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‘ 1. INTRODUCTION

R

0

*{: ) Often, in the design and production of complex. system such as computer
o network, good system reliability is a critical requiremsnt. Network reliability is
f';: rarely treated explicitly and quantitatively, however, largely because of problems
E of computational compiexity and because few efficient computer programs exist
" for computing netwoerk reliability. Only in the last few years have research and

":‘: development in this area provided usable results.

S
‘, ‘ We wish, as efficiently as possible, to determine the network reliability for

specific class of networks. The purpose of this thesis is to develop new reduction
E-;: and decomposition techniques for computing network reliability and to show how
: »" ) computational complexity can be decreased by using these techniques.
" The network raodel which is used in this thesis may be thought of as a
f‘:‘ communication netwerk with directed edges, allowing only one way communication
.j from tail vertex to head vertex Additionally, we impose the restriction that the
network have no directed cycles. Such a model may be appropriate in hierarchical

: communication networks such as command networks. Also, such networks may
:; arise as subproblems while computing the reliability of general directed networks,
Agrawal [1982].
,\ Networks can be divided into various classes, e.g.. directed, undirected, cyclic,
:& acyclic, etc. A large amount of literature exists on each class. {See Agrawal
(1982], Ball and Provan [1981], Satyanarayana {1982}, Hegstrom [1980] and
;:j:‘j Satyanarayana and Prabahkar [1978] for directed networks; see Ball and Provan
:.; (1981], Johnson [1982], Satyanarayana [1962], Satyanarayana and Chang [1981],

% Satyanaryana and Wood [1982), Valiant [1978), and Wood [1982] for undirected
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networks; see Agrawal [1982] and Satyanarayana and Prabhakar [1978] for cyclic
versus acyclic directed networks.) The specific model we will consider is the
directed acyclic network, denoted D(V,£) where V is the set of vertices and £ is
the set of edges. Each edge is represented by an ordered pair of vertices e =(u,v).
The ordering implies that the flow of communication can move along e from u to v
only.

Each edge e; in the network functions with probability p; and fails with
probability g; = 1—p;. All edge failures are assumed to be independent events. For
simplicity in the initial discussion, vertices are assumed to be completely reliable.

However, the extension to unreliable vertices will be handled briefly.

Vertex u can send communication to vertex v in D if there is a directed path
of working edges from u to v. One of the vertices s is designated as the "source”
or the "root”. With respect to the source, there are three different measures of
reliability which are usually studied in directed networks:

(1) The source-to-terminal (ST) reliability, R,,(D), is the probability that s can
send communication to a specified vertex £ in D.

(2) The source-to-all-terminal (SAT) reliability, R,y(D), is the probability that s can
send communication to all vertices of D.

(3) The source-to-K-terminal (SKT) reliability, Rsx{D). is the probability that s can
send communication to every vertex in a specified set K (these vertices are
referred to as "K-vertices") with, by convention, seX.

Of course, (1) and (2) are special cases of (3). We consider the general case (2) in

this thesis.

Generally, the of problem computing network reliability is NP-hard. Certain
reduction and decomposition schemes exist which reduce the size of the problem

while preserving network reliability, e.g., Agrawal[1982], Shogan[:978] and Wood

(1982], and, for special classes of networks, it is thereby possible to compute
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¢ ::f reliability in polynomial time. In general, hcwever, the solution time grows
) L}
Y
i exponentially in the size of the network. In this thesis, we develop a methad for
fut computing reliability which, in general, is exponential in the size of D, but which is
(..-\‘
“:* polynomial when the number of non-K-vertices, i.e., .| V=&|, is fixed.
"\1‘
Lo
Sy The rest of this thesis is outlined as follows.
:':: Chapter 2 contains a necessary definitions and graph theoretic concepts.
- \n
"‘:‘ Chapter 3 develops reduction and decomposition techniques to reduce the size
~
R of a network in order to decrease computation time. Some of these techniques are
\j new.
.‘._-.:‘
'f:::. Chapter 4 shows how to compute network reliability exactly when the number
X of non-K-vertices is moderate. A truncated version of this technique is used to
f{j obtain a lower bound on reliability when the number of non-K-vertices is too large.
”“.\J
-;:'j We demonstrate that tais lower bound will usuzlly be "good."”
J_;J'
: Chapter 5 describes an algorithm to compute Ryx(D) or find a lower bound on
: Ryx(D), and its implementation. The program is coded in FORTRAN with one main
T Y
._:; routine and 18 subroutines totaling about 1600 lines of code.
:'_n:
' Chapter 8 gives computational experience for the algorithm run on an 1BM
b 3033AP system /370 with the FORTRAN H (Extended) compiler.
S::: Chapter 7 is a conclusion and gives suggestions for further r2search
¢
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A

In this chapter, we give the definitions and notation used throughout this

thesis, and introduce basic network reliability theory.

A DEFINITIONS AND NOTATION

A directed network D=(V,E) comprises two finite sets: V is the set of vertices
and £ is the set of edges. Each edge ee€Ff corresponds to an ordered pair of
vertices in the directed network. That is, e={(u,v) where u,veV. The vertex u is
called the tail vertex of edge e and vertex v is called the head vertex of edge e.
For any two vertices u and v in D, if there exists an edge e ={(u,v), then v and v
are said to be adjacent and edge e is incident into v and incident out of of . The
indegree of a vertex v, denoted indeg(v). is the number of edges incident into v
and the outdegree of a vertex v, denoted outdeg(v), is the number of edges
incident out of v. Two vertices are connected (or "communicate") if there exists a
sequence of vertices and edges of the form vg (vov1). v1, (V1.¥2).....(Um-1.Vm), Um.

This sequence is a path of length m. If the vo=v,,, the path is a cycle.

Consider a undirected graph G(V.E) fcrmed by ignoring the ordering of the
edges in a directed graph D(V.E). G is called the underlying graph of D. D is
connected if its underlying graph G is connected. G is connected if there is an
undirected path between all pairs of vertices. The vertex connectivity of D is the
minimum number of vertices which must be deleted from G (along with adjacent
edges, of course) in order to disconnect G or to create a trivial graph with only one

vertex. D is separable if its vertex connectivity is one. Otherwise D is
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nonseperable. In a separable graph, a vertex whose deletion disconnects the graph
is called a cut-vertex

Merging a vertex v into another vertex w means removing all edges between v
and w and forming a single vertex v' by coalescing ¥ and w such that any edge
incident into (out of) v or w is now incident into (out of) v'. Merging v and w is

sometimes also referred to as "idént.ifying" v withw.

The SKT reliability of a directed network D, denoted Ryx(D). is the probability
that all K-vertices in D are connected by path of working edges and vertices {rom
source vertex s. The probability that edge e; works is p; = 1—9,. For now. we

assume that all vertices work with probability one.

B. NETWORK THEORY AND SURVEY
1. NE:Completeness

We briefly discuss the complexity of the SKT reliability problem in
terms of the theory of NP-completeness and in terms of practical computation.
More detail can be found in Garey and Johnson [1979], Ball and Provan[1981].

Algorithms to solve various problems can be broadly classified into two
categories, polynomiai-time and exponential-iime algorithms. An algorithm is a
polynomial-time algorithm if for a problem of size n, its running time is bounded
by a polynomial in n. Any algorithm that is not a polynomial-time algorithm is an
exponential-time algorithm. In combinatorics, a decision problem P is said to
belong to the class NP if given a tentative soiution, the validity of the solution can
be checked in polynomial-time. P is "NP-complete” if it is equivalent to the
satisfiability problem of a conjunctive normal form boolean expression. A problem
is NP-hard if it is at least as hard as an NP-complete problem.

10
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A problem is #P-complete (number-P complete) if its solution is equvalent to
counting {not enumerating) the number of solutions to an NP-complete prcblem.
Any #P-complete problem is NP-hard.

2. Prablem Complexity

Ball and Provan [ 1981] show that the ST reliability problem in an acyclic
directed network is a #P-complete problem. This implies that the SKT problem is
also #P-complete since problem instances restricted to |K|=2 are #P-complete.
Even finding an g-approximation to SKT reliability is an #P-complete problem.

In practice, these comglexity results imply that a general problem of
large size cannot be solved analytically in a reasonable amount of time. In fact,
the time taken grows exponentially with size of the network. As will be seen,
however, practical probiems of fairly large size can be handled with the techniques
developed here. Furthermore, ever larger problems can be handled if one is
willing to accept a "good” lower bound on exact reliability.

3. Redueticn

Many reduction schemes have been developed to help solve various
network reliability problems. These reductions reduce the size of the network in
polynomial time while preserving reliability, i.e., they create a new, smaller,
network &' from the original network G {G may directed or undirected and any
rumber of definitiors of reliability may be used.) such that R(&G)=#M R{(G') where #
is a known constant faétor. In this way, a polynomial amount cf work is expended
in order to save. it is hoped, an expenential amount of work during later, more
general computations. In some special, but cften practical cases, it is possible to
cqmpletely reduce a network and eflectively compute its reliability in polynornial
time.

The reductions describe below give a flavor for the different types of
reductions which have been developed. Parallei and series reductions are wall-

known schemes so they will not be discussed. The reductions described assume
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3
!
|
o




that vertices are completely reliable. However, most can be extended to handle
unreliable vertices.
(1) Polygon-To-Chain Reductions: A chain C in an undirected graph G is defined as
a alternating sequence of vertices and edges beginning and ending with vertices
such that all internal vertices have degree 2. Two parallel chains form a polygon
and this polygon can be replaced by a chain in a reduction that preserves
reliability in the K-terminal reliability problem, the analog to the SKT reliébility
problem in an undirected network. This reduction and its implications are
developed by Wood [1982].
(2) 2-Neighbor Vertex Reduction: For the SKT reliability problem. any vertex u
that has exactly two neighbors v and w can be eliminated from the network if
ue Kor ju,v,wieK and u#s .
(3) Parallei-Chain Reduction: Suppose £j; is the set of all edges in a directed
network D whose endpoints are v; and v;. In D, a chain ( is an alternating
sequence of verticeg and non-empty sets of edges where the internal vertices are
2-neighbor vertices in 0. Two chains C, and C, with identical endpoints are
parallel chains. Parallel chains can be reduced to a single chain in the SKT
reliability problem. Reductions /2) and (3) are developed by Agrawal {1982].
4, Decomposition

Sometimes it is possible to divide a given graph into a number of
subgraphs, such that each subgraph can be analyzed separately and the resuits
combined to obtain the reliability of the whole graph. We briefly describe some of
these methods based on vertex conne.ct.ivity.
(1) 2-Connectad Graph Decomposition: Let G be a 2-connected graph with a pair of
vertices {u,v] whose deletion disconnects the graph. These vertices are called a
"separating pair.” This separating pair partitions G into two subgraphs G, and Gp
sﬁch that Gy, Gs =G, GiN\Gz =ju . v|, £,#¢ and Fr#4. It has been shown by Weed
(1982] that, in the K-terminal reliabiiity problem, each subgrzaph defines a chain

12
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through a set of reliability computations on the subgraphs. The subgraphs may be
replaced by the chains so as to preserve reliability. Agrawal [1982] has proven the

analogous decomposition scheme for the SKT reliability problem on directed
networks. (2) Strong-connected Decomposition: A strong component of a directed
graph D is a maximal subgraph of DU such that there exists a directed path from
every vertex to every cther vertex in the subgraph. When computing Ryx(0D), each

strong component can be considered separately. Computing each componen: g

Rye(D) and multipling Rex(D;) is whole graph reliability R,(D2). This
decomposition has been developed by Shogan [1973] and Agrawal [1982].
Other decomposition schemes exist. Decomposition in 3-connected

graphs is often possible, Rosenthal [1974]. Decomposition in 1-connected graphs

will be discussed in chapter 3.
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111. REDUCTION AND DECOMPOSITION

Any algorithm to solve a general network reliability problem has a running
time which is exponential in the size of problem. If by some method, the size of the
problem can be reduced, immense computational savings can be made. Therefore,
in this chapter, we introduce reduction and decomposition schemes which will
often reduce the size of the problem while always preserving reliability. Some of

_ these techniques are specific to the SKT reliability problem in acyclic directed

networks while others are of more general applicability.

Reduction sckemes reduce a parameter of the size of the problem, usually

edges or vertices, in order to decrease computational complexity while preserving

. network reliability. On the other hand, decomposition schemes split the whole
graph into subgraphs, computes subgraphs reliabilities separately and then

combines these reliabilities in some way to compute overall network reliability.

A,  REDUCTIONS

In this section, we discuss various reduction schemes which reduce the size of
D and, consequently, reduce the complexity of computing R,x(D). Under any
reduction, reliability of the network remains invariant up to a known, constant
factor, i.e., Ryx(D) = M*Rye(D') where /M is the known factor, K is the new set of
K-vertices, and D' is the reduced network. In the following illustrations, all vertices

are represented as circles with K-vertices being darkened or shaded.

The parallel and series reductions are standard, i.e., well-known and widely

used. The three reduction schemes,

14
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"indegree-one K-vertex contraction”, "non-K-vertex deletion” and "neck vertex to
K-vertex reduction” are newly developed reductions.
1.  Parallel Edges Reduction
In a directed network, two parallel edges e, ={u,v) and e, =(u ,v) may
be replaced a single edge e, =(u,v) while preserving reliability if p. = pg+pp —PaPb
and M=1,
2.  Series Fdges Reduction
In a directed network, a pair of edges eg=(u,v) and e, =(v,w) such that
indeg(u)=outdeg.(u)=1 are series edges. If ve K, edges eq and e, can be replaced
by single edge e. =(u,w) while preserving reliability if p, = p,p, anc ¥ =1.
3. Indegree-One K-vertex Contraction
Let e;=(u,v) be an edge in D such that veKX and indeg(v)=1. Ir the SKT
reliability prcblem, communication from s to vertex veK can only only occur via
edge e; so-this edge must work if the network is to work. Consequently, edge ¢;

can be contracted such that Ry (D) =M R (D) and M =p;
where D'=§V-u -v + w.E -¢;i
w=u v

K = Kv+w. itued K
Tl Kv—u+w, if uek

The validity of this reduction is easily showa. Let e;(u,v) be the edze
described above in the acyclic network D. Let F; denote the event that e; is
working, and let F; denote the complementary event. Since Ryx(D) is just a

probability, tke rules of conditional probability can be applied to obtain

Rux(D) = p Rux(D | Fy)+ 9 Rax(D | )
= p Rax(D| £}y since Rou(D|F)=0

15
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= pRx(D)

since no new paths are created by contraction.
4. Non-K-Vertex Deletion

In the SKT reliability problem, an outdegree zerc non-K-vertex can ke
deleted from the network without changing network reliability since such a vertex
is irrelevant. In this case Ryx(D) = M Ryx(D—-v) and M=1.

5. MNeck Vertex to K-vertex Reduction

Suppose © and v are two vertices in D such that ueX, v# K and all
paths from s to u include v. v is called a neck vertex. It may or may not be a
cut-vertex. Since § must corumunicate with v before it comrnunizates with u,
Rux(D) = M Ryxsv){D) where M=1. Thus, the neck vertex to K-vertex reduction
simply changes K to K+v. See Figures 3.l1a and 3.ib. (All figures are given in
Appendix A.)

The neck vertex to K-vertex is termed a "reduction” because it reduces
the parameter | V—-K| in D. As will be seen in chapter 4, the general algorithm for
computing R.x(D) runs in time proportional to 2!V-%! so this is a reduction
according to our definition. Furthermorg. the neck vertex tn K-vertex reduction
will often allow other reductions or decomposition to take place.

8. DOther Reductions

Numercus other reductions exist as exemplified in chapter 2, section

B3. However, none of these reductions has been implemented because of their

complexity, and therefore, no other reductions will be described here.

B. DECOMPOSITION

Sometimes it is possible to decompose a given network D into a number of
subnetworks. Each subnetwork can then be analyzed separately and the results

combined in some way to obtain overall network reliability.

18
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Decomposition can result in substantial savings because, in general, the time

_—a_K 8,
[N

* to analyze the whole system is exponential in size of the system. Effort needed to
compute R,x(D) using decomposition is the sum of efforts needed for each
. subproblem plus the effort, normally polynomial in the size of D, in performing the

. decomposition and recombining the result. Without decomposition, the necessary

i
-
- L]
-t
:
%

- work is roughly the product of the effort needed to solve the individual problems.
1. LCut-Vertex Necompaosition

A connected, undirected, network G(V.F) has a cut-vertex v if there

1N

exist components {subgraphs) C, and C; such that C,\Cz=v and C,UC2= G . Any

~

E communication {from one compcnent to the other must pass through v. In this

: case we aiso say that v separates C, and C,. A network which has a cut-vertex is

“separable” and one which has none is called “norseparable.” A directed network D

is separable if its underlying graph G is separable.

N Let D have nonseparable components C,,Cs, . . ., G,. Any component G
which has only one cut-vertex is called a pendanf component. If a pendant
component, §. contains no K-vertices except possibly its’cut.-vertex. then it is

" completely irrelevant with respect to relia.bility since none of its edges are in any
path from the source to a K-vertex. Thus, this component, excluding its cut-vertex,

can be deleted from the network while preserving network reliability in the SKT

reliability problem. This type of deletion may be recursively applied urtil only

Bt aa®

relevant components remain.

Cut-vertices are not efficiently found in a directed network if each edge

is represented in one direction, e.g., if all edges incident into each vertex are

stored contiguously. However, if edges are stored both by tail vertex and head

=l § B RO
P D i R -

vertex, then this is exactly the representation of the underlying undirested d
network. Thus, an efficient algorithm fcr finding cut-vertices in an undirected

graph may be used to find cut-vertices in J. A slight modification to the |

.. 17
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DFS (depth-first search) algorithm due to Tarjan [1972] can find all cut-vertices in
o(|£|) time.

Once all cut-vertices have been found and all irrelevant components
removed, any cut-vertices remaining which are not K-vertices are neck vertices
and may be added to the set X. It is fairly obvious that each component must work
by itself if D is to work. Since edge reliabilities are independent it follows that
Rex(D)= Ryg(D,) Rex (D3) -+ Rex{Dn) where the D, are the nonseparabie,
relevant components of D. This is identically equal to a network which has the
same components as D but whose only cut-vertex is the source. A more rigorous
demonstration of this identity can be made by applying the decomposition scheme
described next, "moving edges to source,” to all edges incident out of cut-vertices.
Figure 3.2 demonstrates the results of cut-vertex decomposition applied to a
network D with five components, two of which are irrelevant. In this case,
Rex(D) = Rux(D1)Raic (D) Reg(Ds).

2. Moving Edgesto Source

In this section, we discuss a technique which does not fit neatly under -

the rubric of decoraposition or reduction since it only moves edges from one place
to another in the network. However, by moving certain edge tails to the source s,
new parallel reductions, series reductions or contractions may be made possible
along with cut-vertex decompositions. Consider an edge e =(uz,v) such that ueX.
Edge ¢ can be made incident out of any other K-vertex w’'eX without affecting
reliability as long as no cycles are created. A simple conditioning argument can be
used to show this, Agrawal [1982]. The source is the obvious candidate to receive
the edge tails since it has no edges incident into it and therefore no cycles can
possibly be created. Figure 3.3 shows an example where this operation creates a

cut-vertex and allows a parallel reduction.

i8



...... 2 %m at EA SRR S N

e AR A A A L LT L) Nl i A R 0" NS S S A AL AR SRR i St Bt RSU R |

-

This chapter gives a general method for computing SKT reliability in an acyciic
directed network. The method is based on repeated computation of SAT reliability
of certain subgraphs of D and, consequently, we first discuss SAT reliability. After
deriving a method for computing SKT reliability, a simple lower bound becomes
apparent and several heuristic arguments are given indicating that the bound’s
accuracy should be good. Actual computational examples are reserved for the

next chapter.

A, SOURCE-TO-ALL TERMINAL RELIABILITY

Let D(V.E) be an acyclic directed network and let g;=1-p; be the failure
probability for any edge e;eE and let £; be the set of edges incident into v;. Also,
let the vertices be numbered such that {v v - - - .va} is an an acyclic ordering of

V. Then, SAT reliability may be expressed as

R,y(D) = P( s communicates with all veV-v, (4.1)
and at least one edge into v, works )
since there no edges incident cut of v, by the acyclic ordering

= Ry(v—v )(D~v,)|L- Q‘Q,] by independence
i)

=Ra(V—o,‘_1-v,,)(D"'Un-l-vn)[1" H qj rl— H g;
l 9y€By_y l ok




Another way to see this is to use the fundamental topological property that
R,y(D) is unchanged if any edge (u.v) with ueX is replaced by an edge {(w,v) with
the same reliability and weX has a lower number than u in an acyclic ordering of
D. Consequently, in the SAT problem, we may move all edges so that they corae
out of the source just like the "moving edge to source” operation in section 3.2.
Equation (4.1) is then trivially true for a network where all edges come out of the
source. (See Figure 4.1). The complexity of computing R,y(D) is easily seen to be

O(| £]) if all edges are with ccmmon head vertices are stored contiguously.

B. SOURCE-TO-K-TERMINAL RELIABILITY

Now we consider the SKT reliability problem in D. Let D(V.E) be a acyclic

directed network with XCV. By simple state-space partitioning,

R (D) = P{ s communicates with all veV)

+ Y P(s communicates with all ve V—v; but not with v)
V‘dK

+ Y P(s communicates with all veV-v;—v; but not with v; or v;)
V(.'U,(K

+ ..

+ P( s communicates with all v €K but not with any veV-K)

But,

P{ s communicates with all veV) = Ryy(D)

P{ s communicates with all v<V-v; but not withv; ) = R,(v.,,‘)(D). P{ No edge into
v, works )

P( s communicates with all veV—m-v,):R,(y_,,‘-.,’)(D). P( No edge into v or v,
works except an edge e ={v;,v;) or e =(v;,1%))

ete.,

In general, then,
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% D) = Ryy(D) + x[ n R(D—v]
‘::4 Rt.K( ) sV Wg [l,‘.&q‘] {14 i) (4_'2)
‘ . + [ Hqu(D-‘Ut‘U)]
_‘:‘-‘,‘ v‘.v,did LJ‘E‘! j] * !

N + ({0 Re(D —vg -v -'u)]
§::‘. - v‘.U,.Zv.dKl Ly‘ﬂmqj] " o

' + ..

=
b2
) where E; is the set of edges going into v, £y is the set of all edges going into v; or

‘

N v; except edges going between vy and v;, Ey; is the set of all edges going into v;, v;
N or v, except edges going between pairs of vertices in {v;.vs.2 ), etc.

&,

:‘3 The complexity of computing R.x(D) is, via the above formula, exponential ‘n
A

X the numtber of non-K-vertices. The total number of additive terms in equation (4.2)

- n

- is 2 G!V-Kl = 21V-Kl where CP is the number of ways to choose i elements out of
,,3 i=0
‘ ‘ elements. Computing SKT reliability thus requires O(|Z|2!/Y-%!) time using
b equation (4.2). Of course, if the number of non-K-vertices is fixed as | E'| changes,
_;‘. computation is eflectively O{ | £ |).

o

-

! o,y

H"

C. A LOWER BOUND ON SKT RELIABILITY

::: Since computation increases exponentially in the worst case, we may be
! ::E satisfled with an approximation to SKT reliability which requires less time to
compute than exact reliability. Since all terms in equation (4.2) are positive, any
B subset of these terms provides an approximation to SKT reliability whica is a lower
‘\: $ bound. Also, the product formed by lower bounds on independent components of a
Ay network yields a lower bound on vverall network reliability. The subset of terms we

choose to form ihis lower. bound consists of terms enumerated in the order given in

[ ]

o
t.’

E:-'Z equation (4.2) untii some specified computational limit is reached. The motivation
:;:'." for this scheme being fairly accurate is given below.
N -
2 21
3‘.‘
4 ::
o
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Suppose p; = p for all e;€£ and p is close to 1. Consider the first few terms of

. Equation (4.2).
N2 AN '
N RD) = HJ1 —¢'&) ~ 10
~3a b :
S 1) RyagPv) =g 1 [1-g'B] ~ ¢&
[ o 38 ) Fatv-u{ D=2 wer L =9 q
s p ) < g Bl +IEfI-1 [ JRY-1) Y- ATV AT
o~ [.jg%q;]&(v.q‘—u,)«ﬂ ;)< g ‘_‘d{}«w, 1-g ] q
2%
:._‘ Thus, the contribution of the terms to the total reliability sum diminishes
~ rapidly unless there are a significant number of edges connecting non-K-vertices.
. ‘.(
}‘g Another reason that the lower bound should often be good is that terms with
2 ‘;:-, many vertices deleted may be identically zero. For example, consider an ST
: ]
. reliability problem where the shortest path from s to £ has { edges in it. This path
‘{.E must contain ! ~1 non-K-vertices and so R,(y_.,‘_,,,__,_d.,.)(l)-m-v,- —-...~) = 0 when
1%
J‘: | V={vvy, . .., ues.t]|<l—-1. Of course, other terms may be identically zero, too.
For example, in any K-terminal problem, the term corresponding to [ —v;—v; will
:l:\- be identically zero if all paths from s tc some K-vertex v must include either v; or
1“‘-'
; %3: vy.
?
Computational experience in Chapter V lends credence to the accuracy of this
N
"j: lower bound.
A%
"5
a2
- \‘
v
.*": d
o
A
:.:::.
¢
. o
>
el
-
N =2

Cd ..
I

-
f_.'
-, R SRATS

D R R T T T U U S - e e e e e e
\\ ."J. T > '\t’v > ‘- St e .~..‘~ 7’ 'f ..'.-.‘%.-\:, L R




£yt

&£

kY
.iynn

| QR

fyd

.
o
»

a a.:"

5&."1’.’

2%

The algorithm presented here for reliability evaluation of directed acyclic
networks is based on the theory developed in chapter 3 and chapter 4. The
program is intended for general use so it was cocded in the widely available
language, FORTRAN. This language is available on most computer systems and is
still one of the most popular languages among operations research analysts.

A ALGORITHM

The objective in this section is to develop an efficient algorithm for computing
SKT reliability in a directed acyclic network. Initially, polynomial-time reducticns
and decomposition are used to reduce network parameters and decompose the the
network into subnetworks, if possible. If reliability is not completely computed via
reliability-preserving reductions, the general SKT reliability expression is
computed as described in chapter 4. If a specified CPU time limit is reacheci for
any component, the computation is truncated and a lower bound on reliability is

produced.

There is a one main algorithm and numerous subroutine algorithms in Lhe
program. We discuss the main program and several important subroutine
algorithms for understanding. The structure of the main program is based on a
step by step approech which avoids redundant work. Comments will be given in

curly brackets.
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Main

Input: A directed acyclic network D with vertex set V, | V|22, edge set £, |F'=2,
and set KCV, | K|22. Edge reliability p; for each edge e; in £.

Output: Ry(L2), exact reliability, if CPU time less than specified amount, otherwise
a lower bound.

(1) {Initialize] M = 1.0, bound=.false.

(2) Read all edge data and create network data structure
(3) iChang'e neck vertices to K-vertices}] X = Neck (D.K)
(4) {Parform reductions for whole network] Reduct (D.K.H)
(5) It remaining vertices | V| < 1, go to end.
(8) {D1.Dz,....0:}= Decomp(D)
(7) For each subnetwork J;
(a) {Initialize] lowbnd=.false., set time = 0.
(b) {Move edge tails to source] For each edge e =(v;,v;) with v;eX
fmove ¥; to s} Move(e)
(c) Construct the data structure for subnetwork D,
(d) {Reduce subnetwork} Reduct (I,X;.H)
(e) { Initialize | sumpro=0
(f) § Find SAT reliability § sumpro = Rsa(D;),
(g) Count the remaining non-K-vertices for D, i.e., if vertex number

> 0, count=count-1

1) {Find the next combination of non-K-vertices
fuy,.Vjq.-- Vg ) = Comb(j i)

2} { Find [Ig; for Ejig-- ) M= Multiyy up,, .. . 75)

3) sumpro=sumpro + M4’ Rsa(D—v;, —v;,—.....~v;,)

4) If elapsed CPU time = time limit then lowbnd=true. and

24
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bound=.true.

5) It lowbnd=false. and all combination have not been

< enumerated then go to (8.h.1)
S: _ (i) M=M x sumpro
™ (8) If bound=.false. print "Exact reliability is” M, otherwise print "Lower
bound on reliability is" M
End Main

function Neck (D.X)
Input: D.K
Output: New set of [{-vertices
( This routine finds all neck vertices and changes them to K-vertices )
(1) Put all & K into @,
(@) k=|K]|
(3) While @, #¢
(a) Remove v from &,
(b) Search all K-vertices in D—v; using Depth-Tirst Search
(¢) k'= number of K-vertices reached
(c) It k'<k thern K=K\iv)
(3) Return (K).
End of Neck

subroutine Reduct(D K M)

Input: D. K. M

Qutput: Reduced network D with modified K and /4
( This routine performs all non-K-vertex reductions, series-paralilel
reductions and indegree-one K-vertex contractions )

(1) Construct @; = § veV-K | outdeg{v)=0}

25
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3 (2) While Qs #¢
"':: (a) For each vertex v; incident to v;, if outdeg(v;)=! and vjeV—-K
'::i: then add v; to &4.
2 (b) Nonlre (,)
:" (3) Construct @ = { ®;eV—=K | indeg(v;)= outdeg(w;)=1{ and @, = { v;eX |
- indeg(vy)=1}
2 (4) For each v,
{a) Check all outgoing edges, if 2(v;,v;).e(v;,7;) are found then
" Parall( e)
:':' {b) It parallel reductions creates new series or contraction vertices,
:’- put these into & or &.respectively.
" . (5) While & #¢ and @ #¢
ke (a) I @ #¢ Series( &(1)
_-j;\. 1) If series reductions create new paraliel edges, do parallel
. reduction. Parall(e)
2) 1t parallel reductions create new series or contraction
_‘ vertices, put these into &, or @., respectively. ;
= (b) It @ #¢ Contra( & (i)) 9
.::: i) If the contraction creates a new contraction vertex, put ‘
7 " these into @ i
2) If the contraction creates new parallel edges, do parallel |
e reduction Parall(z) |
;EE 3) If parallel reductions create new series or contraction
ﬂ'* vertices, put these into & or &, respectively ‘
(8) Return (D.K. M) |
"
, End Reduct
::
N 28
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-\-; subroutine Decomp(D) J
‘:-' Input: D J
Ej . Output: Subnetworks D,.D;.....0m I'
N (1) While not all cut-vertices have been found y
:\5 (a) Using DFS, find pendant component D; with cut-vertex v :1
: (b) I D; has no K-vertices except possibly v; then delete D, l
! (2) Return (D, De.... Op) y
, After reading in the data and creating the neiwork data structure, the 3
algorithm begins by changing any neck vertices tc K-vertices by a call to Neck at :
'I step (3). Next, a call to Reduct is made at step (4). Reduct first removes all 4
.: ) outdegree zero non-K-vertices. Through the queue mechanism, it is ensured that )
- all initial outdegree zero non-K-vertices are deleted along with any which are :
{3 created as the reduction proceeds. A similar method is used for the other !
SN reductions schemes. !
The other reductions, indegree-one-K-vertex contractions and parallel and *
'::: series reductions, may recursively create new reducible vertices or edges. The )
*.’r newly created reducible vertices are put into a queue instead of immediately being

~.’ reduced to avoid redundant work. Parallel edges are reduced immediately,

\.. however. The network of Figure 5.1 is completely reduced by reducticns alone and

illustrates how a reducticn can create other reducible edges or vertices. A call to

- Reduct would result in the set of reductions given below. This network would be
\';f completely reduced and its reliability completely calculated by these reductions.
R
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(1) Reduce parallel edges es.e, to ag
() contract vertex Vg

(3) series vertex v,

(4) contract vertex vy

(5) reduce parallel edges esestoes
(8) series vertex v,

(8) series vertex v,

(7) reduce parallel edges
(8) series vertex

(9) reduce parallel edges

e10.€13toeyg
Vg

80.812t0eq

(10) contract vertex Vg
(11) reduce parallel edges ezegtoe;
(12) contract vertex Vg
(13) reduce parallel edges es.eqtoeg
(14) contract vertex Us

After reductions are performed, a network will

decompose

subcomponents if it contains any cut-vertices. This is done at step (6) of Main by a
call to Decomp. The rest of the calculations are performed iteratively for each
component DJ; under step (7). First, all edges with tail-vertices in X are moved to
the source. This may produce additional reductions, so another call to Reduct is
made for the subcomponent. Then, the terms corresponding to Equation 4.2 (for
that component) are produced until all such terms have been enumerated or the
CPU time limit is reached. Note that this CPU limit is based on the CPU time used
in calculating subcomponent reliability and is not based on total CPU time.

If the CPU time lirnit is reached for any of the subcomponents, the final value
obtained by the algorithm is a lower bound on reliability. Otherwise, the value

obtained is exact reliability. Choosing a CPU time limit will depend on computer
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facilities available and the network under analysis. Figure .5 shows the reliability
£ increment as a function of CPU time. The lower bound obtaired using a reascnable __
: ) CPU time limit will not differ much from the exact reliability for this large scaie ’!
;5 network example 2
. B. DATA STRUCTURE q
‘1
: There a many ways to represent a network on a digital computer. The most ,
X straightforward is to use an adjacency matrix: If vertices v; and v; are adjacent, ij
P M(i.,j)=1. and M(i,j)=0 otherwise. Matrices of the above type are, in practice,
. extremely sparse and this representation is very ineflicient in terms of space. It is
: often inefficient in terms of execution time, too, particularly when one is
. interested in operations that require retrieving information from all vertices
\ adjacent to a particular vertex, e.g., Neck, Decomp, Reduct, and Rsa. In this
:: situation, since most of the eiements of M(i,j) are null, the algorithm will spend a

greet amount of time retrieving and comparing zero values. For a static network,
an efficient representation is a packed matrix. In cur algorithm, the network is
dynamic, since it is reduced and decomposed many times during execution.
Therefore, a multi-linked data structure (multiple linked lists with links to other
data structures such as arrays) is used to represent the network. Every vertex has
a linked list of adjacent vertices, which, besides informing which vertices are
adjacent to it, also tells whether or not the vertex belongs to set K. Two such lists
are kept for each vertex, an "adjacent out” list and an "adjacent into” list. Of
jﬁ' course, each adjacency entry corresponds to an edge. So, in addition, there are

pointers indicating the addresses where information about edges is kept.

P

Figure £.3 illustrates this data structure. The vertex v; only can send

communication to vertices v;, and va, and vertex v; can receive the

(A - S MY | TN
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communication from vertex v, and send the communication to vertices v4 and v,,

and so on. TLis structure is a very eflicient data structure for dynamic networks.

e I

- C. ALGORITHMIC COMPLEXITY

PLNPLIY

N It is unportant to determine the complexity of the various parts of the
algorithm so that overall complexity can be understood. In this section, we analyze

~ the worst-case complexity of the subroutines, as written, and thus, find the

RIS 4 WSSO

> complexity of the overall algorithm. Not all of the subroutines have been written

as efficiently as possible because of the difficulty in programming such routines

and because of limited time. Furthermore, for problems of moderate size, it is

A

3 unlikely that much efficiency would be gained using more sophisticated routines,

. since, in practice, mecst of the routines written seem to operate mcre efficiently

\ than the worst-case analysis indicates.

There are three different reducticn schemes included in the algorithm: non-

K-vertex deletion, indegree-one K-vertex contraction and series and parallel

,_'- reductions. However, the last three of these interact directly.

: The non-K-vertex deletion, steps (1) and (2) in REDUCT, requires O(|£!)
operations in the worst case. For example, consider a complete acvclic graph

. which has only one K-vertex, the source. Here, one vertex at a time would be

1 deleted from the network, but, in the process, every edge wculd be examined

X exactly once until a single isolated vertex remained. The initial queue-building is of

f no consequence since it is O(| V|).

g Steps (3) through (5) constitute the other three reductions. Queue-building

again may be disregarded since it is at an O(!V|) operation. Initial parallel

- reductions may require O{! £ |) operations using a bucket sort technique to check

- for edges with common end vertices. The central step of the algorithm, step {5).

§ requires O(|V|?) time. This is true since (1) at most |V| series reductions or

. 30
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contractions can ever occur (2) each such reduction requires one O(| V|) check for

a newly created parallel edge, and (3) once identified, actually carrying out the
parallel reduction requires only constant time. Overall then, REDUCT requires
O(| Vi?) time.

There are two different decomposition schemes used, cut-vertex
decomposition and neck-vertex decomposition. The complexity of the cut-vertex
algorithm is O{|E|) since it is based on the O(|E|) depth-first search. The
complexity of the neck-vertex algorithm will be O(|V=K||E|) since finding neck-
vertices is based on repeated O(| £ |) searches on D—v for each non-K-vertexv. in
the worst case then, this decomposition requires O(|V!|£|) time. However, if we
fix the number of non-K-vertices as described in chapter 4, then the complexity of

neck-vertex algocithm will effectively be O(|£|).

It follows from the above discussion that the total complexity of the reduction
and decomposition algorithms is O(| V| |£|) normally, and O(|V|? when non-K-

vertices are fixed.

After reductions, computing SKT reliability requires O(' £!2:¥-X1) time. This is
obviously true since 2!Y-X! combinations of non-K-vertices must be produced and
an O(| £ ]) SAT computation made for each combination. When the number of non-
K-vertices is fixed, the computation becomes O(|E£|). The entire algorithm

therefore requires O(| £{2!Y-X!) time in general but only O(| V|?) time with non-K-

vertices fixed.
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V1. COMPUTATIONAL EXPERIENCE

In order to test the efficiency of the SKT reliability algorithm, we used two
kinds of networks, "complete” acyclic networks, and acyclic "street” networks. A
completa acyclic network is a graph D(V,£) such that V={v,vs ' - .vua{ and

e=(y;,v;)e£ it and only if i<j. Any such network with n vertices has exactly

n(n-1) "2—1 edges. A network is called an mxn “street” network if (1) its vertices can

be laid out in an m rows by n columns rectanguiar gridlj'(Z) for all vertices except
those in the last column there is an edge incident out ;ach vertex directed to the
right, and (3) for all vertices except those in the first row, there is an edge incident
out of each vertex directed upward. When n=m case the street network is calied

“square” (See Figure 6.1).

In the complete network we assigned v, to be the source and fixed v, as a K-
vertex. This insures that all edges and vertices are relevant. Other K-vertices were
chosen randomly as required. In the street network, all corner vertices were fixzd
as K-vertices, the lower left-hand corner vertex assigned as the source and all

other K-vertices chosen randomly.

A,  SOURCE-TO-ALL-TERMINAL RELIABILITY COMPUTATION

As described in chapter 4, the complexity of computing SAT reliability is
O(|E]). Since repeated computation of SAT reliability is the key to computing
general SKT reliability, it is interesting to see how much CPU time is required for a
single SAT computation. Figure 8.2 shows the CPU time used as a function of the
number of vertices in the two types of test networks. |V| is increased from 15 to
80 for the compiete network and from 9 to 144 for the square street network. Of

course, as a function of | V!, |E| is quadratic for the complete network ranging

................
.........




from 105 to 3160. |E| increases linearly as a function of |V| for the street

network ranging from 12 to 284. From the figure, it is clear that SAT reliability can
be computed very rapidly.

B. SOURCE-TO-K-TERMINAL COMPUTATION

Here we investigate the work required by the algorithm for computing general
SKT reliability and the efficiency gained by using reductions and decomposition.
Initial reductions and decomposition require O(| V| | £|) time. After reductions and
decomposition, the complexity of computing SKT  reliability is

O(rﬁacxf |21v‘-&l || £ i}) where C is the set of separable components of D and where

Vi—K; is the set of non-K-vertices in component i. Consequently, we expect an
exponential growth in the worst case for SKT computations. Figure 6.3 shows the
growth in CPU time as the number of non-K-vertices is increased, with and withcut

reductions and decomposition.

For the complete network, the number of non-K-vertices ranged from 3 to 14
out of a total 20 vertices. The reductions and decompositicn do not reduce
computation much here since the complete network is so densely connected. On
the other hand, computation times are significantly reduced when reductions and
decomposition are used in the street network, primarily because many non-K-
vertices are changed to K-vertices. Notice that the computation time required by
the street network without reductions and decomposition is almost the same as for
the complete network. This shows how complexity is dependent mostly on the

number of non-K-vertices.

C. COMPUTATION WITH NON-K-VERTICES FIXED

It the number of non-K-vertices is fixed, i.e. |V—-K|=c for some constant c,

B
o o

.Y,
N

o7,

‘9
.,

then the complexity of computing SKT reliability is O(] V!2)+0(c | E}) + 0(2¢ E!)

which is O(]| V|?). Thus, the complexity is polynomial instead of exponential. Of
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course, if reductions and decomposition are not used, the complexity becomes
O(|£|) which is better than O(|V|%). However, in practice, the reductions and
decomposition are very eflicient and do not seem to increase computation time.
Figure 6.4 shows the increase in computation for both test networks as |V is

increased.

D. LOWER BOUND COMPUTATION

As described in cihapters 4 and 5. a lower bound on SKT reliability is obtained
when the normal SKT reliability computation is truncated. Two heuristic
arguments were given in chapter 4 indicating that this lower bound should be fairly
good. Figure 6.5 shows, for actual computations, how the lower bound approaches
the exact network reliability very quickly. The test networks were assigned
different values of p; to show that the accuracy of the bound is not much affected
by p,. It appears that a CPU time limit can be used successfully for truncating SKT

computation to obtain a good lower bound when exact computation is not teasible.
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This thesis has explored the source-to-K-terminal reliability analysis problem
in acyclic directed networks. We have shown that the polynomial-time reductions

and decompositions reduce an exponentially complex problem to a polynomially

complex problem under certain conditions. Even when these conditions do not
hold, surprisingly large networks can be analyzed. The theoretical and
computational results obtained here can be used by researchers in analyzing the
reliability of directed acyclic networks and, in some cases, for the partial
reliability analysis of generd directed networks.

ST We assumed that all vertices work perfectly and that edge reliabilities are
constant while the network system is alive. These assumptions may not be
acceptable in a real-world situation. It may be necessary to treat vertex
reliabilities explicitly and, in some way, handle component reliabilities changing as
a function of time. This will complicate reliability analysis but does not make

analysis infeasible.

The extension to unreliable vertices is nol hard. All K-vertices must work if
the system is to work and thus, for unreliable K-vertices, we obtain network
reliability as usual and then multiply by the probability that all K-vertices function.
Unreliable non-K-vertices may be handled in several ways. One of the simplest
ways is to split each unreliable non-K-vertex into two perfectly reliable vertices
with an unreliable ~dge between the two vertices with a failure probability equal to
the failure probability of the original vertex. All edges incident into the original
vertex are made incident into the tail vertex of the new edge and all edges incident

out of the ortginal vertex are made incident out of the new head vertex. However,
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it is also possible to redefine the reduction and decomposition schemes and
redeflne the general reliability expression to directly handle unreliable non-K-
vertices. For exampie, the series reduction can include the vertex reliability so
that p. = pgPep(v;). Also, the term in the general reliability expression associated
with "no edges in £j; , work” can be replaced with a term which expresses "no
edges into v; work or v; fails, and no edges into v; work or v; fails, and ... except
edges going between pairs of veriices in {v;vj, - ,v}. This is not hard to
compute.

Reliability changing as a function of time can be handled in one of two ways.
The easiest way is to just input component reliabilities at different times and
compute network reliability at these times. Interpolation can be used to
approximate values between the times for which reliability is actuaily evaluated.
Another possibility is to produce a symbolic reliability expression that can be
repeatedly evaluated by a computer at different times, thus avoiding repeated
reductions, decompositions, etc. This might require large amounts of storage but,
if reliability can be calculated at all in a reasonable amount of time, it should be
feasible. Once the price is paid, computing reliability for any given point in time

should be very eflicient.

As modern computer, power and other network systems become larger and
more complicated, reliability becomes a more important part of design criteria.
Unfortunately, it is obvious that as networks become more complicated they also
become more difficult to analyze. Further research should concentrate cn ways to
streamline computations and to find accurate but easily computable bounds. The
methed described in chapter 4 for computing SKT reliability could be improved if
only non-zero terms were generated; An enurneration scheme similar to that of
Satyanaryana and Prabhakar [1978] should help in this respe.ct. The lower bound

described in this thesis is a good start on finding accurate and easily computable




L N, -'\' E A ol i

AN bounds, but every lower bound should be accompanied with an upper bound so that
adkas accuracy can be checked. Finding a good upper bound should be a priority for

2N ' future research.
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V a cut-vertex
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‘ v (b)

V not a cut-vertex

Neck Vertex to K-vertex Reduction
<Figure 3.1>

Decomposition
<Figure 3.2>
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Moving Edges to Source
<Figure 3.3>

All Terminal Reliability Zy(D,) = Rey(L2,
<Figure 4.1>
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Compietely Reducible Network by Reduction Schemes
<Figure 5.1>

Adj. 1n Y Ad) . out

Multilist Data Structure
<Figase 5.2>
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Souce-To-K Terminal Network
< Figure 6.3 >
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< Figure 8.4 >
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