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& 235 Abstract

[N .
¢ Dynamic stall effects are analyzed in this investigation for cases of -
F &

3 S41)-an inertially static airfoil in a flow field rotating at constant rate

f. . . -

(gust response), and (2) an airfoil pitching at constant rate in a steady

flow field. The method used is a boundary layer solution of the momentum-

o

‘4 integral equatigp by a modified von Karman-Pohlhausen technique. .
ﬁ: ?t‘~wk‘~Work/;;;Qmplished by Docken in 1982 using this method to match

‘3 Kramer's experimental results for gust response is reviewed, corrected,
15 and continued. The validity of the closure equation and the assumptions

: key to its derivation are examined, concluding that the closure equation

3 is justified. A better match of Kramer's airfoil sections results in

i dynamic stall predictions very close to experimental data. The effect

L

¢ ‘i’ of varying airfoil thickness and camber is investigated. :
| By consideration of the non-Newtonian motion of the boundary layer .
3 on the surface of a pitching airfoil, the momentum-integral method is \
h extended to the second case. Using the Moore-Rott-Sears model for flow ;
ﬁ separation criteria, analytical results were computed and compared with :
; experimental data. Reduction in adversity of the pressure gradient E
v accounts for only a fraction of the total dynamic effect, and it is

3 proposed that mass introduction into the boundary layer from the free- .
» siream may be a strongly contributing factor. This phenomena is .
5 demonstrated to have a large effect, and an argument is presented for )
:E the proper amount of mass introduction.

;
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INVESTIGATION OF EFFECTS CONTRIBUTING TO DYNAMIC STALL

USING A MOMENTUM-INTEGRAL METHOD

I. Introduction

Discussion

Dynamic stall is a phenomenon that has received considerable attention
over the past two decades. It is understandably of intense interest to the
helicopter and compressor industries, where much of the research has been
conducted, and more recently has received the attention of the aerospace
industry in applications to winged space shuttle vehicles (Ref 23:2).
The majority of the research has been experimental, and most of the
analytical work has relied on some sort of experimental data as input.
Further, because of the importance of practical application (i.e., helicopter
blades), nearly all of the work in recent years has dealt with oscillatory
motion of the airfoil. Consequently, there is still much to be learned
and understood about the basic physical flow phenomena which contribute to
dynamic stall.

The concept is not difficult. When an airfoil angle of attack is
increased rapidly through a range that includes the static stall angle,
the maximum lift and drag are significantly increased, stall is delayed to
a higher angle of attack, and the corresponding loss of lift is often much
more severe in nature. The problem then is one of complexity. Contributing

factors are both viscous and inviscid. The phenomenon is strongly dependent

................

A~



on the rate of pitch, free-stream velocity, and frequency and amplitude

(for an oscillating airfoil), and shows varying degrees of dependence on
.
Ry airfoil shape, 3D flow effects, Reynolds number, and Mach number

N %
‘*‘t:; (Ref 1:304).

' Problem Statement

It is far beyond the scope of this study to attempt to analytically

., VM
PR Y B ]

Cu)

.
. 4

X predict dynamic stall effects on an airfoil. Rather, the purpose of this
3ﬁ:_ thesis is to attain a better physical understanding of some of the ,.tri-
1
E?E buting causes of dynamic stall. As such, restriction is made to t
3 analysis of boundary layer effects for an airfoil undergoing a cor * rate
-;t: of change in angle of attack. It would seem essential that the physics of
%S{ this relatively simple problem should be well understood and documented
N ‘:, prior to an analytical study of more complex oscillatory motions, but such
i? has not been the case.
‘2;3 The method of analysis will be to integrate a solution of the unsteady
tﬂ (time-dependent) boundary layer equations, using a modified von Karman-Pohl-
%:% hausen momentum—-integral technique, until stall is indicated, and determine
553 the maximum angle of attack at this point. Stall of the airfoil is here
= defined as the condition of flow separation at quarter-chord of the airfoil,
;ﬁgj with flow separation being initially defined as the condition of zero shear
a;& at the surface as indicated by the velocity profile shape parameter (this
= definition of separation is later modified using the MRS conditions for the
iiﬁ case of a pitching wing). To use this technique, the classical boundary
3
Eéi layer assumptions must be applied.
Efﬁ - Two distinct cases will be analyzed. The first is that of an inertially
A
A 2
&
N e e e T T N T e e T T T T T e e e e
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:i; fz%: static airfoil in a rotating flow field, and this will heretofore be 3
‘;\ referred to as the "gust-response' problem. The second is that of a .
?2 pitching airfoil in a steady flow field, and will be referred to as the ]
"23 "pitching airfoil" problem. These may appear at first to be the same
- problem, differing only in the reference frame of the observer. Experi-
LN s
;: mental results, however, indicate greatly differing effects, as will be 4
ﬁ shown. The analysis of this report will also point out the differences 3
» between these two cases. i
\ 1
3 '
21 Background
4
t Max Kramer reported the results of an experimental study of the gust-
o
:§ response problem in 1932. By fixing a wing section between a set of
8
55 moveable guide vanes and a diffuser, he was able to take lift measurements
, (ip while constantly varying the angle (with respect to chordline) of the
E? free-stream velocity. Based on his results, Kramer established a linear
a relationship between the increase of maximum 1lift coefficient (ove:r the ;
- "
steady flow case) and the non-dimensional pitch rate (Ref 2). !
4
:; An analytic study of the gust-response problem conducted by Richard )
A 3
i: Docken in 1982 successfully predicted a relationship in close agreement i
with Kramer (Ref 3). He developed a modified von Karman-Pohlhausen integral l
-? method for unsteady flow and applied it to the boundary layer of a represen- i
¥ d
;é tative Joukowski airfoil. The outstanding feature of this method is the 5
cd
B development of a closure equation to handle the unknown unsteady term.
g Two experimental studies of the pitching airfoil problem are of
E particular interest. 1In 1978 Arthur Deekens and William Kuebler conducted
' < smoke tunnel tests of an airfoil section pitching at various constant rates ;
" 3

matata om .
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and in various free-stream steady velocities. Motion pictures were taken
of the flow, allowing observation of flow separation at quarter-chord versus
instantaneous angle of attack. By comparison with static conditions, they
were able to determine a direct correlation between the delay in stall
angle of attack and the non-dimensional pitch rate (Ref 4). Daniel Daley
found complimentary results to this in 1982 (Ref 5). He developed a
microcomputer-based automatic data acquisition system such that flow
separation on the surface of an airfoil section could be determined by
pressure indications. Again, by varying pitch rates and steady free-stream
velocities, data was taken, compared with static stall conditions, and
results noted.

The results of the work by Daley, Deekens and Kuebler, and Kramer
are shown in Figure 1. Note the difference in effect between the gust
response problem and the pitching airfoil problem. Docken shows in his
work that the dynamic effect in the gust-response problem is the result
of a reduction in the adversity of the pressure gradient in unsteady flow.
The extent of this effect on a pitching airfoil and what, if any, other

phenomena are contributing to dynamic stall, are matters to be investigated

in this study.
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II. Gust Response Problem

Review of Docken's Work

It is notable that in Docken's approach to the problem of gust response,
each step of this theory development and development of the method of
integration is simply an unsteady modification of the corresponding steady
flow model (Ref 6:17,20). This idea is reinforced by the fact that, when
his program is applied to a case of zero pitch rate, time derivatives
become zerc, and all equations and the resulting solution reduce to the
steady-state case.

The theory development leading to the unsteady boundary layer
momentum-integral equation is reviewed in Appendix A, In short, the
principles of continuity and momentum are applied to an incremental control
volume in the boundary layer. The unsteady Euler's equation is then
employed to substitute for the pressure gradient term. By careful manipu-

lation of terms, the momentum—integral equation for unsteady flow results:

3y h‘—’—(l—~u—)d+U3£ h(1-“—)«1
ox e _[ U v 'Y e 9% /ﬂ v 'Y
0 e e 0 e
T
3 h u W
+ e Ue -[ (1 Ue)dy =3 (D)

Docken's modification to the von Karman-Pohlhausen integral method to
handle unsteady flow is reviewed in Appendix B. As in the well known

steady flow model (Ref 7:158-160), the displacement thickness and momentum

thickness are substituted into the momentum-integral equation. The velocity




AN
NN
R
:‘:;“ <.
N profile is defined as a polynomial expression of v/&, and, by applving
5 known boundary conditions, the velocity profile can be related to a single
shape parameter:
62 8Ue 1 BUe)
= + —

R N D
oy
:i; Again as in the steady-flow model, additional parameters are defined
‘;gj and substituted into the governing equation, and the "working" equations
};w for stepwise integration become
A
_" (55) U

dz l l ] Z e I 1
2L = IRR) ¢+ Jo + £ ()] & =] L
A dx (K) S Rk B (3)
‘::.'» e e
D
o and
:33 BUe 1 U 1
.:: = - . ey”
:5< z K(Bx Ue at ) (4)
AN

N

The single exception to this parallelism of the unsteady flow derivation

to the steady flow derivation arises from the introduction of the displace-

ment and momentum thicknesses into the momentum-integral equation. A
E1)

transient term of the form szl developed, requiring a closure equation.

The necessary equation was derived as

. A NN
P,R-‘-‘:’:?‘l .

¥
’
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(Ref 3) (5)

The limits of applicability of the assumptions associated with this
derivation were not investigated in depth, however, and both the derivation
and the underlying assumptions will be examined in Section III of this
report.

The method used to step-wise numerically integrate Eqs (3) and (&)
along the surface of a Joukowski airfoil is detailed in Appendix C.
Coordinates on the airfoil and velocity at the outer edge of the boundary
layer are obtained by a Joukowski transformation from flow about a circular
eylinder, the unsteadiness being approximated as pseudo-steady Joukowski
solutions at the changing angles of attack. Necessary derivatives at each
step are computed using standard difference methods, and the shape parameter
can be examined at any given point on the airfoil to determine a point of
boundary layer separation (Ref 6:23-25).

Docken defined aerodynamic stall as the condition of flow separation
at the quarter-chord of the airfoil. Flow separation was determined to
occur when shear at the airfoil surface equals zero, as indicated by the
shape parameter (A = -12, or K = -.1567). Using this criteria, the above
method of solution was applied to a JO15 airfoil. By assuming the
Cy-vs.-Q slope remains linear and equal to 2m/radian, and applying three-

dimensional flow corrections, Docken's analytical results were expressed as

ca
ACL .343 T
max @
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comparing remarkably well with Kramer's experimental results:

The significance of this result is not only that an approximate integral
method had been modified to give such a degree of accuracy, but that, like
the experimental results, the relationship between gust pitch rate and
dynamic stall angle of attack is linear (Ref 6:27). Also, and just as
important, the cause of the increased angle of attack can be attributed to
a distinct physical effect -- a reduction in the adversity of the pressure

gradient as determined from Fuler's equation.

Modification and Results

Upon close examination of the Docken program, an error was discovered
in the Joukowski transformation. The error was, in fact, causing the method
of solution to be applied to an airfoil with thickness less than the desired
15%. This error was corrected and some other minor modifications were made
to the original work.

Upon running the solution again for a JO15 airfoil, the data remained
linear, but with a different linear coefficient. The corrected data is
displayed graphically in Figure 2.

Converting this data in order to compare with Kramer's results, the

results of Figure 2 may be expressed as

",
‘.
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e

. .
.0'.: 2 = -CE_
SR *stall(dyn) %eall(st) ¥ >80 (ZUm)

In radians then, and correcting the form of the non-dimensional pitch

rate,

ca
+ 0.049 3

-]

c"st:all(dyn) T %tali(st)

Assuming, by classical airfoil theory, a 27W/radian curve slope (Ref 8:125),

@ ] c
C c + .307 T

1max(dyn) 1max(st) ©

Since Kramer's experiment dealt with a wing with aspect ratio approxi-
mately equal to five, a three-dimensional flow correction is required. By
wing-section theory, the lift curve slope per degree of the corresponding

wing may be obtained by

c. = & (Ref 9:11)

3
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SE This, then vields the result

ca

max @«

This differs somewhat in degree of accuracy, but the solution still
exhibits the significance of linearity and physical interpretation, and is

still very close to Kramer's empirical results.
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<. G III. Closure Equation
Ty Tt
e Review of Derivation
b %:
; ; Prior to Docken's work, the von Karman-Pohlhausen technique had not
~
(4
been used to solve an unsteady flow problem, because the unsteady terms
v in the momentum-integral equation required an additional unknown closure
;ﬁ equation. The derivation of the required equation is simple and concise,
¥ and the assumptions appear to be well-founded, at least superficially
f (Ref 6:14-15). 1In order to investigate the validity of these assumptions,
x and hence the equation, and to then further examine the impact on the
\ problem solution, it is necessary first to fully understand the derivation.
Wy
o To find the equation of closure, it is first observed that, for any
-.'\:\
- location and time in the flow, the displacement thickness is related to
@ the boundary layer thickness as
1"*
2
]
W
" -
3 - 5 6
, 61 o (6)
3
.
N
Also, for laminar flows, the boundary layer thickness is related to
C: the velocity of the potential flow as
o
..; 1
L. v 1/2
2 S = ( — 7
o5 C2 T x) (7
Ky e
.}'
e o
\
N 13
-l
-
2
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Then, taking the time derivatives of Eqs (6) and (7),

96 ac
1 a8
3t 3% * xd (8)
and
a8 | fz_ v 1/2 aUe ) aC i )1/2 %)
ot 2U ot ot U x
e e e

361 L C1C2 v )1/2 BUe . e BCZ o )1/2
ot 2Uu U x ot 1 3t X
e e e
3cC 1/2
1 v
+ C2 5t (?) (10)

Now, the restrictive assumption is made that the time dependence

of both C1 and 02 is small compared to that of Ue, and Eq (10) becomes

Efl = - ElEZ (=2 12 EEE (11)
t 2U U x ot
e e
14
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Applying Eqs (6) and (7) to Eq (11) then yields the required closure

equation:

Wity 38 8. U
R S (12)
ot 2U ot

gk Investigation of Assumptions
A9 8¢, c,
VN The key assumption then is that T and 3¢ are negligibly small,

Q

and the question arises as to what magnitudes are acceptable to the
$ solution. From Eqs (10) and (11), it can be seen that the closure

A equation is valid if

X ) c,c, (_)1/2 3U_ . c,c, o )1/2 U 3(:_2_ (L)llz
oo 20 U x 3t 20 U x ot 1 3t X
e e e e

N + ¢ —L () (13)

'::' Then, to compare the relative magnitudes of the time derivatives,
X

Eq (13) requires that

= L2 el 55 (¢ —24+¢ — (14)

3
3»
."I’
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From this it can be seen that, while this relationship is certainly

satisfied if the original assumption is true, it is also satisfied if the

aC 3C
2 1 . . . .
— +
sum, C1 Nt C2 Tl is comparatively small. This could certainly be

the case if the time variations of C1 and C2 are of opposite sign.

Either of these assumptions could be evaluated by the degree to which
Eq (14) is satisfied. The velocity and acceleration terms are available at
any given point on an airfoil by the Pohlhausen method previously discussed;

however, a scheme must be developed to determine C.,, C,, and the corresponding

|2

time derivatives.

Consider first the term Cl' By definition, as in Eq (6), C1 is the

ratio of displacement thickness to boundary layer thickness. This can be

written in terms of the Pohlhausen velocity profile shape parameter as X

- = (15)

Then the time derivative of C,, also in terms of the shape parameter,

13

is

3¢ A
1 _ _ 1 3A
3¢ " 120 Bt (16)

When an airfoil is at an angle of attack such that separation is

B incdicated at the quarter-chord (i.e., the case under consideration), the

16
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o
'f; - shape parameter varies from +7.052 at the stagnation point to -12.0 at
_ quarter—-chord (Ref 7:211); hence, %é for a static airfoil and %% for a
fi pitching airfoil are negative quantities. The fact that a pitching airfoil
f; demonstrates delayed separation would infer that the associated %% term is
causing A to be less negative, thus %% is a positive term. If this is
. aC
.
™ indeed the case, then =— is a negative term, by Eq (16).
!:\A
i Since the shape parameter is available in the solution at each point
. on the airfoil, C1 is easily determined. The term %% , and consequently
3c
.:i ¢ @ can be calculated in the following manner. The total change in the
':j shape parameter can be calculated between two given points on the airfoil
i by both the steady solution (time independent) and the pitching solution
A
f: (time dependent). For the steady case, %% = (0. Defining the total
"
S derivative as
v‘_ )
e
iy
‘
o DA _ 3A . 3s dA
4, _— = = 4 = =
Dt at It 9Is
e DA . .. .
: let (BE be approximated by a steady, or time-independent, difference of
1
- A between two given points in close proximity, and (%%) be approximated
Gl ‘ 2
o .
:} by the time-dependent difference between the same two points. Then
8
»
! A
N bi _21.\. = équﬁa_A—o.o-E.% =i1.\.
. Sy Y (Bt 3t as) ¢ 3t 35’ ot
198 2 1
f.. i
LAY
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e Consider now the term CZ' If the velocity of the potential flow over

a wedge is proportional to a power of the length coordinate as

U(x) = kx (18)

where m is a specific function of the included wedge angle, then the
solutions of Falkner and Skan show that fcr any given wedge there is a

constant C2 such that

§ = ¢ C—1E (Ref 7:164-166) (19)

The constant C2 is only a function of the geometry; i.e., wedge angle.
Comparing Eqs (7) and (19), it can be seen that if such self-similar
solutions can be applied to an airfoil approximated by a series of panels

(i.e., the wing is made up of a series of short linear ramps), each making a

specific '"wedge angle'" with the free-stream, then C_ could be determined.

2
aC
-ﬂj Further, since C2 is only a function of geometry, EE; on a pitching
;' airfoil could also be determined through the change in slope of the panel

relative to the free-stream over an increment of time.

Accuracy of Closure Equation

- Evaluation of the closure equation assumptions was accomplished through

e 18
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Y - the determination of Cl’ CZ’ 3T and 3¢ °on @ typical pitching airfoil

{ as it approached separagion at the quarter-chord. Using the unsteady

g Pohlhausen method, Ue, 5%2 , and A are readily available. An independent ;
‘éz set of Falkner-Skan solutions was computed, and a curve fit of the results é
S made, such that the constant C2 could be determined for any included ?
i wedge angle. This and the techniques described in the previous paragraphs %
o

;; were then incorporated into the computer solution, such that at each point

- on the airfoil a comparison could be made of all of the above terms.

-

§ Further, each of the following relationships was computed, and a comparison

:; made:

>

"y C,C 3U

S - 2111: KE (20a)

s ‘j’

-;1;—2 %+c1;—2+c2-§-§l (20b)

From Eq (13) it can be seen that the degree to which the computed

% value of (20a) approaches that of (20b) is representative of the accuracy
o~
- of the closure equation.
Investigation was made of eight separate cases, each varying in
free~stream velocity and pitch rate, such that non-dimensional pitch rates :
varied from .009 to .035. The following observations were made: y
- 1
- 3¢ 3¢ L)
< a. L and —2 are indeed smaller than =—=, but not
- at ot acat e
o . . . 1 2 .
3 - negligibly so. The magnitudes of T and 5¢ Lncrease
\' .
'~
:

19
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U
y}} with increasing chord position, while 5;3 is initially

increasing, then decreasing. The ratio of
ouU aC, aC
Bte : Btb ' 3e varied from 10%:102:1 to 20:15:1, the

latter (worst) case occurring at the quarter-chord

(separation point) for the situation of slow free-stream

velocity and slow pitch rate.

aC ac
b. x— was negative in value, while C., C_, and ~% were
ot 3C 1 5 at
. s 1
positive. The products C1 3t and 02 I then had a

canceling effect on one another.

c¢. The comparison of terms (20a) and (20b) is shown in
Figure 3 and was nearly identical for all test cases.
This would indicate an accuracy of the closure equation
as reflected in Figure 4.
It may be noted here that the validity of the method used to determine

oC
C. and == is in question, since it is not known if the velocity on the

2 ot
airfoil taken from Joukowski transformation agrees with Eq (182). To
investigate this, a program was written to simultaneously and independently
compute two velocities on a representative pitched airfoil. One velocity
was that obtained from the Joukowski transformation, while the other began
with an identical value at the leading edge of the airfoil and progressed
over a series of incremental panels (representative of wedges of identical

slope to the airfoil as discussed earlier). This was done using Eq (18),

where x is the additive distance traversed over the panels from the

-—‘.
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=
_;}; ':E: stagnation point and m is determined from the slope of the panel relative
. to the free—stream. The relationship is

~
N
XN
M
AN
v
| m = X (Ref 7:155)

2 -y
.}fq

- where Y7 is the included angle of the wedge. The constant k can be determined
f:k for each panel at the initial juncture by letting Ue at the end of one panel
R equal Ue at the beginning of the next. Thus, for a juncture of panels i
e and i + 1 at position x

s

~° -
y l" \

N> m,

. i

(% %
k, = k,

AR o <x ‘“i+1>
'.n:? 0
-". \
'

Y

BEN The results of this study are shown in Figure 5. The '"panel” velocity
.
oie] : o

o varied in error from 6% (negative) near the leading edge to 15% (positive)
o at the quarter-chord. The velocities were nearly identical in the
250 vicinity of .05 chord.
,, .:-: .
S Consider the hypothetical effect of forcing the panel-derived velocities
i to agree with the Joukowski-derived velocities. This would require 'wedge"
-5:; panels with an increased included angle near the leading edge, and a
Tt

:}i decreased included angle aft of about .05 chord. The effect would be

.-,:4 ac

}f{ to reduce the value of 02 and 5;2 forward of .05 chord, and increase the

= den

35 e values aft of .05 chord.
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o R Now consider the effect on the results of Figure 3. 1t can be shown
AR ac
{ that T is affected considerably more than C, by any change in the
oy -
wa included angle. Then the end effect would reduce the relative error of
[}
[F."
. . . . .
it the closure equation everywhere on the airfoil. Note also that Figure 3
7 indicates that the closure equation, like the above velocities, has near
i:} zero error in the vicinity of .05 chord.
:iﬁ In order to determine the effect that error in the closure equation
has on the prediction of dynamic change in stall angle of attack, errors
N
w}: of 50% (very conservative, as shown in Figure 3) and 25% (more realistic but
::: still conservative as argued above) were introduced into Eq (12). The
e
- unsteady Pohlhausen equations were then derived in the same manner used
::{ by Docken. The results are that a 50% error in the closure equation
o
N~ results in a 13.54% under-prediction of the dynamic effect on stall angle
.‘_ Q. of attack, and 25% error in the closure equation results in under-predicting
Y
N . 0 \ . .
I this effect by 7.04%. The error presented then in the closure equation
:;. has kept the final results on the conservative side and shows that the
o~ closure equation is a good one, but for slightly different reasons than
hS stated by Docken.
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o
e
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IV. Further Investigation of Gust Response

Better Match of Kramer's Airfoils

In a closer examination of Kramer's experimental work, it may be noted
that data was taken from two considerably different airfoil profiles -- a
Gottingen 459 (symmetric) airfoil and a Gottingen 398 (cambered) airfoil.
The resulting dynamic effects on maximum coefficient of 1lift were almost
identical, and Kramer states that the profile of the wing apparently has
little influence (Ref 2).

The nature of the unsteady solution method developed by Docken readily
lends itself to an investigation of this hypothesis. To this end, a simple
computer program was written to determine what specific input data were
necessary to reproduce desired variations in thickness and camber to a
Joukowski airfoil. It was found that a 12.64% thick symmetrical airfoil
very closely matched the Gottingen 459 airfoil in shape, and a Joukowski
airfoil with 13.72% thickness and 3.17% camber likewise closely matched
the Gottingen 398 airfoil. A comparison of airfoil shapes is shown in
Figure 6 and 7.

After a minor modification to the Docken program to allow for camber
variation, computer solutions were obtained for maximum angle of attack
of each of the above airfoils. Nine sets of conditions were run for each
airfoil, and the results are shown in Figure 8,

The results, when converted as in Section II to compare with Kramer's

data, are as follows:

For the Gottingen 459 (symmetric) airfoil:

26
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\‘
OA
W2
51
.*l Cd
\? .--*::. . 396 U“
T o, 0
s. &N
C ={ or
A L
max
Lo . C&
L .283 =2 corrected for R = 5
v U
-"\ -]
.
ALK
For the Gottingen 398 (cambered) airfoil:
L] L] Cd
. .337 —
Mt
‘-:’.' Uoo
5 AC = or
L
. . max Cd
.241 T corrected for 8 = 5
' (> o)
A‘.-.
%
4
A%y For comparison, recall that Kramer's experimental results for each
o
»_4.
of the above airfoil profiles were
PR
OAE
uol o
-;.1 AC = .16 Ca
> L U
. max o
N
o
\" . .
N And for Docken's JO15 airfoil:
o
s
307 =
353
) *
o ACL =4 or
-‘!': max Cc&
é‘.‘ .220 T corrected for R = 5
N -
,
": Note that with the better Joukowski shape approximation of the
l"_J
“
:'; Gottingen airfoils, results were considerably closer to Kramer's solution.
X
It is meaningless to discuss relative error between any of the computer
‘e
*:E‘ results and Kramer's experimental results because of the assumptions
fa" * 3 1
2o inherent to the momentum-integral method of solution and approximations
bl
- - necessary to compare results; however, the proximity of the above solutions
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S
ﬂﬁﬂ R is certainly remarkable. Note also that the profile of the airfoil did,
- ‘-
{ in fact, affect the results.
2
;ﬂ? Thickness and Camber Effects
- Kramer discusses measurements only on wings with profiles of the
) two airfoils examined here, and apparently bases his assumption that profile
i:i has little effect only on those results. From Figure 8 it can be seen that
: these particular airfoils do not differ much in change of stall angle .f
Si attack, even though the airfoil shapes are considerably different. The
A;E fact that there does exist a difference based on shape alone, however,
:% suggests further investigation is in order.
:;: Two studies were conducted regarding airfoil shape. First, using a
'i? symmetrical Joukowski airfoil, the thickness was varied, with a linear
R~
. iE) coefficient of increase of stall angle of attack per non-dimensional pitch
?: rate being calculated for maximum thicknesses of 10%, 12.68%, 15%, 20%,
ii and 25%. Secondly, a 15% thick Joukowski airfoil was varied in camber,
N
'f' and the same coefficient calculated for maximum cambers of 0%, 1%, 2.5%,
%E 5%, and 7.5%. The results are displayed graphically in Figures 9 and 10,
és respectively.
The dynamic stall effect was decreased as airfoil thickness increased
ii% and as camber increased. While camber has a relatively slight effect,
QO
:?ﬁ the thickness effect was dramatic. It would appear then that airfoil
= profile is indeed an important factor in dynamic stall effect. It should
ézi be noted that, while Kramer's airfoils appear very different, they differ
:21 by only about 1% in maximum thickness.
¢: .
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T e V. Pitching Airfoil Problem

{
it Non-Inertial Control Volume Analysis

<. As discussed previously, the only readily apparent difference between
> .
-7 the gust-response problem and the pitching airfoil problem is the frame
N of reference. It was anticipated that, due to the similarity of these

:i: problems, it may be possible to investigate the dynamic stall effects on
e

N a pitching airfoil by paralleling the approach taken in the gust-response
e solution. The procedure then is to derive a momentum-integral equation
)
o for the boundary layer by developing the continuity and momentum equations
—~ for a fluid element in the boundary layer.

wh.
" The continuity equation presents no problems. In exactly the same
J"..:
::3 analysis as for the gust-response solution, the principle of continuity
L

B
» i:? is applied to an incremental control volume, with the resulting equation
o~ (see Appendix A):
..“.:.ﬂ
J_‘ »
o

, h
N ’ 3
2 = - = udyd 1
- top ax / Pudydx (21)
e 0
..::-

\ L]
s
'f‘ In order to use the momentum equation on this control volume, however,
Ny
<:€ certain modifications must be made. The momentum equation, derived from
\l

X Newton's Second Law, is usually applied to a control volume that is either

- fixed, or translating at constant velocity, with respect to an inertial

o
O reference frame. The surface of the pitching airfoil, «ad thus the
Iy . . ) .

attached control volume in the boundary layer, is neither. By an analysis

i e
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X of particle dynamics, certain "hypothetical body forces'" can be determined

vt
datr

»
2,

which account for the non-Newtonian motion of the control volume, and with

the addition of these forces the control volume analysis may proceed as

? if it were fixed in inertial space (Ref 10:109-114). The derivation and
examination of the hypothetical body forces is included in Appendix D.

S These body forces in the x-direction are:

.
fQ? dB - dm 81 + Bzv - 83x]

< where:

RA 3
r, B, = Ra? cos ¢ ,

i
-‘,"
“Ah

.

.,
L
(A

n:l-
[al

A, ¢
P

o

it and R is the length from the point of rotation of the airfoil to a reference
s point in the control volume, and ¢ is the angle between line R and the
oy local surface tangent of the airfoil.

Now referring to Figure 11, the sum of the forces in the x-direction

I

can be equated to the net rate of transport of momentum out of the control

X

volume plus the flux of momentum in the control volume, such that:

Ny Yy
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s 3 h . 5 h
= o/ puudydx + Uemtop + It of pudydx =

Aendediad b o

d h h
-5 o/ pdydx - ‘rwdx - (Bl - B3dx) o[ pdydx

h
- BZ [ pvdydx (22) .
0

Note that the classical boundary layer assumption is made that a ’

), 4

pressure gradient exists only in the x-direction. If Lq (21) is now

aLa a.a o

L ) L)
YTy VP

substituted into (22), and dividing by pdx, the result is

@

h h h
3(uu) - du ) -
of Y erf my g [ ou
0

h T

h h
1 d wo_ _ _
-5 f ‘J:PE dy - re (8, Bde) o[ dy 82 of vdy (23)

0

Consider the hypothetical body force terms in Eq (23). 83dx is very

small in comparison to Bl; i.e.,

a? dx << R a? cos ¢

w9

a

~

#

3
*
"
<
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It can be shown that R cos ¢ is a large term except very near the
leading edge. On the airfoil under consideration, R cos ¢ > 1 for chord

positions between .006 and .250. Since dx << 1, it may be assumed that

It is demonstrated in Appendix D that a potential flow velocity close
. ] *
to and tangent to the airfoil surface, and of magnitude U as observed
in the inertial frame of reference, will appear to an observer fixed in

the control volume as

~

U = W -Rasind) x- (Ra cos ¢) v (24)

Note that there is a constant y-component of velocity toward the surface

of the airfoil; but if the surface is impermeable, then this component is
necessarily zero at y = 0. Since this difference must be compensated for
in the boundary layer, it is assumed that this y-component of velocity

is a linerr function for 0 Sy £ § . Then
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}:2 ) 8 R & cos ¢ B :

::: —20L[f (— 3 )ydy+ f (—Racoscb)dy]
\‘ 0

@ |

.

-

tg Carrying out the integrations, this reduces to

ot

N

&Y

.,_J h h .

¥ -Blfdy-Bz[vdy=(h—6)R0t2cos¢

w: 0 0

:a The total effect of the hypothetical body forces on a control volume
- where the upper limit is the edge of the boundary layer (h = &) is zero.
:} Although at this point h is still arbitrary, the boundary conditions will
G

% eventually be applied at y = §, therefore these terms may be dropped from

Eq (23). 1In the interest of argument, the effect of these terms does

.o not disappear if v does not vary linearly in the boundary layer. Cases
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of parabolic and elliptic variations were investigated, with the resulting
(small) terms being carried completely through the Pohlhausen derivation
and then applied to an airfoil. The effects on the final solution were
negligible in both cases.

Eq (23) thus becomes:
h h
3(uu) du ) _
[ 9x dy-Ue f 8xdy+8t f udy
0 0 0
-2 Loy -~ (25)

At this point the unsteady Euler's equation is used to substitute
for the unknown pressure gradient. Letting an asterisk denote velocity

as viewed from the inertial reference frame,

* e e 1 dp
= - 28 26
U + 5 I (26)

From Eq (24), an observer in the control volume will see a magnitude
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Therefore, in terms of the velocity seen by the control volume,

Eq (26) becomes

. ou U
1 .—e _e = - l QE
(Ue + R d sin ¢) = ' 5t > Ix

Substituting equation (27) for the pressure gradient in Eq (25)

yields
h h
3(uu) 4 du 4 )
-— — d
f Tx UefoY+3t_[uy
0 0 0
h au h 3U
= /ng—-dy+ROL81n¢f—dy
0
h JU T
f wy g
0
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With the exception of the (added) second term on the right-hand side
of this equation, it is exactly the same as that derived for the gust-
response problem, and these terms may be manipulated as shown in

Appendix A. The resulting modified momentum-integral equation is

. h 9U_ s ., b .
i —_— + — u -2
Raslnd)of = dy Ber o] T (1 U)dy

e e i

’aUe h u 3 h u T,
+ue-5;-f (1 -3 dy + 52U, f - = 2 @9
0 e 0 e

Modification of von Karman-Pohlhausen Method

Again, as with the gust-response problem in Appendix B, this can be
written in terms of the displacement and momentum thicknesses. If the

integral of the first term is evaluated with the outer edge of the boundary

layer as the upper limit, the result is

v
' PR b
B ORI
L s e

. 3Ue 5 , aue 5 T,
" i e 6 + — 6 — + — 6 = ——
2 (R o sin ¢) " e (Ue 2) * U 57 51 s (Ue 1)
3
~
" ‘
2 8, !
Multiplying this equation by S0 gives )
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Applying the closure equation (12), and rearranging terms, this may be

written as

61 622 . 1 8Ue BUe 1 aue
(2+‘(S_2)TI(R°‘SI“¢)E$—+§T+E;§'F]

8 8.2 . 3 , v’
- L8y 2 2 e] e 2°2
(2 + 62 62 = [(R a sin ¢) ealiead Ly
s, 6,2 3u T8
- 11y 2 1 " _ w2
(2 + 7 3;) S Ue . U (30)

From this point, the derivation of the working equations for the
unsteady Pohlhausen method closely resembles that for the gust-response
problem as outlined in Appendix B; therefore, only the differences will
be highlighted here.

Due to the change in appearance of the unsteady pressure term, the

corresponding boundary condition becomes
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The shape parameters are defined as

ElY) 14) ou

_ 82 o 1 e e . 1 e
e S ®asime Uea_x'+§x_+u_'a':—]
and:
s 2 3 av 3u

~
]

2 Y si 1 e, _e, 1 __s]
V [(R o sin ¢) Ue 3ax + ox * Ue ot

Also, an additional function is defined as

2_23(37_ A Az)-l

£3(K) = 315 945 ~ 9072

Substitution into Eq (30) yields
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e _ _ ZRO sin ® e
[2 . fl(K)] K [z ¢ £ () = £, (R) —
U U !
e dz _ 1 Z _e _
+ 5 ax [2 + > fl(K)] oY fz(K)

The resulting working equations for stepwise integration are:

U : U

dz _ Z _ e [ _ ZRasin ¢ e}l

o lF(K)+[4+f1(K)]U 5_1:_*4+2f1(x) 2f3(K) 5 vl e

e e e

(31a)

and
-1
. 1 BUe BUe 1 SUe

Z=qm“quﬁ+ﬂ+§¥] (31b)

g ¢ 0 € .

Results for Pitching Motion

The existing program for the gust-response solution was modified
such that the non-Newtonian motion of the airfoil could be accounted for.
Eqs (3la) and (31b) were implemented, which necessitated computation of
the new terms f3(K) and R @ sin ¢. 1In addition, recall that the velocity

U and its corresponding derivatives must now be those that are observed
e
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in a frame of reference fixed to the airfoil surface. A subroutine to
the initial program was thus written to compute R d sin ¢ (geometry
dependent) and to correct the Joukowski transformation-derived velocity
for motion of the airfoil.

Upon computing the change in maximum angle of attack for various
combinations of free-stream velocity and pitch rate and using the
separation condition of zero shear stress at the wall, it was found
that the results remained linear with respect to non-dimensional pitch
rate. The results are shown in Figure 13, being the set of data points
labeled "pitching motion". Note that the effect of a pitching airfoil
is approximately three times greater than that of an inertially-fixed
airfoil in a pitching airflow (gust response). The cause of this increase
in angle of attack of separation appears to be due to the effectively
reduced velocity of the free-stream by varying amounts, depending on the
location on the airfoil. This velocity modification both delays the

onset of and relaxes the severity of the adverse pressure gradient.

Moore-Rott-Sears Model and Results

In considering the pitching airfoil as a "moving wall" type of problem,
it is also necessary to reevaluate the criteria for determining the point
of separation. Up to this point, separation has been assumed to occur
when shear at the wall vanishes, which for a static wall is the limit
between forward and reverse flows in the boundary layer. For a wall
moving in the direction of flow, this is not true (i.e., the flow may
obtain a velocity less than the velocity of the wall but greater than zero).

The MRS (Moore-Rott-Sears) model provides criteria of separation based
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on the velocity profile which will account for motion of the wall

TR

(Ref 11:123-126). It defines separation as the condition where both
velocity and shear become zero in a singular fashion at some point in
the boundary layer, as seen by an observer in the frame of reference of
the wall., This condition is illustrated in Figure 12,

A separate program was written to provide a table of values relating

a separation A (or K) for any given value of u, /Ue. Then, by computing

all

/Ue at quarter-chord and comparing with this table, the dynamic-stall

Usall

condition could be determined by iteration until the final A matches the
indicated tabular A. It should be noted that this is only valid for
A > -17.76, since the shape parameter K reaches a mathematical minimum
at that point (Ref 12:295-296).

Application of this new stall criteria had a considerable effect
on the solution. The results are displayed in Figure 13, labeled
"MRS model". Note that the dynamic effect on angle of attack is more than
twice that using the old criteria, and the total dynamic effect is about
seven times that of the gust-response solution. It is also of interest
that the change in angle of attack is now no longer linear with non-dimen-
sional pitch rate, but is curved similar to the data in Figure 1; however,

the extent of the dynamic effect falls well short of the experimental data.

Mass Introduction and Results

The combined dynamic effects thus far discussed predict an angle of
attack change considerably less than experimental results indicate, as shown
in Figure 13. This implies that other contributing factors are involved,

and it was suggested that mass introduction into the boundary layer may
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be a contributing cause. Note that Eq (24) indicates that a potential

flow velocity at the edge of the boundary layer does in fact have a
component toward the surface when viewed from the control volume. While
this normal component is everywhere small, a review of boundary layer
solutions involving '"suction' and "blowing" indicates that very small mass
flow rates can have dramatic effects on boundary layer separation
(Ref 7:380-399).

To implement this idea into the method of solution, Eq (21) was
amended to account for an additional increment of mass, C(R & cos ¢) dx,
into the top of the control volume (where C is some as yet undetermined

constant):

. h .
= - %; j- pudydx - C(R & cos ¢) dx (32)

The substitution of this into the momentum equation, with all other
terms carried forward as previously described, results in an amended

momentum—integral equation:

h BU 3
R o sin ¢ j- € dy + P U 2 j— U (1 - ——) dy
Ve

BUe h u 3 h u
+ Ue P j‘ (1 - E—) dy + Evs U, j‘ 1 - T dy
0 e 0 e
. TW
- C Ue(R o cos ¢) = 5— (33)
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Casting Eq (33) into the Pohlhausen form as before presented little
problem, and all of the shape parameters and related functions remained

the same. The additional term altered the working equation (3la) only,

such that now

1)

& |F(K) + la + fl(K)] 3—3—:-
e

dx

N Co. au

0 +[4+2f<K)—2f(K)IZR°‘““¢ e

;"ﬁ. 1 3 U ax

';F: e

% +2& 2 £, Ro 1 (34)
- 3 3 a cos ¢ l ﬁ:

~a

R

AR

¥ Two problems now become apparent. First, some value must be assigned
S

) to the constant C. Secondly, the appearance of % in the new term is

.’ undesirable, and renders Eq (34) unusable in its present form.

%‘ Consider the fact that, by injecting mass into the top of the boundary
5 layer, a stagnation flow problem is being imposed upon the boundary layer.
. The impinging velocity of a two-dimensional potential flow near the

"

:: stagnation point is given as

-~

o

J; v

- - = - ay (Ref 7:96)
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o Applied to the problem at hand, this would mean that at the outer edge

of the boundary layer the velocity desired is:

ve = - a8 (R a cos ¢)

The constant a is dependent upon the dimensions of the problem. In
Appendix E it is argued that, for the Joukowski airfoil problem, a reasonable

guess for tie value of a is four. Using this,

and Eq (34) becomes

ouU
az ] Z _e
az |p(1<) + [a + £ (K) =

U
e
9x

+ [4 + 26, (R) - 2f3(K)] zR g sin ¢
e

+82 f3(K) R o cos ¢ %— (36)
e

............

........
o«
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3

—;ﬁ o Using Eqs (31b) and (36) as the working equations, solutions were

{ - again computed for various free-stream velocities and pitch rates. The
NEE results are shown in Figure 13, labeled "Mass Introduction (48)". The
 $: injection of this small amount of mass into the boundary layer has more
- than doubled the dynamic increase in stall angle of attack. This is

::& attributed to the fact that the injected mass is accelerating, or imparting
ii? additional energy to, the fluid in the boundary layer, hence retarding
o separation.

ii: The computer program used to calculate these solutions 1is included
:i; for reference in Appendix F,

-

'{\ The justification for the use of a = 4 in equation (35) that is

J

i& outlined in Appendix E is somewhat arbitrary, and certainly arguments

iés could be presented for other values of this constant. The possibility
E,; éi; was considered that careful selection of this value might provide data
-3; that would match experimental data. 1In this interest, varicus values

e _

'54 were tried. Figure 13 shows the results for a = 20, labeled '"Mass

. Introduction (208)". It is apparent that the experimental results cannot
EE be matched in this manner. It is interesting and possibly significant to
BN

'j\ note that, for the selected value a = 4, the slope of the plotted data
S becomes closely tangent to the slope of the experimental data.

3; This implies that still other factors, in addition to mass introduc-
o

j;j tion, might be contributing to the dynamic stall effect, although it is
> clearly implied that mass introduction is an important contributor.
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VI. Conclusions and Recommendations

Conclusions

For the case of an airfoil encountering a gust of constant é , the
increase in dynamic stall angle of attack can be attributed almost
exclusively to a reduction in the adversity of the pressure gradient on
the upper surface of the airfoil.

The use of

ﬁ - _i?_u_e
ot 20 at
e

is acceptable for use as an equation of closure for the unsteady von
Karman-Pohlhausen integral method. A conservative estimate of the error
inflicted by its use causes an under-prediction of increase in dynamic
stall angle of attack by less than 10%, and the analysis seems to indicate
that the approximation is really much better than this estimate.

The increase in dynamic stall angle of attack for gust response is
inversely proportional to, and a strong function of, the maximum thickness
of the airfoil. It is inversely proportional to, and a weak function of,
the maximum camber of the airfoil.

Contributing factors to the increase in dynamic stall angle of attack

for an airfoil pitching at constant o in a steady flow are:

a. A reduction in the adversity of the pressure gradient
on the upper surface of the airfoil.
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b. An effectively reduced free-stream velocity due to
the downstream motion of the surface of the airfoil,
causing further relaxation of the severity of the
adverse pressure gradient.

c. A delay in boundary layer separation due to the fact
that the motion of the airfoil surface allows the
velocity gradient to build past the condition of zero
wall shear to the condition of zero velocity and shear
at some point in the boundary layer.

d. An acceleration of the fluid in the boundary layer due
to mass introduction into the top of the boundary layer.

The factors above may not be all of the contributing effects, indicat-
ing that other phenomena should be considered to account for the total
dynamic effect. However, it is clear that the mass introduction is an

important contributor to the effect.

Recommendations

In considering the idea of mass introduction into the boundary layer
of a pitching airfoil, the selection of 4§ as the appropriate constant
was a rough estimate at best, and intended only to show trend on the
solution. An in-depth study of the concept of mass introduction is
appropriate.

In this report, the effect of the shedding of starting vortices due
to the change in the airflow pattern about the airfoil has been assumed to
have negligible contribution to the solution. Work currently in progress
by K. Tupper in this area would indicate that this effect should be
considered (Ref 14). A study combining the work of this report with
that of Tupper seems a good step toward identifying other possible dynamic

stall contributors.
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motion to the airfoil, there appears to be no fundamental reason why the

) (varying pitch rate).
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- method could not be extended to other motions, such as constant &
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ERAN Appendix A: Derivation of the Unsteady Momentum-Integral Equation

The momentum-integral equation for unsteady flow is derived by
integrating the equation of motion over the thickness of the boundary
layer. The equation of motion in turn is derived by applying the
principles of continuity and conservation of momentum in the direction

of flow to an incremental control volume in the boundary layer.

The principle of continuity (mass conservation) states that the
net rate of mass flow across the control surface must equal the time
rate of mass reduction within the control volume. Referring to Figure 14,

it is shown that

. h 3 h h
+ —_— -
@ mtop [o f pudy + = : [ pudydxl [ pudy

0
h
3
--g'gof edy

For incompressible flow, i.e. p = constant, the last term in this

expression is zero. Therefore

h
3
top = o/ pudydx (A1)

59




g

~.*

o‘..aq
LA R

O NS

0 N XL -9
xp&pd ‘\ A -
) I
4 N I _
doj
w
TN U I R NN R R R T ORCACNILY ¥ Lot o LR TN
ALY ., ....ﬂ. ot IAAARAAX ' P .‘:\.. Hﬂﬂd‘.ff s Q-.vﬂ bw)...-- c-~nnl~\\-\-\w

swniop [oajuo) iafe] Kiepunog B UI UOTIBAIBSUO) SSB “H] 3Ind1d

—— p ——>
L L L L/

0 0
xp&pnd \ Wmu + Lpnd \. €<
y y

—

Y SRR
-\-hns‘n\ ..-*-.

PSP R R v

‘-

ot
W AP W .

DI
IR TR
CI IR

adas

2%

60

DI I R
Far LAt o, .

LA -

.
1



-." L)
3

Lt
LI W S

b
0
LA
LR

Sy

The principle of momentum couservation (in the x-direction) requires

.l-‘l.l""

.
.
v O
AL A, by 4y
&

that the sum of the forces acting on the fluid in the control volume is

—

RSO

equal to the net rate of transport of momentum across the control surface

PO

‘afale’. "

T

plus the time flux of momentum within the control volume. Referring to

Figure 15, it is shown that

L
4 J.J ."f

A4
..5“‘ .
AL

h h 3 h .
- d + - — =
e T, 9% 0—/ Pdy [0/ Pdy + . b/ dedx] Ue mtop

e h 3 h h 5 h
,A + [ f puudy + = f puudydx] - [ puudy + 3t f pudydx
0 0 0 v

Simplifying and rearranging terms,

hY

X

BIE

AR
.,

'y

h h

) 3
3% of puudydx + Ue mtop + Tt 0/ pudydx

. B

- A, ¢
e

X

» “; ‘I ‘.
O )

&

3 h
= - t1dx - — f Pdydx (A2)
w 9x .

A A

4

!

Substituting Eq (Al) for the unknown term in (A2),
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3 h
= - dex - 5 0[ Pdydx (A3)

Note that, since the integrals are taken in the y-direction, the
partial derivatives with respect to dimension x (and also time) can be
arbitrarily brought inside the integrals. 1In addition, by boundary layer
assumptions, the pressure gradient in the x-direction is assumed to be
the total (spatial) pressure gradient. Employing these concepts, and

dividing the entire equation by pdx, Eq (A3) becomes

h h h
3 du 3
[ hows o [fBa-k [
0 0 0
T h
w1 e
=--5 f = dy (A4)

The Euler's equation of motion for unsteadv flow can be shown to be

ou ou
-1dk L&, _e
p dx e 3x | Bt (Retf 27)
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This may be applied to Eq (A4) in substitution for the pressure

gradient. After rearranging terms, Eq (A4) now becomes

h 3 h Y h U
- g + u 1
f o (uu)dy Ue f T dy + f Ue = dy
0 0 0
3 h h BUe ‘l'w
T [ udy + 5 dy = 5— (A5)
0 0
Consider the time variant terms of Eq (AS5):
@ 3 h h BUe 3 h
. " 3t j udy + f 3% dy = 3 f (Ue - u)dy
0 0 0
Further, since Ue is independent of y,
3 h h aue 3 h u
-3—t°f udy+0f Freihed =3'£Ue°f (I-E)dy (46)

Now consider the spatially variant terms of Eq (AS5):
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Simplifying,

oU

L - ha—-()d +U U 4y 4 ’ e
p f ax oWl e / ax o'[ Ve gy &

E ' h Ia h 3U
= [ Fw (uUe - uu)dy + [ Sf (v, - u)dy
0

™ au
' And since Ue and —= are independent of vy,

3x

= 3 ._e
_/ o9x (uu)dy + Ue'o _[ Ue ox

A - 3y U (g _u ‘e u

= v, ]’ 7 (- 5y + U = f (1 - F)ay (A7)
) e 0
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Substitution of Eqs (A6) and (A7) into Eq (AS5) yields the momentum-

integral equation for unsteady flow:

_B_Uz h.‘.‘_(]_-k‘_)d +U3_Ue. h(l_E._)d
9X e _/U U y e 9x [ v Y
0 e e 0 e

(A8)
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Appendix B: Development of the von Karman-Pohlhausen
Method for Unsteady Flow

By comparing the unsteady momentum-integral equation (A8) with the
definitions of the boundary layer displacement and momentum thickness in

their integral form (Ref 7:140-141), it is evident that, for arbitrary h,

a—(UZG)*'U E-I-JEG +3—(U §,) = T—"'
9x e 2 e ox 1 ot e 1 o]

Expanding the first and third terms and rearranging yields

BUe 2 362 361 8Ue rw
(20, + 80 Vosx * % 3 * Vst *4hw T 5

At this point an equation of closure, Eq (5), is used to substitute
38

for the difficult term I This closure equation and its validity is

discussed at length in Section III. The result is

ame ) 362 1 aue rw
(26, + 8D U, 5=+ 0 = *38 3¢ = 57
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~ Multiplying this equation by ;—I-Jz—- yields
e
2 2
61 52 BUe 62 362 1 61 62 3Ue TWSZ
2+7) —5—+U —= + = =
§," v 9x eV 03x 20, 6, v 3t MU,

Finally, by adding and subtracting the quantity

2
(2+% -6—1) (_3_2_ L BU_e)
2 52 v U 3t
e
m the momentum-integral equation becomes
) 2
Qa2 (e, 1l ey, 2%
577V % U_ ot eV 9x
2 e
8 2 Elif T34
el 1 Ty Tt
(2+23-;) v G 3 o0 (B1)
e e
The velocity profile of the boundary layer must satisfy the following
boundary conditions:
e
,.
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S at y =0, u=0 (B2a)
324 BUe aUe
v = - =+ ==
357 (Ue ™ e ) (B2b)
at y =6, u=U (B2¢)
du _
By 0 (B24d)
3%u
—r =20
5 (B2e)
Since the existence of five boundary conditions will allow for the
solution of five free constants, the velocity profile may be expressed as
€!! a fourth-degree polynomial, where n = %:

%— = A+ Bn+cn?+oon®+ EnY (B3)
e

Applying (B2a) yields
A =0 (B4a)

Applying (B2c) yields

- 1 = B+ C+D+E (B4D)
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Applying (B2d) yields

A
7,
r (4

et

0 = B+ 2C + 3D + 4E (B4c)

AN

Aty % !

29

Applying (B2e) yields

23
y

A
Ly,

Ny 0 = 2C + 6D + 12E (B4d)

Finally, (B2b) is applied such that

Y v, az(u/Ue) .
t.w 373 778) = 2C + 6Dn + 12En

L

'y which, evaluating at n = 0, yields

+ fll— 3 £) (Bbe)

The dimensionless shape parameter is now defined as

au U
62 ( e + l_ e)

- v & U] 3 (85)
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1f Eq (B5) is substituted into (B4e), the set of equations (B4a-e)

can be solved simultaneously in terms of A:

A =0

B o= 24 b
D = -2+ %
E = 1-4%

The velocity profile, Eq (B3), thus becomes

C.'Ic

= (2n—2n3+n")+£-(n-3n2+3n3-n")

(B6)

Recall that the displacement and momentum thickness are defined as

o)
—

h
f (1 - -;;—)dy

0 e
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& Since u = u, for h 2 § , integration beyond h = § yields nothing, and

J the above equations may be written

Vool 5 1

1-'/(1-5—)@

0 e

*l
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-

6
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Uring Eq (B6), the above integrations can now be performed, yielding

3 A
10~ 120 (B7)

el
3

N and

N

. 31 _ A _ N
3 315 ~ 945 ~ 9072 (B8)
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- The shear stress at the wall is defined as
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Therefore, by using Eq (B6) and evaluating at n = 0,

o=

(B9)

From this, the separation criteria, defined as the point at which the

(qb shear stress at the wall becomes zero; can be seen to be

A = -12 (B10)

The last form of the momentum-integral equation, (Bl), encourages

additional parameters to be defined as:

Z = — (B11}
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2 = _e .1 _e _ 3m A A
o R r2hGryw) T MG T w0 (312)
- § 2 -1
e = 1 _ (3__A 37 _ A _ A
- £,(K) 5, % - 126 G315~ 945~ 5072 (B13)
:f:f and
: T6 2
. w2 _ A 37 _ A _ A
fz(K) w0 (2 + 6) (315 345 9072) (B14)
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Note that using Eq (B11),

e
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2
$ U 3(62 )
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9% 9x

- 1l e dz (B15)
2 Vv e dx
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Now, the relationships in Eqs (B11-15) are substituted into the

s.

momentum-integral equation (Bl) to yield
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_e 4z _ 1 Z e _
[z + fl(K)lK - [z x fl(K)] R £, (K)
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Rearranging of terms yields
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One final parameter is defined as

NPT

F(R) = 2 £,(K) - 4K - 2 K £,(K) (B17) j
By substituting Eq (B17) into (B16) and then solving for %% ,
18]
dz Z el 1l
= l F(K) + [4 + fl(K)]Ue iy (818)

s

and solving Eq (B12) for Z yields

W, -1
z = K‘W*ﬁ:r’

(B19)

Eqs (B18) and (B19) are the '"working'" equations, which are the modified

equations that can be used to solve an unsteady boundary layer flow using

AP ] A’Aali‘_'"-"'l“ﬁ

the von Karman-Pohlhausen method.
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{I -~ Appendix C: Method of Solution

- N

o By selection of appropriate dimensions and position, a circle in one

- frame of reference can be transformed into a Joukowski airfoil of desired

- thickness and camber in another frame of reference by means of a complex

- function, commonly known as a Joukowski transformation (Ref 9:50-53).

™,

A Further, a velocity on the surface of a circular cylinder can be likewise

. trans formed to a velocity on the surface of the airfoil, such that for

any given point on the airfoil at any given angle of attack a potential

PN

‘;3 flow velocity is obtainable (Ref 9:53-60). By standard difference methods,
Eﬁ then, the required partial derivatives of the potential velocity can also
s‘ be obtained. This method of determining geometry, velocities, and partial
;3 derivatives, is described in depth in Reference 6, and will not be repeated
* ‘ip here; however, the application of this method can be observed in Appendix F.
E‘ 1 In using the von Karman—-Pohlhausen technique calculation begins at

Si the stagnation point. At this point it is known that Ue = 0 and ;;9 is

e finite and not equal to zero. This poses problems with the calculation of
%: %% . First, the solution will be initiated as a steady flow problem, with
:: the pitching motion only considered after a finite number of small incremental
- steps, with negligible effect on accuracy of the final solution. Now it

!53 can be shown that F(K) must vanish simultaneously with Ue at the stagnation
ég point to avoid an infinite value of %% . Solution of Eq (Bl17) for F(K) = 0

yields the following initial values:

¢ 8 h T
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A = 7.052
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K = 0.0770
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Now gﬁ is of indeterminate form % , which can be evaluated by a

limiting process (Ref 7:211). The result is

and

With these initial values, the solution can now be "marched" forward

w ! sy 1
zZ = K (=5 = 0.0770 (=2)
0 0 OX 0 9x ‘g
4z 3%y v -2
(3;)0 = -0.0652 (5;7—)0 (5;—)0

along the airfoil as follows:

Compute Z, in the manner of

dz
= +  ((—
Z1 Zo (dx . dx

where dx is an increment of arc length along the airfoil.
Compute a new value of K from Eq (B19).

Compute a new value of A from this K, either by solution of
Eq (B12) or by a curve-fit routine.

Compute a new value of F(K) and fl(K) by solution of

Eqs (B13), (Bl4), and (B17). For the steady flow solution,

F(K) may be approximated by the linear relationship

F(K) = 47 - 6K (Ref 7:213-214)

with reasonable accuracy.
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D
[
e,
. dz .
e ) e. Compute a new value of 3y using Eq (B18).
.".( ‘..‘_‘
RO . dz ,
f. Now, with new values for both Z and = this procedure

can be looped back to step a, continuing with a new

incremental step.

The value of A (or K) can be examined at any point and compared with

the known separation value

or

K = -.1567

For a given free-stream velocity and pitch rate, this procedure was

used, iterating between different initial angles of attack, until separation

was indicated at quarter-chord, and the final angle of attack recorded.
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Appendix D: Derivation of the Hypothetical Body Forces

The conservation of momentum relationship is developed by applying

Newton's law in the form

D - -
* It (mvV) ma

|

This analysis is only valid if accelerations are measured in an inertial
reference frame. In order to develop a momentum conservation relationship
for a non-inertial control volume, as is the case in the boundary layer of
a pitching airfoil, it is first necessary to analyze the inertial acceleration
of a particle in the control volume (Ref 10:109-114).

Consider the problem as shown in Figure 16. Here the reference frames

are to be interpreted as

F - frame = fixed in inertial space

f - frame = fixed in the geometry of the airfoil

xyz - frame = fixed in the control volume

By the geometry shown in Figure 16, the coordinate transformations are

'fﬁ"- ’ ‘ -,‘.-.'1 W "‘-"‘ »"\'5‘:'. -'.l'. L «.._ \-'.. .'.' o'




LR AL (ol g B4 L e e Spdl meen B e oo iy
MCRIORET L G A AR A M

N L L N L T T T T T T T N T T T T O T N I T s T =

'
NN

el
PP RS )

.
.

A4

CNAN

s\

&
= f3 = Z = out of page

10n
N
F

.

t of rotat

poin

Reference Frame Analysis of Pitching Airfoil Problem

Figure 16.

N
N 80

.'.. P il -..---.v~‘.,\_-'.-'.\w’q‘.-._w.




..

o o

4

LA AN

&

W

- ey
=2 Y

»
!

I P

'.

g

'

-!_n@-; .: "

-

-

.fx}l'i

P R

and

;1 = (cos a);l + (sin G)EZ

;2 = (-sin a)gl + (cos a)gz (p1)
I

;1 = (cos W); + (~sin W);

£, = (sin P)x + (cos V)y (p2)
;-

Combining relationships in Eqs (D1) and (D2) yields

;1 = cos (a-y) x + sin (sin (a-y) ;
§2 = -gin (o-y) ; + cos (a-)) ; (p3)
F3 = 2Z
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It can also be seen that the angular velocity of the xyz - frame

with respect to the F - frame is

€l
"
1
Q.
>
L]
!
Q .
N>

Xyz 3 (D4)

Now, referring to Figure 17, consider the motion of a particle P.

gt —':” ‘v
. 2B P

The position vector of the particle is

o N
e 'y
B DOF RV AG AR Y

‘A A

S
M B
o
"

]
+
ol

», The velocity of P with respect to the F - frame is

Using the relationship of derivatives of a vector in a rotating

fauls reference frame (Ref 13:334-336),

(%
P
[ .'."s\\' o

2
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e Differentiating again to find the acceleration of P with respect to

the F - frame gives

& gy L T Foy + L
dt dt dt

X — F_
dr dw — —
-_) + — X —
(O rT e

q This reduces to

F s R+ ™ M+ W xNauxT+ax Gx1

Newton's law can now be applied to the inertial acceleration:

dF = dm[F§+x;+25xxV+GX?+5x(BX?)]

2
:Qia

',‘-, -

i

Solving for acceleration in the xyz - frame,

& .
A g
l.._ ".F..

Ay

v gl '
l“

dF—dm[Fi+26xxV+6x?+5x(BXF)] = dn(*3) (D5)
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If the bracketed terms in Eq (D5) are thought of in terms of forces,
in fact body forces since they are multiplied by mass, then this is
essentially a valid representation of Newton's law for a non-inertial
reference frame. Conservation of momentum in this frame can now be
implied in the usual manner.

The hypothetical body force in question then is

dB = - dm [Fi + X N+ B XT +w X (w x ) (D6)

Referring again to Figure 16, it can be seen that, for a given

control volume on the surface of the airfoil, 6 and Y are constant, the

magnitude of R is constant, and O is considered constant for the situation
under investigation. In light of these consideration, and given the
relationships in Eqs (D3) and (D4), each of the bracketed terms in Eq (D6)

can be evaluated in the xyz - frame:

F% = R &2 lcos (6+w); - sin (9+W);]

~ A

wx N = 2a (vx - uy)
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Letting ¢ = (8 + ), the x-component of the hypothetical body force

de = dm {R a? cos o +2av - azx] (o7

which will be used in the analysis of momentum in the x-direction.

A physical explanation of the hypothetical body forces is as follows:

R represents the component of acceleration due to the

translation motion of the control volume.

X R .
2w X "V represents the coriolis component of acceleration

due to the rotational motion of the control volume.

w X (0 X ¥) represe.. » the centripetal component of
acceleration due to the rotational motion

of the control volume (Ref 13:350-353).
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.: Y Appendix E: Estimation of Mass Introduction Constant N
’ < o
)
. In the vicinity of the stagnation point, the frictionless potential :
7] .
4 -
- flow velocity distribution is given by -
; :
3 u R
5 s _ -
7.. -IT- = as (Ela) '.‘
%, -] -
» and
1-‘ .-
i -
¢ u :
i r - o
— = - ar (Ref 7:96) (E1D) =
U l
" *® "4
: :
8
{ “
Q where a is a constant and the velocities and dimensions are as defined in i
4 - o
3 Figure 18. While it is the radial velocity equation (Elb) that is to be f
‘ used in the mass introduction solution, the constant a can be approximated »
3

PR3,

by examination of the tangential velocity equation (Ela).

P S T

Consider the flow about a circular cylinder in a uniform stream, as

depicted in Figure 18. The velocity at the surface of the cylinder can be

shown to be

o .. SRS

v
(]
.1
4
-
X ¢

B

) v g

LR, x

- u, = 20 sin 8 (Ref 8:90) (E2)

1
o 8

i S A

For the region near the stagnation point, 6 is small, and the

ontul b APV . SR

RN
’ . » .
assumption is made that sin ¢ Vv 0 ; thus

R B i
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u = 2U 6 (E3)

The velocity gradient in the s-direction is

duS 1 dus 2Uw
s  RI® X (E4)

By integrating Eq (E4) with respect to s, the velocity is obtained

as a function of the surface coordinate:

2 U°° s
a = —— (E5)

Comparison of Eqs (Ela) and (E5) yields

a = % (E6)

for the given circular cylinder.
The Joukowski airfoil of interest is obtained by transformation from

a circular cylinder in a flow field as described in Eq (E2). The real-axis
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A
{& - radius of this cylinder transforms to the half-chord of the Joukowski

o,
.3

‘a
‘\q“ [

PO

airfoil. 1In the solution method, distances on the surface of the airfoil

= |

(E7)

g

are non-dimensionalized with respect to the chord of the airfoil. Then

e atarey
Yy

letting R = % , Eq (E6) in non-dimensional form becomes
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e Appendix F: Computer Program POHL6 ;
,.t; A':_" {
‘ oo

LAWRENCE, JOMN S.
~ GAE-83D
|
B \:
?3 This program is adapted from program "POHL2", Docken,
Ko GAE-82D, and will be used to continue analysis work in the
" area of dynamic stall effects. The representative airfoil is

a 15X Joukowski, pitching at a constant rate about fts mid-
N chord in a steady freastream. Mass {s being injected from
s the freestream into the boundary layer as a result of the
149 non-Newtonian motion of the airfoil. Symbology within the
~ program is as follows:
A El = imaginary unit; i.e., square root of -1.
ﬂ: RADIUS = radius of circular cylinder.

AMU = offset distance of center of circular cylinder.
ALPHA = angle of attack, in degrees.

ADOT! = pitch rate, in degrees per second.

PITCH = non~dimensional pitch rate.

CHORD = chord-length of Joukowski airfofl.

ANGLE = radial of a given point on the circular cylinder.

UINF = freestream velocity, in feet per second.

CON = conversion factor, degrees to radians.

X.Y,U = coordinates and potential flow veiocity on airfoil.
2,W = complex coordinates and velocity.

UMIN = ratio of wall velocity to potential flow velocity.

A TIME = cumulative time.

B Y DELT = increment of time.

. K.N = integer counters.

k DSS = increment of distance on the airfoil surface.
¥ DUDS = spatial partial derivative of velocity.

P DUDT = partial derivative of velocity wrt time.

X0C = chord position.

BETA = local slope of airfoil surface.

RAS1,RACYI = functions {of geometry) due to pitching motion.
RLAMDA,RK = Ponlhausen shape parameters.
FK,Z2,DZDS,DEL2,F1K = functions of shape parameters.

PROGRAM POHLSE

COMPLEX EI

OPEN (1S5,.FILE="FLOWIN')
REWIND 15

OPEN (16,FILE="FLOWOUT")
REWIND 16

El=(0.,1.)

®

vy ) f( T

[ 2R BN BN 3E BN NE NE RN N N NN BE NF R B NN NN NE N N NN ONE NE NE RN NN N R NF NP N R BE NE NE BE BN B BN

e
A

o,

2% RADIUS=1.131

Aﬁk AMUs-.131

¢ READ (15,*) ALPHA,ADOT1,UINF

W ALPH1=ALPHA
- CON=3.1415927/188.

ADOT2=ADOT1*CON

. THETA=189. 1
] TIME=S.9

S CALL DS(188.,RADIUS,CON,AMU,XLE.YLE)

b, CALL DS{#.2,RADIUS,CON,AMU,XTE,YTE)

N XLE=sABS(XLE) {
L\ CHORD=XLE+XTE

- PITCH=ADOT1*CON*Z.5*CHORD/UINF

»

N, K=180

&,

;gﬁ Ki=K+1

, ..‘ 1
b7

s
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KZ2=(ALPHA+182)*1008+K

WRITE(16,38)UINF
WRITE(16.48)ALPHA
WRITE(16,50)AD0T!
WRITE(16,52)

ANGLE=ALPHA+THETA

CALL UCANGLE ,RADIUS,CON,EI,UINF,AMU,ALPHA UZ)
CALL DS(ANGLE,RADIUS,CON,AMU,XZ2,Y0)
ANGLE=ANGLE-£2.01

CALL U(ANGLE,RADIUS,CON,EI,UINF,AMU,ALPHA, U1)
CALL DS!ANGLE,RADIUS,CON,AMU,X1,Y1)
ANGLE=ANGLE-2.01

CALL U(ANGLE,RADIUS.CON,EI,UINF,AMU,ALPHA,U2)
CALL DS{ANGLE,.RADIUS,CON.AMU,.X2,Y2)
DS2=(SQRT((X2-X1)**2+(Y2-Y1)**2))/CHORD
DS1=(SQRT((X1=-XF)I**2+({Y1-Y@)**2))/CHORD

Stagnation point velocity gradient computed using a
forward difference method:; all other velocity gradients
computed using central difference method.

DUDS={U2-UB)/(DS1+DS2)

Second derivative of velocity computed using a
Taylor’'s series expansion.

D2UDS2=(U2-2.*ULl+UPF)/{(DS1+DS2)/2.)"*2
Enter initial boundary layer parameters.

RLAMDA=7.952

RK=g.8779

FK=@.9
DZDS=-9.0652*D2UDS2/(DUDS**2)
ZZ=RK/DUDS

N=59

ANGLE=ALPHA+THETA-2.91

XOCs=s(XO+XLE)/CHORD
WRITE(16,1)X0C,Ud,0UDS,D2UDS2,FK.RK,ZZ,DZDS

ADOT=g.9
00 18 J=1.K

Function of this loop is to compute boundary layer
parameters at stagnation point, allowing the
boundary layer to steady-out before subjecting it
to a pitching motion.

N=N+1
Compute pertinent boundary layer parameters.

ZZ=DZDS*DS1+Z2Z
RK=2Z*DUDS
FK=.47-6.*RK
DZDS=FK/U1

DELT=CHORD*DS1 /U1

TIME=TIME+DELT

CALL U(ANGLE,RADIUS,CON,EI1.UINF,AMU,ALPHA, U2}
DUDT={U2-U1)/DELT
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ANGLE=ANGLE-£.81
ANGLE1=ANGLE-2.01

~§$ CALL U(ANGLE]l,RADIUS.CON.EI.UINF,AMU,ALPHA,U2)
1y CALL DS(ANGLE].RADIUS,CON,AMU,X2,Y2)

1 ANGLEB=ANGLE+Z.2]

3 4 CALL U(ANGLEZ.RADIUS,CON.EI,UINF.AMU.ALPHA,U®)
b CALL DS{ANGLES.RADIUS,CON.AMU,X2,Y0)

34! CALL U(ANGLE,RADIUS,CON,EI,UINF , AMU,ALPHA,U1)

i CALL DS{ANGLE,RADIUS,CON,AMU,X1,Y1)
DS1=(SQRT{{(X1-XF)**2+(Y1-Y@)**2))/CHORD

¥, DS2=(SART{{X2-X1)**2+{Y2~-Y1)}**2))/CHORD

’{i : Compute the arc length and the velocity gradient.
5% DSS=DS1+DS2
£%1 DUDS=(uU2-U@)/DSS
=3 XOC={X1+XLE)/CHORD
IF(N.LT.52) GO TO 19
Y N=g
,3Q WRITE(16,1)X0C,V],DUDS,.DUDT.FK,RK,2Z,02DS

‘ﬁ\ . 12 CONTINUE
Fa S

) ADOT=ADOT1
'}ﬁ N=g@

L% RAS1=0.0
RAC1=g2.9
DO 29 J=K1,K2
{N‘ -

" b Function of this loop is to compute the behavior
;~$ * of the boundary layer as it is subjected to a
Ly : pitching motion.

"~ ¢
My N=aN+1

Compute the pertinent boundary layer parameters.

ZZ=DZDS*DS1+22

RK=ZZ*(DUDS*(1.+RAS1/U1)+DUDT/UI)

CALL POHL(RK,RLAMDA)

DEL2#37./315.-RLAMDA/945.-(RLAMDA**2)/9972.

FK=2,*DEL2*(2.~-.3683*RLAMDA+.Z104*RLAMDA**2+
+ (RLAMDA**3)/4536.)

F1K={.3-RLAMDA/12@.)/DEL2

®

o' DZDS=(FK+{4,.+F1K)*ZZ*DUDT/U1+{4.+2 *F1K-2./DEL2)*2ZZ
'ig . + *"RAS1*DUDS/U1-8.*ZZ*RAC1/DEL2)/Ul

Yy

o) * Compute the time increment for a particlie to
: 3 * travel from point (i) to point (i+1).

L
- DELT=CHORD*DS1/Ul
TIME=TIME+DELT

" DALPHA=DELT*ADOT

e ANGLE=ANGLE+DALPHA

gq ALPH]1=ALPH1+DALPHA
b CALL U{ANGLE,RADIUS,CON,EI,UINF,AMU,ALPH! U2C)
o CALL NIU(ANGLE.RADIUS,.CON,AMU,ADOT2,X1,Y1,U2C,U2,RAS2.RAC2)

Compute the unsteady velocity gradient.

¥ DUDT=(U2-U1)/DELT

) ANGLE=ANGLE-2.01

) ANGLE 1=ANGLE-9.81

CALL UC(ANGLE1,RADIUS,CON,EI,UINF, AMU,ALPH],U2C)
CALL DS(ANGLE1,RADIUS,CON,AMU,X2,Y2)
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28
2§

L3R 2 2% 2 ]

CALL NIU(ANGLE],RADIUS,CON,AMY,ADOT2,X2,Y2,U2C,U2.RAS2,RAC2)
ANGLEG=ANGLE+@.01

CALL U(ANGLEZ,RADIUS,CON,EI.UINF,AMU,ALPH1,UQC)

CALL DS{ANGLEZ.RADIUS,CON,AMU,X2,Y®)

CALL NIU(ANGLER,RADIUS,CON,AMU,ADOT2,XP,Y#,U8C,UQ,RASE,RACH)
CALL U(ANGLE,RADIUS,CON,EI.UINF ,AMU,ALPH1.UIC)

CALL DS{ANGLE,RADIUS,CON.AMU,X1,Y})

CALL NIU(ANGLE.RADIUS,CON,AMU,ADOT2,X1.Y1,U1C,U1 RAS],RAC])

Compute arc length and velocity gradient.

DS1=({SQRT((X1=-X@)**2+(Y1~-YZ)**2))/CHORD
DS2=({SQRT((X2-X1)**2+(Y2-Y1)**2))/CHORD
DSS=DS1+DS2

DUDS=(U2-Ug)/DSS

upuUDS=U1*DUDS

XOC=(X1+XLE)/CHORD

Stop the computation at the quarter-chord.

IF(XOC.GE.#.25£) GO 7O 25

IFI(N.LT.250) GO TO 2#

N=g@
WRITE(16,1)X0C,VU1,DUDS,DUDT,FK,RK,ZZ,DZDS
CONTINUE

WRITE(16,1)X0C.V1,DUDS,DUDT,FK,RK,ZZ,.DZDS

WRITE(16.45)ALPH]

WRITE(16,55)P]TCH

WRITE(16,68)RK

WRITE(16,80)

WRITE{(16,81)TIME

UMIN=RAS1/U1

WRITE(16,85)UMIN

FORMAT{4X ,F6.3.2(4X ,F18.3) ,4X ,F7.3,4X,F7.4 ,4X,F8.4,2(4X,E9.3))
FORMAT{1H1,"BOUNDARY-LAYER PARAMETERS FOR ",F6.2,"FT/SEC"/)
FORMAT(" INITIAL ANGLE OF ATTACK: ",F6.3," DEGREES"/)
FORMAT(/" FINAL ANGLE OF ATTACK: ",F6.3." DEGREES"/)
FORMAT{(" PITCH RATE: ",F7.3," DEGREES/SEC"/)
FORMAT(6X,"X0C",18X,"U",11X,"DUDS",9X,"DUDT",8X,"FK",
9X,“RK",11X,"Z",11X,"DZ0S"/}

FORMAT(" PITCH PARAMETER: ",F7.5/)

FORMAT(" K AT THE QUARTER-CHORD: ",F8.4/)

FORMAT(" TIME TO REACH THE QUARTER-")

FORMAT{" CHORD FROM THE STAGNATION POINT: ",F7.5," SEC"/}
FORMAT(" UWALL/UE AT THE QUARTER-CHORD: ",E9.3/)

STOP
END

SUBROUTINE U{ANGLE.RADIUS,CON,EI,VUINF,AMU,ALPHA,UU)
COMPLEX CMPLX,Z.EI,DZETA,W

Function of this subroutine iIs to0 to compute the local
value of velocity on a Joukowski afrfofil using complex
potential flow theory.

XesRADIUS*COS(ANGLE*CON)
Y=sRADIUS*SIN(ANGLE*CON)
ZoCMPLX(X,Y)
WeUINF*((1,,8.)-(RADIUS**2)/2Z*"2+
(2."EI*RADIUS*SIN(ALPHA*CON))/2Z)
X=X+AMU

PuL e I
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Z changed to represont values of coordinates used in
the transformation equation.

ZsCMPLX({X,Y)
DZETA=(2**2~-(RADIUS+AMU)**2)/2%*2
UU=CABS(W)/CABS(DZETA)

RETURN

END

SUBROUTINE DS(ANGLE.RADIUS.CON,AMU.X,Y)
COMPLEX CMPLX,Z

Function of this subroutine is to compute the arc
length between two points on the Joukowski afirfoifl,

X=aRADIUS*COS{ANGLE*CON)+AMU
Y=RADIUS*SIN(ANGLE*CON?}
Z=CMPLX(X,Y)

Z=Z+{ (RADIUS+AMU)**2)/Z
X=REAL(2Z)

Y=AIMAG(2Z)

RETURN

END

SUBROUTINE POHL!RK,RLAMDA)

Function of this subroutine is to compute the value
of the separation parameter, lamda, given a value
of K, as computed in the mair program.

RKi=~.168

RK2=-.112

RK3=0.089

RK4=g .06

RKS=@.076

RX6=0.086

RK7=2.8949
IF(RK.LE.RK]1) GO TO 18
IF(RK.LE.RK2) GO TO 298
IF(RK.LE.RK3) GO TO 389
IF{RK.LE.RK4) GO TO 480
IF(RK.LE.RKS) GO TO 58
IF(RK.LE.RK6) GO TO 68
IF(RK.GT.RK7) GO TO 79

RLAMDA=,9149**2-(RK~-F.08)*"2
RLAMDA=12.-198.*SQRT(RLAMDA)
RETURN

RLAMDA=(2./.812)*RK+14.9
RETURN

RLAMDA=(4./.044)"RK+2.18
RETURN

RLAMDA={12./.14)*RK
RETURN

RLAMDA=83.33*RK
RETURN
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> 58 RLAMDA=-1.9+115.*RK
i RETURN
4 t J
&: 63 RLAMDA=-5.54+176.*RK
},4 RETURN
i~ ~
o 78 RLAMDA=12.
3 RETURN
: END
=
T, -
- SUBROUTINE NIU{ANGLEC,RADIUS,.CON,AMU,ADOT2,XC,YC,UC,UNI,
\j + RASF,RACF)
- -
-3 * Function of this subroutine fs to compute the value of U in
N ] the non~inertial reference frame, and the values of the
& = required functions of geometiry.
: 4
» R=SQRT(XC**2+YC**2)
0% BET1=ATAN(YC/({-XC))
(% ANGLEM=ANGLEC+.1
L) ANGLEP=ANGLEC-~.1
9 CALL DS{ANGLEM.RADIUS,CON,AMU,XM.YM)
4:3 CALL DS{ANGLEP,RADIUS.CON,AMU . XP,YP)
; DY=ABS(YP-YM)
DX=ABS (XP-XM)
Q=100808.*DX
o4 IF{DY.GT.Q)THEN
j BETA=1.5787963
O ELSE
-4 BETA=BET!+ATAN(DY/DX)
t~ END IF
W RASF=R*ADOT2*SIN(BETA)
RACF=R*ADOT2*COS(BETA)
@ UNI=UC-RASF
§ RETURN
END
»
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3: Major John S. Lawrence was born on 28 November 1950 in Marion, Ohio. ‘:
::: He graduated from Pleasant Local High School in 1968 and was accepted
. into the Corps of Cadets at the United States Military Academy. Upon
‘:’; graduation from West Point in 1972, he received the degree of Bachelor )
‘i: of Science and a commission in the United States Army. He graduated i
g {
from Rotary Wing Flight School in 1975, and has served in leadership
¥ positions in infantry, armor, and aviation units both stateside and 1
. |
-
j overseas. In June 1982 he entered the School of Engineering, Air Force 1
" 9
A
Institute of Technology. Major Lawrence and his wife, Kerry, currently
N
_..\ reside in Xenia, Ohio, with their two children, Pete and Megan. )
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Dynamic stall effects are analyzed in this investigation for
cases of (1) an inertially static airfoil in a flow field rotating at
constant rate (gust response), and (2) an airfoil pitching at constant
rate in a steady flow field. The method used is a boundarv laver
R solution of the momentum-integral equation by a modified von Karman-
Pohlhausen technique.

ol b

] Work accomplished by Docken in 1982 using this method to match )
Kramer's experimental results for gust response is reviewed, corrected,
and continued. The validity of the closure equation and the assumptions
key to its derivation are examined, concluding that the closure equation
f‘ is justified. A better match of Kramer's airfoil sections results in
dynamic stall predictions very close to experimental data. The effect
of varying airfoil thickness and camber is investigated. E

e Aa- by

By consideration of the non-Newtonian motion of the boundarv laver
on the surface of a pitching airfoil, the momentum-integral method is
extended to the second case. Using the Moore-Rott-Sears model for flow
separation criteria, analytical results were computed and compared with
experimental data. Reduction in adversity of the pressur. gradient
accounts for only a fraction of the total dynamic effect, ¢nd it is

Lo LIRS

proposed that mass introduction into the boundary laver from the ‘ls
free-stream may be a strongly contributing factor. This phenomena is -
demonstrated to have a large effect, and an argument s presented for 1

the proper amount of mass introductionm.
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