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Abs tract

Dynamic stall effects are analyzed in this investigation for cases of

444--an inertially static airfoil in a flow field rotating at constant rate

(gust response), and (2) an airfoil pitching at constant rate in a steady

flow field. The method used is a boundary layer solution of the momentum-

9, integral equation by a modified von Karman-Pohlhausen technique.

1-.'- Work accomplished by Docken in 1982 using this method to match

Kramer's experimental results for gust response is reviewed, corrected,

and continued. The validity of the closure equation and the assumptions

key to its derivation are examined, concluding that the closure equation

is justified. A better match of Kramer's airfoil sections results in

dynamic stall predictions very close to experimental data. The effect

of varying airfoil thickness and camber is investigated.

By consideration of the non-Newtonian motion of the boundary layer

on the surface of a pitching airfoil, the momentum-integral method is

extended to the second case. Using the Moore-Rott-Sears model for flow

separation criteria, analytical results were computed and compared with

experimental data. Reduction in adversity of the pressure gradient

accounts for only a fraction of the total dynamic effect, and it is

proposed that mass introduction into the boundary layer from the free-

s~ream may be a strongly contributing factor. This phenomena is

demonstrated to have a large effect, and an argument is presented for

the proper amount of mass introduction.

5'
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INVESTIGATION OF EFFECTS CONTRIBUTING TO DYNAMIC STALL

USING A MOMENTUM-INTEGRAL METHOD

I. Introduction

Discussion

Dynamic stall is a phenomenon that has received considerable attention

over the past two decades. It is understandably of intense interest to the

helicopter and compressor industries, where much of the research has been

conducted, and more recently has received the attention of the aerospace

* industry in applications to winged space shuttle vehicles (Ref 23:2).

The majority of the research has been experimental, and most of the

analytical work has relied on some sort of experimental data as input.

Further, because of the importance of practical application (i.e., helicopter

blades), nearly all of the work in recent years has dealt with oscillatory

motion of the airfoil. Consequently, there is still much to be learned

and understood about the basic physical flow phenomena which contribute to

dynamic stall.

The concept is not difficult. When an airfoil angle of attack is

increased rapidly through a range that includes the static stall angle,

the maximum lift and drag are significantly increased, stall is delayed to

a higher angle of attack, and the corresponding loss of lift is often much

* more severe in nature. The problem then is one of complexity. Contributing

factors are both viscous and inviscid. The phenomenon is strongly dependent



.e - on the rate of pitch, free-stream velocity, and frequency and amplitude-p

(for an oscillating airfoil), and shows varying degrees of dependence on

airfoil shape, 3D flow effects, Reynolds number, and Mach number

(Ref 1:304).

Problem Statement

It is far beyond the scope of this study to attempt to analytically

predict dynamic stall effects on an airfoil. Rather, the purpose of this

thesis is to attain a better physical understanding of some of the ,L.tri-

buting causes of dynamic stall. As such, restriction is made to t

analysis of boundary layer effects for an airfoil undergoing a cort rate

of change in angle of attack. It would seem essential that the phymics of

this relatively simple problem should be well understood and documented

prior to an analytical study of more complex oscillatory motions, but such

has not been the case.

_- The method of analysis will be to integrate a solution of the unsteady

(time-dependent) boundary layer equations, using a modified von Karman-Pohl-

-. hausen momentum-integral technique, until stall is indicated, and determine

the maximum angle of attack at this point. Stall of the airfoil is here

defined as the condition of flow separation at quarter-chord of the airfoil,

with flow separation being initially defined as the condition of zero shear

at the surface as indicated by the velocity profile shape parameter (this

definition of separation is later modified using the MRS conditions for the

case of a pitching wing). To use this technique, the classical boundary

layer assumptions must be applied.

Two distinct cases will be analyzed. The first is that of an inertially

2
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static airfoil in a rotating flow field, and this will heretofore be

referred to as the "gust-response" problem. The second is that of a

pitching airfoil in a steady flow field, and will be referred to as the

"pitching airfoil" problem. These may appear at first to be the same

problem, differing only in the reference frame of the observer. Experi-

mental results, however, indicate greatly differing effects, as will be

shown. The analysis of this report will also point out the differences

between these two cases.

Background

Max Kramer reported the results of an experimental study of the gust-

response problem in 1932. By fixing a wing section between a set of

moveable guide vanes and a diffuser, he was able to take lift measurements

Gwhile constantly varying the angle (with respect to chordline) of the

free-stream velocity. Based on his results, Kramer established a linear

relationship between the increase of maximum lift coefficient (ovel the

steady flow case) and the non-dimensional pitch rate (Ref 2).

An analytic study of the gust-response problem conducted by Richard

Docken in 1982 successfully predicted a relationship in close agreement

with Kramer (Ref 3). He developed a modified von Karman-Pohlhausen integral

method for unsteady flow and applied it to the boundary layer of a represen-

tative Joukowski airfoil. The outstanding feature of this method is the

development of a closure equation to handle the unknown unsteady term.

Two experimental studies of the pitching airfoil problem are of

particular interest. In 1978 Arthur Deekens and William Kuebler conducted

. 7 smoke tunnel tests of an airfoil section pitching at various constant rates

a 3



and in various free-stream steady velocities. Motion pictures were taken

of the flow, allowing observation of flow separation at quarter-chord versus

instantaneous angle of attack. By comparison with static conditions, they

were able to determine a direct correlation between the delay in stall

angle of attack and the non-dimensional pitch rate (Ref 4). Daniel Daley

found complimentary results to this in 1982 (Ref 5). He developed a

microcomputer-based automatic data acquisition system such that flow

separation on the surface of an airfoil section could be determined by

pressure indications. Again, by varying pitch rates and steady free-stream

velocities, data was taken, compared with static stall conditions, and

results noted.

The results of the work by Daley, Deekens and Kuebler, and Kramer

are shown in Figure 1. Note the difference in effect between the gust

response problem and the pitching airfoil problem. Docken shows in his

work that the dynamic effect in the gust-response problem is the result

of a reduction in the adversity of the pressure gradient in unsteady flow.

The extent of this effect on a pitching airfoil and what, if any, other

phenomena are contributing to dynamic stall, are matters to be investigated

in this study.

K.
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II. Gust Response Problem

Review of Docken's Work

It is notable that in Docken's approach to the problem of gust response,

each step of this theory development and development of the method of

integration is simply an unsteady modification of the corresponding steady

flow model (Ref 6:17,20). This idea is reinforced by the fact that, when

his program is applied to a case of zero pitch rate, time derivatives

become zero, and all equations and the resulting solution reduce to the

steady-state case.

The theory development leading to the unsteady boundary layer

momentum-integral equation is reviewed in Appendix A. In short, the

principles of continuity and momentum are applied to an incremental control

Avolume in the boundary layer. The unsteady Euler's equation is then

employed to substitute for the pressure gradient term. By careful manipu-

lation of terms, the momentum-integral equation for unsteady flow results:

h U h

U2 f/ - (1 u-)d e ! fux e e-( - -)y+ Ue ox o (1 -e--d
TXeO e e ax 0 e

+ - U -- ) dy
te U

J e P

Docken's modification to the von Karman-Pohlhausen integral method to

handle unsteady flow is reviewed in Appendix B. As in the well known

steady flow model (Ref 7:158-160), the displacement thickness and momentum

thickness are substituted into the momentum-integral equation. The velocity

6
?.
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profile is defined as a polynomial expression of y/, and, by applying

known boundary conditions, the velocity profile can be related to a single

shape parameter:

A 2 V DU- + -U e) (2)
e

Again as in the steady-flow model, additional parameters are defined-..--

and substituted into the governing equation, and the "working" equations

for stepwise integration become

S4

dZ IF(K) + 14 + f(K)j U e1 (3)... dx U at3)
e e

and

eK(- + L e-l (4)

x(- - -t

The single exception to this parallelism of the unsteady flow derivation

to the steady flow derivation arises from the introduction of the displace-

ment and momentum thicknesses into the momentum-integral equation. A

transient term of the form developed, requiring a closure equation.

The necessary equation was derived as

7
4 ..-..

4u - - - -. 4 4 . . . ... ..



at" 2Ue  te  (Ref 3) (5)
'

The limits of applicability of the assumptions associated with this

derivation were not investigated in depth, however, and both the derivation

and the underlying assumptions will be examined in Section III of this

report.

The method used to step-wise numerically integrate Eqs (3) and (4)

along the surface of a Joukowski airfoil is detailed in Appendix C.

Coordinates on the airfoil and velocity at the outer edge of the boundary

layer are obtained by a Joukowski transformation from flow about a circular

cylinder, the unsteadiness being approximated as pseudo-steady Joukowski

solutions at the changing angles of attack. Necessary derivatives at each

step are computed using standard difference methods, and the shape parameter

can be examined at any given point on the airfoil to determine a point of

boundary layer separation (Ref 6:23-25).

Docken defined aerodynamic stall as the condition of flow separation

at the quarter-chord of the airfoil. Flow separation was determined to

occur when shear at the airfoil surface equals zero, as indicated by the

shape parameter (A - -12, or K = -.1567). Using this criteria, the above

method of solution was applied to a J015 airfoil. By assuming the

Cl-vs.-a slope remains linear and equal to 27T/radian, and applying three-

dimensional flow corrections, Docken's analytical results were expressed as

ACL = .343 Ca

max

'. ~8~



-comparin remrkbl wel .- with Krme' experimental---~:- reslts

Th copai gnefaranycel wth rert's experinta resul oxmats:era

method had been modified to give such a degree of accuracy, but that, like

the experimental results, the relationship between gust pitch rate and

dynamic stall angle of attack is linear (Ref 6:27). Also, and just as

important, the cause of the increased angle of attack can be attributed to

a distinct physical effect -- a reduction in the adversity of the pressure

gradient as determined from Euler's equation.

Modification and Results

Upon close examination of the Docken program, an error was discovered

in the Joukowski transformation. The error was, in fact, causing the method

-~ of solution to be applied to an airfoil with thickness less than the desired

15%. This error was corrected and some other minor modifications were made

to the original work.

Upon running the solution again for a J015 airfoil, the data remained

* linear, but with a different linear coefficient. The corrected data is

displayed graphically in Figure 2.

Converting this data in order to compare with Kramer's results, the

results of Figure 2 may be expressed as

9
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rate

O: a .4 Ca

- stall(dyn) stall(st) +  2

,%°

In radians then, and correcting the form of the non-dimensional pitch
~rate 3

'Cci

cstall(dyn) cistall~st) 0.049-C

. Assuming, by classical airfoil theory, a 2'T/radian curve slope (Ref 8:125),

CI  = C +.307 Ca

max(dyn) max(st) Uoo

Since Kramer's experiment dealt with a wing with aspect ratio approxi-

mately equal to five, a three-dimensional flow correction is required. By

wing-section theory, the lift curve slope per degree of the corresponding

wing may be obtained by

CL +(Ref 9:11)

S. -.°"L
O11

+4 lI

.,,-c ", "
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This, then yields the result

Ca

ACL  
-- .220 -U

max

This differs somewhat in degree of accuracy, but the solution still

exhibits the significance of linearity and physical interpretation, and is

still very close to Kramer's empirical results.

.4"

4'
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III. Closure Equation

Review of Derivation

4 Prior to Docken's work, the von Karman-Pohihausen technique had not

been used to solve an unsteady flow problem, because the unsteady terms

in the momentum-integral equation required an additional unknown closure

equation. The derivation of the required equation is simple and concise,

and the assumptions appear to be well-founded, at least superficially

(Ref 6:14-15). In order to investigate the validity of these assumptions,

and hence the equation, and to then further examine the impact on the

problem solution, it is necessary first to fully understand the derivation.

To find the equation of closure, it is first observed that, for any

location and time in the flow, the displacement thickness is related to

the boundary layer thickness as

1 1 (6)

Also, for laminar flows, the boundary layer thickness is related to

the velocity of the potential flow as

S~c2 ~1/2

13
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* ... Then, taking the time derivatives of Eqs (6) and (7),

ac
at CL + 1(8)

and

C 1/2 aU ac 2V1/2
at 2u- U x at tUe e e

Substituting Eqs (7) and (9) into Eq (8) gives

1 C IC 2 1/2u 3U ac2 1/

at 2U Ux t 1 t U xe e e

2C, V1/2

2 2at U x
e

Now, the restrictive assumption is made that the time dependence

of both C 1 and C 2is smal compared to that of U e and Eq (10) becomes

C C 1/2 au1 12 Ve
at 2U U x ate e

K 14



Applying Eqs (6) and (7) to Eq (11) then yields the required closure

equation:

Su _ (12)
at2U

Investigation of Assumptions

The key assumption then is that 1 and t are negligibly small,

and the question arises as to what magnitudes are acceptable to the

solution. From Eqs (10) and (11), it can be seen that the closure

equation is valid if

0
CC2 1/2 aU CIC 1/2 D Ue  2  1/2

2 ( " ) 1 2 V -cl
2U U x at 2U U x at 1at U xe e e e e

3Ci 1u)/2

+0 C 1/ (13)
2 at U x

Then, to compare the relative magnitudes of the time derivatives,

Eq (13) requires that

1 C2 aue C C2 (14)
2U at 1 2 t

5e

15
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• """ From this it can be seen that, while this relationship is certainly

satisfied if the original assumption is true, it is also satisfied if the

sum, I  + C2  , is comparatively small. This could certainly be

the case if the time variations of C1 and C2 are of opposite sign.

Either of these assumptions could be evaluated by the degree to which

Eq (14) is satisfied. The velocity and acceleration terms are available at

any given point on an airfoil by the Pohlhausen method previously discussed;

however, a scheme must be developed to determine C, C., and the corresponding

time derivatives.

Consider first the term C1. By definition, as in Eq (6), C is the

ratio of displacement thickness to boundary layer thickness. This can be

written in terms of the Pohlhausen velocity profile shape parameter as

C 3 A (15)
6 10 120

Then the time derivative of CI, also in terms of the shape parameter,

is

--- 12 3A (16)
at 120 at

When an airfoil is at an angle of attack such that separation is

..." indicated at the quarter-chord (i.e., the case under consideration), the

16
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shape parameter varies from +7.052 at the stagnation point to -12.0 at

dA DA
quarter-chord (Ref 7:211); hence, dA for a static airfoil and for a

pitching airfoil are negative quantities. The fact that a pitching airfoil

demonstrates delayed separation would infer that the associated term is
t

causing A to be less negative, thus 3 is a positive term. If this is

indeed the case, then is a negative term, by Eq (16).

Since the shape parameter is available in the solution at each point
A

on the airfoil, C is easily determined. The term , and consequently

can be calculated in the following manner. The total change in the

shape parameter can be calculated between two given points on the airfoil

by both the steady solution (time independent) and the pitching solution

(time dependent). For the steady case, 2-- 0. Defining the total

derivative as

DA 3A as 9ADt T- + T- T

let DA be approximated by a steady, or time-independent, difference of
DtI

A between two given points in close proximity, and (DA) be approximated
Dt2

by the time-dependent difference between the same two points. Then
,

4..

(DA) DA - (2A + as 2A) -( 0 + as A) -A

t 2 Dt at at as at as at

17
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* -Consider now the term C If the velocity of the potential flow over2'

a wedge is proportional to a power of the length coordinate as

UWx kXm (8

where m is a specific function of the included wedge angle, then the

solutions of Falkner and Skan show that fcr any given wedge there is a

constant C02 such that

1/2
C X 2() (Ref 7:164-166) (19)

- The constant C is only a function of the geometry; i.e., wedge angle.
2

Comparing Eqs (7) and (19), it can be seen that if such self-similar

solutions can be applied to an airfoil approximated by a series of panels

.4.' (i.e., the wing is made up of a series of short linear ramps), each making a

specific "wedge angle" with the free-stream, then C 2 could be determined.

'C o
Further, since 0 2 is only a function of geometry, ,2 ona pitching

airfoil could also be determined through the change in slope of the panel

relative to the free-stream over an increment of time.

Accuracy of Closure Equation

___ Evaluation of the closure equation assumptions was accomplished through

18
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the determination of C I , C -, and 2 on a typical pitching airfoil

as it approached separation at the quarter-chord. Using the unsteady

Pohlhausen method, Ue' , and A are readily available. An independent

set of Falkner-Skan solutions was computed, and a curve fit of the results

made, such that the constant C could be determined for any included
2

wedge angle. This and the techniques described in the previous paragraphs

_ were then incorporated into the computer solution, such that at each point

on the airfoil a comparison could be made of all of the above terms.

Further, each of the following relationships was computed, and a comparison

made:

C1C U
12 e (20a)

2U at
e

2 C -u C2 h- (20b)

2U tl -t 2 ate

From Eq (13) it can be seen that the degree to which the computed

*" value of (20a) approaches that of (20b) is representative of the accuracy

of the closure equation.

Investigation was made of eight separate cases, each varying in

free-stream velocity and pitch rate, such that non-dimensional pitch rates

varied from .009 to .035. The following observations were made:

aCl and a u-
a 1 are indeed smaller than e but not

at t t  
2

negligibly so. The magnitudes of 1 and 2 increase

19



with increasing chord position, while e .is initially

increasing, then decreasing. The ratio of

et 2 varied from :100:1 to 30:15:1, the

7 latter (worst) case occurring at the quarter-chord

(separation point) for the situation of slow free-stream

velocity and slow pitch rate.

b. -wa negative in value, while C C and -C were
atac C1  C, at

2 an1 he apositive. The products C - n te a1 at 2 at
canceling effect on one another.

c. The comparison of terms (20a) and (20b) is shown in

Figure 3 and was nearly identical for all test cases.

This would indicate an accuracy of the closure equation

- . as reflected in Figure 4.

-J

it may be noted here that the validity of the method used to determine

C2 and is in question, since it is not known if the velocity on the

airfoil taken from Joukowski transformation agrees with Eq (18). To

investigate this, a program was written to simultaneously and independently

compute two velocities on a representative pitched airfoil. One velocity

".was that obtained from the Joukowski transformation, while the other began

with an identical value at the leading edge of the airfoil and progressed

over a series of incremental panels (representative of wedges of identical

slope to the airfoil as discussed earlier). This was done using Eq (18),

where x is the additive distance traversed over the panels from the

20
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.'" stagnation point and m is determined from the slope of the panel relative

to the free-stream. The relationship is
'-.

M 2= Y (Ref 7:155)

where Ylt is the included angle of the wedge. The constant k can be determined

for each panel at the initial juncture by letting U at the end of one panel
e

equal U at the beginning of the next. Thus, for a juncture of panels i

and i + 1 at position x

m.

0

•. The results of this study are shown in Figure 5. The "panel" velocity

varied in error from 6% (negative) near the leading edge to 15% (positive)

at the quarter-chord. The velocities were nearly identical in the

vicinity of .05 chord.

4 Consider the hypothetical effect of forcing the panel-derived velocities

to agree with the Joukowski-derived velocities. This would require "wedge"

panels with an increased included angle near the leading edge, and a

e, decreased included angle aft of about .05 chord. The effect would be

to reduce the value of C2 and -a forward of .05 chord, and increase the

values aft of .05 chord.

23

"'C



.4.-4

C%

1 
0

I 
4-4

0 -"I 
'4,,,

w 
03

00

41-

> 
>

bd .,4.,,.

31 1 ca:

0 W

(A. 0

-4. 04.4

0

- 4J

.I I

0

C-4 o4 
C-4

_+- + .,€ (38s/33) ,A:TOO19A

4 *24

F'*+, '" - -" " . "" . " " " ' - " " ' ' ' " " " " " " " " " " " " " " " '" -



Now consider the effect on the results of Figure 3. It can be shown
c2

that 3- is affected considerably more than C, by any change in the

included angle. Then the end effect would reduce the relative error of

the closure equation everywhere on the airfoil. Note also that Figure 3

indicates that the closure equation, like the above velocities, has near

zero error in the vicinity of .05 chord.

In order to determine the effect that error in the closure equation

has on the prediction of dynamic change in stall angle of attack, errors

of 50% (very conservative, as shown in Figure 3) and 25% (more realistic but

still conservative as argued above) were introduced into Eq (12). The

unsteady Pohlhausen equations were then derived in the same manner used

by Docken. The results are that a 50% error in the closure equation

results in a 13.54% under-prediction of the dynamic effect on stall angle

of attack, and 25% error in the closure equation results in under-predicting

this effect by 7.04%. The error presented then in the closure equation

has kept the final results on the conservative side and shows that the

closure equation is a good one, but for slightly different reasons than

stated by Docken.

law
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.!. IV. Further Investigation of Gust Response

Better Match of Kramer's Airfoils

In a closer examination of Kramer's experimental work, it may be noted

that data was taken from two considerably different airfoil profiles -- a

Gottingen 459 (symmetric) airfoil and a Gottingen 398 (cambered) airfoil.

The resulting dynamic effects on maximum coefficient of lift were almost

identical, and Kramer states that the profile of the wing apparently has

little influence (Ref 2).

The nature of the unsteady solution method developed by Docken readily

lends itself to an investigation of this hypothesis. To this end, a simple

computer program was written to determine what specific input data were

necessary to reproduce desired variations in thickness and camber to a

S Joukowski airfoil. It was found that a 12.64% thick symmetrical airfoil

very closely matched the Gottingen 459 airfoil in shape, and a Joukowski

airfoil with 13.72% thickness and 3.17% camber likewise closely matched

the Gottingen 398 airfoil. A comparison of airfoil shapes is shown in

Figure 6 and 7.

After a minor modification to the Docken program to allow for camber

variation, computer solutions were obtained for maximum angle of attack

of each of the above airfoils. Nine sets of conditions were run for each

airfoil, and the results are shown in Figure 8.

The results, when converted as in Section II to compare with Kramer's

data, are as follows:

For the Gittingen 459 (symmetric) airfoil:

26
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.396 CA

ACL  or
max

.283 -a corrected for R = 5
a, U

For the Gottingen 398 (cambered) airfoil:
.337 C&

co

ACL  or
max .241 corrected for A = 5

JU

For comparison, recall that Kramer's experimental results for each

of the above airfoil profiles were

AC 36  CR
L U
max

And for Docken's J015 airfoil:

.307 C

AC = or

.220 -CA corrected for P= 5

J Note that with the better Joukowski shape approximation of the

Gottingen airfoils, results were considerably closer to Kramer s solution."' 1

It is meaningless to discuss relative error between any of the computer

results and Kramer's experimental results because of the assumptions
4..

inherent to the momentum-integral method of solution and approximations

necessary to compare results; however, the proximity of the above solutions

30
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- is certainly remarkable. Note also that the profile of the airfoil did,

in fact, affect the results.

Thickness and Camber Effects

Kramer discusses measurements only on wings with profiles of the

two airfoils examined here, and apparently bases his assumption that profile

*has little effect only on those results. From Figure 8 it can be seen that

these particular airfoils do not differ much in change of stall angle ~f

N. attack, even though the airfoil shapes are considerably different. The

fact that there does exist a difference based on shape alone, however,

suggests further investigation is in order.

Two studies were conducted regarding airfoil shape. First, using a

symmetrical Joukouski airfoil, the thickness was varied, with a linear

coefficient of increase of stall angle of attack per non-dimensional pitch

* rate being calculated for maximum thicknesses of 10%, 12.68%, 15%, 20%,

and 25%. Secondly, a 15% thick Joukowski airfoil was varied in camber,

and the same coefficient calculated for maximum cambers of 0%, 1%, 2.5%,

5%, and 7.5%. The results are displayed graphically in Figures 9 and 10,

V.. respectively.

The dynamic stall effect was decreased as airfoil thickness increased

and as camber increased. While camber has a relatively slight effect,

* *."the thickness effect was dramatic. It would appear then that airfoil

profile is indeed an important factor in dynamic stall effect. It should

* . be noted that, while Kramer' s airfoils appear very different, they differ

by only about 1% in maximum thickness.
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V. Pitching Airfoil Problem

Non-Inertial Control Volume Analysis

As discussed previously, the only readily apparent difference between

the gust-response problem and the pitching airfoil problem is the frame

of reference. It was anticipated that, due to the similarity of these

problems, it may be possible to investigate the dynamic stall effects on

a pitching airfoil by paralleling the approach taken in the gust-response

solution. The procedure then is to derive a momentum-integral equation

for the boundary layer by developing the continuity and momentum equations

for a fluid element in the boundary layer.

The continuity equation presents no problems. In exactly the same

analysis as for the gust-response solution, the principle of continuity

e is applied to an incremental control volume, with the resulting equation

(see Appendix A):

m TX- pudydx (21)

In order to use the momentum equation on this control volume, however,

certain modifications must be made. The momentum equation, derived from

Newton's Second Law, is usually applied to a control volume that is either

* . fixed, or translating at constant velocity, with respect to an inertial

reference frame. The surface of the pitching airfoil, dad thus the

attached control volume in the boundary layer, is neither. By an analysis

34



s" .. - of particle dynamics, certain "hypothetical body forces" can be determined

which account for the non-Newtonian motion of the control volume, and with

the addition of these forces the control volume analysis may proceed as

if it were fixed in inertial space (Ref 10:109-114). The derivation and

examination of the hypothetical body forces is included in Appendix D.

These body forces in the x-direction are:

dB = dm I + 2V  3X

where:

= Rt2 cos ,

82 = 2a

-3 8 = 2
" 3

and R is the length from the point of rotation of the airfoil to a reference

point in the control volume, and is the angle between line R and the

local surface tangent of the airfoil.

Now referring to Figure 11, the sum of the forces in the x-direction

can be equated to the net rate of transport of momentum out of the control

volume plus the flux of momentum in the control volume, such that:
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h h

xf Puudydx + U m + f Pudydx
e top f u

0 0

d pdydx - T dx- ( I - a3dx) pdydx
0 0

h
- 2  f pvdydx (22)

0

Note that the classical boundary layer assumption is made that a

pressure gradient exists only in the x-direction. If Lq (21) is now

substituted into (22), and dividing by Pdx, the result is

h h h

f t(uu) dy -U f a dy + f udy -

0 0 0

h T h h

* p1 d x p f
0 0

Consider the hypothetical body force terms in Eq (23). a3dx is very
small in comparison to ; i.e.,

ct2 dx << Ra 2 cos r
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It can be shown that R cos * is a large term except very near the

leading edge. On the airfoil under consideration, R cos 4 > I for chord

positions between .006 and .250. Since dx << I, it may be assumed that

h h
(81 - 3dx) f dy fI dy

0 0"

It is demonstrated in Appendix D that a potential flow velocity close

to and tangent to the airfoil surface, and of magnitude U as observed

in the inertial frame of reference, will appear to an observer fixed in

the control volume as

* .u* . .

U= - R U sin ) x - (R ct cos y (24)

Note that there is a constant y-component of velocity toward the surface

of the airfoil; but if the surface is impermeable, then this component is

necessarily zero at y = 0. Since this difference must be compensated for

in the boundary layer, it is assumed that this y-component of velocity

is a linerr function for 0 < y 4 . Then

V - R C1 cos y y <

4
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.- .. and

v -Rct cos ,y >

Now,

-~ f dy- a2  f vdy R -cL 2 cos I f dy + f dj
h

4. h

- tR / o d R OL c o s d

Carrying out the integrations, this reduces to

h h

1 f dy - 2 f vdy = (h - 6) R Ct2 cos

The total effect of the hypothetical body forces on a control volume

where the upper limit is the edge of the boundary layer (h - 6) is zero.

Although at this point h is still arbitrary, the boundary conditions will

eventually be applied at y - 6, therefore these terms may be dropped from

*l Eq (23). In the interest of argument, the effect of these terms does

not disappear if v does not vary linearly in the boundary layer. Cases

39

4.'i



* - --
.

- - ." *

of parabolic and elliptic variations were investigated, with the resulting

(small) terms being carried completely through the Pohlhausen derivation

and then applied to an airfoil. The effects on the final solution were

negligible in both cases.

Eq (23) thus becomes:

h (uu) h h

f dy-U -d y + f udy00 0

S h dP
d -w (25)

-P f x
0

At this poitt the urnsteady Euler's equation is used to substitute

for the unknown pressure gradient. Letting an asterisk denote velocity

as viewed from the inertial reference frame,

3e e e I dPU e + . .... (26)

From Eq (24), an observer in the control volume will see a magnitude

of:

p*

U U -R sin
e e
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* -,. and

au au 3u u
e e e = e

ax ax a t at

Therefore, in terms of the velocity seen by the control volume,

Eq (26) becomes

DU 3u
e + e _ dP (27)(Ue + R Ot sin (27) Od

e ax at 0,dx

Substituting equation (27) for the pressure gradient in Eq (25)

O yields

h h h

f h(uU) dy - Ue au dy + udy

ax e T t f-O"0 0 0

h au h Uf ef
= Ue  dy + R a sin - dy

0

+ f -,t dy - H (28)
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With the exception of the (added) second term on the right-hand side

of this equation, it is exactly the same as that derived for the gust-

response problem, and these terms may be manipulated as shown in

Appendix A. The resulting modified momentum-integral equation is

h U h

R a sin j. 5 - dy+ (I - u-) dy
a + e e

U.U

3U h h T._e C (1  U u + f,7- ( uw
+ U - I - dy I -) dy = - (29)

a e 0 e

Modification of von Karman-Pohlhausen Method

Again, as with the gust-response problem in Appendix B, this can be

written in terms of the displacement and momentum thicknesses. If the

integral of the first term is evaluated with the outer edge of the boundary

layer as the upper limit, the result is

Ue _U T

3X X e 2 e3x 1 t e1 w

Multiplying this equation by gives
ge

e
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9U 62 2 +U2

R e 3) U 2x V ax V e V 3x
(R sin ) 2 3U ev

."!' f' u 6 622 au 61 62 T62

+" e.. 1 e 1 +22

x r UVt 6 V t V U2 e 2 e

Applying the closure equation (12), and rearranging terms, this may be

written as

S 22 au au eU e

(2+(R at sin 4) -+-+ -

2 V ' e2 U e I I

6 1 6 22-(2 + 2 L-(R a* sin 4 ) 1- --x +

V U 3xt

T 2 _r2_

S 6_12 IT 62
1 1 62 1 =a zw2 (0

- (2 + 2(
2 V U t VUe

From this point, the derivation of the working equations for the

unsteady Pohlhausen method closely resembles that for the gust-response

problem as outlined in Appendix B; therefore, only the differences will

be highlighted here.

Due to the change in appearance of the unsteady pressure term, the

corresponding boundary condition becomes
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-..-.. ~ 7S . . . 7t. -

=. - (Ra sin ) + -- xU ,+ at y 0

3y ax eOX atJ

The shape parameters are defined as

A = -I(Rcasin) U -x + -s--+
A. VU x x U atie e

and:

% 2. a" ; U U aUe
2- [(Rt u aue~e

K 2 INR'Lsin e).;- --- + e +  - e
U ax 3x U ate e

Also, an additional function is defined as

-- I

f3(K) .(37 A A2)
3 2 31-5 945 90-72

Substitution into Eq (30) yields
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. . . . . . .

%'

12 + f(K) K 2 + f -(K) f 3(K) Z R s
e

+ dZ U 2 + f (K) = f2(K)
2 dx 2 1  U t 2

e

The resulting working equations for stepwise integration are:

9U 3

dZ f zF(K)+I 4+f (K)i- --e4+2f (K)-2f (K) Z R 01 sin el L
dx U ;t 1 3 U x U

e e e

(31a)

and

Z K (R X sin L U e + + 13 (31b)

e e

Results for Pitching Motion

"The existing program for the gust-response solution was modified

such that the non-Newtonian motion of the airfoil could be accounted for.

Eqs (31a) and (31b) were implemented, which necessitated computation of

the new terms f (K) and R Cc sin 4. In addition, recall that the velocity
.4 3

U and its corresponding derivatives must now be those that are observede
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in a frame of reference fixed to the airfoil surface. A subroutine to

the initial program was thus written to compute R ai sin (geometry

dependent) and to correct the Joukowski transformation-derived velocity

for motion of the airfoil.

Upon computing the change in maximum angle of attack for various

combinations of free-stream velocity and pitch rate and using the

separation condition of zero shear stress at the wall, it was found

that the results remained linear with respect to non-dimensional pitch

rate. The results are shown in Figure 13, being the set of data points

labeled "pitching motion". Note that the effect of a pitching airfoil

is approximately three times greater than that of an inertially-fixed

airfoil in a pitching airflow (gust response). The cause of this increase

in angle of attack of separation appears to be due to the effectively

- reduced velocity of the free-stream by varying amounts, depending on the

.. ' .~ location on the airfoil. This velocity modification both delays the

onset of and relaxes the severity of the adverse pressure gradient.

Moore-Rott-Sears Model and Results

In considering the pitching airfoil as a "moving wall" type of problem,

it is also necessary to reevaluate the criteria for determining the point

* of separation. Up to this point, separation has been assumed to occur

when shear at the wall vanishes, which for a static wall is the limit

between forward and reverse flows in the boundary layer. For a wall

* moving in the direction of flow, this is not true (i.e., the flow may

obtain a velocity less than the velocity of the wall but greater than zero).

The MRS (Moore-Rott-Sears) model provides criteria of separation based

46
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on the velocity profile which will account for motion of the wall

(Ref 11:123-126). It defines separation as the condition where both

velocity and shear become zero in a singular fashion at some point in

the boundary layer, as seen by an observer in the frame of reference of

the wall. This condition is illustrated in Figure 12.

A separate program was written to provide a table of values relating

a separation A (or K) for any given value of Uwall /U . Then, by computing

U wall/U e at quarter-chord and comparing with this table, the dynamic-stall

condition could be determined by iteration until the final A matches the

indicated tabular A. It should be noted that this is only valid for

A > -17.76, since the shape parameter K reaches a mathematical minimum

at that point (Ref 12:295-296).

Application of this new stall criteria had a considerable effect

Gon the solution. The results are displayed in Figure 13, labeled

"MRS model". Note that the dynamic effect on angle of attack is more than

twice that using the old criteria, and the total dynamic effect is about

seven times that of the gust-response solution. It is also of interest

that the change in angle of attack is now no longer linear with non-dimen-

sional pitch rate, but is curved similar to the data in Figure 1; however,

the extent of the dynamic effect falls well short of the experimental data.

Mass Introduction and Results

The combined dynamic effects thus far discussed predict an angle of

attack change considerably less than experimental results indicate, as shown

in Figure 13. This implies that other contributing factors are involved,
Aand it was suggested that mass introduction into the boundary layer may

. 4
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be a contributing cause. Note that Eq (24) indicates that a potential

flow velocity at the edge of the boundary layer does in fact have a

component toward the surface when viewed from the control volume. While

this normal component is everywhere small, a review of boundary layer

solutions involving "suction" and "blowing" indicates that very small mass

flow rates can have dramatic effects on boundary layer separation

(Ref 7:380-399).

To implement this idea into the method of solution, Eq (21) was

amended to account for an additional increment of mass, C(R c± cos $) dx,

into the top of the control volume (where C is some as yet undetermined

constant):

L h[

mtop = x 0 f pudydx - C(R O cos 0) dx (32)

The substitution of this into the momentum equation, with all other

terms carried forward as previously described, results in an amended

momentum-integral equation:

h aU h

0 e e

Ue -x h (I - -) dy + U h (I - u) dy

- c Ue (R ca cos Ue) = _ (33)
0 e
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Casting Eq (33) into the Pohlhausen form as before presented little

problem, and all of the shape parameters and related functions remained

the same. The additional term altered the working equation (31a) only,

such that now

dZ F(K) + 4 + fl(K) za-e

dx U j t
e

+j4+f(K) 2f3 K)JZ R ai sin e)__

e

+ 2 Z f (K) R c Cos 1 j (34)

+3 U

e

Two problems now become apparent. First, some value must be assigned
1

to the constant C. Secondly, the appearance of - in the new term is

undesirable, and renders Eq (34) unusable in its present form.

Consider the fact that, by injecting mass into the top of the boundary

layer, a stagnation flow problem is being imposed upon the boundary layer.

The impinging velocity of a two-dimensional potential flow near the

stagnation point is given as

- ay (Ref 7:96)
V05
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Applied to the problem at hand, this would mean that at the outer edge

of the boundary layer the velocity desired is:

V = -a(R O cos )

The constant a is dependent upon the dimensions of the problem. In

Appendix E it is argued that, for the Joukowski airfoil problem, a reasonable

guess for th',o value of a is four. Using this,

.%4

-. C = 46 (35)

and Eq (34) becomes

dZ F(K) + 4 + fl(K) Ue
Sdx U t

e

-au

-. 14 + 2fl(K) - 2f3  ZRct sin e)f3 Ue 9x

+ 8 Z f3 (K) R ct cos (36)

e

--a,'-
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. -. Using Eqs (31b) and (36) as the working equations, solutions were

again computed for various free-stream velocities and pitch rates. The

results are shown in Figure 13, labeled "Mass Introduction (46)". The

injection of this small amount of mass into the boundary layer has more

than doubled the dynamic increase in stall angle of attack. This is

attributed to the fact that the injected mass is accelerating, or imparting

additional energy to, the fluid in the boundary layer, hence retarding

separation.

The computer program used to calculate these solutions is included

for reference in Appendix F.

The justification for the use of a = 4 in equation (35) that is

outlined in Appendix E is somewhat arbitrary, and certainly arguments

could be presented for other values of this constant. The possibility

was considered that careful selection of this value might provide data

that would match experimental data. In this interest, varicus values

were tried. Figure 13 shows the results for a = 20, labeled "Mass

Introduction (206)". It is apparent that the experimental results cannot

be matched in this manner. It is interesting and possibly significant to

note that, for the selected value a = 4, the slope of the plotted data

becomes closely tangent to the slope of the experimental data.

This implies that still other factors, in addition to mass introduc-

tion, might be contributing to the dynamic stall effect, although it is

clearly implied that mass introduction is an important contributor.
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*4 .- VI. Conclusions and Recoimmendations

Conclusions

For the case of an airfoil encountering a gust of constant CA ,the

increase in dynamic stall angle of attack can be attributed almost

exclusively to a reduction in the adversity of the pressure gradient on

the upper surface of the airfoil.

The use of

at 2U ate

49% is acceptable for use as an equation of closure for the unsteady von

Karman-Pohlhausen integral method. A conservative estimate of the error

inflicted by its use causes an under-prediction of increase in dynamic

stall angle of attack by less than 10%, and the analysis seems to indicate

that the approximation is really much better than this estimate.

:f. The increase in dynamic stall angle of attack for gust response is

inversely proportional to, and a strong function of, the maximum thickness

of the airfoil. It is inversely proportional to, and a weak function of,

the maximum camber of the airfoil.

Contributing factors to the increase in dynamic stall angle of attack

for an airfoil pitching at constant at in a steady flow are:

a. A reduction in the adversity of the pressure gradient
* on the upper surface of the airfoil.
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b. An effectively reduced free-stream velocity due to
* the downstream motion of the surface of the airfoil,

causing further relaxation of the severity of the
adverse pressure gradient.

C. A delay in boundary layer separation due to the fact
that the motion of the airfoil surface allows the
velocity gradient to build past the condition of zero
wall shear to the condition of zero velocity and shear
at some point in the boundary layer.

d. Anacceleration of the fluid in the boundary layer due
to mass introduction into the top of the boundary layer.

The factors above may not be all of the contributing effects, indicat-

*ing that other phenomena should be considered to account for the total

dynamic effect. However, it is clear that the mass introduction is an

important contributor to the effect.

Recomendations

In considering the idea of mass introduction into the boundary layer

of a pitching airfoil, the selection of 46 as the appropriate constant

-~ was a rough estimate at best, and intended only to show trend on the

solution. An in-depth study of the concept of mass introduction is

appropriate.

In this report, the effect of the shedding of starting vortices due

to the change in the airflow pattern about the airfoil has been assumed to

have negligible contribution to the solution. Work currently in progress

by K. Tupper in this area would indicate that this effect should be

considered (Ref 14). A study combining the work of this report with

that of Tupper seems a good step toward identifying other possible dynamic

stall contributors.
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* *'.*.Because of the success in incorporating constant a (non-Newtonian)

motion to the airfoil, there appears to be no fundamental reason why the

method could not be extended to other motions, such as constant ~

(varying pitch rate).
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• ..,Appendix A: Derivation of the Unsteady Momentum-Integral Equation

The momentum-integral equation for unsteady flow is derived by

integrating the equation of motion over the thickness of the boundary

layer. The equation of motion in turn is derived by applying the

principles of continuity and conservation of momentum in the direction

of flow to an incremental control volume in the boundary layer.

The principle of continuity (mass conservation) states that the

net rate of mass flow across the control surface must equal the time

rate of mass reduction within the control volume. Referring to Figure 14,

it is shown that

h h h

m +1 f pudy + a f pudydx l- f pudy

0 D 0

h
= f pdy

0

For incompressible flow, i.e. p = constant, the last term in this

expression is zero. Therefore

.

m , Jpudydx (Al)
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The principle of momentum conservation (in the x-direction) requires

that the sum of the forces acting on the fluid in the control volume is

equal to the net rate of transport of momentum across the control surface

plus the time flux of momentum within the control volume. Referring to

Figure 15, it is shown that

h h h

- T dx + f Pdy-[ f Pdy + Tx f Pdydx = U m
..,w J JX J e top

,. *' 0 0 0

-" h h h h

+ 0 uudy + Tx puudydx - f uudy + P f udydx

00 0 0

4Simplifying and rearranging terms,

h h
a.; ddx + e top t f pudydx

-T dx L f dx
w f Pdydx (A2)

0

-.

Substituting Eq (Al) for the unknown term in (A2),

'1
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h h h
" . puudydx-U f J pudydx + - f pudydx

a x = e 0 0 t 0

T --a Pdydx (A3)
w axJ

0

Note that, since the integrals are taken in the y-direction, the

partial derivatives with respect to dimension x (and also time) can be

arbitrarily brought inside the integrals. In addition, by boundary layer

assumptions, the pressure gradient in the x-direction is assumed to be

5-' the total (spatial) pressure gradient. Employing these concepts, and

_1 dividing the entire equation by Pdx, Eq (A3) becomes

h h h

0 x (uu)dy - U au dy + udy
0f f

Th
= - w_ " d

-E p T dPdy (A4)
I 0

The Euler's equation of motion for unsteady flow can be shown to be

au au
1 dP = U e _ (Ref 27)
Pdx e ax at

", •6
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'.i7-7 . 7-777

i

This may be applied to Eq (A4) in substitution for the pressure

gradient. After rearranging terms, Eq (A4) now becomes

ha hau .h au

f F (uu)dy + U  dy + U e dyj x e f~ J ea3x

a h h a U T
f udy+f dy = - (A5)T. 0 f Of a

V

Consider the time variant terms of Eq (A5):

h h 3U hf~ 1  udy+ f edyu)d

0 0 0

Further, since U is independent of y,e

a h h aU a h(A6)

0 f O 
e

Now consider the spatially variant terms of Eq (A5):
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,h ;u
" - (uu)dy + U dy+ f U e  dy

h h h ;U

ax- f (uu)dy + I f ;x(uU)dy -e  f u - dY

h ;U
+ Of U e -x'dy

Simplifying,

h a h au h ;U
S _ e
(uu)dy + U dy + U e  dy

0 e J Ue a d

h h aU

0 e f(UUe - uu)dy + e (U -u)dy

au
And since U and x are independent of y,

h h h ;U
Sf f au Sx(uu)dy + U T-, U e

e-dy + e

h U h

a f- e!L- (1 - -)dy + e (1 -)(A7)
. 0 e e O e

V. 4
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Susiuino qs(6 n )it Eq (A5) yields the momentumi-

integral equation for unsteady flow:

2 ~ h

0 e

4



* .d
A.'

Appendix B: Development of the von Karman-Pohlhausen
Method for Unsteady Flow

By comparing the unsteady momentum-integral equation (A8) with the

definitions of the boundary layer displacement and momentum thickness in

their integral form (Ref 7:140-141), it is evident that, for arbitrary h,

auaT

(U 2 62) + UU6 +6 ) = a
T- e 2 e axl t' e 1 -

Expanding the first and third terms and rearranging yields

(26 ) u e U 2 " 1  a3U e = T w
2 1 e ax e aTx et + t P

At this point an equation of closure, Eq (5), is used to substitute

for the difficult term --- . This closure equation and its validity is

discussed at length in Section III. The result is

(2a6 u M 2a2e 2 2 1 e2 w(262 + 61 Ue  - + x U, ax + +e atI e

,V.
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Multiplying this equation by 62 yields
e

61 !22 62 92 61 622 au Tw6
(2e + 1 - eE 2

2  v- -x +  U e x 2Ue 62 V at 1-U-e

Finally, by adding and subtracting the quantity

1 6 1) 622 I1 aU2 6 6 U2 a

the momentum-integral equation becomes

61 622 (Ue ) + U 6 6

2 e

6 1 622 ;U Tw 2
(2= 2 (Bl)

2 2e U  e at u e

The velocity profile of the boundary layer must satisfy the following

boundary conditions:
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at y i 0 , u 0 (B2a)

2u au
= -(Ue + e) (B2b)

VW-T' iUe ax a

at y , u = U (B2c)

au
0 (B2d)

= 0 (B2e)

Since the existence of five boundary conditions will allow for the

solution of five free constants, the velocity profile may be expressed as

a fourth-degree polynomial, where n = Y:

!L A + Bn + Cn2 + Dn3 + E 4  (B3)

U
e

Applying (B2a) yields

A -0 (B4a)

Applying (B2c) yields

1 B + C D + E (B4b)
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%I

@ _ * Applying (B2d) yields

0 B + 2C + 3D + 4E (B4c)

Applying (B2e) yields

0 2C + 6D + 12E (B4d)

Finally, (B2b) is applied such that

U D2 (u/U)
e e = 2C + 6Dn + 12En z

NV

which, evaluating at 0, yields

The dimensionless shape parameter is now defined as

62 3Ue 1 aUe)
2C - F at

e
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. "If Eq (BS) is substituted into (B4e), the set of equations (B4a-e)

can be solved simultaneously in terms of A:

A 0

B = 2+ A
6

CA
_.*.' C = -

2

D= -2+
A

2

E= 
6

N6

IThe velocity profile, Eq (B3), thus becomes

M- u_ = (2n - 2n'3 + n' ) + (Tj 3rl2 + 3n'3  n) (BbO

U 6
e

Recall that the displacement and momentum thickness are defined as

' " 1 h
(1 L( )dy

a e1
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and

2 fh
2-' 1 "(1 )dy

0 e e

Since u = U for h ) 5 , integration beyond h = 6 yields nothing, and

the above equations may be written

Of e
oe

and

Of e Ue

Uring Eq (B6), the above integrations can now be performed, yielding

1 3 A (B7)
10 120

and

"2 37 A A2

6 315 4-5 9072 (B8)
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The shear stress at the wall is defined as

T at y = 0

Therefore, by using Eq (B6) and evaluating at n = 0,

w A
2+- (B9)

UU e 6e

From this, the separation criteria, defined as the point at which the

shear stress at the wall becomes zero, can be seen to be

A - -12 (BlO)

The last form of the momentum-integral equation, (Bl), encourages

additional parameters to be defined as:

62

z 2 (B1l)
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K 1 - 7- (B12)
9x U t 31 95 9072)

e

f (K) = 3A 3 A -A -1(B13)
1 6 2 10 120 315 945 9072

and

f (K) T w 2 (2= A 3_7 A A 2  (B14)
2 i-'U 6 315 945 90-72)

Note that using Eq (Bit),

2 M2 1 e ;6 2 2) 1 dZ (BiS)
U - - B15= u
e v ax 2 v ax 2 e dx

Now, the relationships in Eqs (B11-15) are substituted into the

momentum-integral equation (BI) to yield

12 + f (K)JK + -ftd _ 1 + 1 Z e -Zf (K)

1 1 2 dx '2 U- atK) 2-

Rearranging of terms yields
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"" UV.,

.ZU [4 + U(K)1  2 f (K) - 4K- 2 K f (K) (B16)
~~ dxr 1 +f i~ 2 1e

4%

One final parameter is defined as

F(K) = 2 f2(K) -4K- 2 K f(K) (B17)

- By substituting Eq (B17) into (BI6) and then solving for dZ" dx

Z F F(K) + 4+f(K Ue (B18)
dx -e e

and solving Eq (B12) for Z yields

4'

aU e I aU e -1i

!:: Z =  K (---+ee"'- ) (B19)

ax o;

4Eqs (B18) and (B19) are the "working" equations, which are the modified

equations that can be used to solve an unsteady boundary layer flow using

the von Karman-Pohlhausen method.
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Appendix C: Method of Solution

By selection of appropriate dimensions and position, a circle in one

frame of reference can be transformed into a Joukowski airfoil of desired

thickness and camber in another frame of reference by means of a complex

function, commonly known as a Joukowski transformation (Ref 9:50-53).

Further, a velocity on the surface of a circular cylinder can be likewise

transformed to a velocity on the surface of the airfoil, such that for

any given point on the airfoil at any given angle of attack a potential

flow velocity is obtainable (Ref 9:53-60). By standard difference methods,

then, the required partial derivatives of the potential velocity can also

be obtained. This method of determining geometry, velocities, and partial

derivatives, is described in depth in Reference 6, and will not be repeated

here; however, the application of this method can be observed in Appendix F.

In using the von Karman-Pohlhausen technique calculation begins at

the stagnation point. At this point it is known that U = 0 and e is
e a

finite and not equal to zero. This poses problems with the calculation of

dz
% T First, the solution will be initiated as a steady flow problem, with
dx

the pitching motion only considered after a finite number of small incremental

steps, with negligible effect on accuracy of the final solution. Now it

can be shown that F(K) must vanish simultaneously with U at the stagnatione

point to avoid an infinite value of .Z Solution of Eq (B17) for F(K) = 0
dx

yields the following initial values:

A = 7.052
0

K = 0.0770
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.t..0

. ., . Now x is of indeterminate form - which can be evaluated by a
dx 0'

limiting process (Ref 7:211). The result is

Z 0 K = 0.0770 e)

and

Z = -0.0652 -2
dxo o x 0

With these initial values, the solution can now be "marched" forward

along the airfoil as follows:

a. Compute Z, in the manner of

ZI = Z + (dZ) dx
o dx o

where dx is an increment of arc length along the airfoil.

b. Compute a new value of K from Eq (B19).

c. Compute a new value of A from this K, either by solution of

Eq (B12) or by a curve-fit routine.

d. Compute a new value of F(K) and f (K) by solution of

Eqs (B13), (B14), and (B17). For the steady flow solution,

F(K) may be approximated by the linear relationship

F(K) - .47 - 6K (Ref 7:213-214)

with reasonable accuracy.
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5' dZ
e. Compute a new value of using Eq (BIB).(,-__

• " dZ
f. Now, with new values for both Z and dx , this procedure

can be looped back to step a, continuing with a new

incremental step.

The value of A (or K) can be examined at any point and compared with

the known separation value

A = -12

or

K = -.1567

For a given free-stream velocity and pitch rate, this procedure was

used, iterating between different initial angles of attack, until separation

was indicated at quarter-chord, and the final angle of attack recorded.
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Appendix D: Derivation of the Hypothetical Body Forces

The conservation of momentum relationship is developed by applying

Newton's law in the form

- D ( - -F = -mV) =maDt

This analysis is only valid if accelerations are measured in an inertial

reference frame. In order to develop a momentum conservation relationship

for a non-inertial control volume, as is the case in the boundary layer of

a pitching airfoil, it is first necessary to analyze the inertial acceleration

of a particle in the control volume (Ref 10:109-7114).

Consider the problem as shown in Figure 16. Here the reference frames

are to be interpreted as

F - frame - fixed in inertial space

f - frame = fixed in the geometry of the airfoil

xyz - frame -fixed in the control volume

By the geometry shown in Figure 16, the coordinate transformations are
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FI = (cos )fl + (sin c)f
F 1 Co I ~ 2

F2  (-sin ca)f1 + (cos 2)f2 (Dl)

F 3 f f3

and

fl = (cos l )x + (-sin )y

f 2 = (sin 1)x + (Cos 2)y 02)

A A3 3

Combining relationships in Eqs (Dl) and 0D2) yields

F I = cos (a- ) x + sin (sin (a-) y

F 2  -sin i(x-) x + cos (t- ) y (D3)

A A

F 3  = Z
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S . , It can also be seen that the angular velocity of the xyz - frame

with respect to the F - frame is

W xyz - F 3 - Z (D4)

Now, referring to Figure 17, consider the motion of a particle P.

The position vector of the particle is

The velocity of P with respect to the F - frame is

Fd- Fd- + Fd:

dt dt dt

Using the relationship of derivatives of a vector in a rotating

reference frame (Ref 13:334-336),

F R F+ Xd + x r
dt xyz
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' '-, Differentiating again to find the acceleration of P with respect to

the F- frame gives

d F= d F-- d d r w - - Fd

dt V) = T R) + dt dt dt dt

This reduces to

F- F- X- x-, - --

Newton's law can now be applied to the inertial acceleration:

dF = dm FR + + 2W x X+ x r + x (- x_

Solving for acceleration in the xyz - frame,

dF -d[R + 2W x xi + W- X r + W x CW x r)J dm( a) 0D5)

.84
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*" If the bracketed terms in Eq (D5) are thought of in terms of forces,

in fact body forces since they are multiplied by mass, then this is

essentially a valid representation of Newton's law for a non-inertial

reference frame. Conservation of momentum in this frame can now be

implied in the usual manner.

The hypothetical body force in question then is

dB = -dm I + 2w x v + w x (D6)

Referring again to Figure 16, it can be seen that, for a given

control volume on the surface of the airfoil, 6 and are constant, the

magnitude of Ri is constant, and O*L is considered constant for the situation

under investigation. In light of these consideration, and given the

relationships in Eqs 0D3) and 04A), each of the bracketed terms in Eq 0D6)

can be evaluated in the xyz 1 frame:

a u R 7 iCos (c+ )x sin (c+o)y

2W x =2 Ct (vx- uy)

0V.

w x r 0

w x (R = cos (x - si (e + 4)
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.- ~ Letting = (e + p), the x-component of the hypothetical body force

is

*[ 1

dB = -dm R Oa2 cos + 2 a v -ax (D7)

which will be used in the analysis of momentum in the x-direction.

A physical explanation of the hypothetical body forces is as follows:

F'"
R represents the component of acceleration due to the

translation motion of the control volume.

2W x XV represents the coriolis component of acceleration

due to the rotational motion of the control volume.

X (W x r) represe., "% the centripetal component of

acceleration due to the rotational motion

of the control volume (Ref 13:350-353).
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Appendix E: Estimation of Mass Introduction Constant

In the vicinity of the stagnation point, the frictionless potential

flow velocity distribution is given by

up
U

s w- as (Ela)

UI

and

u
- - ar (Ref 7:96) (Elb)

where a is a constant and the velocities and dimensions are as defined in

Figure 18. While it is the radial velocity equation (Elb) that is to be

used in the mass introduction solution, the constant a can be approximated

by examination of the tangential velocity equation (Ela).

Consider the flow about a circular cylinder in a uniform stream, as

depicted in Figure 18. The velocity at the surface of the cylinder can be

shown to be

u = 2 U sin e (Ref 8:90) (EZ)

For the region near the stagnation point, 0 is small, and the

44 assumption is made that sin e % ; thus

87

MawL . .... * .. . . .... . '.. . .°..-%- -. - . ...



7D-Ri36 897 INVESTIGATION OF EFFECTS CONTRIBUTING TO DYNAMIC STALL 2/2
USING A MOMENTUM-I- (U) AIR FORCE INST OF TECH

UWRIGHT-PTTERSON AF8 OH SCHOOL OF ENGI J S LWRENCE
UNCL'ASSIFIED DEC 83 AFIT/GAE/AA/83D-i2 F/G 20/4mEEEEEEEEllil



Q22

4.

/ 11111L0 5  .4'p

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

fI.

C,

4'..

5% N.



-S-,

A 0

'S....

*o ,,

4 88



u 2 U00 (E3)

Ns

The velocity gradient in the s-direction is

du du 2U
S~ s (E4)

-s R de R

By integrating Eq (E4) with respect to s, the velocity is obtained

as a function of the surface coordinate:

2 U s0 s R= 0 (E5)

4.'

Comparison of Eqs (Ela) and (ES) yields

a 2 U (E6)
R

Sfor the given circular cylinder.

The Joukowski airfoil of interest is obtained by transformation from

a circular cylinder in a flow field as described in Eq (E2). The real-axis
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o . radius of this cylinder transforms to the half-chord of the Joukowski

airfoil. In the solution method, distances on the surface of the airfoil

are non-dimensionalized with respect to the chord of the airfoil. Then

letting R = g Eq (E6) in non-dimensional form becomes

a 4 (E7)
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Appendix F: Computer Program POHL6

LAWRENCE. JOHN S.
* GAE-83D

* This program Is adapted from program "POHLZ*. Docken,
* GAE-82D, and will be used to continue analysis work In the
* area of dynamic stall effects. The representative airfoil is
* a 15Z Joukowski, pitching at a constant rate about its mid-
U chord in a steady freestream. Mass is being injected from

the freestream Into the boundary layer as a result of the
* non-Newtonian motion of the airfoil. Symbology within the
* program is as follows:
- -El a imaginary unit; i.e., square root of -1.
* RADIUS a radius of circular cylinder.
* AMU a offset distance of center of circular cylinder.
* ALPHA * angle of attack, in degrees.
* ADOT1 = pitch rate, in degrees per second.
* PITCH = non-dimensional pitch rate.
* CHORD - chord-length of Joukowski airfoil.
* ANGLE a radial of a given point on the circular cylinder.
* UINF a freestream velocity, in feet per second.
* CON a conversion factor, degrees to radians.
* X.Y,U a coordinates and potential flow velocity on airfoil.
* Z,W a complex coordinates and velocity.
* UMIN a ratio of wall velocity to potential flow velocity.
* TIME - cumulative time.
* DELT = increment of time.

K.N a integer counters.
* DSS increment of distance on the airfoil surface.
* DUDS a spatial partial derivative of velocity.
U DUDT a partial derivative of velocity wrt time.

XOC - chord position.
*BETA a local slope of airfoil surface.

* RASIRAC1 - functions (of geometry) due to pitching motion.
a RLAMDA,RK - Pohlhausen shape parameters.
* FK.ZZDZDSDEL2,F1K = functions of shape parameters.

PROGRAM POHL6
COMPLEX EI
OPEN (15.FILE='FLOWIN')
REWIND 15
OPEN (16,FILE='FLOWOUT*)
REWIND 16
EI-(R.,1.)
RADIUS=.131
AMUs-.131
READ (15.*) ALPHA,ADOTI.UINF
ALPH1-ALPHA
CONa3.1415927/180.
ADOT2=ADOT1*CON
THETAn180.
TIME-B.5
CALL DS(185.,RADIUSCON.AMU,XLE.YLE)
CALL DS(8.#.RADIUS,CON.AMU,XTE,YTE)
XLE=ABS(XLE)
CHORD-XLE+XTE
PITCHIADOT*CON*0.5*CHORD/UINF

K=IZZ
Kl=K I
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WRITE(16,30)UINF
WR ITE( 16. 40 )ALP HA
WRITE(16,50)ADOTI
WRITE(16.52)

ANGLE -AL PHA+THETA
CALL U(ANGLE.RAOIUS,CON.EI .UINF .AIU,ALPHA.UZ)
CALL DS(ANGLE,RADIUS.CON,AMU,XZ.YZ)
ANGLEeANGLE-0.01
CALL U(ANGLE.RADIUS.CON,EI .UINF,AMU.ALPHA.Ul)
CALL DStANGLERADIUS,CON,AMU.X1.Y1)
ANGLEmANGLE-0.01
CALL U(ANGLE.RAOIUS.CON,E1,UINF.AMU.ALPHA,u2)
CALL DS(ANGLE,RADIUS.CON,AMU.X2,YZ)
DS2.(SQRT((X2-X1)**2+(Y2-V1)**2))/CHORD
DSI.(SQRT((Xl-X0)**2,*V1-Y0)**2))/CHORO

*Stagnation point velocity gradient computed using a
* forward difference method; all other velocity gradients
*computed using central difference method.

DUDS-CU2-UZ)/(DSI+DS2)

*Second derivative of velocity computed using a
*Taylor's series expansion.

A. D2UDSZu(U2-2.U+U)/((DSI.4DS2)/2.)**2

Enter initial boundary layer parameters.

-t RLAMDAn7 .52
RK-0.0770
FK-5.0
DZDS--0.0652*D2UDS2/( DUDS**2)
ZZ-RK/ DUDS

ANGLE*ALPHA+THETA-0.01
XOCs(XZ+XLE)/CHORD
WRITE(1691)XOC,U0.DUOS,B2UDSZ,FK.RK,ZZDZDS

ADOT-1.0
DO 10 3w1.K

*Function of this loop is to compute boundary layer
* parameters at stagnation point, allowing the
* boundary layer to steady-out before subjecting it
* to a pitching motion.

N-1

4Z Compute pertinent boundary layer parameters.

ZZaDZDS*DS1+ZZ
RK=ZZ*DUDS
FK- .47-6. 'RK
DZDS-FK/Ul

DELT-CHORD*DS1/UI
TIME-TIt4E+DELT
CALL U(ANGLE.RADIUS.CON,EI.UINFAMU.ALPHA.U2)
QUDTu(U2-UI)/DELT
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ANGLE-ANGLE-0.01
ANGLEI1 ANGLE-0.01
CALL U(ANGLEI .RADIUS.CON.EI .UINF.AMU.ALPHA.U2)
CALL DS(ANGLE1 .RADIUS.CON.AMU.XZ.Y2)
ANGLES-ANGLE+. 1
CALL U(ANGLE5.RADIUS.CON.EI ,UINF.AMU.ALPHA.UN)

4 CALL DS(ANGLE8.RADIUSCON .AMU .XZ.V5)
CALL U(ANGLERADIUS.CONEI ,UINF .AMU.ALPHA.U1)
CALL DS(ANGLE.RADIUS,CONA4U,X1.Y1)
DS~I(SORT((XI-X5)**2,(V1-Y5)**2))/CHORD

-DS2-(SORT((X2-X1)**2,(YZ-V1)**2))/CHORD

*Compute the arc length and the velocity gradient.

DSS-DS 1.DS2
4 DUDS=(U2-U#)/DSS

XOC*(XI+XLE)/CHORD
IF(N.LT.50) GO TO 10
NsU
WRITE( 16.1 )XOC.U1 ,DUDS.OUDT.FK.RK,ZZDZDS

15 CONTINUE

ADOT-ADOTI
N=O
RAS1-0.I
RAC1-5.0
DO 25 3-K1.K2

*Function of this loop is to compute the behavior
* of the boundary layer as it is subjected to a

**pitching motion.

*Compute the pertinent boundary layer parameters.

ZZ=DZDS*DS1,ZZ
RKuZZ*(DUDS*( 1.*RASI/U1 )iDUDT/UI)
CALL POHL(RKqRLAMDA)
DEL~a37./315.-RLAMDA/945.-(RLAMDA**2)/9I72.
FK*2.ODEL2*(2.-.3683*RLAMDA.Z04*RLA4DA**2+

*(RLAMDA**3)/4536.)
FIKut .3-RLAMDA/120. )/DEL2
DZDS-(FK.( 4.,F1K)*ZZ*DUDT/U,( 4.,2.*FIK-2. /DELZ )*ZZ

**RAS1*DUDS/U1GS.ZZ*RAC1/DEL2)/U1

*Compute the time increment for a particle to
*travel from point (1) to point (i.1).

DELT&CHORD*DS1 /Ul
TIME-TIME+DELT

* DALPHAwDELT*ADOT
ANGL E ANGL E + AL PHA
ALPH1=ALPHI.DALPHA
CALL U(ANGLE.RADIUS.CONEI.UINF.AMUALPHl.U2C)
CALL NIU(ANGLE.RADIUS.CON.AMU,ADOT2.X1 .V1.U2C.U2.RAS2.RAC2)

*Compute the unsteady velocity gradient.

DUOT.(U2-U1 )/DELT
ANGLEANGLE-.81
ANGLE 1-ANGLE-0.01
CALL U(ANGLEI.RADIUS.CON.EI.UINF.AMU.ALPHl.U2C)
CALL OS(ANGLEI .RADIUS.CON,AMU.X2.Y2)
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CALL NIU(ANGLE1 .RADIUS.CON.AMU.ADOT2.X2,Y2.U2C.U2.RAS2.RAC2)
ANGLEO-ANGLE.0.01
CALL U(ANGLEI.RADIUS,CON,EI .UINF ,AMU.ALPH1 .U0C)
CALL DS(ANGLE0.RADIUS,CON,AMU.XZY0)

* CALL NIU(ANGLER.RADIUS ,CON.AMU ,ADOT2 ,XI.V0.UOC .UZ,RASB,RACO)
CALL U(ANGLE.RADIUS,CON.EI.UINF .AMUALPH1 .UlC)
CALL DS(ANGLE.RADIUS.CON.AMU,X1,Y1)
CALL NIU(ANGLE.RADIUS.CON.AMU.ADOT2,XI.VI.UIC.U1.RAS1.RACI)

4 * Compute are length and velocity gradient.

DSIa(SQRT((XI-XO)**2,(Yl-YV0V*Z))/CHORD
DS2a(SORT( (X2-X1 )**2,(V2-Y1)**2) )/CHORD
DSSnDS1+DS2

* DUDS-(U2-UO)/DSS
UDUDS-U*DUDS
XOC=(Xl+XLE)/CHORD

* Stop the computation at the quarter-chord.

IF(XOC.GE.O.250) GO '70 25
IF(N.LT.250) GO TO 20
Nug
WRITE(16.1)XOC,U1,DUDS.DUDT.FK.RK.ZZ,DZDS

20 CONTINUE

25 WRITE(16.1)XOC.U1,DUDS.DUDT.FK.RK.ZZ.DZDS
WRITE( 16.45)ALPHI
WRITE( 16,55)P ITCH
WRITEC 16,60)RK
WRITE( 16,80)
WRITE( 16.81 )TIME
UMIN-RASI/UI
WRITE(16,85)UMIN

1 FORMATC4X,F6.3.2(4X.F1B.3).4X.F7.3.4X.F7.4.4X.F8.4.2(4X.E9.3))
30 FORMAT(IH1,-BOUNDARV-LAYER PARAMETERS FOR ",F6.Z."FT/SEC"/)
40 FORMAT(* INITIAL ANGLE OF ATTACK: ".F6.3.* DEGREES"/)
45 FORMAT(/ FINAL ANGLE OF ATTACK: ",F6.3." DEGREES"/)
50 FORMAT(" PITCH RATE: ".F7.3,* DEGREES/SEC"/)
52 FORMAT(6X. "XOC", lOX, ",1iX. "DUDS" .9X, "DUDT" ,8X. "FK".

" X."RK",1lX."Z" ,1IXq"DZDS"/)
55 FORMAT(" PITCH PARAMETER: ",F7.5/)
60 FORMAT(' K AT THE QUARTER-CHORD: *.FB.4/)

so FOR.MAT(* TIME TO REACH THE QUARTER-')ii81 FORMAT(" CHORD FROM THE STAGNATION POINT: ",F7.5." SEC"/)
085 FORMAT(" UWALL/UE AT THE QUARTER-CHORD: "E9.3/)

STOP
100 END

SUBROUTINE U(ANGLE.RADIUSCON.EI .UINF.AMU.ALPHA.UU)
COMPLEX CMPLX.Z.EI.DZETA.W

*Function of this subroutine is to to compute the local
*value of velocity on a Joukowski airfoil using complex
* potential flow theory.

X-RADIUS*COS(ANGLE*CON)
VaRADIUS*SIN(ANGLE*CON)

U ZaCMPLXCX.Y)
WaUINF*((1..S.)-(RADIUS**2)/Z**2+

" CZ.*EI*RADIUSSIN(ALPHA*CON) )/Z)
XwX+AMU

94



-~ Z changed to represent values of coordinates used in
athe transformation equation.

ZaCMPLX(X.V)
DZETA.(Z**2-(RADIUSAMU)**2)/Z**2
UU-CABS(lJ)/CABSCDZETA)
RETURN
END

SUBROUTINE OS(ANGLE.RADIUS .CON.AMU.X.Y)
COMPLEX CMPLX,Z

aFunction~ of this subroutine Is to compute the arc
alength between two points on the .Joukowski airfoil.

X=RADIUS*COS(ANGLE*CON )+AMU
VaRADIUS*SIN.(ANGLE*CON)
Z-CMPLX(X.V)
Z=Z+( CRADIUSAMU)*a2)/Z
X-REAL(Z)
Y-AIMAG(Z)
RETURN
END

SUBROUTINE POHL(RK.RLAMDA)

aFunction of this subroutine is to compute the value
of the separation parameter, lamda, given a value
of K. as computed in the malin program.

RKI--. 165
RK2--. 112

RK4=..6
RK5o.076
RK6-6.586
RK7-6.0949
IF(RK.LE.RKI) GO TO 15
IF(RK.LE.RK2) GO TO 25
IF(RK.LE.RK3) GO TO 35
IF(RK.LE.RK4) G0 TO 45
IF(RK.LE.RK5) GO TO 55
IF(RK.LE.RK6) GO TO 65
IF(RK.GT.RK7) GO TO 75

RLAMDAw.5149**2-(RK-0.98)**2
R LAMDAU12 .-150 .*ST R LAMDA)
RETURN

10 RLAMDA-(2./.012)aRK,14.0
a RETURN

20 RLAMDA=(4./.544)*RK+2.18
RtETUR N

35 RLAlDAe1./.14)*RK
RtETUR N

45 RLAMDAs83.33*RK
RETURN

Zip
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so RLAMDA=-1.9+115.*R
RETURN

so RLAMDA.-6.54+176.*RK
RETURN

75 RLAM4DAw12.
RETURN
END

SUBROUTINE NIU(ANGLEC.RADIUS.CON.AMU.ADOT2,XC,YC.UCUNI,
RASF,RACF)

*Function of this subroutine is to compute the value of U in
* the non-inertial reference frame, and the values of the
*required functions of geometry.

R-SORT( XC**Z+YC**2)
BET 1=ATAN(VC/(-XC))
ANGLEM-ANGLEC.
ANGLEP*ANGLEC-. 1
CALL DS(ANGLEM.RADIUS.CON.AMU ,XM.YM)
CALL DS(ANGLEP,RADIUS,CON,AMU.XP,VP)
DY-ABS( YP-VM)
DX-ABS(XP-XM)
0m1080. *DX
IF (DY. GT.0 )THEN
BETA-i .5707963
ELSE
BETA-BET 1.ATAN(DY/DX)
END IF
RASF-R*ADOT2*SIN(BETA)
RACFsR*ADOT2*COS( BETA)
UNI-UC-RASF
RETURN
END

Aa
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