2 2 - + E 2 1 EarE 3-a'rE_] + r a
3401.J +~ a 7E~ r2~ E 3 r?, E aFL 3r?, ~ :an k0 OL 5FOL

.1

4 .. '
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In the case of the imaginary part of X, X, * 0 we have by analogy with eq. (32)

fe df L Xt ) '  XR- (39)

0E0 3rOL 0O arOL/ aroLXR(9

Details of the two-dimensional case in Cartesian coordinates can be found in ref. [251.
The evolutional equations (30) and (38) are rather complex due to the presence of the inverse displacement

gradient Jacobian 1,,. In order to obtain the evolutional equation more accessible to numerical analysis, we limit
ourselves to the paraxial approximation, assuming that the beam convergence or divergence, respectively, due to
the nonlinear polarization remains small. Let us introduce the Lagrangian displacement 4 (261

X=Xo+t, II4l0xol, ,._ 6Si=. (40)ax0  aXoi
The value of any function (field) defined on x, resulting from the displacement may be expanded in power
series of 4 either in form of Eulerian expansions defined at x(i), either in form of Lagrangian expansions defined
at xo(,q). Introducing the Eulerian expansions

p(x)=pO(X)+ 5p(x)+6 2p(x)+ .... u(x)= (x)+8U(x)+6 2U(X)+ ...

into the system (23) and expressing the first and second order changes 6 as functions of the displacement , we
obtain the following hierarchy of evolutional equations [24]. (We assume a/a17Uo = 0, Xi = XR = 0):

--- (1/2 Vk, } ;(41
0th order: (uo VT)Uo VT2k2 2 2  (41)

1st order:

S+ 2(uo -VT)1" + (UO VT)((Uo VT)-(k" VT)Uol + [(UO VT)k- (4 T)Uol VT.UO

= o VTfp312[VT (p V2 -2 1/ V1(p; 12 VT (po)](42)
-O POk' TV (T42O)

-~ 4k0

2nd order:

VT)[ + (UO VT) " -- (-VT)VO] +ttax 0 axo

+ '[( VT)Jo] "7T) (Vo VT) - VT)Uo + (W VT)['+ (UO" VT -(4 VT)Uo" VTIUO

S+R (u T) 2u° +,ii oia~o0 T*
ax0  ax 0,• ax0  ax0 TJ UO

VT P [[VT 0(po )1[PT  VT (Po)], PoLaxoaxo + (VT TP

2 + ,.o P , 1/ 2V2F
[A t (PO)1 -- /axo axot 2p0 detIL TP + Po- T 0L VT.

_xiao a p0 ol [A~,
%

"'+~-T T--i -P] o~a + 3o8P° + 2pol/2 ;(3

aX0 , aX0 1J - 2"  . VT)[VT (Po)] i ax+i ax 0o 
2 detia ) (43)

for dispersive media Xi * 0, XR *0 and the integration of the first equation (23) results in

p po(detq')- exp [(Ik o) di7' x,]. (44)
0

4. . . . . . ...
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The r.h.s. of the second evolution equation should then be completed by an additional term

2 7  TXR - (VT" ) V TXR}. (45)
2kQ

In case of an azimuthally symmetric beam we introduce cylindrical coordinates assuming that the azimuth 0 is
ignorable. Then

r 3r
detJ- .

ro aro

Under the assumption of the paraxial approximation, r ro + the hierarchy of evolutional relations reads
(Xi -XR = 0):

1 1afo/2 32 1/2
0o , 0 (46

iro 2kU& 8o ;. o ,, (46)
+i- a o a ) (

I) +a oPo )
r o o LT1-1o +ro ' 2 -- - div(pot) (47)...o,,,:.. 0 o ,0,o,

F a t au, 2 IF. aa aoo, o
- -" f +v,, --,, - +

+U1 [Vol + r , J aL 8-t
3 I- o i0 r-/ L L

8t aro ) doiv~pol]j 2po 8r' L ,O [div(po)]22 ata. ,a2 a
to ir ° -l 2t apvoria' + Vl/ tl ,. ^ls t2 i

Mo aro ar O o '-i-0 ta ro r

(P31 (adi) ar[V(po)]+_ [2 dpo t)] --~ - 2po([di+2 po t)f]}. ()

ro aro a 8oJ

0 (0 + 2~

A generalization of these equations for the dissipative case, yj * 0, Xi * 0 is straightforward.
In the two methods presented, the set of starting transport equations is combined, via the Lagrangian displace-

ment X on t in the case of paraxial approximation, into one equation for X or t, respectively. This equation [eqs.
(30) or (38), eqs. (47), (43) or (47), (48)] is further elaborated using a suitable differencing scheme. The virtue of
the present analysis consists in the fact, that only one variable has to be calculated. This differs our method from
Lagrangian analysis, carried out in the past [241.

7. Conclusion

By writing the paraxial scalar wave equation in a conservation form, one finds that it has the structure of the
hydrodynamics equation. On the basis of this analogy, the intensity of the laser beam, 1e12 , can be interpreted as
the density p, while the phase, 0, as the velocity potential (u = grad 0) of a hydrodynamic flow process subjected
to a pressure, which - in contrast to classical hydrodynamics - depends on derivativos of the fluid density.

It is noteworthy that this hydrodynamic approach to intense laser propagation in nonlinear media removes the
rapid numerical oscillations encountered when the field is described by its real and imaginary parts: the new
independent variables change much more slowly.

% -]
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During the nonlinear interaction, significat reshaping and beam distortion take place. To achieve accuracy and
efficiency simultaneously, one must resort to nonuniform grids which self-adjust according to the local require-
ments of the physics. Thus, the Lagrangian detcription - as opposed to the Eulerian description, which would
have required mapping and adaptive rezoning techniques - is adopted.

The continuity and velocity equations reduce to only one evolution equation for the Lagrangian displacement.
The resulting governing equation involves derivatives 3r/aro up to the fourth order. To overcome the numerical
difficulties associated to the inversion of the Jacobian, an analytical algorithm valid in the paraxial limit was

* further presented.
The object of this communication was to illustrate a novel transfer of effective computational techniques

gained in fluid and aerodynamics to optical physics [81 by emphasizing the fluid equivalency. The main goals of
this study were to (1) propose an algorithm which is totally consistent with the subtle physics requirements; and
(2) to readily gain additional physical insights in this essential nonlinear fight-matter interaction.

It is noteworthy that a recent independent research effort also dealt with the hydrodynamic analogy in a
Lagrangian description for nonlinear propagation in the atmosphere. However, an explicit algorithm was adopted
[261.
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Transverse effects in swept-gain superradiance:
evolution from the superradiant state 'S

C. M. Bowden
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Abstract

Results of numerical calculations are presented and analyzed for pulse generation and subsequent stabili-
zation in large propagation distance z , for a collection of two-level absorbers which are swept-excited by
an impulse inversion along the z-direction at the speed of light in the medium. The calculation is performed
using the coupled Maxwell-8loch formalism and for the conditions that T2 - T1 , T2 > > TC, g/K> > 1, where
T2 is macroscopic dipole moment dephasing time, TI is the longitudinal relaxation time for the absorber, Tc
is the characteristic superradiant cooperation time among the absorbers and g/ is the linear gain, g , to
diffraction loss, c, ratio. Results of the calculation for nonlinear pulse evolution and propagation for one
spacial dimension (planar case) is compared with the results for the comparable case where transverse mode
coupling is included.

Introduction

In 1975, Bonifacio, Hopf, Meystre and Scully' (hereafter referred to as BHMS) predicted the conditions for
which steady-state pulses having characteristics of superradiance (intensity .p-, temporal width . l/p . where
o is the density of absorbers, and pulse envelope varying in time as hyperbolic secant with characteristic
delay of the peek from the excitation) can be generated in swept-gain amplifiers. They obtained and analyzed
steady-state solutions of the coupled Maxwell-Bloch equations in the retarded time frame in one spacial dl-
mension z in the limit z - m for the initial condition that impulse inversion occurs at T - 0, where T - t
- z/c, in the retarded time. Exact analytical results under these conditions were obtained by BH1S for hom-
ogeneously-broadened systems for two special cases, T2 < < T1 and T1 T T2 , where T2 and TI, are the transverse
and longitudinal atomic relaxation times, respectively.

Subsequent theoretical work which followed the initial work of 6HMS addressed to the quantum mechanical as-
pects of pulse buildup from noise and the role of spontaneous emission in the small signal regime for a sys-
tem with small Doppler widthz and for a homogeneously-broadened system.3  Further theoretical work analyzed
the effects of coherent pumping, for the excitation, on pulse buildup, both numerically" and analytically s $,?

The first reported detailed experimental study of swept-gain superradiance"'s was for C02 -pumped CH3F.

Since Dicke's initial prediction* for the circumstances under which a macroscopic volume of atoms can
radiate collectively (collective, spontaneous relaxation), a large amount of theoretical and experimental "
effort has been devoted to the subject of superradiance.' Experimental arrangements for the study of super-
radiance has been identical with that for swept-gain superradiance.' ,'" Even though the two phenomena stem
from entirely different physical processes, the same physical model should account for both, each being a
limiting case essentially in terms of the length of the active volume of atoms. Indeed, the first reported
experimental study of swept-gain superradiance' also constituted a study of the evolution from superradiant
response of the system through swept-gain superradiance as a function of the length of the active volume
along the propagation axis.' o The experimental results indicate a continuous transition from conditions

, supportive of superradiance or superfluorescence through swept-gain superradiance in the asymptotic regime
of large propagation length z.

In this paper we analyze numerically, and interpret analytically, the evolution of the response of a
collection of two-level absorbers to swept impulse excitation, from the small volume, superradiant regime,
through the asymptotic, steady-state propagation at sufficiently large propagation distances z. We also de-
termine the effects of transverse mode coupling on the pulse generation' 2 and propagation.1

-
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The model is presented in the next section and the analytical results for swept-gain superradlance in the
planar regime obtained previously by SHMS1 are briefl reviewed. A comparison is made between conditions
for the observation of single pulse superfluorescencey and swept-gain superradiance.1 Results of the nu-
merical calculations are presented and discussed in Section III for the evolution of pulse area with propa-
gation distance z for the single spacial dimension. The evolution from superradiance to steady-state
swept-gain superradiance and their connection is explicitly analyzed and discussed. Results for a compar-
able case incorporating transverse mode coupling with a Guassian gain profile are presented and compared
with results for the planar, one spacial dimension calculation. It is shown that the effects of self-focus-
ing can be much more important in the swept-gain, steady-state condition than for the particular correspond-
ing conditions for superradiance. The results of our calculation are summarized in the last section and
future work connected with these results is outlined.

1I. Coupled Maxwell-Bloch model for swept-gain superradiance

BHMS showed' that if a volume of two-level absorbers is gain-swept at the speed of light in the active
" medium by a traveling impulse excitation, a solitary pulse is generated from noise amplification in the

amplifying medium and reaches a steady-state at sufficiently large propagation distance z, provided the
gain, g, to lossic, ratio satisfies the condition g/K > 1. The solitary pulse is characterized by super-
radiant-like features win' respect to pulse shape, intensity, temporal width, and delay of the peak of the
pulse envelope from the impulse excitation.

They considered the coupled Maxwell-Bloch equations in the retarded time frame, which is a frequently
used model for pulse propagation and generation in nonlinear media,

a. " L (2-1)
-T

2

-EP- (2-2)

3 c P - . (2-3)

In the above equations, P is the dimensionless macroscopic transverse polarization per atom, A is the inver-
sion for the two-level atom, T2 and T1 , are the dephasing and relaxation times for the polarization and atom-
ic inversion, respectively. The third equation,(2-3), is the linearized Maxwell equation' s in the retarded
time frame in the slowly varying envelope (SVEA) and rotating wave approximation for the pulse envelope E.
Here, the electromagnetic field envelope, E , is normalized to give the Rabi frequency' s C

-w- (2-4)

where Uzo is the matrix element of the transition dipole moment between the pair of atomic energy levels and
E is the electromagnetic field envelope which is a function of the propagation coordinate z and retarded

'-4 time T
: t- z/c . (2-5)

The other quantities involved in Eqs. (2-1)- (2-3) are

3 (2-6)
'2 0o

where g is the gain and X is the wavelength of the carrier frequency of the single mode radiation field en-
velope, o is the atomic density and To  is the spontaneous atomic relaxation time. The loss term in (2-3)
defined by K is the linear loss which arises because of diffraction as well as other dissipative processes.

BHMS considered the steady-state solutions of (2-1) - (2-3), i.e., the solutions under the condition

and the initial condition -

1() - 1. (2-a)

Equation (2-7) leads immediately to the adiabatic relation between the field and polarization,

,(Z-,T) (2-) ,
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This last expression can be used to eliminate P from (2-1) and (2-2) and steady-state solutions are found by
solving the resulting pair of nonlinear differential equations.

Exact analytical results were obtained by BHMS for two distinct cases, T2 < < T1 and T2 a T For
T2 < <TI:

C(f) a sech --T. (2-10)
TS s

where

T I T2  g-1)/C] (2-11)

Forg > , we see from (2-10), (2-11), and (2-6) that the intensity I of the steady-state pulse, I E2
varies as the density squared, I- p2 . whereas (2-10) and (2-11) indicate that the width Tj varies inversely

02 as the density - Iip. Also, from (2-11) the pulse width is always less than T2 whenever g > i. For
T2 a T1

:

The set of equations (2-1) - (2-3) reduces to the generalized sine-Gordon equation,

4- +1 z a-- sin *(&,z) (2-12)

where

1 (1 - e" ' ) (2-13)
Y

is the reduced time and

2 1 .
The angle s is the Bloch angle,

ca.~ (-14)
4.T

In the asymptotic regime, the space derivative term in (2-12) vanishes and the resulting solution, using
(2-14), is

where

T2T s -- (2-16)

and the time delay between the impulse excitation and the peak of the steady-state pulse o" is given by

0oa Ts log [cot o0] " (2-17)

Here, 0o is the initial Bloch-angle at r a 0 to account for quantum noise which drives the atomic excitation
. away from the completely inverted metastable state.

Again, from (2-15) it is seen that the intensity I - p2 whereas the pulse width Tw - 1/P . It was shown'
by BHMS that such pulses will evolve provided g/< > 1. The area of the pulse i is defined as the Bloch angle
$ at infinite time T , and is obtained by integrating (2-14). From (2-12) in the asymptotic regime, i.e.,
neglecting the first term on the left,

tan e s (tan 0o) e
g  (2-18)

Thus, given an initial Bloch angle %, for g/K sufficiently large, the area 6 approaches . , i.e., as large
as it can be for a single pulse. The threshold for 9 *T was determined to be

k(2-19
0L[9'] threshold . (2-19
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Any further increase in the gain-to-loss, g/c, does not increase the pulse area since it is saturated above
threshold. However, from (2-15) the intensity continues to vary as the square of the density and the pulse
width as inverse density.

The criteria, therefore, for the generation of steady-state pulses is that the active medium be swept-
excited at the speed of light in the medium and that g/< > 1. The resulting pulses have characteristics
of superfluorescence

1 , although for different physical reasons. The major difference in realizing the
two phenomena is that to produce superfluorescence the medium responds as though it were uniformily excited,

i.e., the atoms are contained within a certain cooperation volume, whereas for swept-gain superradiance,
the medium "sees" an impulse excitation traveling at the velocity of light in the medium. Table 1 compares
the conditions for single pulse superfluorescence in tc'- mean field limit", with the corresponding con-
ditions for pulse generation in swept-gain superradiance in the asymptotic regime. It is to be pointed out

*". that the essential physical difference between what has been called superfluorescence'4 and what is termed

swept-gain superradiancel is that the atomic relaxation for the former occurs by collective, spontaneous
relaxation e , whereas for the latter, individual atomic relaxation occurs by stimulated relaxation due to
pulse propagation in the medium.

Table 1. Comparison of Conditions for Superfluorescence in Mean Field Approximation with Sweat-Gain
Superradlance in Asymptotic Approximation

Superfl uorescence Swept-Gain Superradlance
Mean-Field Approximation Asymptotic Approximation

act xLP(t) - KCc(t) .e~ O) L P(Z,T) - 'z(z,T)

-T = t - z/c

P S K

3OL gL

TE < Tc < Tl < TO < TI, 172, T* g/ic > 1

. ,-T L/C T," (c<) "

T " TR log I = Tl og [cot o .
0

r (TETR)11 T= (TTs)

Here, TR is the characteristic superradiance time" for z = L, To is the aelay time" of the pulse peak from

the excitation, and Tc is the cooperation time" corresponding to the cooperation length Zc, Tc ctc. Note

that for L a Lc, TR a Tc. rO is the delay time of the peak of the superradiant pulse from the impulse ex-

citation.

We have calculated the evolution of pulse area for swept-gain superradiance as a function of propagation
distance z according to the relations (2-1) - (2-3) for the conditions Tl - T2 , g/sc > log (I/¢o) and for
T R < < T2 where T R is the characteristic superfluorescence time. Thus, we have determined the evolution of

pulse area from the superfluorescence regime (small z) through the asymptotic swept-gain regime (large z).
These results we compare with corresponding calculations taking into account transverse mode coupling and

diffraction for a Gaussian gain profile. In this case, the ?%xwell equation (2-3) takes the three-dimen-

sional form

-T + - d P (2-20)

where d " radial function describing nonuniformity of gain profile, n = z a and
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(2-21)
Xg

is the Beer's length dependent Fresnel number relevant to propagation effects. Here rp is the Gaussian gain
width at half maximum. The transverse effects arising from (2-20) are related to the planar case using
(2-3) by taking the linear field loss K in the latter to be entirely diffraction-loss, i.e.

X (2-22)

where A a wr . Thus, the Fresnel number ,j, (2-21), is

.a (2-23)

the gain-to-loss ratio. The results of the calculation and related discussions are presented in the nextsection.

III. Numerical results for propagation and transverse effects: Evolution from superfluorescence to
swept-gain superradiance

First we present the results of numerical integration of (2-1) - (2-3) for the initial condition (2-8)
and for T1 a T2. We have also chosen the values for the system parameters such that the superradiance co-
operation time,16Tr , satisfies the condition rc<< T2 (see Table 1), where Lc a c is the maximum length of
the sample over which the atoms can cooperate to produce superradiant emission. Also, the gain, g , to loss,
i . ratio, 9/ic> >log (1/*o),(see (2-19)), so that results of the last section predict steady-state pulses
of area 6 a w , Eq. (2-18),

The absolute pulse area 181

181 i (3-1)

is shown as a function of propagation length z in Figure 1. There are three distinct regimes evident in the
pulse area, et . propagation These are determined by the characteristic times for the system TRbI l l.pr p g t o evolution. e e m ndc a a tr t cs s e

(Table 1), and rs, (2-16).

The first regime, characterized by the smallest values of the propagation distance z shows a rapid rise
of the pulse area, (3-1), with propagation distance z. The area proceeds in z through ]el - v , correspond-
ing to single pulse buildup, to values tel > w , which eventually corresponds to subsequent ringing, and
finally peaks out at lei = 3, . This behavior is described by the sine-Gordon equation (2-12), with the
values of the parameters used in the calculation (see Figure 1). We have, for this particular small z re-
gifm,

c < sin 0, (3-2)

so (2-12) becomes

TT ct sin4 , (3-3)

where, from (2-13), T * r since in this case T/T2 < < 1. This is just the Burnham-Chiao propagation
equation' 7 , which yields the well-known solution for pulse buildup from gain with subsequent undamped
ringing.

From (2-6) and Table 1, we have

C1 a (3-4)
2c 'c

where Tc is the Arecchi-Courtens superradiant cooperation time which corresponds to the superradiant co-
operation length z a € a crc, the maximum length over which the atoms can cooperate collectively to
produce superradiant emission. Equation (3-3) yields

z/Z
d 1 f d, sin (3-5)

d' 'c %

0

Here,
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V " T/T and 6 , as in (3-1), is related to the Bloch angle 0 , by 9 - *(r- z/c). Thus, the initial
pulse bu~ldup in Figure 1 is governed by the superradiance time TR (Table 1) where -r -z-1 and TR - tC when
Z n 1c, and in this particular case, Lc - 2.68 cm. The region corresponding to 0 < I < ir we call the
single pulse superradiant regime, z < 1c, which is subsequently followed by Burnham-Chiao ringing. This
initial superradtant pulse buildup occurs in this case because Tc < < T2 .

After several diffraction lengths -1, the area (3-1) reaches a maximum and then decays as e" z to the
asymptotic steady-state e a w pulse predicted analytically in the last section, and shown in Figure 1. This
regime is governed by the characteristic time ts , (2-16).

The results shown in Figure 1 exhibit the pulse area evolution from pure superradtanceIe < w, through
Burnham-Chiao ringing, each governed by TR, to pulse area instability which subsequently decays by linear
field loss ic to the asymptotic steady-state r pulse. The necessary and sufficient conditions for evolution
from superrdtance to v-pulse swept-gain superradiance are that g/ : log 1/:o> I, r<< T .

The effects of changes in the value of the linear field loss ic , all other parameters remaining the same,
are shown in Figure 2 for four other values of K and, hence g/K. It is seen that asymptotic stability in

the pulse area is reached for lower z values the higher the value for the loss K , as one would expect. Also,
the higher loss and lower gain-to-loss reduce the amplitude of the pulse area instability peak, again as one
would expect. This further suggests that the transition from superradiance to asymptotic swept-gain super-
radiance can occur without intermediate ringing if (icc)-l < < Tc

When transverse effects are taken into account in the calculation, Eq. (2-3) is replaced by (2-20). The
transverse mode coupling is generated through the first term in (2-20), and its contribution is governed by
the Fresnel number .- , (2-21) and (2-23). This is not the conventional Fresnel number used in discussions
of superradiance and superfluorescence", but it is the one which is meaningful"3 throughout the entire pro-
pagation regime. Generally, the larger the Fresnel number J- , (2-21), the less the importance of contribu-
tions from transverse effects, (2-ZO), i.e., large .- means more nearly plane wave propagation behavior.

We use the values of the parameters and the conditions which gave rise to the one-dimensional results of
Figure 1, but choose the cross-sectional area A for a Gaussian initial gain profile from (2-22) and the value
of K used to obtain the results of Figure 1, where rp is the radial Gaussian width for the gain distribution,
and obtain the calculational results shown in Figure 3. Here, we show the pulse area (3-1) as a function
of propagation distance z and radial dimension p . Energy which intersects the boundary p - Omax is ab-
sorbed in the calculation; thus diffraction as well as transverse mode coupling is explicitly treated in the
calculation consistent with the conditions imposed by (2-20), (2-21) - (2-23). Thus, the calculation giv-
ing the results shown in Figure 3 is the three-dimensional extension of the calculation which gave the re-
sults shown in Figure 1. The pulse area (3-1) as a function of z for the on-axis mode is displayed in Fig-
ure 4.

It is noted by comparing Figures 1, 3, and 4 that the transverse effects almost completely wash-out the
instability in the pulse area buildup which occurs in the one-dimensional calculation, Figure 1. Further-
more, Figures 3 and 4 indicate a different kind of pulse area instability at higher z values which is due
to self-focusing. The qualitative effects of self-focusing on pulse propagation can be seen in Figure 5.
The results of the three-dimensional calculation indicate, therefore, that a true steady-state may not
exist, at least in the sense of the analytical predictions of Section 1.

Similar one-spacial dimension calculations for pulse area evolution in swet-gain superradiance, but
under the influence of lethargic gain conditions, have been reported by BHMS.

IV. Summary and conclusions

We have demonstrated the pulse evolution in one-dimensional propagation from superfluorescence to asymp-

totic swept-gain superradiance for ideal conditions supportive of superfluorescence '" and ir-pulse swept-
gain superradi ance. The results are shown in Figures 1 and 2. Transverse effects tend to wash-out the
early pulse area instability which occurs for the one-dimensional case as seen by comparing Figures 1 and 2
with Figures 3 and 4. However, as noted in Figures 3 and 4, the pulse area shows an instability in the
asymptotic region of large z when transverse effects are taken into account. This evidently arises from
self-focusing, Figure 5. Thus, in this case, a true steady-state does not exist due to transverse mode
coupling effects.

This work is in process of being extended" , " to the calculation of the effects of coherent optical
pumping and propagation as well as transverse effects for three-level systems5 ,

' for three-level super-
fluorescence and swept-gain superradiance and coherent pulse shaping due to specified pulse injection and

.r.: propagation in three-level systems.
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pulse intensity at large z.
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EFFECTS OF PROPAGATION, TRANSVERSE KODE COUPLING AND DIFFRACTION ON

NoniNR tIGHT PuLE EvoLUTION

F.P. Mattart

Aerodynamics Laboratory, Polytechnic Institute of

New York, Farmingdale, New York 11735

Abstract: The effective computational methods developed to
efficiently tackle transverse and longitudinal reshaping. associated
with single-stream and two-way propagation effects ia cooperative
light-matter interactions, using the semi-classical model are
described. The mathematical methods are justified on physical
grounds. Typical illustrative results of propagation in resonant
absorbers, amplifiers and superfluorescence systems are presented.

I. INTRODUCTION

This paper reviews the unified mathematical methods developed
for three-dimensional simulation of several physical phenomena pre-
viously studied independently. The same basic algorithm with some
alterations will simulate both superfluorescence1' and optical bi-
stability 3 '4 . With extra modifications, it can also analyze four-
wave mixing3 and phase conjugation6 systems. Further applications
include two-way Self-Induced Transparency7 and Soliton Collisions

studies.

The proposed model evolved as a result of close collaboration
with the experimentalists, H.M. Gibbs 9 " 1 3 , S.1. McCall 1 ' 1 3 and
recently, M.S. Feld13 , enhancing the rate of progress in the re-

TWork jointly sponsored by the Research Corporation, the Inter-
national Division of Mobil Corporation, the University of :cntreal,
the U.S. ArMy-Research Office, DAAG29-79-C-0148 and the Office of
Naval Research, N000-14-80-C-0174.
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search and leading to a better understanding of basic cooperative
effects in light-matter interactions. Quantitative analyses in
superfluorescence were obtained and are being developed in optical
bistability.

The model encompasses propagation that includes rigorous dif-
fraction16'15, time-dependent phase variation, off-resonance16 as
well as nonuniform excitation"9 and transverse and longitudinal
boundary conditions18 . (An additional control probe-beam is being
developed

21 .)

The adoption of proven computational techniques, developed by
Moretti22 24 in aerodynamics, to solve prcblems in the laser field,
is justified by the analogy between fluid and wave propagation
problems described. The laser beam evolution can be interpreted in
terms of an equivalent flowing fluid25 whose density is proportion-
al to the laser field intensity, and whose velocity is proportional
to the gradient of the field phase. This description allows for
the treatment of more slowly varying dependent variables and yields
to governing equations of motion, which are a generalization of the
Navier-Stokes equations 2 6 . In the fluid formulation, the equiva-
lent fluid is compressible and is subjected to an internal poten-
tial, depending solely, and nonlinearly upon the fluid density and
its derivatives; this is called the "quantum mechanical potential."
Furthermore, the field scalar wave equation mathematically cor-
responds to a complex heat diffusion equation with a non-uniform
functional source; while the Bloch equations, in a rotating frame,
are structurally similar to the torque equation2 7 . For two-way
problems, the simultaneous set of quasi-optic field equations (one
for each traveling wave) play the same preponderant role as Euler
equations in shock calculations for fluid dynamics problems.

Quite different effects, i.e., self-lensing28, self-phase

modulation , self-spectral broadening30  and self-steepening3',
previously studied separately, combine here to modify the pulse
behavior diversely at different positions and times. For example,
the interplay of diffraction coupling through the Laplacian term
and the inertial response of the non-uniform pre-excited medium
will inevitably redistribute the beam energy spatially and tempo-
rally32. This transient one- or multi-beam transverse reshaping
will profoundly affect the performance of any device that relies
upon it. Specifically, this pragmatic, three-dimensional analysis
helps in the interpretation of recent experimental results in
superradiance, superfluorescence, optical bistability and active-
mirror amplifiers for laser-fusion. It also accounts for deviations
and departures between recent experimental observations and predic-
tions of planar wave theory (see Fig. (1)).

To circumvent excessive ciemory requirements while insuring
adequate numerical resolution, one must resort to nonuniform

, JI
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meshes. In this large computational problem, the calculational
efficiency of the algorithm chosen is of crucial importance. A
brute force, finite difference treatment of the governing equa-
tions is not feasible. Instead, by using the details of the
physical processes to determine where to concentrate the computa-
tional effort, accuracy and economy are achieved. For example, if
for self-focused beams, a fixed transverse mesh is used, a lack of
resolution (see Fig. (2)) may result. A non-negligible loss of
computational effort in the wings of the beam will also occur.
Coherent Pulse Propagation Fig. 1. The state of the art

in coherent pulse propagation
I. Usual Theory is displayed. The theoreticaljy effort was restricted to a uni-

1 Dim. = (p) form plane wave prior to the
work of Newstein et al; where-

'Uniform Plane Wave' as the usual experiment was
carried out using a Gaussian

II. Usual Experiment beam. To simulate a uniform
2 plane wave, the smallest possi-

e(p) 4 ble detector diameter was se-
lected .as compared to the Gaus-
sian beam diameter (i.e.,

'Gaussian' , (i.e., ddetector << d

In particular, evenly-spaced computational grid points are
related to variable grids in a physical space by adaptive stretch-
ing (Fig. (3)) and rezoning (Fig. (4)) techniques. This mapping

consists either of an a priori coordinate transformation or an
adaptive transformation (FigT.5)) based on the actual physical
solution. Both stretching transformation in time and rezoning
techniques in space are used to alleviate the computational ef-
fort. The propagation problem is thus reformulated in terms of
appropriate coordinates that will automatically accomodate any
change in the beam profile3 4 40 .

Fig. 2 (a) Isometric represen-
tation of the beam cross-section
as it experiences self-focusing:
The cross-section decreases as

a b a function of the propagation

distance; (b) An isometric
display of the time integrated
field energy as a function of p
and q to illustrate the resolu-
tion limitation associated with
uniform mesh.

I!
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so

T-NonGaussian Fig. 3. Non-uniform pre-
Physical Time scribed temporal stretch-

T Unifom Con ing.
putational

I time

The resultant dynamic grid removes the main disadvantage of
insufficient resolution, where uniform Eulerian codes generally
suffer. Furthermore, the advantages of grid sensitivity can be
obtained by either using adequate rezoning and mapping in Eulerian
coordinates or by simply using traditional Lagrangian me-
thods 4 1 ' 4 2 . Thus, the convenience of moderate memory requirements
can be combined with the desirable numerical resolution should one
rezone the grids. The techniques due to Moretti 3 3 will economi-
cally generate precise results. Although this appears surprising
because of the mesh coarseness, his technique -succeeds because it
discriminates intelligently between the different domains of the
critical physical parameters.

Figure 4. Two-dimensional prescribed
rezoning for p and n. As the beam
narrows the density of transverse
points and the transmission planes
increase simultaneously.

p .

Fig. 5. Self-adjusted two-dimensional
rezoning for p and n to follow more closely .i

the actual beam characteristics. The
(normalizing) Gaussian reference beam is "

redefined during the calculation.

.. ,....,.....-....-..'..'................... ....... ..... ... .... .... , -...
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For the two-beam analysis, our approach relies on one-way
nonsyimetric discretizations of the longitudinal and transverse de-
rivatives as well as nonuniform grids. Numerical instrumentation is
unavoidable. The role of characteristics as information carriers
is emphasized and therefore the law of forbidden signals cannot be
violated4". The physical subtleties of the nonlinear problem can
be adequately implemented.

Interactive graphic software was developed to simplify the
physics of extraction from these complex codes. Structural modular
programming techniques are used, making the program easier to read,
maintain and transport as well as for further extensions and gene-
ralizations of the planar wave theory. The resultant code is
deceptively simple and easy to follow. This mathematical modeling,
motivated by Gibbs' and McCall's experimental work, is engineering
physics in its purest sense: its main goal is to obtain a numeri-
cal solution to and insight into a real physical problem, instead
of reaching a neat analytical solution to an idealized problem of
limited applications.

II. SIT/SUPERFLUORESCENCE EQUATIONS OF MOTION

In the slowly varying envelope approximation, the SIT dimen-
sionless, semi-classical field-matter equations15 (which describe a
system in a cylindrical geometry with azimuthal symmetry), are:

-iFV~ + 8e p1

a= eW - (iAQ + /t2)P  (2)
".. and

/a/a = -1/2(e*P+ eP*) - (W-We)/C1  (3)

where

e = (2PA)l e', and P (2/p)P', (4)

E = Re[e'exp{i(K/c)z-Wt)}]; (5)

with We the equilibrium value of W, subjected to the initial and
boundary conditions.

1. for T > 0: e = 0, W = W . known function to take

into account the pumping effects or the initial tipping
angle.

Jz.
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2. for q O: e is given as knovn function of t and p;

3. for all n and Z: [ae/Op]p= and [3e/8p]=Pa vanishes -3

(with Pmax defining the extent of the region over which
the numerical solution is to be determined). :

with k/c w

&ad 2_1 e (.'-
and -( p( -)I; (7) .-

after applying l'Hopital's rule, the on-axis Laplacian reads:

a V 2 2 32eV2= 2 a-e (s)
T 82

P = i Re[g,' exp~i(K/c)z-ktj]. (9)

The complex field amplitude e, the complex polarization densityp,v
and the energy stored per atom W, are normalized functions of the
transverse coordinate p = t/tp, the longitudinal coordinate qzzx.
leff, and the retarded time v = t-zn/c)y p (see Fig. (6)). The
time scale is normalized to the full width half maximum (IWIG)
input pulse length, T. and the transverse dimension scales to the

input bean spatial width r.. The longitudinal distance is normal-
ized to the effective absorption lengh,44 (a eff)' 1where

r2N'T" a "%

a = ('~ 1(10)eff n ic p

Here, t is the angular carrier frequency of the optical pulse,
p is the dipole moment of the resonant transition, N is the number
density of resonant molecules, and n is the index of refraction of
the background material. The dimensionless quantities

T1 = TI/T , and %2 = T2 measure the offset of the optical car-
*p p

tier frequency w from the central frequency of the molecular reso-
nance wa0, the thermal relaxation time TI, and the polarization
dephasing time T2, respectively.

Even in their dimensionless forms, the various quantities have
a direct physical significance. Thus o is a measure of the compo-
nent of the transverse oscillating dipole moment (p has the proper

"* phase for energy exchange with the radiation field). In a two-level
system, in the absence of relaxation phenomena, a resonant field
cause each atom to oscillate between the two states,

, • .. .... .., ..-. .-, . .. .-- .-. .-. .-..- . .. . . -. ..-. ..- , ./ - ... .-. ... ... ., .... ., .. .... _ .......: ..., .,. -.. ., .. , ., -.
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W=- and W IJ , at a Rabi frequency fR = e/2p = (p/*)e'. Thus e

measures how far this state-exchanging process proceeds in rp•

.01

t I CONSTANrr) )

• (a) (b) -

Fig. 6. Graph (a) displays the retarded time concept. Graph (b)
outlines the numerical approach: a marching problem along q for
the field simultaneously with a temporal upgrading of the material '"

variables along i.

The dimensionless parameter, F, is given by F=A(ae) /(4ir 2 ).
off) p

The reciprocal of I is the Fresnel number associated with an aper-• 1

ture radius rp and a propagation distance (aeff) . The magnitude

of F determines whether or not one can divide the transverse
dependence of the field into "pencils" (one per radius p), to be
treated in the plane-wave approximation.

As outlined by Haus et al"5 , the acceptance of equations
(1-3) implies certain approximations: eq. (3) shows that th9
product 'e#' of the electric field e and the polarization 1.
causes a time rate of change in the population difference leading
to saturation effects. Inertial effects are considered.

III. IMPORTANCE OF BOUNDARY CONDITIONS

When the laser beam travels through an amplifier, the trans-
verse boundary- has an increasingly crucial effect compared to the
absorber situation. The laser field which resonates with the
pre-excited transition, experiences gain; the laser which encoun-
ters a transition initially at ground state, experiences resonant
absorption and losses. A greater portion of the pulse energy is
diffracted outwardly in the amplifier than in the absorber4 ."
Consequently, these boundary reflection conditions play a substan-
tial role in the amplifier dalculations and obscure the emergence
of any new physical effects. Acceptable results are achieved only

*4..
t . . . ..... 
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by careful]y coupling the internal points analyzed with the bound-

ary points 7 . Special care is required to reduce the boundary
effect to a minimum such as using non-uniform grids and confining
the active medium by an absorbing shell.

In practice, the transverse boundary is simulated by imple-
menting an absorbing surface and mapping an infinite physical
domain onto a finite computation region (see Fig. (7)). In Fig.
(8), the first and second radial derivatives and the Laplacian term
are drawn. Figure (9) contrasts in the stretched radial coordinate
system, the transverse coupling and the electric field. The numer-
ical domain sensitivity and the physical dependence on the boundary
conditions can be readily assessed.

e

(a) (b)
Fig. 7. Graph (a) shows non-uniform stretching of the transverse
coordinate. Graph (b) contrasts the Gaussian beam e dependence
with the nonuniform physical radius p. Both graphs are plotted
versus the uniform mathematical radius R.

Fig. 8. This graph illuscrates the dependence of the radial
mapping and the derivatives on the different parameters versus the
uniform mathematical radius: First weighting stretching factor
8R/Op; 2nd weighting stretching factor, 32R/gp 2; weighted dif-
fraction term, VTPR.

a.
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a 0Fig. . This figure con-
trasts the Laplacian depen-
dence 't' for a given
Gaussian profile 'e' for
various non-uniform radial
point densities.

IV. PRESCRIBED STRETCHING

The numerical grid is defined by widely-spaced computational
nodes in the area most distant from the plane of interest and by
densely clustered nodes in the critical region of rapid change; the
latter being in the neighborhood of maxima and minima, or for
mlti-dimensional problems, in the vicinity of saddle points.
Resolution is sought only where it is needed. The costs involving
computer time and memory size dictate the maximum number of points
that can be economically employed. In planning such a variable
mesh size, the following must be kept in mind: - v

(A) The stretching of the mesh should be defined analytically so
that all additional weight coefficients appearing in the.--
equations of motion in the computational space, and their --

derivatives, can be evaluated exactly at each node. -This
avoids the introduction of additional truncation errors in the
computation.

(B) To assure a maximum value of AT, the mathematical grid step,
the minimum value of At, the physical time increment, should
be chosen at each step according to necessity. This means
that the minimum value of Ai must be a function of the pulse -

function steepness.

(C) The minimum value of At should occur inside the region of the
highest gradient which occurs near the pulse peak.

For example, following Moretti's approach,32 if

Titanh(ai) (11)

and a the stretching factor must be larger than 1, the entire semi-
axis T greater than zero can be mapped on the interval 0 < T < 1

.,'
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with a clustering of points in the vicinity of 't 0, the center
of gravity of the transformation for evenly-spaced nodes in t.

This mapping brings new coefficients into the equations of
--* motion which are defined analytically and have no singularities.

It avoids interpolation at the cmmon border of differently spaced
meshes. The computation is formally the same in the "T' space as
it was in the "c" space. Soame additional coefficients, due to the
stretching function, appear and are defined by coding the stretch-
ing function in the main program. A slightly modified stretching
function is used in the laser problem. Figure (10) illustrates the
transformation and its different dependencies on the particular
choice of its parameters.

~Cc)

Ta) (b)

ST

Fig. 10 Dependence of prescribed stretching 1 and its derivatives
at/aT on the point densities and the center of transformation
versus the uniform computational T.

,,

The derivative of the mapping function produced by the gradual
variation along the "T" axis is also defined analytically. In
response, the computational grid remains unchanged while the physi-

cal grid (and the associated weighting factors) can change a lot.

Should one need to study the laser field buildup due to ini-
tial random noise polarization (for superfluorescence), or an
initial tiping angle (for superradiance), one must use a different
stretching '. This stretching is like the one defined for treating
radial boundary conditions. The mesh points ae clustered near the
beginning (small T); their density decreases as T increases.N

I
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V. ADAPTIVE STRETCHING IN TIHE

As the energy continues to shift back and forth between the
field and the medium, the pulse velocity is modified disproportion-
ately across the beam cross-section. This retardation/advance
phenomenon in absorber/amplifier can cause energy to fall outside
the temporal window. Also, due to nonlinear dispersion, various
.portions of a pulse can propagate with different velocities, caus-
in8 pulse compression. This temporal narrowing can lead to the
formation of optical shock waves. To maintain computational accu-
racy, a more sophisticated stretching is needed. The accumulation
center of the nonlinear transformation is made to vary along the
direction of propagation. This adaptive stretching will insure
that the redistribution of mesh points properly matches the shifted
pulse, Figure (11).

Fig. 11 Adaptive stretch-
ing with different centers
of transformation.

Here, the transformation from ' to T is applied about a center
t C which is a function of q. The stretching factor a could also be
a function of r.

The field equation is similar to those of Section II, but
contains an extra term:

-i e+ qe T (12)

The role played by the time coordinate is different: an ex-
plicitly time-dependent term is now included.

VI. REZONING

The main difficulty in modeling laser propagation through
inhomogeneous and nonlinear media stems from the difficult7 of
pro-assessing the mutual influence of the field on the atomicdynamics and vice versa. Strong beam distortions should occur

based on a perturbational treatment of initial trends. One must

4j
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normalize out the critical oscillations to overcome the economical
burden of an extremely fine mesh size. To insure accuracy and
speed in the computation, a judicious choice of coordinate systems
and appropriate changes in the dependent variables, which can
either be chosen a riori or automatically redefined during the

.V.4, computation, must be considered (Figure (12))3340.

•This coordinate transformtion alters the dependent variables

and causes them to take a different functional form. The new
dependent variables are numerically identical to the original
physical amplitudes at equivalent points in space and time.

The requirements of spatial rezanvn will be satisfied by
simultaneously selecting a coordinate trdasformation (from the

S(a)b)

Fig. 12. The concepts of prescribed rezoning are shown in Graph
(a); Graph (b) is a close-up of the nonuniform mapped grid of
Fig. 2(b).

original coordinates p and n to new coordinates t and z) and an
appropriate phase and amplitude transformation. The chosen func-
tion transformation will share the analytical properties of an
ideal Gaussian beam propagating in a vacuum.

Since the parameter a, the measure of the transverse scale,
shrinks or expands as the beam converges or diverges, it is logical
to require the transverse mesh to vary as "a" varies. However, to
assure stability and convergence, the ratio [Z/(dp) 2 ] must be
defined according to the chosen Fresnel number and it must be kept
constant throughout the calculation. Accordingly, a new axial
variable, z, must be introduced to keep this parameter constant as
p varies. This should increase the density of n planes around the
focus of the laser field where the irradiance sharply increases in
magnitude causing a more extensive and severe field-material inter-
action to occur.

If the quadratic phase and amplitude variation are removed
from the field and polarization envelopes, the new field equation
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varies more slowly than its predecessor; thus, the numerical pro-
cedure allows one to march the solution forward more economically
by using larger meshes.

VII. ADAPTIVE REZONING

The foregoing concepts may be generalized by repeating the
simple coordinate and analytical function transformations along the
direction of propagation at each integration step. Figure (5) and
graphs (13a) and (13b) illustrate this self-adjusted mapping in
planar and isometric graphs.

The feasibility of such automatic rezoning was demonstrated by
Moretti in his conformal mapping of supersonic flow calculations3 4,
and by Hermann and Bradley in their CW analysis of thermal bloom-

Fig. 13. Graph (a)
illustrates the self-
adjusted rezoned grid;

I ]Graph (b) shows the
. usefulness of adaptive

two-dimensional map-
- ,ping through isometric

, representation of the
__ field fluency.

(a) (b)

ing s3 . In particular, the change of reference wavefront technique
consists of tracking the actual beam features and then readjusting
the coordinate system. The new axial coordinate z is defined as
before. Previously, the center of the transformation where the
radial mesh points were most tightly bunched was at the focus
(z = n = 0). Now the transformation is defined in terms of an
auxiliary axial variable zg as a function of z, which is calculated

adaptively, in a way that reflects and compensates the changing
physical situation.

In this adaptive rezoning scheme, the physical solution near
the current z plane is described better by a Gaussian beam of neck
radius ato whose point is a distance z away than by an initially

assumed Gaussian beam with parameters a0 and z. In addition, to

*** 4 .4 -...
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remove the unwanted oscillations, new dependent variables are
introduced without quadratic and quartic radial dependence in the
phases of the pulse and polarization envelopes. By minimizing the
local field phase gradient the relationship between the auxiliary
a t and z is obtained. Thus the rezoning parameters are determined

appropriately from the local field variable at the preceding plane,
, *so the new variable at this present point has no curvature. Note

that the new equation varies less in its functional values than the
original. The numerical computation is significantly improved.
Notably, the instantaneous local rezoning parameters of the quad-
ratic wavefront are determined by fitting the calculated phase of

. .the local field to a quartic in the nonuniform radius. More speci-
fically, the intensity-weighted square of the phase gradient inte-

,g grated over the aperture is minimized. Consequently, the curvature
at the highest intensity portion of the beam contributes the most.
Various moment integrals of the local field variable and the local
transverse energy current will be introduced, to specifically
evaluate the adjustable rezoning parameters.

' V VIII. NUMERICAL RESULTS

This section outlines basic results in SIT, obtained with and
without rezoning and stretching, and illustrates why the more
sophisticated techniques required less computational efforts.

The first part of this investigation led to the discovery of
new physical phenomena which promise to have significant applica-
tions for propose6 optical communications systems. It had been
shown that spontaneous focusing can occur in the absence of lenses,
and that the focusing can be controlled by varying the medium para-
meters. The second part of this analysis dealt with amplifiers.

The dependence of the propagation characteristics on the Fres-

nel number F associated with an effective medium length, on the
on-axis input pulse "area," on the relaxation times and on the
off-line center frequency shift, has been studied. Furthermore,
particular care was exercised to ensure a perfectly smooth Gaussian
beam (see Figure (10)) thereby eliminating any possibility of
small-scale, self-focusing buildup4s.

The time-integrated pulse "energy" per unit area,
It
fIe(p,n,T')1 2dT, the fluency, is plotted for various values of the
0
transverse coordinate, as a function of the propagation distance
(see fig. 14).

.,_ -
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~5..

Fig. 14. The longitudinal orientation shown in the left-hand

figure illustrates the gradual boosting mechanism that field energy

experiences as it flows radially towards the beam axis (while q
increases). The second orientation displays the severe beam dis-
tortion in its cross-section as a function of t.

The three-dimensional numerical calculations substantiate the
physical %icture based on a perturbational study of the phase
evolution 113. It could be visualized using selected frames from
a computer movie simulation of the numerical model output data. In
the left-hand curves of Figure (15) the transverse energy current
is isometrically plotted against the retarded time for various
transverse coordinates at four specific regions of the propagation
process: (a) the reshaping region where the perturbation treatment
holds; (b) the buildup regions; (c) the focal region; and (d) the
post-focal region. The field energy is displayed for the specific
regions in the right-most curves of Fig. (15). A rotation of the
isometric plots is displayed in Figure (16), to emphasize the ra-
dially dependent delay resulting from the coherent interaction.

Positive values of the transverse energy current correspond to
outward flow, and negative values to inward flow. The results of
the reshaping and buildup regions in Figures (15) and (16) agree
with the physical picture related to the analytic perturbation dis-
cussed elsewhere.

The burn pattern, iso-irradiance level contours (against T and
p) for different propagation distances are shown in Figure (17).
Severe changes in the beam cross-section are taking place as a
function of the propagating distance. At the launching front, the
beam is smooth and symmetrical; as the beam propagates into the
nonlinear resonant medium, the effect of the nonlinear inertia
takes place.

VZ
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The general format for presenting three-dimensional coherent

pulse propagation in amplifying medium will be the same as for the
absorber (see Figs. (18) to (21)).

'(b)

Fig. 15. Isometric plots of the absorber field energy and trans-
verse energy flow, against the retarded time for various transverse71
coordinates at the four regions of interest.

-. 1•

'I IX. TRANSVERSE EFFECTS IN SUPERFLUOESCNC

With the help of Gibbs, the outstanding question dealing with
the strong reduction (and elimination) of ringing observed in the
low-density Cs [2] experiment from the amount predicted in the
one-dimensioaal calculations (1(b)1 was resolved. This Was accom-
plished by developing a rigorous two-dimensional theory of Burnham-
Chiao ringing (1b] and superradiance and superfluorescence (SF) in
a pre-excited thick medium using a semi-classical formulation e]
which includes one-way propagation effects as in SIT. The initi.-

./..
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tion of the SF emission process is Characterized by a tipping angle
OR. Whlen the small signal field gain q eff L/2 (or equivalently, the

*characteristic radiation damping time T R of the collective atomic

system) is sufficiently large, 8e the ratio of the length L to the
* coherence length L , and the Frelnel number 7r (equal to area/AL)

completely charact~rize the system behavior. However, L/L~ is not
a critical parameter as predicted by the mean field theory.

(b)

(d)

Fig. 16 Isometric plots of the absorber field energy and trans-
verse enryflow profile for various time slices at the four

regonsofinterest.
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Fig. 17. Absorber field energy contour plots for the four propaga-
. tion distances. Notice the temporal delay associated with the

coherent exchange of energy between light and matter, as well as
the beam cross-section narrowing.

Neither the mean-field approximations d
, nor the substitution

of a loss term to account for diffraction coupling C, "
0 , are

considered; instead self-consistent methods similar to those devel-
oped for SIT studies are adopted 3a 1"6 . The numerical simulation
takes fully into account both propagation and transverse (spatial
profile and Laplacian coupling) effects.

The previously reported pronounced SF ringing for plane-wave
simulation is reproduced for uniform input profile. The reduction
of ringing is studied for various radial profiles for the gain
gR~aeff[c!RI (equivalently, the population inversion) and the small

input pulse area 9R11-13 .

The ringing reduction can be explained by two physicAl mechan-
iesedaoboshedisrincto~dadai:tm.Rda vrg
isms: (a) a shell rin fodel32(d): spatial averaging of uncoup-
led planar modes, each associated with a particular shell and sub-
Jetted to both a distinct OR( and a radiation time. Radial averag-

ing by a Gaussian gain profile of very large 7 eliminates most of
the ringing, resulting in an asymmetric pulse with a long tail; and
(b) a rigorous diffraction coupling: through the Laplacian term,
the adjacent shells interact, causing the field energy to flow
transversely across the beam from one region to another.

When diffraction coupling is considered concomitantly with

radial variations of eR and (i.e., o Rthe ringing is more
subdued (see Fig. (23)). In other words, reducing 7 of a Gaussian
profile does reduce the asymmetry (in better agreement with the Cs
data) since the outer beam portions are stimulated to emit earlier

17. *
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(a

(b)

(c)

(d).

Fig. 18. Isometric plots of the amplifier field energy as a func-
tion of 'I and p fo r two orientations Ar/2 apart at four locations
along the propagation direction.

by diffraction from the inner portion. Thus, thie ef fect of the
Laplacian coupling is small for large 7but becomes progressively
greater at about 7 <1.
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Fig. 19. Amplifier field energy contour plots for the four propa-
gation regions of interest. Note the temporal advance associated
with coherent exchange of energy between light and matter (the
smaller area propagates more slowly than the larger one), as well
as beam cross-section expansion.

(b)

Fig. 20. Isometric plots of amplifier field energy and transverse
energy flow against retarded time for various transverse coordi-
natus at four propagation regions studied for absorbers. Stretched
radial coordinate was adopted for proper accounting of transverse
boundary condition. When these results are compared with those for
an absorber, it is evident that a focusing phase is not restrictedI
to the absorber, but develops also for the secondary pulses in am-
plifying media. - .. * ~.. . . . . . .
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(a) (b)

Fig. 21. Amplifier field energy contour plots for four propagation
regions of interest with stretched radial coordinates. No severe
reflection or abrupt variation in the field energy, at the wallboundary, is observed. The enhancement of diffraction by pre- ..

excited two-level medium is clearly evident.

(1) Shell (only
Gaussian av.)

a) (b) (2) diffraction
coupling

X T

Fig. 22 Contrast the time dependence of the energy after inte-
grating over p for the shell model (where 'R and TR are both radi-

ally dependent) and the diffraction model (where the Laplacite--
coupling is rigorously present) for two population inversions!- (a) .
Gaussian g = go exp[-0P, and (b) saturable inversion g = g0 for

P <Pb; 9 Mgo P(p2] for fO < P < b .. .

.e(2) 7 =10
-- (3) 7 = 0.69

(a) (b)-

Fig. 23. Total energy per atom as a function of time with 7 as- the

labeling parameter. TR = 0.046 nas and L/Lc = 1.95. eR = 3 x 10-3l

for all radii. (a) Superfluorescence of uniform cylinder or small-
area pulse propagation through uniform gain cylinder; (b) Uniform
small-area pulse propagation through Gaussian gain medium.

- + - - : -
,.. _ ._
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Computer results representing the SF of uniform and nonuniformK cylinders (i.e., small-area pulse propagating through a uniform

Gaussian gain cylinder) are respectively displayed in Figure (24a)
and Figure (24b) for different 7 . In Figures (25s) and (25b),ml ° "this initial small-area 8 R is now radially dependent. Figures

(26a) and (26b) duplicate the physical situation in Figures (24a)
and (24b), but for a smaller initial polarization. The universal
superfluorescence scaling law is seen not to hold; the calculated
pulse length is much more sensitive to the magnitude of OR in the
transverse case than it is in the planar case.

Z The ringing predicted by this two-spatial-dimensional theory
agrees more with experimental observations than that predicted by
the uniform plane-wave counterpart. Detailed isometric graphs of
the field energy buildup show, in Figures (27a), (27b) and (27c)
qualitative agreement in peak intensity and peak delay with the
ring (shell) model [1c]. Figure (28) illustrates the elimination

.9. of ringing under conditions similar to the low-density Cs data for
- different radial density distributions. Figure (29) contrasts the

dependence of the radial gain on a typical 7 by various eR; Figure
(30) illustrates the dependence of the radial gain on a typical eR
by different 7. Figure (31) shows the effect of varying XR on
this output intensity. Various small-scale ripples were introduced
in the gain profile (see Fig. 31).

-(1)7 y=

.. (2) 7 1.0
(3) 7'= 0.69

Fig. 24. (a) Propagation of small-area Gaussian profile pulse
through uniform cylinders (R = 0.046 as, L/L = 1.35 and =
3 x 10- on-axis). (b) Superfluorescence with Gaussian radial gain
(=R - 0.046 as, L/Lc = 1.35 and 0R = 3 x 10-3 on-axis).

4. Ringing is largely removed by a gain medium of 7= 1, result-
ing in an asymmetric output pulse with a long tail. It now seems
that a larger eR, see Fig. (33a) (unlikely, according to measure-

ment of feedback efffects and estimates of Raman effects during the
excitation pulse 2 ), or smaller 7 (perhaps 0.4 consistent with the
range 0.35 < 7< 1.39 of ref. 1(a) which used a 1/e rather than a
half width half maximum (HWId1) definition of rp), see Fig. (33b),

7.-
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(a) (b)
.. (2) 7= 1.0

L A -- (3) 7= 0.69

4fig. 25. Sam parameters as in Fig. 23 but with a smaller 8R 10=
(a) Small area propagation in a uniformly inverted cylinder. (b)
Small-area propagation in a Gaussian inversion cylinder.

4-4

(a)

4,,Fig. 26. Isometric representation of
the field energy versus p and 1, f or
(a) uniform inversion and pre-exci-

k tation; (b) radial e; (c) Gaussian
inversion profile. Notice that
strong ringing would be seen by a
small-aperture detector in the center
of the beam although very little
ringing is in evidence after radial

A i. %t N .averaging.

... - --
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a 0g/iga?,l 0 .Ili

SS)

a) (b)

I'I

0-1 6 In d

it.

TV4 ". ?Wq fall

Fig. 27. Comparison of pulse shapes for situations where L/tc is
similar to the low density Cs. Relaxation terms were not
included in this analysis. Note the asymmetry associated
with an atomic beam of 7= 1. (a) n = 1.9 x oll cM-3;
a = 2.64 1 10-4; (b) : 18.24 1 010 cm3; 80 = 1:37 x

10"4; (c4 a = 119x.9 x1010 L 1.69 x 10"4; (d) n
8.75 x 10 4; 8 0 1.96 x 10 4.0 Time is measured in nsec.

(a) I (b) (1) uniform
Il3 2 (2) Gaussian
I/I\(3) super-

3 Gauss ian

Fig. 28. Contrast of the total energy per unit atom (versus time)
for differeat radiation damping time T for a chosen

= 0.7 and a uniform 8R = 3 x I0"3  (for different
0 inversion profiles.

A.
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Fig. 29. Contrast
of the total en-

*ergy per unit
$ atoms (versus time)

-3 -3 for different in-(a) eb 82 W0 10 vrsions (1) uni-() "form . uliform form, (2) Gaus-

sian (3) satur-

able Gaussian,
and for particu-
lar tipping angle
profiles. 8R10-3

non-uniform 't,
0.46 ns and LL

-3 (b) e 1.95.

nln-uniform 3 uliform

Fig. 30. Contrast of the total
energy per unit atom (versus
time) for different radiation
damping time TR for a chosen
7= 0.7, and a fixed tipping
angle 8R x 10" . = 100,

125, 150, 175.

Fig. 31. Display of small-
ripple effects in the Gaussian
inversion of the cylinder on the
total energy per unit atom (ver-
sus time) for 7 0.7, R
= 0.46 ns, and L/Lc = 1.95.

T:!
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1. 3.1416986+01 Fig. 32. (a) Emphasizes
2. 3.1425351+01 the effect of large O0
3. 3.1510173]01 versus small 0 on the

4. 3.2358377E+01 the pulse shape asymmetry
and the ratio of the cal-

n + OR culated pulse length to the ..

delay of the peak. (b) En-
hancement of the effect of

1sa on the pulse shape
i asymnetry. 07 0.Y cal 2.76, 0.7, 0.4. "-:/:

(a) (b),o "

Pig..T . 0.4

1(c) Md

0 10 20 30 40 0 10 20 30 40

TIM (no TPME (no)

Fig. 3)3. Comparison of experimental and three-dimensional theoret-
ical superfluorescence pulse shape for several densities N in an
atomic beam of 2.0 cm length. The model encompasses rigorous
radial dependence of N, TR and OR , diffraction (through the Lapla-

cian) and relaxation times. 7= 1, L = 2 cm, T1 = 70 as, T 2 = S0

us, A = 2.931p, M(0) = 551 nsec, Gaussian and inversion; in the
following columns are the on-axis inversion density a in units of

1011 em"3, a of the experiment in the same units and 8 ° in 10- 4

radians: (a) 3.1, 1.9, 1.07; (b) 3.1, 7.6, 1.37; (c) 1.2, 3.8,
1.69; (d) 0.885, 3.1, 1.96.
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XRAESIAO

I -

InTDEF C rN', 'rAAXE, NEA, ITSELV~
Frsta, NIUT. J E

InTTP ( TAIVAL, DIIITAB, TABIND, TABVAX,
DIM?ND, TASICH, DIRCH, rER.

FIGURE 4.11 - CALL StqMNtCt OF TilE PROCEDURES PRODUCING THE RESULTS idiC-ifo iONSEiTAiON-70

ADD

14DRUNS 3ASE COMPLETE I I
JOAVE BASE COMPLETE 1 300
NSAVE BASE COMPLETE 1 32
"SAvg 3ASH COMPLETE 1 64
Cl BASE REAL 1 0.08
TIRHO BASE REAL 1 4.236669
ICY 3ASI COMPLETE I 1
P~rI LAU! RIAL 1 3.1417317
AWA PHTS lQUE REAL 0
PSIA PHYSIQUE REAL a
DATE TEMPS CPA IN 0
ITAPTS AXE REAL 5 1.0 2.0 3.0 4.0 ..0-o
RMIPrS AXEm REAL 4 0.0 0.1 0.1 0.3
DUREE SYNTUi REAL 0
83131 SYWHI MEAL 0

FIGUR 4.13 - E*!LI OF DATA FOR ADATED!I PROGRAMl -
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V - APPLICATION PROGRAPIS

This section deals with the programs in the system that go beyond the irame oi appli-
cation in the laser model building project. These are the VEFPARH, DESRES and SYNTH programs
created to treat in a general way a specific application. These also use the SIMPS, XT.ICT
and DATSDM software. All the examples in this chapter derive from the only source we have:
the laser model buildinX project.

5.1 THE DWPARH PROAR.

he DI"PAL program is an interactive tool which defines the FORTUN NM LISTs. A o-
gram generation of the XAHBLISTs is a good way to validate then Csyntactically) and to aoid
certain trivial errors. DEFPARf is a program of general application but by referring to the

*i laser modelbuilding project to describe its operation, the explanations will be more concrete.

In the DUFPARM program, the NAMELISTs are defined by statements that follow a specific
syntax. A set of statements establishes the parameters of a groun of simulations dealing with
a particular phenomenon. These simulations differ only by the value of a limited number of
parameters, all the other parameters being fixed. It is because of these fixed parameters
that the information can be condensed and the svntax made more concise.

A statement specifies the value or values associated to a block of parameters. A block
of parameters is made of one parameter or a group of interdependent parameters (varying
conjointly). For example, A a 0 shows that a parameter has a given value. If the parameter
is to be given several values or that there be a simulation for each of these values, the
values are separated by a coma, A a 0,1,2. To specify that a group of parameters are inter-
dependent, forming one whole, parenthesis are used. The values associated to the parameters
are also put between parenthesis. The order of the elements in such a group is o major
importance, and the order of the parameters induces the order of the values. Moreover,
there must be as many values in each group of values as there are parameters in the reference
group. Thus the following group of "arameters can be defined as: (A,3) a (0,1), (1,1).

Vectorial parameters are put between brackets and the different values are seoarated by
a oma: thus A ' CO.1,Z] or 3 a El]. The specific values of the parameters need not have
the same number of elements; thus: A a 1,23, CI,2,31, Cl,Z,3.43. 3ut the order of the
values is important as It corresponds to the order of the elements in the vec:or.

The statements are separaced by semi-colons and an empty statement ends the specflca-
tion of a group of simulations. The following specifications can be written as: A = 1;
3 3 1,2; C 2 0,1;;

The syntactic cards corresponding to the above mentioned syntax are shown in figure 3.1.
It is possible to go from the specification of a family of simulations to the exhaustive lists
of parameters of each simulation forming this family by making a Cartesian product between
the values given to the parameters, or a group of parameters, by the different statements.
Thus, the specification:

A a 1,2;
(3,C) X (0,0), (1,1);
X ' -1,1;;

can create eight simulations (only the changes in the values of a parameter are noted in the

following list).

Number A 3 C D

1 0 0 -1
13 1 1 -l

4 1
5 0 0 -1

T . 1 -1
8 1 :

There are four principal steps to the execution of the DEFPAR2 program. The first step
is initialization. The user indicates for which simulation ?rogram he needs the MAMLSs.
The DEPPA ;rogram will find in the cerrespondime DATS1 file the number of the last encoded
simulation and of the possible parameters for the simulation. The DEFPAM{ program will thus

know which number to give to the new simulation and can verifY the parameter identificator3
:hat the user could eventually give it.

-.
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For the drawings, the user Must indicate the scale and kind of drawing needed. The
scale is speciied by indicatinr one oi the following identifiers: GLOBAL! (the scale is
for the whole file). LOICALS (the scale is for a given drawing), STANDARD (the scale is for
the extraction field). If the chosen scale is the STANDARD scale, the user can also add.
between varenthesis. the name of an axis to limit the scope of the scale to the axes within
this axis. For instance, i a function depends in the STAT, ETA, R40 and TAU axes, and if
the scale is limited to the standard scale on the 3TA axis, this scale will be evaluated
for the ET.A. WMI and TAU axes only and there would be as many standard scales as there are
aoints on the qTAT axis. Section 4.2 qives more details on the nature of the different
scales. The kind of drawinp is indicated by :he following identifier: PLOT 3D (surface
drawings), PLT 2D (curve drawings), CO1TOUR (level curves) and PROJEC CZ dimension projec-
tion of a sub-array of curves describing the surface of a Z variable function). The kind
of drawing requested will induce a segmentation on the extraction field. Thus, one action
can produce several plots; that is as many plots to empty the extraction field. An example
of scale speciication and type of drawing follows:

SCALE: STAIDARD
DRWJ MI: PLOT 3D

The DESP!S program will loop at the deeoest level, that of drawing, then ask the user
to specify a scale and a type of drawing. To get out of a level: enter an empty line or
write the key word FIX (M). The user goes to the other level and here, it is possible to
define this level or getting out of it. figure 5.5 shows a complete example of a specifica-
tion for the DESUIS program.

In the inLeractive mode, the DESUS program analyzes the user's request and indicates

as soon as possible the syntactical errors (data in the wronv format) and the invalid spe-

cifications (the requested function does not exist ...). The program then asks the user to
hold some specification in order to continue its execution. When it is a submission by
batch mode, when an error is detected, the running is stopped but the syntactical analysis
can continue.

To execute a drawinR specification, the SUM ES program must first locali:e the SIMN.S
files to be treated. These files are opened one at a time and the iniormation showing
the function to be plotted, the field of extraction, the composition of the tuples and
the tye of scales is liven to the XTTACT software. This information recovered by the
S.T4UP oracedure is ?rocessed by the appropriate plotting procedure (PLOT 3D, PLOT 20,
C.rTn v , ?o jc). The program rae e~s this operation until all the requests have been

fulfilled or until a non-retrievable error occurs.

Figures 5.7 co 5.11 show the different graphic output of the DESRSS program. Figure

5.7 shows the list of parameters identifying the plotted simulation. Figure 5.4 shows the
plot drawn by PLOT 3D for a 2 variable function. Figure 5.9 shows the curves set by the
CONMOUR procedure for the same function. Figure 5.10 shows a projection of this function
as produced by PROJEC. And finally, figure 5.11 shows the plot produced b-? PLOT ?D for a
function which varies as to one axis.

5.3 TP! SYNTH PROG"RAM

The SYTH program permits the synthesis of the information of many distinctive simu-
lations in order to study a specific ohencmenon. This synthesis is done by selecting the
pertinent simulations necessary co draw out a specific penomenon and by comparing one or
several functions of chese simulations. In its final version. the SYNTH program should
allow the user to szecify the phenomenon to be studied with the help of a'predicate

(studying the effect of a parameter in function of another, or studying the effect of .
•- such or such a model). The .Y.fTl program would find which simulations will satisfy :he .

predicate. However, for a first version (still being developed), it 4s better to ask the .....
user to identify the simulation to be compared. The SYNTH Program thus verifies the
va.iditr of the comparison, makes up the headings identifying the work done and makes-_-
the comparisons.

There are three oossible fields for coomarisons:

- inside one simulation,
- between specific simulation produced by a same model (same simulation program),
- between simulation produced by different models.

Wi:h comarisons done inside the same simulation, it is the variation of an axis *hich--
will provide t e riterion for a comoariscn: it is the iositicn on the axis which is stu-
died. Often, the comparison will deal with the repetitive axis, in other words, an axis
which does not detine the space of the simulation but which induces rept:ition of the stored It
informatIon: this is specifically the Case with the models with several lasers Cwhere a
"laser" axis will st^re infornation on the dieeren: lasers) and the model including .,ts--

. ti-cs (whers a "statistic" axis wi"l store the 1ifferent repetitions of the simulation).

;4°.
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The comparisons ot siula ions produced y the same modl permits the study of the effe t
of parameter variation an a given model For nstance, it i possibl o study the upfacv oi
parmter by chosing sibuateons that re dst iaished ai each other only by the dioe-
eft values biven o hils parameter.

The comparison be smlaons produced by dicinerent simulations brings out the impact
the models. This type of comparison is very complex as the different modes do not necesse-
rhl use h sane parameters. The SYfH proram must thus use equivalence tables between t e
parameters o the dinfetent mode! to ude h valdity o a comparison and to make up a validheading.

• "*The ucsions t be comfared can either be vectorial oa saulation products a curve) or
clar (a smlaten produces a of nt an a curve). The vectorial function can be used with
the speis o n f ofthe req ord t of c ase, the curvs o the comparisons are thus

identified by fhe varting axis, by the distinguishin parameters, by the chaninb modeli The
scala function can be used only in comparisons with simslations produced by a same mofal.
c., Thus, the effect of a rop of aarameter ca ke ud e o les hof another n this case., the simulations prvding the points of a curve are distinputshd from one anothr by a group

gife pheomenon.S

n theae rstA enin the horizontal axis of the comparison. Thn cparison us involves ,.', 'several curves distingushed from one anothr by a group of parameters B, group S does not ,

include any of the parameters of A. th

byTa l etr cS (, n o he sepeifidtioe of th comparison is don* n steps: first, by
podicatin which functio is to be compared and which are iin fact, se same yndicating
the simlations involved in each comparison makin up the series. A series s a roup of i• .*_ comparisons which have logical bonds and which ma e up a more or loss xheat ve study of a"-,
given phenomenon. -

c In thea irst snep of the specfication of a series of comparisons, te user must indicatethe identifier of the rquired function. Next, the user must indicate the name of the axis,

its type and the specification of the selected points for each o n the axes on which the unc-
tion aepends. Thr ate oeurptssible andos to characteresb an ax s and eac. typ s s shown
by a fetter (S, , C or ). The seciicaton of the salectedapiin:s s done bt o list of

if!point numbers, and a set of selection separated by commas (in act, it is the same syntax of

the DESPIS progran, cf. section S.2). his first stop is nded when the user writes a semi- '
colon instead of a name of axis. For instance: '4

The S type indicates an axis used to select points of evaluation ai the function to be
comared. Thtis is the "by default" type, and the symbol S can be omitted. Thus, the func-
tion n pmp is selected for all the points air the T.AU axis evaluated at point I of axis .
STAT and at point 71 of axis ETA (what the SYNTH program writes is underlired): -.-,R

ETA a S,71
TAU *

The G type corresponds of an axis giving msny comparisons, :hat is providing comparisons
for each of the points selected on the axis. Thus, the following specification:

•, FUN1CTN f. n ?OWED

ETA a G,61,71 '
TAU a.

Indicates that 2 comparisons of the function 0 ?OVER are needed, one for point 61 on the ETA
axis and another for point 71.

Type C corresponds to a comnarison axis, that is, the impact of this axis on the function
to be compared. There can be only one comparison axis for a given function. For instance,
the specification:

•FT C (1,7,1)
VA a 71
?1Iu a.

indicates that the comparison contains the function 0 POWER seven times, once for each of t.e
points selected on :he STAT axis.

FLnally, :v*e %I shows that the user would !ike to compare tl.e arithmetic nean of the unc-
tion rather than the function itseLf. When 4 oualifi.es an axis, it means that the 2rithme:c
man of the 'unction for the .oints selecred on the Axis nust be evaluated. Thus, 'n the case
of

.'.4
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.UNCT'o, o pnwa.'

ETA a 71
TAU x

the user ms compare the average of the seven function 0 POWR selected on the STAT axis.

BY aal.:ing the specification of t.e first step, the SYNITH program is already able to
know some of the user's intentions and thus to determine which informations ust be provided
at the second stop. In other words, If a type C axis is already known, the SYN4Th program
will automatically know that the comparison is done inside the same simulation and will x- -
peet only one simulation number per comparison. .oreover, if the specification o.cthe peins
selected determine a scalar function (i.e. FUNCTION VIDTH STAT x . ,(1,7) ETA 71), the
SYNTH program will conclude that the user wants to study the impact of a group of parameters
on another group of parameters. In this case, the SYNTH program must ask the user to specif- .
a list of parameters. Each of the parameters on this list will be used one after the other

.to def ine the points of the horizontal axis (axis x) which corresponds to the different
simulations that make up the curves to be compared. For instance, in the following case:

PARAMETS FOR AXIS X: TDPJIO, FARUS A, INVPLIL

The program will produce three series of comparisons, one using the values of the TBRMO par*-
meter to form axis x, another using the FARUSLA .)arasnetr and finally one using the VFRY L
parameter.

The second major step for the definition of the work to be done comes when the series of
comparisons are specified. A series includes one or several comparisons making up a logcal

whole. that is studying the same phenomenon. The SYNTH program produces a heading for each
series of comparisons, showing the changes of paraeters, of models, or of points on the axes
for each of the involved simulations.

Depending on the kind of study, a canarison is made up of one or zany sinulations, and
each simulation is identified by a model and a simulation number (one or several blank spaces
separate the two elements). In order to avoid a repetition of the name of the model, the

program le:s the user define, at the beginning of a series of simulation, a nodel by
default.

To end a series of comparisons, the symbol period is used. At this moment, it is pos-
sible to redefine another series using the same function specification, or even to return
with another point at the level of function specifIcation.

What happens after this identification by "model by default" depends on the type of
comparison chat the user requires.

If the comparison deals with the same simulation, the program asks the user to indicate
the simulation used for each comparison. The following example illustrates a series of :these
comparisons showing the variations produced by the STAT axis.

FUNCTION 0 POWER
3M C,(1,7)

ETA * 71
TAU *

,4O0L BY DEFAULT: LRlCPS
31UtLArMuN: 100

MMMMMMV: 102

MODEL IT YD'T=:

When the comparison studies the impact o certain parameters or of the model on a vecto-
rial function, the SYMM program will ask the user to give the numbers (at least two) of the
simulations making up each comparison in the series. rn the following example is defined a
series of two comparisons involving three sim.-ulations, then a series of one comparison invol-
ving three simulations of different models.

FUNCTION 0 POW" d

TAU a •

*10DEL 3Y DEFAUL : Lt:UCS

SiP",UL-A/- -,' .', . . ..



.OSL BY DEFAULT: LA.ICFS

3;M1-u,4 .;.UN: 100,LI!PS S,LRl74S 2

A~,6 1OD LA I L?~

Finally, when the comparison involves a scalar function, the SY4TH program asks the user,
first, to indicate the simlations making up the cur-tes, then to indicate which curves make
up the comparison (it is possible to defi.e one curve only). The following example shows a
series of two comparisons involving three and two curves respectively.

FUNaTON: WIDTH (oulse width)ST • 2 4(1,7)
ETA a 71

IMODEL BY DEFAULT: LRUCPS
5M'1LA4 1U11 MAK.ING UP THE CUR".
#I: LO0,1A1,10Z
T: 103,104,105
Vr". 106.107,108
VT1: 109,110
Ar7!: 111,112

MUVES MAKING UIP THE COMqPAMS0N
#L: &L..,j
VT: 4,5
RMT: BY D-AULT:

Bv and large, the SYNTH program functions by processing the series of comparisons one by
one. Syntactical verifications are done as the specifications are entered. When the defini-
tion of a series of comparison is completed, the program verifies the validity of what is
requested. If there are no errors at this level, the program makes up the heading of the
series. The data needed for this operation comes on the one hand from the series specifica-
tion that defines the type of comparison requested and, on the other, iron the DATSIM files
which provide the values of the simulations parameters to be compared. A specific heading
is !iven to each comparison in order to identify each plot. Finally, the comparisons are
enerated, and the value of the functions to be compared comes either from the DATSrN files
itf It contains the needed information) or from the SDINS files.

.Lgure S.12 shows the heading of a series of comparisons, in which the impact of para-
ieters IGVA, IGOV and IGVN on the vectorial function I-R-DR are studied. Figure S.13 shows

a comparison of this series. Figure S.14 shows the heading of a series of comparisons showing
he inpact of parameter GIAO in terms of parameter Si on a scalar function. Pigre S.IS shovs

a comparison of :his series.

0 ---- o
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-PROGRAMN 02PPAP 1.0
-KAl Y TO HELP YOU!
-LOAD TH PAA.VEEI. OF A PREVIOUS SIM.JLATION ? (YIS/.C)l)yes .
-vIE I'm Nw'6EE OF THIS SIMULATION
3,312
-LOOING FOR SIMULATION 312 WAIT A MOdENT PLEASE
-1 PATItNT I' DOING 4Y IIST!
"INTER PAWMS AND THEIR VALUES
3.

p Program o.pu

FGl S.2 - CREATION OP A 3AS FROM PARAMETER VALUES OF A PREVIOUS SIMULATION

-PROGRAN FPARM .0
-NMTO ICILP YCIU:
-LD TiHE FARAVV S CF A PREVIOUS SIMULATION ? (YES/NO)'a.
-LOcI IG O Tin w I ER OF Tilt XT SIMULATION
WAIT A MOINT ?LEASE

-ENTIR PAAJTIRS AND THEIR VALUES
, lill~m- 1.
3( el:a , Lideltab. )* .( 1.1 ) .

PC 0,0 );
xtet0* ab
-TOTO " Al

-13303 .Y'lER: 12
-,l GIVEN PARAMETER IS VNI4OAWS
I.E. wAS NcT FOUND vc THE LIST or PALrTm! x USED IN PUIVIOUS SI.ULATrON)
-PLEASE REITY LINE FRON THll BEGINNING
;saO a IS.0 , 250.0, 375.0
a'tbrkoa a 4.236669, 8.7;;

-Progran output
User's lnput

FIGURE 5.3 * USER'S SP!CZFICATION OF A FAM.ILY OF SIMULATIONS

I,



SIM# ID.51 1ELAA6 MELTAB G1AO T3RHOA

6SO 8.7

851S ZSO.O 4.236669

375.0 4.236669

650 0 1S. 42366
637 Z.O 4.236669
638 8.7
659 37S.0 4.236669
660 8.7

3CC1.RECIONS CYIS/1O) ?

-yes

-FOR MODIFICATION !NT1K MN VALUE(S) OF PARAMETER(S) L:STED
-""MEANS NO M'ODIFICATION

~ "miANs ExD OF moc0DzEIATICN
-NUMBER Or THE FIRST SIN.'ITON

1-fDIXV4L
-(IDLTAA, IDELT43)

S IN ID11110 13-ELTMA IDELTAS G1AXO 73RI4OA

649 1 1 1 125.0 4.236669
650 8.7
651 250.0 4.236669
652 8.7
653 375S.0 4.236669
65 8.7

4.653 2 2 125.0 4.236669
6S6 8.7

N651 2S0.0 4.Z36669

.4659 375.0 4.236669
660 8.7

'-CORRECTIONS (Y!/NO) ?

FIGURE 5.4 - CORRECTION PHASE Of THE CEPPARZ4 PRCGRAI



$DATA ?MUS6l'49,

TDUMA4. Z36669,

S"ATA NUMIIR86SO,
XIDU' Mo,IDRL-AA-IIDZELTAlnl,*GIAOnIZS .0,
T30=88U. 7,

SUkATA .1"hIR86S1.
WIIN.,WIDLTAAuI,DLTA*1,GOuZSO.I,
?33i0A4.236669,

SUATA MWIIR86SZ,
IfDUNLIIDELTAMuIIDELTABO01,GIAO.ZSG.0,
?SIHOAI.-,

SDAA 1OUERS 3,
IDDG.~u1, ILTAMU, 3WtLTa3 G1AOX375 .0,
TSRRQAS4*234009 *,-

SUATA NKUMI2S4.
IDMINuI IDEILTAAs, LDILTA* 1. M0 31~73. .0,

SPATA MJMIER6GIS,
IPfMM', ZDELLTAZ, ZDELTAjaZ, MAOwIZS. 0,

~TBRNDU4.1.36009.

SDATA Nl=IAUOSG.
tIIHENe* ZDELTMUnZ, ZDELTAB-Z ,GlAo-1ZS. *
T33HOA. 7.
s
SDATA NEDIER6S7,
10 M'4ul,MILTAMsZ.IZILTAB*,G1AO*2SQ.O,
TSRHOA*4. Z36609,

SUATA NMIR26'SI,
!DrhINl,ILTAA*Z. WELTJJUZ,GZA~uZSGr.0, I-

T3RHOAl. 7,

SDATA ZUMnflUG9,
WflUMN-l, IPELTAASZ, W!LTA322G1AOx37S.0,

T3RMOA4.2369,

SUATA MUIR3I30O,
tDD331, IDELTA-Z. WILTAS, G1AO337. 0.
TB3NOADS. 7,
s

FIGURE S. S - .'AILISTS PRODUCTS OF THE !I3'PARM PROGRAM

PROGRAM: LA1CPS
'1DbLTIONS: 1-S, 7, 12____

rvx'Z1N: Eno'y___
baloc: WiAT CTOUS CALI.)
TOM@Mc CI C 71. 1n)

STANDARD
PLOT 3D

S= S-ANIDMA
CONTOUR

FU14CT!!r-W-- 0 VnWhR
9474MV. T&AT 2 TOUS
Select IA 2 (, 71. 10)

:STJJ(DAPD (STAT)
:7~ PLOT ZD

SM S~UTd: Fix(m

PIGUM. 5.5 -PLOT SPECITICA7TON FOR -714! OESP!s piOCRA



DOUBLE LASER SIMULATION
'1 NUMERO 626.

LASER: A
PARAMETERS

PH~ *00.

QL .10 Olx .Ea*tEvo01.

a .4UIZ0.TwH0Sas .42366=44t .

Ta0& a 1
TIM8~~u0.0M M . a

m* a~M E .T4ll

:?~!. INNYs OTL~f-l

rSpmI taa 0.LTNS0.
L in xa.. CUMBTR20.0

NYC .14317101.a 0.

K~~VHU 1i4 ?Y=32.
~rw .. 3~U7142971431-01 JIM :4.

ISR a .2.03

FIGUREU S.7 -'LIST& OF ?.~"ETRS ?.DFNT:FYING, 7H PLOMM r W .LAT.CX



LPWWY VERSE=I 1.7 -IER CRFIO PqM 2

.!.

YhAX 1.0106 IG 71 /75 NO 626
YMIN 0.0000 ENERGY ETA Ts .5000 P"RT IEL

FIGURE S.3 - PLOT DRAWN BY PLCT* 5D FOR A :VARZA3L-c FNC. ION



L4URX VER8K0E 1.7 LM 9mlN PAM 2

14 15 5NI.U

x 14..-c

Z 3.=..

X 42AE0

14.1.~' ~. 5IV3e-UX
0 2.le-a2

12.33.+ 7.=G

2.S21-O

10.8M 04.0 ENRG ETA.5 -5C-ARTL
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..vC 0 A R 5O

WM~ NORMALI:A710-N

VJ.43E R IGVIA 11W! [DGN

410. 1 . 1 .
580. 0. 0. 0.
314. 0. 0. 1

UUSRA a I, LASURB 21
PHIOkA a .31417821*01, 1KI03 a .3141781!.01.
PHUZA a f) 0 PHIZ! a 0.0,
I3CA a 1, 21C3 2 1 ,
Z3CA2 u 0, IC3Z a 0,
CI.A a.6323-03, Cl! a S8E-471.

GIO .5841,G130O .2751.03,

r ITCTA x f).01 IGFT -10,

TIRHOA 8 .4Z366692-9111. TBRHOB 2 .4236669E-01,
IRASiD a t), I UANDS a 0,
srcxA a -.*gg3f0, s I 2-03,
[DILTA it 1, IDELTAB x 1
DWMA a 0.0, amN 2. 0.0,
SAA 3 .12-01, G531 9 zva

SA IE41 ,B 2.0,
TilfA a .32.00, TBW! a .SE.oo.

T 1M MIA a .12SE-01, TimmV x .izsE-oi,
nZNIWA u .14ME6-01, T2NIMV a .14286E-01,
PHISTDA 2 0.0, PHIS7DB x 0.0,
ISTPHIA a 0, ISTPHI3 0,
CURVA - 0.0, CURVB a 0.0,
RDLONA a 0.0, WKLON! a 0.0,
IDisTRA z 0. IDISTRB 0,o
IPSrLNA a .12.01. EpsrLSB a .1E-02,
TZINVC 2 .142S61-41, TAUS? 2 : wl
TAUOCT z.9lv01, WINDOW a .21EV02,
[DIMV X 23, KSA1 2364,

quVv! a 32, JSAVE z300,
JSTIP a 4, HR a .17S57E-01,
KS 2 .6252-03, 4A a 32,
NAT ZZ 57, I'R 1
VIRUNS - 1. IST
[SR a 2, rPUN4PSH 3 0,
ILEVEL a 1, 3ETMA 2 .47411-02,
IEL'J .223#42, FAAUS KA a .86085-01.
PARUSKI .394936013E.03, IWPL'4LA 2 .11344E-01,
[NFRNLB 2.14359,19E#01, LGPHflOA 3 .37234322.01,
Lr.lnB xl -.3723431F*01, IGYNEIGA - 0.0,
to G B 2 .0 IGVPOSA z S

2GPOI a 1 LGPHSI.A 2.133639431-0:,
LGPHSQS a .1386394S1,OZ, ING1ASOi a .17?3-01,
r.NGi3sq x .1.2r0i, NV1A .1333331.009
INVGlUO *.36361-62z, G1AOSQ 2 S62SE*02,
GIOSOl .7362SE-OS, rNvc1A = is2z:7a'slE.o4,
I.WC13 2 IE#2 I CGlAO 8 V238i1ii.01,
RCG130 .1$S83124E.02 APPAA :.617067006L.0L,
AICAPPA3 .48748294Eo42, TAURA 2 .713489E-00,
TACJRS .194S9F-o1, IAUSA 2 .3227560095.03,
TAUSB .1',,'6'E#00, GLA 2 .S358-01,
QjpJ 2 .584386013E-43, ALPHAA 22Szv
ALPHAB 2 .9156667!..11.

?IG*%,a! S.I: - H!AD[NG OF A sp~ivs CF CompARSCNS r-1 W(HICH -HE :!IPACT OF
PARAN2RS rG"A. " MS AND :GVN ON 'HE2 VECTORIAL FUNCTION
E*R*OR ARE STUDIED
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j C Up A R I SON

A) ~N~X AAiU

PAMM)ITU VALUE PAAAX!!R, VALUE!

LA.Slusi =:1ASR
PHIOA 2 3.1417817 P1(101 5.1417817
PHIZZA : 0.0 PH(123 4.0
INSCA a a INC3 '0
ZSCA2 a Q 13C3Z a 0
CIA .0as C13 a .000632
vGVA 1 ICvI I
a*l 2 .25 GWACT 1.0

Giacr a 0* 4.VP36660
~GVFC3 ' T3RHOA 46 9

IM3 =4.Z36649 ZRAMIA 0
19ANDI a 0 SIQIA X 1.0
s I '~ -1.0 D", A 0.0
buS :0.0 GAM"'f Z_ 1.0
GAMIAS 1.0 SA X0.0
TIWA -S T3WB
RMAP 0.0 RKAPPAB 0.0
TAMO _z 7.0 TUB7(
TININVA 2 .012S TiINIM .012S
TZX4INVA 2 .014Z857 T'NI?4V .014:557
PMISTDA x 1.0 PH1STD3 0.0
ZSTPHIA Z a ISTPHI 32 0
CURvA 20.0 CURV3 = 0.0
ftgPLONA, ' 0.0 UXPLaND 2 0.0
ID1STiU Z0 1DIS"I'AB --Q
lp 9 t A 2 .001 IPSMLY 2 1.0
T2NUEVC 2 .01423S7 rDQl a 0
TAZJSF 4.0 TAUOCT 90
wlM : 1.0 IDInfN 3

4SV 4 HSV :_ 32
JSAVZ X_3003 Jfl2 x_ 24

Hi1(t 2 .o17357142857 HfS 2.00062S
MA232 MAT a 57

I'MA &a NBRUNS 2 1.
IST a:4 ISR a
lADRR0 x 0 IPMlPSH 2 0

1. Z2S.0
2. 275.0
3 . 325.0

C) n ~f34.YTN SETE gT~!CTJRS

CUMY 5s

2 2.0 HEADI~NG OF A SERIES OF
3 3.0 COMPAR:SONS SHOWING 71ds

GIAC IN TERM~S OF PAVA-
METER S3 ON A SCALAR

1) im 1X0S A S- :11 tsy FtJNCTITON_

CUVE SLMULATIONS

1 498 501 504
3 45 351 3S7

3 348 354 360 ____________ -
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V- THE L'SE O POGPIS

Sven though the Zaser atiane~ pro grams do nmot inmmea e for* the core or the
basis of tme system presened he, my remainm 'everthedes is fundamental voti.,azien.
1: should be noted that the different softvares and programs making up the system are general
enough to process several different nroblets. The SI 'iSS for Instance can process any pro-
ram using numer.cal integration for result calculations. Therefore, it seemed necessary to

devote a whole chapter to discuss the nroduction and resolution problems faced in the laser
simulation programs.

It will not be possible to give here a detailed ex.anation of the ohys.cs and the
numerical techniques used to solve the diverse di.fferential equations in these programs.
These two aspects will only be touched un descriptively in order to place the programs in
their proper context.

This chapter is divided in four varts:

-- - the first nart is a sumary description of the orograms with an overview of their
" ." particular techniques,

" - the second part deals with the general characteristics of the programs: documenta-
tion, modularity, etc.,

3 - the third discusses the nroblems of validity and reliability of the programs,

4 - the last part shows how the problems created by the constraints of memory were
resolved and how the oerformance of the programs was increased.

6.1 D!SCRI7?ION 0: T41 LASER SIMULATIONI PROGWS

Even though each program is essentially different from the other, all the programs use
similar numerical techiiques to solve the nonlinear propagation equations (Maxwell) and thie

" atomic equations (31och). These eouations are solved simultaneously by a dynamic predictor/
corrector algorithm: tohe predictor used generally is the explici: method of the middle point

* Cluler's modified formula), the corrector used is the trapezoid.

Moreover, nonlinearly defined axes (transverse axes, temporal axes) are used in order to
increase the efficiency of the nr*dictor/corrector algorithm. These axes determine a non-
uniform aulti-dimensional meshing that show, around the focal point along the vronaga:on

,- axis. the interesting phenomena of the bea. Depending on the choice and the nature of the
phenomena studied, this non-uniform meshing can be calculated statistically either at the
beginning of the simulation or redefined locally as the simulation is in progress (dynamic
adaptation) to check the rapid changes in self-focusing.

The names of the laser simulation programs follow these conventions:

a - the arefix LR means LaseR;

b - the number following the nrefix indicates the number of lasers used in the simulation;
c - the letter immediately following this number shows the implication of radial sl..etrv

(C for gyTlinder, thus one transverse axis) or its absence (P for Parallelepized, thus
two transverse axes, x and y);

d - the letters or numbers that follow denote the nrincinal characteristics of :he program.

Also, the axes used in the different programs are designated as follows:

- longitudinal axis of the cylinder or parallelepiped: axis :;

- radial smetr axis of the cylinder: axis r;

- Cartesian transverse axes of the aaral-Leepied: axis x and axis v;

- temporal axis: axis t;

- axis of frequencies: axis u.

Following Is the descrintion of the laser sinulation ?rogris already" inzegrazed in the
system and using :he STI,'LES software to nroduce the sinulati.n results.

1) The LRIC'S program (F for freauency and 5 ;or statistics): the simula:ijn is ie-ined bv
the :, r, t, a axes. The node?" .s based on the s:-1'ar wave ecuation cou led to the two-level
resonant atonc system *ithout degeneracy. This nrogram offers the ioown, o oions:

,.. ,reona.. stem wi--. Ow i. - . ,*



)31
- the possibility of inclusion of the transverse effects (activation of :he r axis of

the cylinder): this shows the increase in the inhomogeneities and the importance of
the nonlinear dispersion and the nonlinear absorption;

M the possibility of inclusion of the quantum fluctuations in the =edium initiation for
superfluorescence evolution (activation of statistics calculattons);

.'possibility of inclusion of the "extended'Doupler effects (activation of the W axis
associated wi:h the atomic system).

It Is also possible to include In this simulation all these possibilities at the same'- :ie."

2) The LR PS program (S for statistics): the simulation is defined by the :, x, y, t axes.
This model is essentially the same as the one used in LICPS without the inclusion of the
extended Doppler effects into the program. The following characteristics should be noted
however:

- the transverse axes x and y are only defined for the .positive quadrant: i.e., the
x axis is defined from 0.0 to zax and the y axis is defined from 0.0 to ymax;

* the transverse effects on one axis can be activated without necessarily activating
the transverse effects on the other axis;

- the maximal delimiter chosen on the x axis (xmax) can be different from the maximal
... delimiter (ymax) on the y axis: this allows for a larger choice of situations.

3) The 11P4S nrogr.a (S for statistics and 4 to Indicate that the transverse axes cover
the four quadrants): the simulltion is defined by the :, x, y and t axes. This imodel is
identical to the one used in the LRlPS program except for the two following points:

- the transverse effects cannot be removed: i.e., the x axis is necessarily defined
from -xmax to xax and :he y axis is defined from -yman to ymax;

- the m nimal and maximal delimiters of the two axes are equal to one another, i.e.,
.4.,-xMa a -y&ax and xmax a vax.

4) In the LRa:C nrogram, the simulation is defined by the :, r, t axes. This model is
based on two scalar equations of the orovagation movement defined by Z intense ultra-wave
laser beams propagating simul:aneously through a gas of three-level atoms. This model shows
the interaction between the two beams and how they influence each other. This program allows
for the possibility of inclusion of the transverse effects on the simulation..

The following programs are not yet integrated to the system but will soon be added :o
the four programs described above.

S) The L.CFS program (F for frequency and S for statistics): the simulation is defined
by the :, r, t, axes. The nodil used here is esseNtially the same as the one described in
L:C except that, as in the LRICS program. it offers the following options:

- :he possibility of including transverse effects;

- :he possibility of including statistical calculation (quantum fluctuations);

- the possibility of including the extended Doppler effects.

When this program will be integrated to the rest of the system, it will coo.letely
replace the LAZC program.

6) The LRICC program (C for chemistry): this simulation is defined by the t, r, t axes.
The model is similar to that uFed in :he L.q1CFS program buc with a more' refined azomic confi-
guration system to allow for a six of ten levels of absorption. This model thus permits t,e

. study of the effects of coherent oroagation in the mul:i-level atomic configuration such as
Burop ium.

. ' 7) The LRIPH program (,4 for hydrodynamic;: the simulation is defined by the :, x, V axes.
This model is based on a hydro yuamic formula:ion. In order to avoid the oscila:or- b)ehavior
resulting from the deconposit:on of :he electrical field into its real and imaginar-! parts, it

% is necessary :o describe the field by using the modulus and the ihase, or equivaientlv, y
using the field energy and the :ransverse gradient of_ its nhase." The evolution of the beam
can thus be seen as a flowing fluid whose densitf s proportional to the lield ener;y and
whose yelocity is proportional to :he gradient of the ?hase. This descript-on reads to a
generali:ed Navier-Stockes equation of notion for a compressible fluid subjected to an internal
potential which depends solely and nonlineariy on fl-il density and its deriva:-es.

J., %
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8) The LUCP program (P for plasa): the simulation is defiled by the =, r axes. "his is
based oa s simplif ed LOUCFS p9ogram: the transient effect is eliminated and the temporal
variation is disregarded, what is calc-alated here is the asymptotic effects and adiabatic
approximation response of the atomic field (off-resonance). The nonlinear field is charac-
teri-ed by an analytical susceptibility where the light-uatter interaction is instantaneous
(unlike the model usad by the L1XCFS program). This nonlineari.ty is cubic in nature: thus
the Kerr effect. %owever, this effect can be corrected and limited by a saturation or even
by a nonlinear exponentiality. The laser can therefore describe the evolution of the eec-
tromagnetic field in a plasma aediwm governed by these kinds of nonliearities.
9) The L&PP program (P for plasma): the simulation is defined by the :, x and y axes.
It is essentially :the Same model as the one described in 8) but without the radial simme:??.

10) The LRICT program CT for transistor): the simulation is defined by the :, r and ts axes.
The model used here is based oF the following approach: when two waves going in opposite
directions (a forward wave and a backward wave) interact coherently with each other and w:th
a medium resonant to the pulse frequency, this pulse adapts itself longitudinally and trans-
versely during the simulation. The dynamic cross-coupling of these two waves appears explici-
rely in a two-mode equation analogous to the traditional one-mode 3loch equation describing
the two-level absorption system. The -ariation of phase and the amplitude of the linear field
polarized in the transverse direction are described by two wave equations, one for each mode:
forward travelling propagation and backward travelling propagation. The equations derive from
the .4axwell equation comprising the transverse and transient hass variations. * denotes the
spatial frequency harmonies associated with the standing wave nature of the field.

The algorithm used to solve these equations is a eerali:atlon of Moretti's scheme for
the Integration of the uler equation of compressible flow. It is an explicit algorithm which
demands a simultaneous integration aloe the t axis for both waves and which also takes into
consideration the directional derivations to check the mutual influence of the two waves whilerespecting the law of forbidden signals. The program thus allows a unified simulation of the
soliton collision, of the two-wave superfluorescence and of the optical instability phenomena
in a nonlinear Pabry Perot cavity.

11) The LIC! program c for Implicit): the simulation is defined by the -, r and t axes.
The model used here is similar-to those used for the LRICFS and the LR1CC programs, however
this =del uses an implicit efficient algorithm with dynamically adapting grids: to achieve
a greater stability and a greater exactitude, in many cases, the algorithm is obtained by
expressing the variable on the left side of a given equation in terms of an integral on the
variables on the right side of that equation. The field equation solution is determined in

.terms of average quantities that varies less rapidly than the original variables. -Every mesh
point Is detetrmied with the associate neighboring points: the resulting triadiagonal Bloch
matrix is solved by recurrence method.

The program offers the possibility of studying the influence of diffraction, of density
variation and of the inertial response in a multi-level system for a large number of experi-
mental parameters.

6.2 GMMRA CRARACT!R1STrCS OF 11PE LASER SV'4ULAIom PROGRA!4S

Several problems arise from the frequent modifications, from the handling by different
users and from the transportation and implantation of these programs into other computers.
These problems can be summarized as follows:

- general comprehension of the programs;

- detailed comprehension of the code; "

- ease of program modification;

- transportability of the programs.

- In order to answer all these requirements, the programs must adhere to certain basic
criteria which make their manipulation and maintenance easier; these are:

- the documentation of the prograas;

- the use of standard POTV*XA;

- the modularity of the programs.

,t is important to point out here that all the laser siulatian programs as wel! is the
sottares presented here adhere to these requirements.

%I
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6.2.1 ZOOME4NTATics
Following is presented the complete description of these programs when dealing with the

Sabove mentioned requirements of general comprehension.

- the principal program includes a summary description of the model used and a complete
description of its algorithm;

all the physical parameters (program data) are adequately reported;

- each subroutine of the program has a detailed description of Its role in the program
and, if need be, of its algorithm;

- the code of the principal program is reported in its smallest detail;

- all the global variables of the program (i.e. variables in the commons) and specific
to the s ,rout:nes, as well as :heir parameters, are explicitely described as per their
usage.

N ot only is a prop;r and extensive documentation a :tme-saving device but it also allows
a more detailed analysis of the program at hand.

6.2.2 TANSPORTABrLrMY

The laser simulation programs can be installed on different kinds of comuters, therefore
they must be easily transportable. As a general rule, and whenever possible and feasible,
these programs are coded in standard Fortran (ANSI).

Thus all the programs use identifiers (i.e. names of subroutines, variables, parameters,
etc.) wit at the most six alphanumeric characters: in fact, most Fortran 7rogrims installed
in computers other than CDC or CRAY do not permit more than the maximum six characters allowed

V by the standard Fortran. Nevertheless, some non-standard statements, such as GOTO, the ?ROGRA'M~4declaration, the indices in form of expression, etc., can also be used because most Fortranlanguage processor actep: these statements.

It is worth noting that the use of standard statements was promoted by the criterion ofr
majority. The only exception to this is the BUFFER :N and 3UFFER OUT used for pagination done
for efficiency. %fore information about this will be given in section 5.4.

6.2.3 MODULAa'TY

The first advantage of modularity is the simplicity and clarity It brings to the program;
that is: in the laser simulation programs, a subroutine performs only one precise task. For
example: the CIDTAU subroutine of the LR1CFS program deals with the calcalations -f the ten-
poral axis and of its derivatives. The second advantage of modularity resides in the ease of
introducing additions, modification or corrections to the program. In fact, when a program has
been cut into simple functional and independent modules, its model can be refined (thus a new
code) without upsecting all its structure. Moreover, any modification to the program will
remain localized (i.e. modifying a numerical integration algorIthm for a function) and its
effects will be better understood; in other words, the risks of unexpected errors, troduced
by these modifications, will be considerably diminished.

F Following is the general diagram of the LR1CPS program (figures 6.2.1, 6.Z.2 and 6.Z.3).

6.3 MAAGVENT CONTOL AMD VALIDITY OF T.i! RESULTS

Two interdependent problems result from the relatively frequent modification to the laser
simulation programs, whether these modifications are for the improvement of the periormince or
for refinlng the models at hand. These oroblems are:

- the minimization of errors due to modifications to the program;

- verification of the validity of the results.

5.3.1 A.DLING AND 5'AAGVNG T! ?ROCGRAUS

All the laser simulation prolrans ire controlled by the C"C UPDATI mrojram whi:h pr:duc~s
program libraries. Thus i- is possible to kee- a complete inventory of the programs and :o
retrieve anterior -tersions as each new odification to the programs jenera:es a aew version.

This method offers the advantage of:

0,"
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- controlling the results: one is certain that a specific result was produced by a
precise version of the program and the relevance of this result is verified in its
production context;

- controlling all the modifications effected to the program over a period of time.
I: is thus possible to have a detailed verification of the code if there is a need S
to check the compatibility of certain results with others, previously produced.

Another advantage resides in the fact that all the laser simulation programs are contra-
lized on the same file. Moreover, because it is necessary to use the UPDATE program to make
any modification or addition to these programs, their manipulation must be very precise. It
follows that the errors (accidental dest.uction of files, presentation of a wrong program),
and the proliferation of more or less similar programs (i... different versions) stored on
several different files are kept to a minimum, this In spite of the fact that a programmer
always teads to create working space by using several files.

Given its facility and its great security, this practice has encompassed all the programs
and software presented in this paper.

6.3.2 RELIABILITY OF TH! PRO.GANS A."3 VALIDITY OF TH! ESULTS

Validity of the results is one of the trickiest problems to deal with. Usually, a so-
*antically faulty program will blow up, sometimes however the program will run tLll the end
and produces completely wrong results. A program using integration techniques with slow
evolving numerical values may be quite resistant to such minor errors as the use of a wrong
constant in an equation or a wrong sign. The problem is then to recognize the wrong results.

The surest way of verifying the validity of the results is to test the program with pro-
viously obtained results known as valid. There is the possibility that the results obtained
in the new version may met be strictly identical to the previous results (results are said to
be identical when, for a given function and a given point, all the significant numbers are
identical) however these may not be necessarily wrong. indeed, if any modification to the
program dealt with the numerical algorithm, or even with the order of certain calculations.
the results will be slightly different (for example, only the firs: significant n numbers in
the two versions agree). It is thus necessary to establish a percentage below which the
results may be considered as valid and above which these can be seen as doubtful.

Moreover, one test only may be quite inadequate when dealing specifically with the relia-
bility of the programs. With the introduction of modifications to the statistics of the LRlCPS
program for instance, it will be necessary to determine whether the new version will function
with or without the transverse effects, with or without frequencies. A minimum of four tests
will be necessary in order to ascertain the proper running of the program. According to the
importance of the modifications carried out, it is important to choose the most exhaustive
set of tests to cover all the possible effects of the modifica cions on the ncdel used in the
program. The validity of the results will thus be verified in all cases (i.e. for any set of
parameters).

This testing procedure with the mechanism of using other versions in program libraries
establishes a consistency between the results of the different versions of the same program.

0.4 CONSTRAINTS OF THE LAME SPRLATION PROGRAMS

Like many other program, those of laser simulation fall under two major constraints:

- the memory available on a computer, and

- the efficiency of the programs.

6.4.1 ?4IOY

Two main factors must be dealt with. first:

- the rather small memory of the computer :hese programs run on: for example, depending
on the equipment, the memory of the CY3ER computers series 170 may vary between 300KS
and 400K words;

- the variable si:e of the programs ire dete"..ined by :he number of words sampled on the
axes that define the simulation.

One of the smallest programs, the LRlC'3, vill be used to show the importance oi these
two factors. This program depends on the following four axes:

%|
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the : axis: lonitudinal axis of the cylinder

-er axis: radial axis (of symmetry) of the cylinder

-t e t axis: temporal axis

- the a axis: frequency axis.

Let us call E the elec:romagnetic field and BE the field derivative in connection to
these two quantities depend ex.licitely on the :, r and t axes. For the purpose of this
discussion, the w axle will not be used. Moreover, if L is the current plane associated with
the z axis and £ is that associated with the r axis. and if k is the current point associated
with the t axis; when the used predictor is conside:od Cmodified mid-point method) then:
E(L,l,k) 2 I(L-Z,I,k) * (IzIZ) x (DE(L-l,i,k) * DE(.,i,k)); as can be seen, the three planes
L-Z, L-l, L of E and the two planes L-I and L of DE must be kept. rt should be noted that the
quantities of I and DI are complex (i.e. one word must be counted for the real part and one
word for the inainary part).

With thoese informations, the size of the program can be assessed. Let us consider the

following three cases:

a) 3? points on the r axis and 64 points on the t axis;

b) 64 points on the r axis and 128 points on the t axis;

c) 64 points on the r axis and 192 points on the t axis.

The code and other variable will occuoy a total of SOX$ words.

Following are the calculations to find out the si:e of the programs:

a) required memory for E and DE: (3-Z)xZx3Zx54 SO0, words; total memory required:
SOXKS*0IS a 1Z018 words;

b) required memory for E and DE: (3.Z'x2x64x123 a 240K3 words; tcal memory required:
SOK3V240K V 31013 words;

c) required memory for E and D: (3vZ)x~x64x19: x 360K 3 words; total memory required:
S0K3360K3 a 430K8 words.

Depending on the number oi points on the axes, it can be noted that the size of the very
same program may fluctuate surprisingly. Wi:h facilities that can deal only with 300K S to
OO s words, like in cases b and c, there will be serious problems to face. Moreover, certain

programs without the radial symmetry hypothesis, like the LRIPS, require a far greater memory.
n the LRZPS program, where the quantities of E and OE depen d exptlcLtely on the :, x, 7 an-

the t axes, with 32 points on each of the transverse axes Cx and y) and 64 points on the t
axis, :here is a need for 24001 words (i.e. (3-Z)xZx3Zx3Zx64). This is indeed a major problem
for most installations.

Nevertheless, the laser simulation programs have some common characteristics:

- the size oi the programs in a function of the quantities of Z and DE;

- %he site needed by the programs in concentrated in two quantities 2 and DE (fron 50%
to 981 of the totl size, depending on the program);

- the numerical integration uses a purely sequential algorlthm in all :he prograts
(i.e. inner loops structures).

One simple and direct way of solving the aroblem of memory is to use the computer disks
to compensate the central memory; these disks have a great capacity to store iniormation.
Thus, as the calculations of :he B and OE quantities proceed by successive iterations on the
planes (: axis), the values of the quantities of E and BE, for a 1iven via,* are stored on a
disk (writing operation), when these values are needed for prediction or corrections calcula-
tions of a given point of the r axis at given ;oin: on the i axis. all that is needed is to
retrieve them from the disk (reading operation): this nrocedure is called pagination.

More precisely, the pLanes L-Z, L-1 and L of H and the planes L-1 and L of DE will be
associated to five binary files sequentially manipulated by :he Fortran s:a:emen.s 3UFFER :N
and 3UFF3R OUT (writing and reading). What remains now is to d.eine the buffers associ;:td
to tte five files and to manipulate the ralues these deal wi:.

At :his point, there is a need to distinguish two categories of programs:

• 1
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v' v where yj jth line on the matrix

a : total number of points on x axis
total number of points on : axis

."x; c: ith poin: on x axis

* tkY keh ?oiLt on t axis
I." i "" I ID Sr: real par: oi E

%V ,ii: imaginary part of E

the control of this buffer is similar to the one described in 1) but there is no need
here to manipulate the sections oi the x axis as all the line fits in the buffer. However,

*. to control the three lines of the buffer, it is necessary to define the supplementary pointers.
For the same reasons, the buffer associated to the files holding the values of 02 on the L-1
plane will have a similar structure but it will have only the two lines y,_, and yj. All the
other buffers for E and DE will control only one v1 line at a time.

As in I), the pointers on the files are used to go from plane to plane, yet the solution
here is not as versatile. The main problem here is the great size of the buffers. In fact,
for 3Z points on the x axis and 64 oints on the t axis, the si:e of the buffer controlling
the three lines will be of SxZx$Zx64 x 3OKq words. Keeping in mind the fact that there are
several buifers, and considering the memory needed by the code and the other variables (near-
ly 7OK8 words for the LRIPS program), there will be O160 words for LRlPS. By changing the
number of poin:s on the axis, it will be easy to reach the 30OX$ words of the computers used

Finally, it is necessary to note that in the two solutions presented here, only four
buffers are needed instead of five, even though there are five files to control. In fact,
as there is never any need for the values of E on the L-Z plane and for the L-1 plane simul-
aneously (the L-2 plane is used for prediction and the L-I for correction). It is possible

to use the same buffer to control the two files associated to these planes for the values of E.

6.4.Z SPFIC!!cY

The pagination of the laser simulation programs nay be the first source of inefficiency.
In fact, it is slower to read or write a word on a disk than to accede'to an address In core
memory (primary storage). In order for the pagination not to affect the performance of the
program to a great extent, Che following rules have been adopted:

- using buffers large enough to minimize the access to the disk;

- using the statements 3UFFER rN and 3MFER OUT to read and write the buffers on file,
these statements are three times faster than equivalent binary statements READ and
WRITE;

- using pointers for the control of files and buffers in order to avoid unnecessary
manipulations (displacements of the values in the buffers, transfer of values from
one file to another, etc.);

- non-usage of auxilary panels for calculations (these will be done directly in the
buffers) in order to avoid supplementary :ransfers.

Beside pagination, other points dealing with the efficiency of Cho progracs must be
checked:

given :he inner loops structure of this kind of programs, it is necessary to avoid
the transfer of variables as parameters in the subroutines called for by the inner
loops. For example, each variable transferred in parameter in the CLDO'rz Cor CIDRVP)
subroutine of the LRlCPS program will increase the total running tIme of the program
by 0.3%, and if this subroutine has 10 variables transferred in parameters, the running
time of the program will be increased by SS: this is quite significant.

It- IIs necessary to minimi:e the number of divisions and multiplications in the equation
used in the subroutines of the inner loops. This can be done, when possible, by
linking all the constant terms !or eac 'point of the same axis and by storing the
result in a ?anel subject to this axis. :n that way, it will be possible to replaca
many multiplIcations and divisions -y one ultiplication and one address calcul tion
(access to the element in the ;anel..

For example, the running tine of the L11C*S program w4thout storing the pagination
mechanism loes from 300 seconds (on a CY.R .7j) to 350 seconds ut w-th the storing of
:he paginatIon mechanism, the lain is of 301.

'IIb
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jwI Yj :here yj jth line on :the matrix "

a to: =tal number of points On x axis

S ... ... x ith point on x axis

.k: :h point on : axis
. o-l to Sr: real part of -

21 Ei: imaginary par: of 2

The control of this buffer is sliilar to the one described in 1) but there is no need
".' here to manipulate the sections of the x axis as all the line fits in the buffer. However,

to control the three lines of the buffer, it is necessary to define the supplementary pointers.
For the same reasons, the buffer associated to the files holding the values of DE on the L-1
plane will have a similar structure but it will have only the two lines y 1 and y4. All the
other bufiers for E and DE will control only one yj line at a time.

As in 1), the pointers on the files are used to go from plane to plane, yet the solution
here is not as versatile. The main problem here is the ;reat si:e of the buffers. In fact,
for 32 points on the x axis and 64 ooints on the t axis, the size of the buffer controlling
the three lines will be of 3xZx3Zx64 a 50K 8 words. Keeping in mind the fact that there are
several buffers, and considering the memory needed by the code and the other variables (near-
ly 7OK$ words for the LR1PS program), there will be 160K words for LRiPS. By changing the
number of points on the axis, it will be easy :o reach :he 300K8 words of the comouters used
here.

Finally, it is necessary to note that in the two solutions presented here, only four
t buffers are needed instead of five, even though there are five files to control. In fact,

as there is never any need for the values of 2 on the L-Z plane and for the L-1 plane simul-
taneously (the L-2 plane is used for prediction and the L-1 for correction). It is possible

• to use the same buffer to control the two files associated to these planes for the values of E.

6.4.2 E!FTCZNcY

The pagination of the laser simulation programs may be the first source of inefficiency.
In fact, it is slower to read or write a word on a disk than to accede to an address in core
memor/ (primary storage). In order for the pagination not to affect the oerformance of the
program to a great extent, the following rules have been adopted:

- using buffers large enough to minimi:e the access to the disk;

- using the statements 3UFFR IN and BUFFER OUT to read and write the buffers on file,
these statements are three times faster than equivalent binary statements READ and
WRIT!S;

- using pointers for the control of files and buffers in ordes-araoiyunneyessa .. .
manipulations (displacements of the values in the buffers, transfer of values irim
one file to another, etc.);

- non-usage of auxilary panels for calculations (these will be '
buffers) in order to avoid supplementary transfers.

eside pagination, other points dealing with the efficienc7 of the programs must be
checked:

given the inner loops structure of this kind of programs, it is necessary to avoid
the transfer of variables as parameters in the subroutines called for bv the inner
loops. for example, each variable transfeired in parameter in the CIDRV7. (or CIDR.P)
subroutine of the LRICPS program will increase the total running time of the program
by 0.51, and if this subroutine has 10 variables :ransier-d in parameters, the running
time of the program will be increased by SS: this is quite significant.

- It is necessarv :o miaimi:. the number of divisions and multiplications in the equa:ion
used in the subroutines of the tnner loops. This can be done, when possible, by'
linking all the constant terns :or each point of the same axis and by storing the
result in a panel subject to this axis. In that way, it will be possible to replace
many mul:ipllcations and divisions bV -n* multiplication and one address calculation
(access to the element in :he panel).

For example, :he running :ime of the LRICMS program wi:hout s:oring the paginati:n
mechanism goes from 500 seconds 'on a CYBER 173) to 30 seconds but with the storing of
:he JaginatIon mechanism, the gairn is of 30".
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~erms used in the diacrims
eta: longitudinal axis of the cylinder
rho: transverse axis of the cylinder (symmetry axis)
tau: temporal axis t
dwa: frequency ais v (associated to the material)
material: polari:ation P (complex quantity) and energy d
E : eect-omnaietic f!eld (complex quantity)
D2 field derivation in terms of eta (complex quantity)
L : Lth plane on the eta axis
. : ith point on tAe rho axis
k e kt point on the tau axis

Elrfrua: I(L,i~k) E(L-l.±,k) :~(-~,~
Modified Suler formula: I(L,L,k) 3(L-2,ik) (zXZ).DE(L-l,i,k)
Trape:oid nthod: I(L,i.k) E(L-.,Lk) (:/s)X(DECL,1,k)DE(L-l,i,k).... HfO, PHIZ: initial tilting angles used in material calculation

Statistics: indicate that depending on certain distributions, the PHIO and PHrz angles
will be randomly generated

.ev to firzres
os e sub-routine contents

-: loop on the number of laser simulations; (sta)

-- ----- -: loop on the eta axis
-------------. : loop on the rho axis
.___: loop on the tau axis
............ loop on the dwa axis
The loops on the seta, rho and dwn axes are optional, i.e. it depends on the activation of
certain effects in the simulation.

.g

SF!CJURE S.".1 - GE! M!AL DfAG;JXAf OF Tn C1lWr s1Th-tOUTINI: ... *0*....... . 0.• * .. .. *.• 0 .................... ......... ...

* Calculation of the initial values of the material
• (only the two principal cases are presented here)

: 1. Case with non-ac:!vated statistical calculations

Step I. (only at boctstrappina mode or for simulation by
O superfluoarescence, i: not, go :o step ).
• C lR UV" ...... •............. .... 0

* *calculation of a point of the material** *from the PH1O and PHIZ angles -

* Step Z ........................... .~material iniziali:ation.

. ...................

* . Case with activated statistical calculations
* e Step i. ClPHST....... .

"calculations of angles PHIO and PH12 from,
* *certain distribution specified by the

"program parameters
0 ...

' Step 2. &LM*..*..*........
*%' "calculation of a point of the material* •

*from the PHIO and PHZ angles

* Ste; 3 ..........................
* .material ini:iali:ation.

*.*e e . ............. .e e. * *..... .. . . . . . . . . . . . . ..



... ' GENRALs pIAGAm OF m c"NTG sus-aoLTNE

" . ................... ........ ............ t• i ... ............. .................. .
: step 3 . .....................................

*.corr-ection o the material of thei.
*TAU axis b the trapezoid mehod
.....................................

Stee . CISUtP "rapo°'id .....et.od
"orertion of th oe lariatio P

"' if the frequencies are active

* Ifthe first plane is ETA. go to ste9 7.

- step S. c ..V.
e* 5.1 diffraction computations (if transverse effects are active),

* S.Z computation of DE using the gain and the diffraction

Step 6. Correction of the field on the ETA axis by the trape:oid method

.Step 7. C1DRV! ......... ...........
5 7.1 diffraction computations with the corrected values of

S" field 3 Ci transverse effects are active)
7.2 comoutation ol DE using the gain and the diffraction

.Step 3. c . .P . ......: e . : , : ...................................................- "

5 . computation of the material derivations in.
* terms of the TAU axis using :he corrected values . o "

* .of field E

Ikp.

* Sem . -neri comutation !or the kth ioint of the TAtt axis
.....

,SSSS*SSSSSSSSSSSSSSSSSSSSSSSSSSoSSSSSSSSSSSS*

--a
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Step 10. ClCL1 ... .
t this sub-routine deals with the initiali:ation of fielI E I

* and of its derivative DE on the first ETA plane.

S10.1,----------------------------------------------------

* ;.nitialization of field E; if in propagation
a made, cai depend on a series of Gaussian pulses. :0,

* II

--qz--------------------- - -

• lO.Z,1 CZU IAN (see figure 6.Z.1)

• ZO .2. CIIN TG (calculation of DE f:or t. irtET
• plane: see figure 6.2..) .1

s.p 11. HCPLZ
t this sub-routine deals with the calculations of field E "

H and its derivation DE on the second ETA plane. . I1

° I -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -

prdcio ffield H by Euler's formula.

-- - - -- H - - - - - - - - - - - - - - - - - --- I

,11.2.1 C ,% ' (see figure 6.Z.2)
" l.2.z CIIXTG (computition of DE for the second

iiETA vlne and correction o f for that "plani: so* figure 5.2.2)•

Step 12. ClCLJ .....
t this sub-routine calculates the evolution of field 2 and*
of the material along the propagation axis of the cylinder.

I , 1 .1 C1P .DF .................................
• I prediction of fieldE by ae

modified Euler's formula.a
II * a**...........e*..........fl...... a I I

•t ., IZ.Z C1IUVW (see figure 6.2.1) *

Ii 1z.3 CIr4m. (computation of DE and of the zaterial,
correction of E and of :he material:

• . ISao figure 6.2.a)

f 12.4 Production of the results (if the ETA plane has 1.
* a l been selected by the program)

a 1Z.4.1 C113T * ...o....I.......• I', * calculation of the ener~y"*

•Ia "integrals on te TAU axisa

cacuazoao t ransverse :u
'.l. wCF:TL..............w..........I............

a'"I I 12.4.3 C1OPWR **.... ..... . . ............. *.... f.
calculation of thle out.~ut zuisoe* at

---.- - - - - - ------------- -------- -- -. I

it.... ................ .. ............ it



- FIGUR! i...3 -GENLU~L OZA =1 OF TFE LR1lCFS ?ROCRA.4 j
II .Step . Reading of datas (i.e. numher of the simulation, optional selectors on the
""" functions, simula:ion parameters).

eStop :. Parameters verification (markers and comoatibility).

IIStep 3. Simulation definition at the SPMES nackage (i.e. declaration of axes,
*functions, selectors, parameters, etc.).

II

I tep 4. Axes calculations.

c4 ...4 CIDE.A.......... ..... ... ......... .... .... ....
" calculation of the ETA axis and its dependencies "

5..' ii. .O ..... ......... *...........................

* calculation of the P0 axis and its dependencies;
* can be defined in linear or nonlinear mode

1 4.3 ClDTAU
ii calculation of the TAU axis and its dependencies; "II

* can be defined in propagation or superfluorescence node * H

4.4 CIDD'WN * . * * * * * *• °
* calculations of the D !N axis and its dependencies;
* can be defined symwmetrically or asy-metrically and * !

* can define a Gaussan or a Lorentzian curve * I!

IStep S. Calculation of the physical quantities used by the simulation.
I I,

I 5.1 ClGAIN ............ ...................... II
0 computation of the gain in terms of the RHO axis; '
0 can be defined constant or Gaussian; can introduce *
* disrurtions
III

I If the statistics calculations are non-activated, go to step 3.3

5.Z C1DPK4N . . . . ..
* density calculations in terms of RHO
* used for the normalization of angle P1O
|It

II 3.3 C1EVBX .............

* outline calculations of angles PHIO AND PHIZ "
II

['Step 6. Initializations dealing with pagination.

IIStep 7. Initialization of ang$es PHIO and PHIl, this initiali:ation follows certain
laws if the statistical calculation has been activated and can be done through
the C1PHST sub-routine (see figure 6.2.1).

IStep S. Initialization and adjustment of vector ZO used for the initialization of
il field 2 in the first ETA qlane (only if the laser is defined in propagation mode).
II 9
11Step g. Initiali:ation of the nrncipal variables of the program.

II '
II
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FIGURE 6.2.3 Ccont'd)
Stop 1--. CIDRPLt...ot.,,...,Q.....t..ot

lIP C~RPL* calculation of the last nlan. produced
11 and reasons for s:opage.-, if available. *

II I I

Step 14. ClACO ... ,......o o

: calculation of th;eacoaher 7unction; useful 1
J specially When it is a statistical simulation t.
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It is noteworthy to state at this point that the fitc:ioning part of the system zorres-
ponds to t.e packages in section IV and to an appreciable part of the laser simulation Vrograms
presented in section VI (LRICPS, LRZCS, LaiPS, LUIlPS, LRIC?, LRlPP). The programs of appli-
cation DEPPAR.M, DESRES and SYNTH are still being developed, however DEFPAIN and DESRES are
already in use.

In conclusion, it would be of value to review our objectives and to examine how the
software developed for the laser model building project answered our e.pectations.

With respect to modularity, it is evident at this stage that a considerable effort has
been extended to divide the work into concrete jobs and to limit these different jobs into
procedures or groups of procedures. Bv their very definition and by their conception, these
packages constitute evident examples of modularity. This modularity can be also -ound in
the step by step division of the nrograms of application.

As to !lexibility, there was an effort, all along the conception of the new system, to
identify the problems of general concern by liberating us of the specific constraints of the
laser project in order to concentrate on the fundamental aspects of the tasks at hand. It
follows that the softwares thus developed have enough flexibility to be adapted to the diffe-
rent situations arising within the same laser model building project or even to be adapted
to other projects where to results are functions and where there is a sufficient quantity
of results to justify a data bank.

The question of security is more difficult to evaluate. Nevertheless. the use of tech-
niques such as data validation, exhaustive tests during the set up period, etc., increase the
security aspects of the programs. Moreover, splitting tp the ork into nodules facilitates
the inception and set up of the programs and contributes to their strength. Finally, the fact
of using these programs in the context of nroduction makes it easier to test them and to find
their loopholes.

As to efficiency, it is clear that the development oa more complex laser models has forced
us to take into consideration of execution tine and menor!y requirements. For instancs, the
direct access to the SIMES and DATSIN files has increased the efficiency of the application
prograas and made them more amenable to use in the interactif. M oreover, the use of pagination
ill the laser modeling programs has cut down the si:e of the programs, and facilitates their use
on computer with limited memory.

Huch attention was given to transportability in order, on the one hand, to execute certain
laser programs on computers =ore powerful than those at our disposal, and on other, to use our
auxiliary software in other projects. To make the software more transportable, we have chosen
to write it FOR'RAN rv and to respect the ANSI standard. Moreover, we have isolated in proce-
dures %he instructions or portions of code that are particular to a given environment Clike
the files direct access subroutines) thus making 1: easy to locate what is to be modified in
order to transfer the software to another system.

With respect to documentation finally, we have established and tried to follow a strict
standard for the programs comments. Ve expect to nublish (internal publication) a technical
report and a user's manual for the different packages and the programs dealt with in this
document.
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ABSTRACT

A model and results are presented which describe copropagational
coherent pump dynamics and evolving superfluorescence (SF). Specification
of certain pump pulse initial conditions results in specific SF characteristics,
as recently observed in CH3F and Ba.
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-SUMMARY 0

4 t Recently developed cdmputational methods~are used to evaluate for
the first time the dynamic longitudinal and transverse reshaping associated
with the concomitant propagation of two light beams in a three-level medium.
Neither the mean field theory (1] nor the adiabatic following [2] or even the
rate equation [3] approximations have simplified this analysis. Instead, the
full Maxwell-Bloch [4,5] equations with phase and diffraction effects (6] included
are solved rigorously, using self-consistent numerical methods [7].

A new concept in nonlinear light matter interactions is introduced:
The results obtained for the first time display the conditions under which
an injected light pulse of a given frequency can be used to shape and control
a second light pulse of a different frequency coupled through the nonlinear
three-level medium. Thus, a specific aspect of the phenomenon of light control
by light is demonstrated [8].

The model has been applied to double coherent transients (i.e., double
self-induced transparency) and to the pump dynamics effects in super-
fluorescence (SF).

"". The goal of this paper is to illustrate how the output characteristics
j of the collective spontaneous emission of the SF pulse [9] (such as delay time,

pulse width, peak intensity, shape, etc.) can be controlled, deterministically,
by appropriately selecting certain initial and boundary conditions fcr the
injected pump pulse.

* Partially supported by the U.S. Army Research Office, the U. S. Office of

Naval Research, the U.S. Science Foundation and Battelle Columbus Laboratories.
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With the exception of Bowden and Sung [10], all theoretical work has
dealt exclusively with the relaxation process from a prepared state of complete
inversion in a two-level manifold of atomic energy levels, and thus do not
consider the dynamic effects of the pumping process. Yet, all reported
experimental work has utilized optical pumping on a minimum manifold of three
atomic [11-13] or molecular [14-15] energy levels by laser pulse injection into
the nonlinear medium, which subsequently superfluoresces. (Note that the two-
level analysis is only valid for R >> T_ , where T_ is the characteristic SF
time and T is the pump pulse temporal wIdth, and Ras not been realized over
the full range of reported data).

--P erUe -eO Bowden and Sung's analytical treatment, we do not confine
our solution to the-mean field regime and the linearized short time regime
but have adopted the semiclassical model advanced by Feld and co-authors [16]
where both transients and propagation effects are rigorously studied. Quantum
fluctuations [17-19] are not discussed in the treatment; instead, a classical
uniform (not random) tipping angle concept is used for initiating the polarization
to simulate the fluorescence initiation. The latter method is well-established
for both two- and three-level [20-21] propagation calculations. Since transverse
effects are also considered, the obtained results also extend the pumpless analysis
that previously modelled the Cs experiment (22].

In particular, it is shown that the injected coherent pump initial
characteristics, such as on-axis area, temporal and radial width (and associated
gain-length-Fresnel number), and shape alter the SF pulse characteristics. The
effects of changing the effective gain.[23] of either the SF or the pump
transition and the density of active atoms are also studied.

For sufficiently large effective gain and/or large input pump area, the
two light pulses overlap and the two-photon processes (RCR-resonant coherent
Raman) make strong contributions to the mutual pulse development.

Dependencies of this type have been recently observed in methyl fluoride
[24] and in barium [25]. Futhermore, under other conditions, we obtained a SF
pulse of temporal width much less than that of the pump even though the two
pulses temporally overlap. This calculation agrees qualitatively with the
results of recent experiments in mode locked CO2 pumped CH3F [26].

.3
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.Co4heent pump dynamics, propagation, tnmsvme, and diffraction effectu
in three-leveL superf.uorescence and gontrol of light by Iiht

F. P. mattar
.- ". Labratro. MecexiW amd Arospaw Eng.,V,, Depar~

" it robahni lmrti of Mew fork, B&ookl i".V York 1 i2i and Laser Speroscpy Labrory
* Mhmeau Iraftute ofTecluiokv Cambridg, Massachusett 02139
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A l. t A M is prumsued for the dynamical evolution of su from an optically
4- p e d syem. The full propagation, tramvere. and diffraction effects are tak.

s peio int With the us of a previ jy developed algorithm. a computation ctmua-Idon was , i tad from this model and andults an prated ad discussed. La particul,-'.ki is shwwa that this injected coherent pump-pals initial characterstics, such as on-axis
ov. er~aaa and ri width and shape. can have silnificant demeministe effects on the

superflumakvat palm delay time, peak intensity, taporal width, and shape. Thus, by
slpacbfing - - - initial properti of the injeaed pump pulse. the superfluarescnt pulse

I an be shaped and ltered. The raults predict the conditions under whicb an incted light
Spuls of a given frequoicy can be used to generate, shape, and control a second Usht pulse of

a dia, at frequency via a nonlinear medium, thus demonstrating a ae aspeICt of the
phmameo of light conl by ight.

L INTrODUCrIoN range of reported data.'
In this paper, we present calculational results and

Supe.fluorc ncn t is the plenom non whereby a analysis for the effects of coherent pump dynamics.
. collecion of atoms or molecules is prepared initialy propagation, transverse, and diffraction ec on

te. in a state of complete inverion and then allowed to SF emission from an optically pumped three-level
undergo relaxation by collective, spontaneous aecay. system. The full, nonlinear, copropagm.cr-a aspects

. Slace Dices initial wor, there has been a of the injected pump pulse, together with the SF
prponderace of theoretical and cpeimental work which evolves, are explicitly treated in the calcula-

_ deliaug with this prto m. tion. Not only do our results relate strongly to pe-
With the exception of the more recent work of vious calculations and experimental results in SF,

Bowden and Suga all theoretical treaments have but we introducer and demonstrate a new concept in
ba r dat e elmively with the reUxation process from a nonlinear ight-mane=" interacons, which we call

pr ep states of complete invasion in a twelevel light contrul by light. We show how characteristics
low manifold of atomic energy levels and thus dw-,ot of the SF can be controlled by specifying cetin

ctheider the dynamical effects of the pumping pro- characte.ics of the injection pulse in the regime
r' a- ess. Ye4 all reported nperimentaL workS 0-' has ' > '"

utilized optical pumping on a minimum manifold of In Sec. IT, the model upon which the calculation
thre atomic or molecular energy levels by laser is based is presented, and the algorithm used in the
pulse injection into the nonlinear medium, which simulation is outlinvd. Results of the calculation are

,. A subsequently superfluoresc. presented and discussed in Sec. III. Section IV is
It was pointed out by Bowden and Sungi that for used to summarize the results and cite implications

".'-a system otherwise satisfying the conditions for su- and to discuss future work.
perfluorescent (SF) emission, unless the characteris-
tic super-radiansc time - is much greater th.an the I MODEL FOR THREE-LEVEL
pump-pulse temporal duration -, &.e., rjt >>r, the SUERFLUORESC"4

emoc of oherent optical pumping on a three-lev-.
system ca have dramatic effects on the SF. This is The model upon which the calculation is based is
a condition which hat no been realized over the full composed of a collection of identical three-level

27 345 1993 The American Physical Society
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atoms, each having the energy-levd sheme shown ter-. The initial condition is chosen consistent with
in Fig. 1. The 1.-,3 tansition is induced by a the particular choice of O (swe the Appendix) with
coherent elecuonagnetic field injecaion pulse of fre- nearly all the population in the ground state and the
quency wo neerly tned to the indi,-,. transition, initial values of the other atomic variables choun

. The properties of this pumping pulse are specified consistently"'2 according to the initial equilibrium
initially in terus of the initial and bomada-y condi- properties of the system=1 3 The full statistical treat-
tions. The transition 3-2 evolvme by spontaneous meat of the quantum initiation process with result-

L emission at frequency m It is asaed that* the ing temporal fluctuations will be presened in a fu.

aeg-level spacing is such that a,>e2>>et so that ture developmen. Thus, the results presented here
-. the fields at frequencies o and w cam be treated by are to be regarded as expectation values or ensemble

separate wave equations. The energy Lavels 2---I are averages.
not coupled radiatively due to parity coeideradons. We use the electric-dipole and rotating-wave ap-

' Further, we neglect spontaneous relaxation in. the proximations aid couple the atomic dipole moments
3*.-l transition, and spontaneous relaaion in the to classical field amplitudes which are determined
3-.2 transition is simulated by the choice of a small, from Maxwell's equations. The Hamiltonian which
but nonzao, initial tnsverse polaizaion" char. describes the field-matter interaction for this system

Stermized by the parameter #- 10- '. Our results do comprising N atoms' is
not depend upon nominal variations of this parame-

Im V

"%

The first term on the right-hand side (rhs) of Eq. and wo. It is assumed that the electromagnetic field
(2.1) is the free atomic system Hamiltonian with amplitudes vary insignificantly over the atomic di-
atomic level spacings e,/, P- 1,2,3; j-1,2, . . . ,. mensions and that all of the atoms remain fixed dur-
The second term on the rhs describes the interaction ing the time frame of the dynamical evolution of the
of the atomic system with the fluorescece field as- system.
sociated with the 3*4 trmnsitiom whereas the last The atomic variables in (2.1) are the canonical
term on the right in (2.1) describes the interaction operators RJ which obey the Lie algebra defined
between the atomic system and the cohermt pump- by the commutation rUies t '"- t

ing field. The fluorescen field and the pumping
field have amplitudes nl'P and , respectively, in [R ,R 1Ritij Rjl 8r, (2.2)

.- , term of Rabi frequency, at the puiton of the jth where i,j=12,3; mnm 2, ... N. The Rabi rates
atom, ?;. ThC respective wave vecss of the two 1 (Q) and oy ) are given in tams of the electrc field

-'-fields are k and ka, and the carrier frquencies are & amplitudes E) and Ew', respectively, and the ma-
trix elements of the transition dipole moments u R
and 4, by

e, nom- (2-VJu t

*(7-3b) C

where we have considered only one linear polariza- t -

tion for the two fields and propagation in the posi-
vtive zdirection.

L It is convenient to canonically transform (2.1) to
remove the rapid time variations at the carrier fre-
quencies wi and w0 and the rapLd spatial variations

FIG. 1. Me" thre-level aomic syumn and -lecmnc due to the wave vectors I and k. We assume that a

field ninp under ccesfdruoa. For the results report- the field envelopes w'o' and c 
,J'

i vary much more
ed here, the injected pWs as tnd to the 1.-1 cuasitio. slowly an the periods w - and w6' ,respectively.

In the transformed representation, we are thus deal-

LAk ,O 
.......
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'kb in& with slowly varying field amplitdes and atomic where
wRph o trh.em. desired unitary transformation U,

Idtesuah that- 2k
!o,-,m UrT Uo .(2.4)

mm. ~ i imm by "

In- ~ ~ j If:) WJa(A()~ xp 4()~,(.) is applied to (2.1 anid the commutaton ruleh0 ". (2.2) are used, we get for the canoally
,oble s transformed Hamitoniaz rr,

0 cap- A

A-r- A(JR +4 (A.A- W AW*(flA3 _
3Ud 2W 2jm jt zJ-1 J-1

* which(.7

,, where

The equations of motion for the atomic variables are calculated from (2.7) according to

(2.9).

(2.1) By imposing th canonical trn ormation demed by (2.5) we, in fact, trinformed to a slowly varying opeA'-
twr epr --mtatics which is consistent with the slowly varying envelope approximation to be imposed later on in

Sthe Maxwel's equations coupled to the hieArchy of first-order equations (2.9).
field If (2.7) is used in (2.9), the following hierarchy of coupled nonlinear equations of motion is obtained for the
a &i- atomic rariabla

the (2.10a)

bed€,. -L'(,"W +a-&PARW)-' 1 (VW -An ) - (2.1,)

find A14 +1  1 (yliti e(2.10c)

field A?, -i ( - Wf)V__= -,&. _-________+______-___-____._ ._____

I Eqs. (2I.1. we have added pheomenololical re- where Uu, Vu, and Wu ar real variables, and
lmxticisril an dephasing TL and taken these to be CJU - Uf, VU- A
fom L, the same parameters for each transt-

,1J don. For the diagonal. tarm RI the equilibrium (LiXi,(2.1 1c)
va are m d asR , the sme for all atoms. -WA (2.1,.jy

z.. We shall treat the Eqs (2.10) from this point as
c-number equations, L.e, expectation values. Fur- wbere X. Y, X@. and Yo ae real variables.
h riza- we assume that a the atoms have identica If the traormation (2.11) is applied to (2.10),

e-'"y-level strcture and also, we drop the atomic the resulting equations of motion for the rel van-
iabels j. so it is taken implicitly that the atomic and ablcs ( Wi, UM. Vkj are

1 .- I) to fidd variables depend upon the spacial coordinates
z, y, and z, as wel 3s the time:. ;n "- [xu)2-YV3 - X°U3 -r° VlI

It is convenen to introduce a new set of real vari- - ril(W3 - W',1), (. 12a)

abls uin term of the old ones. We let
Wn- -,l, k.I (2.tll) W 32 -- IXUn- J21--[XOU3 1.YoV 3 11,.. ly. AumT(- i~) (2.1 (lb) --nIIW3,- W3#2)  (2.12b) "

... . __ .. .... .L ?. .....
'"U
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CIn- m+ V3+XV/,-+(XoU.2 - oVt) tzed radial coovdinate p-/r,,. whee i the raa

distance and , is a characteristic spatial width. In
- n (2.12) (2.14), -zg.y,,, where sdr,, is the 0n-uis defc-

v 3.- -a Cr- rWn + -.(XoV2t + ro, 0  tive gain.

.(2.120N
* C 3n-Av,,-+(XUz +TV')+Xo.w3  tin.L.- .. L "(2.13x)

" "LU--S .On, (2.l2e) where N is the atomic number density (assumed
1- +4U 3,-I(XVII -r n)-r'W3, . loniudinally homogeneous), and n is the index of

refracdic assumed identeal for each transition V.
- V3. (2.120 wavelength. The quantity I.

r~u + o' + (.u , Y ;gal vers the relaive raia popul do deniy dit i- .
bution for atve atoms. This could have vantfio, t .

-T(Xo0VX4-]0oIZ)-Ttr,'V2. (2.12h) say, for an atmic beam. Equaton (2.14) are writ- T'.

ii F 22 r d t ten in the retarded time r frame where t.

In obanigE' 1 2), we havemaeu othVinvariant trR =1l , -- nz/ .

RImRv+a A + Rm.3 From this pont m the dot in Eqs. (2.12) is tken to rbea a. Fnlly, the first fators on the first terms -C

It is noted that -0 is tied identically inin (2.4) are
It is notean thae IumO in (2.u14) an the reciprocals of the -Sain- t(7.0 -21c fr1X-O e"1,1dteeCi length" Fresnel numbers defined by "Vi.

tion 2.13) together with (2.100}-(2.10) constitute e br"

- partile number. a (2.17)
Equation (11.12) are coupled to Mawel's aqua 0

tions through the polarizations associated with each .S

transition field. It is esily det d th It is seen from (2.14) that for sufficiently large p
Mauwdls equations in dimesiolen form in the Frsad number Jr the corrections due to transverse b"
roatin-wave ad slowly varying envelop. appm= effects become negligible. The gain-length Fresnd db
maoas can be written in the following form: numbers .5 are related to the usual Fresnel numbers

I I Fm2er,2/)6L where L is the length of the medium.

M 144 i.e., the total pins of the medium. In the computa-

a. .1 . ( -7 d [-- ons, diffraction is explicitly taken into account by t.

.j [-j theboundary condition that pmp.. corresponds to I
completely absorbing walls.

(2.14b) The initial conditions are chosen to establish a
where the variable .?, , fo, Po are the same as small, but nonzero transverse polarization for the
than deined in (2.11c) and (Z. lid), but in units of 3.-2 transition with almost the entire population in Pt,

YL. In the above equations, we have assumed the ground state. This requires the specificaton of
cylindrical symmetrysma dimensionle paramete - - for the id

ground-state initial population deficit, and 8- 10- ' i

_ for the tipping angle for the initial transverse polari-
V ', •jjP~J. zation for the 3.-2 transition. The derivation for

the initial values for the various watrix elements is
The first term on the left-hand side in (2.14a) and presented in the Appendix, and the results are given sp

(2.14b) accounts for transverse effects with normal- by (A22), (A22), and (A23)-(A33). p

. .. . . ... . .. .

I,,,.,; . , , , - . . .. . ,. . . . . . , . . ., . . . . , . . . . . - .
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,al CALCULamtON Uvlo AND anLYSIS

Cd Ca ewhere We re applied to the Mode
preeted in Sec. 11 to mnpute the effects on SF
pulse evoludtin for varim initial conditiom for the '

I (.15) many facets of the control and shaping

of the SF signal by control Of the input Signal initial '

claimed I K Kist. The material parameters chosen for
- adex of the ecakulations are abitrary, but correspond

i"n roughly to thon for optcally pumped metal vapors
-" .. ntheregime r>-,. ,, , ,
" Ts, altugh the simulaon inhmently yields

Cmuically accurate rslt for particular expei- rIo. 2. Radily Integrated normalized intnity pro.
.10 mm l digo the teiult reported here must be tak "  ila for the SF and injected pulse at t,3-.m pactra.

•' as quaitadve Our main purpose here is to don depth for three different values for the initial ca-xis
. distri. demonstrate and analyze specific correlations be. injecion pulse ares &I The SP pubes a indicated by a,

-ation, t-;ti aad boundary condition associaed b, and c. whenvu the coresponding injted pump pulses
,e writ- with the injected pump pulse and characteristics of are labeled A. B, and C. The injected pulses are initially

the SP pulse which evolve. In many of the cases Gausian in r and r wVh widths FWHD PmO.24 cre
which follow, rules ar established through the and p-4 nmc, ,pem y. The level spacins am such

A analysis, which can be used to predict quantitative that (Es-- )/(63-EZ)UI 126.A The effective pin for the
am akri to results for any particular experimental conditions. pump tranition as 17 c n-1 and that for the SF traasi-
t ftrms Our choic of particular initial and boundary condi- tin &,,291.7 cra-. The pin-length Fremad numbers

hn.., been moiae in. pu by. pr t Pe hic for the two tamidoas a r Y~. 16800 and X7, im278
,, "lain- W4W~l has 5o iin it 7 i elaf xaion and phasing th.e ane takms a identical

may have been oa rtive in experiments which have fra tretom an e gie.s T 0 men a d
b e reporteds-  and in Pa t by the feasibility of for a nm t r eeti vl Td i njct e p, " ini t o--
4apainmital selection or specification. In The da%,,' a,} don with the latter, we demnstrate the control of aism are M)=,i, (M Op-2r. end (C) ep . -'

one light signal by another via a nonlinear medium,
thus imparting nonlinear information transfer and specified in the Appendix. These initial conditions --

% large pulse shaping of the SF from speifc initial and are uniform for the atomic medium and are the
5vese boundary conditions associated with the pump injac- same for all results reported hem Notice that-we

tremd ato signal. have neglected spontaneous relaxation in the pump
-bers Figure 2 shows results of the numerical calcula- transition 14-.3 relative to the SF transition 3-.. - - - -
X. sium, tim for the nusvern intrated intensity profiles This is justifiled owing to our choice of relative ascil,.

for the copeopapting SF and injected pulses at a lator strensths (see Fig. 2 caption).
pe-etratio depth of z-5.3 cm in the nonlinear Thee results early indicate the coherme-effec-

-. .1n medium Th proiles correspond to what would of the initial pump-pulse ares on the SF siWim-
-be observed with a wide apertur fast, energy detec- which evolves. Notice that the peak intensity of the
_puts- tor. The pumping pulses am labeled by capital SF pulses incruses monatonicaLly with initial on- _"

- at by emam and the corresponding SF pulses are labeled axis area for the pump pulse. This is-caused by- to by the corresponding lower cas letters. Each set of self-focusing due to transverse coupling and propa- -

curves represents a different initial an-axis ares for Sation. For instance. r 2--injection pulse would
~. ish a the pump pulse, i, curve A is the reshaped pump generate a very small SF response compared: to an

" r ths -puls at z=5.3 cm which had its initial on-axis area. initial -injection pulse for these conditions at reia- - - -o in specified as 9,-, and curve a is the resultingS F tively small penetration r, or for tht corresponding
M of pulse which has evolved. All other parameters are case in one spatial dimesion, Even so, the peak SF -

. r the ideatical for each set of pulses. The initial condi- intensity is approximately proportional to the square-
" -tons for the atomic medium is that nearly ail the of the pump-pulse initial on-axis area. whereas the
• )lad- population is in the ground state e at i-mO, and a delay time between the pump-pulse peak and the-

small, but nonzero macroscopic polarization exists corresponding SF pulse peak is very nearly inversely -
its iS between levels #3 and a2. These two conditions are proportional to the input pulse area. The temporal.
;ive. specified by two parameters e and 8, respectively, SF pulse width at full -width at half maximum

and we have chosen 8em 10-1 self-consistently as (FWHM) r, is approximately invariant with respect

% .. . .-. . .. ...-

"I"" '"""'"' "'""' "" " ""

1% : "' , ' ' ' ' r = S r . , ' ' s - ' ' * ' ? - , , , , l # . ',l ' " s , "', * . ' " , ' " " ' , . , . . ' . " " ' ' "
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. tothe injectom puls amo
Sinm the averae values of 1,v and the peak SF in- t'

tMenY a ipmportant quantities for .i -" -pig a-6
periusental reults it thore pF SF'"1 th.e'

-mom in which the pump-s coherence and mi- 3

4"' si se area affects these quantities is se to be yew
* . of eoma imporance any maly .

*Fgre 3 shows the efled uponthe SF pulsof
variMao ian the intiia- temporal width at half max...
imans intesityfthe pumping pue. As the ini- I a 3 4 a

%I temporal width of the injected pul -. becomes
smader, the SF delay time i increses, whereas the FIG. 4. Delay time ra of the SF peak intemity frm"
peak SF intensity decrepses, and the SF temporal the corresponding pumppulse peak intensity vs, the
width r rmains very coely fixed. puappuse initial Wui temporal width at half maximum

It is dlt from thee remuts that therm uss an i according to Fig. 3.

approzdin linear relationship between the time dr-
lay 1., betwee the peak SF intensity and the oiro-
sponding pump-pulse iutisisty, and the initial tam- 2T2  ".
poral width r, of the pump puls &.

This linea relationship is shown in Fig. 4, where
the time delay r is plotted vetus the corresponding is the characteristic superfluresceoce time,'t' and
pump-pule initial temporal width, from Fig. 3. 4o is a paramete adjusted to give a best fit to the
Thee reailts generate the following empirical for- calculational results. For the case treated here,

. znuhlfor t function ofi: rjt-41 psec, T2  70 nse, and =o-= 10- , and the

Freel number F- 1.47.
rv "0 37 3? " t  i4 r / #o ) l z  The relation (3.1) is at least in qualitative agree-

* -4T'a(rt/4Y-l) ,rp (3.1) meat with the analytical prediction made in Re.
4(b), Eq. (5.1), based upon mean-field theory. The
first term in (3.1) was chosen to conform with the
quantum-mechanical SF initiation resul t . The

* . quantity #o can be interpreted as the "effective tip.
ping angle" for an equivalent r-initial impulse esci-
tation, i.e., for r -4, which initiates subsequent su-

1A perfluorescence. It is to be noted that the value for
15 0o is dependeni upon our choice of 8 (see the Ap-

a pendix); however, rD varies less than 23% for
*.' 115 order-of-magnitude changes in 8 for 15 I0<.

N The choice of 8 is simply an artificial way of insti-
pang the semiclassical numerical calculation, and

SS ./ reasonable variatons in its value do not strongly af-
•. / fect the results. The physical parameter is, then, #o.

£ which, interpreted on the basis of (3.1), is generated
As through the dynamics caused by the pumping pro-

a U '0..__' __ cess and represents quantum SF initiation. The full
Le e satiticl teatentfor three-leve superfluorCSCenc

with pump dynamics included will be presented inIG). 3. Radially integrated nomalized intensity pro-.Ies for th SP and injected pulses at z-5-on peietra- another publication.

am depth for five different values ore the iniial tain- These results emphasize the importance of the ini-
width of the injected pule. The initial on-axis area of the dating pulse characteristics in SF pulse evolution,

- injected puise is pm-, and the pump tramitioa and SF and the effect of SF pulse narrowing with approxi-
effective ain am g -17.S cm-1 and ,-641.7 cm-1, mate pulse shape invariance by increasing the initial
respectively. All other parametes except for the Frond temporal width of the injected pulse. It is em-
embes ae the same as thas for Fig. L The injected phasized that al other parameters. including the ini-
p in initial temporal widths at half maximum am (A) tial value for the injected pulse on-axis area, are
. ,, m c W,(B) rp = 3J nseo, (C .mL9 rie, (D) , 2.. identical among thes sets of curve&
oe ,and (E) rp-L2 nse- The initial radial width ro of the injected pulse

. l. 
... ,..,
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wa varied and he eect upou the SF pulse evolu. specifiad y , is gven by
d= i show in Fig. S. Th1ra iarldy indicaed an

pnimum value for *o for which the SF peak intensi- 0- .. 4);
ty is a tUouim and dheSF tempora .dthr is a

inimum. If the retin (2.18) is Vad in cojuac. i f 1 (2.17),
doe wth the values of the peametes given in .g.
3 and is i t !a een ot opimiziaooccursy (3.5)
fora value for the coauimdnialF d number F,
far the S trnsition , = I . Thu from (2. 18) and is the eft :tive pin g. to loss ir, ratio. From the
S-, we have condition 3.3),

aty flm 0(.3) ,(3.6)

~'" ~for tde Vin4Uegel FAu nuinber. SinceF -1/; Le, z. ; th penetrationi depth at which the SP
the implicaon is that F4 (33) pie the penetao peak int, ity is a maximum and corresponds to one
dqth zr at which the SP peak intmaity reaches a dfective ffraction length, as defined by (3.4). Car-

* maimumin d.o the ratio 7,*/&. Sinc this tying the *no-dimensional analogy orm step further,
tau both umiern and diffraction explicitly into (34,5 used 2 M218) gives%I g., oa m a d ov a pagatiom this is indeed a pro-

Ami se astneaptOS Fn(A )-. (3.7)

.u and Fur _m n m of(3J) c Fr (3.: and (3.7) we have exhibited the signifi-
to he obaied by onsiderling a o dimemion canoe of e Frasd numbers .7" and F in terms of

hem Analogy. IftdoHomfieldloesistakmtobeentire- diffractio loss, i.e,.Ycan bethought of as on to
Sdthe ly due to ddfftctio, th.n the on menioal linea loss ratio. !q. (3.5), whas F can correspondingly

Ioes x cosponding to the two-dimesional case be thougl: of a the reciprocal of the strength of the
'. . diffractio; ol a, Eq. (3.7).

, ,.af, The eff ;t an SPpulse evolution of variation of'
The the initia radial shape of the initiating pulse is

th as showin ig. 6. Theshapeparameter v is defined"'-' The as in t -ms c the initial condition for the pum p t rasi- -

a tip. dian field aplitude j(): .§:I '. . ,,,,r, i(~ep-(/,)I (3.8)

at for Thus for -2, the initial amplitude of the injected
Ap. I 2 '\ pulse isra ally Ga ian, whereas for v.4, it is ra.
fo dially s .-Gausian. We see from the results

".(~ I upremnted Fig. 6 that as the initial radial shape of
had- "the injecte pulse becmes broader, i.e., larger values
and for v, the eak intansity of the SF pulse generated

!' ya- becomes L ;ar, and the width -r, and delay time ro ,
POOP, diminish. t is emphasized that all other parame.-
9d -" tern, inclu, rg the initial values for the radial and

P a pam temporal ' dths ae invariant among these sets offull FIG. S. Raa intglma amnalized Wnuty pro-funlm for the SP o1 injecied ipik at z-S 5--mawn,& curves.
M' t o ,a s Thus if he initial radial shape of the injected
! in don d f mam v e. the iaidted on- pulse is m ulated from one injection to the next,

& m e., o the bajecw pulis 81 - Ir. the SF effec- the SF ter oral width and delay time o are corre-
am- lv M & -75.3 CM-, 3ad he pump ramkition effec. spondingly nodulatd as well as the SF peak inten-

n, ive pin Si 14.6 on-'. All admr Parmum are the sity. Cart oandingly, the cohrence: and initial rm-
4a* seine a for Pig. L The iniial radial wkiths at half am- dial shape the pomp pulse cannc, with validity,
dal imum for th injected pm am (a) re..O.7 cm. b be ignored a interpretation of SF experiments in
at- -. 4 OLc, (a) omO.24 lcm (41 rei.15 cm, Ce) r 0,.lS terms of r, rd ro.
Si- on, 0) r.O.ll cm, and (gi ro tO- 49 cm. The =Te- Whereas he initial on-axis area for the pumping
we. piniawuin WFrim d l uatbuerare (a) F,-8.46, pulse was t as 2vfor theresults shown in Fig. 6, the

Wb PA4..?, (a) FP.al.47, (d) FP.0.s5, (o) F, 0.57, M1) identical ct €diions amd parameters were imposed,
F, " O.35, ad (I) F, =O.t. but the inix I on-axia pump-pulse aren was chsnged

... . .... . . .. " . - -. .- ' .- "-"".. , .." ''. ....- ,. .- "
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t, pli f or the Sp um Uwind~=1 . cm 1 Al oh the s--a-w, as fo r F aiS.3().Il iialral .s-hpe mt poai. f -I

.~ p uwa nan th e ufor Fig. 2.ut 7Ue t initial ties don tfor oeie injected p lm lareo(A) ha i2jand (B) a=4.i(B:.

.~ ~ ~ ~ ~ l h p p a rmetrsl ps m ,( for the hdoct- puloit aftm~ (A)p 
Si =te 1. 

t . h ada

6. t R -- ',a da ly iue gmut lm din ensi ty 7.- I s Gaus sian initial temporal 
shaae for the 

p n mp pus 
"

- nd t he r l wes ow inca al n 7. 3It i l identified by the 
temporal shape 

paramet r a--

on . ag ti =a* ffect tO c fifi mor e intial with that of a super-Ga ssian .identified by -4-.ar

oea xis ar fpu oss 2 to wf y taes emfor he in gde h As for the radial 
dis tribution d iscusfo previon sly, 

Si t

i h p ulse r adian to dif y he pmi (e i. the the tal -poral shape parameter a is tef i.ed in terms

dnA & a 

of the initial condition for the pump tra:stio 
n field he-

The e of ti l evolu tion to he nges in amplitude (m.r), A h p a s e

the p d tm porag shape of the i je cion pulse i s ( te) j ctps()eap[-( A/)ad( (39 
(B

shown i ig. 8, which c onlips th s e ffect of a . A in, it is seen .that the bra initial pump p ulis

a.,pcauses 

an incre in the peak 
S intensity ad 

a

' .4" dreduction 

in it l y e ra y time for and S t pulse width 
r

"Whm 

the results of 
Fig. 8 correspond to 

an ii-;

m joe atfec 
on-ax ar a 8 n2 for the pump pulse, there-

! 
o . -~ 

wisults of aig. 9 o spe spnd to ident ca conditions and

- es ai s 
values for the paramet ers as th e for Fig. 8; except

that th e initial 
on-a 

dis atn for th e injection 
pu lse i 

s

The effect of 
an gin g the effective gain 

for the

SF transition 

t, and hence 
the relative 

oscillalor

U .

s t r e nat h b e t w e e n t h e S p t r a n s i t i o n a n d t h e p u m p

t dncsition is dem 
onstrated 

in th e 
results 

of 
Figs.

W10- e13. Each of these figures 
corresponds 

to a di f-

I.ao 
ferent on-axis initial area 

for the pump pulse, tthattheiniial n-ais reafor the injection pulse-i

P T O. 7 . R a d b t y w e p a oe m tali a in t nsit y p a p . C o n s is t en t a m o n g t h e e nti r e s e t o f r e s u l ts is th a t in - ti o n [

fil es for the 5P 
nd i njec ted pu ls es at z S J-mu p aie t creasing the effective gain g, results in a nearly

tim de t f r a 
w diff rt v m for th inj t e pu linear incre ase in the SF peak intensity as well as de o : .

inital sap pa mter v (we tet) ThP iitial 
ont cra s in the delay time 

in. Also, the sma er area 
thou"

we 

- 3 Eachm fs hese f crro eS p ons to and 

with a p, 

,

umdm u m fo Pifre 
n t naith iprn til re fr thens ineto l ulse

- , (rteS adijce us a - J! eu a- Cesn h ffcie gi , reut n a IO1

f: : , " , on depth (or, fu diffe, ; ,. alu' s Foth -. i etd pulse lie, increase.. .,-...... in. . ,he S -.p ... i .enit a.. eand-. ,.., . .. , "'

"imsial radial • mp.%parameter v (se tet. Th inta on- craei tedly i e Asoh malrae

ais am G I of th Inece plei s 9 - . Al othe init"iating'" r' " , pulse" causes a" nro we SF- pulse- to evol. e ,&." . - ,
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S P1m. 9O . Radially ingteated normalized Insity pro- NO. 11. Radially integrated normalied intesity pro.
soft*- f a for the S ajned MA at 8mJ-= Ma for the SF and injected palm at zw3-om penetma-

-ul" don depth for two dilferen vals for the injected pe on depth for three differet values for the SF transition
awl initial sun-eal shap puramete a, (*a tat. The initial effc"te pin S, The f-aui as ia ar 9, for the iject-

" aSF onaxis aes 0 of the injected pu,,s 9- 3r All h ed pulse is Op2v. All other parameters an the same as
13200 puaae nesa nea ffllgS. LThe iitial raial for Fig. 10.
10shape parameters for the ihectred pulse. a A W v-2 and

Spe ctemay be due to selffocusing. especially since
4m cct•the values of the effective gains used. intensitype

4 s.~ The n o te oF i s quite his However, the ratio of the te-poral
" den- w/dths r., FWHM, are within 15% of the corma-

517 P2Catv tO n sponding inverse ratios of the densities; the same is
Z& a changed pmuporionaily. correponding to a den- __ hmt -

___ s4. variation p. The ratio, Of the SF intrespect i t ou o h ea time ro of the SP intensit peak

t_1rM suits compare qualitatively resonabiy well with the
field than the comspoding douty ratw squed. mean-field predictions for SF in two-level systems

4a hp) . 1.40 and, poe/p.imos.49. ties f initially prepared in a state of complete inversion.
ftu the predictios fr-mn previous theom. of A comparison of the effects upon the injection

(3.9) pulse of variaton in oscillator strengths between the

ad a

"i aid 31- ah sadijad : 3< ~ m "

04 * the

101 18 4. Le U L . 4.

FG 10. tia d for t integratd normalized SFtrnsitpo- 4. Le OLD LO A G tto
uls& ofi for the SF and injected pulses at Sn3-m pe.3-us- 0 Lfoodt

earl afective pin S, h no -aiujntial ar e, for the inject- 1flier for the SF ard injected pulkes at.-= 5.3-cm penetra-
ad4g e pala is 9, m.Al other parameters ame the same as tics depth for three different values for the SF transition

@.&m,525.0 cm-, (b) S,-641.7 co-'. and (6) g,=73&3 ed pulse is 9p- 3. All other parameters are the same as
CON- .  for Fi . 10.
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in the foillowiag edg of th, pump pals.. whera the tins of pump-pul.. and SF pus coproption and;
-1 hipi dent Fig. an6 a acs whopmp- eiittils o the nnami mutual pulen fresp-

pauis ontraity hi. 16,nloy afct the whopmp itetails ofa the nmic mdiu. These figure
A gona, Fit. 15, os ed to a homogneous. ig. ing. sedf-focisting and dafocining duuing SF buildup.

16, effect on th uppulse. This effect might be The pulse intensities as functions of the radial
usd crth par aesofpulse shaping uni suit- coordinate P and retarded time 'r are presanted in

abh ow. in iom Fi7s issetases itgae F and 19S. cm, rwo ipecti e nt tighs gain4
ab n iandi. 17i tetanp.itgatdS 1m said 19.3cm frewocdifelynt he ins pin

p1ue 1 inenityvr are U( r1U (curve 2) to- medi~um h njce pulse is~ itall r~4&adallya ad
gather with the transverse integrated pump-pulse in- temporally Gasian. Both the pump pulse and the
tissty vas r (czv. 1) for apin and propagation SF pulse anreenm to ezhibit considerable self- A
depth chosen so that the pulses temporally overlap. defocusing with ringing following the main SF peak.
Under these conditions the two pulsea strongly in- At the larger penetration, Fig. 19, a large postpulse
-II with each ashes "a the nonliner medium, appears in both the pump and SF pulse propgation.

a. and the two-photon processes (resonant. coheen This is due to energy -feedback fronm the SF to the
a-anRCJ 4which transfer populations directly pump transition. The postpulses overlap, and so the
*betwe levels C2 and #1, make stzn contributions two-photon RCR effects are atve and quite signifi-

to the mutual pulse developmene' The importance cant in the dynamic evolution and coupling between
of the RCR In SF dynamical evolution in an optical- the pump and SF pulses. This effect is due entirely
ly pumped three-level sysm was pointed out for to the coherence in the dynamical evolution of the

is the first time in Re. 4. Indeed, the SF pulse evolu- systeml.
tion demonstratedi here has greaser nonlinearity than Portrayed in Figs. 20 and 21 are isometric repre-
SP in a two-level system which has been prepared sentations, for the radial and temporal dependence Of
initialy by an impulse ecitation. What is remark- the copropagating injected and SF pulses for two

abeis that this is an extample where the SF pulse different initial shape distributions for the pump
' 0temporal width -r, is much less than the pump width pulse, in the fitst case, Fig. 20, the initial temporal

ame though the two pulses temporally overtap, distribution of the injected Pulse is Gaussian,
Ue,- the SF process gets started late and terminates whereas the initial radial distribution is character-
early with respect to the pump time duration. ized by tha parameter v=3, Eq. (3.8). It is observed
Pulses of this type have been Observed" in COr that the injected pulse has undergone considerable
pumped CH3F. reshaping, due to propagation, to a more Gaussian

The remaining figures ame isometric represcusa- radial distribution. and the SF pulse exhibits strong
self-defocusing in the wings of the tail region. In
the second case, Fig. 21, the initial radial distribu-
tion of the injected pulse is Gaussian, whereas the
initial temporal &stribution is half-Gaussian, with

M. the sharp temporal cutoff on the following temporal
'9 half-section of the pulse. The SF pulse rises ex-
4 tremely sharply, irs comparison to the other cume

analyzed, and tapers off with strong self-defocusing
indicated in the wings of the pulse tail Pump

as pulses of this type are generated using a plasma
5sw5iOc, and the corresponding SP pulses with steep

[.5rise hav een Iffved.

r IT. CONCLUSIONS

' - 23Teeffects preseted here clearly demonstrate the'£

17. adillyinreate ia~ ,~u, ~ ~ lution of injection pump-pulse charncteristics and
o aifrequency, for the SF (2) and injected pulse (1) at conditions in the regime r. <,rx. It is suggested that

4.paiaindph f:S3c.Teefetv anfr effects of the "ype discussed here may have in fact
*the pump transition and the SF transition are rp -I7I beer operative in SF experiments and their results

* eM-' and &,-641.7 cm-1, repectively. The initial an- which were published earlier. 3 10 The pump pulse
tasis arm for the injected pulse is e, -1. All Other parm- was taken as purely cohierent in these calculations.

ownt ame the Sante as for Fig. 7. To determine whether or not effects of the nature

NMI

Iv%
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repO. ha e n ty ase o apr cak o t e radian e crd lsp aad ret ad chmct atics ondi4 io. The in."je~d prop pubs i Ia he wppe kft ad the SF psI., whkh is gane"aze, in th lowr i The para mete are the i
mmeufor Fi.MA).. sax

neportd her are indeed opemtve is a se pedi- ticular initia chrctrscs and conditions for the"
,a mer, it is crucial to dctermine the degree of cober- pumping pulse which is injected into the nonlinear th,-

as at the pv m piroca, s as well a its temporal medium to initiate SF emission. These manifests-
V ~duratioa.' tions and others of the sam class we call the control to-

Furdommore and perhaps of graeter importane, of light by light via a nonlinear medium. This me
we habe demoustrated the control and shaping of phenamenon constitutes a method fo" nonlinear in-
the SF pulse which evolves by specification of par- formation adini or information transfer, from

.44

4*4-1

-..

Ject .
FIG. 19. Pulse intensity as a function of the radial oordioatep and retarded timr at penetration: .3 cm. The in- sav

jmwd pump pule is in the upper let, and the SF pulse, which is generated, is in the lower ngb. The parameters are the the
same as for Fil8. IL p uk

S . .!
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FIG. 20. Pulse intensity I as a functiom of the radial coordinate p amd retarded ti-er at pentation x=3.3 c. The in-
the jued V pu lap - is im the uppet lt. and the SF pub*,~ which is generated. is in the lower right. The parameters are the

sama for Fig. 14() except that the initial oa-sans arm for the injected pump pulse is eo,,w3w a&M the initial radial shape
parameter is V= 3 (se teat)

Wdar
P9 tthe injectim se initial characteistics to corre- Work is now ni progress to incorporate the effects

. - iwa SP pulse characteristics which evolve due -of quantum statistics of the SF spontaneous relaa-
~~ad intemaction in the noninear~ don pvcas.2 We are in the proems of further

*amauua&determination and analysis of the nonlinear interac-
le-t Z.

.4

FIG. 21. Puhenmsityluafunctionofheradial cordinatepandtrdedtimer-atpenetraionz-.3 ca Thein-
jeeed pump p-n is in the upper left, and the SF pulse, which is generated, is in the lower rigIL The patameteS are thea t.. am for Fig. 60) escept th the initial on-ais ar for the injected pulse is -. and h i d rapoal shape of

be the " .e, im-pl is -hafauusias with the sharp temporel cutoff onathe sollowing. L. increasing r. side of the pumptng
. . ubs

"'-***.***4 p*. --'*- '-'. ud .* in.:.. t -ao-a~ ti.p., We are .- th - f

...... .... ..... .... ..... .... ........... 4 onlaes .n 4'
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dion b e two c a pulses resonantly. Ar--- ,-.4r, (AM

medium. and AT is the initial fluorecence field ampfitude,
.a-ga, and x is the linear fluorscence field loss.
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The codition (A14) in (A3) gives
APPENDIX .-

We""" Ar-m-- Ri 3 . (AIS)• We must chos the initial conditions self- x"

-,.- asiatatly. We wish to establish a small. bt Using (AIS) and (A 4)to eliminate the field am.
.:Ozae, uniform initial transves polarization 5 for plitudeAT from Eqs. (A10)-(A13), we get

the 3,- tramitio. f-onsistacy, this corre- . aA1.--..... """ sponds to initial population depletio e of the R = ,uX A6

-round-state population, consistent with (2.13) and
Eqs. (210). •i2a'n'

In terms of initial population numbgA 2M i RAn, (A17M -

* ~Wn-N 3 -N 2 , (Al) 2 -Rz.~~ .(l)_

W 1-N-N, (A 2) --- 4--. (A1-9) ( ) - -2
we choose Dividing (A7) by (AI6),

1112, A,1Nt--- ~~ ~ ~ d3 X- A1 "- 21 Ag

e small and positive and impose the ansat, si' Inte mtn (A I19), '

• .J,-psinhsi#,, (A4)
VpW.SO~~u~IA Rji-R2i AO

where the constant of integraton has been set equal
and let to zero. Thus

P,,C, AVl1N <<1. (AoQ 13 R -,LURiz. (A21)

The co dition (A6) mam essentially that Y, me2
and N z 0. Equations (Al), (A4), and (A.) under tn terms of the resl variables defined by (2.1lb), and
condition (A6) become sing (A21), we get

Umea si,,. (A7) U,3 =-2V , (A22)

vn m cos,, (AS) V2-2'n (A23)
Wn-.e co8s• (A9) From the initial conditions (A1)--(A6),

Our uniform initial 0oditions are just the condi- WVn=_c -- l+Ze. (A24)

•ons which led to the linearized mean-field equa-
tions in the small fluorescence signal regime of ReE Thus

' 4, Eqs. (4.14c)-(4.14f). Initially, the pump field 77. Co-(2c - 1) (A2S)
amplitude wr-0, and thes equations of motion be-

"A." -Aand
";"..-..R 1 m -i :Z7..ll"RZ ,(,A 10) U31-"IM' sin P m.' sitar# , (A26) "

Anm-Zka4R3 P (All) V, = Sinn co"', -77Cosop (A27)
R-zm-2kLorRj, #(A12) We have, therefore, using (A9),

.... . . . . ... .........

! , ... ~ ~ ~~. . . .. _ ... . . . . .: - : .. . . - , . .- . - %
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IA43) * .E A2S) dmc we Ma Chos the phm 4 such thag
13*3ow, Sao. We law.

U32'I8UnAMO4-, (A30) 743

'7v 2 -6Co* mob , (A31) with iEjAm byLA25) and# chom atbiumrily.
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FRESNEL DEPENDENCE OF QUANTUM FLUCTUATION IN TWO-COLOR SF FROM THREE-LEVEL SYSTEMSt,tt

Farres P. Mattartit

Fachbereich Physik
Universit~t Essen-Gesamthochschule, Essen F. R. Germany

and

Spectroscopy Laboratory
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ABSTRACT

The concomitant effect of dynamic diffraction coupling and quantum initiation are examined in two-colorsuperfluorescence SF with use of a semi-classical model in which diffraction and transverse density variations

are rigorously included. The model consists of two scalar field equations closely intertwined in the genera-
lized Bloch equations of a three-level atomic system of a lambda configuration. The medium is completely
inverted. The planar regime data accurately reproduces Haake and Reibold results [1] and are in qualitative
agreement with Florian, Schwan and Schmid [2] measurements. Feld's [3] propagational model is also shown
to be relevant to the physical interpretation and modeling as it was for the two-level [4] case studied by
.attar, Gibbs, McCall and Feld. A synchronization of the delays associated with the two-color SF pulses

is always achieved in the plane wave, thus confirming Eberly et al.'s simulation [51 predictions. Moreover,
when you refine the model to include phase and transverse variation the synchronization is reduced from 95%
to 65% of the number of shots depending on the value of the Fresnel number per gain length F. The variance
of delay difference has been calculated as a function of F [6]. The computational model combines the implicit
features of the double coherent transient anaiysis of Mattar and Eberly [7] and the pump dynamic reshaping
on SF evolution of Mattar and Bowden [8]. The Fresnel dependencies results of the fluctuations are consis-
tent with those of the two-level counterpart [9].

Classical Equations of Motion and ComDutational Method

The calculation of SF pulse evolution in the nonlinear regime is necessarily a calculational problem if
prcpagation is explicitly included. We use an algorithm presented elsewhere[10-12] and the model defined by
the equations of motion to analyze the effects of coherent pump dynamics, propagaton, transverse and
diffraction effects on SF emission. To facilitate numerical calculation, the equations of motion are taken in
their factorized, semiclassical form with the field operator replaced by its classical representation which is
described by Maxwell's equation. The two fluorescence field operator are determined dynamically and
specially in retarded time, by initial and boundary conditions and the equations (The variab!es transfor-
rations and normalization are identical to those for the two-level SF study)

g Re Ea,b exp ( ,b - Ka,bz) ] } (2)

P = Re iga~ -xP [ (W a~ t - aZ )  } (3)a,bab ab ab

E (24 /Aji:l , (4), Pa ~ = a/Pa (5)a,b = R,b ab - b

T =2(. - z/c)/(T"'R. b)

1a,b (7)

where E and Pa,b are the slowly varying complex amolitudes of the electric field and polar4zation, respec-
a,b ab

twvely; W is the population difference; t is the retarded time; r,b or Ca,b the normalized axial coordinate;

The development -of the numerical program applied to this study was sponsored by the U.S. Army

Research office (DAAG23-79-C-0148) and the U.S. office of Naval Research (N0O-14-80-C-0175)

Stipend was supported by 0AAD (F.R. Germany Academic Exchange Service), whereas caculations were
supported by KFA-fFF (Kern Forschungs Aniage, Institut flir F.st'drrper Forschung) fiilich, GmbH F.R.
Gerany

? On extended leave of absence from the Polytechnic :nsutue of New York, Brooklyn, New York 11201

*tt If one select S in terms of the unit nanosecond oulse duraticn 2 = co_, one recuperates the SIF nor-
malisation [10,11]; whereas J one select 2 c:R, the two normadsat:ns liven ty aouation (7) and ,)b
beccme equivalent. R
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is the transition dipole moment matrix element; and bthe population relaxation and ii'"b,,Cs the polart- '

zation dephasing tmes; T1 the Doppler Broadening time and -Rab the radiation time for transition a and

transition b respectively

. a,b E z,b (8) .

instead, one obtains

. T 'a,b + aE ab df a,b(W) g(M) d(W) (10)"4'aF -"f

* ga,b ab

with Aa,b t'ab 1 Rab  1 (see ref [8]) (12)
%.-b l€ NTt,b; ('11) and ga, b • Ia,b

**. Equivalently, one solves numerically

-i?'V E. a aE1  (13)

F-a Eb Oao d bP

Diffraction is taken into account by tbe transverse Laplacian VT

(- with P r n/ for cylindrical geometry (15)

a A7. vith a X1/rp and , x y/rp for cartesian geometry (16)

Furthermore, diffraction Is also explicitly taken Into account by the boundary condition that p a (or,

x C., and C a Cau) corresponds to completely absorbing walls (i.e., aPEa,b 2 0 or OxEa,b o yEa b  0).0)

To insure that (1) the entire field is accurately simulated, (2) no artificial reflections are introduced at the

numerical boundary Pmax >> rp, and (3) fine diffraction variations near the axis are resolved; the sample

cross-section is divided into non-uniform stretching cells.47, s°

a,b r/a L (17), the geometric Fresnel number;

if a. U A R tR (18) the on-axis effective gain then F aP (19) is the gain length Fresnel
k ga, b Aa,b

-iumber, Fga,b is related to the usual Fresnel number FgabFab , (30)(I.e. the total gain of the
Wa~ gab a,b/ab whra F' ca

-\ nediun); one can think of Fa,b as effective gain aa,b to diffraction loss ratio, ,(' whereas canRaa,b, Fa,b

-r -orrespondingly be thought of as the reciprocal of the strength of the diffraction loss Kab for a length
.34,2 1a7 9 abr2 a~

F ga,b • "Rab/Ka,b (22) and Fa,b= ab L (23)

-R is the effective Beer length as defined by Gibbs and Slusher" in SIT for sharp line atomic system

it with T2 replaced by tR i.e. a ztUwnx TR
R c R

."
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Transverse effects influence the SF pulse evolution process in two major ways, (as included in the
equation of motion), one of which is spatial averaging. If SF experiments the initial inversion density is
radially dependent (see d in the RHS of the field equations), since the pump the light pulse which inverts
the sample has typically a Gaussian-like profile. In the absence of diffraction the resulting cylinder of
inverted atoms can be thought of as a set of concentric cylindrical shells, each with its own density, initial
conditions and delay time. The radiation Is a sum of plane-wave intensities; when the entire output signal
is viewed the ringing averages out, resulting in an asymmetric pulse with a long tail.1 s

A second transverse effect, diffraction, becomes important in samples with small Fresnel number F
A/AL, with L the cylinder length and A the cross-section. This effect causes light emitted by one shell to
affect the emission from adjacent shells. The Laplacian term 5'2 couples together atoms in various parts of
the cylindrical cross-section, so that they tend to emit at the rsme time. This coupling mechanism causes
transverse energy flow. Furthermore, this effect slightly increases the delay and reduces the tail and
asymmetry.

'4'

SF is thus an inherent transverse effect problem even for large F samples since the off-axis modes are
not discriminated against. This work is a collaboration with Gibbs, McCall and Feld (4] and was the first
one to correctly include this crucial element long sought for [29].

The Matter model automatcally includes the effects of both spatial averaging and diffraction coupling.The first calculations described a geometry with cylindrical symmetry (two spatial dimensions). Subsequent

calculations for the two level case have been extended to the more complex case where azimuthal symmetry isabsent and two transverse dimrnsions are required [3]. The latter model is needed to describe short-scale-
length phase and amplitude flucavtions which result in multiple transverse mode initiation and lead to multi-
directional output with hot spots. "his effect is only important in samples with large Fresnel numbers, since
diffraction singles out a smooth phase front in small F samples.

However, for the three level case we have for the moment limited our analysis to cylindrical geometry
and left cartesian calculation for future work.

M /4n2 l 8L SfTo/3HnX,2 L (24)

ab,c a,bc
ti, a/(t + b)  (i.e., the motmalisation time r a +Tb )  (25)

a,b a,b
T2 = 2Tr/( + rlto) (26)

('U 1 11b) (27)

a b (wa,b a ,b)/(tRa + CRb) (28)

£ (~ d~)S ~I'f fcp I (Wl)r*J d(40l) a1 (29)
-. 2

d dep[ (p/pI)RJ (30)

d = 1 , uniform density

'for m > 0 the radial population density distribution for active atoms is variable, say, for an atomic beam

. m Z 2 , gaussian density profile

S m 4 super-gaussian density profile

m = , hyper-gaussian density profile

PN is (le) radius of the atomic density N distribution

The relationships of a and r leads directly to

QRL" (31)

.3-
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As noted preV-.ously in the plane wave regime, a universal scaling of the equation exists. The gain
length Fresnel number F qualifies the competition between diffraction (i.e., transverse effects) and the

9
nonlinear gain of the SF system as it did in S!T 25 . Drumnmond and Ebertys1 also recently recognized this
scaling.

- Energy consideration for sharp line g(AQ) = 8(dw)

ga EV E=*- a a1 8 i d(E a * P (32)

as VT(EaVT .o E. + a t a ' . +' o ° • •

-i'b Fb VEhb 2 
1R d ~ ( b + bb' (:33)

Rb Rb

(W + (34)
aot Ta a nies ab eu a boei

' with Tot having both longitudinale and transverse T (or, equivalently and ; ) components;

when using the polar representation of the complex envelope, we have

I., As exp (is 35

a,b a,b
' - A2  and J = 2i11  A2  g (36)
-z ab Tga,b a,bT b

for cylindrical geometry a r spU A2, g (37) whereas for Cartesian geometry

*a,b a,b
. 1 a *F A2 a * *and 2 = A2  8 P (38)
* z gab X ab and - ga,b a b aydb

a~b ab
The components I and T represents the longitudinal and transverse energy current flow. Thus, the exis-

tence of transverse energy flow is clearly associated with the radial variation of the phase a f thb

~ b,, %,,b i,) 3).

complex field amplitude. When In negative (i.e., self-induced focusing dominates dif-
fraction spreading. IT 7 b "

One may rewrite the energy continuity equation, Eq. (20) in the laboratory frame to recover its familiar
form:

rtb (aWo _~ jTjab (3) .

Tot d~ f2 W) A.2 + I~(1Us1(39)

V..? =IC "MO~RAa cT~b

It is noteworthy that the two scalar field equations appear to be uncoupled. Nevertheless, the two
fields are coupled through the material equations [1,7,81 where the cross-coupling appears explicity. The
inertial response of the resonant three-level atoms closely and tightly interweaves the two waves through
the parametric term.

Following [17-191, we interpret the material equations of motion as c-number representation of the
corresponding operator equations.

baPa Ea - I EQ

ab A2 a aA

bIb 
a51"

The opoes zndTreesnsteoni daLadrasesenrycretfw. Ths tes- -. ':+

Iph a  e.t ], e-i fo c us it L
C -f 'p*e2

fracton speadin. ---
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S+ Ya(V.W):i(EP C5p:)- i(EMPb+.Ebpb) ya Lea

2 4T' b Reab

0 1 bP(EPb b) *(E*P.+ EP*) (40O)

we introduce the following transformation: £ V, f1t thus -Sf e-Yt Mf yS3(1

:~at -e yLf~ (42)

As' Ab C b

*~Thus we obtain:

apSb (O0")-c - (AP-, a*~

*I SI'S eE

St~ ~ ab b

I

e eOfyW a Re (e EP) - 2 Re (a E*0P)]

b br~ "Pb r-
~~ae W Re R(e EMb~ e

ry

*~ rb r

ya as aa R*rb
EbPb

)'b

r R ~.1*,. . Re '
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yb Yb b Re = 1 e(-7 (46)

It is important to realize,* that the yellow polarization Pa is driven not only by the yellow field compo-
nent La but also by the red one, Lb since the product EQ corresponds to an oscillation at the yellow fre-

quecy to.Similarly, the poutEaQ* contributes to the time rate of change of the red P b polarization.
The nonlinear coupling of the yellow La and the red L b field components just dsrbdivle h

polarization component Q. Note that, due to the absence of a corresponding dipole moment, Q does not give
rise to an electric field component Ec radiating at the difference of the t-wo colour.

The material equations are subjected to the following initial conditions

a,b
Pab Wab sin 00 exp

a b a-,,, (t#&,-b

a,b (47)
Wab Wa~ Co 0

for an initially inverted medium W0O + 1.0
a,b

2 ,o (48)

0 < a,b < 2n (49)

a,b
so and sa b are the amplitude and phase of the average (i.e., deterministic) uniform along the cell axis4 initiating tipping angle.

no(r) a no exp I- n2(r 2/r 2 )J (50) the inversion density with r~ the HWHM radius; L the sample length,
r2 - 2 y2 (51); p

GOn) Quantum fluctuations. The Initiation process is treated rigorously. The emission begins by
incoherent spontaneous emision; only the geometry of the inverted medium leads to directed emission.Quantum effects occur during the very beginning of the pulse evolution when the problem is still linear i.e.,
with coupled Maxwell-Bloch solutions. The quantum initiation is then described by a statistical ensemble ofinitial conditions for Nisxwell-Bloch solutions. One can adopt an initial polarization source at each z positionwith random phase # (relative to the coherent emission electric field which eventually develops) and with
tipping angle e which is a bivariate Gaussian with RMS value 2/49where N is the number of atoms in each

Pstp in Z. There are two experiments by Vrehen et a. and Carlson et al., that Indicate that 00 is
about this size; they show that injected pulses must have input pulse areas larger than 80 ins order toshorten the SF delay time.

In Particular the Polarization magnitude for each transition a and b is determined by a Gaussian
ditib ,o as outlined by Haake et al 113,15] and Voider et al 111 for the two-level system

P~~duv a r cap [ -(Ul4v 1 )/0,2 I dudv (52)

Where u and v are the transverse components of the B loch vector (i. e., the real and imaginary part of the
polarization ~aor Pb) and

a a b

0 < 2 >1/2 a 2/41K (53)

to represent the quantum Initiation property (following Glauber & Haake;(9 Polder, Vrehen Shuurmans1  and
Hopf) 1  The angular brackets denote an easemble average. Equation (2) is easily checked using

2+v2-I-W -in a n 2

r 4 V
2  1- 2 5 1);(54)

Fo a&1 e1 c as asoumd here; then

wihculd'xeIBohsltos h unu ntito ste ecie yastsia nebeo

inta odtosfr4xe-lc ouin.Oecnadp niiilplrzto orea ahzpsto
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P(e2)de0 x exp -e 2/a2 de2  (55)

the probability that 82 is less than es is

ie

Iex( ) " I - etp o-/a (56)
0

So that Eq (5) can be set equal to 1 - R, when R is a random number R between 0 and 1, or alternatively
exp [- o]can be set equal to R. This leads to

o_ 2 ( 1 1)1/2

(i -) (57)

When the population inverted medium is divided into smaller volume elements, N is replaced by the number of
atoms in each volume element, i.e.,

• 1/2

is the initial tippling angle for the ith volume element containing Ni atoms. The smaller the volume element
the larger the initial tipping angle and the fluctuations for that element, but also the smaller their effect.

exp (p 1pN)M
] [ (p;+1/2 -2_/2

)2

i : N((pi) : Np-1

i/2 i=2 i+l/2- p i+1/2 1/2

With m the index of the exponential density distribution (for a gaussian profile m 2; for a super-gaussian,
m a 4; and for a hyper-gaussian m = 6) and Np the number of radial shell. If we study large Fresnel
numbers the geometry changes from cylinder to Cartesian paralleleplped. The localized area of the computa-
tional call becomes 4(x~1 / 2 Yi.1/2 " x 1 / 2 y 1 /2 ) (60). The smaller the volume element the larger the initial

tipping angle and the fluctuations for that element, but also the smaller their effect.

The random numbers R used in Eq. (58) and the one used in defining *ab between 0 and 2n are
uniform; they are obtained from a table of random numbers. The starting address in the table is changed at
the beginning of each run to simulate the variation from shot-to-shot.

B. Delay Time Fluctuations

For each colour, one can construct a histogram showing the fluctuations in delay time 'D when quantum

fluctuations are included in the plane-wave approximation. The associated standard deviation is given by

Z (1i - :)=.
I(1(Id )D 2=1

S- 1± - } with NR the number of runs with x <1 > (61)
tD----- Da, b Da,b>61

is given as

L-

-. '.
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X

the normalisaton can be done with respect to <4tD> the average delay difference

a(&% J,(T - YIO2/NR 1 (4* > D &> ) (64)-A <MD) .- .,

V *,

A or the normalisation can constructed versus the arithmetic mean of the two average SF delay time

NR
oA,) -=~ ~ (1 + -(65)

'

x~/2(E, b  1/2( + I

Equivalently the synchromisation can measured by the introduction of an auxilliary variable a la Haake and
Reibold [ 11

TH a 1/2 (Da TDb) - 1/2 <Da + tDb >

<...> denotes the average over all the NR trajectories. Two new curves from the two-level SF counter-
part can be drawn to summarize the statistical results. The vertical axis represents aT the difference of
delay, while the horizontal axis is the new variable TH. Each cross corresponds to a particular pulse pair
and gives the difference and the sum of the delay times of the SFa (e.g., red) and the SFb (e.q., yellow)
components. The cloud formed by the NR crosses indeed is a good measurement of synchronisation of the
two SF pulse as it can be seen in Fig. 7. The variance of AtD and TH turn out in agreement to Haake et al
(11 0.96% and 5.3% of the mean common delay, respectively. This variance of TH is significantly smaller

S, .. than the one relevant to the Cs experiment of Vrehen et al [17-19]. This difference is due to the larger
number of atoms (i.e., the larger gain g and the smaller Beer's length aR) used in one present calculation
and to the coupling of the two pulses.

A second diagram summarising the statistics, also suggested by Haake et al, displays the ratio of the
maximum intensities and the ratio {2(At D)/(TDa + tDb)} for a pulse pair. The cloud as shown in Fig. 8

-" suggest (1) that an order-of-magnitude difference of the two SF intensity maximal is not untypical and ()
that within a pulse pair the earlier pulse tends to be more intense than the subsequent one.

Figure 1 represent the three-level X atomic configuration which strongly intertwine the two evolving
light beam each at a different frequency.

Figure 2 illustrates in the plane wave regime when no quantum fluctuation are considered of the initial
stage, how te two SF pulse coincide in time (their delays are equal). Following Feld et al's t31 propagation
theory one notice a new manifestation of simultanecus solitons propagation (or simultons, as named by Eberly
et al 15])

Figure 3 illustrates how the pulse synchromisation still holds for uniform tipping angle even when
diffraction Is considered

Figure 4 illustrates the standard deviation of the delay difference a( &'D) either the delay difference
(4a) or the arithmetic mean of the average delay for each SF for plane (wave calculation with various ohmic

5loss . Even though quantum fluctuation were allowed in the initial process, which gave rise to corres-ponding fluctuations as the output characteristic of the SF pulse, synchronisation was still achieved for
certain gain to loss ratio

K a,b  a( 1Da)/<%Da
>  

a(Tb)/<Tl~b> a(Dtfde1)l<difde1> a(difde1) / h{ <Da>+<T ]b>) '

0 8.47 + 1.128 8.94 + 1.128 63.86 + 9.12 2.61 + 0.373

..022 9.04 + 1.30 16.22 + 2.32 257.1 + 37.1 13.27 * 1.895
8.0434 27.1 + 3.87 22.15 + 3.16 211.96 + 30.28 32.72 + 4.67

.0.657 33.1 4.83 24.33 + 3.47 195.55 * 28.22 34.46 + 4.32

-8.
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Figure 5 illustrates a(D )/<AT D> and a(ArD )/1/2{<TDa> + <tDb>} for a cylindrical geometry con-

figuration where both diffraction and gaussian radial variation of the atomic density are included. The
smaller the Fresnel number, the more unified the difference portions of the beam act together and super-
fluoresce together (i.e., the standard deviation is minimum). However, for large Fresnel number the various
concentric shells act more independently from each other leading to a larger normalized standard deviation.
For simplicity, the gain-length Fresnel number for both colour was chosen to be equal (i.e., Jhe value of
the dipole moment Pa,b entering in the calculation of aRa,b was such that the product 'a,b ORa,b was the

same for both colours). This set of calculations was set up to compare with Haake et al (I]. Synchro-
nisation resulted for small gain length Fresnel number. The arithmetric average of the output power is
displayed in Fig. 5b to show that the d-synchronisation in general is not large.

I/rpa,b FSa,b O(TDa)/<Da> o('Db)/<ZDb> o(difdel)/<difdel> o(difdel)/kh<zDa><TDb>)

3.9 226.05 23.60 + 7.866 44.73 + 1.69 133.18 + 44.39 32.25 + 10.75

4.23 192.225 18.80 + 3.49 14.42 + 2.67 146.11 + 27.13 26.7 + 4.9

5.5771 110.55 4.487 + 1.495 6.078 + 2.026 121.85 + 40.62 7.58 + 2.53

8.7 45.375 8.60 + 1.60 6.07 + 1.13 138.78 + 26.7 4.28 + 0.4

11.54 25.81 4.104 ; 1.37 5.107 + 1.702 118.44 + 44.766 3.83 + 1.25

Figure 6 illustrates a generalisation of Fig. 5, where no restriction were put on the value of the dipole
moments (i.e., where each colour will have its own, geometric Fresnel number). The effective gain lengths %
Fa, b are also differents. ,.

l/rp Fa ab O(bDA)/"DA> 0('Db)/<TDb>  a(Difdel)/<difdel> a(difdel)/ {<tDa>+<TDb> )

3.9 0.82 103.79 7.80 * 1.56 22.6 + 4.5 50.9 + 10.18 30.66 + 6.133

4.23 0.698 88.35 8.92 + 1.78 22.5 + 4.5 47.4 + 9.47 30.76 + 6.152

5.577 0.402 50.885 9..8 + 1.896 23.35 + 4.67 45.9 + 9.19 32.72 + 6.543
6.251 0.320 40.505 11.02 + 2.204 21.5 + 4.31 41.70 + 9.34 30.61 + 6.121

8.7 0.165 20.886 11.38 + 2.277 17.8 + 3.56 33.93 + 6.78 27.91 + 5.542

11.542 0.100 12.658 11.49 _ 2.298 29.1 + 5.8 43.31 + 8.66 43.501 + 8.70

Fig. 6b enhances the fact that in this physical situation, where both geometric and gain length Fresnel
numbers are different for each column, the de-synchronisation is more important than in the physical situ-
ation of Fig. 5.

Figure 7 illustrates the delay statistics for SFa' SFb and the delay difference AtD and common delays

TH as well as the peak ratio for 50 pulse pairs. Each cross represents a pulse pair in a uniform plane wave

Delay A Delay 8

delay STa  delay 8 b

Arithmetic average .74117752E + 00 Arithmetic Average .77272872E + 00

Variance .403525901 - 01 Variance .29290073E - 01

AStandard deviation .200879541 +. 00 Standard deviation .117114343E +. 00
,4 I. E . SQ T (VAR X) I.E. SORT (VAR X)

Total number of Shots 50 Total number of Shots 50

.Maximm value .14911260E + 01 daziauu value .14911260E + 01

,Minimum value .23079303K + 00 Ifinimus value .5795326 E + 00

Standard deviation/ (27 ± 3.87)l Standard deviation/ (22.15 ± 3.16)%
Arithmetic Ave. Arithmetic Ave.



Difdel Dtpndt

delay difference DTPNDT s 2 DIFDEL/{(tDa+-Db)-(<DA> <tDb>)t

Arithmetic average -.31551206E - 01 Arithmetic Average -.143681781 + 00

Variance .61325926E - 01 Variance .209100071E + 01

Standard deviation .247640721 + 00 Standard deviation .1440291E + 00
I.E. SQRT (VAR X) I.E. SQRT (VAR X)

Total number of Shots 50 Total number of Shots 49

Maximum value .7991420SE + 00 Maximum value .20552767E + 01

Minimum value -.85293195E + 00 Hinim= value -.5795011 E + 01

Standard deviation/ (7.85 t 1.12)A Standard deviation/ (10.06 ± 1.453)A
Arithmetic Ave. Arithmetic Ave.

Arithmetic average -.31551206E - 01 Arithmetic Average -.14368178E + 00

Peak ratio SF a/Sab

Hoyenne Arithmetic Average -.20686434E + 00

Variance .15611884E + 01

Standard deviation I.E. SQRT(VAR X) .12494753E + 01

Total number of Shots 50

Maximum value .16816556E + 01

Minimum value -.5790247t + 01

Standard deviation/Arithmetic over (6.04 ± 0.863)A

Figure 8 illustrates the effect of transverse variations on the statistics of SF delay, SF delay difference
and the ratio of the maximum intensities of a (for yellow) and b (for red) respectively as well as the relative
delay time differences for the generailsed three-dimensional (#760) version of the pulse ensemble referred to
in Fig. 7.

Simulation No. 760 Simulation No. 760

Delay A Delay B

delay SFa

Arithmetic average .82498162E + 00 Arithmetic Average .24900598E + 01

Variance .89926436E - 02 Variance .52384771E + 00

Standard deviation .94829550E - 01 Standard deviation .72377324E + 00
I.E. SQRT (VAR X) I.E. SORT (VAR X)

Total number of Shots 26 Total number of Shots 26

* .aximm value .99521732E + 00 Maximum value .47629518E 01

* .!inimum value .63819401E + 00 Minimum value .13018090E + 01

Standard deviation/ .11494747E + 02 Standard deviation/ .29066501E + 02
Arithmetic Ave. Arithmetic Ave.

Error Barr of (1) .22989494E + 01 Zrror Barr of (1) .3133001E + 01 r

-10-
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Simulation No. 760 Simulation No. 760
Difdal Dtpndt

DTPNDT = 2 DIFDEL/I(Da Db)-(<ZDA> <Db>))

Arithmetic average -.16650782E + 01 Arithmetic Average .20397345E + 01

Variance .52015767E + 00 Variance .25832079E + 03

Standard deviation .72121957E + 00 Standard deviation .16072361E + 02
I.E. SQRT (VAR X) I.E. SQRT (VAR X)

Total number of Shots 26 Total number of Shots 26

,. Maximum value -.54565383E + 00 Maximum value .38259894E + 02

.inimm value -. 39474558E + 01 Minimum value -.39469464E + 02

Standard deviation/ -.43314457E + 02 Standard deviation/ .78796339E + 03
Arithmetic Ave. Arithmetic Ave.

Error Barr of (1) -.86628914K + 01 Error Barr of (1) .16084235E + 03

Absolute Arithmetic average .16650782E + 01 Absolute Arithmetic Average .12175411E + 02

Standard deviation/ .43314457E + 02 Standard deviation/ .13200672E + 03
Abs. Arith. Aver. Abs. Arith. Aver.

Error Barr of (2) .86628914E + 01 Error Barr of (2) .26945760E + 02

Simulation No. 760

Arithmetic average .29367574E + 00

Variance .68020016E - 01

Standard deviation .26080647E + 00
I.E. SQRT (VAR X)

Total number of Shots 25

P'' Maximum value .68407412E + 00

Minimum value -.35780137E + 00

Standard deviation/ .88307632E + 02
Arithmetic Ave.

Error Barr of (1) .18127782E + 02

Absolute Arithmetic average .34439806E + 00

Standard deviation/ .75728206E + 02
Abs. Arith. Aver.

Error Barr of (2) .15457955E + 02

Conclusion

The effect of transverse variations in the concomitant evolution of two superfluorescent (SF) emission,
(each of a different colour), is shown to be important. In the general case, the conclusions reached in the
uniform plane wave regime, namely the exact time coincidence of the two SF pulses, does not hold. How-
ever, the de-synchronisation is still smaller than any of the SF output power pulse HMHW half maximum half
width as shown in Fig. Sb and 6b.
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Figures Caption

Fig. 1. The atomic configuration of the three level system initially inverted is shown. The pump dynamics
effects are neglected in this calculation.

* Fig. 2. (a) a plane wave superradance (average superfluorescence) simulation displaying the coincidence
of the two output power as for simulton (simultaneously propagating solitons); (b) The coinci-
dence remains for different linear losses. The two pulses (a and b) can not be distinguished from
each other.

Fig. 3. (a) a two-space (r,z) superradiance calculation (with a uniform tipping angle ala to Feld) is
shown ascertaining the output pulse delay synchronisation even when transverse effects are con-
sidered (both radial atomic density variations and Laplacian coupling between the different concen-
tric shells) for different Fresnel numbers; (b) the arithmetic average of the two colour super-
fluorescence output powers evolving from a quantum initiation are contrasted for a unity geometric
Fresnel number: the peak delays are identical.

Fig. 4. The standard deviation of the two colors superfluorescence output power peak delay difference is
shown as a function of linear loss corresponding to different Fresnel numbers. The stronger, the
loss thus the weaker is the peak coincidence.

Fig. 5. The standard deviation of the delay difference normalised to either the arithmetic average differ-
ence of delays (graph a) or the arithmetic mean of the two superfluorescence delays (graph b) for
plotted as a function of the gain Fresnel number for the particular case where the product . a,b
is the same for both colors.

Fig. 6. The standard deviation of the delay difference normalised to the average delay difference and tothe arithmetic mean of the average delay for each colour is now plotted for general transverse

effects in graph a and graph b respectively.

Fig. 7. In this figure, the various histograms s corresponding to the plane wave situation namely the time
delay statistics for each SF (graphs a & b), their delay difference (graph c), their weighted delay
difference (graph d) and the ratio of the two output power peaks (graph c) are shown. Graph f
and g illustrates a la Haake the difference of delays and the logarithmic ratio of the peaks.

Fig. 8. In this figure the statistics corresponding to the physical situation studied with transverse effects
considered as in Fig. 6 are displayed. In particular, graph a and b illustrate the histograms for
the delay statistics for each SF, graph c and d represents the histograms of the delay difference;
whereas graph e shows the statistics of the ratio of the two output power peaks. Graph f and g
display a la Haake the delay difference versus T and 'DTPNDT', whereas graph b illustrate the
logarithm of the peak ratio versus 'DT2DST'.
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Fresnel variatioA of deterministic and quantum initiation in two and three level superfluorescencet

Farres P. Mattart?

Division de Physico-chimie, Commission de l'nergie atomique
Centre d'Etudes Nucleaires de Saclay, Gif-sur-Yvette, France

and
Spectroscopy Laboratory, Massachusetts Institute of Technology

Cambridge, Massachusetts 02139, USA

Abstract

Recent work is reviewed where dynamic diffraction coupling is examined in Superfluorescence SF with use
7.-.. of a one-way semiclassical model in which diffraction and transverse density variations are rigorously included.
' The Cs data are correctly simulated for the first time in conjunction with both an average tipping angle and

j quantum fluctuation (either longitudinal or transverse) at the initiating stage. This comprehensive review
• also encompasses rigorously the effects of pump dynamics on the SF evolution. The terminology is unified.

i Specification of certain pump beam initial condit.ons at a given frequency results in specific SF character-
istics at another frequency as recently observed in CH3 F and Ba. Pump dynamics are studied in both the
average value of the tipping angle and quantum fluctuation at the initiation stage.

Important Remarks

At this time, I wish to express my appreciation and give credit to Gibbs, McCall and Feld in the two-level
. analysis and Dr. C.M. Bowden and Dr. C.C. Sung it the three-level analysis and for their many contributions
\ in the form of numerous relevant discussions, preparatory analytical work and help in selecting details of

* realistic models based on their close contact with laboratory results. In addition, Dr. Gibbs
and Dr. C.M. Bowden's participation in carrying the two-level and three-level SF calculations respectively
accelerated the rate of progress in my research. Let me take this occasion to thank Dr. Gibbs, Dr. McCall,
Dr. Feld and Dr. Bowden for their energetic and enthusiastic collaboration.

Introduction
Spontaneous emission by an excited atom is a random process in which the stored energy is emitted in the

- natural lifetime tsp of the excited state. In 1954 Dicke predicted that under certain conditions all the energy
could be released cooperatively in a much shorter time Tsp/N, where N is the effective number of excited
atoms.' In this process, which he called superradiance, the atoms would decay cooperatively, instead of
Independently. The emission intensity would be then in proportion to N2 , instead of N as expected for
Incoherent radiation.

The concept of N2 emission in an array of driven electrical or magnetic dipoles is well known. For instance,when the dipoles are confined to a volume with linear dimensions smaller than the wavelength of the drivingfield they oscillate in phase. The resulting emission is proportional to the square of the number of dipoles.
Such N2 intensities have been known in the field of NMR, for example in spin echoes 22 , the pulses are much
shorter than the lifetime divided by N because the lifetime of an individual spin is enormously long and there
are always some broadening mechanisms. Experimental verification of Dicke superradiance only became
feasible with the advent of sources of intense laser radiation, albet with volumes large compared to 2 cubic
wavelengths, and resultant qualifications. Friedberg and Hartanann " noted a high gain requirement to insure
that colherent decay processes dominate over incoherent decay aL >1 and superradiance to occur.

The first experiment to demonstrate Dicke superradiance was reported in 1973 by Skribanowitz, Herman
MacGillivray dnd Feld in rotational transitions of HF gas. 3  Like all subsequent superradiance experiments 4 s
a long optically thick vapor of two level atoms (an HF rotational transition in this case) was prepared in a
siote of total inver:iion by indIrectly (i.e., incoherent) pumping the upper level with a shur! light pu'te, in
this cisse via a coupled ground state transit (rig. 1). There is no optical cavity and stray feedback is
ne.llic.jibl. In the first aspect of the paper, as in most theoretical treatnments, the dynamical effect of th!epumip is not considered. Only the relaxation process from the state of complete inversion in a twa-levei mari-
fold is treated. Af.br a relatively lonj delay, rroportional to I/N, an intense pulse or radiation was eni'ed
at the superradih-rt uransition, which totally de-excited thl. sample. The peak intensity was found to be
propo'rtional to N2 , and the emission process was completed in a time six orders of magnitude smaller tY.an
th radiative lifetime. Under many experiment conditions the emiLted pulses exhibited strong rin.ging. 'his
Intertesting foature, niot predicted by theories developed at that tinie,20 was attributed to propagation

'-' F-Tr-h's s,. wa:s perfm~m.':d "at the MIT Regional Laser Center which is a National Science Foundation
il:egiwiai Ir.s,,r,.aniation facility.

tl Pa't;.,lly supportod lby the US !.rmy Research Office DAAG23-7)-1C-0148, iattelle Colombus L ib, and the
OUfirc. of Navol Tesearch NO00-14-8O-CO1.74; prcse-ntly on extended leavc of absence tron Polytccihnic
Inst iute oc . o; 'h;:-k.
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effects. 3.11.1 . These results were interpreted by means of a propagation model based on the coupled
Maxwell-Schrodinger ("semiclassical") formalism. 3.1 3  For simplicity, the superradiant pulse was assumed to
be in the form of a plane wave ("one dimensional" model). The theory was found to predict all the observed
features, and be in reasonable agreement with the data.

A noteworthy feature of these experiments is that the atoms are prepared in an inverted state, hence
Initially do not possess a macroscopic polarization. Classically, the sample would not radiate except in thepresence of black body radiation. The triggering of the supperradiant emission process is, in fact a funda-
mental quantum phenomenon, brought about by random spontaneous emission events and/or black body radi-
ation. Hence, the consequent fluctuations in delay time, peak intensity, and pulse shape provide information
about quantum statistics.8 In the semiclassical propagation model these fluctuations are simulated by a small
Initiating pulse of area ("tipping angle") 8o,? or by a polarization source distributed throughout the
medium.1 s Dicke superradiance emitted by an initially inverted sample is often called superfluorescence
(SF).14 All observations of Dicke superradiance to date have been of this type.

Following the HF studies, SF was studied in several atomic 4 and molecular 5 systems, and the general
features of the initial observation were confirmed: pulse intensities N2 , pulse delays 1/N, and ringing (seeFig. 2).

In 1976 Gibbs and Vrehen carried a careful set of quantitative observations on the 7P3/ 2 - 7S1/2 transition
of atomic Cs at 2.331im in a 3KG magnetic field. s The transition chosen was free of M-degeneracies and the

experimental parameters obeyed a set of conditions formulated in the mean field theory (MFT) approximation
of Bonifaclo et al. 14 Mean field theories inherently excluded propagation, and generally predicted "single
pulse" (i.e., no ringing) emission. The Cs experiment established the existence of a regime of single pulse
emission (Fig. 3), in qualitative agreement with the MFT, but the observed pulse widths and delays did notagree.7 Under conditions of higher densities, however, some ringing was observed.

Furthermore the SF output was shown to fluctuate from shot to shot, i.e., when the sample is repeatedly
prepared with the atoms in the excited state. These fluctuations, both in delay time and shape, are of
quantum origin (as it has been shown by Haake et al.1 7 and Vrehen et al.18); they correspond to the initial
quantum uncertainties in the state of the field and the atomic system. SF thus offers the unique possibility
of studying microscopic quantum fluctuation In the time domain as it was observed by Vrehen et al. b

Thus an open question in SF experiments was raised: Why the output pulse is sometimes smooth, but at
other times exhibits multiple structure or ringing. MacGillivray and Feld proDosed that the lack of ringing
was due to the non-plane wave nature of the evolving SF pulse,' 5 ."1 but this idea was not pursued.

Another explanation put forth was that the initial tipping angle eo is of the order of 10 2, which is much
larger than the generally accepted value of < 10 4. The propagational model predicted that such a lhrge
value would greatly curtail the ringing and Feduce the decay. However, a direct measurement of 6o by
Vrehen and Schuurmanisd showed that such a large value could be excluded.

In 1977 two quantized field treatments which rigorously incorporated propagation effects and described the
quantum initiation process, were developed by Glauber and Haake 7 and the other by Polder, Schuurmans
and Vrehen."8 These treatments were developed to dascribe the observed statistical fluctuations and hope-
fully, to account for the lack of ringing. The predicted fluctuations agreed with the Cs observations but
due to the plane wave nature of the theory, the lackt of ringing could not be accounted for. These quantized
field treatments confirmed the validity of using the semiclassical approach, and showed that the quantum
initiation process could be properly included in the propagational model by means of a set of initiating polar-
Jzatlon sources or fields randomly distributed throughout the medium. '

By this time it was generally accepted that the lack of ringing was due to the non-plane nature of theevolving SF pulse. Bonifacio, Farina and Narducci2 ° examined transverse effects in the MFT approximation,
while MacCillivr- y and Fold 21 (see rig. 4) and Bullough, Saunders and Feuillade2 2 included a loss term in
the Ma-;c'! equation to describe diffraction. The results of these treatments gave qualitative support to tlie
role of diffraction in reducing the ringing, but quantitative agreement with single pulse observations was
poor.

Beginnir.. in 191.0, Mattar, Gibbs, McCall and Feld 2 3.2 4 rigorously extended the propagational model of SF
to the non-plane wave regime. Mattar's model, which included a transverse Laplacian term in the reduced
Maxwell eouation, have been de,.,ecpd for describing transv.rse (i.e. non-plane wave)2 5 .;!Od variations
self-ir.'iccd-trianspirnrcy (SIT); -"c its validity has bern confirmed by several SIT experiments."7 .2 8  The
results of the non-plane wave SF arlalyis provid&,l the first c ,mplete explanation of the absitnce of ringing
at lower dcr,iities and, for the first time, quantitative agreemcrt with the Cs experiments (Fig. 3).

Transverse effects influence the SF pulse evolutio. process in two major ways, one of which is spatial
averaclinT In SF expcrimncnts the ini!ial inversion density is radially dependent, since the pump light pulse
which in "erts the -,a, ole has t'ypictlly a Gaussian-like profile. In the abscnce of d'ffraciion tile resulting
cylindrr if invertuo Iutums can be tnought of as a set of ci,centric cylind:-ical sh ,lls, each wath its o'..,n
density, ni il dits end ,:!v. :,ne. The radiation is a sum ci plane-wave intensities; ,whn he e)tire
output sigr..,I is vi..w Ine ringi:r ,vCuages out, resulting in an asyrrmctric puLe with a lung tail.S
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A second transverse effect, diffraction is unavoidable in any SF situation. Diffraction becomes important
in samples with small* Fresnel number F = A/XL, with L the cylinder length and A the cross-section. This
effect causes light emitted by one shell to affect the emission from adjacent shells. It couples together atoms
in various parts of the cylindrical cross-section, so that they tend to emit at the same time. This coupling
mechanism causes transverse energy flow. Furthermore, this effect slightly increases the delay and reduces
the tail and asymmetry.

SF is thus an inherent transverse effect problem even for large F samples since the off-axis modes
develop amd diffraction couples them together. This work is a collaboration with Gibbs, McCall and Feld 2 3 . 2 4

and was the first one to correctly include this crucial element long sought for. 2 9

The propagational model automatically includes the effects of both spatial averaging and diffraction coupl-
ing. The first calculations described a geometry with cylindrical symmetry (two spatial dimensions). Subse-
quent calculations have been extended to the more complex case where azimuthal symmetry is absent and two
transverse dimensions are required. The latter model is needed to describe short-scale-length phase and
amplitude fluctuations which result in multiple transverse mode initiation and lead to multi -directional output
with hot spots. This effect is only important in samples with large Fresnel numbers, since diffraction singles
out a smooth phase front in small F samples.

Extension of the propagational model to include non-plane wave effects has many advantages. Homogeneous
and Doppler broadening are readily included. Quantum fluctuations are incorporated by means of suitable
random initial conditions, as in the plane wave treatment of Refs. 17 and 18. As shown in Fig. 5, these
refinements lead to improved agreement with the experiments. 30.3 The reader is referred to recent SF
reviews of both experimental and plane wave theory achievements.33

The second aspect of this article features the effect of Indirect pumping which produces the initial popu-
lation inversion on the SF emission. In all experiments to date a long cylindrical sample is pumped along its
axis. This gives rise to a front of inversion density which moves down the sample at the speed of light. A
key question was to investigate the effect of gain to diffraction-loss balance 34 in the swept-gain case that is
responsible In the plane wave regime for stabilizing the energy and power. 3 5

Pi Furthermore, as found by Bowden and Sung, 3 6 when vR is comparable or larger than -p the process of

coherent optical pumping on a three-level system can have dramatic effects on the SF. In particular, as the
SF pulse grows and propagates down the medium, its delay (relative to the pump pulse) decreases. There-
fore. in a sufficiently long sample, an overlap will occur between the pump and the evolving pulse, resulting
in a strong interaction which depletes the pump and reshapes the evolving pulse similar to the Raman process.
Thus the full nonlinear co-proportional aspects of the injected pump pulse, together with the
8F which evolves must be treated explicitly in the calculation as presented by Mattar and Bowden.3? To
analyze the pump dynamics, the physical model must encompass three-level atoms instead of the two-level.
The A-configuration is considered. The 1 - 3 transition is induced by a coherent injection pulse of
frequency nearly tuned to the identical transition. The properties of this pumping pulse are specified
initially In terms of the initial and boundary conditions. The transition 3 ,- 2 evolves by spontaneous
emission at frequency s. It is assumed that the energy-level spacing is such that C3 > 92 " C1 (see Fig. 1)
so that the fields at frequencies %o and wo can be treated by separate wave equations. However the non-
linear material closely intertwines the two fields. The energy levels 2 a-- 1 are not coupled radiatively due
to parity considerations. Further, we neglect spontaneous relaxation In the 3 ,-' 1 transition, and the
spontaneous relaxation in the 3 a-. 2 transition is simulated by the choice of a small but nonzero, initial
transverse polarization characterized by the parameter *o - 10 3. The initial condition is chosen consistent
with the particular choice of * with nearly all the population In the ground state and the initial values of the
other atomic variables chosen consistently 3 ' according to the initial equilibrium properties of the system. 4 7

The initiation of the three-level system is described in the appendix of Ref. 37. The results do not depend
upon nominal variations of this parameter. The full statistical treatment of the quantum initiation process
with resulting temporal fluctuations utilize an additional driving Langevin force in the material Bloch equation
as was recently derived by Bowden and Sung. 3 ' In particular, it was shown that the injected coherent
pump-pulse initial characteristics, such as on-axis area, temporal and radial width and shape, can have
significant deterministic effects on the SF pulse delay-time, peak intensity, temporal width and shape. Thusby specifying certain initial properties of the injected pump pulse, the superfluorescent pulse can be shaped
and altered both for an average initial tipping anglea 7 as well as an ensemble of (quantum) fluctuation
initialization. 4 0 The full nonlinear set of results predict the conditions under which an injected light pulse
of a given frequency can be used to generate, shape and control a second light pulse of a different frequency
via a nonlinear medium, thus demonstrating a new aspect of the phenomenon of light control by light even
with random initiation. Three specific regions are encountered; the SF buildup, the full development of SF
with the pump depleted, and the highly nonlinear regime where the SF and the pump overlap significantly, if
not totally.

This phenomenon known as pump dynamics 3 ' is interesting because the characteristics of the superradiant
pulse emitted at ene frequency can be controlled by specifying certain characteristics of the pump ,ulse
Injected at a different frcqucncCy. 3 7 Thus a new aspect of light control by light, was demons-rated. 37

Recently the quantum fluctuations for thre(.-levels was derived by Bowden and Sung. In particular they
presented in Ref. 38 a more comprehensive tre.itment of SF in the lincarized regime of SF initiation by
combining coherent pump dynamics on the thren-!evel system and simultaneous as well as subsequent, qui:ntum
mechanical initiation of the S" emuzicn. Their attention, as well as ours, is confined to situations catisfying
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t < 'R ' which is the condition where the effects of SF quantum are expiewcd to be most important in terms

of subsequent temporal fluctuation. Using their initiation through a Lange', in force as additional driving forces
in the material (generalized three level Bloch equations), we study nunierically the nonlinear regimes which
include propagation, transverse and diffraction effects and found that the light control by light remains. 40 .

Synthesis of Results

In summary, the primary objective of this paper is to review how the various refinements in the propaga- °-

tion model in a two-level optically thick medium lead to an increasingly accurate description of the observed
SF pulse shapes, delays and fluctuations. New results of swept gain superradiance and pump dynamics are
also presented. Uniform plane-wave Maxwell-Bloch solutions have been performed by Hlaake et al. 3 1 for
hundreds of such statistical initial conditions. These yield about 12% for the standard deviation o(tD) in the
delay-time in good agreement with the expression 2.3/AnN derived by Polder' 2 et. al. Vrehen et al. have
measured (10-2)% for Fresnel number F = 0.8, (6±2)% for F = 4, and 4% for F = 18. Note that the plane-
waves theoretical value of a(tD) = (13.5±3.6)% for F a 1 in satisfactory agreement with the experiment, i.e.

the jittering of the calculated delays fall within the experimental uicertainty from shot-to-shot. These
fluctuatio. i reduce the tail of the output obtained with transverse effects alone, thus improving the agree-
ment with Cs data. It curtails the amount of on-axis ringing even for a single shot.

When one considers simultaneously transverse effects, quantum initiation and inhomogeneous broadening,

one finds excellent agreement between the propagation theory and experiment. In particular, the ringing " .
disappears and the Fresnel dependency of computer delays agree more unifurmly with the experimental data. .

More specifically, the Fresnel dependency of the uncertainty in delay tire.t normalized to the average delay is
different for F < 1 from what it is for F > 1. The curve peaks for F = 1, ascertaining the competition
between diffraction-loss and medium gains as the consideration of the two transverse effects, spacial averaging
of the concentric shells and communication between the various shells through the Lapliacian coupling.

The effects presented in the second part of the analysis clearly denonstrate in this part the control
effect of coherence pump for both deterministic s or random initialization:" 8,9 on SF pulse evolution. 3 8  It is

suggested that effects of the type discussed here may have in fact be.in operative in SF experiments and
their results. The pump pulse was taken as purely coherent in these calculations. To determine whether or
not effects of the nature reported here are indeed operative in a given experiment it is crucial to determine
the degree of coherence of the pumping process as well a! its temporal duration even for an ensemble of
shots. Furthermore, and perhaps of greater importance, we have dentr. u'ated the control and shaping of
SF pulse which evolves by specification of particular initial characteri.tics and conditions for the pumping
pulse which is injected into the nonlinear medium to initiate SF emissic;-, in a three-level media randomly
polarized. These manifestations and others of the same class we call the control of light by light via a
nonlinear medium. This phenomenon constitutes a method for nonlinear information encoding, or information
transfer, from the injection pulse initial characteristics at a given frequency to corresponding SF pulse -'
characteristics which evolve at another frequency due to propagation and interaction in the nonlinear
medium4 . This idea can be transposed to Raman (or blue-green conver..,r±) studies.

Physical Principl's

As explained in the introduction, the rate of cooperative spontaneous emission is much more rapid than
the single atom decay rate. This can be understood by considering 1he radiative decay of two excited
atoms. If the separation between the atoms is large they will decay inccr.erently in a time tsp. However, if

the two atorms are brought close they radiate in a much different man.nr. A system of two two-level atoms
separated by a distance much smaller than the wavelength A of the emi:t,_ radiation iiust he properly sym-
metrized; as such they emit cooperatively, not independent!y. Thus, .eission process takes the system
from the fully excited state (€t) to the triplet intermediate state (t+_/;', and then to ground state (44).
The radiation rate for each of these steps is twice that of isrh, ted atom. Tbe emitted intensity is thus four
times as great as in the single atom case. Hence the cooperctivc lifetin&e ., (N = 2) = isp/2.

Similarly, kr the case of N closely spaced atoms the total wave funcGn must be symmetrized. The state
* with the maximum emission rate is the totally symmetric state which ).o .-; zero populaion difference. Its

* radiation rate is N/4 times greater than that of N independent atoms: t-E(N) = t /(N/4). This state of

maximum emission corresponds to the arrangement of atoms in which 0-', net dipole moment is maximized.

All observations of SF to date have occurred in extended .7;rmples, b,' :oth the sample length L and the
transverse dimension (e.g., rp) >> X. The radiation is emitted into a sn ,ll solid ongle AQ/4n along the

cylinder axis, in contrast to the i;otropic radi;ition pattern of ordinary .pc!ioneous enission. For a large F
sample with an initiol inversion density n the solid angle is detcrnine,- ry geometry: ti/,Irt = k 2/4nA, and
the characteristic cooperative rac!ation time

R= s/(n2L,/Sn)" 1 . .

This enhancemn:wr-t factor c;m lie interpretc:d r.F the effective nunber of od,.-,tors (nP.L) (Lr/4)r whirh can
participate coobcr .,tiv,:ly in thi c .. ;ion ororf!': .
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Q; Consider an extended optically thick sample initially prepared in a totally inverted state. Due to sponta-
neous emission, relndom photons will be emitted at the wavelength of the SF transition. The first photon to

' be emitted along the axis of the sample will induce a small macroscopic polarization which acts as a source to
create a small electric field. This field induces additional polarization, which tends to build up regeneratively.
Thus. an srSFute slowly evolves over a sizeable portion of the sample. When the polarization becomes

sufficiently large in a particular region the regeneration process becomes rapid, and the sample emits energy
at greatly enhanced rate. This leads to a rapid de-excitation of that region of the sample, after which all of
the population is transferred to the lower level. De-excited regions can then be re-excited by radiation
from other parts of the sample, which gives rise to the ringing.

Statistical fluctuations in the initiation process give rise to corresponding fluctuations in the output
characteristics of the SF pulses.

A unique feature of SF emission is that virtually all the energy stored in the sample is released in the
form of coherently emitted light. In this respect it dif~ers greatly from other cooperative emission effects in

AM which only a fraction of the stored energy is emitted coherently. Examples include photon echoes and free
' induction decay. In these phenomena the sample is essentially unaffected by the cooperative emission and its

decays by incoherent processes. MacGillivray and Feld13 termed these effects as 'limited superradiance'.

Although the initiation of such system is inherently quantum mechanical, its subsequent evolution can be
described seil-cla±sically. The system is analogous to an array of coupled pendulums, all initially balanced
on end. The motion of the system can be triggered by disturbing any one pendulum from its unstable
equilibrium position. Coupling will cause the entire array of pendula to respond together and follow the
motion. For a relatively long time the tipping angle remains small, and the system evolves slowly. However,
when the angle becomes sufficiently large, perhaps of the order of a few degrees, the pendula will swing
rapidly. As the pendula swing they collectively emit radiation, and thereby lose energy. Eventually they
are completely de-activated and, come to rest. If the various initiating perturbations are not identical, the
motion of the pendula will vary somewhat from one shot to another.

In a simplified form of the semi-classical theory, these fluctuation are approximated by an initial tipping
angle. The quantum mechanical theory shows that the intiial fluctuations can be accurately modeled by
ssigning random initial tipping angle to the individual pendula.

If the simple (one-dimensional) pendula described above are replaced by conical pendula the motion
becomes two-dimensional. In this case the initiating tipping angle will have two components. (e0 and *).
From one shot to another both components of the initiation will vary. To enhance this point, picture a child
on a swing. If the child is pushed at the exact center of his back, his motion will be planar. But if the
push is off center, the motion is conical, i.e., nonplanar like a Foucault pendulum. (See Fig. 6b).

The SF process is a unique macroscopic manifestation of quantum fluctuations, even though they are
proportional to the inverse of N, the number of atoms. One usually does not expect that these small micro-
scopical fluctuations could be seen for N greatcr than 10. However, in superfluorescence one can easily
(macroscopically) see this 10% fluctuation for N as large as N = 109.

Equations. of Motion for the Two-level Analysis

A - Three dimensional problem.

In the slowly varying envelope approximation, the normalized field-matter equations read:

a a Re { exp [ i (wt- Kz) ] (2)

I= Re { i exp [I (wt Kz) ] (3)

E - (2E/ ) gR , P /(4

= (t - z/c)/TR (5)

= , the cell length. (6)

where E and P are the slowly varying complex ampJitudes of the electric field a ,d polarization, respectively;
W Is the populatz.zn difference; t is the retarded time; n or r the normalized axial coordinate; P is the
I.,ansition dipole moment matrix elemrnt; and .r and T2 are the population relaxation and polarization
tephaslng times; T . the Doppler Broadening time and T the radiation time

" 2 E +Z= = (aRctR)d f P(&i) g(Afl) d(An) (7)

if kzwR (8)
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instead. one obtains

V-2 E 9f = d I" POO) g(W) d(w) (9)
However, if one identifies A as the pulse extent (i.e., A = ctp) one recovers the SIT normallsation; where-

as should A be taken as the cooperation length A = ctR. the two normalisations eqs. (6) and (8) become
equivalent.

1P + (I0l1/%) P EW
(10)

aW + (W+1)/ t - (E*P P*E)

R= V/4irp 2q8L = 8wte/3q8,\2 L (11)

YIL TIA (12)

r2 T2/ R  (13)

-f TIA 1 (14)

h (Wo-)T R  (15)

a 2
$ g(60) d(A') = .1w/t f exp { - [( f)t*] ) d(AC) = 1(6

d u exp I - (P/PN)m] = (17)

d 1 1 , uniform density

for m > 0 the radial population density distribution for active atoms is variable, say, for an atomic beam

m = 2 , gaussian density profile

m = 4 , super-gaussian dcnsity profile

m • 6 , hyper-gaussian dcnsity profile

pN Is (Ile) radfths of the atomic density N distribution

The relazior.hips of a. and -R lead- dii .-ctly to

ORL = 1 (18)

As noted pre;'iously in I):. plane v'e,,n regime, a universal scaling of the equation exists. The gain
length Froz;wl number F .u;:lifJes the co:npertion between diffraction (i.e., transverse effects) and the
nonlinear gain of the SF syaI'ni as it dd in SIT 25 . Di'ummind and Eberly"1 also recently recognized this
scaling.

Following 17-19, we intuic.-ot the (-qul'ions of motion as c-number representation cf the corresponding
operator eq ii s.

- Energy cnnsideration foc shuirp line g.A) )

1. VT(LV f EVTE) + 0eII = d(ELP t EP*) (19)

V - 2 - 2d [,sW + (W-'/T,] (20)

v.bhre using ti, polar rep , :.rti n of 1O. c('mpIex cr,v on, we h;ve

S- 13



No. N; .V oV",

- = A exp (I*) (21)

and T A2 VT (22) Pj
for P cyidiand g e y 21

21 A 2 " (23) whereas for Cartesian geometry

2xn Ax 2 JIh~ A23~ (24)

The components J. and JT represents the longitudinal and transverse energy current flow. Thus, the exis-

tence of transverse energy flow is clearly associated with the radial variation of the phase , of the complex

field amplitude. When IT in negative [i.e., VT$ > 0], self-induced focusing dominates diffraction spreading.

One may rewrite the energy continuity equation, Eq. (20) in the laboratory frame to recover its familiar.-2

V - J -d ( [2Wa - ' (25)

The material equations are subjected to the following initial conditions

P" We sin So exp (I#)
(26)

V = Wo cos go

for an initially inverted medium Wo = + 1.0

do -2/49 2/49;M_ (27)
p

0 < 4 < 2x (28)

0o and # are the amplitude and phase of the average (i.e., deterministic) uniform along the cell axis initiating
tipping angle.

no(r) a no exp [- n2(r'/r')J (29) the Inversion density with rp the HWHM radius; L the sample length,
p

r2 a x2 + y2; F = nr/XL (30), the geometric Fresnel number; an = (wO - w)R ] the normalized frequency
offset.

Diffraction is taken into account by the transverse Laplacian VT.

(p ) with p - r/r for cylindrical r. omxetry

+ with • X/rp and = y/rp for cartesian geometry (31)

Furthermore, diffraction is also explicitly taken into account by the boundary c,,ndiLion that r pmax (or,

Cmax and C = C.) corresponds to completely absorbing walls. To insure that (1) the cntire field is

accurately simulated, (2) no artificial reflections are introduced at the numerical boundary p- >> r2 , e A

(3) fine diffraction variations near the axis are resolved; the sample crass-sectcon is divided ini non-uniform
stretching cells. 47.50

= a 'wIc N tR (32) the on-axis effective gain then Fg = (33) is the (j.oin length Fresnel number

F is related to the usual Fresnel number by Fg/F = aRL (34)(i.e. the total gain of the mcdiun); F can he

thought as effective gain a to diffraction loss ratio, . 1; whccera F can corrctpondingly he thought of as

the reciprocal of the strength of the diffraction loss K for a length L. 34 .3 7

K = A/nr' (35)

Fg " R/c (36) and F = (KL)" (37)

t'~ is t.he (.frective Beer lcngth defined ly ihbs and S',1, '46 in SIT !o- sh;rri ht.e ,irimic sy:tem -"

"ut with 1'2 replaced by tR i. R 
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B " SmnP i fied one-dimensional problem

Let us consider the uniform plane wave solution where the variations transverse to the direction of
propagation are neglected (F =am) and where the medium spectral line response is sharp (-r = ). The
relaxation times are negligible (1 = s *). The input field is collimated; if the input field is pure real,
the evolving field and polarisation will be real.

The equations reduced to the one which describe the familiar array of nonlinear pendulum initially tipped
at a uniform small angle, which fall as a phased array. Approximate solutions can be derived as summarizedW In Table 1. -

TAB E 1

a'; Z "nots = (t2/sp) (nok 2L)/8n

htgh gain eL > % In N (see Friedberg and Hartman 2 (b))

,R= p(8n/noX2L) X 12/aL

€ (ca) Arrechi-Courtens maximum cooperation time defined in Ref. 10a

CE = 2Lc 1  Photon escape timeEb
86 TR E (z =0, )/h

peak intensity Ip T nw N2TRi~en(21/o)l'""N

(a highly directional dependence i.e., with the radiation pattern similar to that of an 'end fire'
antenna array)

pulse width I "R ln(2n/eo) cN

delay time T "R IJn(2n/°)12 
£ N 1

It Is noteworthy scaling relation describes the basic characteristics of superradiant emission: the duration
of the radiation pulse varies inversely with both the inversion density of the sample and its length, and the
peak output power increases as the square of each of these parameters. Furthermore, the delay as well as
the pulse width can be expressed in terms ot T as seen in Fig. 5. The time scales as TR and the intensity ,
scales as x2. The shape of the normalized outht curve depends on the tipping angle. R

C - Cylindrical SF simulations.
Qi Average constant initial tipping angle. Calculational methods developed earlier43 and discussed

elsewhere" were applied to compute the effect of transverse effects on the SF evolution. The result pre-
sented here demonstrate many effects of transverse variations and how inherent they dre to the protlem of
SF. The initiating quantum fluctuations are first approximated by a uniform tipping angle.

The graphic of Fig. 7(a) displays results where spatial averaging is present but diffra-tion is ablsert, by
setting F = - in the field equation. In this figure the emitted power of SI" pulses is plotted for samplI_'s withuniform and Gaussian profiles no(r) and 00(r). First, we studied ringing reduction due to spatial ave iating
of independent concentric shells, each emitting in a plane-wave fashion. The case in which no ind 0o are
both constant (curve 1), the uniform plane-wave limit, exhibits strong ringing. In curve II, in whi'L no is "
Gaussian (no(r) = nS exp [-fn2(r/r )1]) (38) and 6o is uniform, the ringing is l.igely averaged out,

Gp
resulting in an asymmetric pulse with a tail. An essentially identical result (Curve III), is obtained for the ,"case in which rk and 0o are both Gaussian { o = 0% x exp [0.5 fn 2 (r/ ) 2 ) (39), showing that the rimning
is predominantly removed by a Gaussian no regardless of the radial dependence of O. This is ex::oerted, -
since the output-pulse parameters are all dependent only on RnOo. As shown in lig. *"'(b) with unorm
and 0o but with diffraction includcd, the output-pulse is almost symmetrical, and allou n,,rly free ot I
for F < 0.4. rig. 7(c) -hows the same output power but with different de:ector oeutur" ;:
detector aperture i) shows the ringing observed by the HF' experiment and the La:j, ,,' :iU. \ .. .
no ringing in agreement with C the intermediate apertures (ii) (iii) displ.iy :1;rtIo1 ,vr., :I:j of%
ing and cross-tvik of the concentric shells.
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In Fig. Sa, the effect of diffraction on the SF pulse shapes is studied by varying F with the use of aGaussian no as in the figure showing Curve 6(a). Reducing F curtails the oscillatory structure and makes
the output-pulse more symmetrical, since the outer portions of the gain cylinder are stimulated to emit earlier
because of diffraction from the inner portions. Diffraction through the Laplacian term establishes modecoupling between high gain to lower gain regions; it induces the different modes to pull together and super-
fluoresce concomitantly; subsequently, this leads to the reduction in tail which brings the output pulse
shape Into greater conformity with the experimental data. Thus diffraction becomes more important as F
decreases. Figure 8b is an Isometric graph of the intensity build up for a sample with F" = 1. The radial
variations of intensity peaks, delay and ringing, illustrate how different gain shells contribute independently
to the net power. Each shell exhibits a different Burham-Chiaol ( b ' c ' ) ringing pattern. Accordingly, their

contributions to the net signal interfere and reduce the ringing. However, the central portion of the output
pulse should exhibit strong plane-wave ringing. In fact, the ringing observed in the HF-gas experiments
may have been just that, since the detector viewed a small area in the near field of the beam.

Figure 9 compares the normalized Cs SF data (for which F - 0.7, with uncertainty ranging from 0.35 to
2.4) to the theory (including relaxation terms). The data were fitted with the use of Gausian no and a

uniform 80 with nominal value 00 = 2(nS x r2L)1 / 2 (40), n% being adjusted to yield the observed delays

(1.6-2.8 times the experimental no values). However, the experimental curve published at each density was
the one with the shortest delay. The experimental average delay is - 30% greater at each density (see
Footnote 13 of ref. UT-Thus, the effective ratios of our computed densities to the experimental ores range
frm1.2 to 2.2, compared with the +0 % quoted experimental uncertainties.

The quantum calculations'? Is actually yield 0 = (24f)[Sn(2N)/8 a 9 correcticn which further
reducel the range to 1.14-2.0. If one sets 0o = 64N (42), as suggested by the small injection experi-
mert s the range is 1-1.8, in still better agreement.

The calculated shapes are in good agreement with the data and are within the range of shot-to-shot
fluctuation. The only discrepancy is that the simulations predict more of a tail than observed in the experi-

A ments. For comparison, this figure also plots the fit of the one-dimensional Maxwell-Schrodinrger theory. As
can be seen, the present theory gives a more accura.e fit, illustrating the necessity of including transverse

' effects. The pulse tails are further curtailed by reducing F within the range of experimantal uncertainties
- *. (which used a 1/e rather than a half width at half maximum definition as r ). Note that often a Fresnel

pnumber F defined as r 2 /AL, is used; diffraction effects become Important when F' = 1 (i.e., when F = 0.36).
p

Finally, the simulations predicted large ringing for a small detector placed in the center of the Fresnel
number (F=I)SF 1 output

Figure 10 clearly displays the propagational theory of SF as outlined by Feld et al. [33). The fluency
(energy current) and the field energy are shown as isometric in T and p for different distances z in the
cell. The build up of the field as driven by the initiating polarison is seen to he dependent on p and z.
With a uniform tipping angle, the energy current is always positive (i.e., the beam diffracts and blooms and
do not experience self-focusing).

(ii) Quantum fluctuations. The Initiation process is treateA rigorously. The emission begins by incoherent
spontaneous emission; only the geometry of the inverted medium leads to directcd emission. Quantum effects
occur during the very beginning of the pulse evolution when the problem is still linear i.e., with coupled
SMaxwell-Bloch solutions. The quantum initiation is then described by a statisticdl cnscmble of initial conditions
for Maxwell-Bloch solutions. One adopts an initial polarization scurce at each z position wit- random phase $
(relative to the coherent emission electric field which eventually deve"lops) and v:.Lh tipping rine 0 which is
a bivariate Gaussian with RMS value 2/4Nwhere N is the number of atoms in each step in Z. There are two
experiments by Vrehen et al.4Sa and Carlson et al., 4 sb that indicate that e0 is about this si::e; they show

:,., that injected pulses must have input pulse areas larger than e in order to sbor-e', the SF dtlty time.

In particular the polarization magnitude is determined by a Gaussian distribution
•~~+V 0 "]" Pduvduv v
(uv)dudv exp -u+v 2 )/o 2 ] dudv (43)

Where u and v are the transverse components of tha Bloch vector (i.e., the r;... and imaginary part of the

polarization) and

o'O >1 2 =z21fl (44)

to represent the quantum initiation properly (follown Glauber & t:, ; PolJcr. Vrehen Shu,:utrirs" and
Hopf). 19 The angular bracket5 denote an ensemble av',,rage. Equation (2) is e,::ly checked using

Us v+ 1-W - sinV8 02 (25)

For small 0 -s assumed here; then

'. ," ...... ....
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P(g2)d -e/* d12 (46)

th probability that e2 is less than 08 is

101 p(02)de • - I - exp ( -02/0 2  (47)

So that Eq. (5) can be set equal to 1 - R, when R is a random number R between 0 and 1, or alternatively
exp [-83/oJ can be set equal to R. This leads to

go ( M 1 1/2 (48)

When the population inverted medium is divided into smaller volume elements, N is replaced by the number of

atoms In each volume element, i.e.,

1 _ 2 1 1/2
(49a)

is the Initial tippling angle for the ith volume element containing Ni atoms. N1 is the fractional density con-

tained in the I th planar shell (i.e., ring over the density contained in a unit volume (i.e., 1 = Az).

N1 a N(p1) Np-i " - (P1/PN)'1 I n - rI1/ 2 ) (49b)

+ 1 exp [-(p/p) m ] (p. " P 1 /) + exp [-(
i=2

With m the index of the exponential density distribution (for a gaussian profile al a 2; for a super-gaussian,
m a 4; and for a hyper-gaussian m a 6) and Np the number of radial shell. If we study large Fresnel
numbers the geometry changes from cylinder to Cartesai parallelepiped. The localized area of the computa-
tional call becomes 4(xl,/ 2 Y 1,+, 2 - x,- 11 2 Y- 1 2 ) (51). The smaller the volume element the larger the initial
tipping angle and the fluctuations for that element, but also the smaller their effect.

The random numbers R used in Eq. (48) and the one used in defining 4 between 0 and 2n are uniform;
they are obtained from a table of random numbers. The starting address in the table is changed at the
beginning of each run to simulate the variation from shot-to-shot.

The simulation parameters (except as noted) were essentially those of the Cs single-pulse experiment, 2 3

namely. A - 2.931 IJm, L - 2 an, T, = 70 ns, T2 = 80 ns, R = 8n=0 /3nex2L (52). o = 551 ns,
n o a 1.8 x 1011 m3 , and F = 1. The Initial gain profile is Gaussian, i.e., n (r) = no exp[-(r/r ) 2.tn2] (53)
so the spatial width is narrower for smaller F, but the peak gain remains the same.

Ill. QUANTUM FLUCTUATIO14 SIMULATION RESULTS

Uniform plane-wave Maxwell-Bloch solutions have been performed by Ha.ke et al. " for hundreds of such
statistical initial conditions. These yield about 101 for the standard deviation O[DJ in the delay tinne in
good agreement with the expression 2.3/nM derived by Polder, Schuurnarn and Vrehen. s b Vrehen and Van
der Weduwe 41 have measiured 10 ± 2% for Fresnel number F = 0.8, 6 ± 2 for F = 4, and 4% for F-18.
Note that the plane-wave's theoretical value of o[tD] is in good agreemnt with the F = 0.8 epernental

value. We find that when both quantum initiation and transverse effects are included C[TD] = 13.5 ± 3.6%
for F x 1 In satisfactory agreement with the experiment, i.e. he jittering of the calcthtted delays fall within
the experimental uncertainly form shot-to shot. These fluctuations reduce the tail of the output obtained
with transverse effects alone, thus improving the agrccmcnt with the Cs dta. It cur.ails the amount of
on-axis ringing even for a single shot. 30.3 1

A. SF Pulse Shapes

Figure 11 is a summation of fourteen outplit pulses in the plane-wave c'dse with quamtum fluctu.itiuns.
The ringing is still very pronounccd so quaniuim fluctuitns ;,lone do rit rumrnove it ;,F w;a found by HIrjjke
et al. Figure 12(b) illUStr;ALCS the fact tlat for r - I trsvpri_:e iffCtS alore do largely rumove
ringing.3. 2

4 Figures 12(c) through 12(f) Oiow that tran: verse effects :irnd guantuo fluctua~tions torc'her
result in fluctuating output pulses with vu:'y 'ittle ringq:,J t:ot enco:!rpil:;.: the puhih.:d Cs pulse :.h"pes
(one is shown ini Fig. 12(a) ). t'igure 13 illu.triten that o. 'Lhe averoir. (.t7 runs) t..c til of the pul;,. ir
lower with fluctuations that without.

.P.
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Figure 14 displays isometric plots of the SF intensity and its associated fluency 0 T = IEt ,) where o
Is the phase of the electric field as a function of p and Y for elements of the statistical ensemble. One finds
that the transverse energy current JT occasionally flows inwardly causing hot spots in the output beam as
was sometimes observed in the Cs experiments. The previous transverse calculations 2 3.24 involving uniform
Upping angle never displayed inward-transverse energy flow. Figure 14 also shows the radially integrated
output SF intensity as a function of t for the four shots of the statistical ensemble.

B. Delay Time Fluctuations

Figure 15(a) is a histogram showing the fluctuations in delay time t,D when quantum fluctuations are
I In the plane-wave approximation. These 57 runs yield

NR ,1
I (I' tD)2/NR

-I t (9.9 1.3 with NR the number of runs (50)

compared with 12% from the formula 2/3tnN derived by Polder et al.'s and from numerical simulations of a
larger number of trajectories. 1 7  Figures 5(b) and 5(c) are similar histograms for cylindrical symmetry
Uransverse simulations for F = 1 and F = n 1, respectively;

O(YD. F*1)/!D a (13.0 + 3.6)%

for 13 trajectories and (7.2 ± 1.8)% for F = n I and 16 trajectories. Figure 16 summarizes the Fresnel number
dependence over the range F - 0.3 to 1.5. The curve is drawn through the points to guide the eye.
Because the same starting point was used in the same random number table for the five black-dot points, the
Fresnel number dependence of O(D)/'D is probably determined much better than the error bars would

p1 . suggest. The curve yields 12 ± 4% for F = 0.8 compared with (10 ± 2)% reported by Vrehen and der Weduwe
for Cs.*a Drummond and Eberly have more extensive calculations of a(tD.) for F a 1 to 16.51

Figure 17 illustrates a difficulty encountered in calculating #(CD). Occasionally, the first "peak" is not
the highest peak. If one uses the highest peak for determining -D for just one trajectory in a set of 10,
the value of i(D) Is dominated by that one trajectory. Consequently, in Fig. 6, -D is measured to the

first peak wven if it is only an Inflection on the leading edge of the pulse as in Fig. 7(d). Trajectories as
unusual an those of Fig. 7 occurjed perhaps every 20 to 30 trajectories, and they can be interpreted as
phase waves discussed by Hopf.1,

C. Full Three-Dimensional Quantum Flucturations--Cartesian Geometry

The cylindrical symmetry was removed to allow fluctuations in all three spatial dimensions. This permits
treatment of the large Fresnel number case in which there may be competition between transverse modes not
possessing cylindrical symmetry. This additional degree of freedom has little effect on pulse shapes integrated
over transverse dimensions (Fig. 18), but it elucidates fluctuations in SF angular distributions (Fig. 19).
For small Fresnel numbers the diffraction term strongly couples the various parts of the beam, so the beam
behaves as a unit. On the other hand, the output for large Fresnel numbers is completely irregular and
highly asymmetrical; see Fig. 19 for the energy isometric near the peak of the output pulse. This is due to
the loose coupling between the various portions of the beam as well as the short-scale fluctuations. Never-
theless, Fig. 19(b) shows that the (transversely) integrated output signals remain smooth, as observed by
the detector in the experiment. Fig. 20 compares seven different outputs showing quantum fluctuations in
the full 3D Cartesian case.

-.0 For seven shots, figure 21 displays the field energy and the associated transverse fluxes J and J at
the end of the cell. Some of the fluxes are negative (i.e., flowing inwardly) indicating the 6nset ofyhot
points (self-lensing effects).

Figure 22 illustrates for F = 0.7, seven of the output elements of our statistical ensemble. Both the
energy and the transverse energy flux are contrasted isometrically as a function of x and z or y and T.
One can see that for some of the elements of the statistical ensemble, the phase curvature is such that :he
energy Is flowing inwardly, leading to self-focusing hot-spotr, across the b, im as observed experimentally.
Whereas, for other elements the fluency is only flowing outwardly, thus diffracting as in the physical
situation with transverse effects alone.

D. Inhomogeneous Broadening

Fluctuations in the medium initiation and inhornogeneous b:'oidcening in the plane-wavc limit have hecn
calculated by Haake, King, Schroeder, Haus, and Glauber.b T'hiir rstliI show that simu],itions, inclidnq
both inhomogeneous hroadening (T) and 'luctimto;ns but ici;oring tran.:vcr.e effect, do 1).)t eCx)l:in tho
absence of ringing in the Cs data. Without fluctuations or 1r*n:;vcuze effccir,, Nig. 12 show . tha: Tr ~ _
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as in the Cs data has little effect on the ringing. Elimination of ringing is shown in rig. 23 using a TI
almost as short as T Fig. 24 shows that adding TI a 32 to the previous simulations including fluctuations

and transverse effects changes the pulse shapes very little.

IV. Conclusions of Two Level Superfluorescence

The addition of quantum fluctuations in the intial conditions of SF calculations does not greatly alter the
general shape of the total output pulse integrated over the transverse dimension. It does result in notice-
able macroscopic pulse-shape fluctuations similar to those observed. It does reduce the tail, on the average,
improving the agreement with the Cs data. It reduces the amount of on-axis ringing even for a single shot.
The standard deviation in delay time is consistent with the measured value, but the uncertainties in both the
simulations and experiments are large. The Cs data are encompassed by the changes in output pulse shapes
calculated including both fluctuations and transverse effects as summarized in Ref. 30 to 32.

V. Pump Dynamics Effects in Three-level Superfluorescence

In this section we present a model and calculational results and analysis for the effects of coherent pump
dynamics, quantum initiation, propagation, transverse and diffraction effects on superfluorescent (SF) emission
from a collection of N optically-pumped three-level systems. The full, nonlinear, co-propagational aspects of
the injected pump pulse, together with the SF which evolves, are explicitly treated in the calculation.

The model upon which the calculation is based is the semiclassical version3 6
.3

7 of the fully quantum
mechanical model used to derive the effects of quantum initiation In the linearized region of SF in a
coherently-pumped three-level system38 (i.e., during and subsequent to the pump pulse time frame). The
semiclassical aspects amounts to representing the SF and pump fields by classical fields determined by
Maxwell's equations, including the transverse contribution, and representing the Langevin force fluctuation
terms responsible for spontaneous relaxation and quantum initiation by complex valued c-numbers. 3 ' The
amplitudes and phases of the complex-valued fluctuation terms are determined by Gaussian and uniform
statistics, respectively, which are derived from the fully quantum model. 38 .39

The first model for the study of dynamical effects of coherent pumping on SF evolution was the three-level
model proposed by Bowden and Sung. 36 The model is comprised of a collection of identical three-level
atom, each having the energy level scheme such that the 1 .-, 3 transition is induced by a coherent
electromagnetic field pulse of frequency wo and wave vector ko. The transition 3 - 2 evolves by spon-
taneous emission at a much lower frequency w. It is assumed that the energy level spacing is such that
93 > 92 

> > a,. and we also retain spontaneous relaxation in the pump transition 1 - 3 for generality. The
energy levels e2 and r, are not coupled radiatively due to parity considerations. The injected pump field is
treated as a coherent state. 3

3

The Hamiltonian which describes the system and the corresponding equations of motion have been discussed
In References 37 to 39, and the reader is referred to those equations.

The normally-ordered Heisenberg equations of motion for the SF fluorescence field obtained from the
Hamiltonian for the system3 8

.
3 9 are formally integrated, and then separated into the contribution due to the

self-field of the atom, the vacuum contribution and the contribution due to the presence of all the other
atoms (i.e., the extended dipole contribution). The first mentioned separated field leads To natural atomic
relaxation Y I for the 3 i-. 2 transition in the normally-ordered Heisenberg equations and the vacuum con-
tribution leads to Langevin force terms f(T) which satisfy the ensemble average over the vecuun fluctuations
(i.e., which are delta correlated):

< fab ) + N 1 (-)a~()fa,b(T = C- _ (-' (54)
NI RP0 RSr

<a,b(O' fa,b(') > 0

where N Is the total number of atoms and tRP, T RSF are the characteristic pump and Sf ifine (i.e., the time
for which, on the average, one cooperative photon is emitted), and is given by

2

S 2 Ip ' s F Nil
RP, RSF ' L (c

Here, N is the atomic den;ity, 1. is the longitud;nal length of the medium, and I.,P,SF is the at.-,-fild coupling
In the neighborhand cf the rconarce for thf reump and the Sr transition rctiel'. Thi-.':...-!l .,qi:,.tino
i retarded time coordinalcs ar, c,.rjveo in a m,;,:jer rimilat' to that ]leading Lo Eq. (3', ,i iUe'er,.iire 2 .
ht dctails of the duiv'ations wcrt pr:,:nted ,.;h.re.
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Both field operators variables Ea and rb and the atomic operators variables 'Pba r ' Wa and bare to
to be understood as functions of z and %, and the fluctuating force terms fb and fa which are responsible for

quantum initiation can be shown to be functions of retarded time t only.17,h s

The Langevin terms fa corresponding to the I -. 3 transition obey relations identical to those of fb(54,55),

but with tRSF replaced by tRP" The Langevin forces terms in the Heisenberg equations of motion"8 give rise

to Gaussian random quantum initiation statistics in both allowed transitions. 3 5 The pumping field 3 envelope
£A is taken as a rightward propagating pulse which is injected into the medium with specified initial and

boundary conditions and in general is described by a classical Maxwell equation.

Classical Equations of Motion and Computational Method

The calculation of SF pulse evolution in the nonlinear regime is necessarily a calculational problem if
propagation Is explicitly included. We use an algorithm presented elsewhere4 4 and the model defined by the
equatlions of motion 3

l, 
e to analyze the effects of coherent pump dynamics, propagation, transverse and

diffraction effects on SF emission. To facilitate numerical calculation, the equations of motion are taken in
their factori2ed, semiclassical form3 7 with the field operator replaced by its classical representation which is
described by Maxwell's equation. The pump field and fluorescence field operator are determined dynamically
and specially in retarded time, by initial and boundary conditions and the equations (The variables trans- -
formations and normalization are identical to those for the two-level SF study)

T a Cp a P
gp%

(57)

r 9f Eb + atsE ad Pb

in the above equations, cylindrical symmetry was assumed with

p2O SF) N

P f RFPF (59)'PA a zaRPRSF; aRPPSF - nc ' RP,RSF; gP,SF =  RPRSF

Equivalently, one solves numerically

-1 F 1"Vt E+ 8 Ea =d Pa

-I(RSF) F-1

VE -'d ("RSE (60)
ORP gsfT b + tP b 6(R Pb

The c-number Bloch equation for the 3 Level Superfluorescence reads as follows:

+a EA 21bf f. W. P +i

+?E Q* fQ L+jytPb=EW~b a +fb Wb P

C9*Q e(EP*+KE p),PC,+ p1&p
c 2 b bpa + fa b b C C Cb

2

'- TaWa (E*i P. + Ea P-) - (£ Pb + E Pb) "2(faPa+faPa fP~bb "-'' ' ¥ I ."..

m. ' -eis definition is sore commonly used to normalize z: QPS - p,SF~fpg'rP,r S p( e e 7.'i

V. .
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wbere f IfoI exp(i#,,) (62), < (63).

I f I, P(f) a X o1 O-1 )23 (65)

-ht"t,"e
I- I p O ap % ooeatO

% -1 -1!-F2

1L fb 1 ' u €) ,M,,) a x" o i e H- ' (67) .

0 p U -- (69)

ith a t entire p tio in t g n sa. T r e th s ao o o ss.

c "1

-[2

m13  Nil 9i * Pb (71)

For deterministic calculations the langevin forces are taken either as constant or as zero, such that the
initial conditions are chosen to establish a small, but nonzero transverse polarization for the 3 ,- 2 transition
with almost the entire population in the ground state. This requires the specification -of two small parameters,

-10"4 , for the ground state initial population deficit, and 6 0 4 for the tipping angle for the initial
transverse polarization for the 3 ,- 2 transition. The derivation for the initial values for the various matrix
elemahts is presented esewhere,36 and the results are as follows:

vA •2 2 .

Re P3 a 0

Re 0 =•sin t

In PA 0 a Cos %p

ReQa-2IsPA

Is Q o 2 RePA , (72)

where m a cos "1 (2*-i) and the phase I is arbitrary, and we have chosen the phase #s to be zero.

The Langevin force fluctuation terms f and fo, responsible for quantum initiation and relaxation, are
taken as complex valued c-numbers,

where fa,b Ifa,bl exp('*a~b) (73), 0 < a,b - 2 (74)

If al =p (75) P(f)exp ) ]  (76)

p ~~~ p SpE(fl 2]-

Ifbl = hSF (77) P(h 2 ) i exp -( h") (78)SSF

U32 n (9
P (9

02 n
SP z ,R-- i  '80)

2 I
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The Langevin force contributions to the semiclassical equations of motion give rise to initiation of fluorescence
In the 3 '-- 2 transition when the 3 - 1 transition is coupled by the pumping field EA. Normally, one can
Ignore fluorescence in the 3 *-, 1 transition, i.e., ignore contributions from fa"

Thus, by utilizing the relations (73-80), a complete ensemble simulation can be constructed, and in thisway the manifestations of amplified quantum initiation can be calculationally analyzed over the fuLU range of
ynamical SF evolution. This amounts to generating the calculational results, using the semiclasscal repre-

sentation of the Hesenber equations of motion for specified initial and boundary conditions, for each of
the values selected for Ifel . 

1fb a and b according to the statistical distributions (73-80). In the
cmputation N in (59) is tAken as N1 for each volume element or call In each computational state (it is noted
that tRL/C a T€ (81)which is invariant with volume). One then must "take the ensemble averages and
associated variances. For the results presented here, we have Ignored fluorescence in the pump transition.
The material parameters chosen for these calculations are arbitrary, but correspond roughly to those for
optically-pumped metal vapors.

The initial and boundary conditions are such that all the atomic population is in the ground state el at
- a 0. The pumping pulse which pumps the 1 '-. 3 transition is Injected at z = 0 and is rightward propa-
gating, and its Initial characteristics are specified at z = 0. The SF pulse subsequently evolves in z' p,
and - due to the Initiation of fluorescence instigated by If I and # as indicated in the equations of motions in
their semiclassical form discussed above.I The pump pulse, whose Initial characteristics are specified at
Injection and the SF pulse co-propagate and interact via the nonlinear medium.

111. Deterministic effects of Pump Dynamics in the Nonlinear Regions of SF

More specifically, we computed the effects on SF pulse evolution for various initial conditions for the
Injected (pump) pulse. The results presented here demonstrate many facets of the control and shaping of
the SF signal by control of the input signal initial characteristics. The material parameters chosen for these
calculations are arbitrary, but correspond roughly to those for optically pumped metal vapors in the regime

Ip > -R'S
Thus although the simulation inherently yields numerically accurate results for particular experimental

design, the results reported here must be taken as qualitative. Our main purpose here is to demonstrate V
and analyze specific correlations between the initial and boundary conditions associated with the injected
pump pulse and characteristics of the SF pulse which evolve. In many of the cases which follow, rules are
established through the analysis which can be used to predict quantitative results for any particular experi-
mental conditions. OUr choice of particular initial and boundary conditions has been motivated in part by
processes which may have been operative in experiments which have been reported3 9 and in part by the
feasibility of experimental selection or specification. In connection with the latter, we demonstrate the
control of one light signal by another via a nonlinear medium, thus encoding nonlinear information transfer
and pulse shaping of the SF from specific initial and boundary conditions associated with the pump injection
signal.

Since the average values of XD, and the peak SF intensity are important quantities for interpreting exper-
Imental results with theories of SF, 1 .1 4 

1s the manner in which the pump-pulse coherence and initial on-axis
area affects these quantities is seen to be of extreme importance in any analysis.

The simulation parameters (except so noted) are as follows: The Injected pulses are initially gaussi4n in

p and r with widths (FWHM) rp = 0.24 cm and YD = 4 nsec respectively; the level spacings are such that
(9a-9)/(43 -9 2 ) = 126.6. The effective gain for the pump Is aRP = 0.364 (gp=17) cm"  that for the SF
transition aRSF = 0.171(gSF=291.7) cm"1. The gain-length Fresnel numbers for the two transitions F =

359.72( p = 16800) and F = 1.334( s 2278). The relaxation and dephasing times are taken identical forpgs
all transitions and are given as T =80 nsec and T =70 nsec,, respectively.

Figure 25a shows the effect upon the SF pulse of variation In the initial temporal width of the injected
pulse -c. becomes smaller, the SF delay time TD increases, whereas the peak SF intensity decreases, and the
SF temporal width remains very closely fixed.

It is clear from these results that there exists an approximate linear relationship between the time delay
ID is plotted versus the corresponding pump-pulse initial temporal width, from Fig. 25b. These results
generate the following empirical lormula for -r as a function of t

ID = 0.375 T R [In(4n/q,)1 2 -
4tPY¥CYR/4 y1l)rp (64)

where20

R7~IR )RrR
TR - (or equivalently, RP 5$7 gSFP ' )".,,
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is the characteristic superfluorescence time,1,14 and * is a parameter adjusted to give a best fit to the
calculational results. For the case treated here, 1R = 41 psec, T2 = 70 nsec, and y = 10 a, and the geo-
metric Fresnel number F % 1.47. R

The relation (84) is at least in qualitative agreement with the analytical prediction made in Ref. 36(b), 0
Eq. (5.1), based upon mean-field theory. The first term in (84) was chosen to conform with the quantum-
mechanical SF initiation result. 17 The quantity * can be interpreted as the "effective tipping angle" for an
equivalent n-initial impulse excitation, i.e., for tp ., 0, which initiates subsequent superfluorescence. It is

to be noted that the value for * is dependent upon our choice of 6 (see the Appendix of Ref. 37); however,

YD varies less than 251 for order-or-magnitude changes in 6 for 161 < 10 2. The choice of 6 is simply an

artificial way of Instigating the semiclassical numerical calculation, and reasonable variations in its value do
not strongly affect the results. The physical parameter Is, then, *, which, interpreted on the basis of
(84), Is generated through the dynamics caused by the pumping process and represents quantum SF
initiation. The full statistical treatment for three-level superfluorescence with pump. dynamics included

- * was presented in the fifth Coherent and Quantum Optics Conference. 4 0

These results emphasize the importance of the initiating pulse characteristics in SF pulse evolution, and
the effect of SF pulse narrowing with approximate pulse shape invariance by increasing the initial temporal
width of the injected pulse. It is emphasized that all other parameters, Including the initial value for the
Injected pulse on-axis area, are identical among these sets of curves.

The Initial radial width ro of the Injected pulse was varied and the effect upon the sf pulse evolution is
shown in Fig. 26. There is clearly indicated an optimum value for ro for which the SF peak intensity is a
maximum and the SF temporal width % is a minimum. If the relation (34) is used in conjunction with the
values of the parameters given in Fig. 26 and its caption, it is seen that optimization occurs for a value for
the conventional Fresnel number F. for the SF transition F. Z 1. Thus from (34) and F. = 1, we have

Fg M aRSFmax (84)

for the gain-length Fresnel number. Since F - l/z, the implication Is that Eq. (84) gives the penetrationgs
* depth zmax at which the SF peak intensity reaches a maximum in terms of the ratio FgsF/aRSF . Since this

takes both transverse and diffraction explicitly into account as well as propagation, this is indeed a profound
statement.

Further insight into the implication of (84) can be obtained by considering a one-spacial dimension
analogy. If the linear field loss is taken to be entirely due to diffraction, then the one-dimensional linear
loss corresponding to the two-dimensional case specified by FSF is given by

S 7SF J (85)
At

.4 Then, from (36),

a RSF!S" : aRS (or equivalentlygS
4 FgsF - ( = K as equ. (3.5) of ref. 37) (86)KSF SF

is the effective gain aRSF to loss KSF ratio. From the condition (84),

Zmax = (K SF (87)

,ie., Zmax is the penetration depth at which the SF peak intensity is a maximum and corresponds to one
effective diffraction length, as defined by (85). Carrying the one-dimensional analogy one step further,

% (86) used in (34) gives

F = (KZ) 1 (88)

From (86) and (87) we have exhibited the significance of the Fresnel numbers F and F in terms of diffrac-

tion loss, i.e., F can be thought of as gain to loss ratio, Eq. (86), whereas F can correspondingly be

thought of as the reciprocal of the strength of the diffraction loss, Eq. (87).

The effect of changing the effective qiin for the SF transition RS and hence the relative oscillator

strength between the SF transition and the pump transition is demonstrated in the results cf Firr;. 26-().
Each of these figures corresponds to a different on-axis initial are'a 0p for the irjecticn pul.ii. ccn:;v.tert
among the entire set of results is that increasing the effective clain aRSF results in a nearly line;ir incrcase
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in the SF peak inten.sity as well as decrease in the delay time xD" Also, the smaller area initiating pulse
causes a narrower SF pulse to evolve and with apparently less ringing.

Figure 31 shows the effect of variation of the density N of active atoms. The effective gains aRSF and ap
. are changed proportionally, corresponding to a density variation N. The ratio of the SF intensities is

Ic /l b  1.76 and Ib/a = 2.06; these ratios are larger than the corresponding density ratios squared,
(N /4b) 2a 1.40 and (Nba)2 = 1.49. This difference from the predictions from previous theories of SF 1 3

;0n may be due to self-focusing, especially since the values of the effective gains used in this case are quite

high. However, the ratio of the temporal widths vs. FWHM, are within 15% of the corresponding inverse

ratios of the densities; the same Is true for the delay time rD of the SF intensity peak with respect to the
pump Intensity peak. These results compare qualitatively reasonably well with the mean-field predictions for
SF in two-level systems initially prepared in a state of complete inversion. 4

A comparison of the effects upon the injection pulse of variation in oscillator strengths between the SF
and pump transition (variation of aRSF) as contrasted to effects upon the pump pulse of a density variation
(variation of both aRpand &RSF proportionally) Is given In Figs. 32 and 33, respectively. It is seen that
the respective effects in the pump-pulse reshaping are quite distinct. The variation in oscillator strengths,

* , Fig. 32, essentidliy causes "hole burning" in the following edge of the pump pulse, whereas the variation in
density, Fig. 33, affects the whole pump pulse. This contrast has an analogy as an inhomogeneous.
Fig. 32, as opposed to a homogeneous, Fig. 33, effect on the pump pulse. This 'effect might be used for

If, the purposes of pulse shaping under suitable conditions.

Shown In Fig. 34 is the transverse integrated SF pulse intensity versus retarded time v (curve 2) together
with the transverse integrated pump-pulse intensity versus % (curve 1) for a -gain and propagation depth
chosen so that the pulses temporally overlap. Under these conditions the two pulses strongly interact with
each other via the nonlinear medium, and the two-photon processes (resonant, coherent Raman-RCR), which
trdnsfer populations directly between levels C2 and el, make strong contributions to the mutual pulse
development. 3" The importance of the RCR in SF dynamical evolution in an optically pumped three-level

- *~ system was pointed out for the first time in Ref. 36. Indeed, the SF pulse evolution demonstrated here has
greater nonlinearily than SF in a two-level system which has been prepared initially by an impulse excitation.
What is remarkable Is that this is an example where the SF pulse temporal width z is much less than the
pump width i Peven though the two pulses temporally overlap, i.e., the SF process gets started late and
terminates early with respect to the pump time duration. Pulses of this type have been observed s in Co2 -
pumped CH3 F.

IV. Conclusions of Deterministic Three Level SF

The effectr presented here clearly demonstrate the coherence and deterministic effects cn SF pulse
evolution of injection pump-pulse characteristics and conditions in the regime < v. It is suggested that
effects of the type discussed here may have in fact been operative in SF experiments and their results which
wera publlshcd eirlier. s 9 The pump pulse was taken as purely coherent in these calculations. To deter-
mir.e whether cr not effects of the nature reported here are indeed operative in a given experiment, it is
cruciai to determine the degree of coherence of the pumping process as well as its temporal duration. 3  -

.urthermorc, and perhaps of greater importance, we have demonstrated the control and shaping of the SF
p" ,L which eM,!ves by specification of particular initial characteristics and conditions for the pumping pulse
whch is inij'cted into the nonlinear medium to initiate SF emission. These manifestations and others of the
s:' n . class we call the control of light by light via a nonlinear medium. This phenomenon constitutes a
rmeth"d for o!Uir.,.r information encoding, or information transfer, from the injection pulse initial charac-
t.e_,i:'ics to cor,'.sponding SF pulse characteristics which evolve due to propagation and interaction in the
nonli:iear medium. 3 7

eCcziljon,l i',ls and Delay-Time Statistics

Amiplified q,;-::Aum initiation statistics in the highly noniinear regime of SF pulse evolution are presentee'
i the figure i: r the separatin in retarded time t of the main peak of the SF pulse from that of the pump
rul.c. Here ;e have plotnd the initial temporal width of the pumping pulse t vs. e, where (see Eq. 50)

p

D (T- (89)

. is tit mean value of the (SF) pui';e peak de!ay from the pump pu!se peak, a is the sta!,dard
d. i'. 1:i--n and N', L; the nuriber ol e!ements in tfie ensLmble, which in this cos!, NR = 10.
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Since the size of the ensemble is quite small the statistics presented hrc, can at be,': .,.!e trend:., e:o we
regard these results as quite preliminary. The case here is referred to as the hi' nnlinear rf.';ime,

* since the pump pulse and the SF pulse completely overlap for each member of the enm.emoi. Thus. ti.' two
pulses are strongly interacting in this regime via the nonlinear medium and two-photron processes which
enhance the Q matrix elements are strongly operative. The highly nonlinear regime do.-s not correspond to
SF as studied previously, but is quite interesting in itself. As preliminary results, the calculation is far
less expensive than that needed to analyze the nonlinear regime of well-separated pulse:. This, of course,
will soon follow. 5 4

The main deduction from Figure 35 is that the quantum statistics of initiation are manifestly important
only for the pump pulses corresponding to the shorter initial temporal duration tp. This supports our

earlier hypothesis that amplified quantum initiation is important only for conditions such that %p/ < 1. ,

for the condition that vp/'AR > > 1, the coherence of the pump itself overwhelms the fluctuations due to

quantum Initiation which would otherwise become amplified in the nonlinear regime.

An interesting effect is evident in our computations in that significant statistical va.-iation of the pump
pulse peak from turn-on (i.e., c = 0) was observed. Thus, the pump pulse statistics are also important, at

least in the highly nonlinear regime, as well as statistics for the SF pulse. Of cour-e, statistics of both
pulses are mutually incorporated in the figure.

The Fresnel variation of the standard deviation normalized to either the average dela'4 difference or the
average of the arithmetic mean of the two delays < i >=( + %SE) > =< p >;+ < E SF>] (90) for

three different regions of propagations: Fig. 37(a) the SF buildup; Fig. 37(b) the sr completely evolved
= partially overlapping the pump pulse and Fig. 37(c) the highly nonlinear regime where the two pulses
completely overlap (additional nonlinear two-photon processes are also taking place and compete with the SF
process). For simplicity the error bars are shown in a table instead of being introduced in the graphs.
raf  (1/.) o(,19))/<4,rj)> afr(-T)/{:/2('De + TDSd)

-q 1.62 2.35 (40.44 _ 13.48) (3.09 +_ 1.03)
1.07 2.9 (29.35 + 9.78) (3.25 7 1.08)

0.72 3.257 (35.81 4_ 11.94) (3.94 + 1.31)
0.59 3.9 (28.89 + 9.63) (3.76 1.25)
0.495 4.237 (28.69 + 9.50) (3.92 1.31)
0.27 5.5771 (31.04 ;: 10.25) (6.41 7 2.14)
0.23 6.25191 (34.34 + 11.44) (8.73 + 2.91)
0.12 8.7 (40.81 + 13.60) (13.73 + 4.58)

(& A 1) SF with partially developed nonlinear region.

1.94 2.35 142.63 + 47.54 1.881 + 0.604
1.28 2.9 122.57 7 40.86 2.07 + 0.690
0.683 3.527 65.57 T 21.86 2.31-+ 0.77
0.704 3.9 59.82 + 19.94 2.37 + 0.79
0.593 4.237 65.23 21.74 3.04 7 1.01
0.322 5.5771 58.87 + 12.95 3.55 - 1.183
0.275 6.25191 36.87 ; 12.29 4.28 1.429
0.142 8.7 49.13 + 16.38 10.67 + 3.56
0.086 11.1542 5.690 1.896 1.37 + 0.46

'B nonlinear region full SF evolution (partial overlap,'.ng between SF and punip pliiic )

2.26 2.35 40.89 + 13.63 1.161 + 0.387
1.49 2.9 73.72 + 24.57 1.463 + 0.4S8
1.005 3.527 73.27 24.57 1.463 + Q., A
0.82 3.9 91.967 + 30.65 1.692 0.554
0.69 4.237 213.57 7 80.72 1.312 7 0.571
0.375 5.5771 83.47 7 27.82 2.266 7 0.755
0.320 6.25191 43.90 + 14.63 2.141 7" 0.716
0.165 8.7 27.742 7 77.80 3.20' 1..;f)
0.100 11.1542 11.24 + 3.746 2.55.: _ 0.832

# C highly nonlinear region (strong-overlapping)

The first dependence (which is plotted < dif del > < _ ! > (!, see S) v.[!r :[nU. l

from one zone to the other zone illustratingq the occurrenr. of differcrnt ::,,dr ... ' co,:comitH-dty;
whereas the second dependence (see Fig. 37) which is an e:,;,,'Lial d I,-y , n,.L in shape.

Further work is cntinuing, both for the nonlinear re aic 0:; well aL Ow,. 11i-1hly ' .;i
appear.s4
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FICUf k t\TIONS

Fig. 1. Hodel three-level atomic system and elec-ric field tunings under consideration. For the

gesults reported bete, the injected puise is tuned to the 1-3 transition, the SF emission radiates at the

3."2 transition.

Fig. 2. Sketch of the temporal and geometric emission characteristics of a superfluorescing pencil.

Fig. 3. Oscilloscope trace of superradiant pulse at 84 pm (J = 3&2), pumped by the R1 (2) laser line, and

theoretical fit. The parameters are I = 1 kW/cm2 , p = 1.3 mTorr, and k1 = 2.5 for 1 z 100 cm. The small

, peak on the scope trace at y = 0 is the 3-pm pump pulse, highly attenuated.

Fig. 4. Normalized single-shot pulse shapes for several cesium densities n; Fresnel number F 1.

Uncertainties in the values of n are estimated to le (+60, -40% (Gibbs et al., 1977a).

•Fig. 4. Normalized output curve. This curve is the output response to a small rectangular input pulse

of area 00 in a nondegenerate system where T2 = T2  and KL = 0. The time scales as Tt and the intensity

scales as T. Note that the shape of the normalized output curve depends on 0 0. I* T.' and can all be

expressed in terms of xR and 80 (see Table 1).

Fig. 6a. Computer results showing the influence of parameters on output intensity. The same intensity

scale is used throughout. (a) A theoretical fit with parameters TR=6.1 nsec, T2=330 nsec, T2 5.4 psec,
KL a 2.5, Jlower = 2. All parameters have the same values as in the curve except when stated otherwise.

(b) No level degeneracy, T2 = T2 =, KL = 0. (c) T2 = m. (d) T2 = . Ce) KL = 0. (f) KL 5. (g) No

level degeneracy.

Fig. 6b. Foucault pendulum co ilJl-itrate the two tipping angle 6 and *.

Fig. 7. Normalized SF output po.,.r vs. /R1 0 2x10", T, = T2 = T2 = *; L/c!R = 3.9. (a) F = m. For

the uniform profiles the cxcited stt'. d'asity n,(r) : n8 and O0 (r) = ea; for Gaussian profiles no(r) =

n8exp[-ln 2(r/rp)2] and 80 (r) = 68,:xp(f. In 2(r/r,)2]. [(i) no,o0 uniform; (ii) no Gaussian, 00 uniform;

(iii) no,eo Gaussian; (i) no unifur,., Pq Gaussian.] (b) Same as (a) but with diffraction (F = nr2 /AoL)

included ind uniform no':) and 80 (r); f (-), £ = 1.0 C---), F = 0.406 - -).

Fig. 8. Influence of diffrac.-_.t>. %o SF puls- :',:ps. Parameters are the same as in Fig. 7a, with no
Gaussian a.t 60 unifr-. (a) Ymit..i :,,.er: F - 1, 1l(-); F = 1.0 C---); F 0.4 C- -); F = 0.1 C- -).

(b) Isomect:ic Craph of irtlr:,.ity vs. , and :/r fo F= case of Fig. 8a.

Fig. 9. Theoretical 'its to Cs o.f*:. ,. .ReC. ? The two dashed-line curves in (a) indicate typical

cxperime:i shrt-to--rh!j ,iatno:t. F = 1, L = z-, T, = 70 as, T2 = 80 as, k = 1.931 pm, To = 551 ns, 0
is unifua oL Gaussian, ;.d no(r) i. ,_;rian. T':. .Llowing give 82(-it), PS(fiL, n3(exp), with 08 in units

of 10 and nR in u:i!_: of 101m/ .: (a) 1.07. 3!. 19; (b) 1.37, 18, 7.6; (c) 1.69, 11.9, 3.8; (d) 1.96,

8.85, 3.1. Th: broken-]iiv curve i:n ( t( - thc- n ... ' sional fit cf ief. 7a, with 08=1.69 and n~u=12.

Fig. 10. An isomeLr- plcL of t!, -:-.unvet:: I,., cur!r.t and the eer y versus T and p for different

distance , propa;ati(. to illc:L .: ':e bi:;-! t.I of SF and Ole propgatioitamL th.ccy. Note that the

tranisvern, fL:: is alv'ay: ;.-.;t.ive '. r. t E no' lowardly).

Fig. 11. Ii:t-,.Ly ".i CL., .. tor ... "'ra;e of V+ in ,ut pulscs ill :h,_. pnine-wave ca:;e with
-.r~ir "0: ,,/  -3

quarnLII . ',*.:,. i .. jOi.S : ,. " .. ,,' = I1.,'.I 'c'm .

.'
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Fig. 12. Intensity integrated over the transverse cylindrical coordinate as a function of Lime for £ii.-.

trajectories. (a) Ca data for n-T7.6Xl0
10 c'm. (b) Simulation with transverse effects, but no fluctuatioIS:

4 : 18.2x10 c-3, 80 a 1.37x10 "4 red, and Fresnel number F a 1. (c)-(f) Simulations with transverse:

effects and fluctuations for n8 = 18.2x1010 cm3 , (05> 3 1.37x10 4 sad, anf F = 1.

Fig. 13. Effect of fluctuations on the average pulse shape. Average over 17 trajectories with fluctu r1ions

(solid curve) has a slightly shorter delay and a smaller tail than the dashed curve with no fluctuations ,nd

a uniform 0. Nero, n3 z 18.2x10 1 ° cma3 , <09 >h = l.37x10 " rad, and F a 0.32.

Fig. 14. Transverse energy current J and intensity are plotted isometrically for four shots in a

statistical ensemble. In some of the shots the phase curvature is such that the associated energy flux flows

inwardly; i.e., the transverse energy current is negative, which could lead to self-focusing. Inward energy

flow never occurred for simulations using a homogeneous initial tipping angle (without quantum initiation)

" for any value of the Fresnel number. Here, n8 = 9.5X10' 0 cm"3 , F = 1.49, and I04<08>il = 2.15, 1.63, 1.7,,

-04 ' and 1.16 red, respectively, from top to bottom. Note the fluctuations in peak maximum and its associated

delay in the output integrated over p (last column). .'

I

Fig. 15. listogram showing the number of occurrences of a particular delay time. Points do not occur at

integral values of xD because of the nonlinear time mesh. (a) Plane-wave case for n8 = 11.8×101
° cm "3 and

<80 1k .69x,0-4 cad. (b) and (c) Cylindrical-symmetric transverse case for n8 = i. 2XI010 cm-
3, and

<85>% = 1.37Xl0 3 red. (b) F a 1. (c) F a X 1 . Each arrow denotes D"

Fig. 16. Fresnel-number dependence of the uncertainty in delay time normalized to the average delay.
-3 1= -4

Points are as follows: o, seven trajectories with na = 9.5x101
0 cm" and <8~>= 1.89x10 rad; a, n=

1SX10 10 cm"3 and <00 = 1.37xi0 "4 red, for 13 trajectories for F = 1, and for 16 trajectovies for F z it-
A, experimental value for 468 trajectories. A peak close to P = I can be argued as follow;: For sm-R r,

strong diffractive coupling reduces fluctuations in the overall output. For large F, so many trans'er+e
mdes compete that a good average is obtained on every shot. For VI, competition of a few mode in

resulting in large fluctuations. Heaningful calculations for large F require an increasit, nu ber of Lr..'-

verse steps, and so we avoid the large-F region.

Fig. 17. Phase waves. Fluctuations can result in the second peak exceeding the ftr.t. 1.8 9.5Y10113 ;- 3 .

(a) F = 1.49, <0> = 1.21x10 red; (b) F = 1.49, <06> = 1.24x10 rad; Cc) F -. 16, *

2.22x10"4 red; (d) F = 0.165, <e> = 1.79xI0-4 red.

Fig. 18. Effect of Cartesiant vs. cylindrical geometry for the sum over :;hot3 of tf;, .vanvv.:r:v.-.,0

integrated intensity for quantum-fluctuation calculations. Curve a ho: f. r F = 1.37 J., r . rt,.:.

geometry. F = 0.11 for both curves b and c; curve b involves, cylindrical &,-.;.trv while ,7'"'. is (:.r,,,j,,

(parallelepiped). Note that the delay with F = 1.37 (curve a) is short,t tUrn 1tic w,.P.- '.0Lt, F "l ..

(curve c), just as it was for cylindrical geomnatry and no flucLuati-ns (!st:. 24): Sit:n, Oiirart: .:.

increases the delay because of energy lost transversely, tnt, the tail i:; a.it Ly rufna..,' t,.,t- : , ..!

diffraction makes the sample sufferfluoresce as a unit. Curve:; a'-c' show' t0:, ;..,rme u,v. . .,:rtrit..-

pulse-shape comparisons. ns = 18.2X101'O cm
3 1nd <0 > is alrorti1.560 "  ,

Fig.- 19. Trans verse f luetua tions f or a f ul 1 three-spat i I-I inien ; i o n  ,-.,!1 .r,,1 P , ... ,,n + .t ,.

(a) F ield energy i.- displayed isom'.trically at a time near Ow p-,k of ti , 1-; '. , , , !

(-F), the transve,' ly integrated] rne.gy i d !; l .fy,-d, fct-: !ly - ,,, l .. H' *' 'i' . .
" I r ; ' .,.
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Fig. 20. Comparison Of seven output energy profiles. F = 1.37, n8 = 18.2xloZo cm.3 , and <08.'%

1.56X10 cad.

Fig. 21(a). Isometric display of field energy and associated transverse fluxes Jx and Jy versus x and y

at the end of the atomic cell; (b) the radically integrated energy (output power) is displayed as a func-:' I tion of I to illustrate the smoothness of the output detected and how no rings appear in this (xyzt,)

calculation; (c) the same function energy and Jx are plotted versus z for a given y; whereas they are plotted

the energy and 3y are plotted versus I for a given x.

Fig. 22. Effects of inhomogeneous broadening in the uniform plane-wave case with homogeneous initial

tipping angle. a: T2 = 
.. B and c: Ts z 32 ns in the formulas (for b) g(& -) Z (?2/n)exp{-(T2(6n)/n2.

* 3/ - 1
and (for c) &(&u) = (T2/n")1+[T(Au) '2 ) corresponding closely to the value in the Cs experiment.

Notice that including Ta damps the field energy amplitude and reduces the tail. Delay is also affected

slightly. ng l 9.5ml50o cm-3 and Go = 1.89x10 4 red.

Fig. 23. Removal of ringing by inhomogeneous broadening. Parameters: Same as Fig. 22 with T2 a 0.67 as.

Fig. 24. Transverse effects and inhomogeneous broadening. Parameters: Same as Fig. 24 except that

transverse effects (F = 0.27) are now considered. Including T2 in the Cs simulation is seen to be a small

refinement which does suppress the tail slightly. (a) Relative integrated outputs. (b) Normalized integrated

outputs with peaks shifted to coincide with each other to simplify pulse-shape comparisons.

Fig. 25a. Radially integrated normalized intensity profiles for the SF and injected pulse, at z = 5.3-cn ,

penetration depth for five different values for the initial temporal width of the injected pulse. The initial

on-axis area of the injected pulse is O = n, and the pump transition and SF effectiv. pains are "P.

0. 376(p = 17.5) cm-1 and aftF = 0 . 3 7 6 (gsF = 641.7) co-, respectively. The injected pil.e initial temporal

widths at half maximum are (A) ip = 4 nsec, (B) Xp = 3.3 usec, (C) 1p = 2.9 nsec, (D) tp = 2.5 aec, and

E) r = 2.2 nsec.

Fig. 25b. Delay time TD of the SF peak intensity from the corresponding pump-pulse prai intensity vs. the

pump-pulse initial full temporal width at half ma.imum intensity t according to Fig. 25...

Fig. 26. Radially integrated normalized intensity profiles for the SF atid injectr, pl. o.s at Z = .3-cn *.

penetration depth for seven different values for the injected pulse initial r.tdial width at halt max;. In rO.

The initial on-axis area (J of the injection pulse is O = 2n; the SF effective gain i 0.444.
p p ..

758.3) cm 1, and the pump transition effective gain aR 0.313(gp = 14.6) . The si;t a.l r. t1a.lill hs

at half maximum for the injected pulses are (a) rO = 0.57 cm, (b) ro 
= 0.4) cm, (c) '(  0..!, c4 , (.t) r,) "

0.18 cm, (e) rO = 0.15 cm, (f) ro= 0.11 cm, and (g) ro = 0.09 cm. The coi, 'f ,lffl: * tr.a- -- ,t: ..-

numbers are (a) F5 F = 8.46, (b) FSF :4.79, (c) FSF 1.7, (d) FSF (e) . (,.,I, t) F. .

and () FSF 0.21.

Fig. 27. Radially integrated normalized intensity profiles for Lar '- .,.I wt1.tl a,.- At S. Cm .

penetration depth for three different values for the SF t:.,w,.ition , .,,,. '.., ), Th.-,
initial area 0 for the injected pulse is 0 = n. All other parrametcsI..,,- , e . ,

p p-
The SF tran.ition effective gain is (a) aR 0.3075, S25.0) : ,

and (c) aS = 0.44 4 (gSF 758.3) cm'.

% %--
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Fig. 28. Radially integrated normalized intensity profiles for the Sf and injected pulses at z x 5.3-7m
A penetraetiou depth for three different values for the SF transition effective gain aRSF(fs). The on-axis

Initial area 0 for the injected pulse is 0 a 2n. All other parameters are the same as for Fig. 27.
AP P

fig. 29. Radially integrated normalized intensity profiles for the SF and injected pulses at z = 5.3-cm
penetration depth for three different values for the SF transition effective gain aRS (gS). The on-axis

initial area S for the Injected pulse is 0 = 331. All other parameters are the same as for Fig. 27.

Fig. 30. Radially integrated normalized intensity profiles for the SF and injected pulses at z = 5.3-cm

0. ,pemetatio depth for three different values for the SF transition effective gain aRSF(). The on-axis

. ' initial area 0 for the injected pulse Ls ep 4n. All other parameters are the same as for Fig. 27.
pp

Fig. 31. Radially integrated normalized intensity profiles for the SF and injected pulses at z v 5.3-cm

penetration depth for three different values for the density p of atoms. The on-axis initial area 0 for the

Injected pulse Is 0 a 29. Except for the effective gains and Fresnel numbers, the values for all other
parameters are the same as for Fig. 26(c). For each set of curves, the gain values are (b) =

.. *1 1  
1 6RS F

0.3075C.- a 525.0) c 1 ,  ap = 0.564(8p -2.3) cn' ; (c) 0"376(s. = 61.7) c- aR
'* ~-1 -lS

0.68(8 a 32.1) cm ; and (d) ain O.aC4 (&sF = 758.3) cm
"

, aRP = 0.812(sp = 37.9) cm . The corres-

peuding gain length Fresnl numbers are (b) Fap a 557.4( P 25992), F = 2.40( = 4100) cm;
gp"ISF

(c) F a 679.94( a 31724), F = 2.94( = 5010) cm ; and (d) F = 802.5( = 37456), F =

3.7 as 5922) cm P
1. pP S

-ig. 32. Radially integrated normalized intensity profiles for the SF and injected pulses at z = 5.3-cm

penetration depth for four different values for the SF transition effective gain aRSF(SF). The initial

oe-axis area for the injected pulse is p = x, and the effective gain for the pump transition aRP = 0-.35
(gp • 17.5) cm" . Except for the effective gain aRSF(SF), all other parameters are the same as those for

Fig. 26(c). The SF transition effective gain gs for each set of curves is (a) RSF = O'7 O8 9SF = 291.7) Ca" I ,

(b) a I 0 .2 39 (ssF a 408.3) cm,, (c) ORSF = 0 .3 07 5 CssF = 525.0) cm, and (d) URSF = 0 .3 76 CgsF = 641.7) c '1.

Fig. 33. Radially integrated normalized intensity profiles for the SF and injected pulse at z = 5.3-cm

penetration depth for four differen values for the density Nof atoms. The on-axis initial area 0 for the
p

injected pulse is Op I n. Except for the effective gains and gain length Fresnel numbers, the values fcr all

other parameters are the same as for Fig. 26(c). For each set of curves, the gain values are (a) aRSF -

0.1708(a -291.7) m 1 ,  p = 0.375( -. 17.5) cm-1 ; (b) =F 0.239(g 408.3) cm-1 , = 0.525&, ,=

24.5) " ; (c)aRSF = 0 .30 75 (SSF = 525.0) cm , aRP = 0.6 75(sp = 31.5) cm ; and (d) aRSF = 0.37 6 (gEs =" ,17) €="l %p • 0825(s = 38.5) m-1. The correspondina Freael numbe.rs are (a) Fp 370.63( ,= Z)

F Z 1..334( = 2278); (b) Flp = 518.83(C = 24212), F 1.866( 31S8); (c) F 9 667.07( P = 31130),
857 8SF s6 ~ 38) c 67O( 13)rF a 2.401( = 4100); and (d) V' = 815.31( = 38048), F = 2.94( = 5010).

, SF s

Fig. 34. Radially integrated intensity profiles in units of Rabi frequency, for the S1'(2) and injected

pulse (1) at a penetration depth of z = 5.3 cm. The effective gain for the pump tran itto and the V7
transition are aRP = 0.3643(gp = 17) cam1 and aR!F = 0.37 6 (g = 641.7) cm 1, respectively. The init'al

on-axis area for the injected pulse is Op = n.

Fig. 35. Pump pulse initial temporal width t vs. t. F 0.7; pump pulse initial o area 0 2

T= 80 nsec; T2  70 nsec; zRSF = 19.5 psec; L = 5.6 cm.

632

- - . . . . . . . . . . . ..-. . .. . . .

-. - -, .'.. .



Fig. 36. Fresnel variation of the SF delay-statistics standard variation -;,:.:as the av.r.ge delay dif-

ference bet.w the peak of hend the first peak of the SF pulue always the largest when

phase wave appears) for the three region of interest (a) build up SF; (b) partial overlap of SF pulse

completely evolved and pump pulse; (c) highly nonlinear regime: the two pulses completely Uverlap.

Fig. 37. Fresnel variation of the SF delay-statistics standard variatio, v,.. us the the arithmetic mean

of the two average delays of pump and SF between the peak of the pump pulse and the first peak of the SF

pulse (not always the largest when phase wave appears) for the three region of interest (a) build up SF; (b)
partial overlap of SF pulse completely evolved and pump pulse; (c) highly nonlinear regime: the two pulses

completely overlap.
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COMMENTS ON P.D. DRUMMOND'S

CENTRAL PARTIAL DIFFERENCE PROPAGATION ALGORITHMS

F.P. Mattar*

Physics Department, New York University

New York, New York 10003

and

Spectroscopy Lab, Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

and

M.C. Newstein

Department of Electrical Engineering, Polytechnic Institute of New York

Farmingdale, New York 11735

Drummond (1] has erroneously indicated that Mattar and New-

stein's [2] algorithm is only a predictor-corrector technique similar to

that of Icsevgi and Lamb's (3] together with an explicit finite dif-

ference approximation to a cylindrically symmetric Leplacian. He

stated that this technique is limited by the extra overhead memory

required as well as the lack of parallelism and the reduced stability of

explicit algorithms. He fails to reference Tappert [4], Fleck's [5]

Supported by the U.S. Office of Naval Research; cn extended
leave from Polytechnic Institute of New York.
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recent published algorithms using Fast Fourrier transform (5] and en-

closed references (6-14] treating Thermal Blooming as well as Lax

work [15]. Furthermore, Drummond fails to recognize the important

techniques of dynamic automatically adaptive grids [2, 11-18] deter-

mined by the calculation itself.

Mattar and Newstein's computational strategy as illustrated in the

articles referenced, however apparently not read, by Drummond con-

sist in a modification of MacCormack's [19] two-level predictor-cor-

rector method widely used In the gaz dynamic computation such as

those carried out by Moretti [16-18]. MacCormack's predictor-correc-

tor method requires only one preceding plane to march along the di-

rection of propagation precisely as in the various implicit scheme.

Thus, the memory requirements are identical.

,. By reading Mattar and Newstein's algorithm description the

reader can appreciate that the correction of the predicted field vari-

ables is done in terms of the yet-to-be computed corrected values of

the material variables and not in terms of the predicted material

values. Similarly, the material functions are assessed in terms of the

corrected values of the field and not the predicted values. A set of

implicit algebraic equations results which must be solved to compute

the various variables. This technique insured that both material and

field functions are simultaneously accurate to the second order in

space coordinates and temporal grid.

It is advised to respect the criterion of stability of the explicit

method to ensure that the physical problem is correctly simulated in-

stead of being mis-calculated by using a mesh incompatible with the

Fresnel number defined in terms of the nonlinear medium character-

Istic length which is a physical limiting paiameter.

4f ' . .. . . ... .
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By adopting non-uniform meshes instead of the straight-forward

computation grids a greater computational efficiency and reliability is

achieved. Evenly spaced grids in the computational frame are ad-

justably mapped from variable non-uniform grids, in the physical

frame by stretching and rezoning techniques such that the computa-

tional effort is clustered around the points of physical interest and

less dense in the region where the physical function va-ies slowly.

More explicitly, the rationale these adaptive coordinate changes

and function transformation is to enhance both the accuracy and the

efficiency of the computation. This procedure removes, for example,

the necessity for sampling the high frequency oscillation induced in

the plane by focussing. Suydam and Mattar recently presented a full

implicit code with adaptive stretching and rezoning techniques (20].

The coordinate transformations alter the independent variables so

that the dependent variables take a different functional form at equi-

valent points in time and space in the two-coordinate systems. The

altered functional form is smoother, easier and more economical to cal-

culate. This refined algorithm while requiring more calculation per

step, actually is less expensive of computer memory and time for a

given problem than the brute force orthogonal mesh.

Mattar and Newstein's algorithm was used to simulate various phy-

sical situations (such as the (1) propagation of light in nonlinear

media displaying a novel transient self-lensing effect (20]; (2) the

build up of coherent emission from noise (superfluorescence) [21];

(3) the prediction of light control by light [23]; (4) the evolution of

optically pumped superfluorescence (24]; (5) two-color superfluores-

cence (25] and various amplifiers (26] as well as (6) multi-level propa-
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gation for laser isotopic separation studies [27] and (7) cw phase

encoding that lead to on-axis intensity self-enhancement [28] 1 that

quantitativej/ agree with experimental observation (29-37].
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THE PERTURBATION THEORY OF THE SELF-FOCUSING OF A CW OPTICAL

BEAM ON RESONANCE

q.s
Jiri Teichmann

University of Montreal, Physics Department, Montreal

and
Farres P. Mattar

Spectroscopy Laboratory, Massachusetts Institute of Technology

Cambridge, Massachusetts

Recently Boshier and Sandle /l/ reported via the numeri-

cal simulations a new phenomenon of CW on-resonance self-focusing

for very intense beam having intensity larger than the saturation

one. The analytical discussion of this self-focusing by LeBerre

et al /2a,b/ led to controversy due to the neglecting of the off-

axis effects in /2a/. The self-focusing in the purely-absorptive

propagation was demonstrated in /3/.

In the present study we develop a detailed analytical

treatement of the beam stripping in the off-axis regions, occuring

during the early stage of the beam reshaping.

Introducing into the evolution equation for the field

amplitude e( ',z)
V z e

- r -

( where/3 depends on dipole momentum and relaxation times in the

corresponding Bloch equation and f <4 1 is a reciprocal characte-

ristic Fresnel number ) the expansion

V1 ( n 1 (2)

leads to the hierarchy of solutions for en( ,z)

nm



S- -2

0

I 4Ae~Z) eeZ')
(3)

These solutions show the competing effect of the beam diffraction
( the Laplacian in (3)) and the nonlinear absorption of the medium
expressed via the nonlinear response Fn (ej ( ,z)).The zeroth order

solution to eq. (1) , eo( ,z), was given by Icsevgi and Lamb in /4/.
In the case of very intense CW beam, the on-axis intensitylIo >>I

,l and the amplitude eo( ,z) can be approximated in the on-axis domain
by C the initial beam profile is Gaussian ):

(4)

To analyse the beam reshaping and stripping near the outer region

where 0( ,z)-- 1, eo(? ,z) is expressed by:

where + (,") e2 c z

Finally near the edges of the beam where I( O ,z) .41 the
following approximation is suitable

(6)

Using these explicit functions in their domains of validity we have
calculated the amplitudes en (Q ,z) up to the third order both analy-
tically and numerically. The beam evolution is also characterized
by the effective beam radius ( in the Marburger's definition ):

9.]

and by the radial energy flow J ,z):

The radius the phase + and its radial variation (
Teff

% , , : , , , ' ., , ' , , " ' , ., ., ' , , . ' ." . , , . . . . ' , , . ." . . , ' . ' .
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were also calculated. To compare our results with /l/ we have

plotted e( ,z) (Fig.l.), e1 (V ,z) (Fig.2.), en(P ,z), (9 ,z),
,z) and the radius eff(z) for/Sl, fa 1/300 and I= 225.Jt(. 0

The analysis shows that for sufficiently large penetration depth z

the nonlinearity predominates over the diffraction as the energy flow

changes the direction toward the center of the beam. At first the beam

transverse structure is reshaped and stripped near the edges giving

rise to the radially dependent wave front. The phase changes rapidly

in the outer regions of the beam. As z increases, substantial resha-

ping in the near- axis domain takes place. Even the zeroth order

beam intensity, being initially Gaussian, becomes peaky with increa-
~sing z

Our results corroborate the numerical simulations /l/.
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ABSTRACT

The onset of the self-focusing of very intense CW optical beam on

resonance is studied analytically using perturbational methods. The com-

petitive effects of radially dependent nonlinear absorption of the media

and the diffraction spread of the initially gaussian beam are analyzed.

The radial variations of the field components, phase and effective beam

radius show the beam reshaping and stripping effects in agreement with

numerical simulations.

Introduction.
Recently Boshler and Sandle [1] reported a new phenomenon of CW

on-resonance self focusing for very intense beams having intensity

larger than the saturation one. This new phenomenon has not occur

previously as reviewed by Marburger (2] where less intense beams where

studied: The nonlinear susceptility XNL vanishes on-resonance excluding

the occurrence of self-focusing as observed by Bjorkholm et al (3];

t The development of the numerical program applied to this study was
sponsored by the U.S. Army Research office (DAAG23-79-C-0148) and
the U.S. office of Naval Research (NOOO-14-80-C-0175)

t" On extended leave of absence from the Polytechnic Institute of New
York, Brooklyn, New York 11201
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eitk r below the resonance or above the resonance the beam experiences

self Lensing phenomenon as predicted by javan and Kelly [4] and observed

by Irlshkowsky et al (5]. The coherent (pulsed) on-resonant self-fo-

cus ig predicted by Newstein et al (6,7] and subsequently ascertained in

Sot m [8,9] Neon [9,10] and Iodine [11] could be understood in terms of

an istantaneous frequency offset (an = 81/at). which results from the

phe e variation initiation due to diffraction. Similar methodology to

the one developed by Newstein et al for the transient case [12,13] to

tre :the diffraction as a perturbation, elucidate the development of

the -adially dependent phase in the CW regime as shown by LeBerre et al

in .4,15]. LeBerre et al used for a base Icsevgi and Lamb's plane wave

(Cl ) implicit solution [17] instead of McCall and Hahn SIT (pulse) solu-

tior [18]. The phase curvature was obtained by the competetive effects

of idially dependent nonlinear absorption of the medium and the diffrac-

tioi spreading of the input gaussian beam. A Fresnel number, defined in

ter 3 of the (nonlinear medium) Beer length instead of the cell length,

chz 3cterizes completely with the ratio of the input intensity to the
0...

sat ation intensity the beam evolution and reshaping. Particular care
mu: be taken in the perturbation treatment to approximate correctly the

car nical plane wave solution and to include the transverse boundary

edC effects. Le Berre et al [16] in their first analysis missed the

str ping* process that takes place at the edge of the canonical solu-

tior profile and concluded that this CW self-focusing was a computer

art act. Our attempt was to understand both results and illustrate the

phl ;ics. Our present approach is perturbational both analytically using

twc power series

* * The physical mechanism of stripping was first recognized by McCall
and Hahn (18] in their pulse analysis inresonant media. They
understood that the pulse entering into the resonant medium is not
uniform in intensity across its profile. They assumed that the
plane-wave analysis of the transparency effect is applicable to
small patches of the light wave front anywhere on the profile a
modification of the pulse intensity output across the beam profile

S'can be described along the rod. They stated that at a particular
radius r < r where the pulse area falls below n, the light will be
absorbedcfor all r < r within a few Beer's lengths a 1. Conse-c

quently, the outer periphery of the original pencil of light should
be stripped away.

,~% v .
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development to treat rigorously the edge effect and numerically where

the basic solution is exactly solved using implicit algorithm. The anal-

ysis led us to understand the evolution of the onset of the self-focusing

from the transverse energy current associated with the phase curvature

induced by the amplitude abrupt variation (i.e., stripping [18] at the

edge. The phase and amplitude structures which arise from the pertur-
bation are such that if the beam propagates through free space, it will

experience an enhancement (magnificantion) on-axis. The trend of our

perturbational results was conform with our rigorous solution [19] as
well as with those by Tai [20], Drummond [21] and Le Berre et al

(though not accepted as real) [22] and the Saclay (30] calculation as
well as with a recent modified theoretical analysis by Le Berre et al

(23] that takes into account of the stripping process.

Equations of motions.
Thus, in recent papers, LeBerre et al (14-16] discussed analyti-

cally the beam reshaping in the case of a C7 beam propagating in a
purely absorptive medium. Recently, Le Berre et al [16] attempted to

demonstrate analytically that the self-focusing, obtained previously by

Boshier et al (1] by numerical simulations is due solely to computational
-9 artifact despite their obtaining a mesh independent self-focusing with a

simplified non-adaptive mesh version of Mattar code [24]. Nevertheless

the beam reshaping was thoroughly shown by other numerical ap-

proaches [19-23, 30].
We have therefore reexamined the analytical solution to the propa-

gation problem of CN laser beam in absorbing media using the pertur-
bative treatment.

The propagation of an intense CW light beam in an absorptive

medium is descTibed by equation:

a-if V 2e =-2 ef
3z T 21+eI

a-.-- t - if

where the parameter P = 2' P being the dipole moment for

atom, T3,2 relaxation times in the corresponding Bloch equation. The

other parameter, f<<l, represents the relative magnitude of diffraction
=~ (-2th1 1/ 2,with respect to absorption, f (1/2 kawo) the '1/2 k w2' is the in-

.a.
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verse diffraction length zd, while a is the Beer absorption reciprocal

length and wo being the waist thickness of the beam, z = (1/2) a -,

is the penetration depth in physical units, p =T - r V2 is the trans-
V 0

verse Laplacian in p. The complex field amplitude is e(p,z).

Thus f as first recognized by Mattar and Newstein [7,13] is a re-

ciprocal characteristic medium length Fresnel number whereas the geo-

metric
Z

reciprocal Fresnel number is f Their ratio f/f az total

absorption in a medium of length i (25].

Using the usual perturbation method[26], we expand the field ampli-

tude e(pz) in terms of the expansion [2]:

e(p,z) = I f2e (p,z) + i I f j e ( (pz) (2)
j= 2j=1 (2j+)

with ej(p,z) being real. Introducing eq. (2) into eq. (1), one obtains

the following hierarchy of evolution equations

a 1 0-eo =  -- .,is-
8Z 0 2 2

el -2 e ° = - el

2ePe
+(l+ eo)

az T 22 21~ )2 2
0 0

e 3 -
2  1 1 12

8Z T e+,e2 (+e 2 ) 2  C1+Pe 2 ) 2

0 0 0

The first three equations coincide with eq. (9) in (14-13] for P1.

The zeroth order approximation in (3) has a well known solution

given by Icsevgi and Lamb (17]:

*I .,c ~1/2
eo ep P e J0 eZp[-p 2 ] exp [ P ~1 o exp{-2p2}]exp[-1] (4)

.' 2 2. . . . . . . .
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Assuming this solution, e (p, z) as a known function of the normalized0I
variables p and z, we obtain for higher order approximations.

D ~~ ~ oOCz ,,oC-,V: e.+€-' )] Z'e) u-'0

0 Z V eW)+ 0- dz'
e2(Z) = z 2 -V2 e,(C--')(z')]2  (Z ,

(1+pe(Z)] [ e2(z,)] 0

Pe Czt)ei(z')e 2 (Z) Pe4Cz')
e3(Z) = ,o(Z)f(V e(,'-, 0 ,-+ I , -.

0 0 T Z[i+pe 2 (zv)1 2  2 [~e(t1

•1 ( 5)

00il •e z'i

Here we have assumed that e.(p,z) 0 for ji 0 at z 0. In the case
j

of very intense CV beam, as considered in [14-16,23], where the on-axis input

intensity Io >>1, the solutions (5) can be rather simplified.

For PIoa >>1, the Icsevgi-Lamb solution (4) can be following ref [16]

approximated for an initially gaussian profile by:

I(p,z) I 1o exp[-2p
2] - (6)

which is a good approximation for the near axis region if

Z 10 exp[-2p2]

Then

eo(P,Z) =[I exp[-2p2] -]k (7)

0

with exception of the close vicinity of the point = 1o exp[-2p2 ). For

the first order solution we have:

e1 (p,z) -401o{(1-2p
2 ) exp(-2p2] ln (1 - (z/PIo) exp(2p

2 ]] ..-

[" (z/pio) .,

, - JI 0) [oexp[-2p2 ]-z/j} (8)

1 - (z/PIo) exp[2p
2]

. . . . *'***...* .. .. .
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e2(pz) = 5/2

e2(pz) p~l e~[_5~j -(12p22 (- Zexp(2p2).2n2(j- Z- exp(2p2))...
(l_ Me2pz~ 91OP

5PI4

2(--exp(2p2))+C-4+24p2-7p4) Zep2p)(-4p+44 Z exp(4p2)

...L ep(2p2)
+7p4  (9)

(1 exp(2p2))

and similarly for higher order terms. All useful information on the

beam evolution gives the radial energy flow, defined as

JT(P,Z) = e12  tan We~) = e ~p,Z)+O(f2 (10)

If we neglect terms of the order of f2, the phase can be calculated

using eqs. (6) to (8). This leads to

#Pz-f4010 [((-2p2) exp[-2p2] ln(I z exp[2p2]) p20
0 1 Z exp(2p2]

00

(pz) f80I p [-4(1-p2) exp[-2p2J ln(1 z ~ exp[2p2])

0

p2 1

-(3-4p
2) 0 - 2p2 exp[2p2] 0

1- exp(2p2] (1 - z exp[2p2 ])2

0 0

Following Marburger [2] we define an effective beam width in terms of

the phase curvature (i.e., the phase gradient)

pm =ll~d .1 fee*pdo I (12)

fly eI 2 pdp f(V e)(V e)*pdp
T T T
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The Marburger effective radius up to the order of f 2 is:

fteo + fte2)
2 + f2(ej )]pdp

PM2 (Vreo+f2Vp )2 + f2[(VT e 1 ) ]}pdp

To analyze the beam reshaping in the out of axis region, where p1o be-

comes small, the Iscevgi-Lamb solution is approximated by [27]
RIo

m0

with the first five terms

1/2I 3/2e0(.,, 1/2 1 1 3/2 2 5eo(P,z)= 1oR exp(-iz) - 1I o R
3 exp(-jz) + 8'2Io/R5 exp (-5z)

49 7/2 7 243 9/2
310 R exp(-iz) + 104 o R9 exp(-Yz) (14)

whereRa exp(-p ) exp(PI0 exp(-2p2 )), and Z = exp -1z] the series iswhereR the seiesiE2

valid for small pIo verifying the convergence condition. The approxi-
mation (13) is particularly useful for studying the beam stripping be-

havior at the edges where [I = 1o exp(-2p2 )) is small enough. Intro-

ducing (13) in (10), we have

j(p,z) = HIz + j pIOR2H( 2 SR4H5 (exp(-2z)-1)

+ *1 ~ n - 1
48 OR H7 (exp(-3z)-1) p41aRSH9 (exp(-4z)-1) (15)

-SC.

where (aj, bj, c. are numerical constants):

H (Pz) a (l+ 1o) b p2(l+plo) 2 + c P20O (16)

The radial structure is such that the transverse energy flux is inward
which illustrates the onset of on-axis energy magnification should the
beam propagate either in free space or in free space or in the nonlinear

medium [6] using numerical methods. The continuation of the two-level
medium beyond the validity of the perturbation will enhance the on-axis

-' ,-,, - .,-,,,,, ..,,.-...-. * *, . *.- .* *... . .. . .. . .. . . . .. ,... _ ... ........ .-.... . .. .- . ... , .- - . .. ,. . i
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magnification sooner [6,7]. To compare our results with [1, 14-16] we

have plotted eo (pz) (Fig. 1.), * (p,z) (Fig. 2), e(p,z) (Fig. 3) and

e2 (p,z) (Fig. 4.) for 1 = 1, f =1/300 and Io = 225.

All graphs as well as our other analysis for different approxima-

tions to eo(p,z) show clearly, that for sufficiently large z, the non-

linearity predominates over the diffraction as the energy flow changes

the direction toward the center of the beam. First, the beam transverse

structure reshaped and stripped giving rise to a radially dependent

wave-front; for larger values of z beyond the range of validity of the

perturbation a small self-focusing takes place also for the inner region

of the beam. The zeroth order solution eo has only at the input plane

(z=O) a gaussian profile, later the beam narrows and the profile eo is

first "peaky" then it develops transverse structure (e.g., radial rings)

in the rim of the beam. The trend of inward radial flow is established

for the first time both analytically and numerically. Thus, our results

confirm the numerical simulations (1, 19-23]. More detailed analytical

* and numerical solutions will be given elsewhere.

ADDENDUM: At the Fifth Rochester Conference, LeBerre et al. retracted

their conjecture that the CW on-resonance self-focusing was a computa-

tional artifact. They realized that the stripping process had to be in-

cluded in the analysis (23].

Gibbs et al. have recently observed in highly absorbing sodium

vapor [28] the CW on-resonance on-axis enhancement (CORE) and is re-

porting qualitative agreement with the different theoretical studies

[29]. Furthermore, J.P. Babuel-Peyrissac, C. Bardin, J.P. Marignier

(301 have recently duplicated Boshier's results.
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FIGURE CAPTIONS

Fig. ! The Zeroth order approximation of the field amplitude eo(p,z)
• . is shown as a functional of z the propagational distance for

different values of p between p = 0 and p = 1.5.

Fig 2 The profile of the phase *(p,z) is plotted for different z
(for z-0, #=O) a negative curvature is seen to develop as the
depth of penetration in the medium increases.

Fig. 3 The profile of the amplitude ej(p,z), the imaginary component

of the field which develops due to the diffraction coupling,
is displayed as a function of z. Note the radial variation
forming as z increases.

Fig. 4 The profile of the amplitude e2 (p,z). As the penetration
depth increases, e 2 (p,z) increases at the edges of the beam
due to the beam stripping.
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QUANTUM FLUCTUATIONS IN TWO-COLOR SUPERFLUORESCENCE (SF)
FROM THREE-LEVEL SYSTEK

P. leke and R. Reibold
Psebbereich Physik, Univrsittt Essen-Gesamthochschule

Essen, F.R. Germany

and

F.P. Matter*
Physics Department, New York University, New York,
New York 10003, and Spectrpscopy Laboratory,

Massachusetts Institute of Technology, Cambridge, Mass. 02139

Abstract

The concomitant effect of dynamic diffraction coupling and quantum

Initiation are examined rigorously in two-colour SF. The synchronisation

of the delays associated with the two-colour SF pulses as observed by

Florian et al is reproduced in the plane wave regime and for small Fresnel number

per gain length F. Feld's propagation model for SF and Eberly's simulton

theory are ascertained by the calculations. The variance of synchronisation

is shown as a function of F.

; Ointly supported by DAAD CF.R. Germany) KFA-Julich and U.S.-ONR
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QUANTUM .LUCTUATIONS IN TWO-COLOR SUPERPLUORESCENCE
(SF) FROM THREE LEVEL SYSTMS

P. Haake and R. Reibold
.achbereic . Physik, Universitit Essen-Gesamthochschule

Essen, F.R. Germany

• , 
and,

F.P. Matter
- Physics epartment, New York University, New York,

New I rk 10003 and Spectroscopy Laboratory,
Massachusetts I stitute of Technology, Cambridge, Massachusetts 02139

Smary

Results of a igorous numerical simulation of diffraction coupling,

radial density var ations and quantum initiation are discussed for twO.

color superfluores mnce from a three-level system of a configuration.

The calculations a.:ee and interpret for the first time Florian et al's

recent experimenta observation 1]. The model consists of two-scalar

field equations clt ;ely Intertwined in the generalized three-level

S Bloch equi :ions [2,3]. The two-transitions are initially inverted.

The effect of cohe: nt pump dynamic [4] is not considered here [4] of Feld's

propagational mode: [5] is shown to be relevant to the physical interpretation

and modeling as it ,as for the two-level case studied by Mattar et al 16].

A synchronisation c" the delays associated with the two,-color SF is always

ac.hieved in a5reemat with Flor.anvs measurements, thus confirming Eberly

et al's [7] simulat .on prediction.

.. .. . . . . . . . . . . . . . . .
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Moreover, when phase and transverse variations are included the

Synchronisation is altered according to the Fresnel number per gain length

F. The physical meaning of F is the ratio of nonlinear medium gain to

K diffraction loss [9]. For small F the synchronisation prevails however for

somewhat large Fresnel where short-scale-length phase and amplitude mode

initiations lead to multi-directional butput with hot-spots and to the

reduction of delays synchronisatiod. 'The delay difference statistics

are consistent with those of Haake et al [9] for the two level counterpart

their Fresnel variation also conformed with Mattar et a.l [10],

Drummond et al [11] and Mostowski et al [121 studies.

SJointely supported by DAAD (F.R. Germany) KC A-Julich and 'U.S.-ONR
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ON THE PERTURBATIVE THEORY OF THE ONSET OF THE SELF FOCUSING IN

THE PURELY ABSORPTIVE CW OPTICAL BEAM PROPAGATION>

Jiri Teichmann

Department de physique, Universite de Montreal

P.O. Box 6128, Montreal, Canada t

and

Yves Claude

Department d'Informatique, Universite de Montreal

P.O. Box 6128, Montreal, Canada

Farrbs P. Mattartt

Department de Physico-Chimie, Centre d'Etudes Nucleaires

de Saclay, Gif:sur-Yvette, France and Spectroscopy Laboratory,
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ABSTRACT

The self-focusing onset of very intense C1 optical beam on resonance is

studied analytically using perturbational methods. The competitive

effects of radially dependent nonlinear absorption of the media and the

diffraction spread of the initially gaussian beam are analyzed. The

radial variations of the field components, phase and effective beam

radius show the beam reshaping and stripping effects in agreement with

numerical simulations.

t The development of the numerical program applied to this study
was sponsored by the U. S. Army Research office (DAAG23-79-
C-0148) and the U.S. office of Naval Research (NOOO-14-80-C-0175)

if On extended leave of absence from the Polytechnic Institute of New
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Introduction.

Recently Boshier and Sandle (1] reported a new phenomenon of CW

on-resonance self focusing for very intense beams having intensity

larger than the saturation one. This new phenomenon has not occur

previously as reviewed by Marburger [2] where less intense beams where

studied: The nonlinear susceptility XNL vanishes on-resonance excluding

the occurrence of self-focusing as observed by Bjorkholm et al [3];

either below the resonance or above the resonance the beam experiences

self-lensing phenomenon as predicted by Javan and Kelly (4] and ob-

served by Grishkowsky at al [5]. The coherent (pulsed) on-resonant

self-focusing predicted by Newstein et al [6,7] and subsequently as-

certained in Sodium [8,9] Neon [9,10] and Iodine [11] could be under-4]

stood in terms of an instantaneous frequency offset (W = a*/at).

which results from the phase variation initiation due to diffraction.

Similar methodology to the one developed by Newstein et al for the
transient case [12,13] to treat the diffraction as a perturbation,

elucidate the development of the radially dependent phase in the CW

regime as shown by LeBerre et al in [14,15]. LeBerre et al used for a
base Icsevgi and Lamb's plane wave (CW) implicit solution [17] instead

of McCall and Hahn SIT (pulse) solution [18]. The phase curvature was

obtained by the competetive effects of radially dependent nonlinear

absorption of the medium and the diffraction spreading of the input

gaussian beam. A Fresnel number, defined in terms of the (nonlinear

medium) Beer length instead of the cell length, characterizes completely

with the ratio of the input intensity to the saturation intensity the

beam evolution and reshaping. Particular care must be taken in the

perturbation treatment to approximate correctly the canonical plane

wave solution and to include the transverse boundary edge effects.

' .. ..... ... .. . .... .. ..... ........... ... . . . . . .. - .. .-- "
• °-° o •o . .o . o .... ... ... . o. . ,.o . •... ...
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Le Berre et al [16] in their first analysis missed the stripping process

that takes place at the edge of the canonical solution profile and con-

cluded that this CW self-focusing was a computer artifact. Our attempt

was to understand both results and illustrate the physics. Our present

approach is perturbational both analytically using two power series

development to treat rigorously the edge effect and numerically where

the basic solution is exactly solved using implicit algorithm. The anal-

ysis led us to understand the evolution of the onset self-focusing from

the transverse energy current associated with the phase curvature in-

duced by the amplitude abrupt variation at the edge. The phase and

amplitude structures which arise from the pertubation are such that if

the beam propages through free space it will experience an enhancement

(magnification) on-axis. Our perturbational results was conform with

our rigorous solution (191 as well as with those by Tai [20), Drummond

(21] and Le Berre et al (though not accepted as real) [22] and with a

recent modified theoretical analysis by Le Berre et al [23] that takes

into account of the stripping process.

Equations of motions.

Thus, in recent papers, LeBerre et al [28] discussed analytically

The stripping mechanism was first recognized by McCall and Hahn

[18) in their pulse analysis. They understood that the pulse
entering into the resonant medium is not uniform in intensity
across its profile. They assumed that the plane-wave analysis of
the transparency effect is applicable to small patches of the light
wave front anywhere on the profile a modification of the pulse
intensity output across the beam profile can be described along the
rod. They stated that at a particular radius rc < r where the

pulse area falls below €, the light will be absorbed for all rc < r

within a few Beer's lengths a-1. Consequently, the outer periphery
of the original pencil of light should be stripped away.

444 . '..'.,..,.'.". ".#".. : .,. < """'''. ,.'-.-.• ."." . . ." " -". ".. '.,"' ". . -
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the beam reshaping in the case of a CQ beam propagating in a purely

absorptive medium. Recently, Le Berre et al attempted to demonstrate

analytically that the self-focusing, obtained previously by Boshier et at

[29] by numerical simulations is due solely to computational artifact

despite their obtaining a mesh independent self-focusing with a simpli-

fled non-adaptive mesh version of Mattar code [30]. Nevertheless the

beam reshaping was thoroughly shown by other numerical approaches

(31].

4: . We have therefore reexamined the analytical solution to the propa-

gation problem of C* laser beam in absorbing media using the pertuba-

tive treatment.

The propagation of an intense C light beam in an absorptive

medium is described by equation.

e I e(1)Z- if =.e1+jj

where the parameter = 2 r , being the dipole moment for

! ~atom, %,% relaxation times in the corresponding Bloch equation. The

other parameter, f<<1, represents the relative magnitude of diffraction

with respect to absorption, f = (1/2 kawa), with '1/2 k wo' is the

inverse diffraction length zd , while a is the Beer absorption reciprocal

length and wo being the waist thickness of the beam, z = (1/2) a is..

-I.,the

penetration depth in physical units, p 7 is the transverse

Laplacian in p. The complex field amplitude is e(p,z).

Thus f as first recognized by Mattar and Newstein (34) is a recip-

rocal characteristic medium length Fresnel number whereas the geometric
reciprocal Fresnel number is fg - . Their ratio f/fg = ai total

0g
absorption in a medium of length i [35].
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Using the usual perturbation method, we expand the field ampli-

tude e(pz) in terms of the expansion (36]:

JeI j (p:z) + i (2j+1)e (p
e(p'z) = 2j + i fZ) (2)> j~l j=-'

ej(p,z) being real.

Introducing eq. (2) into eq. (1), one obtains the following hierarchy of

evolution equations (37]

o ~ a0
8z - 2  

.
p.i

a 1 ______ 1 -

0 el V e i~ e

__ 1 1"je Ieoe

0: Te2 2  , e + elo •+ e ?}::

a 1 1"3e2  13e°'le3s:i

(8+peoo)3

00

-e 12e 2"3e 4

0 + Pe 2

(1+,e2)2  2 i+P:(

0 0

a +2pe 3 +p2 eS .2

00l +pe ) slPe) 2 ete



-6-

V-2 e, -
.(eI4+2~

1 O(eie; + 3efeA - 02eA(3ete - 3el eft) - 2 2enee 2 + 2

e2 +4) 3  (1+Pe8) (3)

The first three equations coincide with eq. (9) in [36] for pi.

The zeroth order approximation In (3) has a well known solution

given by Icsevg and Lamb [37]:

so ep [ p .j z1/2

eo elp [ ell Io exp[-p2 1 exp I Plo exp-2p2Vexp[-

. Assuming this solution, eo(pz) as a known function of the normalized

variables p and z, we obtain for higher order approximations.

e(z) eo(Z) f- [V2 ez')] dz'
d0 0 T o e (z')

02z) 0 (-V-2, e(z, 0 dz'
-) 0 T z 2 (+pe2(Z)

(1++00W] ] ] eo(Z,) d'

I Z:) f2 [V2 e(Z Fe (Z')e,(z')e 2 (z') 1 Pef(z')
...3(Z4) .o T z [1+ ' ' )] 2  + [1+pe 2 (Z,)] 2

0 0

1;(Z)dzt

0

e (Z) 3e(')-Pe3 (z')
-,,€) - a [-T 1 , 10') , ,')

(+pe 2 (z)] 23" [I+leo(Z,)]3

eoCZ')e 1 (z')e 3 (z') 1 1-2e 2 Cz')-3l2e (z')
+ 0 0 e2(Z)e 2(Z')

0 0

e(z')+2pe3(Z')+p2e5(z') l+oe 2(Z')
[1eZ)eSCz')] o, dz'

00

L~rP%~ZJ°
*1.



ez) eZ fZ { 4(z2 1 ep(z')[2e (z')ed~z')+2e9(z')e2(z')I
esz)= 0( 0 T 24 z' + i e6

2 2 2 2 2 3
(eCZ')e2(Z')+3e,(z')e3(Z))-PeO(Z')(3e,(z')e2(Z')-3e,(z')e3(Z'))-2Peo(z')el(z')e2(Z')

+1 1 deiz' )]

+ 4 +S',) e!(z')) eo~z') z(4

Here we have assumed that e(p,z)O0for j O0at z 0. In the case-

of very intense CIQ beam, as considered in (38] where the on-axis input

intensity I >>1, the solutions (4) can be rather simplified.

ej(z) e (Z) [V2 e('] dz'

e2(z ~TY 0 -V~e,(z) +1 1e2(Z')

I z iI' e (z')dz'o2z e3(z')V4

-az e (Z) f2- (V2  1~) e1Cz')e2(z') + 1 1 zz'
0~z 0 T 32(Z

t) 2 e W)dz

1 ~ ~ ~ l e.z' 0 -e(' 1e('e('
o ~ 20 0

1 304(pe 2 (Z) e~'e('
2 z ei~(z))

0- 0

1-2Pe 2 (Z' )-3 2 e4 (z')

+ e20 ZZ) j([V 2

P3 e.a,'

f)+p2 4

1ape( eW
1 0 __ 0 - 4 Z')] eo~ z )d z

:~~~a~yf>~2 P3 eg*' el* : ~ : * ~ ~*-
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-2p
2eo(Z')ef(z')e2(Z')+es(z'))/p3eg(z')] dz (5)

For PI0 >>1, the Icsevgi-Lamb solution (5) can be following ref

[39] approximated for an initially gaussian profile by:

I(P'z) = I (pZ0) Z
'.4. 0

I(p'z) = I exp[-2p2] -(6)

.4 0p

which is a good approximation for the central region of the beam, where

W% < 1 exp[-2p2]

V4%  Then

= PZ [1I exp[-2p2] -~

with exception of the close vicinity of the point 1 0 exp [-2p2] For

the first order solution we have:

el(p,z) = 4 0 (1-2p2) exp[-2p2] in [1 - (z/PI ) exp[2p2]]..

- ~2 -0zPO )-(I~exp(-2p2]-z/P) %(7)
1 - Cz/PI ) exp[2p2 ]

0

e2 =z 80a 215/21 -1-p22(1E exp(2p2 )jtn 2 (1- Zexp(2p 2 )) ..

(1_ je~p) 01 I

4%.,O

4,-p+O4+(42Ip)j Z ez(p)-(-p+p)j

F.ex(22.2]

P4..,
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z z .2*.n(l o exp(2p2 ))+(-4+24p 2-7p4 ) - exp(2p2) (5-34p2+2,p')0  exp(4p2 )

". TO exp(2p2 )

(I- Po ex,(2p2 ))

and similarly for higher order terms. All useful information on the

beam evolution gives the radial energy flow, defined as

J(z) JJ 1Im~eCP,Z)j ei elP,z)+cr(f2

JT(pz) = e tan * = Re z = eP +( (9)

If we neglect terms of the order of f 2 ' the phase can be calculated

using eqs. (6) to (8). This leads to

Z
(p'z) f4pI°  (1-2p2 ) exp[-2p2 ] ln( - -n exp[2p2 ]) - p2  0

,;410 0 " -so exp[2p2 ]
0 ~I0

(10)

(p,z) f8PIop {-4(1-p2 ) exp[-2p2 ] jn(I z exp[2p2])" ap 0 P I- ex2P)

Z Z2

PIp2 12
" (3-4p2 ) 0 " 2p2 exp[2p2] 0

I - exp[2p2] ( - ° exp[2p
2 )2

Following Marburger [40] we define an effective beam width in terms of
the phase curvature (i.e., the phase gradient)

pN.

= = I ee*pdp

fIVTeI 2pdp f(VTe) (VTe)*pdp

The zero order Marburger effective radius is
'!07

,.4i

.,,4. . , 2 . ;" i.".; - ,. ' .Li ' - , . .-. . . - . - . .- - . . ' ,.. .
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fegpdp [1 - exp[-p,, - (Z/2p ) 2 ]

o fIVTOI 2pdp 2[1 + eXp{-4p , ], )]

the refined radii up to the f and f2 order in e are:

f(e2 + f2ef)pdp

fj(VTeo )
2 + f2 (VTeL)2)pdp

= [ feo(1 + f2*2 )pdp

-f{(:e)2 + f2(#0peo + eo9l)2 )pdp

fleo + f2e2) 2 + f2 (ef ))pdp

N2:, :(VTeo+f.VTe2)2 + f2[(VT,) 2 ])pdp

To compare our results [40] with (41], we have plotted p(p,z),

1"(P'z)' N (z) for f 30 , I = 100, 0 S p S 1.2, 0 S z S 10-15

neglecting terms - f2 in (8) (such that eo 9 fe, 1 f 2 e2 . e2 and aT are

also plotted to the order of f4 and also for f = 1/500. All graphs as

well as our other analysis for different approximations to eo(pz) show

clearly, that for sufficiently large z, the nonlinearity predominates over

the diffraction as the energy flow changes the direction toward the

center of the beam. First, the beam transverse structure reshaped and

stripped giving rise to a radially dependent wave-front; for larger

values of z the self-focusing takes place also for the inner region of

the beam. Thus, one can conclude that, in case of propagation of the

optical beam in purely absorptive media, reshaping and self-trapping

takes place for intense beam (I o >> 1).
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To ascertain this conclusion, the profile of the most pertinent

function is displayed for different penetrations distances z = 0,1,10,20,

30,40,50. Should one use Leberre et al's approach outlined in reference

16a the validity of all calculations and graphs is controlled by the

condition z/p < 10 exp[2p 2 ]. To maintain the precision to several

percent we one would have to discontinue the calculations for larger z

as soon as 'z/P = 0.95 10 exp[-2p2]' is reached. Thus the validity of

the theory LeBerre et al in ref [16a] is radially dependent. All the

processes of interest develop before the validity condition breaks down.

The zeroth order solution eo has only a gaussian profile, at the input

plane (z=0) later on the beam narrows and the profile e0 is first

"peaky" then it develops transverse structure (e.g., radial rings) in

the rim of the beam as shown in Fig. 7.

The most interesting process such as rapid variation of the phase,

field components (e.(p,z) and radial energy flux takes place near the

edges of the beam. To be able to describe these stripping effects accurately

one has to use more precise approximation for the zeroth-order field

eo (p,z) than as given in eq. (6) from the Icsevgi-Lamb solution [17]
for eo(p,z), namely

I(p,z) exp[PI(p,z)]n = Io(p,z)exp[PIo(p,zo)]exp[-z] (11)

we can contruct via the method of consecutive approximations the-next

order approximation to the expression (6): - --

e°(pz) - {Ioexp[-2p L exp[+2p - (12)
p Plo
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where again lo is the initial beam intensity at z=O. This approximation

gives better description of processes in the central region and in the

vicinity of beam edges. E.g. the phase 0 1 (p,z) is given now by

S.? 1 1
2(~) T.~klp z0z+ f o a A F(plz))2dz (13)

where Fj(p,z) = Ioexp[2p2] - 1 n(1 - z exp[2p2 ]) (14)p pS p1o

F(p3  F2
or #(p,) f • [p2 -4p2 F/F- 4 F-)dz 5)

where F2 : Ioexp[-2p
2 ] + Z

P2__ -exp[-2p
2] (16)

F3 : I exp[-2p2] + 2 exp[-2p2]

Z.-,exp[2p2] (17)
p3alo (PI0

Still better approximation to the zeroth order field po(pzz) at the beam

edges, can be obtained by developing the Icsevgi and Lamb' solution in

a series.

Instead, one should solve rigorously the Icsevgi and Lamb' solution

[17] for small values of PI by using numerical methods or by developing

the Icsevg and Lamb' solution, namely

1/2I I -1
eo exp P e p ] = Io exp[-p 2] exp [ Io exp(-2p2)]exp[--z] (18)

in a series for p > 0.95 p

with p- min (px' 0.5 1n

.. . Z.. ',' ., , , .., , ., .. ..., .... . , . , ., , , . , , , , , -:. -,
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•o (p,z) = P (2m+) (pz) (19)
m=O

1/2
with =I 0 RZ

with the first five terms

1/2 1 3/2 5/2
eo(p,z) 1 Zo R exp(--) - R3 exp(--z) 2Io R exp (--z)

4"7/2 / 9/2-zp31$I R7 exp(--) + 9f--z
4-S4Io R9 exp(- 9 z) (20)

where R = exp(-p2 ) exp[ 1I 0 exp(-2p2 )} and Z = exp [--z]. The

series is valid for small PIo verifying the convergence condition

Plo R2 exp(-z) <<1 (21)

The approximation (20) is particularly useful for studying the beam

stripping behavior at the edges where 1o = 10 exp(-2p2 ) is small

enough (is near the edges). Introducing (20) in (9),

PIZ)= Hz + 'I II OR2 H3 (exp (-z)-1) - . p2ISR4H5 (exp(- 2 z)-l)

0313 3 H(e8p(-3z)-l) P4ISR8H9 (exp(-4z)-1) (22)m 384

where:

. """" " " "-'""""" " :' .
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H (pz) = - a (1+P1o) + bjP 2(1+po)2 + cjp 2PIo (23)

8H.

j ap a
..% (24)

a ''-lndJ

V Ej = 4b. (1+lI°)248b p;(I+Plg)P- +4(2&-+C')lI 0-8(2a +3c-)p 2 pl (25)

+ 32tlp.'(l+pIo)lI0 + 32bjp 4 2 (I0 )
2 + 16c4pio.

"2 Consequently the phase gradient we obtain is,

-1 ~Ah.(.z =1 "+

f ; P 1 + I-R(H " 4p(1+P!o)13) (exp(-z)-l)

-. 21SR(lHi 8p(l+P1IO)Hs) (exp(-2z)-1)

+ 1 pI3 oR6(H . 12p(1+PI )H7)(exp(-3z)-1)48 0 0

- 41SR(H- 16p(1+lio)H9) (exp(-4z)-1) (26)

For the first order field term, we have simply from eci atlon (10)

e1 (p,z) = eo(p,z). I (p,z)f .

The multiplication of the series (20) and (22) gives then

4 7
e(p,z) I z A exp(- (2m21)z+ I B exp(- 2

0=1 M= 1 (27)

' where Aj = Al(p), Bj = Bj(p), are defined from (20), (22), see ref [49]

for details. The next order field for Peg << I is given by

,,.,-
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e2(p,z) = eo(p,z) J (-V e (p,z)) eo (p,z) + ef(p,z))dz (28)T 2

by integrating, one obtains for

e2(pIz) = eo(pz) VE(p,z) (E stands for edge of numerical grid) (29)

- 1/2 1(~t112-~2

YE(P,z) =- 10 R" (VTB)z - I0 R  (VI)z

-1/2 +1/2
+ (Io R M(VA2) 10 R(VIAi)-PAIBI)((I+z) exp(-z)-l)

-1/2  +1/2 3 3/2I + ~~(I1/IR'I(v2TA )+2p21 0 R(V , ) 3JZ O RZv )- AIB,-AB)

+ ~)exp(-2z)--!)

-A, ((Z2+2z+2) exp(-z)-2) - 9AA 2 ((Z2+Z+) exp(-2z)- )

+ (I01/R'(VB 2 ) + 2 I1 02 R(V 2 1) - 2Bj) exp(-z)-l)

I, (1;1/2l- (V ) ., /2( P ) - 3 2I3/2R3(V2) -. ,

Cexp C-2z)-1) (30)

A = -- .

201 8 0 280 0B2 1- 2 0/RI 3  1 II/ 2RH 41

, IoRS I- 1- I 9/ 2R9H 7

ip2I/~ 1P 0 96 0

B = 5L , 3 I R7H p41 9I/2 RS "- 5  S11/RIl,/ R H7  (31)13Y6 0 +64 0 84 P0

Another power series is needed to be developed for the transition

region where 2.0 < eo < 0.5 to insure continuity of the derivatives.

The intermediate region solution was obtained by developing into power

4".

A
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series the logarithm of Icsevgi and Lamb's exact implicit solution. (See

fig. 15) Take the logarithm of both sides of equation (18) -

In.. + IW,,o -- oh (+ oPIexp[-2p2]-hZ - p2 ) -InK (32)

For a <2 we have
0-

Ine o = + Z(_-) lCeo--) (33)
0p1

equivalently,

eo(P,Z)= 1 + P F' (27) F a (1 +) [InK-P] (34)
n 1

or explicitly

F (1 + ) lnIh -k] + (1 + P1) [VI exp[-2P2]-p j + (1 + p) (- z)
(35)

the first coefficients of the series (34)

1(1-)) 1_ )2 1
P2 1; P2 ( 1+p);P3 = 1+ 3(1+P)

' -15 -1 3

P4 = I.12+15 B-)

6 (1+0)z 4(1+0) 8 (p1)4_

Ps 3 (1 2 1 + (1 4 1 7 (1-0) (36)
4 (1+0) 3 1+) T + i~~-51~ i~~(6

For = we have simply

d;(', ( , o - ) + ( 10  ex p[-2p 2 ] - p ) - z ALI

for 2.0 > e > 0.5 (37)

.. 4

4%

- - ,
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To calculate the higher order field components, we need the Laplacian

which can be defined as

(V2e)- A n  (38)

with

-An  (n+1) Pn+1 (VTF) + (n+2) (n+1) Pn 2  (39)
n 8pIn+

Where

(V;2F) = ( 2p2 pl, - - 1]; (40)

OF 2P 1:0)1 1o Io exp(-2'p2 )  (1 "
= - 1o(41)

furthermore, for component el with

eo (pz) =I + cF + c 2F2+.. I c Fn  (42)
n0 n

where

C= 1, C1 = - = 2, cS = - P3+2plp2 -,

.4 = - PI (2pIp2 " Ps3PI) " P2(PtP2) + P4 (43)

Substituting the approximation (29) for eo and using (33) we have

by analogy to eq (9) for the phase (F(p,z) = *(p) 1 z)

Then

f *(p,z) = A z (A + CA (z 4(1+) z 2 )

0 0
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-.,;,.. "

+...-.: + (A2  + czA l 4 cA o)( z - *-z + 1 s

1 + ) +

+. (A2 +. c1A2 + c2Ao 4(2 z3 )( 3 
-3 2..AL. __

(A3+ IA +C2A +c3b)4 (1+0) "4 (1+057

1 4 ...)

- 2(14.)3 44

with *(P) 1 l 1/2 
+ 1/201nexp[-212 1-Q2  (45)

Finally, for the component el

1 (P,Z) - p Z) eo(Pz) (46)

with

e1 (p,z) = B B z" (47), B =B (p) , A. =A.(p), "= (p) (47)

n n L

where

B [Ao + ( 1  
+  1 + C2Ao)#

2 + (A 3 cA 2 + c2A1 + c3Ao

0 1 1 20 3 12

- [(A+C) + (A 2c A + c2A 0 + (Ac 3A) 3A.CA] +

+ P. + P2 4. + p ]3 +---]I 1

2 1 3 4 . p 4[ CA2 2+cC 1 1  +0
+C 431 2+13

*1 + P 2 0+ 3 ..

+ 1A 2+ I p 4 p * + (A p + 1 A32+cAI+C3A) +.]

B3 1A +C A1CA 1 (A.+ A +.c A +.C A)*+.]
U q~11. 2 1 1 ( 2 .Ac 2A0) 4 ( 3 1 2 2 1 3 0

'.4
*("p 1 + p, -2 + P3 3 '



1 (A +CA )+ (A +C A+C A),+ A + CA+
4(1.+02 4 11o0 2 ( 2  1 1 2 0 4 ( 3+c1A2  2 1 3 0

2 #l+ 2 + p ~i...]

2 1 + 32 +21P

+ p3  ][Ao+(Al+cA)* + (A2+cA +C A) *2

+ (A3+ClA 2+C2 ,+C3A) #3]

B4 = --- [(A0+ (A,.+ cjA0)# + (A2+ CIA,+ C2A0)*
2

+ (A3+clA2+C2A,+ SAO)*3 +---] P 3+ %Mp*

*r*-3 (t(Ai+ciAo) + J(A2+C1A1+C2A0 )$ + i(A 3+C1A2+C2A1 +C3A0 )*
2]

It PAP+-t~ ] (continuation next page)

(C+p3[j(A+A+A) + t(A3+CjA2+ezAI+C 3Ao)4+..i]

(jP1 IP2#1P 3 
2 2P4 *

3.

-(I+p)3 [SJ(A 3+ClA 2+C2A1 +C3A0 ) + j(A4+cA3o SA2+C3A,+c4AO)d+...1

ll+Pl 2 +P3(48)-

there A and *are functions of p

For small e << 1

0

Nz

e! (p~z e ~ f [(V- e + t.- 2] dz (49) . . . *, E
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-e eo(O.z) 4i(pz) (tu stands for the intermediate case) (50)

T

+ (1+ 1tc2*2+ (2  # 2 B3 ) 1) Bz 3 ]

-1 1 1 C3 ) ( y2 B3)
4 l(i+p'z +C2 + C *)(VR2 21j(C+2*+ 2 v

2 *22 3,S)02) 32

C2 + (11) C3V B ) 1++C2 0C + 1 3 B2 )

+~~~~~ ~ ~ ~ CJ+ #*)(# C#)(- B PVB)Z

4, j~ ( I c 3 *(V, I3 1c 2 * c 3  )( B2) ]

4 " i-(231B3 +B)} z+ +""* (52)

Fig. 8a and Fig. 8b display the phase and the imaginary part of

the field both arising from the coupling between the various shells each

of intensity eo . Accordingly, the initial phase is zero. However, the

transverse Laplacian associated with the gaussian variation from one

4 shell to the other does not vanish; its accumulation increases along the

penetration depth. Both the field eo and the perturbation e1 experience

abrupt changes along p = pc (z) as shown isometrically in Fig. 10.

Through numerical calculation the stripping effect is clearly demonstrated.

Figs. 9, 10 and 12 display the self-action process such as self-

phase modulation which lead to the onset of sef-lensing (here, on-axis

magnification self-focusing) phenomena. The radial structure of the
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amplitude and phase will lead to an energy bunching (beam narrowing)

In free space. The trend of self-focusing is indicated; it gets accentu-

ated as the beam propagates further into the medium.

Fig. 8 summarizes the profile of the total field in the approximation

of Ref 1. The field grows at the center but more rapidly at the edges

of the beam. Here, one is severly constrained by the validity of the

4 analytical treatment. Thus, one may not include all the energy at the

wings that could flow toward the axis (due to the change of amplitude

at the stripping edge which leads into phase gradient evolution).

Fig. 13 shows the on-axis total energy as a function of the pro-

pagation distance for various f. The energy is seen to be decrease first

(i.e., depress to a minimum) then increase (i.e., getting enhanced)

establishing a trend conforming to the rigorous calculation of Boshier et

al. [5]. The smaller the f, the stronger are the diffraction and the

radial absorption as well as the stripping mechanism. Thus, the

stronger is the trend to focus and the shorter is the enhancement length

should the beam be allowed to propagate through the free space as sug-

". gested by Leberre et al in reference [14]. However, if one follows

Newstein and Wright (12] and follow the beam propagation in the non-

linear medium the trend of on-axis magnification is accentuated. Either
propagation beyond the validity of the perturbation theory must be

carried out numerically.

Our results confirm the numerical simulations [42]. The discrep-

-4 ancy between the conclusion of (42] and our results (as well as results

of numerical simulations) consist in their neglecting the stripping effect

and confining the extent of radial width to where the approximation in

the solution eo(p,z) is valid as given by equation 6. We have found

that the dependence of the phase on p and z is rather sensitive on the

form of eo(pz).
ak

. * S,%

,- ,-,,..-.,;.-,. - .,.. ,. . . . .. . . . . . .. ,.. . . .. ... .'.,...... .... .. .... .. -...... ....... . ...-... .. -.-. , -- ,:,.*, -*.,..,-.,....
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The validity of the perturbation holds as long as e >> fe, >>

f2e 2 >> f 3  "f 4 e4 ... when any of the inequalities is not satisfied,

the range of the validity has been exceeded. At most, the total on-axis

field strength builds up to 42eo of 45eo if eo or eL and e2 orders are

included. As in SIT, this perturbational holds as long as the dynamic

diffraction can be treated as a small quantity. Fig. 14 displays iso-

metrically the field energy to the second order in e as a function of z.

The one-axis enhancement is clearly illustrated. At best, this approach

outlines a trend of self-lensing (44] but can never hold in a focal re-

gion; as a matter of fact, for tight focusing the paraxial approximation

(i.e., the rigorous equation) does not even hold and a corrective longi-

tudinal field correction, as derived by Lax et al (45], must also be cal-

culated. Furthermore, the lack of computational resolution for evalu-

ating correctly the dynamic diffraction term around the focal region has

been treated in both Thermal Blooming (46] and SIT Self-focusing [47].

The latter treatment was referenced by Leberre et al. though not

studied. An extension outlined in ref [57] deals with the clustering of

points not only near the axis but also near the stripping radii when the

abrupt changes in amplitude lead to phase variations and transverse

energy flux.

Conclusion

The onset of the CW on-resonant self-focusing (on-axis magnifica-

tion) as computed by Boshier et al, has been elucidated using a pertur-

bational treatment of the diffraction coupling and multiple series develop-

ments across the beam profile to map the stripping process at the beam

edges. The evolving radial variation of the amplitude end phase will

"'.4

. . . . . . . . . . > . .
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lead to a subsequent energy on-axis build up (i.e., enhancement and

beam narrowing) should the beam be allowed to propagate further in

either free space or a nonlinear medium.

ADDENDUM: At the Fifth Rochester Conference, LeBerre et al. retracted

their conjecture that the CW on-resonance self-focusing was a computa-

tional artifact. They realized that the stripping process had to be

included in the analysis. [50]
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FIGURE CAPTIONS

Fig. 1 The Zeroth order approximation of the field Intensity Io(P,Z)

is shown as a functional of z the propagational distance for

different values of p between p=o and p=1.2 in step of 0.2.

Fig. 2 The Zeroth order field strength eo(p,z) is shown as a function

of z for 0 < p < 1.2 in steps of p = 0.2. The graphs are

stopped at z = 0.95 of the zeros of the theoretical approxima-

" + -tion of 10 described in ref [1].

Fig. 3. The phase curvature 8 is shown as a function of z forap
varius radii 0.2 < p < 1.2. The larger the radius, the quick

the phase curvature changes sign from positive to negative

value even though p < pc as in Ref. (1].

.. Fig. 4. The energy flux or transverse energy current jT is shown as

a function of z for varius radii 0.2 < p < 1.2. One can

clearly see negative values of energy current which indicate

the begining of inflow energy towards the axis (i.e., a

tendency of beam self-focusing) despite the fact that p < pc

Fig. 5. The imaginary part of the field e1 , which is of order f, is

plotted as a function of z for various radii up to p < pc as in

Ref. [1].

Fig. 6. Marburger's radius PM = [{f1elzpdp)/lfJVTe l~pdpl]l/2  is

shown as a function of z for the Iscevgi and Lamb's solution

and for the fe, correction. Beam stripping -and beam

narrowing are respectively illustrated.

Fig. 7 The approximated solution of Icsevgi and Lamb eo(P,z) "

Io exp[-p 2 ]{1-(z/ I ) exp[+2p2]} is shown as a function of p
0 0

for different values of z = 0,10,20,30,40,50 up to p < pc as in

Ref. [1].

ski
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Fig. 8a. The profile of the phase *(p,z) is plotted for different z =

10,20,30,40,50 (for z=0, #0) a negative curvature is seen to
*. develop as the depth of penetration in the medium increases

up to p < PC as in Ref. [1].

Fig. 8b. The profile of the amplitude e1 (p,z), the imaginary component

of the field which develops due to the diffraction coupling, is

displayed as a function of z = 10,20,30,40,50. Note the

radial variation forming as z increases even though p < pc as

in Ref. (1].

Fig. 9 The field strengths eo and el are shown as isometrics plots in

p and z to illustrate the physical process of stripping for

10 = 100, and 10 = 225.

Fig. 10 The wave front 8*/Bp profile is drawn as a function

of z = 10,20,30,40,50. The negative value illustrates the
self-lensing trend even though p. < Pc as in Ref. [1].

Fig. 11 The total field (e2 + f2e 1 )h profile is drawn for different
penetration distances z = 10,20,30,40,50 for p < Pc as in

r44 'l Ref. [1].

Fig. 12 The transverse energy current (radial flux) T is plotted

versus p for different z. The rapidity of the change of
curvature into negative value is striking even though p < Pc

as in Ref. (1].

Fig. 13 The on-axis total field is plotted versus z to display first a
decrease then subsequently an enhancement (i.e., the onset

of the self-focusing as seen by Boshier et al. [5]. This is

done for different values of f.

Fig. 14 The total field energy {e 2 = (eo + f2 e2 ) + f2 ef) is plotted

isometrically versus p and z clearly displaying the onset
of a self-focusing (i.e., on-axis magnification).
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Fig. 15 Profile of the canonical field eo for three distance of propaga-

tions illustrating the two power series development

around the stripping region - part a of the grap repre-

sent the approximation of Icsevgi and Lamb solution as

outlined by LeBerre et al (see ref. 16); part b repre-

sent the intermediate region defined 2.0 > eo > 0.5; part

c represent the edge when eo 0. 5.
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STANDING WAVE EFFECTS

E +E(pz,t) = e (p,z,t) exp[i(wt-kz)] + C.C.

E -(p,z,t) = e-(p,zt) exp[i(wt+kz)] + c.c.

UP(p,zt) = P(p,z,t)exp(iwt)

Se- slowly varying w 0t exponential

-FV2 e +-+ - = +g <P exp(ikz)>cat

TiV ce + Be B +g<P exp(+ikz)>

The quantity in the R.H.S. undergo rapid spatial variations

<-> spatial average of these quantities over a few wavelengths

BUT

ap -1 {W-
+(-i() + 2 )P =+ W(e + e))

-W+ t-(Wo-W) 1(P + P-) (E+ + E-)

aP

5F - (-2(Q)+c_1) P _ W[e exp(-ikz)+e exp(+ikz)]

aw +-
1 we_ . +* -

- + l l(W 2 (Pe+exp(ikz) + Pe exp(-ikz)+ c.c.)

The presence of oppositing waves leads to a quasi-standing wave pattern in

the field intensity over a half-wave length.

P exp(-ikz) I P exp(-i2pkz) + exp(+ikz) IPp exp(+i2pkz)

p- (2p+1) 0 (ppp1

W = W0 + I [W2p exp(-i2pkz) + c.c.]
P__I

with W o a real number

,iFT e± + e 8 e g± P
T t z .P1

1.16 . . .. . . .V



atr P1 + Pl/T2 - Woe +  W2e;

a A= +W

... ... .... ..

a p + + =W e +W (~e e n

a~ ~ ~ p$+1.Te

at P3 + P3/.12 -'- W2 e+ W4e

SP(2p+1) + P(2 p+l)/T2 -W2 pe + W2(pl)e

W+(W W)/ * P- + e 1 1 + C.C.)

,
"

o o

+- (We/E* 
+-

TWO0(e P* 1 +e P- + cc.)

+1- - + + +

axwW o- /W2/= :,t(e P e P + e P +.) P

a °  - (e P1 +e : 1  e ++ er.
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Perturbation

e+ Strong Beam e" Weak Beam

Mathematically, this translates
6)P p- /- 0()

e/ =o(6) ; P2p+1 2p+1

P,* P* 0(6) w /W 0)
2p+3 2p+1 2p 2(p+l) =(6),

and P- /P =0(6- + 2
2p+3 2p+1

Case A. (In the diffractionless limit (F = 0# = a.) eo, P1 0 and 1o repre-

sent the S.I.T. limit.)
•+ = o + 6 + 2  + 6e

e e + 6e + 62e + 63e +

e 0 6 1  2 3

e1 =  6P + 62e 2  +63 3 3

3 + 2+ 2 +
P5 = P10 +6Pi + 6P 1 2  + 6P 1 3 +

P3=  4+6P 2  +63P1 3

2 3 +

P5 + 6 3P + "

1 11 P1 2  163

3 31 P3 2  +P 33

= 2 + 3 +

P2 = + 62P- + 63P +332 36 3

= + 6 53

W4 = += +W2 +6W +26W 2 1  22 +6 2 3  +

w+ 6W4

iii
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Zero order of 6: C(60) as in S.I.T.

aceo + aze = g+PIO
* o

OT PIO + P 10 / 2 = Wooeo

S.'Wo + (WooWeo/l I +* + ++
W )/Il= " eo PIO eo PlO )

First order of 8: 0(8)

+e + +g

te 8z = g" Pl

at Pll + p ll/ 2  W01eo + Wooe,

a P 1 
+ P1 1/1 2 = W ooei + W21 eo

8, P1i 
+ P;1 / 2 = 21eo

a.W01  A/ = " (eo p1  +  P10 + c.c.)1wo + Wol 1* o 1* 1 10
8,1+W1'=" (e* Plo + eo Pi1 + eo P)11 + eo q, el P l

2nd order of 6: 3(62)

a e+ 8e + +4 +l

e2- 8ze2 = g+ P12

SP12 + P122 = W0 2e0 + w01el + Wooe 2 4.W21  1

a p + Pi2/"2 = Wooe 2 
+ WOle 1 + W2el + W2 eo

8 v + P+2/ 2 = W2 2 eo + W21e1

iv



ap 5 2 + p52/Ar2  W 42e 0
ap+ p I

S+ +* +* " PI + cc.

1,e- - + + e-* + )  (e +* p + ( * + +* 
8 T ~ = ~ ( e 1 ~ 1 r e 2  10) + ( 0  P3 2 ) + 1  P1 1  + o P12 )
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Steady State

V. IS g+ +
I 0e = P0
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P 1  -2 (Woleo + Wooel)

P l = E l(W ooeo +  W 2*1eo)
+ +

31= 2W2 1 eo

W01 = - T1/2(eo* P1 1 + e1 P1 0 + c.C.)

"+ +* + 0 "*

W1 = - T/2(el P1O + o + 3 + e P1 1 )

t ,+ * + + + *W -1 ="l/2 (e P+O + eo x2W2eo + eo + eo Pll
1 1 /2ej1 0 e0 !2W21e0 e0 e0 P1 1)

++ 2 + ".
W T -/2(e- * PI0 + r2 W211eo1 + eo Pll )

"1 * + + "* " I + -21 1 0 + 1 10 
el PO + eo Pll el 0 + eo Pll

1 2 o1 le+2l+- e 1 1e

21 0

substituting for P 1 one obtains e5

1--~ (el PIO+ r2 W2 Ieo 12 + eo* r2 (Wooel + W21 eo ))

• r1r2  + 2 (o)

2 +* +* .
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• 1. Methodology: Computational methodologies were developed to treat
rigorously (5 transverse boundary in an inverted (amplifying) media;
(1) to treat quantum fluctuations in an initial boundary condition in the
light-matter interactions problem; (iii) construct a two-laser three-level P
code to study light control by light effect; (iv) construction of a data
base that (a) would manage the production of different types of laser
calculations: cylindrical, cylindrical with atomic frequency broadening,
cartesian geometry; (all of the above with quantum mechanical initia-
tion), (b) allow parametric comparison within the same type of calcula
tions, by establishing a unifying protocol of software storage, of the
various refinements of the model could be contrasted among themselves
and with experiment; (v) construct an algorithm for counterbeam transi-
ent studies for optical bistability and optical oscillator studies.

A. Transverse propagation effects in an inverted medium were
studied. Special care had to be taken to treat the boundary reflection
conditions. If ill-posed, they can obscure the emergence of any new
physical results. The two transverse effects considered are (1) the
'spatial averaging' associated with the inial atomic inversion density
being radially dependent (since the pump which inverts the sample has
typically a Gaussian-lke profile); and (2) the "diffraction coupling"
(which permits the various parts of the cylindrical cross-section to com-
municate, interact and emit at the same time). The first effect is impor-
tant for large Fresnel numbers, whereas the second predominant for
small Fresnel numbers.

The study of ouput energy stabilization between diffraction
spreading and nonlinear self-action due to the non-uniform gain of the
active media was also carried out to reach an understanding of the
various physical processes that take place in coherent resonant
amplifiers.

B. Physical Results: i. The Study of three-level systems
:" exhibited that injected coherent-pump initial characteristic (such as

on-axis area, temporal and radial width and shape) injected at one
frequency can have significant deterministic effects on the evolution of
the superfluorescence at another frequency and its pulse delay time,
peak intensity, temporal width and shape. The importance of Resonant
Coherent Raman processes was clearly demonstrated in an example
where the evolving superfluorescence pulse temporal width -r is much
less than the reshaped coherent pump width -r even though the two
pulses temporarily overlap (i.e., the superfludrescence process gets
started late and terminates early with respect to the pump time
duration). The results of the three-level calculations are in
quantitative agreement with observation in CO2 pumped CH3 F by A.T.
Rosenberg and T.A. DeTemple (Phys. Rev., A24, 868 (1981)).

ii. Additional calculations incorporating fluctuations in both
pump and superfluorescence transitions were carried out to study the
output pulse delay statistics. The fluctuations operators were intro-
duced as langevin operators in the matter (density matrix) operators.
In the average c-number semi-classical regime the fluctuations appear as
additional driving forces in the Bloch equations acting for all p, z and
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ill. Two color superfluorescence was subsequently studied
in collaboration with Professor F. Haake. The propagation theory of M. I
Feld was shown to prevail over the Mean-Field theory of Bonifacio et al.
The main result of the calculation displayed for the plane wave regime
is a pulse synchronisation which ascertains Eberly et al's theory of p
'simultons.' However for quantum fluctu,.ons during the initiation and
strong phase evolution in the beam (i.e., large Fresnel number) the
synchronisation decreases and the standard deviation of the delay
difference between the two peaks normalized to the average delay
becomes larger.

iv. Elucidating the physical processes [namely, (a) the
dynamic diffraction, (b) the non-uniform absorption (i.e., refraction)
and (c) beam stripping] that lead to the on-axis manification predicted
by Boshier and Sandle calculation [see Optic Commu., 42, 371 (1982)].
This effort was carried out in collaboration with Professor I.
Teichmann.

V. The development of an implicit algorithm which self-
adaptive non-uniform computational grids. This effort was carried out
in collaboration with Dr. B.R. Suydam. These new codes represent a
combination of Snydam code in Los Alamos and Mattar stretching and
rezoning techniques to treat self-lensing effects.
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