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4 .** Abstract

>This report develops a variational technique for the analysis of

the vibration characteristics of an open cylindrical cantilevered shell.

The technique is developed by modifying Reissner's principle, which nor-

mally applies to static problems, through the use of Hamilton's princi-

ple so that it applies to dynamic problems. The variational te- ique

is first derived in general for an elastic system, and then spe( .. ally

tailored to an open cylindrical cantilevered shell. The techni

implemented by first finding a general solution which satisfies the

equations of motion for a cylindrical shell. A method is then formula-

ted to use this general solution to construct a set of trial solution

functions. With the variational method, the coefficients to this trial

0 solution function are then calculated so that the function not only

satisfies the equations of motion, but also the boundary conditions

around the four edges of the shell. A computer method was developed to

perform the necessary calculations to implement the variational pro-

cedure, but preliminary results have shown that numerical problems must

be eliminated before accurate results can be expected.

Experimental data for an open cylindrical cantilevered shell was

also collected on a modal analyzer. The results are presented and

discussed.

.i
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I. Introduction

Background

The vibration characteristics of a cantilevered open shallow cylin-

drical shell of rectangular planform are quite different than those of

a similarly dimensioned flat cantilevered plate. The determination of

these differences is of significant technical importance in areas such

as in the analysis of turbomachinery blades where accurate natural fre-

quencies and mode shapes are desirable. Unfortunately, tabulated vibra-

tion data is not as readily available for cantilevered shells as it is

for plates and beams. In fact, in Vibration of Shells by Leissa (Ref 1),

one of the most comprehensive collections of data in this area, there

is no numerical data given for a cantilevered shel.l as described above.

This lack of data is a result of the equations of motion becoming more

complex in going from a plate to a shell. This increase in complexity

allows exact solutions to but a few special cases of boundary conditions.

For open cylindrical shells some of these special cases include those

shells which have shear diaphragms supporting at least two opposite

edges. Basically, the shear diaphragm is the analog to "simply suppor-

ted" in linear beam and plate theory. A shear diaphragm can resist all

but the translation normal to the edge and the bending moment along the

edge. Therefore, the shear diaphragm does not represent the necessary

boundary conditions needed to model a cantilevered shell. As a result,

even though general solutions to the equations of motion do exist, most

practical boundary conditions require the use of approximate techniques

such as the Galerkin or the Rayleigh-Ritz methods. Unfortunately, these
, ."...
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methods do require trial functions which must approximately satisfy at

"" least the geometric boundary conditions. This requirement, once again

- restricts the class of solvable problems to certain types of boundary

V conditions. To overcome this restriction, numerical methods such as

finite elements and finite differences are commonly used. In an effort

to develop a continuum approach, this study will investigate a varia-

tional method derived from extending Reissner's principle via Hamilton's

principle. The method generates a solution satisfying the boundary con-

ditions by a superposition of a set of functions, each of which satis-

fies the governing equations of motion, but not necessarily the boundary

conditions. This method has been successfully used to determine the

natural frequencies of a partially clamped circular plate (Ref 2).

Objective and Approach

The objective of this study is to determine if it is possible and

practical to apply a variational procedure to calculate the free vibra-

tion characteristics of shells with mixed boundary conditions. In par-

ticular, the procedure will be used on a cantilevered open cylindrical

shell.

The method will be developed using thin elastic shell theory

specialized to the case of cylindrical shells, and then applied to an

open cantilevered cylindrical shell. A procedure will then be devised

to calculate the coefficients necessary to superimpose trial functions

to construct an approximate solution. A computer program will be deve-

loped that implements the variational procedure. Experimental data col-

lected on a modal analyzer will also be presented and discussed.

2
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*5 II. Extension of Reissner's Principle

Reissner' s Principle

Reissner's principle belongs to a class of variational techniques

known as stationary principles. Unlike the principles of minimum total

potential energy and minimum total complimentary energy, which ensure

the extremum found is a minimum, Reissner's principle ensures only that

a stationary value is found. The exact nature of the extremum is not

known. Reissner's principle is a generalization of the principle of

stationary potential energy through the use of Lagrange multipliers.

The principle of stationary potential energy is derived from the

principle of virtual work by assuming that the applied loads are con-

servative and do not vary in magnitude or direction during virtual dis-

placements (Ref 8:67). This principle can be stated as

1= 0 (1)

where

I -f(w(ui) Fiui dV - ds (2)

v sof

and

W(ui) - Strain energy density of system in terms of dis-

placements and their derivatives

ui - Displacements

Fi  Body forces per unit volume

Ti* - Prescribed surface tractions

3



V - Total volume of system

Sa - Portion of boundary where tractions are

prescribed

Reissner generalized this functional to allow simultaneous artibrary

variations in displacement, stress, and strain by adding constraints,

each multiplied by Lagrange multipliers to give

i ::ljI e ij-31(ui, j+u, i)d dV-f Y i (u i-u i*) ds (3)

.4'

Vf s

V u
:--,

The first constraints, (with Lagrange multiplier, Xij are seen to

' ensure satisfaction of the strain displacement equations

c .i - V(u i~ + uj'i) in V (4)

(where commas denote partial differentiation), and the second con-

straint, (with multiplier, Yi ) ensures

ui M ui* on S (5)

where Su is the portion of the boundary where displacements are pre-

scribed, and ui * are the prescribed displacements on Su

In taking the first variation of Eq (3), not only are the dis-

placements allowed to vary, but so too are the strains and Lagrange

multipliers. It can easily be shown (Ref 9:5) that the vanishing of

, p4
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this variation requires

j x j 6C dii dV - J( ii 1i + Fi )6u i dV

V V

-f[cii - (uii , Uji)] 6xij dV - J'(T i* n ix ij)6u ids

v S a

- f(u - ui*)6Yids - f(Yi - nxij )6uids - 0 (6)

s s
u

where the n are the direction cosines of the surface, and S = Sa + Su .

If the Xij are taken to be components of stress, and the Yi components

of traction, the first three volume integrals and the last surface in-

tegral represent the stress strain laws, the equations of equilibrium,

the strain displacement equations and Cauchy's law, respectively.

Thus, any displacement field which satisfies these equations ensures

that all but the last two surface integrals vanish. The equation left

to be satisfied has then been reduced to

f(71noaij - Ti*)6u ds - ui - ui*)STids - 0 (7)

These remaining stress and displacement boundary integrals become very
1*

important tools in determining functions which are solutions to a given

problem.

5
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Dynamic Form of Reissner's Principle

Reissner's principle, as discussed above, can be applied only to

static systems, but can easily be extended to include dynamics with the

use of Hamilton's principle. To this end, Eq (3) can be turned into a

Lagrangian function, J, by subtracting the system kinetic energy, K,

represented by

- K PJ QuiidV (8)

V

where p is the mass density and the dots represent derivatives with

respect to time. As per Hamilton's principle, (Ref 10), the resulting

V- Lagrangian is integrated over time from t1 to t2 to give

J t 1 J W (Cij)-Fiui- PuiAi] dV - i*uids

t v a

'-" iJ [ hij (ui,j+uj,i)] dV - i(ui-ui*)ds dt =0 (9)

v s
u

This time dependent version of Reissner's principle will become the

basis for further development in this study, and upon setting the first

variation to zero, will be shown to produce the equations of motion and

'- boundary conditions of the system being studied. The boundary condi-

tions will take on the same form as those given in Eq (7).

6
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III. Specialization of the Variational Principle

to Cylindrical Shells

S-" The application of the previously described variational procedure

to a cylindrical shell requires a slight modification of Eq (9) to

ensure the necessary form of each of its terms. Before doing this

however, Eq (9) can be simplified somewhat by applying the strain dis-

placement equations directly to the strain energy expression by expres-

*sing W only in terms of displacements. In doing so, the corresponding
S.

Lagrange multiplier constraint term on strain and displacements can be

eliminated from the equation. If this is not done, an additional

Lagrange multiplier is needed when Eq (9) is applied to a shell. This

v is because for a shell, W not only becomes a function of mid-plane
-,4

strains, but also of curvature. Since curvature must also be allowed

- -virtual changes, this third set of Lagrange multipliers is needed to

ensure satisfaction of the shell curvature displacement relations.

Whether Eq (9) is employed with W expressed in terms of strains and

curvatures in conjunction with their respective constraint equations, or

whether W is put in terms of only displacements without the constraints

is a matter of personal preference. In the preparation of this study,

both methods were employed with identical results. The latter will be

described herein.

In this light, for a shell with no body forces Eq (9) can be

expressed as

1.1*
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°. t2  ..

t 2

Jf Jf(W(ui)--g pf dV n u )ds

x f (x(BB*)+Y (u da dt (10)

s u

where (i - 1,2,3 and n - xe)

Mn* - Prescribed moments on Sa, positive about the
fn

positive s axis

.i* " Prescribed stress resultants on S defined by:

- Nni + ('Mn /as) when i - 3, (the z

direction) and by Qni = Nni when i 0 3 (the x

and e direction)

- Rotations about the negative s axis

8* - Prescribed rotations on S

Xn' Yi " Lagrange multipliers

(The subscript i follows the rules of the summation convention, but the

subscript n does not.) After taking the first variation of Eq (10), the

Lagrange multipliers will form complimentary virtual work terms similar

to those in Eq (6). It follows, the Yi are tractions and the Xn is the

negative of the moment about the s axis.

The application of Eq (10) to cylindrical shells now requires the

representation of the elastic strain energy density of the shell as a

---- 8



function of the displacements of u, v, w, and their derivatives.

Towards this end, a shell coordinate system is defined as shown in

Fig. 1. For this system the thin elastic shell theory strain displace-

ment equations for mid-surface strains reduce to (Ref 3)

ex- U,X 2 l

Ce 1 -(V'e4V) (l
01 a

'x8 a-'e 1x

while the expressions for curvature become

KX - -wX
x x

Ke  (-)2(-w, +v,,) (12)

x K a -(-wxe+ v,x)

The expression for strain energy density per unit area for an isotropic

cylindrical shell can be written as (Ref 4)

12

W" )- (£x+e 8 )2(lv(xc 8 -y 8 2f4)]

W iDKj r(K+K1 - 2(l-v)(KK- )

where

D = (Eh)/(l-v2) (13b)

D2 - (Eh3)/12(1-v 2) (13c)

9
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Susittn -.... (1),an (2)ino 13) roucs..i.trm

ou.vaw.Substituting Eqss (11)tan andre(12) into Eq (10a)rdue i em

and setting the first variation of the functional to zero produces

t
2

+ .L-.(V, 4w)+Vu,Jx w + (1-,J)( 16+v,x 6dv,a ax a 'xX

+ [-(1-V) (iii -VX] U d

+ ED , +vI2( -v) 6w,
D2f '[~xv-i wee' e

A

1 ~I4 [(w9 0 v1 +evdw 8

1 12

2(-=) (1-V) (W. ;,.]sw e

a , , v a2V ~ x d , 0

142
+(l-) -W0 , +afv x6v, d

;+ ;d f(1)( )dAQ*6,d X6 Y6
-I.nn.- n.

P f.

4...



I(88*)6Xds u u)6'.,u t 0 (14)

S S
u U

At this point, it is also convenient to define the force and moment

resultants for thin shells (Ref 3) as

N -D " Vl(¢x 0) M D2(K +vKe)

Nex " Nx8  = DI/2(l-v)y 8  Mex - Mxe - D2 (I-v)Kxe

(15)

Nee - 01(e.+Ivx) Mee a D2(Ke+vKx)

I l(M.i i-ie) , a a eee xOx

These are shown pictorially in Fig. 2.

If Eqs (11) and (12) are substituted into Eqs (15), and those

results placed into Eqs (14), the functional can be written as

t2

] ~ N auN,~6~ + 8 6v, + .4N8 6w

ti

1
U + Nxe6v,x + xelUfe )dA

*~~ fc-M adv. 21 2M 8 Sv 8  6~w, )dA
-x a xe xe

A

+ f((-l) 2 ee6v,e +~M da-m v,xd fP fui ui dA

A A

1

• . . .
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bA

- Mnn + niuiS - ixAnS6 + Yi6ui)ds

s u

I(-*6 nd (ui-Ui )6yids dt (16)

Su su

To integrate the first area integral in Eq (16), call it If, the

following vectors are defined:

1 N xu + NxeSU; 6  (17a)

*2 - Nx06V x + Noe6v ;e (17b)

With these

1 -fV-.IdA + dA +f4 6wdA

A A A
a..

+1((N )6udA - (N 1- 6d (18)

xxx a xe,e f )evd (18)
A A

Application of the divergence theorem gives

Il f( 'Nee6w - (N, x4 Ne 0 )u - (Nx+1N e)6v dA

A

+ f( (n xNxx Nx)6u + (nxNx 9 Nee)Sv )ds (19)

s

w1



where n are defined as the direction cosines between the normal and

the y direction. To integrate the second integral of Eq (16), 12, four

scalars are defined as

SVY M + MO 0

VYe M Me e + Mee ee7B

(20)

-x 6w,

- (l/a)6w,

With Eqs (20), 12 can be written (summing on y, where y = x or 0)

1 2 - JV4 V)dA (21)

A

43 Then, with the use of Green's identity,

I= f, 2T dA _ I0 Y/3T)ds (22)
2 JY Y JY

A s

Equation (22) can be put in a more convenient form by defining

VX=M (eB) (23)

Now, Eq (22) becomes

2  I V(w)-Vx dA - Ty( /Dn)ds (24)

A s

15
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If the divergence theorem is applied to Eq (24), the result is

I2 (M ,)6w dA + ] (M )6w Ids

2 a

A s

-f w,x(32x/an)ds- W, e ( /an)ds (25)

S S

or

12= -*f(,M )6w dA +J 0  (M 8 ,=)6w ds

A s

-JSw,x(n'VlYx)ds -J w, e(n-Vye)ds (26)

s S

where n is the unit normal of the surface. Finally, after more inte-

gration by parts, some manipulation, and setting 6ui(tI) = 6ui(t 2) = 0,

Eq (16) can be written as

t 2

(I r~2 1 2
a Be xx o a xe,x6 a ee,ee

ti

(N-1N +1 2 ee-Pv)6v
-(xex aNeele 4 aM ,+()"6

- (N +=N -pu)Su dA
xx,x a xe,eu J

-..v..

16
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d.. . ..... ..... . ....

-. ,M 6 + " e+M ]6w, ds
s xxx xe J a I x 00 0

s s

+ f N+ri8 N8 6u +(n xN +e e )6dvlds

s

+f lM x* n*1M + (lxM 6 +nl0M )6w ds

* S
s

'.3~ ~ 4 L( xe ~!eee) 6v ds ( O~+Qni*6ui)d

U U

s s
-u fciu*)6Y ds Jdt =0 (27)

U

The three terms in the area integral of Eq (27) can be recognized

as the three time-dependent equations of equilibrium for a cylindrical

shell (Ref 3:200). The line integrals, which evolved from integration

by parts, represent the boundary conditions which need to be satisfied

on the surface of the shell, and will become more readily recognizable

when applied to a specific shell shape. Finding a set of displacement

17
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.4 functions which satisfies this equation ensures the first variation of

~ the function vanishes, and hence that an extremum has been found.
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IV. "Exact" Solutions for a Cylindrical Shell

The Dynamic Donnell Equations

' Finding a general solution which satiLsfies the equations of motion

given in Eq (27) can be facilitated by following a procedure used by

-- Kraus (Ref 3:302-304). The first step is to apply the Donnell assump-

tions, which Donnell proposed in 1933 to simplify the cylindrical shell

equations (Ref 6). In his first assumption, Donnell argued that the

transverse shearing force makes a negligible contribution to the equi-

librium of forces in the circumferential direction (Ref 1:200). In the

second group of terms in the area integral of Eq (27), the terms which

. - make up this force are

N --( +4  =0ez a x6,x aee'e

and can thus be eliminated. Substitution of Eqs (11), (12) and (15)

into the equations of motion from Eq (27) (given in the first area

integral after this first Donnell assumption has been made), allows the

equations to be represented in terms of u, v, and w. Through a series

of operations and substitutions, the following three new equations can

be derived

V (u) + (!)w, (-)3W,
a xxx a 'xee

• --2(1+v) a2 L1-V2  - 2 (a)W,1 (28a)

E~ -E-- .-.2( a

... 1

: ' ; . .'%'. = . .' > .? - ... ,-. . ... . . , .- S:.,.. A..*:*.. - ..-., &h,.1L -:. - -. .c: ..- &.:_-x -.. .- .- ?,



I 1 it.

.V(v) + (~-)2(2+v)w,xx + ()weee.. a. xxe:a::e

2(1+v) F[1- 2 (v - (12] (28b)
E at2 LE

(h2/12)V8(w) + 1a 2(-,)w.,

-%i "- 2(1+v) 12 [(1-v2  a2  - ___

E at2 L V tJ 2 /

(i-V2 w + (1 2w + (h2/12)V4(W)

+ j(1-v)v4(W) + (22W + 1 4 Wl (280)
a xc aell

These new equations, which are commonly known as the Donnell equations,

are of higher order than the original system of equations, (one eighth

order plus two fourth order as compared to one fourth order plus two

second order). The advantage to this increase in order is that the dis-

placements have become decoupled. However, any solution that is found

to satisfy these new equations should also be checked back in the ori-

ginal system to guard against the introduction of extraneous roots.

Solution Method for Closed Cylindrical Shells

Kraus (Ref 3) outlines a method for determining the natural fre-

quencies for a closed cylindrical shell by first assuming a solution

function given by (symetric modes)
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u Alexp(Xix/1)cos(nB)cos(wt)

V B i exp(Xi x/l)sin(ne)cos(wt) (29)

K
w E Ciexp(Xix/l)cos(ne)cos(wt)

i-i

where Ai, Bi, and Ci are arbitrary constants, and the Xi are to be

determined so that Eqs (29) satisfy the governing equations. Due to the

order of the system, the number of terms in the summation, K, can be

shown to be eight (Ref 7). If these assumed solutions are substituted
i

'S into the dynamic Donnell equations, Eqs (28), the result is

Ai [2t2 (3-v)An2 + nY 2]

C i  1-V, 1-V n '- 21" [- n3 + n2(1+VZ)] (30)

5,_

1 1
P'[-f. ' n(.-(+v)4 z0 

(31)
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'. -. r

2 A3 2 12+(3-v)n 2y + (2/&)n4 Y2]

+ A[(3-v)n2y - 2n2 (l-v2Z) + (1-v)n~y2

+ (1/)(3-v)n6y I - (1/)(1-v)n8y4 (32)

where

. Pw2 a2 (l-V2 )/E (33)

= 12(a/h)2  (34)

Z =- (Xia)2/(nl)2

and

y - (1-Z) (35)

At this point, the solution to a closed cylindrical shell becomes fairly

straight-forward. There are four boundary conditions to be satisfied at

each end. They are (Ref 1:136)

Nxx = 0 or u M 0 (36)

M -o or - 0 (37)
1Nx - -o or v a 0 (38)

%e + a xe

Nz +(Mxe 0 or w - 0 (39)

If Eqs (29) are substituted into the equations for the eight boundary

conditions, the result is eight homogeneous equations in the eight un-

knowns Ci, (Ai and Bi can be eliminated with Eqs (30) and (31)). The
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solution to these eight equations is found by setting the determinant

of their coefficients to zero. The determinant is dependent upon the

Xi, which are functions of w and n through the eighth order Eq (32).

Thus, for a given n, and w is chosen and Eq (32) solved for the eight

Xi . The determinant is then calculated with these values. The pro-

cedure is repeated in an iterative manner until an w is found where the

determinant vanishes.

As a point of interest, examination of Eq (32) shows that the

eighth order equation in Xi has only even powers. This leads to a dis-

tinct relation between the eight roots; four roots are the negatives of

the remaining four.

Unfortunately, the above method cannot be used for open cylindrical

shells because four more boundary conditions are introduced on each of

the edges of constant 0. They are (Ref 1:157)

Nxe M 0 or u = 0 (40)

N0  - 0 or v - 0 (41)

N z+Me x  0 or w - 0 (42)

MH8  - 0 or w, 8  0 (43)

There are now a total of sixteen boundary conditions to be satisfied

and only eight undetermined coefficients. Thus, Eqs (29) are not gene-

ral enough to provide a solution for any one n. For this reason, the

variational procedure described earlier will be used in an attempt to

find an approximate solution by superposition of functions with several

values of n.

23
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V. Variational -Method f or Op en Cy lindrical Shells

As discussed in the previous section, the presence of eight addi-

tional boundary conditions for the open cylindrical shell prohibits the

use of the procedure outlined by Kraus, (Ref 3), to find a solution for

the free vibration modes. To overcome this obstacle, the variational

procedure developed earlier and expressed by Eq (27) will be used. The

approach will be to find a trial solution function which satisfies Eq

(27), and hence satisfies or approximates the governing shell equations

and all sixteen boundary conditions.

Determination of Surface Integrals

The boundary integrals of Eq (27) can now be expressed in terms of

a specific shell shape. Thus far, Eq (27) applies to all cylindrical

shells with the only assumption being the thickness, h, is small as com-

pared to the radius, r. Specializing Eq (27) to an open cantilevered

shell, such as the one shown in Fig. 3, allows the surface integrals to

be written explicitly. Before doing so however, the prescribed force

and moment resultants on S., and the prescribed displacements on S areu
all set to zero. This eliminates the terms with the asterisk in the

last four integrals of Eq (27). The remaining integrals from Eq (27),

if written such that the surface integrations will be done counter-

clockwise (as viewed from the +z direction) around the four edges with

the sign convention of Fig. 2, become

24
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-(N I1N ..2)6uldAxx,x ae~~p

+ f[(N d u) xl- (N xx u) x.0 ]ado + fJF N6v) Xin1 -(N xe 6v) . 0Jade

4+ J'[(N e 6u) .=c- (N x 6u) 6....jdx + f(Ne66v) e=m - (N ee6 v) a.-]dx
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-- 4 r i uS. J z La xe O xsiO ae

'' '6Mx 0 ade+ SNx + w6 (N +44
I-.% X. - xz a xe , e

w. f - uE t

+- (4( +Mad Mxo6w)x dt fi0 (44)- (a Nx e x-z a - a

OM If

! Several terms in this equation can now be eliminated by inducing

~the second Donnell assumption (Ref 3). It can be reasoned the changes

-°+c

+ ' in the stretching displacement in the circumferential direction, v,
i Looking at Eqs (12), this assumption is tantamount to saying derivatives

. of v are small compared to derivatives of w. This allows the v/a terms
-' to be eliminated in the eighth boundary integral in Eq (44). With both

~Donnell assumptions, the area integral in Eq (44) represents a new set

'.

"'"of equations which again can be transformed into the Donnell equations,

+,..'...Eqs (28), and the boundary terms become the more recognizable shell

i boundary conditions for an open cylindrical shell given in Eqs (36)

',.. :through (43).
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Determining a Trial Solution Function

.... In selecting a trial solution function which is to be used to

satisfy Eq (44) and hence be a solution to the open shell, it is advan-

tageous to start with one which satisfies as much of Eq (44) term by

term as possible. In doing so, those parts of Eq (44) which are satis-

fied in this manner can be eliminated and the complexity of the calcu-

lations reduced. Therefore, if Eqs (29) are used to build a trial

function, then the area integral in Eq (44) may be dropped. This is

because, as long as Eqs (30), (31) and (32) are enforced, Eqs (29) do in

fact satisfy the differential equations of motion.

The flexibility of the variational procedure allows a trial solu-

tion to be used which does not have to meet the required boundary condi-

tions term by term. This feature will be employed by using Eqs (29).

For example, if Eqs (29) are used to satisfy the necessary boundary con-

dition, N0B - 0, on an edge of constant 0, then the equation that must

be satisfied is

(exp(Xix/l)(Bin/a+Ci/a+vAiL1/l)] cos(±-n) - Ne = 0 (45)

For N to be zero for any x along a free edge, the term outside the
B0

brackets must vanish. This requires that n=(2m+l)Tr/2-. If this result

.' is placed into Eqs (29), the displacements u and w are found to vanish

along the free edges of constant 0. Since this is totally undesirable

for the cantilevered shell, the variational procedure must ensure satis-

faction of the boundary conditions on these edges through Eq (44).

At this point, Eqs (30), (31), and (32) can be enforced on Eqs (29),

and the result written

28
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U . iCiexp(Xix/l)cos(nO)cos(wt)
°j

8
v = iCiexp(Xix/l)sin(ne)cos(wt) (46)

i-i

8
E Ciexp(Xix/1)cos(ne)cos(wt)
i=1

where Ti and i are determined from Eq (30) and (31) utilizing the Xi

determined from Eq (32).

Thus far, Eqs (46) can be considered each one "term" consisting of

eight parts through the constants summed on i from one to eight. If

seven boundary conditions are chosen to be satisfied by Eqs (46), seven

of the C's can be written in terms of the eighth. Performing this

operation also tailors the trial solution functions to be formed as a

series of N terms. Each term is of the form of Eqs (46), so it satis-

fies the seven chosen boundary conditions exactly, term by term. Reace,

those corresponding integrals in Eq (44) may be eliminated. The seven

boundary conditions that are to be used must be chosen from Eqs (36)

through (39). Equations (40) through (43) cannot be used, because as

discussed above, Eqs (46) cannot be used to satisfy boundary conditions

both along the edges of constant e and of constant x. A choice must now

be made as to which of these seven boundary conditions will be satisfied

exactly, and which one is to be left to be approximated through the

variational technique. For some problems there are boundary conditions

that can be considered to be more crucial than others. For a

29
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cantilevered shell, not requiring that the w displacement at the fixed

end be zero would lead to erroneous results in the natural frequencies

.and mode shapes. However, a v displacement which is left arbitrary at

the fixed end represents a shell supported in a channel which restricts

motion in all but the surface tangential direction (the v direction).

Such a shell could be expected to have natural frequencies and mode
Nj.

shapes very similar to those of a shell with the end totally clamped.

Therefore, the boundary condition v-0 at x-0 will be left to be approxi-

mately satisfied by the variational principle, rather than exactly.

Equations (46) are now substituted into the necessary seven

boundary conditions in Eqs (36) through (39) to set the three remaining

displacements to zero at x0 and the four force and moment resultants to

zero at x=1. This produces seven equations in the eight constants Ci -

-After some manipulation the seven equations can be written

"?If u(o,6) - 0, then i iC i = 0 (47a)-J-

8
If w(Oe) - 0, then Ci = 0 (47b)

i-I

8

If w, (o,e) - 0, then X I Ci  0 (47)

8
If Mw oee) ,0, then exp(:)C [-(Xi/1)2 + v(n/a)2] 0 (47d)

"2-" i -I

*30
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If N x(1,0) 0 0, then Lexp(Xi)Ci iXi/l + - (n+l)] = 0 (47e)

8 r1 2
If Q xz(,e) -0, then Lexp(Xi)CiXi Fill)2-(2-v)(nla 0 (47f)

xz i-I

if '4 +M~ 0 1 the 8 1

-°-

a

+ (-)2D 2 (1-v)Xn/l] 0 (47g)

Using these seven equations and solving for C2 through C8 in terms of

C1 gives

Ci M riC1  (47h)

• Since the X are complex, Tit 01 and r, are also complex. For this

, reason, Eq (47h) cannot be solved by using a standard linear equation

solution technique such a Gaussian reduction. Finding the inverse of

the solution matrix is one possible way of finding r.

With this expression Eqs (46) can be written

u = C1 [rTi exp(X x/l)cos(n6)cos(Wt)]

v - C1 [rioiexp(Xix/l)sin(ne)cos(wt)] 
(48)

w = C1 [rexp(Xix/l)cos(n6)cos(wt)]

The summation on i from this point on will be assumed to be from one to
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2 %- . *. 4' -L7-4 4



,j. 7-

eight, and the summation sign dropped. Therefore, these three dis-

placement functions will be considered to be one "term" consisting of

eight parts. The only unknown constant in Eqs (48) is CI. Eqs (21)

are solutions to the three shell differential equations, and all but

one, (v-O at x-0), of the boundary conditions at the edges of constant

x. The constants *i, T' and Xi are determined for a given w and n

from Eqs (30), (31), and (32). The components of ri are determined

from the seven boundary conditions as described above.

The assumed solution functions needed to satisfy Eq (44) can now

be defined by creating a series using Eqs (48). Each function consists

of N terms given by

N
u - En riYi exp(X x/l)cos(ne)cos(wt)

n-O

N
V i En ri iexp(Xix/l)cos(ne)cos(wt) (49)

n=0

N
w E riexp(Xix/l)cos(n)cos(t )~n i in-O

Each "term" in these series consists of eight separate parts summed on

i. The same constants, En, appear in each of the three functions, as

did C1, because the differences between the ratios of u, v, and w are

accounted for in the T and *i Thus, Eqs (49) provide a solution

V function where each term satisfies exactly the area integral and seven

of the boundary integrals of Eq (44). Also, the parameter n, which

"A .-..* could have had any value up to this point, has been restricted to
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integer values. This choice is acceptable as long as n is chosen so

-* as to include an acceptable class of functions for utilization in the

variational procedure. In the assumed solution form, Eq (29), n repre-

sents the number of longitudinal nodal lines in the mode shape for a

given natural frequency. Thus, n should take on values of 0 through N

to provide a "complete" set of functions.

Obtaining a Solution

Equation (44) used in conjunction with Eqs (49) can now be used to

solve for the desired vibrational modes for the open cantilevered

cylindrical shell. As discussed above, the terms which are satisfied

identically by Eqs (49) can be eliminated from Eq (44). This leaves

t

2t1

f +0 f(Nedvei - Ne 6 v l )dx

0

1

*f -. (,xlil~ee)ewow-e(2ai
0

+ f -hee~w,ee... a mel~ee ~M 8 W 9 gdx

4.. 0

+ v6(N +1:M ) ade - (4MxO xOew) dt -o0 (50)

as the equation needed to be satisfied to ensure the functional is at a
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stationary value.

S,-The general form of each term in Eq (50) is a force multiplying a

virtual displacement, or a displacement multiplying a virtual force.

In this light, each term represents a form of virtual work. The func-

tions in Eqs (49) are complex, but the real and imaginary parts each

independently satisfy the differential equations. Only the real parts

should be used when they are substituted into Eq (50). In this manner

• .each term is a real force multiplying a real displacement and takes the

form

t 2

f (fRe (F) Re( )ds )dt

t1

resulting in a real work term. Here F is the generalized complex force

and u is the generalized complex displacement. If the integration with

respect to time is taken to be one period, it can easily be shown that

the same results can be achieved by

f Re(F6) ds

S

where u1 is the complex conjugate of u. This method will be used when

Eqs (49) are substituted into Eq (50). Also in performing the substitu-

tion the most general arbitrary variation of a displacement or force

resultant is taken to be a variation on the coefficients En For ex-

ample, substitution of v from Eq (49) into the 6v in the first term of

Eq (50) would result in

1%
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Re E D E sin cos(6)crosx(Xt j/14 x 8(1
fi~~m nj a

After su s i in in E qs( (49/ ) I n thi m an e a o bi i g te m , E

+e wfiEnD cs(n-)cs(m:) [riexp(Xix/).x/1n lv)

0

Ili r jex(X jX/1)] I E mdx

+64 f2nE D sin(n-)cos(m-E) [riexp(xix/1) (2-v)(A/)--2

[r jexp(X jx/1)] 6E mdx

1
+ .-1EDcsn)i-- epXX1(R2VX/

0

* mr iexpXi Xx/1)] 6E mdx

4-fE. Frj FD r (0 x 1 -jnLii 2ii a j

*142

a) ()D(1 )rmx/1] sin(n6)sin(me) ade
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E." -E n4D (l-v)sin (n -)cos (m -)W(Wi/l)(exp(ki+ )rir)6Em ) 0 (52)
nn

Since this expression must be valid for arbitrary values of SErM, it is

convenient to make the choice

8E - 1 for m-p p-Ol...,M (53)m

6Em M 0 for m#p p-O,1...,M

With this choice Eq (52) becomes a system of M+1 equations each with

N+1 terms multiplying the constants E . Setting N-M, Equation (52) canm

be represented by the complex matrix equation

Qmn E - 0 n,m - 0,1,2...,N (54)@n

Each term in the square matrix Qn is found by solving Eq (52) for the

appropriate values of m and n for each coefficient to E . It is very
n

important to remember each integral consists of a series of eight terms

summed on i multiplying a series of eight terms summed on J. Even

though this integration of the product of two series seems laborious,

the integrals of Eq (52) reduce to simple summations which are handled

very nicely on a digital computer. The solution to the set of equations

represented in Eq (54) can be found by setting the determinant of Q to

zero. The "eigenvalue" of the system is w and is implemented through

Eq (32). Repeatedly choosing values for w, performing the necessary

calculations to fill Q, and then computing its complex determinant pro-

vides a procedure which may be used to find zeroes of det(Q) iteratively,

*', *. *3
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and thus solve for approximate fundamental frequencies of the shell.

In general, when working with structures which have linear force-

displacement relationships, it can be shown through the Betti-Maxwell

reciprocal theorem that the system matrix is symmetric. It is expected
.e

-"i therefore, that this system derived through the variational procedure

should not be an exception (See Appendix A). For complex matrices, the

analog to symmetric is the Hermitian form. It is not readily apparent

from studying Eq (52) that Q is Hermitian. This topic will be discussed

more in the results section.
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'.' VI. Analysis of Results

*: The natural frequencies and mode shapes of a cantilevered open

cylindrical shell were determined experimentally with a Hewlett Packard

5423 Structural Dynamics Analyzer. The dynamics analyzer can accurately

determine the natural frequencies and mode shapes of structures such as

a cantilevered shell, and thus provide an excellent verification of

analytic results.

Experimental Procedures

The HP Structural Dynamics Analyzer is a two channel fast Fourier

series spectrum analyzer specifically designed for the purpose of cal-

culating mode shapes and natural frequencies of structures. The analy-

zer performs this function utilizing two input signals generated from

impact testing. The signals are sent to the analyzer in the form of (1)

a structure input signal from a force transducer providing the impact

time history and (2) a structural output, or response time history, from

an accelerometer measuring the structure response to the impact. A

sample plot for each of these signals is given in Fig. 4. This figure

is representative of the response at one point due to an impact at ano-

ther. The input signal time history is clearly depicted as a force im-

pulse, while the output shows the resultant vibration response. A

transformed ratio of this output signal to the input signal provides a

transfer function for the respective two points. Figure 5 represents

the transfer function of the measurements given in Fig. 4. The spikes,

or comonly called poles, in the plot at various frequencies are a re-

sult of the transfer function's denominator approaching zero, causing a

38
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large increase in the value of the function itself. Synonymous with.-4

the Laplace transform representation of the transfer function, these

poles occur at the natural frequencies of the system being analyzed.

Thus, by locating these poles the natural frequencies can be calculated.

This transfer function provides one element of the transfer function

matrix G. Each element, Gij for example, represents the ratio of the

output at point j due to the input at point i. If a structure is de-

fined by N points, a complete transfer function matrix is defined as an

N by N matrix. If enough impact data is taken to fill one row or one

column of this matrix, the dynamics analyzer can generate the mode

shapes and natural frequencies of the structure. (One row or column

provides a minimum amount of data, but more can be generated if a

greater degree of accuracy is desired.)

IThe experiment was performed utilizing the shallow cantilevered

shell depicted in Figures 6a and 6b. The shell as shown in Fig. 6b was

defined to the analyzer to consist of 56 points. These points were cho-

sen to provide a "fine" enough representation of the structure, while at

the same time keeping the number of points at which data must be taken

to a minimum. The shell dimensions were chosen because some limited

numerical results were found for this specific shape (Ref 5). These

numerical results were generated using the Ritz method and provide as-

surance that the experimental setup and methods are accurate.

The shell was rigidly clamped on a fixed support resulting in

points 8, 9, 24, 25, 40, 41 and 56 being fixed. After an impact point

was chosen, the output response was measured in the radial direction at

all 56 points, and in the tangential direction at all but the centerline
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and fixed points. The centerline points were omitted because erroneous

1* motion could be generated in the mode shapes if the accelerometer was

not placed exactly on the centerline. Having both of these measure-

ments allows the w and v displacements to be included in the mode shapes,

thus making them more accurate, but they do not affect the frequency

results. As a side note, the accuracy of the results was dependent upon

how well the impact point was chosen. If the impact point happened to

lie on a nodal line of one of the normal modes, then that mode was not

Sexcited sufficiently. Therefore, several trial runs must be performed,

or the characteristics of the mode shapes must be known well enough a

priori in order to find an acceptable excitation point. For this test,

point 6 or 54 was found to work very well.

Experimental Results

Table I compares the experimental results to those calculated using

the Ritz method (Ref 5). The results can be seen to compare favorably.

The last column of the table shows that the experimental data is between

five and ten percent lower than the analytic results. The experimental
h,.

data is expected to be lower due to the difficulty in achieving a true

clamped boundary condition, and the additional mass of the accelerome-

ter. The mode shapes for these natural frequencies (Ref 5) are presen-

ted in Fig. 7. From the figure and Table I it can be seen that the

first mode of vibration for the shell is a twisting mode, while the

second is a bending mode. This is unlike the vibration characteristics

of a cantilevered plate, which has a symmetric bending mode for its

first fundamental frequency, and a twisting mode for its second (Ref

*.. *12). Figures 8 and 9 show the shell's normalized mode shapes as

'.,. 44
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Figure 7. Cantilevered Shell Mode Shapes
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calculated by the modal analyzer. Figure 8 clearly shows the antisym-

metric twisting motion, while Fig. 9 shows an antisymmetric motion in

the circumferential direction. Figure 8 also reveals a reverse bending

of the tips of the shell at the two free corners. Since these two areas

undergo greater amplitude and hence experience greater accelerations

than the other regions of the shell, they are more susceptible to the

increased mass of the attached accelerometer. This increase in mass

would cause the corners to "lag" behind the normal motion of the shell

- as shown in the figure. Also, in Fig. 9 a noticeable difference exists

between the motion on the left edge of the shell versus the right edge.

The left edge happens to be the side where the impact point was chosen

(point 6), and therefore should record a slightly greater response to

the impact than the far side. This, along with the fact that the motion

in Fig. 9 has been magnified several times to make it visible, help to

explain this phenomenon, which was also present in the other modes. (See

Appendix B for the remaining mode shapes.)

All of the mode shapes calculated by the modal analyzer compared

identically to those calculated with the Ritz technique with the excep-

tion of the seventh mode. This mode shape, given in Figures 10 and 11,

does not agree with the one given in Fig. 7. An investigation into this

anomaly revealed that the seventh mode, as determined by the analyzer,

is actually a combination of the seventh and eighth modes. Table I
I

shows that the natural frequencies of these two modes are very close

together. In addition, Fig. 7 shows that the two mode shapes have very

similar nodal lines, but that mode seven is antisymmetric while eight is

symmetric. If the two mode shapes are superimposed, the displacements
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on one side would cancel each other while on the opposite side they

would be additive. This is exactly what is depicted in Fig. 10. Thus,

to separate these modes on the analyzer, each one must be individually

excited, while the other is suppressed. This could be done by very

carefully choosing the impact point, or more easily, by exciting the

structure with a shaker at a specific frequency rather than by an impact

(see Ref 13).

Computational Method Development

The variational procedure derived earlier and represented by Eq

(52), was used as a basis for the development of a computer program to

be used to calculate the vibration characteristics of a cantilevered

shell. The computer program was written to perform the necessary opera-

tions to fill the Q matrix and solve for its determinant. The roots of

OD the equation, and hence the shell's natural frequencies are found in an

iterative manner by finding values of w which cause the determinant to

vanish. The computer program consists of a straight-forward coding of

Eqs (30), (31), (32) and (47h) to solve for the components *i' i'V, Xi

and ri . These are then used in conjunction with Eq (52) to fill the Q

matrix. All of the required operations were easily performed by inter-

nal or system subroutines. A brief description and a listing of the

program is given in Appendix C. The program, written in Fortran V, can

fill and calculate the determinant of a ten term matrix in approximately

one second of computation time on a CDC 6600 digital computer (NOS oper-

ating system).

The computer program was developed up to the point of performing

all of the necessary calculations to solve for the natural frequencies.
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However, the initial program results indicate that further work must be

done to improve the accuracy of the program's calculations. Simple

tests show that numerical problems are present and are significantly af-

fecting the results. For instance, after solving Eq (32) for its eight

roots, one of them must be established as X1. While this choice is com-

pletely arbitrary at first, the same root must then be chosen each suc-

cessive iteration to ensure that the determinant of Q behaves as a con-

tinuous function. While the choice significantly affects the magnitudes

of the r, and hence the elements of Q itself, it should not change the

solutions to Eq (52). Unfortunately, this indeed occurs, and different

solutions can be found depending upon how ri is chosen. A way to elimi-

nate this problem must be found before accurate solutions to the problem

can be expected.

As mentioned earlier, the matrix Q in Eq (54) es expected to be

Hermitian, which would result in the determinant of Q being purely real.

Investigating the elements of Q for different values of W shows that Q

is not Hermitian, and that its determinant is complex. However, the

matrix diagonal is purely real (another requirement of a Hermitian

matrix), and some specific elements are very close to being the complex

conjugates of one other. Again, the numerical problems discussed above
must be eliminated before any further analysis can be performed in this

area.
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.9, VII. Conclusions and Recommendations

The variational procedure which has already been used to calculate

the vibrational characteristics of a membrane and plate with mixed

boundary conditions can be extended to a cylindrical shell. A computa-

tional method has been derived to perform all of the necessary opera-

tions needed to implement the procedure, but the nature of the calcula-

tions makes them sensitive to numerical errors.

The type of problem which may be solved with the variational tech-

nique can easily be extended from the cantilevered open cylindrical

shell that was presented in this study. Any form of mixed boundary con-

ditions can be implemented by changing the boundary integrals that were
.4

evaluated around the four edges. In this manner, virtually any combina-

tion of boundary conditions can be investigated. The technique can even

be modified to analyze shells with edge cracks. For this case, the

boundary integrals must be evaluated along two additional free edges.

In this light, the variational technique is a powerful method which

can be applied to problems which cannot be handled by techniques such as

the Ritz method and the Galerkin method. Since this flexibility would

be applicable to a wide range of practical problems, further work in

improving the accuracy of the numerical computations is justified.
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Appendix A

The Betti and Rayleigh Reciprocal Theorem states that if a body is

subjected to two systems of body and surface forces, then the work that

would be done by the first system Ti, F i in acting through the displace-

ments ui due to the second system of forces is equal to the work that

would be done by the second system Ti-, F in acting through the dis-

placements ui due to the first system of forces (Ref 11:391). For a

system with no body forces this can be expressed as

f Tuo ds -m JT i u i ds (A-1)
s s

if solutions are assumed to be of the form

Ti M Re(Tllexp(iwt))

uI = Re(unexp(iwt))

(A-2)

Ti - Re(Tmexp(iwt))

u - Re(umexp(iwt))

and are substituted into Eq (A-i), the result is

fRe(Tnexp(iwt)) Re(umexp(iwt)) ds
s

JRe (Tmexp (iwt)) Re (u nexp(iwt)) ds (A-3)

s
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This can be written as

f(Re(Tn)coswt - Im(Tn)sinwt] [Re(um)coswt + Im(um)sinwt] ds

S

fiRe(icost - Im(Tm)sinwt] [Re(un)coswt - Imr(un)sinwt] ds (A-4)

S

If Hamilton's principle is applied, and these two integrals are inte-

grated with respect to time over one period, the result is

.f f [Re(Tn)Re(um ) + Im(Tn)Im(u m)] ds

S

S- [f[Re(T n)Re(un) + Im(Tm )Im(un)] ds (A-5)

S

P After multiplying through by two, this can be written as

Re(Tnum)ds = Re(Tun)ds (A-6)

for this to be true, then

Re(Tnu) = Re I( nJ) (A-7)
or

u ~z~)  u TR~nm)  (A-8)

If the matrix element Q= is defined as Tu m then from Eq (A-8)

(A-9)
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Thus, the matrix Q is Hermitian. Since this matrix is of the same form

" as that derived in Section V, the Q matrix in Eq (54) should also be

Hermitian.
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"*. Appendix C

Description of Computer Program

The computer program in this appendix is for the analysis of the

vibration characteristics of an open cylindrical cantilevered shell.

The program consists of the executive program, Shell, followed by two

subroutines, Fill and Poly. The purpose of the program is to calculate

the elements of the system matrix, Q, for a given frequency, w, and then

calculate the matrix determinant. The vanishing of the determinant es-

tablishes that a natural frequency of the system has been found. The

program has not been written to iterate to a solution, but to only sweep

across a range of frequencies at a desired step size, while printing out

the determinant after each calculation. Since the program can be run

interactively, the operator can choose the input parameters to manually

iterate as close to a solution as desired. A description and listing of

the program and subroutines follow.

Program Shell

' Program Shell is the executive routine which reads in the required

input parameters, and then after calling the appropriate subroutines,

uses a system subroutine to calculate the determinant of Q. The program

does this a specified number of times over a range of frequencies.

Subroutine Poly

Subroutine Poly calculates the values of Xi' Ti', *i and r i and

stores them in array C. It performs these calculations for n - 0 to

NTERM-l. It also fills the array CJ with the complex conjugate of the

70
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values in array C. This subroutine utilizes two system routines. One

Z ".' is needed to solve an eighth order equation for its roots, and the

other to solve a system of complex equations for their unknown coeffi-

cients.

Subroutine Fill

. Subroutine Fill uses the C and CJ arrays to calculate the elements

of the Q matrix. The coding of the program is representative of Eqs

(52) and (54) in the text.
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