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INSPECTIONS WITH UNKNOWN DETECTION PROBABILITIES 
1

(The Proofreader Problem)

by

Cyrus Derman Gerald J. Lieberman Sheldon M. Ross

Columbia University Stanford University Univ. of Cal., Berkeley

1. Introduction and Summary

-Stuppose in an acceptance sampling situation the lot is subject to

100% inspection. The probability that a defective unit Is detected is

different for each inspector and Is unknown. It is of Interest to

estimate N, the number of defective units in the lot (presumably, a

decision to reject or accept the lot would be based on the estimate of

N). Or, suppose satellites are used for surveillance over a given part of

the earth with the detection of certain types of installations being the

mission of a given satellite. However, for various reasons, it can be

assumed the detection of any existing installation is uncertain with an

unknown probability of detection that varies among satellites. The

problem is to estimate the total number of installations based on the

number observed. A third situation involves the reading of a manuscript

by many proofreaders. Based on the results, it may be of initerest to

estimate the total number of typographical errors.

For purposes of exposition we shall, in formulating the model, use

language suggested by the proofreader situation.

'This research has been partially supported by a) the U.S. Office of
Naval Research under Contracts N00014-75-C-0561 with Stanford University
and, b) the U.S. Air Force Office of Scientific Research (AFSC), USAF,
under Grant AFOSR-81-0122 with the University of California. Reproduc-
tion in whole or in part is permitted for any purpose of the United
States Government. V T



The proofreader problem has been treated: Polya [31 and Jewell 121.

4 In the context of wildlife recapture census, the literature reaches back

to the 1950's (a reference list appears in G.A.F. Seber 14)).

We develop models for estimating the quantities of interest. Our

models are generalizations of what has appeared in the wildlife recapture

census and proofreading literature. In the context of the proofreading

model the existing literature has considered the situation where all

K(K > 1) readers read the entire manuscript. In our models we allow for

the possibility that the manuscript can be divided into several chapters.

* Each reader reads one or more, but not necessarily all, chapters. We look

at this generalization in two ways. The first model is multi-variate with

an unknown number of errors in each chapter to be estimated. The second

model assumes that the number of errors in the entire manuscript has a

Poisson distribution with unknown mean and that the relative sizes of the

chapters are known. We'rely on the method of maximum likelihood for

estimating the unknown parameters. Typically the maximum likelihood

estimates of the quantities are solutions to equations which must be

solved numerically. In this paper we are not concerned with the

statistical properties of these estimates. We are primarily concerned

with the convergence properties and performance of an intuitive iterative

procedure which, given the present generation of personal computers, can

provide the desired numerical estimates in a matter of seconds.

2. GENERAL MODEL

We assume a "manuscript" with M, M > 1, "chapters" and K, K > I

"proof readers". Each proofreader is assigned a number of chapters to
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read. Let K denote the set of proofreader. assigned to read chapteri

i, i - 1, ..., M; let L denote the set of chapters assigned to

proofreader J, j - 1, ..., K; let Ni  denote the unknown number of

"errors" in chapter i; let pj denote the unknown probability of

proofreader j detecting a given error when he "reads" it. We assume in-

dependence from error to error so that the number of errors proofreader

J, j - 1, ..., K finds are independent binomial random variables with

parameters iAL Ni  and pj t - 1, ..., K.

Let

be the probability that a given error in chapter i will not be found by

any proofreader. Let n(j,i) denote the number of errors that

proofreader j finds in chapter i; let T denote the total number of

different errors found in chapter i by all of the proofreaders assigned

to read that chapter. The likelihood function of the observed data given

(N,p) - (NJ, ..,, NM t PI.. "'* PK)  is given by

M Ni I Ni-Ti i) Ti-n(ji)
L(dataI (N,p)) - i Qi j n T (0-p)

i-I fjcK i

ii

M NI N K p n(j)
SN Qii n(-.-i',i I (N -Ti) d I Q j I p
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where di is a function of the data associated with chapter i and does

not depend on (Np) and where n(j) n(ji) is the total number of

errors found by proofreader J.

If we approximate by assuming the N i's to be continuous variables
12g NI

and substitute log N for d dN , on partial differentiation of log L

with respect to the N 's and pi's we obtain equations that the maximum

likelihood estimators Nbi, P of Ni  and p must satisfy:
T i

(2) N i i I, ,M

and

(3) P 7 j - ", K
i.LN
icl i

where

i --Pi
Ki

Combining (2) and (3) yields the equations

S(4) N i " - (j i -I, .. ,
" i J cr i ( I -j

VUiv

In addition to (4), we have the additional constraints that N, 1  Ti'

i I, ... , which implies, also, that
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/

_ > n(j), j - 1, ... , KvcL

For given values {N (0), i = 1, ..., M} define for u > 1,

iT

Ni(u+1) - Ti, £ - 1, *.., M1- n (1,- _____

JCKi  N (u)
vcLj v

The above defined iteration is suggested by (2), where initially a value

for Q is given which in turn generates a value for N which in turn

generates another value for Qi' etc.

Proposition 1: If N (0) - Tit i - 1, ..., M, then (N (u), u M 0, ... }

is non-decreasing in u for every i.

Proof: If N (0) - Ti t I o l, ..., M, it is clear from (4) that N (1) >

Ni(O), i 1 1, ..., M. However, replacing Ni(O) by Ni (1) increases the

right side of (4) which means that N (2) > Ni(1) , i - 1, ..., M.

Continuing, the proposition follows.

The monotonicity of Proposition I does not guarantee that lim Ni(u)

exists; i.e., we could have Ni(u) t -. Proposition I starts from the

lowest possible value of N The following proposition starts from a

high value of Ni and asserts monotonicity in the opposite direction.

Proposition 2: Suppose N (0) - TiN. If

i (5) n >1 j)..

JkKI  I T
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then there exists N large enough such that {N i(u), u - 0, 1, ... } is

non-increasing for every i. Consequently, {N(u), i 1I ... , M;

u 4 0, ... ) converges to a solution of (4).

Proof: For N large enough, the left side of (5) is the dominating term,

for each 1, in the denominator of (4). For N large enough one gets

that N1 (1) < N (0), i - I, ..., M. By the same argument used in the

proof of Proposition 1, we get that Ni(u+l) < Ni(u), i M 1, ... , M.

Since the N (U's are bounded below by Ti for every I the sequences

must each have a limit. That the limit satisfies (4) follows by the

continuity of the functions involved in (4).

What still is an open question is whether, or under what conditions,

(4) has a unique solution in the region Ni . Ti. When uniqueness can be

established then that limit arrived at in Proposition 2 can be taken

to be i, 1, ..., M, and at the same time yielding the values

Pt - , ..., K.

Remark: There is a simple heuristic argument that also leads to the

estimators provided by (4). As

Nt a T + Number of errors missed in chapter i

we obtain upon taking expectation that

.Ni a (Ti) + Ni (-pj)

Now given N., i - 1, ... , M, a natural estimate of pj is the number of

errors j finds divided by the number of errors in the chapters read by

J, that is,

ii
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n(j)

J Lj Nv

Hence, we see that

N

1- n CI- n ) 1. M
JCKI I N

ve L V

3. Special Cases

(a) M - 1, K > 1. This is the case where all K proofreaders read

the entire manuscript. This is the case that has been in the wild life

recapture census literature (see Seber 141) and more recently by Polya 131

for the case K - 2, Jewell 12] for K > 2. Equation (4), with N i N,

becomes the single classical equation

(6) K T
N

J.1 N

where T - T I.

It is known (also see Corollary I to Proposition 4 below) that if

K
max{n(j)} < T < I n(j), then (6) has a unique root in the interval
j3 i-I

K
[T,-); if 1 n(J) - T then N - and if T - max{n(J)}, then

4' K
N - T. If I n(j) > T then condition (5) holds and both Propositions

I and 2 apply. Let N be the unique finite root to (6). Since the

right member of (6) is greater than the left member at N - T (assuming

max(n(j)} < T) and is less when N Is large enough (assuming

j

--



n(J) > T) the curve defined by the right member crosses the line

defined by the left exactly once at N - N from above. Thus, viewing

the iterative procedure graphically, we see that {N(u)) t whenever

N(O) < N and (N(u)} 4 whenever N(O) > N. Since (N(u)} would cease

to be monotone if it crossed N, the increasing sequence as well as the

decreasing sequence must converge. The only point they can converge to is

N-N.
M

Suppose {n'(J)} such that maxfn'(J)} < T < I n'(J). Let N'

be the root of (6) when n'(J) replaces n(j), j 1 1, ..., M. We have

K K
Proposition 3: If I ( - n'(J)/N)) > l (1 - n0 J) for every N > T,

then g' >Au 
N

Proof: Let N(O) - '. Then

i- N

T
N - Kj-i '()

-N(l)

That is, N(1) < N(O), implying N(u) + N; hence, N < N'.

If it is assumed that pi M P2 PK a p, then the likelihood

function becomes, since M - I,

K K
N I n ( j )  IN-J In(J )

L(data I N,p) - pJ O - n(N-T)4d!

" ' ' . " '8 '

UI



The equations for the maximum likelihood estimates are the same except

that

p -p

K
I n(j)

KN , J " 1, ... , H

Thus, under the assumption of equal pi's equation (6) will be the same
Kwilth n'(J) replacing n(J) where n'(J) I n . .No oosto

3 apl es si ce (I _n(j ) K (l - (_ f r ve >i;-Il
J -1 N - - j i N "

follows from the convexity of log(1-x) in the interval 0 < . Thus,

for the same data, the assumption of equal pigs always leads to a larger

estimate of N.

Asymptotic variance and bias for the estimator N can be found in

Darroch [I].

(b) One chapter is read by all proofreaders, all other chapters are

read by only one proofreader. Here K+1 - M > 1 ; i - 0, ..., M-1; all

proofreaders read chapter 0 and only proofreader j reads chapter J,

j - 1, ..., K.

The equations (4) become

T 0

(7) N0 a K n(j
i l 0+ N-

iNo + N
N . ) Ti , i 1, ... , H-I
I n~i-,O)+T 1

-9-
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The second part of (7) is equivalent to

T
(8) N, 0 il ., H-I

n(i,O)

Substituting (8) in the first part of (7) yields

(9) N0 K n(J,O)+Ti 1- n (1-
jai N0(I+T /n(J ,0))

( 9 ) = K

1- (1 n(J,0)

the classical equation discussed in special case (a) with T T T0 and

n(j) - n(J,0). Thus, (9) has a unique solution N0 which can be

obtained by iteration, and once N0 is obtain-d, N for i - i,

K, follows by (8).

4. Results of Simulations

In general when M > 1 the usefulness as an estimate of the N,'s

of whatever limits result from use of the iterative procedure is in

question since uniqueness in the region Ni >Tif i - 1, ..., M has not

been demonstrated. Neither has any results pertaining to the speed of

convergence been shown. To see what is likely to be the case some

experiments were simulated for several cases. In each case convergence to

a unique and likely value of N1  appears to occur and the convergence

-10-



takes place in a matter of seconds when using a modern personal computer.

In each case we initiated two sets of calculations -one starting with

N 1(0) -Titteohrwt 0 (T I+ C) where C was large enough

to produce a decreasing sequence. In each case the calculations lead

rapidly to the same values for Nit I - 1, ... , M4. Specifically, we let

M - K - 4. We had two different chapter-assignment designs:

1110j 1100

I lol 2i 0011?

(,0111 )1001
where a 1 or 0 occurs in entry ai of the design matrix according to

whether or not reader j is assigned to read chapter i. We also had 5

different probability {p 1 combinations for each design:

Readers

Combinations 1 2 3 4

1 .90 .90 .90 .90

2 .10 .15 .75 .80

*I3 .10 .15 .20 .25

4 .10 .15 .20 .75

5 .60 .70 .70 .80

In every case we set N - 70, 1 -1, ... , 4 and C -100. We take as

* ithe estimates of N the nearest Integer to the limits of the iterative
I

procedure. The number of iterations required to reach the estimate was

taken to be the number of iterations until the nearest integer was



reached. In practice, more ite: rions are used in order to recognize when

the procedure appears to converge. However, the length of real time

required turns out to be negligible. The results of the experiments are

su marized in Table 1.

As would be expected the accuracy of the estimates improves with

increasing piIs. This would be expected intuitively and from the formula

for the asymptotic variance of N given by Darroch [1 for the case of

H - 1. The number of iterations required also appears to decrease with

increasing pI"

5. Poisson Hodel

Assume that the ratio of the size of chapter i to the whole
M

manuscript is ai, a > 0, 1a - 1. Assume the number of errors
S- iml

(Ni, ..., NM) are independent random variables with a Poisson distribu-

tion having mean a I , I - 1, ..., M where X, as opposed to the a,, is

unknown. Under this assumption, following Jewell (21, the likelihood

function, averaging (1) over the possible value of {NI, ... , N M,

becomes

M

M T i (1-Qi ) K
(10) L(data I (X,p) = D Ir (Q X X) e (-.n()

i-i ij: iI -Pj

where D is a function of the data. Taking partial derivatives of

log L, we see that the maximum likelihood estimate X' pi of k and

mPi ust satisfy

-12-
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Table 1

Estimates of Pj'

Chapters Readers

1 2 3 4 1 2 3 4
I omtntDn D D

Combinations D 2 D1 D2  DI D2  DII D2 DI D2  DI D2 D2 D1I 2

N 70 71 70 70 70 71 70 71 .95 .92 .90 .92 .90 .88 .90 .91

I No. of Iters.
from Ti  1 2 1 1 1 1 1 1

No. of Iters.
from Ti + 100 3 4 3 6 3 5 3 5

67 74 73 64 71 78 72 72 .09 .09 .13 .13 .73 .65 .81 .81

4 12 4 10 3 10 3 9

10 15 9 19 10 17 9 14

116 33 86 34 88 66 87 46 .07 .16 .10 .19 .12 .23 .20 .38
3

31 20 38 22 35 25 35 26

>40 >40 32 >40 34 >40 33 37

80 64 64 80 73 83 62 70 .09 .11 .13 .13 .19 .17 .76 .79
4

19 25 11 39 12 26 21 21

19 37 26 37 22 >40 18 >40

71 69 71 75 69 74 71 72 .64 .51 .70 .65 .73 .77 .76 .78

1 3 2 7 2 4 1 5

5 12 4 8 4 8 5 7

-13-



M

M

(12) M1-Ji- 
Ti

vvL~

Lii

leading to the equation for being a solution of the equation

M

(12) i i

i-i ~K 1  - t T

n~L)

Thus, where the model in Section 2 leads to M equations in M

variables, the Poisson model reduces the number of equations to one#

equation with one variable. For case (a) in Section 3 (12) reduces to (6)

as was pointed out by Jewell (21. The same numerical iteration suggests
H

itself. If \(O), the initial value of the iteration is 7 T "one has

the same monotonicity of Proposition 1. Numerical calculations indicate

that the sequence {X(u)} will converge. The question of uniqueness of
H

the solution to (12) in the region X> 7 T is open. (Since

n(j) < T , X > I T implies n(j) < X - 'T) The next pro-
vCL~ v -iI i v1L v

video a partial answer to this question.

Let

cjTL 1  ... , Kj Vi V

-14-
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and

H

j v-i V

Proposition 4: If for every i, i1 1,... M

(13) n(k))> 2c V j c tJKi
kicj j

then there is a most one solution to (12) in [T,-).

Proof: Invert both sides of (12) letting z -1/% to get

(14) z -G 1z)/T

where

M

nj~z

G~z) - I a 1 v1-

We shall show that (13) is a sufficient condition for G(z) to be a

concave function in the interval [0,1/TI. To this end, the first

derivative with respect to z is

m
G((z) - a H'(z)

ii i i

where

Hi (z) - T ( n(j)z 1, M
i~l J K -c: "

-15-



But

HI(Z P (Z)
JCK i

dI

where

P(z) n(k)z n(j) J e Ki

Thus,

H"(z) - - Y'z)
i ticK

but

P(z) 2n(j) n(k)z) n() 2 . n(v)z) n(k)

(-c z)3 k#j k (1-c z) k#j v~k,j v k

- n(j) 2 - n(v)z ,! n(k)

(1-c z) 2 vj -Cvz J kj

Thus, the sign of P'(z) is the sign of the expression in brackets
2c . )

which is less than or equal to - I n~k). Then, by the assump-
j k#j

tion (13), the above is non-positive in (0,1/TI for every j c K .

Therefore, H"(z) > 0 in [0,1/rI for every i, and consequently,

G"(z) < 0 , 0< z T

as was to be shown.

-16-
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In the case where every proofreader reads every chapter, cj a 0,

j = 1, ... , K (or we can consider M w 1, and (12) becomes (6)), and we

have the already known result.

Corollary 1: If every proofreader reads every chapter, then (12) has at

most one solution in the interval X > T.

Proof: Condition (13) is satisfied in this case.

When G(z) is concave, equation (12) will have exactly one solution

in the interval X > T if G'(O)/T > 1. Since

G'(O) -- i H'(0)

M
-~~ ~ a1 ~ (0)

imi JCK i

M
L j n(j)

i-ii JcKi

we have

Corollary 2: If (13) holds and

M
I ai  n(j) > T

i-I J Ki

then there exists exactly one solution to (12) in the interval ) > T.i
Even if (12) does not have a unique solution we can bound all the

roots of (12). Let X be the unique solution to (12) in [T,-) when

cj M 0, j 1 ... , K. We have

-17-



Corollary 3: Let be any solution to (12) in IT,-), then X < .

Proof: This corollary follows from the fact that the right side of (12)

is continuous and that it is always largest when cj a 0, j - 1, ..., K.

The previous proposition and corollaries deal with sufficient

conditions for a unique solution to (12) to exist and an upper bound

on the possible solutions in case there may be more than one solution.

The following proposition indicates that the iterative method for solving

(12) indicates when a unique solution exists or at worst provides bounds

within which the appropriate solution to (12) exists. Let X X2

< o.. < X be the roots of (12) in (T,-).

Proposition 5: If X(O) - T, then lim X(u) - XI; if X(O) - then
U-*

lim X(u)- X • Consequently, if the two limits are equal, then (12) has a
U+CD r

unique solution in [T,-); otherwise T < kI < X < X r < X.

Proof: Let O(X) denote the right number of (12). We shall exploit the

fact that O(M) is increasing in X and that if X(O) - T, {X(u)} is

increasing in u. Suppose lim X(u) - X > X Then there exists a u

such that k(u) < X and X(u+l) > X. That is, we have

O((u)) - X(u+1)

, > XI

a contradiction of the fact that (X(u)) < O(Xl). The proof is analogous

for X(O) = X.

-18-



5. Remarks:

In the cases where we have not shown convergence of the iterative

procedure, numerical examples have shown convergence quite often and in a

matter of seconds on a personal computer. However, if a personal computer

is not available or convergence my not occur, a two-step iterative

procedure suggests itself. In equations (2) the estimate of N Iwould be

immdiate If we had an estimate of Q . If we go beyond the sufficient

-jstatistics {Ti. n(j)} such estimates are available. Let S i denote the

number of distinct errors found by all proofreaders other than proofreader

i in the chapters read by proofreader i. Within this set of distinct

errors, let s I denote the number of errors found by proofreader i.

Then an estimate iiof p I is given by a S .Isrigi for

the pi's in Q yields an estimate of QIfrom which an estimateN

of N Ifollows from (2). The procedure could terminate at this point or,

perhaps, be carried on one more iteration by setting N 1(0) - N Iin (4)

and then letting NO1) be the final estimate N .

A model not covered in the paper would be of interest. Errors may

fall into different categories where the pi's for each reader would vary

in an unknown way with each category. If the categories are recognizable,

then the present model can be adapted - treating each category separately.

However, If the categories are not recognizable this device will not work.

Acknowledgement:
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