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This report develops a variational technique for the analysis of

the vibration characteristics of an open cylindrical cantilevered shell.

WS

The technique is developed by modifying Reissner's principle, which nor-

o
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K
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}j mally applies to static problems, through the use of Hamilton's princi-
32 ple so that it applies to dynamic problems. The variational te- .ique

is first derived in general for an elastic system, and then spec ..cally
tailored to an open cylindrical cantilevered shell. The techni
;J implemented by first finding a general solution which satisfies the

equations of motion for a cylindrical shell. A method is then formula-

ala

ted to use this general solution to construct a set of trial solution

PR SR

y s
o?

functions. With the variational method, the coefficients to this trial

T

G solution function are then calculated so that the function not only
satisfies the equations of motion, but also the boundary conditioms
around the four edges of the shell. A computer method was developed to

perform the necessary calculations to implement the variational pro-

ﬁ cedure, but preliminagy results have shown that numerical problems must
- be eliminated before accurate results can be expected.

.i Experimental data for an open cylindrical cantilevered shell was
é also collected on a modal analyzer. The results are presented and

»

discusged.
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I.

Introduction

Background

The vibration characteristics of a cantilevered open shallow cylin-
drical shell of rectangular planform are quite different than those of
a similarly dimensioned flat cantilevered plate. The determination of
these differences is of significant technical importance in areas such
as in the analysis of turbomachinery blades where accurate natural fre-
quencies and mode shapes are desirable. Unfortunately, tabulated vibra-
tion data is not as readily available for cantilevered shells as it is

for plates and beams. In fact, in Vibration of Shells by Leissa (Ref 1),

one of the most comprehensive collections of data in this area, there
is no numerical data given for a cantilevered she.l as described above.
C:E) This lack of data is a result of the equations of motion becoming more
complex in going from a plate to a shell. This increase in complexity
allows exact solutions to but a few special cases of boundary conditions.
For open cylindrical shells some of these special cases include those
shells which have shear diaphragms supporting at least two opposite
edges. Basically, the shear diaphragm is the analog to "simply suppor-
ted" in linear beam and plate theory. A shear diaphragm can resist all
but the translation normal to the edge and the bending moment along the
edge. Therefore, the shear diaphragm does not represent the necessary

boundary conditions needed to model a cantilevered shell. As a result,

even though general solutions to the equations of motion do exist, most
practical boundary conditions require the use of approximate techniques

|
|
such as the Galerkin or the Rayleigh-Ritz methods. Unfortunately, these 1
|




methods do require trial functions which must approximately satisfy at

least the geometric boundary conditions. This requirement, once again

;32 restricts the class of solvable problems to certain types of boundary
°S§ conditions. To overcome this restriction, numerical methods such as
;Eﬁ finite elements and finite differences are commonly used. In an effort
R to develop a continuum approach, this study will investigate a varia-

tional method derived from extending Reissner's principle via Hamilton's

principle. The method generates a solution satisfying the boundary con-

?f{ ditions by a superposition of a set of functions, each of which satis-
fff} fies the governing equations of motion, but not necessarily the boundary
T
v,
-~ conditions. This method has been successfully used to determine the
’%:j natural frequencies of a partially clamped circular plate (Ref 2).
X
F:. Objective and Approach
""i a The objective of this study is to determine if it is possible and
-.\
*f' practical to apply a variational procedure to calculate the free vibra-
;ij tion characteristics of shells with mixed boundary conditions. In par-
6\} ticular, the procedure will be used on a cantilevered open cylindrical
i shell.
g w1
X
:i. The method will be developed using thin elastic shell theory
ﬁb specialized to the case of cylindrical shells, and then applied to an
A
' 0
TN open cantilevered cylindrical shell. A procedure will then be devised
h Yl
:;f to calculate the coefficients necessary to superimpose trial functions
‘E;{ to construct an approximate solution. A computer program will be deve-
'fék loped that implements the variational procedure. Experimental data col-
b,
f:f lected on a modal analyzer will also be presented and discussed.
'A‘:'q -::T::‘
"‘ "."F'
':::::
128 2
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II. Extension of Reissner's Principle

Reissner's Principle

Reissner's principle belongs to a class of variational techniques
known as stationary principles. Unlike the principles of minimum total
potential energy and minimum total complimentary energy, which ensure
the extremum found is a minimum, Reissner's principle ensures only that
a stationary value is found. The exact nature of the extremum is not
known. Reissner's principle is a generalization of the principle of
stationary potential energy through the use of Lagrange multipliers.

The principle of stationary potential energy is derived from the
principle of virtual work by assuming that the applied loads are con-
servative and do not vary in magnitude or direction during virtual dis-

placements (Ref 8:67). This principle can be stated as

I =0 1)

where

I -/(W(ui) - Fyu, )dv - /Ti*uids (2)
v S

c

and

W(ui) = Strain energy density of system in terms of dis-

placements and their derivatives

Displacements

vxj
[}

1 Body forces per unit volume

-3
*
L]

Prescribed surface tractions

. " e e e
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V = Total volume of system

Sc = Portion of boundary where tractions are

0 prescribed
.'-.:,:
iff Reissner generalized this functional to allow simultaneous artibrary
7",
- variations in displacement, stress, and strain by adding constraints,
s
[ each multiplied by Lagrange multipliers to give
.a'\')
>
— *
" I f[W(eij) - Fiui]dv - /Ti uids
I,
‘-".: v SO
%
- : *
_._:::. -f Aij[eij-!i(ui,j-i'uj’i)] dv -[Yi(ui-ui )ds (3)
~)
::‘. v Su
o
% Gif’ The first constraints, (with Lagrange multiplier, Xij)’ are seen to
a o
‘;}: ensure satisfaction of the strain displacement equations
:_:-'!
£ .
- €45 %(ui,j + uj,i) inV (4)
:j: (where commas denote partial differentiation), and the second con-
ARA
Eif straint, (with multiplier, Y,), ensures
et
g - ®
;:; u = u, on Su (5)
::ﬂ.-' .
}fﬂ where Su is the portion of the boundary where displacements are pre-
- scribed, and ui* are the prescribed displacements on Su.
gL
:j' In taking the first variation of Eq (3), not only are the dis-
e
f}‘ placements allowed to vary, but so.too are the strains and Lagrange
‘;. > multipliers. It can easily be shown (Ref 9:5) that the vanishing of
." - S .‘:n
e
*tf 4
L2
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this variation requires

s

[[(awlaeij) - Aij] Geij av - /(Aij,j + Fi)dui dv

v v

'/[eij - 3{;(111’j + uj,i)] Skijdv - ﬁTi* - njkij)suids

v S5

- /(ui - ui*)GYids - /(Yi - njkij)duids =0 (6)
S 8

u

where the n, are the direction cosines of the surface, and S = S‘J + Su.

3

If the A 13 are taken to be components of stress, and the Y 4 components

m of traction, the first three volume integrals and the last surface in-
tegral represent the stress strain laws, the equations of equilibrium,
the strain displacement equations and Cauchy's law, respectively.
Thus, any displacement field which satisfies these equations ensures

that all but the last two surface integrals vanish. The equation left

to be satisfied has then been reduced to

ﬁ“j°1j - Ti*)Guids - ﬁui - ui*)GTids =0 n

8y Su
These remaining stress and displacement boundary integrals become very
important tools in determining functions which are solutions to a given

problem.
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Dynamic Form of Reissner's Principle

‘.‘ -h
oot

-
-
Ve W

U Reissner's principle, as discussed above, can be applied only to
static systems, but can easily be extended to include dynamics with the
use of Hamilton's principle. To this end, Eq (3) can be turned into a

Lagrangian function, J, by subtracting the system kinetic energy, K,

represented by
K -flz puiuidv (8)

where p is the mass density.and the dots represent derivatives with
respect to time. As per Hamilton's principle, (Ref 10), the resulting
Lagrangian is integrated over time from tl to tz to give
o :
J -[ {/[W(eij)-Fiui-lgpﬁiﬁi]dv-/Ti*uids
v

t1 Sg

*
-/kij [eyytatuy ohuy T av —/:ii(ui-ui )ds}dt =0 (9

v s,

This time dependent version of Reissner's principle will become the
basis for further development in this study, and upon setting the first
variation to zero, will be shown to produce the equations of motion and
boundary conditions of the system being studied. The boundary condi-

tions will take on the same form as those given in Eq (7).
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:% . II1. Specialization of the Variational Principle

LR to Cylindrical Shells

i; The application of the previously described variational procedure
;;; to a cylindrical shell requires a slight modification of Eq (9) to

- ensure the necessary form of each of its terms. Before doing this

§i however, Eq (9) can be simplified somewhat by applying the strain dis-
35 placement equations directly to the strain energy expression by expres-
T'i sing W only in terms of displacements. In doing so, the corresponding
.g Lagrange multiplier constraint term on strain and displacements can be
%% eliminated from the equation. If this is not done, an additional

;\: Lagrange multiplier i1s needed when Eq (9) is applied to a shell. This
’ég is because for a shell, W not only becomes a function of mid-plane

:*; strains, but also of curvature. Since curvature must also be allowed
;:' ‘;i; virtual changes, this third set of Lagrange multipliers is needed to

E ensure satisfaction of the shell curvature displacement relationms.

;ﬁ Whether Eq (9) is employed with W expressed in terms of strains and

):: curvatures in conjunction with their respective constraint equations, or
,5 whether W is put in terms of only displacements without the constraints
:S' is a matter of personal preference. In the preparation of this study,
:j both methods were employed with identical results. The latter will be
zé described herein.

Ef In this light, for a shell with no body forces Eq (9) can be

ﬁ; expressed as

<

2
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G direction) and by Qn:l. = N

t2
. * %
J = / {f(W(ui)-!s pt‘xiui) dv - f(-Mnn B+Qni ui)ds
tl v sc

- f (2, (8-8%+, (u-u, ™)) ds} dt (10)
8
u

where (1 = 1,2,3 and n = x,0)

Mnn* = Prescribed moments on S_, positive about the

positive s axis
Qni* = Prescribed stress resultants on SG defined by:
Qni = Nni + (3Mhslas) when 1 = 3, (the z
nq When 1 ¥ 3 (the x
and 9 direction)
B = Rotations about the negative s axis

8* = Prescribed rotations on Su

a? Y1 = Lagrange multipliers

(The subscript i follows the rules of the summation convention, but the
subscript n does not.) After taking the first variation of Eq (10), the
Lagrange multipliers will form complimentary virtual work terms similar

to those in Eq (6). It follows, the Y, are tractions and the Xn is the

i
negative of the moment about the s axis.
The application of Eq (10) to cylindrical shells now requires the

representation of the elastic strain energy density of the shell as a

WAFS | VITEreR W WREeY Y USUV/OTr TR N ‘:‘_'A-LAJ. i’
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N

.iﬂ:: function of the displacements of u, v, w, and their derivatives.

O '_.’.‘)
L A
X vy Towards this end, a shell coordinate system is defined as shown in
\':? Fig. 1. For this system the thin elastic shell theory strain displace-
{§ ment equations for mid-surface strains reduce to (Ref 3)
i

€. =

) x  'x
A Ly, )

o €9 a0 (11)
K
- 1 +

.__::4 Yxo ~ 2™ Vrx
“ while the expressions for curvature become
"A K = Voxx
& K, = ()2(w,..+v,.) (12)
o ] a '66 "6

| & | K, = 2(-w, ,+5w, )

'i’ X0 a° ’xf °’x

-

::n The expression for strain energy density per unit area for an isotropic

cylindrical shell can be written as (Ref 4)

Co)

ok
"3: W(e,, K,,) = %D [(e +c )2 - 2(1-v) (e_e, -y 2/4)]

Wy 1j, 13 1 x 0 x 68 'x6

:: + %D, | (K _+K )2 - 2(1-v)(K_K.-K 2) (13a)
P 2 X 0 X0 x6

L)

Y.

pady where
- D, = (Eh)/(1-v?) (13b)
i D, = (Eh7)/12(1-v") (13¢)
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Figure 1. Shell Coordinate System
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Substituting Eqs (11), and (12) into Eq (13a) produces W in terms
O, of u, v, and w. Substituting this resultant expression into Eq (10)

and setting the first variation of the functional to zero produces
t2

/ {&Dl/(z [u, 59 (va gt ] 80, 42 [ D) (v, ) +ovu,  J6v,

A
¢

+ % [%(V,GW)WU,XJ Sw + (1-\“) (%‘l’e+v'x) sv’x
+ [%(l-v) (%;“’e-vpx)] Gu’e ) dA

+ sz ( [w’mw(%)z(w!ee-v’e) ] Gw’xx
A

1.4 2
+ Q7 [(ngg-vigtavw,  Jow,q0

22 1) [(w g7, ] 655 g

1.4 2
(-a-) [w,ae-—v,e+a \Jw,xx] Gv,e

+

(1-v) (-};)2 [ "”xe'Hf"’x ] v, ) dA

L 2 L] * *
-[puisuidA - ﬁ-Mnn 5B+ Qni Gui)ds - ﬁXnGB + Yiﬁui)ds

A so So
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R - f(e-s*)sxnds - f(ui—ui*)GYi }dt =0 (14)
8 S
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At this peint, it is also convenient to define the force and moment

regultants for thin shells (Ref 3) as

=
(]

Dl(exﬂee)

=
L}

D2 (Kx-h)Ke)

2
"

ox = Nxo = D1/2(1-V)v,q Mgy = Myg = Dp(1-V)K g
(15)

NBB = Dl(ee-h)ex) MBG = Dz(KeWKx)

Nxz a(Mn:,x a’ x,e) Nez a(a ee,emxe,x)

These are shown pictorially in Fig. 2.
If Eqs (11) and (12) are substituted into Eqs (15), and those

@ results placed into Eqs (14), the functional can be written as

€

/ { ‘/-(Nxx‘su’x + %‘Needv,e-f- -]a:Neer
A

t1

1
+ Nxesv’x + -a-Nxesu,e)dA

1 2
+ f(-nxxsw’xx - (Z)ZMBOGW’SG - EMxesw’xe)dA
A

1 . . .
+ ./'((‘a’)zﬂaeév.a + !—::MXQGV,x)dA - puiGuidA
A A

e e
LR A
LN
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Shell Force and Moment Resultants
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84 Su '4
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|
k. - fJ(B-8*)8X ds - [(u,-u, )6Y,ds $ dt (16) ]
b n 171 i d
. s, s, !
- y
- -
.
o To integrate the first area integral in Eq (16), call it I,, the r
"v . E
following vectors are defined:
2
~ ¢ - ~ -
g 1 Nxxﬁu e + Nxet‘iu eq (17a)
3 b . ) )
2 Nxesv e, + Neeév e (17b)
¥
X With these
:
5 G 1, -fv-¢ldA +fv-¢sz +f§ueeswcm
-' A A A
.
...
% 1 1
. - f(Nxx,x*ENxe,e)GudA - f(Nxe,x*ZNee,e)‘s"dA (18)
~$' A A
o
" Application of the divergence theorem gives
- - [l 1
X I f( avee®¥ - (Nm:,x"?li"xe,e)‘s“ - (g, x*alae,0)8V ) A
.: A
5 + f( (n N #ngN_g)8u + (n N gtgNgg) v )ds (19)
nY s
5
VRS
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where nY are defined as the direction cosines between the normal and

SR,
) et the y direction. To integrate the second integral of Eq (16), Iz, four
.- scalars are defined as
.j::
._:: va = Mxx e * Mxe o
. T = Meo ©x + Mgg g
. (20)
TJ': ¢x = Gw’x
'—"i ¢e = (I/a)aw’e
:: with Eqs (20), I2 can be written (summing on y, where y = x or 6) '
.:;
- I, =- ﬁV¢Y-VWY)dA (21)
5 A
i m Then, with the use of Green's identity,
2
1 I, = VY dA - 3¥ /an)d 22 \
N o= fr,7 - fo o e (22) :
v A s
!
a |
-.ﬂ 4
- Equation (22) can be put in a more convenient form by defining
'..n
S VX = Mg (e8) (23)
L 1
. Now, Eq (22) becomes
~
»o [, = . - 24
N I, fV(aw) Vx dA f"’y(”y/a”)ds (24)
oY s
2.
4
SRR,
S
- 15




If the divergence theorem is applied to Eq (24), the result is

12 = - f(M“B,‘B)&w dA +an(M°‘B,°=)6w ds

A s

—fsw,x(a‘l’x/an)ds -f%dw,e(a‘l’elan)ds (25)
S

]

or

I2 = - /(M“B,‘B)Gw dA +‘/-1'1B (MGB,G)GW ds

A s

-/:sw,x(ﬁ-vwx)ds -f%dw,e(ﬁ-vwe)ds (26)
S

vhere n is the unit normal of the surface. Finally, after more inte-
gration by parts, some manipulation, and setting éui(tl) = Gui(tz) = 0,

Eq (16) can be written as

1 ) 1,2 -
/ {/[(ENGO_MH,:Q:—;MXG,:(G-(Z) Mg 00 tPWISW

- N R +&

x8,x7a88,07axe ,x Mag, g PVISV

1
xx,x"_ENxe ,e"’

_(N

'd)au]dA




~~~~~~~

-~ -~ ~ l A ~ ~
/([n (Mxxexﬂ(xeee)] Sw, + ;[n' (M e eeee)] 8w, )ds

+ f[(“x“mc*‘"e"xe)“ + (“xNxe""eNee)G"] ds
+ n_M +n M -!-]'-(nM +n M Yow l ds
X xx,x 0 x6,x a' x x6,06 066,60

1 -, - A * *
+ f [n (Mxeexmeaee)] sv ds - ﬁ-um 88+Q , *su,)ds

-] S
[+

-ﬁxn68+Y16ui)ds - ﬁB-B*)GXnds
s s
u

u

- ﬁui-ui*)GYids} dt = 0 27)

-]
u

The three terms in the area integral of Eq (27) can be recognized
as the three time-dependent equations of equilibrium for a cylindrical
shell (Ref 3:200). The line integrals, which evolved from integration
by parts, represent the boundary conditions which need to be satisfied
on the surface of the shell, and will become more readily recognizable

when applied to a specific shell shape. Finding a set of displacement
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the function vanishes, and hence that an extremum has been found.
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IV. "Exact" Solutions for a Cylindrical Shell

The Dynamic Donnell Equations

Finding a general solution which satisfies the equations of motion
given in Eq (27) can be facilitated by following a procedure used by
Kraus (Ref 3:302-304). The first step is to apply the Donnell assump-
tions, which Donnell proposed in 1933 to simplify the cylindrical shell
equations (Ref 6). In his first assumption, Donnell argued that the
transverse shearing force makes a negligible contribution to the equi-
librium of forces in the circumferential direction (Ref 1:200). In the
second group of terms in the area integral of Eq (27), the terms which
make up this force are

1 -
Noz " aMxe,x + %“ee,e) =0

and can thus be eliminated. Substitution of Eqs (11), (12) and (15)
into the equations of motion from Eq (27) (given in the first area
integral after this first Donnell assumption has been made), allows the
equations to be represented in terms of u, v, and w. Through a series
of operations and substitutions, the following three new equations can
be derived

4 1,3
v (w)+ (%)w’m - (Z) Vs x00

E ° 3t?

_2(1v) 22 [1-\)2

Fou - 3'2'\"72(u) - (%)W.x] (28a)
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1
VW) + D2, o+ (D) W00
o _2Q+) 32 [1-v2 . 3-vo) 1,2
-=F—° 3:2[ PV -3V (v) - (-5) "’e] (28b)

®/12)78 W) + @2V,

2(1+v 52 -2 2 _
- - 2, [(1 S L 32vv2)
ae? at?

-2 ..
(lE—va + (—i—)zw + (h2/12)V"(w))

+ Y(1-v) V4 (w) + (%)zw’xx + (%)“w’ee] (28c)

These new equations, which are commonly known as the Donnell equations,
are of higher order than the original system of equations, (one eighth
order plus two fourth order as compared to one fourth order plus two
second order). The advantage to this increase in order is that the dis-
placements have become decoupled. However, any solution that is found
to satisfy these new equations should also be checked back in the ori-

ginal system to guard against the introduction of extraneous roots.

Solution Method for Closed Cylindrical Shells

Kraus (Ref 3) outlines a method for determining the natural fre-
quencies for a closed cylindrical shell by first assuming a solution

function given by (symmetric modes)
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o !
‘ :; .
:'-':: o u= ZK‘ Aiexp()\ixll) cos(n@)cos (wt)
N '-;:-- i=] P
"’- y
\:_‘ J
™ . z

. v e é Biexp(kixll)sin(ne)cos (wt) (29) )
o im=] ]
WA

) K
._:.: W o= 2 Ciexp(kixll)cos(ne)cos(wt) '

- i=1 ]
b, ]
‘,.. where Ai’ Bi’ and C:l are arbitrary constants, and the )‘i are to be
,Q determined so that Eqs (29) satisfy the governing equations. Due to the

$
% order of the system, the number of terms in the summation, K, can be
‘:::, shown to be eight (Ref 7). If these assumed solutions are substituted
\; into the dynamic Donnell equations, Eqs (28), the result is
SN
g i 1
‘;\ -~
! Atf2a2  (3-v)an%y

9 - - +n Y2
»? c, LT-v 1-v
o

Asal 2va

'™ SRS Al I 2
:: 1 [1_\, +n (IWZ)] (30) )
i :
.‘.‘

) d
N

. Bi [[252 (3-v)An?y 4.2
o~ - - +n’y

- ¢, LT-v 1-v !

o \
\" [
> \
~; = [2m '

'’ - n3
= [l-v n (1-(2«;)42)] (31)

- 1
iN i
( (1-v) (1-v2) (A, a/1)" ;
W
N |
i |
20 !
:;‘ 21 i
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- ) = 253 - A2 [2+(3-v)n2Y + (Z/E)n“yz]
+ A[(3-v)nzy - 202(1-v2Z) + (1-v)n'y2

% + /D GREY | - (1/6) t-vyn®y? (32)

where

’
[~4
[]

pw2a2(1-v2) /E (33)

oy
[]

12(a/h)?2 (34)

A Ay 4
3]
"

(A;2)?/(a1)?

+ WA

and

o o oy ax
R A A

(1-2) (35)

<
]

«y

(:E, At this point, the solution to a closed cylindrical shell becomes fairly

straight-forward. There are four boundary conditions to be satisfied at

\ each end. They are (Ref 1:136)
Nxx =0 or u=20 (36)

o M_ =0 or w, =0 (37

. Nxe+%Mxe =0 or v=0 (38)

" 1 - -
o Nxz+;(Mxe’e) 0 or w=0 (39)

{é If Eqs (29) are substituted into the equations for the eight boundary
DA conditions, the result is eight homogeneous equations in the eight un-

knowms Cy» (A1 and Bi can be eliminated with Eqs (30) and (31)). The

N 22

Y
R PG PO O & e R L . e e e e e e e e e . e
Mate e a et Nt e oy et e ey R G S St I R S N A R S I B Iy |




Lt Ml g aasil Hbdh i S i A A AP A g "\"".1

solution to these eight equations is found by setting the determinant
of their coefficients to zero. The determinant is dependent upon the
ki, which are functions of w and n through the eighth order Eq (32).

Thus, for a given n, and w is chosen and Eq (32) solved for the eight

A The determinant is then calculated with these values. The pro-

i°
cedure is repeated in an iterative manner until an w is found where the
determinant vanishes.

As a point of interest, examination of Eq (32) shows that the
eighth order equation in Ai has only even powers. This leads to a dis-
tinct relation between the eight roots; four roots are the negatives of
the remaining four.

Unfortunately, the above method cannot be used for open cylindrical

shells because four more boundary conditions are introduced on each of

Cif) the edges of constant 6. They are (Ref 1:157)

Nxe = Q or u=20 (40)

Nee =0 or v=0 (41)

N62+Mx6,x = 0 or w=0 (42)

Mee =0 or w,, = 0 (43)

There are now a total of sixteen boundary conditions to be satisfied
F: and only eight undetermined coefficients. Thus, Eqs (29) are not gene-
ral enough to provide a solution for any one n. For this reason, the
variational procedure described earlier will be used in an attempt to
oy find an approximate solution by superposition of functions with several

values of n.
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‘EZ & V. Variational Method for Open Cylindrical Shells

: As discussed in the previous section, the presence of eight addi-
;: tional boundary conditions for the open cylindrical shell prohibits the

. use of the procedure outlined by Kraus, (Ref 3), to find a solution for

i the free vibration modes. To overcome this obstacle, the variational
'g procedure developed earlier and expressed by Eq (27) will be used. The p
_ approach will be to find a trial solution function which satisfies Eq ‘
»2 (27), and hence satisfies or approximates the governing shell equations :
;E and all sixteen boundary conditionmns.
.. Determination of Surface Integrals
>§ The boundary integrals of Eq (27) can now be expressed in terms of

- G a specific shell shape. Thus far, Eq (27) applies to all cylindrical
f: b shells with the only assumption being the thickness, h, is small as com-
3 pared to the radius, r. Specializing Eq (27) to an open cantilevered
? shell, such as the one shown in Fig. 3, allows the surface integrals to
'3 be written explicitly. Before doing so however, the prescribed force X

.

§ and moment resultants on Sc, and the prescribed displacements on Su are f
2 all set to zero. This eliminates the terms with the asterisk in the

; last four integrals of Eq (27). The remaining integrals from Eq (27), R
; if written such that the surface integrations will be done counter- R
.: clockwise (as viewed from the +z direction) around the four edges with 1
‘f the sign convention of Fig. 2, become 4
&
3
l
%
¥
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Figure 3.
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-f[uxxsw’x - (Nxz"'];Mxe,e)‘sw = Npybu = (Nxe+£Mx9)6v] x=0249
P 4

o
- / w, SM__ __ adé+ / [uSNxx + w6(Nxz-I—]a=Mxe’e)

-t -

+ v6 (Nxe@xe)]x_o add - (4M_géw)__) }dt =0 (44)

Q=

Several terms in this equation can now be eliminated by inducing
the second Donnell ﬁssumption (Ref 3). It can be reasoned the changes
in the stretching displacement in the circumferential direction, v,
have little effect on the curvature and twist of the mid-section.
Looking at Eqs (12), this assumption is tantamount to saying derivatives
of v are small compared to derivatives of w. This allows the v/a terms
to be eliminated in the eighth boundary integral in Eq (44). With both
Donnell assumptions, the area integral in Eq (44) represents a new set
of equations which again can be transformed into the Donnell equations,
Eqs (28), and the boundary terms become the more recognizable shell
boundary conditions for an open cylindrical shell given in Eqs (36)

through (43).
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Determining a Trial Solution Function

In selecting a trial solution function which is to be used to
satisfy Eq (44) and hence be a solution to the open shell, it is advan-
tageous to start with one which satisfies as much of Eq (44) term by
term as possible. In doing so, those parts of Eq (44) which are satis-
fied in this manner can be eliminated and the complexity of the calcu-
lations reduced. Therefore, if Eqs (29) are used to build a trial
function, then the area integral in Eq (44) may be dropped. This is
because, as long as Eqs (30), (31) and (32) are enforced, Eqs (29) do in
fact satisfy the differential equations of motion,

The flexibility of the variational procedure allows a trial solu-
tion to be used which does not have to meet the required boundary condi-
tions term by term. This feature will be employed by using Eqs (29).
For example, i1if Eqs (29) are used to satisfy the necessary boundary con-

dition, Nee = 0, on an edge of constant 8, then the equation that must

be satisfied is
[exp(r x/1) (B;n/a+C, /atva 2 /1)] cos(t=n) = Ny, = O (45)

For Nee to be zero for any x along a free edge, the term outside the
brackets must vanish. This requires that n=(2m+l)n/2x=, If this result
is placed into Eqs (29), the displacements u and w are found to vanish
along the free edges of constant 6. Since this is totally undesirable
for the cantilevered shell, the variational procedure must ensure satis-

faction of the boundary conditions on these edges through Eq (44).

At this point, Eqs (30), (31), and (32) can be enforced on Eqs (29),

and the result written
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u = EE Wiciexp(kix/l)cos(ne)cos(wt)
i=1

8
v = 221¢1Ciexp(xix/1)sin(n0)cos(wt) (46)

8

w = 121 Ciexp(lix/l)cos(ne)cos(mc)

where Wi and ¢i are determined from Eq (30) and (31) utilizing the Ai

determined from Eq (32).

Thus far, Eqs (46) can be considered each one "term" consisting of
eight parts through the constants summed on i from one to eight. If
seven boundary conditions are chosen to be satisfied by Eqs (46), seven
of the C's can be written in terms of the eighth. Performing this
operation also tailors the trial solution functions to be formed as a
series of N terms. Each term is of the form of Eqs (46), so it satis-
fies the seven chosen boundary conditions exactly, term by term. BHeace,
those corresponding integrals in Eq (44) may be eliminated. The seven
boundary conditions that are to be used must be chosen from Eqs (36)
through (39). Equations (40) through (43) cannot be used, because as
discussed above, Eqs (46) cannot be used to satisfy boundary conditions
both along the edges of constant 6 and of constant x. A choice must now
be made as to which of these seven boundary conditions will be satisfied
exactly, and which one is to be left to be approximated through the
variational technique. For some problems there are boundary conditions

that can be considered to be more crucial than others. For a
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L
;.'n
n "_ cantilevered shell, not requiring that the w displacement at the fixed
by~ -
S .‘b._ .
: L end be zero would lead to erroneous results in the natural frequencies
o and mode shapes. However, a v displacement which is left arbitrary at
-,q
Y
:‘- the fixed end represents a shell supported in a channel which restricts
]
“~
}‘?-J motion in all but the surface tangential direction (the v direction).
o~ Such a shell could be expected to have natural frequencies and mode
N
_:,: shapes very similar to those of a shell with the end totally clamped.
-.‘:\.
N Therefore, the boundary condition v=0 at x=0 will be left to be approxi-
N mately satisfied by the variational principle, rather than exactly.
Y
LY
'.t} Equations (46) are now substituted into the necessary seven
Yy
" boundary conditions in Eqs (36) through (39) to set the three remaining
1.. displacements to zero at x=0 and the four force and moment resultants to
~§£, zero at x=1. This produces seven equations in the eight constants Ci’
¥
o @ After some manipulation the seven equations can be written
e
A
hy 8
0% If u(o,8) = 0, then iz-:l\vici =0 (47a)
I::f;'-
" 8
“
3_-:: If w(o,8) = 0, then ! C, =0 (47b)
oo i=]
-s 8
)
< If w, (0,8) =0, then 37 A,C, =0 (47¢)
A% 1=1
8, 2 2
e If M _(1,8) =0, then Y exp(r)¢; [-0,/12 + vn/a)¥]=0  (470)
o i=1
-/
j:} T
\':' .";."
19X
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W
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8 .
If N_(1,0) = 0, then i}:lexp(xi)ci[wixi/l + %v(n¢i+1)]= 0 (47e)
8
If Q (1,0) = 0, then Texp(A)CAy [(xi/l)z-(z-v) (n/a)z] =0 (47€)
i=1

8
1
If N, A _, then P;m(ki)ci[Dl(¢iki/1 - 2av))
a =

+ (%)znz(l-v)xin/l] =0 (47g)

Using these seven equations and solving for 02 through CS in terms of

C1 gives

c, =T,C

1 = TG (47h)

Since the xi are complex, \Yi, ¢1 and I‘i are also complex. For this
reason, Eq (47h) cannot be solved by using a standard linear equation
solution technique such a Gaussian reduction. Finding the inverse of
the solution matrix is one possible way of finding T i

With this expression Eqs (46) can be written

u= C1 [I‘i\viexp(kixll)cos(ne)cos(wt)]
v =2C, [I‘i¢iexp(lix/1)sin(n6)cos(wt)] (48)

we C1 [I‘iexp()\ix/l)cos(ne)cos(wt)]

The summation on i from this point on will be assumed to be from one to
31
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: eight, and the summation sign dropped. Therefore, these three dis-
PR placement functions will be considered to be one 'term" consisting of
\
500 eight parts. The only unknown constant in Eqs (48) is Cl' Eqs (21)
e
:'_,\ are solutions to the three shell differential equations, and all but
~.::\
o one, (v=0 at x=0), of the boundary conditions at the edges of constant
\ x. The constants ¢i’ ‘l’i, and >‘1 are determined for a given w and n
o
::: from Eqs (30), (31), and (32). The components of 1"i are determined
- from the seven boundary conditions as described above.
\ The assumed solution functions needed to satisfy Eq (44) can now
,:. be defined by creating a series using Eqs (48). Each function consists
: of N terms given by
e N
u =z§JEn I‘i‘l’iexp(kixll)cos(ne)cos(wt)
N N
::}) v = 2 En I‘id)iexp()‘ix/l)cos(ne)cos(mt) (49)
-"\‘J n'o
et}
< ]
P W= E_T,exp(A;x/1)cos(nd)cos(wt)
S n 1 i
e n=0
-
.‘.’
. Each "term" in these series consists of eight separate parts summed on
" i. The same constants, E_, appear in each of the three functions, as
-:.': did Cl, because the differences between the ratios of u, v, and w are
o~ accounted for in the ‘l’i and q>i. Thus, Eqs (49) provide a solution
Cdd
:j:; function where each term satisfies exactly the area integral and seven
>
73
- of the boundary integrals of Eq (44). Also, the parameter n, which
‘ i could have had any value up to this point, has been restricted to
A
>
N 32
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integer values. This cholce is acceptable as long as n is chosen so
as to include an acceptable class of functions for utilization in the
variational procedure. In the assumed solution form, Eq (29), n repre-
sents the number of longitudinal nodal lines in the mode shape for a
given natural frequency. Thus, n should take on values of O through N

to provide a "complete" set of functioms.

Obtaining a Solution

Equation (44) used in conjunction with Eqs (49) can now be used to
solve for the desired vibrational modes for the open cantilevered
cylindrical shell. As discussed above, the terms which are satisfied

identically by Eqs (49) can be eliminated from Eq (44). This leaves

t2 .
/ { j.(NxetSule-: - NxGGuleM)dx
tl 0
1
+ f(Neeévle_: - Neesvle__a)dx

0

1l
- f [(ZMxe,x“%Mae'e)Gwle__‘ - (ZMxﬁ.x a 9,3)6w|e"] ax
0

. 1 .
+f [i“ees"'ele-« - é‘ee‘s"”ehu Jax
0

+ f VE(N g+lM ) o ado - (4Mx96w)x_1}dt =0 (50)

- eg

as the equation needed to be satisfied to ensure the functional 1is at a

33
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stationary value.
The general form of each term in Eq (50) is a force multiplying a
virtual displacement, or a displacement multiplying a virtual force.
In this light, each term represents a form of virtual work. The func-
tions in Eqs (49) are complex, but the real and imaginary parts each
independently satisfy the differential equations. Only the real parts
should be used when they are substituted into Eq (50). In this manner
each term is a real force multiplying a real displacement and takes the
form
2

/( fRe(F) Re(§u) ds)dc

£ s
resulting in a real work term. Here F is the generalized complex force
and u is the generalized complex displacement. If the integration with
respect to time is taken to be one period, it can easily be shown that

the same results can be achieved by

f%Re(FGﬁ) ds
s

where u is the complex conjugate of u. This method will be used when
Eqs (49) are substituted into Eq (50). Also in performing the substitu-
tion the most general arbitrary variation of a displacement or force
resultant is taken to be a variation on the coefficients En' For ex-
ample, substitution of v from Eq (49) into the 8v in the first term of

Eq (50) would result in

34
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o
2
v
=
::::: v = GEm¢jI‘jcos(n6)cos(wt) j=1,2..,8 (51)
‘t*:' :‘:':7:\
- 1 .b.
x After substituting in Eqs (49) in this manner and combining terms, Eq
b "\
o (50) can be written
1
Re fzznnz sin(ne)cos(ue) [ T exp(h x/1) (9,2, /1-3¥ i)]
:.’_:1 0
' r.vy A 1 SE d
jrypyeGgx/D) | oEex
i 1
, n 1
"l; + '/‘ZEnD1 cos(n=)sin(m=) [I‘iexp()‘ixll) (?i-i—a-h)‘&‘ixi/l)]
A 8
::: [¢jrjexp(ij/l)] SE_dx
X L
n
: m +6[-52nEnD sin(n=)cos(m=) [I‘iexp(kix/l) (2-v) (Ai/l)z-(;)z]
S
\-_, [rjexp(ij/l)] GEmdx
» ¥ l
ke 1 n 2
\E +f-;2EnD cos(n=)sin(m=) [I‘iexp(kixll)((;)Z-v(li/l) )]
e 0 ‘
L
" [mI‘ O jxll)] $E_dx
'{-

FAA
'.~n'-‘u

+f;n [r1°1] [Dzrj(¢jxj/1 - -i-m‘l'j)

- + @ DA-v)T,m /1 | sinne)sin(me) ade
.f
<
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,
L]

C et PR TR PR IRSCIN
e e




| X

YA
RPN A 2 D U

\
“ s

]
WO W AR

g
A

244

X

£

£l

' 3] 1‘."‘? :- J\;.)..

s
Ry

LA

.
-

MRS

o

J.s.'u.'.g"\.’g [N

R

]
»

e
[

D‘.‘.‘ "uﬁ

s

- E_4D(1-v)sin(n=)cos (m=) (%xi/l) (exp(r 2 )T T )6E )= 0 (52)

3
Since this expression must be valid for arbitrary values of GEm, it is

convenient to make the choice
GEm =1 for m=p p=0,1...,M (53)
GEm =0 for mép p=0,1...,M

With this choice Eq (52) becomes a system of M+l equations each with
N+1 terms multiplying the constants Em. Setting N=M, Equation (52) can

be represented by the complex matrix equation

an En =0 n,m = 0,1,2...,N (54)
Each term in the square matrix an is found by solving Eq (52) for the
appropriate values of m and n for each coefficient to En‘ It 1s very
important to remember each integral consists of a series of eight terms
summed on 1 multiplying a series of eight terms summed on j. Even
though this integration of the product of two series seems laborious,
the integrals of Eq (52) reduce to simple summations which are handled
very nicely on a digital computer. The solution to the set of equations
represented in Eq (54) can be found by setting the determinant of Q to
zero. The "eigenvalue" of the system is w and is implemented through
Eq (32). Repeatedly choosing values for w, performing the necessary
calculations to f1ill Q, and then computing its complex determinant pro-

vides a procedure which may be used to find zeroes of det(Q) iteratively,
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and thus solve for approximate fundamental frequencies of the shell.

In general, when working with structures which have linear force-
displacement relationships, it can be shown through the Betti-Maxwell
reciprocal theorem that the system matrix is symmetric. It is expected
therefore, that this system derived through the variational procedure
should not be an exception (See Appendix A). For complex matrices, the
analog to symmetric is the Hermitian form. It is not readily apparent
from studying Eq (52) that Q is Hermitian. This topic will be discussed

more in the results section.
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VI. Analysis of Results

The natural frequencies and mode shapes of a cantilevered open
cylindrical shell were determined experimentally with a Hewlett Packard
5423 Structural Dynamics Analyzer. The dynamics analyzer can accurately
determine the natural frequencies and mode shapes of structures such as
a cantilevered shell, and thus provide an excellent verification of

analytic results.

Experimental Procedures

The HP Structural Dynamics Analyzer is a two channel fast Fourier
series spectrum analyzer specifically designed for the purpose of cal-
culating mode shapes and natural frequencies of structures. The analy-
zer performs this function utilizing two input signals generated from
impact testing. The signals are sent to the analyzer in the form of (1)
a structure input signal from a force transducer providing the impact
time history and (2) a structural output, or response time history, from
an accelerometer measuring the structure response to the impact. A
sample plot for each of these signals is given in Fig. 4. This figure
i1s representative of the response at one point due to an impact at ano-
ther. The input signal time history is clearly depicted as a force im-
pulse, while the output shows the resultant vibration response. A
transformed ratio of this output signal to the input signal provides a
transfer function for the respective two points. Figure 5 represents
the transfer function of the measurements given in Fig. 4. The spikes,
or commonly called poles, in the plot at various frequencies are a re-

sult of the transfer function's denominator approaching zero, causing a
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large increase in the value of the function itself. Synonymous with
the Laplace transform representation of the transfer function, these
poles occur at the natural frequencies of the system being analyzed.
Thus, by locating these poles the natural frequencies can be calculated.
This transfer function provides one element of the transfer function
matrix G. Each element, Gij for example, represents the ratio of the
output at point j due to the input at point 1. If a structure is de-
fined by N points, a complete transfer function matrix is defined as an
N by N matrix. If enough impact data is taken to fill one row or ome
column of this matrix, the dynamics analyzer can generate the mode
shapes and natural frequencies of the structure. (One row or colummn
provides a minimum amount of data, but more can be generated if a
greater degree of accuracy is desired.)

The experiment was performed utilizing the shallow cantilevered
shell depicted in Figures 6a and 6b. The shell as shown in Fig. 6b was
defined to the analyzer to consist of 56 points. These points were cho-
sen to provide a "fine" enough representation of the structure, while at
the same time keeping the number of points at which data must be taken
to a minimum. The shell dimensions were chosen because some limited
numerical results were found for this specific shape (Ref 5). These
numerical results were generated using the Ritz method and provide as-
surance that the experimental setup and methods are accurate.

The shell was rigidly clamped on a fixed support resulting in
points 8, 9, 24, 25, 40, 41 and 56 being fixed. After an impact point
was chosen, the output response was measured in the radial direction at

all 56 points, and in the tangential direction at all but the centerline
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and fixed points. The centerline points were omitted because erroneous
motion could be generated in the mode shapes if the accelerometer was
not placed exactly on the centerline. Having both of these measure-
ments allows the w and v displacements to be included in the mode shapes,
thus making them more accurate,'but they do not affect the frequency
results. As a side note, the accuracy of the results was dependent upon
how well the impact point was chosen. If the impact point happened to
lie on a nodal line of one of the normal modes, then that mode was not
excited sufficiently. Therefore, several trial runs must be performed,
or the characteristics of the mode shapes must be known well enough a
priori in order to find an acceptable excitation point. For this test,

point 6 or 54 was found to work very well.

Experimental Results

Table I compares the experimental results to those calculated using
the Ritz method (Ref 5). The results can be seen to compare favorably.
The last column of the table shows that the experimental data is between
five and ten percent lower than the analytic results. The experimental
data is expected to be lower due to the difficulty in achieving a true
clamped boundary condition, and the additional mass of the accelerome-
ter. The mode shapes for these natural frequencies (Ref 5) are presen-
ted in Fig. 7. From the figure and Table I it can be seen that the
first mode of vibration for the shell is a twisting mode, while the
second is a bending mode. This is unlike the vibration characteristics
of a cantilevered plate, which has a symmetric bending mode for its
first fundamental frequency, and a twisting mode for its second (Ref

12) . Figures 8 and 9 show the shell's normalized mode shapes as

44
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calculated by the modal analyzer. Figure 8 clearly shows the antisym-
metric twisting motion, while Fig. 9 shows an antisymmetric motion in
the circumferential direction. Figure 8 also reveals a reverse bending
of the tips of the shell at the two free corners. Since these two areas
undergo greater amplitude and hence experience greater accelerations
than the other regions of the shell, they are more susceptible to the
increased mass of the attached accelerometer. This increase in mass
would cause the corners to "lag" behind the normal motion of the shell
as shown in the figure. Also, in Fig. 9 a noticeable difference exists
between the motion on the left edge of the shell versus the right edge.
The left edge happens to be the side where the impact point was chosen
(point 6), and therefore should record a slightly greater respomse to
the impact than the far side. This, along with the fact that the motion
in Fig. 9 has been magnified several times to make it visible, help to
explain this phenomenon, which was also present in the other modes. (See
Appendix B for the remaining.mode shapes.)

All of the mode shapes calculated by the modal analyzer compared
identically to those calculated with the Ritz technique with the excep-
tion of the seventh mode. This mode shape, given in Figures 10 and 11,
does not agree with the one given in Fig. 7. An investigation into this
anomaly revealed that the seventh mode, as determined by the analyzer,
is actually a combination of the seventh and eighth modes. Table I
shows that the natural frequencies o} these two modes are very close
together. In addition, Fig. 7 shows that the two mode shapes have very
similar nodal lines, but that mode seven is antisymmetric while eight is

symmetric. If the two mode shapes are superimposed, the displacements

47
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on one side would cancel each other while on the opposite side they
would be additive. This 1is exactly what is depicted in Fig. 10. Thus,
to separate these modes on the analyzer, each one must be individually
excited, while the other is suppressed. This could be done by very
carefully choosing the impact point, or more easily, by exciting the
structure with a shaker at a specific frequency rather than by an impact

(see Ref 13).

Computational Method Development

The variational procedure derived earlier and represented by Eq
(52), was used as a basis for the development of a computer program to
be used to calculate the vibration characteristics of a cantilevered
shell. The computer program was written to perform the necessary opera-
tions to fill the Q matrix and solve for its determinant. The roots of
the equation, and hence the shell's natural frequencies are found in an
iterative manner by finding values of w which cause the determinant to
vanish. The computer program consists of a straight-forward coding of
b i J\:I.
and Pi. These are then used in conjunction with Eq (52) to fill the Q

Eqs (30), (31), (32) and (47h) to solve for the components ¢1, L4

matrix. All of the required operations were easily performed by inter-
nal or system subroutines. A brief description and a listing of the
program is given in Appendix C. The program, written in Fortran V, can
f111 and calculate the determinant of a ten term matrix in approximately
one second of computation time on a CDC 6600 digital computer (NOS oper-
ating system).

The computer program was developed up to the point of performing

all of the necessary calculations to solve for the natural frequencies.
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S However, the initial program results indicate that further work must be i
. Kl
;? ES; dope to improve the accuracy of the program's calculations. Simple j
! tests show that numerical problems are present and are significantly af-

§ fecting the results. For instance, after solving Eq (32) for its eight

,; roots, one of them must be established as AI. While this choice is com-

o pletely arbitrary at first, the same root must then be chosen each suc-

'g cesgive iteration to ensure that the determinant of Q behaves as a con-

N tinuous function. While the choice significantly affects the magnitudes

—é of the Fi, and hence the elements of Q itself, it should not change the

*é solutions to Eq (52). Unfortunately, this indeed occurs, and different

< solutions can be found depending upon how Pi is chosen. A way to elimi-
nate this problem must be found before accurate solutions to the problem
can be expected.

As mentioned earlier, the matrix Q in Eq (54) es expected to be
Hermitian, which would result in the determinant of Q being purely real.

Investigating the elements of Q for different values of w shows that Q

is not Hermitian, and that its determinant is complex. However, the

W matrix diagonal is purely real (another requirement of a Hermitian
“
?,

matrix), and some specific elements are very close to being the complex
]
- conjugates of one other. Again, the numerical problems discussed above
- must be eliminated before any further analysis can be performed in this
b1
) area.
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N {:f} VII. Conclusions and Recommendations
l;i The variational procedure which has already been used to calculate
;S the vibrational characteristics of a membrane and plate with mixed
Z boundary conditions can be extended to a cylindrical shell. A computa-
j% tional method has been derived to perform all of the necessary opera-
‘is tions needed to implement the procedure, but the nature of the calcula-
ii tions makes them sensitive to numerical errors.
{2 The type of problem which may be solved with the variational tech-
§g nique can easily be extended from the cantilevered open cylindrical
G
i shell that was presented in this study. Any form of mixed boundary con-
:E ditions can be implemented by changing the boundary integrals that were
E? evaluated around the four edges. In this manner, virtually any combina-
‘ ‘j;} tion of boundary conditions can be investigated. The technique can even
4 be modified to analyze shells with edge cracks. For this case, the
%} boundary integrals must be evaluated along two additional free edges.

In this light, the variational technique is a powerful method which
can be applied to problems which cannot be handled by techniques such as
the Ritz method and the Galerkin method. Since this flexibility would
be applicable to a wide range of practical problems, further work in

ke improving the accuracy of the numerical computations is justified.
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Appendix A

The Betti and Rayleigh Reciprocal Theorem states that if a body is
subjected to two systems of body and surface forces, then the work that
would be done by the first system Ti’ Fi in acting through the displace-
ments ui‘ due to the second system of forces is equal to the work that
would be done by the second system Ti" F.,”

i
due to the first system of forces (Ref 11:391). For a

in acting through the dis-

placements u 1

system with no body forces this can be expressed as

/Tiui dsm./"l.‘i ug ds (A-1)
s s

if solutions are assumed to be of the form

Re (T exp (1wt))

=}
[]

Re (u"exp (1uwt))

(+3
[}

(A-2)
Re (T exp (iwt))

)
[y
[

u,” Re(umexp(iwt))

and are substituted into Eq (A-1), the result is
fRe(Tnexp(imt)) Re (uPexp (iwt)) ds
s

- f Re(T"exp(iwt))  Re(u"exp(iwt)) ds (A-3)
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This can be written as

f[Re(’I‘n)coswt - Im(Tn)sinmt] [Re(um) coswt + Im(u™sinwt] ds

-f[Re(Tm)cosmt - Im(T"sinut] [Re(u™) cosut - Im(un)sinwt] ds (A-4)

If Hamilton's principle is applied, and these two integrals are inte-

grated with respect to time over one period, the result is

3 / [Re(T™)Re (™ + Im(TM)Im(u™ ] ds
s

- 5 [ [rea™re(® + (™ 1a(:M)] s (A-5)
8

After multiplying through by two, this can be written as

®

-

Re(T"u™ds = Re(T"uM)ds (A-6)

for this to be true, then

Re(T®u™ = Re(T™T™) (A-7)
or

-Re(T"T™) = -Re(u"T) (A-8)

If the matrix element an i{s defined as T'u" then from Eq (A-8)

% * o =
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Thus, the matrix Q is Hermitian. Since this matrix is of the same form
as that derived in Section V, the Q matrix in Eq (54) should also be

Hermitian.
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j&‘_‘ Description of Computer Program

LN

e

; .

\‘2}- The computer program in this appendix is for the analysis of the
Zama vibration characteristics of an open cylindrical cantilevered shell.
.\“

" vy

S;E_\ The program consists of the executive program, Shell, followed by two
Gy

,"S" subroutines, Fill and Poly. The purpose of the program is to calculate
ik; the elements of the system matrix, Q, for a given frequency, w, and then
‘ﬁs calculate the matrix determinant. The vanishing of the determinant es-
.',(

"‘n tablishes that a natural frequency of the system has been found. The
program has not been written to iterate to a solution, but to only sweep

across a range of frequencies at a desired step size, while printing out

X - the determinant after each calculation. Since the program can be run
138 @ interactively, the operator can choose the input parameters to manually
i iterate as close to a solution as desired. A description and listing of
i the program and subroutines follow.

Program Shell

Program Shell is the executive routine which reads in the required

input parameters, and then after calling the appropriate subroutines,

N
md uses a system subroutine to calculate the determinant of Q. The program
3
t" does this a specified number of times over a range of frequencies.
. '\.i Subroutine Poly
Ne
. ig Subroutine Poly calculates the values of A 1 ¥ i $ 1 and T i and

e stores them in array C. It performs these calculations for n = 0 to

Sg. ' ,-: NTERM-1. It also fills the array CJ with the complex conjugate of the
N
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W
2

2,
b ¥
12 values in array C. This subroutine utilizes two system routines. One
» .:’_._ :
5? :;:5 is needed to solve an eighth order equation for its roots, and the

2. other tu solve a system of complex equations for their unknown coeffi-
?‘q

. cients.

A

]

Subroutine Fill

"
'ﬁi Subroutine Fill uses the C and CJ arrays to calculate the elements
o
:E of the Q matrix. The coding of the program is representative of Eqs
— (52) and (54) in the text.
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