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ABSTRACT

2 - E

Several, topological reduction and decomposition techniques are developed to

decrease the complexity or computing RNK(D), the source-to-K-terminal reliabilit.'

of an acyclic directed network D with independent component failures. RZK(D) is

computed in O( 1 V1 I E I ) time when D can be completely reduced. When rA

completely reduced, a graph D' remains such that RK(D)

Rae,(D,}R.x 3 (Dg) •••R 2 .(Dm) where M is a knowm constant and the D, are on--

or more separable components or D'. A simple scheme, exponenLtial in I V - A s

given for computing RsK(D). When I V - I become too large, a truncated versica

of this scheme usually gives an excellent lower bound on R.v(Di) and this an

excellent lower bound on RNx(D).

. A program using these techniques has been coded in FORTRAN anld ested on

" "compete' acyclic graphs and "street" networks with up to 100 vertices. Runnn,

on an IBM 3033AP under FORTRAN H (Extended), total CPU time for comput-i.a

exact reliability is less than 3.5 seconds when 1V-Kj!0 and V!:O0.
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. I.

Often. in the design and production of complex system such as computer

network, good system reliability is a critical requirement. Network reliability is

rarely treated explicitly and quantitatively, however, largely because of problems

of computational complexity and because few efficient computer programs exist

for computing network reliability. Only in the last few years have research and

development in this area provided usable results.

We wish. as efficiently as possible, to determine the network reliability for

specific class of networks. The purpose of this thesis is to develop new reduction

and decomposition techniques for computing network reliability and to show how

computational complexity can be decreased by using these techniques.

The network model which is used in this thesis may be thought of as a

communication network with directed edges, allowing only one way communication

from tail vertex to head vertex Additionally, we impose the restriction that the

network have no directed cycles. Such a model may be appropriate in hierarchical

communication networks such as command networks. Also, such networks may

arise as subproblems while computing the reliability of general directed networks,

AgrawaL [1962].

Networks can be divided into various classes, e.g.. directed, undirected, cyclic,

acyclic, etc. A large amount of literature exists on each class. (See Agrawal

[1982]. Ball and Provan [1981]. Satyanarayana [1982], Hagstrom [1980] and

Satyanarayana and Prabahkar [19781 for directed networks; see Hall and Provan

[1981], Johnson [1982], Satyanarayana [1982], Satyanarayana and Chang [1981],

Satyanaryana and Wood [1982], Valiant [1978], and Wood [1982] for undirected

6
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networks; see Agrawal (1982] and Satyanarayana and Prabbakar [1978] for cyclic

versus acyclic directed networks.) The specific model we will consider is the

directed acyclic network. denoted D( VE) where V is the set of vertices and E is

the set of edges. Each edge is represented by an ordered pair of vertices 0 =(u,v).

* The ordering implies that the flow of communication can move along e from u to v

only.

Each edge ej in the network functions with probability pi and fails with

probability qt = l-pi. All edge failures are assumed to be independent events. For

simplicity in the initial discussion, vertices are assumed to be completely reliable.

24. However, the extension to unreliable vertices 'wIll be handled briefly.

Vertex u can send communication to vertex vi in D if there is a directed path

of working edges from u to vi. One of the vertices s is designated as the "source"

or the "root". With respect to the source, there are three different measures of

reliability which are usually studied in directed networks:

(1) The source-to-terminal (ST) reliability, Rg(D). is the probability that s can

send communication to a specified vertex t in D.

(2) The source-to-all-terminal (SAT) reliability, Rv(D), is the probability that s can

send communication to all vertices of D.

(3) The source-to-K-terminal (S"T reliability, R.{D), is the probability that s can

send communication to every vertex in a specified set K (these vertices are

referred to as "K-vertices") with, by convention, s r.K.

Of course, (1) and (2) are special cases of (3). We consider the general case (20) in

this thesis.

Generally. the of problem computing network reliability is NP-hard. Certain

reduction and decomposition schemes exist which reduce the size of the problem

while preserving network reliability, e.g., Agrawal[ .982], Shog anr*:978] and Wood

L1982]. and, for special classes of networks, it is thereby possible to compute

7
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reliability in polynomial time. In general, however, the solution time grows

exponentially in the size of the network. In this thesis, we develop a method for

computing reliability which, in general, is exponential in the size of D. but which is

polynomial when the number of non-K-vertices, i.e., . V-K1, is fi,-ed.

The rest of this thesis is outlined as follows.

Chapter 2 contains a necessary definitions and graph theoretic concepts.

4" ,'Chapter 3 develops reduction and decomposition techniques to reduce the size

of a network in order to decrease computation time. Some of these techniques are

new.

Chapter 4 shows how to compute network reliability exactly when the number

of non-K-vertices is moderate. A truncated version of this technique is used to

obtain a lower bound on reliability when the number of non-K-vertices is too large.

We demonstrate that this lower bound will usually be "good."

Chapter 5 describes an algorithm to compute RK(D) or find a lower bound on

R, A,(D), and its implementation. The program is coded in FORTRAN with one main

* .. routine and 18 subroutines totaling about 1600 lines of code.".

4" Chapter 6 gives computational experience for the algorithm run on an IBM

3033AP system /370 with the FORTRAN H (Extended) compiler.

Chapter 7 is a conclusion and gives suggestions for further r3search.

5.
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IL. M ONS AND NETWOIRK REJAS MT TBEOIY

In this chapter. we give the definitions and notation used throughout this

thesis, and introduce basic network reliability theory.

A. DEFINITIONS AND NOTATION

A directed network D=(VE) comprises two fnite sets: V is the set of vertices

and E is the set of edges. Each edge aeE corresponds to an ordered pair of

vertices in the directed network. That is, e =(u,v) where u,vcV. The vertex u is

called the tait vertex of edge e and vertex v is called the head vertex of edge e.

For any two vertices ut and v in D, if there exists an edge a =(iL,V), then u and v

are said to be adjacent and edge e is incident into v and incident out of of u. The

inibree of a vertex v, denoted indeg(v). is the number of edges incident into v

and the outdogre of a vertex v, denoted outdeg(u), is the number of edges

incident out of v. Two vertices are connected (or "communicate") if there exists a

sequence of vertices and edges of the form ve, (vc0.l), vi. (v1 ,v5).(,,-1,VM). VM.

This sequence is a path of length m. If the v=Om. the path is a cycle.

Consider a undirected graph G(VE) formed by ignoring the ordering of the

edges in a directed graph D(VE). G is called the underlying graph of D. D is

connected if its underlying graph G is connected. G is connected if there is an

undirected path between all pairs of vertices. The vertex connectivity of D is the

minimum number of vertices which must be deleted from G (along with adjacent

edges, of course) in order to disconnect G or to create a trivial graph with only one

vertex. D is separable if its vertex connectivity is one. Otherwise D is

9
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-separabla In a separable graph, a vertex whose deletion disconnects the graph

is called a ut-v'ertez

Mergin a vertex v into another vertex w means removing all edges between v

and W and forming a single vertex V' by coalescing v and w such that any edge

incident into (out of) v or wi is now incident into (out of) '. Merging v and w is

sometimes also referred to as "identifying" v with w.

The SKTr reliability of a directed network D, denoted RXjf(D). is the probability

that all K-vertices in D aee connected by path of working edges and vertices from

source vertex s. The probability 'hat edge ej works is A = P-t. For now. wt

assume that all vertices work with probability one.

B. NETWORK THEORY AND SURVEY

We briefly discuss the complexity of the SKT reliability problem in

term. of the theory of NP-completeness and in terms of practical computation.

More detail can be found in Garey and Johnson 1979]. Ball and Provan[1981].

Algorithms to solve various problems can be broadly classified into two

categories, polynomial-time and exponential-Lime algorithms. An algorithm is a

polynomial-time algorithm if for a problem of size n, its running time is bounded

by a polynomial in n. Any algorithm that is not a polynomial-time algorithm is an

exponential-time algorithm. In combinatorics, a decision problem P is said to

belong to the class NP f given a tentative solution, the validity of the solution can

be checked in polynomial-time. P is "NP-complete" if it is equivalent to the

satlsflability problem of a conjunctive normal form boolean expression. A problem

is NP-hard if it is at least as hard as an NP-complete problem.

10
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A problem is #P-complete (number-P complete) if its solution is equivalent to

counting (not enumerating) the number of solutions to an NP-complete problem.

Any #'P-complete problem is NP-hard.

2. Pr-'hiprn Crnmp1iYity

Ball and Provan [1981] show that the ST reliability problem in an acyclic

directed network is a #P-complete problem. This implies that the SKT problem is

also #P-complete since problem instances restricted to !KI=2 are #P-complete.

Even finding an c-approximation to SKT reliability is an #P-complete problem.

In practice, these complexity results imply that a general problem of

large size cannot be solved analytically in a reasonable amount of time. In fact,

the time taken grows exponentially with size of the network. As will be seen,

however, practical problems of fairly large size can be handled with the techniques

developed here. Furthermore, even larger problems can be handled if one is

willing to accept a "good" lower bound on exact reliability.

3. R diun-tinn

Many reduction schemes have beeu developed to help solve various

network reliability problems. These reductions reduce the size of the network in

polynomial time while preserving reliability, i.e., they create a new, smaller,

network G from the original network G (G may directed or undirected and any

number of definitions of reliability may be used.) such that R(G)=M R(G') where Mf

is a known constant factor. In this way, a polynomial amount cf work is expended

in order to save, it is hoped, an exponential amount of work during later, more

general computations. In some special, but often practical cases, it is possible to

completely reduce a network and effectively compute its reliability in polynomial

time.

The reductions describe below give a rfavor for the difrerent types of

reductions which have been developed. Parallei and series reductions are well-

known schemes so they will not be discussed. The reductions described assume

11
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that vertices are completely reliable. However, most can be extended to handle

unreliable vertices.

(1) Polygon-To-Chain Reductions: A chain C in an undirected graph G is defined as

a alternating sequence of vertices and edges beginning and ending with vertices

such that all internal vertices have degree 2. Two parallel chains form a polygor

and this polygon can be replaced by a chain in a reduction that preserves

reliability in the K-terminal reliability problem, the analog to the SKT reliability

problem in an undirected network. This reduction and its implications are

developed by Wood [ 1982].

i!!  (2) 2-Neighbor Vertex Reduction: For the SKT reliability problem., any vertex u

that has exactly two neighbors v and w can be eliminated from the network if

uv'Kor u,v,w}eKanduAs.

(3) Parallel-Chain Reduction: Suppose E1j is Lhe set of all edges in a directed

network D whose endpoints are vi and j. In D. a chain Cj is an alternating

sequence of vertices and non-empty sets of edges where the internal vertices are

2-neighbor vertices in D. Two chains C, and C2 with identical endpoints are

parallel chains. Parallel chains can be reduced to a single chain in the SKT

reliability problem. Reductions 12) and (3) are developed by Agrawal [1982].

9%.4. flacompsitin

Sometimes it is possible to divide a given graph into a number of

subgraphs, such that each subgraph can be analyzed separately and the results

combined to obtain the reliability of the whole graph. We briefly describe some of

these methods based on vertex connectivity.

(1) 2-Connectad Graph Decomposition: Let G be a 2-connected graph with a pair of

vertices ju,vI whose deletion disconnects the graph. These vertices are called a

'separating pair." This separating pair partitions G into two subgrapbs G, and G2

such that G,_, C2 =G, GflG2 =$u.. E,0;6 and E2oo. It has been shown by Wood

[1982] that, in the K-terminal reliability problem. each subgraph deftnes a chain

12,,o
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Id
".' through a set of reliability computations on the subgraphs. The subgraphs may be

replaced by the chains so as to preserve reliability. Agrawal [ 1982] has proven the

analogous decomposition scheme for the SKT reliability problem on direcLed

networks. (2) Strong-connected Decomposition: A strong component of a directed

graph D is a maximal subgraph of D such that there exists a directed path from

every vertex to every other vertex in the subgraph. When computing R'j-(D), each

strong component can be considered separately. Computing each component

R,,(Dj) and multipling R,/K(Dj) is whole graph reliability RsK(D). This

decomposition has been developed by Shogan [ 1973] and Agrawal [ 1982].

Other decomposition schemes exist. Decomposition in 3-cornected

graphs is often possible, Rosenthal [1974]. Decomposition in 1-connected graphs

wil! be discussed in chapter 3.

13
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,q.

Any algorithm to solve a general network reliability problem has a running

time which is exponential in the size of problem. If by some method, the size of the

problem can be reduced, immense computational savings can be made. Therefore,

in this chapter. we introduce reduction and decomposition schemes which will

often reduce the size of the problem while always preserving reliability. Some of

these techniques are speciftc to the SKT reliability problem in acyclic directed

networks while others are of more general applicability.

Reduction schemes reduce a parameter of the size of the problem, usually

edges or vertices, in order to decrease computational complexity while preserving

network reliability. On the other hand. decomposition schemes split the whole

graph into subgraphs, computes subgraphs reliabilities separately and then
a.

%- combines these reliabilities in some way to compute overall network reliability.

A. REDUCTIONS

In this section. we discuss various reduction schemes which reduce the size of

D and. consequently, reduce the complexity of computing R.K(D). Under any

reduction, reliability of the network remains invariant up to a known, constant

factor, i.e., RK(D) = M'RKr(D') where !M is the known factor, K' is the new set of

K-vertices, and D' is the reduced network. In the following illustrations, all vertices

are represented as circles with K-vertices being darkened or shaded.

The parallel and series reductions are standerd, i.e., well-known and widely

used. The three reduction schemes,

14
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"indegree-one K-vertex contraction", "non-K-vertex deletion" and "neck vertex to

K-vertex reduction" are newly developed reductions.

-Pa*iJM FAgPQ Rav-iintinv

In a directed network, two parallel edges e=(uv) and eb=(uv) may

* be replaced a single edge e =(u,v) while preserving reliability if p = pe +pb -PPb

and M=1.

In a directed network, a pair of edges e,=(u,v) and ea, =(v,w) such that

indeg(u)=outdeg(v)=1 are series edges. If ve' K, edges e, and eb can be replaced

by single edge e,=(u,w) while preserving reliability if p, = PPb and M=1.

Let e=(uv) be an edge in D such that vK and indeg(')=l. In the SKT

reliability prcblem, communication from s to vertex vEK can only only occur via

edge ej sothis edge must work if the network is to work. Consequently, edge ei

can be contracted such that R..(D)=M R(D') and M=pj

where D' V-u -J + uE - e

K-v'+w, ifue'K
% K--u +w, if ucK

The validity of this reduction is easily showa. Let ej(u,v) be the edge

described above in the acyclic network D. Let Fj denote the event that e1 is

working, and let t denote the complementary event. Since RK(D) is just a

probability, the rules of conditional probability can be applied to obtain

RgKr(D) = pRK(D Fj+ qt RI(D I j)

=pjRd((DIF) since RK(DiF,)=O

15
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p P~R.(D')

since no new paths are created by contraction.

4. Nnn-W-V rtgmY nfltinn

In the SKT reliability problem, an outdegree zero non-K-vertex can be

deleted from the network without changing network reliability since such a vertex

i irrelevant. In thls case R*(D) = M RaK(D-) and M=1.

5. NTork Vprt My tn K-,P-tpv Rpumutinn

Suppose u and v are two vertices in D such that u EK, veK and all

paths from s to u include v. 1 is called a neick vertex. It may or may not be a

cut-vertex. Since s must communicate with v before it communicates with u,

1.K(D) = M R,(x 1,,)(D) where M=1. Thus, the neck vertex to K-vertex reduction

simply changes K to K+v. See Figures 3.1a and 3.lb. (All figures are given in

Appendix A.)

The neck vertex to K-vertex is termed a "reduction" because it reduces

the parameter I V-KI in D. As will be seen in chapter 4. the general algorithm for

computing R,,(D) runs in time proportional to 21 V- KIl so this is a reduction

according to our definition. Furthermore, the neck vertex to K-vertex reduction

will often allow other reductions or decomposition to take place.

Numerous other reductions exist as exemplified in chapter 2, section

B3. However, none of these reductions has been implemented because of their

complexity, and therefore, no other reductions will be described here.

B. DECOMPOSITION

Sometimes it is possible to decompose a given network D into a number of

subnetworks. Each subnetwork can then be analyzed separately and the results

combined in some way to obtain overall network reliability.

16
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Decomposition can result in substantial savings because, in general, the time

to analyze the whole system is exponential in size of the system. Effort needed to

compute R.j(D) using decomposition is the sum of efforts needed for each

subproblem plus the effort, normally polynomial in the size of D, in performing the

decomposition and recombining the result. Without decomposition. the necessary

work is roughly the product of the effort needed to solve the individual problems.

A connected, undirected, network G( VE) has a cut-vertex v if there

exist components (subgraphs) C, and C2 such that C1 n C2=v and C, U C2= G. Any

communication from one component to the other must pass through v. In this

case we also say that v separates C and C2 . A network which has a cut-vertex is

"separable" and one which has none is called "nonseparable." A directed network D

is separable if its underlying graph G is separable.

Let D have nonseparable components C1 ,C2. . C Any component

which has only one cut-vertex is called a pendm component. If a pendant

component, Q, contains no K-vertices except possibly its cut-vertex, then it is

completely irrelevant with respect to reliability since none of its edges are in any

path from the source to a K-vertex. Thus, this component, excluding its cut-vertex,

can be deleted from the network while preserving network reliability in the SKT

reliability problem. This type of deletion may be recursively applied urtil only

relevant components remain-

Cut-vertices are not efficiently found in a directed network if each edge

is represented in one direction, e.g., if all edges incident into each vertex are

stored contiguously. However, if edges are stored both by tail vertex and head

vertex, then this is exactly the representation of the underlying undirected

network. Thus, an efficient algorithm fcr finding cut-vertices in an undirected

graph may be used to find cut-vertices in D. A slight modification to the

17



DFS (depth-first search) algorithm due to Tarjan [1972] can find all cut-vertices in
%'o(E I) time.

Once all cut-vertices have been found and all irrelevant components

removed, any cut-vertices remaining which are not K-vertices are neck verticeE

and may be added to the set K. It is fairly obvious that each component must work

by itself if D is to work Since edge reliabilities are independent it follows that

Ra(D) = RaK(D 1 ) RK (D) ... RaK(Dm.) where the Di are the nonseparable,

relevant components of D. This is identically equal to a network which has the

same components as D but whose only cut-vertex is the source. A more rigorous

demonstration of this identity can be made by applying the decomposition scheme

A described next, "moving edges to source," to all edges incident out of cut-vertices.

FRgure 3.2 demonstrates the results of cut-vertex decomposition applied to a

% network D with five components, two of which are irrelevant. In this case,

" R.,(D) = RK(D t).R. (D2) .1.K(Ds).

2. Mknvintj Edges~ 1n Snun*

In this section, we discuss a technique which does not fit neatly under

the rubric of decomposition or reduction since it only moves edges from one place

to another in the network. However, by moving certain edge tails to the source s,

new parallel reductions, series reductions or contractions may be made possible

along with cut-vertex decompositions. Consider an edge e =(u,u) such that ueK.

Edge a can be made incident out of any other K-vertex UeK without affecting

reliability as long as no cycles are created. A simple conditioning argument can be

sed to show this, Agrawal [1982]. The source is the obvious candidate to receive

the edge tails since it has no edges incident into it and therefore no cycles can

possibly be created. Figure 3.3 shows an example where this operation creates a

cut-vertex and allows a parallel reduction.

18
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This chapter gives a general method for computing SKT reliability in an acyciuc

directed network. The method is based on repeated computation of SAT reliability

of certain subgraphs of D and, consequently, we first discuss SAT reliability. After

deriving a method for computing SKT reliability, a simple lower bound becomes

apparent and several heuristic arguments are given indicating that the bound's

accuracy should be good. Actual computational examples are reserved for the

* next chapter.

A. SOURCE-TO-ALL TERMINAL RELIABILITY

* Let D(VE) be an acyclic directed network and let qt~l-pA be the failure

probability for any edge etEE and let E1 be the set of edges incident into u2 . Also.

let the vertices be numbered such that v Iv 2. , is an an acyclic ordering of

4 V. Then. SAT reliability may be expressed as

R.V(D) P ( s communicates with all v eV-u,(.)

and at least one edge into v,, works)

since there no edges incident out of v,~ by the acyclic ordering

=svq by independence

Re qji1-{ qj

I T-1 qjacE

VL L r'J



Another way to see this is to use the fundamental topological property that

&R(D) is unchanged if any edge (ui) with u4K is replaced by an edge (wv) with

the same reliability and weK has a lower number than u in an acyclic ordering of

D. Consequently. in the SAT problem, we may move all edges so that they come

out of the source just like the "moving edge to source" operation in section 3.2.

Equation (4.1) is then trivially true for a network where all edges come out of the

source. (See Figure 4. 1). The complexity of computing R~V(D) is easily seen to be

0(1 E I) if all edges are with ccmmon head vertices are stored contiguously.

B. SOURCE-TO-K-TERMINAL RELIABILITY

Now we consider the SKT reliability problem in D. Let D(V,E) be a acyclic

directed network with KC V. By simple state-space partitioning,

R.*(D) = P( s communicates with all vEV)

+ E P(s communicates with all v E V-ut but not with vi)
v,1 , K

+ E P( s communicates with all vEV--i--uj but not with % or vi)
* - v 4.t,1 W K

+ P( s communicates with all v cK but not with any v e V-K)

But,

P( s communicates with all vcV) = Rsv(D)

P( s communicates with all v-EV-vt but not withv( ) = R.(v-.)(D). P( No edge into

v, works)

P( s communicates with all veV-u--vj)=R(v_N_,,)(D). P( No edge into vi or vj

works except an edge e =,vt,vj) or e =(vjt))
etc.,

In general. then.

20
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• . K.(D) = ev(D) + rlqt e~v(D -t)] (4.2)

+ E-r R (I- -I

-= = .vEL . + r ,l qjR,,(-vt-jvA)

where Et is the set of edges going into vi. Ej is the set of all edges going into vJ or

vj except edges going between vt and vj, Eqt is the set of all edges going into v,, vj

or ,, except edges going between pairs of vertices in ,vp , , etc.

The complexity of computing RK(D) is, via the above formula, exponential -n

the number of non-K-vertices. The total number of additive terms in equation (4.2)

is E V-KI = 21 V-KI where C is the number of ways to choose i elements out of n
t.0

elements. Computing SKT reliability thus requires 0(1E 121V - K1) time using

equation (4.2). Of course, if the number of non-K-vertices is fixed as I E I changes,

computation is effectively 0( 1 E I).

C. A LOWER BOUND ON SKr RELIABILITY

Since computation increases exponentially in the worst case, we may be

satisfied with an approximation to SKT reliability which requires less time to

compute than exact reliability. Since all terms in equation (4.2) are positive, any

subset of these terms provides an approximation to SK reliability whica is a lower

bound. Also, the product formed by lower bounds on independent components of a

network yields a lower bound on overall network reliability. The subset of terms we

choose to form i.his lower, bound consists of terms enumerated in the order given in

equation (4.2) until some specified computational limit is reached. The motivation

for this scheme being fairly accurate is given below.

21
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*... Suppose pt p for all et iE and p is close to 1. Consider the first few terms of

Equation (4.2).

Rvy(D) = Ri - "- 1.0

rI j'.(V,)D--t)= q'ZJI ri (.I EI I~ qIAI
.r.

@,-A~~~Vi j Vi -t

Thus, the contribution of the terms to the total reliability sum diminishes

rapidly unless there are a significant number of edges connecting non-K-vertices.

Another reason that the lower bound should often be good is that terms with

many vertices deleted may be identically zero. For example, consider an ST

reliability problem where the shortest path from s to t has 1 edges in it. This path

must contain 1-1 non-K-vertices and so RM(v.__)(D-u-uj---k) = 0 when

I V- vt .. .. .... st I<1 -1. Of course, other terms may be identically zero, too.

For example, in any K-terminal problem, the term corresponding to D-vt--v will

be identically zero if all paths from s to some K-vertex v must include either Vj or

Computational experience in Chapter V lends credence to the accuracy of this

lower bound.

" %
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V. AA PmMP&T RB UE

The algorithm presented here for reliability evaluation of directed acyclic

networks is based on the theory developed in chapter 3 and chapter 4. The

program is intended for general use so it was coded in the widely available

language, FORTRAN. This language is available on most computer systems and is

still one of the most popular languages among operations research analysts.

A ALGORITHM

The objective in this section is to develop an efficient algorithm for computing

SKT reliability in a directed acyclic network. Initially, polynomial-time reductions

and decomposition are used to reduce network parameters and decompose the the

network into subnetworks, if possible. If reliability is not completely computed via

reliability-preserving reductions, the general SKT reliability expression is

computed as described in chapter 4. If a specified CPU time limit is reached for

any component, the computation is truncated and a lower bound on reliability is

produced.

There is a one main algorithm and numerous subroutine algorithms in the

program. We discuss the main program and several important subroutina

algorithms for understanding. The structure of the main program is based on a
,.)

step by step approach which avoids redundant work. Comments will be given in

curly brackets.
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MAin

Input: A directed acyclic network D with vertex set V, V!2, edge set E, E'!2,

and set KCV, IKIZt2. Edge reliabilitypi for eachedge ej in E.

Output: Rs(D), exact reliability, if CPU time less than specified amount, otherwise

a lower bound.

(1) Initializej M = 1.0, bound=.false.

(2) Read all edge data and create network data structure

(3) JChange neck vertices to K-verticesj K = Neck (DK)

(4) Prform reductions for whole networki Reduct (D.K,M)

(5) If remaining vertices I VI :. 1. go to end.

(6) JD1.D2 ...,Ddj= Decomp(D)

(7) For each subnetwork Dt

(a) VIntiaLizei lowbnd=.false., set time = 0.

(b) JMove edge tails to sourcej For each edge e =(vj,v') with vjeK

Imove vj to sj Move(e)

(c) Construct the data structure for subnetwork Di

(d) lReduce subnetworki Reduct (D ,K.M)

(e) Initialize j sumpro=O

(f) Find SAT reliability j sumpro = Rsa(Dt),

(g) Count the remaining non-K-vertices for Dj, i.e., if vertex number

> 0, count=count-!1

(h) If count a! 1, !fnd the terms in Z[(1q,)R.. (D-v, -vj))

1) Find the next combination of non-K-verticesi

.... ...... j = Combj.)

2) 1 Find.-q for E#jj*.. j4 M' = Multi(v 1 .V' . . . . . )

3) sumpro-sumpro + M'- Rsa(D-- 1 -v, ..... -vj,)

4) If elapsed CPU time time limit then towbnd-.true. and

24
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bound=.true.

5) If lowbnd=.false. and all combination have not been

enumerated then go to (8.h. i)

(i) M=M x sumpro

(8) If bound=.false. print "Exact reliability is" M, otherwise print "Lower

bound on reliability is" M

End Main

funcUn Nock (D.)

Input: DK

Output New set of K-vertices

(This routine finds all neck vertices and changes them to K-vertices)

(1) Put all v-'K into Q,

(2) k= IKI

(3) While Q., s

(a) Remove v from Q,,

(b) Search all K-vertices in D-vt using Depth-First Search

(c) k'= number of K-vertices reached

(c) If k'<k then K=KJ'v j

(3) Return (K).

End of Nock

subroutine Refc(D.KM)

Input: DK,M

Output: Reduced network D with modified K and M

This routine performs all non-K-vertex reductions, series-parallel
reductions and indegree-one K-vertex contractions)

(1) Construct Qd = UV-K I outdeg(v)=O

25
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(2) While Qd s

(a) For each vertex vi incident to vi, if outdeg(vj)=l and vjEV-K

then add vi to Qd

(b) Nonkre (v)

(3) Construct Qs = vV-K I iadeg(vt)= outdeg(v1 )=1 and Qc = veKI

indeg()-1

(4) For each vt

(a) Check all outgoing edges, if e(vj,vj),e(v,vj) are found then

Parall(a)

(b) It parallel reductions creates new series or contraction vertices,

put these into Q or Q0 , respectively.

(5) While Q.;t and 6 i
(a) If Qs Pe Series(q#,(i))

1) If series reductions create new parallel edges, do parallel

reduction. Parall( e)

2) If parallel reductions create new series or contraction

vertices, put these into Q, or Q0. respectively.

(b) If Q oo Contra( Q (i))

1) If the contraction creates a new contraction vertex, put

these into Qc

2) It the contraction creates new parallel edges, do parallel

reduction Parall(a)

3) If parallel reductions create new series or contraction

vertices, put these i-to Q or Q., respectively

(6) Return (D,KM)

Ed Redahct

26
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xubrauUne Decomp(D)

Input: D

Output: Subnetworks D.D 2 , ..., D,

(1) While not all cut-vertices have been found

(a) Using DFS, find pendant component Dt with cut-vertex vt

(b) If D has no K-vertices except possibly vj then delete D4

(2) Return (D, D .....D)

Eid Decomp

After reading in the data and creating the neLwork data structure, the

algorithm begins by changing any neck vertices to K-vertices by a call to Neck at

step (3). Next, a call to Redact is made at step (4). Reduct first removes all

outdegree zero non-K-vertices. Through the queue mechanism, it is ensured that

all initial outdegree zero non-K-vertices are deleted along with any which are

created as the reduction proceeds. A similar method is used for the other

reductions schemes.

The other reductions, indegree-one-K-vertex contractions and parallel and

series reductions, may recursively create new reducible vertices or edges. The

newly created reducible vertices are put into a queue instead of immediately being

reduced to avoid redundant work. Parallel edges are reduced immediately,

however. The network of Figure 5.1 is completely reduced by reductions alone and

illustrates how a reduction can create other reducible edges or vertices. A call to

Rduct would result in the set of reductions given below. This network would be

completely reduced and its reliability completely calculated by these reductions.

.27
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(1) Reduce parallel edges es,e4 to es

(2) contract vertex Ve

(3) series vertex V4

(4) contract vertex V2

(5) reduce parallel edges sse5 to e3

(6) series vertex V?

(6) series vertex V7

(7) reduce parallel edges el 0 ,e11 to el0

(8) series vertex US

(9) reduce parallel edges • 10-e 12 to e 1o

(10) contract vertex V9

(11) reduce parallel edges e2,ee to e2

(12) contract vertex S
(13) reduce parallel edges eae7 to 23

(14) contract vertex Ve

After reductions are performed, a network will decompose into

subcomponents if it contains any cut-vertices. This is done at step (6) of Main by a

call to Deccmap The rest of the calculations are performed iteratively for each

component Di under step (7). First, all edges with tail-vertices in K are moved to

the source. This may produce additional reductions, so another call to Reduct is

made for the subcomponent. Then. the terms corresponding to Equation 4.2 (for

that component) are produced until all such terms have been enumerated or the

CPU time limit is reached. Note that this CPU limit is based on the CPU time used

in calculating subcomponent reliability and is not based on total CPU time.

If the CPU time limit is reached for any of the subcomponents, the final value

obtained by the algorithm is a lower bound on reliability. Otherwise. the value

obtained is exact reliability. Choosing a CPU Lime limit will depend on computer

28
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facilities available and the network under analysis. Figure e.5 shows the reliability

increment as a function of CPU time. The lower bound obtained using a reasonable

CPU time limit will not differ much from the exact reliability for this large scale

network example

B. DATA STRUCTURE
There a many ways to represent a fretwork on a digital computer. The most

straightforward is to use an adjacency matrix: If vertices v, and vj are adjacent,

M(i,j)=l. and M(ij)=0 otherwise. Matrices of the above type are, in practice,

extremely sparse and this representation is very inefficient in terms of space. !t is

often inefficient in terms of execution time, too, particularly when one is

interested in operations that require retrieving information from all vertices

adjacent to a particular vertex. e.g., Neck. Decomp. Reduct. and R9L In this

situation, since most of the elements of M(i,j) are null, the algorithm will spend a

great amount of time retrieving and comparing zero values. For a static network.

an efficient representation is a packed matrix. In our algorithm, the network is

dynamic, since it is reduced and decomposed many times during execution.

Therefore, a multi-linked data structure (multiple linked lists with links to other

data structures such as arrays) is used to represent the network. Every vertex has

a linked list of adjacent vertices, which, besides informing which vertices are

adjacent to it, also tells whether or not the vertex belongs to set K. Two such lists

are kept for each vertex, an "adjacent out" list and an "adjacent into" list. Of

course, each adjacency entry corresponds to an edge. So, in addition, there are

pointers indicating the addresses where information about edges is kept.

Figure 5.3 illustrates this data structure. The vertex vI only can send

communication to vertices v2 , and v'., and vertex v2 can receive the

.29
9%

,

%' . . . * % . . . . .. . . . . .. . . -. ... . . . . . . . . . . . .. . .



4A

communication from vertex v1 and send the communication to vertices v3 and V4 ,

and so on This structure is a very efficient data structure for dynamic networks.

C. ALGORITHMIC COMPLEXITY

It is important to determine the complexity of the various parts of the

algorithm so that overall complexity can be understood. In this section, we analyze

the worst-case complexity of the subroutines, as written, and thus, tLnd the

complexity of the overall algorithm. Not all of the subroutines have been written

as efficiently as possible because of the difficulty in programming such routines

and because of limited time. Furthermore, for problems of moderate size, it is

unlikely that much efficiency would be gained using more sophisticated routines.

since, in practice, most of the routines written seem to operate more efficiently

than the worst-case analysis indicates.

There are three different reducticn schemes included in the algorithm: non-

K-vertex deletion, indegree-one K-vertex contraction and series and parallel

reductions. However, the last three of these interact directly.

The non-K-vertex deletion, steps (1) and (2) in REDUCT, requires O(jE!)

operations in the worst case. For example, consider a complete acyclic graph

which has only one K-vertex. the source. Here, one vertex at a time would be

deleted from the network, but, in the process, every edge would be examined

exactly once until a single isolated vertex remained. The initial queue-building is cf

no consequence since it is 0(1 VI).

Steps (3) through (5) constitute the other three reductions. Queue-building

again may be disregarded since it is at an 0(! VI) operation. Initial parallel

reductions may require O( E ) operations using a bucket sort technique to check

for edges with common end vertices. The central step of the algorithm, step (5),

requires 0(1 VI 2) time. This is true since (1) at most IV1 s~ries reductions or
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contractions can ever occur (2) each such reduction requires one 0(1 V) check for

a newly created parallel edge, and (3) once identified, actually carrying out the

parallel reduction requires only constant time. Overall then, REDUCT requires

0(1 V12) time.

There are two different decomposition schemes used, cut-vertex

decomposition and neck-vertex decomposition. The complexity of the cut-vertex

algorithm is 0(IEl) since it is based on the O(IEI) depth-first search. The

complexity of the neck-vertex algorithm tfrll be 0( 1 V-KI I E j) since finding neck-

vertices is based on repeated 0(1E I) searches on D-v for each non-K-vertex v. in

the worst case then, this decomposition requires 0( 1 V! I E 1) time. However, if we

fix the number of non-K-vertices as described in chapter 4, then the complexity of

neck-vertex algocithm will effectively be 0( 1E l).

It follows from the above discussion that the total complexity of the reduction

and decomposition algorithms is 0(1 VII E) normally, and 0(1 Vj2 ) when non-K-

vertices are fixed.

After reductions, computing SKT reliability requires 0(! E 2, V-I) time. This is

obviously true since 21V-Xl combinations of non-K-vertices must be produced and

an 0(1 E 1) SAT computation made for each combination. When the number of non-

K-vertices is fixed, the computation becomes O(IE ). The entire algorithm

therefore requires O(IEI,>v-K;) time in general but only 0(1 V1 2) time with non-K-

vertices fixed.
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In order to test the efficiency of the SKT reliability algorithm, we used two

kinds of networks, "complete" acyclic networks, and acyclic "street" networks. A

complete acyclic network is a graph D(VE) such that Vvlv, 2 .' ,vj and

S e=(j,,u)cE if and only if i<j. Any such network with n vertices has exactly

2 edges. A network is called an mxn "street" network if (1) its vertices can~2

be laid out in an m rows by n columns rectangular grid! (2) for all vertices except
i>

those in the last column there is an edge incident out each vertex directed to the

right, and (3) for all vertices except those in the first row, there is an edge incident

out of each vertex directed upward. When t =m case the street network is called

"square" (See Figure 6.1).

In the complete network we assigned v, to be the source and fixed v, as a K-

vertex This insures that all edges and vertices are relevant. Other K-vertices were

chosen randomly as required. In the street network, all corner vertices were fdxad

as K-vertices, the lower left-hand corner vertex assigned as the source and all

*other K-vertices chosen randomly.

A. SOURCE-TO-ALL-TERMINAL RELAkBILITY COMPUTATION

As described in chapter 4. the complexity of computing SAT reliability is

O(NEI). Since repeated computation of SAT reliability is the key to computing

general SKT reliability, it is interesting to see how much CPU time is required for a

single SAT computation. Figure 8.2 shows the CPU time used as a function of the

number of vertices in the two types of test networks. I VI is increased from 15 to

80 for the complete network and from 9 to 144 for the square street network. Of

course, as a function of V!, E is quadratic for the complete network ranging
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from 105 to 3160. El increases linearly as a function of I VI for the street

network ranging from 12 to 284. From the figure, it is clear that SAT i'eliability can

be computed very rapidly.

B. SOURCE-TO-K-TERMINAL COMPUTATION

Here we investigate the work required by the algorithm for computing general

SKT reliability and the efficiency gained by using reductions and decomposition.

Initial reductions and decomposition require 0(1 VI I E I) time. After reductions and

decomposition, the complexity of computing SKT reliability is

O(rmaxj I21v  I E I i) where C is the set of separable components of D and where
tc

Vj-Kq is the set of non-K-vertices in component i. Consequently, we expect an

exponential growth in the worst case for SKT computations. Figure 6.3 shows the

growth in CPU time as the number of non-K-vertices is increased, with and without

reductions and decomposition.

For the complete network, the number of non-K-vertices ranged from 3 to 14

out of a total 20 vertices. The reductions and decomposition do not reduce

computation much here since the complete network is so densely connected. On

the other hand, computation times are significantly reduced when reductions and

decomposition are used in the street network, primarily because many non-K-

vertices are changed to K-vertices. Notice that the computation time required by

the street network without reductions and decomposition is almost the same as for

the complete network. This shows how complexity is dependent mostly on the

number of non-K-vertices.

C. COMPUTATION WITH NON-K-VERTICES FIXED

If the number of non-K-vertices is fixed, i.e. IV-KI =c for some Constant c,

then the complexity of computing SKT reliability is 0(1 V!':)+O(c I El) - 0(2' , E:)

which is 0(1 VI 2). Thus, the complexity is polynomial instead of exponential. Of
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course, if reductions and decomposition are not used, the complexity becomes
0(1 El) which is better than 0(1 VI 2). However, in practice, the reductions and

decomposition are very efficient and do not seem to increase computation tune.

Figure 6.4 shows the increase in computation for both test networks as I V is

increased.

D. LOWER BOUND COMPUTATION

As described in chapters 4 and 5. a lower bound on SKT reliability is obtained

when the normal SKT reliability computation is truncated. Two heuristic

arguments were given in chapter 4 indicating that this lower bound should be fairly

good. Figure 6.5 shows, for actual computations, how the lower bound approaches

the exact network reliability very quickly. The test networks were assigned

different values of pt to show that the accuracy of the bound is not much affected

by pt. It appears that a CPU time limit can be used successfully for truncating SKT

computation to obtain a good lower bound when exact computation is not feasible.
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This thesis has explored the source-to-K-terminal reliability analysis problem

in acyclic directed networks. We have shown that the polynomial-time reductions

and decompositions reduce an exponentially complex problem to a polynorrmally

complex problem under certain conditions. Even when these conditions do not

hold, surprisingly large networks can be analyzed. The theoretical and

computational results obtained here can be used by researchers in analyzing the

reliability of directed acyclic networks and, in some cases, for the partial

reliability analysis of general directed networks.-,1

*,5. We assumed that all vertices work perfectly and that edge reliabilities are

constant while the network system is alive. These assumptions may not be

acceptable in a real-world situation. It may be necessary to treat vertex

reliabilities explicitly and, in some way, handle component reliabilities changing as

a function of time. This will complicate reliability analysis but does not make

analysis infeasible.

The extension to unreliable vertices is noL hard. All K-vertices must work if

the system is to work and thus, for unreliable K-vertices, we obtain network

reliability as usual and then multiply by the probability that all K-vertices function.

Unreliable non-K-vertices may be handled in several ways. One of the simplest

ways Is to split each unreliable non-K-vertex into two perfectly reliable vertices

with an unreliable edge between the two vertices with a failure probability equal to

the failure probability of the original vertex. All edges incident into the original

vertex are made incident into the tail vertex of the new edge and all edges incident

out of the original vertex are made incident out of the new head vertex. However,
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it is also possible to redefine the reduction and decomposition schemes and

redefine the general reliability expression to directly handle unreliable non-K-

vertices. For example, the series reduction can include the vertex reliability so
that p, = ppip(vi). Also, the term in the general :eliability expression associated

with "no edges in Eq...t work" can be replaced with a term which expresses "no

edges into vi work or v, fails, and no edges into vj work or vy fails, and ... except

edges going between pairs of vertices in vi,vi,... Vj;e, This is not hard to

compute.

Reliability changing as a function of time can be handled in one of two ways.

The easiest way is to just input component reliabilities at different times and

-compute network reliability at these times. Interpolation can be used to

. approximate values between the times for which reliability is actuaily evaluated.

Another possibility is to produce a symbolic reliability expression that can be
+.+

4. repeatedly evaluated by a computer at different times, thus avoiding repeated

reductions, decompositions, etc. This might require large amounts of storage but,

if reliability can be calculated at all in a reasonable amount of time, it should be

feasible. Once the price is paid, computing reliability for any given point in time

should be very efficient.

As modern computer. power and other network systems become larger and

more complicated, reliability becomes a more important part of design criteria.

Unfortunately, it is obvious that as networks become more complicated they also

become more difficult to analyze. Further research should concentrate on ways to

streamline computations and to find accurate but easily computable bounds. The

method described in chapter 4 for computing SKr reliability could be improved if

only non-zero terms were generated, An enumeration scheme similar to that of

Satyanaryana and Prabhakar [1978] should help in this respect. The lower bound

described in this thesis is a good start on finding accurate and easily computable
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bounds, but every lower bound should be accompanied with an upper bound so that

accuracy can be checked. Finding a good upper bound should be a priority for

future research.
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'.4. APPENDIXA

I. I

(a)
v a cut-vertex

v (b)v not a cut-vertex v

Neck Vertex to K-vertex Reductionr, .<Fig ure 3.1 >
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.4

<Figure 3.2>
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Moving Edges to Source
<Figure 3.3>
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U~ Terminal Reliability 2'?.(D 1) R (2
<Figure 4. 1>

39

4



713 .i4. 9
- 0

10 12

9 2

4

Ccmp;cr-tely Reducible -Netwvork by Reduction Schemcs

(Figrure 5.1>

4e

Y3

Edge VetxEdg'e

el-c

AdJS in V v

eF~ 5f2

2 
1V2V 

2

e3 40, V v
23-

e 2 v4t' 
:e-Y4-

Ad nvAJ u

MuIiitDt tutr
.'~~~< i S'S*.- 5.2 >-~. . . . .



V 1 6

5 vs

V$ V3 1)4

4x4 Square "Street" Network
<Figure 6.1 >

se.

Source-To-A Terminal Network
< Figure 8.2 >
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Network Reliablity Increment

< Figure 6.5 >
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