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INSPECTIONS WITH UNKNOWN DETECTION PROBABILITIES
{The Proofreader Problem)

by
Cyrus Derman Gerald J. Lieberman Sheldon M. Ross
Columbia University Stanford University Univ. of Cal., Berkeley

1. Introduction and Summary
) .."/w " P Y ST asSSupc 3 6‘«6 t
. - Suppoese in an acceptance sampling situation the lot is subject to

1002 inspection. The probability that a defective unit is detected is

different for each inspector and is unknown. It is of interest to

estimate N, the number of defective units in the lot (presumably, a
decision to reject or accept the lot would be based on the estimate of

N). Or, suppose satellites are used for surveillance over a given part of
the earth with the detection of certain types of installations being the
mission of a given satellite. However, for various reasons, it can be
assumed the detection of any existing installation is uncertain with an
unknown probability of detection that varies among satellites. The
problem is to estimate the total number of installations based on the

number observed. A third situation involves the reading of a manuscript iﬂ

by many proofreaders. Based on the results, it may be of iuterest to

estimate the total number of typographical errors.
For purposes of exposition we shall, in formulating the model, use

language suggested by the proofreader situation.

lThis research has been partially supported by a) the U.S. Office of
Naval Research under Contracts N0O0014~75~C-0561 with Stanford University
and, b) the U.S. Air Force Office of Scientific Research (AFSC), USAF,
under Grant AFOSR-81-0122 with the University of California. Reproduc-
tion in whole or in part is permitted for any purpose of the United

States Government. ;\<;;\ {I_.} 1
o ;
i

i

Fa
>

foimg

I
¢ [
"

Iy




The proofreader problem has been treated: Polya [3] and Jewell (2].
In the context of wildlife recapture census, the literature reaches back
to the 1950's (a reference list appears in G.A.F. Seber [4]).

We develop models for estimating the quantities of interest. Our
models are generalizations of what has appeared in the wildlife recapture
census and proofreading literature. In the context of the proofreading
model the existing literature has considered the situation where all
K(K > 1) readers read the entire manuscript. In our models we allow for
the possibility that the manuscript can be divided into several chapters.
Each reader reads one or more, but not necessarily all, chapters. We look
at this generalization in two ways. The first model is multi-variate with
an unknown number of errors in each chapter to be estimated., The second
model assumes that the number of errors in the entire manuscript has a
Poisson distribution with unknown mean and that the relative sizes of the
chapters are known. We rely on the method of maximum likelihood for
estimating the unknown parameters. Typically the maximum likelihood
estimates of the quantities are solutions to equations which must be
solved numerically. In this paper we are not concerned with the
statistical properties of these estimates. We are primarily concerned
with the convergence properties and performance of an intuitive iterative
procedure which, given the presenE generation of personal computers, can

provide the desired numerical estimates in a matter of seconds,

2. GENERAL MODEL

We assume a "manuscript” with M, M > 1, "chapters” and X, K > )

"proofreaders”. Each proofreader 1s assigned a number of chapters to
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read. Let Ki denote the set of proofreaders assigned to read chapter
i, 1 =1, oo, M; let LJ denote the set of chapters assigned to

proofreader 3, § = 1, ..., K; let N denote the unknown number of

i
“errors” in chapter 1; let pj denote the unknown probability of
proofreader j detecting a given error when he "reads” it. We assume in-
dependence from error to error so that the number of errors proofreader

3,3 =1, «c., K finds are independent binomial random variables with

parameters 1ZLJ N1 and pj, ij=1, ..., K&

Let

be the probability that a given error in chapter i will not be found by
any proofreader. Let n(j,i1) denote the number of errors that

proofreader j finds in chapter 1i; let T, denote the total number of

i
different errors found in chapter 1 by all of the proofreaders assigned

to read that chapter., The likelihood function of the observed data given

(N,p) = (Nl' eees Ny 4 Py oee, Pg) is given by

M N, ! N, -T T,-n(j,1)
i1 n(j,i) i

L(data | (N,p)) = NI s—m—mQ np (1-p,)

1mp (Ng-TOMd 0 jex 3 3
(1)

M N,! N, XK p, n(i)
I —L‘——Q 1 I ( 1]
e (Ni-Ti)!di! i j=1 l--pj
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where d1 is a function of the data associated with chapter 1 and does

not depend on (N,p) and where n(j) -1ZL n(j,1) 1s the total number of
€
b

errors found by proofreader j§.

If we approximate by assuaing the N,'s to be continuous varisbles

i
and substitute log N for d legiﬂl, on partial differentiation of 1log L

with respect to the Ni" and pj'l we obtain equations that the maximum

likelihood estimators ﬁi' ﬁj of N1 and pj msust satisfy:

A Ti '
(2) Ni B mm— i= 1. soey M »
l--Q1
and
(3) po= B gLk,
3 151. N,
M
where

Q - n l > .
Q jexi( -pj)

Combining (2) and (3) yields the equations

T
. 1
(l.) N, = .i-l, oon,M .
1 1~-1n (1- 1(.1_).‘_)
jcxi 2 N
veLj v

In addition to (4), we have the additional constraints that ﬁi 2_T1,

{1 =1, ¢ee, M, which implies, also, that




‘ szj szn(j), j - 1' eney K .

For given values {Ni(O). 1=1, «oo, M} define for u > 1,

' T
; i
.. N (u+l) = 'y 1 = l' o000y H .
1 1 1- 0 (1--20
3 ek, 1. N (u)

chj v

The above defined iteration is suggested by (2), where initfally a value

for 61 is given which in turn generates a value for ﬁi which in turn

generates another value for 61, etc,

Proposition l: 1If Ni(o) = Ti’ i=1, ..., M, then {Ni(“)’ u=0, .0}

is non-decreasing in u for every {.

Proof: 1f Ni(O) = Ti’ {i=1, ..., M, it is clear from (4) that Ni(l) pd
Ni(O), i=1, ..., M. However, replacing Ni(O) by Ni(l) increases the
right side of (4) which means that Ni(z) Z_Ni(l), 1 =1, .¢0, M,

Continuing, the proposition follows,
! The monotonicity of Proposition 1 does not guarantee that &12 Ni(u)
exists; i.e., we could have Ni(u) + =, Proposition 1| starts from the
lowest possible value of N ., The following proposition starts from a

i
’ high value of Ni and asserts monotonicity in the opposite direction.

i
{ Proposition 2: Suppose Ni(O) - TiN‘ 1f

{
{ (5 o -




then there exists N large enough such that {Ni(u), u=0,1, ...} {8

non-increasing for every i. Consequently, {Ni(U)' 1=1, oo, M3

u >0, «¢o} converges to a solution of (4).

Proof: For N large enough, the left side of (5) is the dominating term,
for each 1, in the denominator of (4). For N large enough one gets
that Ni(l) S.Ni(O). {=1, «es, M. By the same argument used in the
proof of Proposition 1, we get that Ni(u+l) S_Ni(u), i=1, coo, M.
Since the Ni(u)'s are bounded below by T1 for every 1 the sequences
must each have a limit. That the limit satisfies (4) follows by the
continuity of the functions involved in (4).

What still is an open question is whether, or under what conditions,
(4) has a unique solution in the region Ni 2_T1. When uniqueness can be
established then that 1limit arrived at in Proposition 2 can be taken
to be ﬁi’ i=1, ..., M, and at the same time yielding the values

pj, j = l. LY K.

Remark: There is a simple heuristic argument that also leads to the

estimators provided by (4). As

Ni = ‘r1 4+ Number of errors missed in chapter 1

we obtain upon taking expectation that

N, = E(T,) + N, jgki (l°Pj).

Now given N , { = |, ..., M, a natural estimate of p, 1is the number of

1 3
errors j finds divided by the number of errors in the chapters read by

j, that {s,
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n(j)
.
b ZLNV
Véj
Hence, we see that
N, ~ "1
1~ yon -8 g, ., H .
JeR, Y N

vel, V
b

3. Special Cases

(a) M =1, K> 1, This is the case where all K proofreaders read
the entire manuscript. This {s the case that has been in the wild life
recapture census literature (see Seber {4]) and more recently by Polya [3])
for the case K = 2, Jewell [2] for K > 2. Equation (4), with N = Nl’

becomes the single classical equation

-44
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(6) KT
1- 1 (1 -2,
y=1 %

where T = Tl’

It is known (also see Corollary 1 to Proposition &4 below) that if

K
max{n(j)} < T < jZI n(j), then (6) has a unique root in the interval

K
[T,=); if 321 n()) = T then Ne=o and if T = mgx{n(j)}, then

K
N=T, 1f 21 n(j) > T then condition (5) holds and both Propositions
-

1 and 2 apply. Let N be the unique finite root to (6). Since the

right member of (6) is greater than the left member at N = T (assuming

max{n(j)} < T) and is less when N 1s large enough (assuming




K
21 n(j) > T) the curve defined by the right member crosses the line

defined by the left exactly once at N = N from above. Thus, viewing

the iterative procedure graphically, we see that {N(u)} + whenever

N(0) <N and {N(u)} + whenever N(0) > R. Since {N(u)} would cease
to be monotone if it crossed ﬁ, the increasing sequence as well as the
decreasing sequence wust converge. The only point they can converge to is
N =N.

M
Suppose {n'(j)} such that max{n'(j)} < T < jij n'(j). Let N

be the root of (6) when n'(j) replaces n(j), =1, ..., M. We have

K K
Proposition 3: If jgl (1 - n'(3)/N)) 3.jnl (1~ ES%l) for every N> T,

then K' > K.

Proof: Let N(O) = N'. Then

N = I
K '
1 -0 (1 -2
i=1 fe
>—
1-n(1-1(:-1-)-)
j=1 N
= N(1) .

That 1s, N(1) < N(0), implying N(u) + N; hence, N < N'.
If it is assumed that pl P, " see P = P» then the likelihood

function becomes, since M = ],

K K

KN_
N! 3-2-1“(3) jz-xn(j) .
(N=T)ta! P

L(data | N,p) = (1-p)
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The equations for the maximum likelihood estimates are the same except

that

PJ “P

K

1. a(3)

=]
-JT ’ J-l,.oo,M .

Thus, under the assumption of equal pi's equation (6) will be the same

K
with n'(j) replacing n(j) where n'(j) = J Bi%l « Now .oposition
i=1

K [
3 applies since 1T (1 - 2-511)‘2

i=1

K
jEl (1 - Ei%l) for ever N > t; this

follows from the convexity of log(l-x) in the interval O < .o Thus,

for the same data, the assumption of equal pJ's always leads to a larger

estimate of N.

Asymptotic variance and bias for the estimator N can be found in

Darroch [1].
(b) One chapter is read by all proofreaders, all other chapters are
read by only one proofreader, Here K+l =M > 1 ; i =20, ..., M-1; all

proofreaders read chapter O and only proofreader j reads chapter 3,
J=1, oo, Ko

The equations (4) become

(7) N =
0 K n(],0)+T
1- 1 (1 - ——d)
i=1 f+N




The second part of (7) is equivalent to

N, , 1=1, ..., M=1 ,

(8) N = 0

n(1,0)

Substituting (8) in the first part of (7) yields

- To
(%) No = 3 n(3,0)+T
1- 1 (1- — A )
=1 N_(1+T,/n(3,0))
Y h]
T
(9) -— .
t-,1,(1- n(fq-Ml )
3 0
the classical equation discussed in special case (a) with T = To and
n(j) = n(j,0). Thus, (9) has a unique solution ﬁO which can be
obtained by iteration, and once ﬁO is obtain-~d, ﬁi’ for 1 =1, ...,

K, follows by (8).

4. Results of Simulations

In general when M > 1 the usefulness as an estimate of the Ni‘s

of whatever limits result from use of the ifterative procedure is in

~

question since uniqueness in the region Ni Z.Ti,

been demonstrated. Neither has any results pertaining to the speed of

{i=1, ..., M has not

convergence been shown. To see what is likely to be the case some
experiments were simulated for several cases. In each case convergence to

a unique and likely value of N, appears to occur and the convergence

1




takes place in a matter of seconds when using a modern personal computer.
In each case we initiated two sets of calculations - one starting with
Ni(O) =T the other with Ni(O) - ('I'1 4+ C) where C was large enough
to produce a decreasing sequence. In each case the calculations lead

rapidly to the same values for ﬁi' i=1, ..., M. Specifically, we let

} M=K = 4, We had two different chapter-assignment designs:
1 1110 1100
j . 1101 0110
- D -
. l 1011 ! 2 0011
' o111 1001

where a 1 or O occurs in entry a of the design matrix according to

ji

whether or not reader j 1s assigned to read chapter i, We also had 5

different probability {pj} combinations for each design:

Readers
Combinations 1 2 3 4
1 .90 .90 .90 .90
¥ 2 .10 .15 .75 .80
E 3 .10 .15 +20 «25
4 .10 .15 «20 .75
{ 5 .60 .70 .70 .80
i In every case we set Ni =70, {1 =1, .00, 4 and C = 100. We take as
{ the estimates of Ni the nearest integer to the limits of the iterative
i procedure. The number of iterations required to reach the estimate was

taken to be the number of iterations until the nearest integer was
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reached. In practice, more ite: rions are used in order to recognize when
the procedure appears to converge, However, the length of real time
required turns out to be negligible. The results of the experiments are
summarized in Table 1.

As would be expected the accuracy of the estimates improves with
increasing pi's. This would be expected intuitively and from the formula
for the asymptotic variance of N given by Darroch (1] for the case of
M = 1, The number of iterations required also appears to decrease with

increasing Py

5. Poisson Model

Asgsume that the ratio of the size of chapter 1 to the whole
M

manuscript 1s «a,, a, > O, Z a, = 1, Assume the number of errors
i i - i=1 1

(Nl’ ese, NM) are independent random variables with a Poisson distribu-

tion having mean aik, i=1, ..., M where A\, as opposed to the ai, is

unknown. Under this assumption, following Jewell (2], the likelihood

function, averaging (1) over the possible value of {Nl, ceey NM},

becomes

Rk

a, (1-Q,)
g gop 1 i

M K p
1 j yn(3)
A,p) =D I (
(10)  L(data | (A,p) =D T (Q xA) " e jfjl "Pj)

-\
T

where D 1is a function of the data. Taking partial derivatives of
log L, we see that the maximum likelihood estimate ﬁ, ;1 of A\ and

Py must satisfy

-12-




Table |
Estimates of pj'u
Chapters Readers
1 2 3 4 1 2 3 4

D D D D D D D D D D D D DI D,| D D

Combinations 1} 72} "L} "2f iy 2 "l T2 1] 723 ) T2) i) T2 iy T2

&1 701 711 70] 70{ 70} 71} 70} 71}1}.95|.92].90|.92{.90]|.88].90}.91

1 [No. of Iters.
from Ti 1 211 1 1 1 1 1

No. of Iters.
from Ti + 100} 3 4 Jle 3 5 3|5

67( 74{ 73] 64 71| 78} 72| 721{.09]|.09]|.13{.13]1.73{.65{.81].8]

10 15[ 9 ] 19 104 174 9 | 14

116| 33| 86| 34{ 88 661 87| 46]}.07].16j.10/.19}.12].231.20{.38
31t 20 38) 22| 35} 25; 35| 26

401540 32>40) 34|>40) 33| 37

80) 64| 64] 80| 73| 83) 62y 70{|.09}.11}.13].13].19}.17].76].79
19| 25§ 11} 39| 12} 26| 21} 21
191 37) 26} 37} 22)>40] 18{>40

73] 691 71| 757 69| 74] 71} 72|{.641.51].70}.65}.73],77}).76].78

=13

3




(11) A=

~S - (% P -
pj x- 2 T » j l. -..,H »

vle v

leading to the equation for A being a solution of the equation

i
T
(12) L — 1=1 1 .
1-J e, 1 (1-,_1‘_(.1_)___)
1=1 1 jex i~ 7 1
v
i VJLJ

Thus, where the model in Section 2 leads to M equations in M
variables, the Poisson model reduces the number of equations to one
equation with one variable. For case (a) in Section 3 (12) reduces to (6)
as was pointed out by Jewell (2], The same numerical iteration suggests
itself. If A(0), the initial value of the iteration 1is 131 Ti’ one has

the gsame monotonicity of Proposition 1. Numerical calculations indicate

that the sequence {A(u)} will converge. The question of uniqueness of

M
the solution to (12) in the region A > 121 T, 1is open. (Since
M
n(j) <€ T, \A> T, 4mplies n(j) < A - ) T .) The next pro-
DL w2 LT »s VZL v
3 3

vides a partial answer to this question.

Let

-14-
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Proposition 4: 1f for every 1, 1 =1, ..., M

2c
(13) T n(k) > » *3ek |,
k#j 1 cJ T i
kel(1

then there is a most one solution to (12) in [T,=).

Proof: Invert both sides of (12) letting z = 1/A to get

(14) z = G(2)/T
where
M
6z) =1- [ o 1 (-3
i=] JEK:[ l-cjz

We shall show that (13) is a sufficient condition for G(z)

to be a

concave function in the interval [0,1/T]. To this end, the first

derivative with respect to 2z 1{s

M
G'(z) = - ] a, H'(z)
{=] i 1

where
H(z) = 1 (1 - 22,

Jek l=c,2

1 b

’ 1-1, coo.H

-15-




But

Bi(z) = ~ 7 P(2)

gex,
wh;re
Fy2) kgj(l ) ﬁ:::) (:sz)z SR
Thus,
H;(z) -- 7 Pj(z) R
Jeky
but

pi(z) » 20 g2l )y gy vz Gl

! (l-cjz)3 Kby TN (l-cjz)z kAS vhk,] 1S 1T
2¢
-0 nolp - n(v)z ) I _ 5 n(k) b
(l-cjz)2 vhj l1-c 2 1=c42 14y (1=, +n(k))z)(l-c, 2)

Thus, the sign of P!(z) 1s the sign of the expression in brackets

3 2c
which 18 less than or equal to ~——17— - E n(k). Then, by the assump-~
l-cj T ki

tion (13), the above is non-positive in [0,1/T] for every j§ ¢ Ki'

Therefore, H;(z) 20 4in [0,1/r] for every {, and consequently,
" 1
G'(z) O , 0Kz 5_5' ’

as was to be shown.

ratll. . e sor oo U
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In the case where every proofreader reads every chapter, ¢, = 0,
jJ =1, ¢eey, K (or we can consider M = 1, and (12) becomes (6)), and we

have the already known result.

Corollary 1: 1If every proofreader reads every chapter, then (12) has at

most one solution in the interval i.z T.

Proof: Condition (13) is satisfied in this case.

When G(z) 1s concave, equation (12) will have exactly one solution

in the interval A 2T 1if G'(0)/T > 1. Since

M
' - - ¥ '
G'(0) L a Hi(0)

=1 * Jek, ]
M
i1 ' jeK,

we have

Corollary 2: 1If (13) holds and

M
Loy I o>,
i=] jcKi

then there exists exactly one solution to (12) in the interval A 2 T.

Even 1f (12) does not have s unique solution we can bound all the
roots of (12)., Llet X\ be the unique solution to (12) in [T,») when

=0,3=1, .v., K. We have

‘3
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Corollary 3: Let A be any solution to (12) in [T,=), then A S_f.

Proof: This corollary follows from the fact that the right side of (12)

is continuous and that it is always largest when ¢, =0, j =1, ..., K&

3
The previous proposition and corollaries deal with sufficient
conditions for a unique solution to (12) to exist and an upper bound x
on the possible solutions in case there may be more than one solution.
The following proposition indicates that the {terative method for solving

(12) indicates when a unique solution exists or at worst provides bounds

within which the appropriate solution to (12) exists. Let A, < A

1 2

< oo S~kr be the roots of (12) in [T,=).

Proposition 5: If A(0) = T, then 1lim A(u) = Aj; 1f A(0) = X then
ure

Consequently, if the two limits are equal, then (12) has a

lim )\(u). '
u+e r

unique solution in [T,»); otherwise T S_Xl S_i < Kr £ X.

Proof: Let ¢(\) denote the right number of (12). We shall exploit the
fact that ¢(A) 1is increasing in A and that 1f A(0) = T, {A(u)} 1is

increasing in u. Suppose lim A(u) = x> A Then there exists a u
uy-ro

1.

such that A(u) < kl and A(u+l) > ll. That is, we have

¢(A(u)) = A(utl)

2N

= oA

a contradiction of the fact that ¢(A(u)) < o(kl). The proof 1is analogous

for A(0) = X.




5. Remarks:

In the cases where we have not shown convergence of the iterative
procedure, numerical examples have shown convergence quite often and in a
matter of seconds on a personal computer, However, if a personal computer
is not available or convergence may not occur, a two-step iterative
procedure suggests itself. In equations (2) the estimate of N1 wvould be
immediate if we had an estimate of 61. If we go beyond the sufficient
statistics {Ti' n(j)} such estimates are available. Let Si denote the
number of distinct errors found by all proofreaders other than proofreader
i 1in the chapters read by proofreader i. Within this set of distinct
errors, let 8y denote the number of errors found by proofreader 1.
Then an estimate 51 of p, 1is given by 31/51. Inserting Si for
the pi's in Qi yields an estimate of Q1 from which an estimate ﬁi
of Ni follows from (2). The procedure could terminate at this point or,
perhaps, be carried on one more iteration by setting Ni(O) = ﬁi in (4)
and then letting N(1) be the final estimate Ni'

A model not covered in the paper would be of interest. Errors may
fall into different categories where the pj's for each reader would vary
in an unknown way with each category. If the categories are recognizable,

then the present model can be adapted -~ treating each category separately.

However, if the categories are not recognizable this device will not work.
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20. ABSTRACT: Inspections with Unknown Detection Probabilities

by C. Derman, G. J. Lieberman, and S. M. Ross

Suppose in an acceptance sampling situation the lot 1s subject to

{ - 1002 inspection. However, the inspector is not perfect so that the
probability of a defective unit being detected is unknown. It is of

A; interest to estimate N, the number of defective units in the lot
(presumably, a decision to accept or reject the lot is based oﬁ the
estimate of N). Or suppose satellites are used for surveillance over &
given part of the earth. The detection of certain types of inltallations

is the mission of a given satellite. However, for various reasons, it can

be assumed the detection of any existing installation is uncertain with
unknown probability of detection. It may be of interest to estimate the
total number of installations based on the number observed. A third
situation involves the proofreading of a manuscript. Based on the
proofreading of the manuscript, it may be of interest to estimate the
total number of typographical errors. There is a long literature, dating
back to 1500, on special cases of these problems. ’
General models are developed for estimating the quantities of
! . interest. An iterative scheme for calculating the maximum likelihood
estimator 1s proposed, and convergence properties are proven for special

| cases.
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