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Abstract .
5"—"{:"-’

In this paper we—study the divergence operator acting on continuous

piecewise polynomials of degree p + 1 , p 2 3 , on triangulations of a plane
om?ﬂ‘ fle awthors QA

polygonal domain & . 2 give a characterization of the range of the diver-
gence operator and the full details of a combinatorial verification of this. | -
As the central result we show that for very general families of S
meshes it 1s possible to find a maximal right inverse for the divergence
operator with a B(Lz;Hl) norm which is bounded independently of the mesh

size. The norm of this right inverse grows at most algebraically with p,

but it necessarily blows up as a certain measure of singularity of the meshes

approaches O .,
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1. Introduction

Incompressibility constraints, such as constraints on the divergence of
a velocity field or a displacement field, occur in many equations of physical
interest, e.g. the Navier-Stokes equations or the equations of elasticity.
When analyzing the stability of finite element approximations to these
equations a central question concerns the behaviour of the divergence operator,
or a discrete version thereof, on the corresponding spaces of piecewise
polynomials (see for instance [4,7,17,19]). It is well documented that continuous
plecewise polynomials of low degree applied directly to the velocity- (or f
displacement-) formulation are often inadequate, due to the lack of a uniformly
bounded right inverse for the divergence operator. This has led various
authors to study non-conforming low order elements in connection with mixed
formulations. The analysis in this paper vpoints in another direction: our
results imply that continous piecewise polynomials of degree four or higher
directly applied to the velocity - (or displacement~) formulation lead to
optimal (uniform) convergence rates (for a discussion of this, see [12]).

The paper [18] contains a characterization of the range of the divergence
operator on spaces of continuous piecewise polynomials of degree p+ 1, p 2 3,

on an arbitrary triangulation (Theorem 2.1 and Remark 2.1); it also gives a

proof of the fact that on a fixed triangulation it is always possible to
construct a maximal right inverse for the divergence operator, the norm of

which grows at most algebraically with p (Theorem 2.1). These results were

used to prove that the so-called p~version of the finite element method, when

applied directly to the displacement formulation of plane strain elasticity,

converges at optimal rate independently of the value of Poisson's ratio ({19]).
The analysis presented in this paper extends the results of (18] in

a rather surprising way - it shows that the aforementioned right inverse

(p 2 3) has a B(LZ;HI) operator norm which is bounded independently of the
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mesh size of the triangulation. This uniform bound can only hold provided a
certain measure of singularity of the meshes is bounded away from zero (cf.
Example 3.1). Available numerical experiments (cf. [16]) and recent theoretical
results (cf. [12]) indicate that a similar bound does not exists for p < 3,
For seasons of exposition we have chosen to express our main result in
terms of a bound for the norm of a maximal right inverse for the divergence
operator. It is easy to see (cf. section 5) that this is equivalent to a

uniform, positive lower bound for the expression

inf sup [ VeV ¢ d§///
2 g lell , Wl

as studied by other authors (here V varies over the space of piecewise
polynomials and ¢ varies over the divergence of this space).

The organization of this paper is as follows: in section 2 we introduce
the necessary notation concerning the triangulations and the polynomial
subspaces, It should be emphasized that our triangulations are quite general
and only restricted by the assumption of quasiuniformity. Section 3 independ-
ently characterizes the range of the divergence operator acting on continuous
piecewise polynomials of degree p+ 1 , p 3 3 . Combinatorial proofs are carried
out both with and without boundary conditions; in the latter case the argu-
ment is identical to one found in [18]) and depends crucially on the formula
for the dimension of C1 plecewise polynomials proven in [10]; in the first
case we have to establish a similar formula for Cl plecewise polynomials
that vanish to second order on the boundary (this is done in section 6). {
Section 4 and 5 contain the proof of the main theorem, the existence of a

uniformly bounded maximal right inverse. The analysis relies heavily on [18],

but an important new element is the localization procedure formulated in

lemmas 4.5, 5.1 and 5.2. The idea behind lemmas 5.1 and 5.2 is in many




ways similar to that underlying the macro-element technique and the correspond-
ing local test for stability found in {3] or {l14]. Much of the rest of the

proof of the main theorem consists of verifying that the constants in various

of the estimates found in [18] scale appropriately with the mesh size.

The attention in this paper is restricted to plane domains; it should

be interesting to see if a similar analysis could be carried out in IR3 .
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2. Notation

2
Throupghout this paper @ denores a bounded polvgonal domafn in R,

Zh = {T?}N(h) , 0 <hs 1, is a family of triangulations of § , para-
i=]
metrized by mesh size h . To be more precise: the T? , 1 g1 g Nh),

for fixed h , are disjoint triangles with

diam T? <h
and

N(h) —

U T: =% .

i=1

An edge of a triangle of Zh is called an internal edge of Zh if its interior
lies in 2 (not on 1) . We assume that no vertex of a triangle of Eh
falls in the interior of an internal edge of Zh . This does not prevent boundary
edges from having vertices in their interior (as in Fig. 2 and Fig. 4).
Furthermcre we assume that the family Zh » 0<hgl, is quasiuniform in i

the sense Chat i

(2.1) oo € 0 (1) Wl € L,» 0<hsl,

where p(T) denotes the supremum of diameters of discs contained in T , and
0 - Py In the rest of this section and all of the next we shall, to simplify
notation, omit the subscript h when referring to a fixed triangulatiom,

If Z' is an arbitrary subset of the triangulation Z ,» we then define
the corresponding polygonal domain® !

(2.2) Q(Z') = jnterior ( U 'Thn) . '
T€)

For any integer p 20 and r =0 or 1 .

p[P]rr(Z') ‘

*12 in the definition of Q(X') matters only when interior({) &, t.g. when
@ is a slit domain.
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denotes the set of functions in c‘(n(Z')) that are given by a polynomial

1
of degree < p on each of the triangles of Z .

An internal vertex of Z' is a vertex that lies in Q(Z') (not on

L}
aQ(Z')) . We shall say that an internal vertex of Z is singular if the

edges meeting at this vertex fall on two straight lines (cf. [10]).

Fig. 1. Singular internal vertex Xy

Following {18] we introduce, for p > 0 , the space

P[P]:‘l(z")

of functions , ¢ , which are given by a polynomial of degree < p on each

individual triangle (no continuity requirements) and which have the property that

L
R.1: at any singular internal vertex of Z R 50 ,

: i
iél (-1) ¢1(§0) =0

where ¢, (x,)) = ¢i1—i(350) and Tl‘”’TA are the triangles meeting

at Xy s numbered consecutively, as shown in Fig. 1.

An explanation for the requirement (R.1) is most easily given by the

following simple observation.
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Proposition 2.1

For any Z' < X and any p 20,

V-(P[p+l]’0(2') % P[P"'l]’o():')) _(_:_ p[P],"l(Z')

The proof of this proposition consists of a straightforward calculation,
the details of which we leave as an exercise. Special cases of this result
have been used by other authors, e.g. Mercier (9] and Fix et al. [6].

When homogeneous Dirichlet boundary conditions are imposed, a new set of

requirements become important. Let

;[P],r(z') R P s+ 1 . r=0’l

-

denote the subspace of P[p],r(z') consisting of those functions that vanish
to order r + 1 on aﬂ({') ; that is, functions in ;[p],r(zv) are always
zero on aQ(X') , and in addition, functions in ;[p],l(zv) are required to
have a vanishing normal derivative.

Remark 2.1

In this paper we use the very natural convention, that a point on SQ(Z') .
which is a vertex for k different parts of SQ(Z') , be considered k different
boundary vertices. As an example there are two different boundary vertices at the
point P in Fig. 2. A similar convention is applied to edges that lie on "internal"
boundaries. These are considered two different boundary edges if they are
common to two different triangles of Z' . Note that, conforming with this
convention, our definitions of piecewise polynomial spaces do not impose any

continuity conditions at vertices or edges where the boundary intersects itself.

I




Fig. 2,

A vertex 39(2')

all the edges of J'




Fig. 3. The four types of singular boundary vertices of z' .
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We let

pIPL=Lis'y o0

denote the subspace of p[p],-l(z') consisting of functions, ¢ , which
additionally satisfy the following two requirements, that

\
R.2: At any singular boundary vertex of Z v X5

k :
l -
izl (-D7,(xy) =0,

where ¢i(§0) = ¢'Ti(§0) ,and T ,...,Tk are the triangles of
]
Z meeting at X5 (k can be any number from 1 to 4, and the

triangles are numbered consecutively as shown in Fig. 3). |

=
w

For any connected component of Q(Z') , ",

|
JQ"M‘_&=0. 7

It is a simple exercise to show that the following holds.

Proposition 2.2

1
For any X < Z and any p > 0 ,

>

V.(;[p+1]’0(2') x ;)[P"'l],O(Z')) E i)[p]r—l(Z')

Our notation for Sobolev spaces is standard: if Q' € Q is a polygonal
(sub) domain then Hk(Q') , k € N , denotes the set of functions with deriva-

tives of order < k in L,(Q') ; the corresponding norm is denoted |

i

ﬁk(ﬂ') is the closure of C;(Q') in Hk(ﬂ')




10

3. Characterizing the range of the divergence operator

% i For the analysis of 1rinite element discretizations of equations with a
divergence constraint it is important to have precise information about the
range of the divergence operator on the finite dimensional subspaces. In
] general a uniform norm estimate of a right inverse is sufficient to guarantee i
A stability, however, in order to estimate the convergence rate, the algebraic
character of the range of the divergence operator has to be known. 1In the

present situation it furthermore turns out that the characterization of the

range automatically leads to a necessary condition for the existence of a

uniformly bounded right inverse. For ease of notation we omit the subscript '
h when referring to a fixed triangulation. The following result was

proven in ([18].

Proposition 3.1 ‘

For any Z' g_z and any p > 3 the divergence operator maps
4
1},0
P[p+l]’0(2') < p[P+ ]| (Z')
onto

P[p]’“l(Z')

o r—

. As shown in [18] this result permits a simple combinatorial proof. We give

the full details of the combinatorial argument below.

S

Consider first the case that Q(Z') is simply connected. The curl operator

Vx«»-(g—gm-——la)

i
‘!
e
i

maps

onto the nullspace of the divergence operator




|
|

Np+1(v') S p[P+1]’O(Z') x p[p+l],0(2')

In {10] it is shown, that for p 2 3

(3.1) dim (PIPF211e5nyy -

1/2(p+3) (p+4)T - (2p+5)l-:0 + 3V, + 0

0 0°

where T 1is the number of triangles, EO is the number of internal edges,
V0 is the number of internal vertices and % is the number of singular
internal vertices, all of the subset Z' ¢ ) . Since the nullspace of the

curl operator consists of only the constants, it follows from Grassmann's

dimension formula, that

(3.2) dim(NPL(90)) = dim(P P23 (TN -1

If RP(V-) denotes the range of the divergence operator acting on

P[p+1]’0(2') x P[p+1]’0(2') , then the same dimension formula gives that

(3.3) dim(RP(v+)) = dim(PPFL1:07") « plPHLL0 51y,

- aimWP*(vey) |
The first term in the right hand side of (3.3) is easily found to be
(3.4) (p-1)pT + 2pE + 2V ,

where T 1is as before, E denotes the total number of edges and V the

total number of vertices of 2' . Inserting (3.1), (3.2) and (3.4) into

(3.3) one gets

11
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(3.5) dim(RP (v-))

1/2(p%-9p-12)T + 2(p+1) (B+E)

- 2E + BEO + 2V - 3V +1

0o~ %

L/2(p+3)pT + E - V - oy + 1,

with the second identity based entirely on the relations V - V0 = E - EO and

E + Eo = 3T . Euler's formula states that

T-E+V=1,

and in combination with (3.5) this gives

(3.6) dim(RP(V+)) = 1/2(p+2) (p+1)T - oy -

The right hand side of (3.6) is exactly the expression for the dimension of

P[p]’—l(z') . This observation together with Proposition 2.1 implies that

RP(V') = p[p])-l(Z')

1f Q(Z') is not simply connected then we extend any function in P[p]’—l(Z')
by piecewise linear functions onto triangles filling the holes of Q(Z') . This

P[p]’—l and we may

can be done in such a way that the extension is still in
now rely on the previous argument to ensure the existence of a field in
P[p+l]’0 x P[p+1]’0 with the right divergence. (It has here implicitly been
assumed that the holesof Q(Z') have boundaries that are not selfintersecting:

selfintersecting boundaries can be dealt with by a perturbation argument.)

With homogeneous Dirichlet boundary conditions the corresponding result is:

Proposition 3.2

'
For any Z < Z and any p > 3 the divergence operator maps

;[p+l]|0(2') x ;[P+1]vo(2')

L




onto ' 13
f;[P],‘l(Z') .

i The analysis given in [18] verifies this for p sufficiently large by an
approximation argument., At the ond of section 4 we show how the resalt s obtafned

! for general Z' o Z and p : 3 . For completeness we briefly outline the key

ingredients of a combinatorial argument. Suppose that Q(Z') is simply

connected; in that case

p+2],1

(3.7) dim(P! a =

1/2p(p=5)T + (2p-1)Ey + 3V, + 0,

where o denotes the total number of singular vertices of Z' . The formula
(3.7) is verified in section 6 by a method based on [10]. We furthermore

t know that
(3.8)  aim(PLPHLOTYy & plpHL10yryy o (p-1)pT + 2pE,, + 2V,

aim(PP11(T'y) = 1/2(p#2) (HDIT - 0 - 1 .

The formulae (3.7) and (3.8) in combination with an argument like the preceding

may now be anplicd to prove Propesition 3.2 whenever D(Z') is simply connected.
\ Non-simplv connected domains mav be treated by a slight variation of this
| A

argument (cf. Remark 6,1).

Remark 3.1

Propositions 3.1 and 3.2 remain valid also for p=2,1 or 0 on '

— o —— B
>

any Z' such that Q(Z') is simply connected and the formula (3.1),

( respectively (3.7), holds. The formula (3.1), which was conjectured by
strang [15], has been verified for certain triangulations Z‘ (in decreasing
generality, as p decreases) by Morgan and Scott [11]. The formula 3.7,

however, tails on the most natural triangulations as soon as p s 2 . For

BN

a more detailed discussion we refer to [12]. M
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The main goal in this paper is to verify the existence of a maximal
right inverse for the divergence operator, the norm of which is bounded
uniformly in the mesh size and grows at most algebrically with p . It turns

3 i out that our proof of this fact does not depend on Propositions 3.1 and

3.2, to the contrary, it provides independent proofs of these. However, these
propositions demonstrate the necessity of a certain non-degeneracy condition
on the meshes, 1f one wants to obtain a uniformly bounded right inverse.
\J
Let X, denote any non-singular vertex of ] and let 8y

be the angles of the triangles Ti » 1 £ 1 ¢k, meeting at X, (the triangles

» lsisgsk,

are numbered consecutively as before). We define

R(x

_0) = max{|91+6j-n} : 1gi,j¢k and i-j = 1 mod k} ;

R(EO) thus measures how close is to being singular. We furthermore set

Xg

(3.9) R(Z') = min(R(fo) ! Xy 1s a non-singular
internal vertex of Z'}
E and
9 v
(3.10) R(S ) = min{R(go) : Xy is a non-singular
! vertex of Z'}.
Example 3.1

Let 26 be the simple traingulation shown in Fig. 4, with R(Zé) = § ,

Let @6 » 6 small, be the pilecewise constant that is given by

—— e o

1 in T4
$s(x) =

0 otherwise.




Fig. 4. J°

Proposition 3.1 ensures that for & > 0 there exists !6 € p[él,O(zé)

x P[&],O(ZG) with

but ’l!gi)l‘~5 cannot stay bounded as § >~ 0 . If Hlél!l 98 € C, uniformly

§ o

as 3 ~ 0, then we could extract a weakly convergent subsequence, which would

converge to a field

41,0,¢0 41,0,50
v, € plé1,0¢50y  pl41,050y

satisfying

D otherwise.

This is a contradiction, since X4 is a singular internal vertex for ZO .[:]

The previous example shows that it is in general necessary to have (3.9)

(or (3.10V) bounded trom below in order to establish uniform bounds for the

" 1 : , :
8(L,:H)  norm of 1maximal right {nverse for the divergence operator. X
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Local construction of a right inverse for ..

The first in a series of lemmas is an extension of Lemma 2.6 in [18].

Lemma 4.1

Assume that

R(L) 26>0,

where R(Zh) is the measure of singularity introduced in (3.9), and § is
independent of h . Let z; denote any subset of Zh , and let ¢ be any

element of p[p],-l(zg) . There exists V € P[B]’O(z;) x P[3]’O(z;) such that

(4.1a) ¢ - VeV =0 at all vertices of Z; , and

(4.1b) v s corDX ) '
1,(5) 0,(f,)

with constant C and K that are

1 4
independent of Zh ,h,p and ¢ .

Proof:

Let Tl and T, be two adjacent unit sized triangles, as shown in

Fig. 5.

81

Fig. 5. Two adjacent triangles.
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If a 1s any constant, then it is possible to find a continuous piecewise

cubic field U on TlUTZ , satisfying

veU = a at 2
(4.2) VeU = 0 at all other vertices, and
U=0 on B(TlUT}) .

From the construction in [18] it follows that
ull, 7.7 = clal
l__ -
l,TlUT2

where C only depends on the minimal angle of Ti , 1 =12 . If furthermore

8. + 8, # 7 and a; , a, are any two constants, then one can find a continuous

1 2 2
piecewise cubic field U' on T}U_é , such that

|

veu Ti(ﬁo) = a, for i =1,2,
(4.3) : V-Eﬁ = 0 at all other vertices
u' =0 on 3(TUT,)

and

]
“H ” 1’?1Uf2 g C(la1|+(azl) ’

where C depends on the minimal angle of Ti , 1 =1,2 , and \61+62-n| .
Let X5 be a non-singular internal vertex with N corresponding triangles
of unit size, and let a; 1l <ig N, be N arbitrary constants. Using

(4.2), (4.3) and the same argument as in (18] we obtain a continuous piecewise

cubic field W with

(4.4) VeW = 0 at all other vertices

N—
W=0 on 3 U T1 .
i=]
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This field can be estimated by

Il &~ 2

i

moeoe Llagl

1
where C only depends on the minimal angle of Ti , 1 <1ig N, and R(§0)
(C blows up when either of these become too small). At any singular internal
vertex we may similarly find a continuous piecewise cubic field satisfying
(4.4), (4.5) provided % (-l)iai = 0 . The constant C here depends only on
the minimal angle, Sini:lwe are not imposing any boundary conditions (4.4)
and (4.5) can also be satisfied for any boundary vertex and any set of
constants a; with a constant C that only depends on the minimal angle.

By rescaling we see that all these versions of (4.4), (4.5) remain valid

with a constant that is Ch , where h 1is the size of the triangles., For

'
each vertex x. of Zh we select a;

) , 1 i <N, tobe ¢

(x.) ; the
Th =0

. . i
previous construction then leads to

lall s cerD ol

T, 0,UT,
i i

for K> 2 (cf. [18]). Adding the individual W's we arrive at a

v
field V , satisfying (4.la) and (4.1b) . The constant C is independent of
Z; since both R(Zh) and the minimal angle are bounded away from O (the

latter because of the quasiuniformity assumption). ]::]

Remark 4.1

Assume that R(Zh) >8>0 and that ¢ € p[p],-l(z;) with ¢ = 0 at
the boundary vertices of Q(Z;) . Then it is possible to find V € ;[3]’0(2;)
x 5[3]’0(2;) such that (4.1la-b) hold. It is crucial that ¢ = 0 at the

L]
vertices on aQ(Zh) provided we want to maintain R(Zh) as the measure of

-]
singularity. If we make the alternate assumption that R(z;) >8>0 then :
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-] o
it is possible to find V € P[3]’0(2;) x P[jl’O(Z;) satisfying (4.la-b) for

any ¢ € 5[p1,-1(2;)

very similar to the previous. E]

Let T? T; be two arbitrary triangles of Zh » with a common edge

(as in Fig. 6).

h
I 4
4
\ it
N\ 7
N\ /
\ /
h
e __£3
\‘\ ’/
/7 \
/ \
’/ \\\ \
/ - \
/
&
Fig. 6.

Denote by

h h h ~
51(5) =oX +*Bx, +y =0, lsi 4

A
A

the four lines on which the remaining edges lie, and define

2,2 h
2122 , X € Tl
p(x) =
2,2 h
clil,, x €T,

where ¢ 1is chosen such that ¢ 1is continuous in T?lJT? .

normal direction to the common edge, and introduce

These slight variations of Lemma 4.1 follow by a proof




- JRPURESN

——

20

Any such W satisfies

and by choosing d # 0 appropriately we thus obtain

Lemma 4.2
h h
Let T, and T, be two triangles of Zh with a common edge. It is

possible to find a continuous field W such that

(4.6a) W 1is given by polynomials of degree < 4 on each of the

triangles T? , and W =0 on B(T?Ufg) .

(4.6b) 7+W = 0 at all vertices of T: , 1=1,2,

(b.bc) - J VeW dx = J Vew dx = 1,
h h
Tl T2
(4.6d) lwii . =p S Db where D 1is independent of T? and h .
1
172

Note: In the estimate (4.6d) we have used the fact that the triangulation zh

satisfies a minimal angle condition due to the assumption of quasiuniformity.

Definition
A subset Z; = {T?}i ) of Zh is called connected if the corresponding
= £
polygonal domain Q(z;) = interior( U f?ﬂﬂ) is connected.
i=]
Lemma 4.3

Let D be the same constant as in the previous lemma. For any connected

L 4
subset Zh - (T:}f 1 < Zh and any set of numbers {bi}itl , wies
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one can find V € PIA}’O(Z;) x P[A]’O(Z;) satisfying

(4.7a) VeV = 0 at all vertices of Z; ,
(4.7b) I VeV dx = b, , 1<¢<ig?f, and
Th
i
i
(4.7¢) Hvll , ,,5'y € D&n™ |b. |
1,.2({h) e
Proof

For £ = 1 the result follows trivially by choosing V identically

. ' h,£
zero. The proof proceeds by induction. Let zh = {Ti}‘ 1 be a connected
i= ?
subset of Z and let {b }l be a set of numbers, with Z b, =0, ¢ >1.
h i’ i=1 i=1 i

Select T € z; so that ; = 2;‘\{T} is connected (it is easy to see that
this is always possible); to simplify notation we shall assume that the
v, h h h
numbering of Zh is such that T = TZ and that TK and TK-l share a common

edge. We define

and use the induction hypothesis to construct
-~ ° o
X € p[l‘])o(z}:) < P[A]’O(z‘:)

with

(4.8a) V-i = 0 at all vertices of Z; s




.

E
¢

(4.8b) J -V dx = éi , 1 €<
T

- -1 -

(4.8¢) AT af € D(£-1)h ))

Ly i=

£~-1, and
1 .
A
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Let W be the field constructed in Lemma 4.2 corresponding to the triangles

T?rl and T? , and set

(4.9) V=V+ba,

where i and W are interpreted to be zero
respectively. This V clearly satisfies (4

and (4.6d) it follows that

Rzt
(4.10) v , € D(-1)h )
La(d) i=1

£
¢pent b ib

(remember that D at all points in this lemma is the same constant as in Lemma 4.2.)

|

This completes the induction argument.

Remark 4.2

Based on (4.7c) we immediately conclude

(4.7¢") H\_].” l’Q(Z}'\) <

it is this estimate that shall be used later

A simple rescaling of Lemma 2.5 in (18]

outside Z; and T?-lUTZ

.7a) and (4.7b); from (4.9),

b, | + Dh-lszl

that

¢
s o f o YR
i=1

oM. e

L

leads to the following.

(4.8¢)

pridammioci

a1
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Lemma 4.4
Let Th be a single triangle of Zh , and let ¢p be a polynomial of

Pax =
n® dx = 0.

IS

degree < p such that ¢p = 0 at the three vertices of Th and J
T

There exists a field Xp+1 of polynomials of degree < p + 1 satisfying

(4.11a) vwloo oon ot

(4.11b) g.yPrh o P

, +1 K

(4.11c) H!P ” l,Th < C(P+l) [|¢P|I O,Th

with constants C and K that are independent

of T" , h, p and of .

In this lemma we have again used the fact that zh satisfies a minimal
angle condition.

Lemmas 4.1 through 4.4 give rise to a local construction of a right
inverse for the divergence operator. We give the details of this construction
with particular boundary conditions; this result shall prove useful in our

proof of Theorem 5.1.

Proposition 4.1

Assume that
R(E) 28>0,

where R(Zh) is the measure of singularity {ntroduced in (3.9), and & is

independent of h . Let Z; = {T2}f_l denote anyv subset of Xh , and let
P

2 3 that vanishes at all boundary

-

5 be any element of P[p]’—l(ig) ,

vertices of Q(Zg) . Assume that

e I AP S A I Ve SR T
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f " $ dx = 0,
¥
' o
for any connected component Q'  of ﬂ(fh) . There exists V ¢ P[p+1]'O(Z;) x
p[p+1],0 ¢+
P (],) such that
(4.12a) vy = in @(})) , and
K ,3/2
I
with constants C and K that are
independent of X}'l ,h,p and ¢ .
Proof:

We shall without loss of generality restrict our attention to the case that

Q(Xﬁ) has only one connected component. Lemma 4.1 in combination with Remark 4.1

shows how to construct !1 € P[3]’0(z;) X P[3]’0(z;) with

t
¢ - vy, = 0 at all vertices of Zh .

Lemma 4.3 applied with

(¢-V'!1)d5 , leicgt,

b, =
-
T
(-4 [}
yields V, € pled: 05y PLALOT)  such that
& - V-(zl+!2) = 0 at all vertices of Z; , and

JT (0=V+(V,+V,))dx = O for any T € Zh .

The problem is now completely localized, and applying Lemma 4.4 triangle by

triangle we find V., € P[p+l]’o(2;) x P[p+1]'0(z;) , satisfying

L e e oS v
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¢ - Ve (V,+V,) = VeVg

i.e., the field

= - plp+11,0 v plp+1],0 ¢t
V=V, +Y, +V, P () x P Iy

has the desired property (4.12a). It follows directly from Lemmas 4.1 and

4.4 that
: K
”!1“1,9(2;‘) <Cp ”‘9”0’9(2];) , and
(4.13)
2
vally gy €ot clloll o+ T MVl o5y
30,00 o, [)  j=1 I L)
Since
oyl = 1f y Gvvpar) « ondlisll livll
A o, 70" Ly gt

the estimate (4.7¢) shows

(4.14) c 23/2

g

HKZHO’Q(Z}:) (”4’”0’9(2;1)'*”21”I’Q(Z;\)) .

A combination of (4.13) and (4.14) vields the estimate (4.12b) for V . |__|

The previous argument, with minor changes, provides proofs of both
Proposition 3.1 and Proposition 3.2. Note, however, that for the estimate
(4.12b) to be valid for ¢ € ﬁ[P]"l(ZL) and corresponding V € 5[P+1]'°(z;) x

S[p+11,0 5 °

P i (Zh) we have to require that R(Zh) 2 § > 0, independent of Zh
and h (this latter is the reason we use Proposition 4.1 and not the
corresponding version of Proposition 3.2 in our proof of Theorem 5.1). If

' -
zh is taken to be all of Zh , then £ ~0(h 2) , and the estimate (4.12b) reads
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-3
9l g <o lelly o

i.e., the local construction does not immediately give a bound for a right

i~ aogen SN/ Aol D

inverse which is uniform in h

e vy SIL R




5. The main theorem

As announced earlier the main focus of this paper is to estimate the
norm of a right inverse for the dJivergence operator. Our estimate is the
central part of the following theorem.

Theorem 5.1

Let Zh ,0 <h ¢ 1, be aquasiuniform familyv of triangulations of

the polygonal domain s, and let p be an integer > 3 . Assume that

R(Zh) 23+ >0, ¢ independent of h |

where R(Zh) is the measure of singularity introduced in (3.9). Then

7. (plP 0] 5w plerhO] oy o plPlim(]y

and there exists a linear operator

h [p]a-l > [P+l]’0 [P+1],0
Lo: PP - P (g * P )
such that
(5.1a) (Ll = 0 we € PP
h K
(5.1b) el < co™ llelly g

1,0
with constants C and K that are independent

of h, p and ¢ .

Note: The first part of Theorem 5.1 is simply a restatement of Proposition 3.1.
Also note that the assumption R(Zh) 2 8 >0 does not rule out the presence of
singular vertices, it merely prevents the nonsingular vertices from becoming

too close to singular,
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it is well known that the statements of Theorem 5.1 are equivalent to the so-

called inf-sup condition (c = C-l)

(5.2)
f,~ VeV ¢ dx -«
sup —————— > cp  [ldll,
v, '

with the supremum taken over V € P[p+l],0(zh) x P[p+1]’0(zh) (cf. [2]). We
shall make use of this fact in the case p = 3 of our proof. The proof of
Theorem 5.1 reljes heavily on the analysis of [18], but an added new element is
the localization procedure which has certain similarities to the macro-element
concept found in ([3,14]; however, our triangulations are quite arbitrary,

except for the assumption of quasiuniformity.

Lemma 5.1
There exists 2 constant C such that for any given positive integer k and
h sufficiently small (how small depends on k) it is possible to partition Zh

into a disjoint union of counected subsets Zém) s, 1 £ msg M(k,h) with

(5.3a) each subset Zém) containing at most Ck triangles,
I'4 (m) - ! kY .
(5.3b) each Qh = interior( Lz(m)‘ﬂﬂ) containing a ball
T¢
h

of radius vkh

.
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Proof:

Let §;m> , L ¢ m < Mk,h), be those vertices of the uniform lattice,

with sidelength 2(/E41)h, that lie in § and lie at least a distance /k h

away from 23 . Let Dém) denote the open disc of radius K h , centered at
Eém) . All triangles of Zh that intersect Dém) will be assigned to the

subset ém)

, thus ensuring that (5.3b) is satisfied. At this point the sets

Zém) are connected, mutually disjoint and each contains at most Ck triangles.
, s e , (m) .

It is now easy to distribute the remaining triangles of Zh among the Zh , in

such a way that their individual connectivity is preserved, and they still

satisfy (5.3a) (possibly with a larger constant C).

Remark 5.1
Based on Lemma 5.1 we may immediately conclude that for h sufficiently
small (how small depends on k) it is possible to partition Zh into a

disjoint union of connected subsets Xém) » L £ m £ M(k,h) satisfying i

(5.4a) each subset Zﬁm) contains at most k triangles,
(5.4b) each Qém) = interior( Uz(m)Thﬂ) contains a disc of radius cvk h.
Te
h

The constant ¢ is independent of k and h

O

Lemma 5.2

Let k be a positive integer., For h sufficiently small, let zém) ,
1 ¢ m g M(k,h) be the partition of Zh introduced in Remark 5.1. For any

@) ¢ pl11.0 fw,

1 < m < M(k,hYand any constant b , one can find ¢ such that

(m) .  _
f (m)¢ dx = b

&
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le™ 1l € cCRm™M bl
O,Qh
“¢(m)|t (m) < c(vﬁh)—1(1+(JEh)-l)\bl

Proof:

From (5.4b) we know that there exists z € Q(m) such that

(m)
Di(c&h) <o

14

where Dz(r) is the open disc of radius r centered at 2z

the origin and rescaling by c/kh we obtain

. Selecting z to be

Dy(L) < o™
where Q(m) is the translated, rescaled image of Qém) . Let z(m) be the
triangulation of R(m) corresponding to Zém) ; 1t is then possible to construct
Yy € P[l],O(Z(m)) satisfying
(5.5a) % = 0 on the boundary of p(m)

b

(5.5b) J v dx =1

(5.5¢) (ol

The function

3™ (x) = b (erkm 2 4

L4

x-z
[ v/ﬁ(‘h]
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; is an element of P[II’O(Zém)) that satisfies the requirements in this

§ lemma. l::l

We are now ready for the

Proof of Theorem 5.1

Consider the case p = 3 ; we shall verify that for h sufficiently

small and for any ¢ € P[3]’_l(z ) there exists W € P[Q]’O(Zh) x P[A]’O(Zh)

PURRSRIRR- - C SRS

h

with

(5.6a) || 6=v-w|| 0.9 ¢ 1/2||¢||0 o and
(5.6b) Il y o< e Hollg g

It follows immediately from (5.6a-b) that

IQV-! ¢ dx . IQV{& ¢ dx

sup
vl g JCH
ax -]
_ IQ¢ dx ~]o (4=V-W) ¢ dx
Nl o
‘ 2
3 J\ 1 IQ ¢ dx
‘ 2 iw ” HO,Q '
=" 1,8
{ i,e., the inequality in (5.2) holds for p = 3 . According to the comments

made earlier this proves the theorem, in the case p = 3, for h sufficiently
| small., For p = 3 and large h the theorem follows divectly from the
constructive proof of Proposition 3.1, discussed at the end of section 4.

The construction of W proceeds in several steps.

¥} AL N

.
! A -l R L




T O T, Ty

g 2~ AT ee e o Sy,

Step 1: Using Lemma 4.1, with Z; = Zh and p = 3 one finds

v, € P[3]'°(Zh) x P[”’O(Zh) such that

1
(5.7a) ¢ - V-!l = 0 at all vertices of Zh ,
(5.7b) eplly gscllally o -

(m)

Step 2: Let {zh

Remark 5.1. Let $(m) € P[II’O(Zém)) be the function constructed in Lemma 5.2

corresponding to

b = J (m)(¢-v.Xl)d§ ’

and define

$(x) = &’(m)(ﬁ) for x € Q}(\m) , 1 gmsg Mk,h)

It follows from Lemma 5.2 and (5.7a-b) that

(5.8a) o - V-!l - % =0 at all vertices on the

(m)
h

boundaries of @ , 1 £ mg Mk,h) ,

(5.8b) (¢-v-V,~$)dx = 0, 1 < m s Mk.h) ,

J (m)
Qh

(5.8¢) Bl g < Cllolly 5o and el s c(1+m?h)'1)li¢llo o -

c (31,-1 . -(m)
1 - P Ly )

boundary vertices of ;(Eém)) « Lo m o Mk,h) ; it also satisfies

Step 3: The function t - 7.V, - E vanishes at all

f -
| (6=9-V,-4)dx = O .

f;ﬂ;Jﬂ be the disjoint partition of Zh introduced in
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We apply Proposition 4.1 with Z; = Zém) to this function for each

1 ¢ m ¢ M(k,h) . By composition of the individual solutions we get

pl4] o4
v, € PPN x PR

—2
satisfying
(5.93) V'YQ = ¢ - V-!l - 5 in © , and
. 3/2
(5.9) ylly 0« ¢ & 2lslly g -

Step 4: Finally we shall comstruct a field V, € P[ﬁl,o(zh) x P[A]’O(Zh)

such that

~ -1
(5.10a) lo-v-,llg o s CotarAk ™) [lollg o, and
(S.lOb) “!3“1’9 N C ||¢”O,Q ¢
In combination with (5.7b) and (5.9a-b) this leads to

(5.11a) llo =7Wll g o = CoE ™) Jlolly o , and

3/2

(5.11b) Wil g sCk " helly o o

3
where W = z !j € P[A]’O(Zh) x p[4],0(zh) . If k 1is chosen sufficiently
j=1
large and h 1is sufficiently small, then we obtain

Coh+ K™Y < 172,

and (5.1l1a-~b) therefore verifies the existence of a field W with the

properties (5.6a~b).
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is based on an approximation argument. Let ¢

The construction of !3

be a function satisfying

(5.12) A = ¢ in @, with

(5.13a) e lly o« Cllallg,, and

(5.13b) e llsqsClleily o

(note that we do not specify any boundary condition on 3@ , and this is

30 1is not smooth).

what makes it possible to obtain (5.13a-b), although

11,0 13,0
Let v, ¢ plll, (zh) « pitl (Zh) be an approximation to ¥v¢ in the

sense that

t
(5.14a) llvo-vall; o s cullell; o and

(5.14b) IL!3'|1’Q £C "QI'Z,Q ;

(5.12) and the estimates (5.13b), (5.14a) then lead to

” ¢_v.23“0’ﬂ = “V'(V¢—_V_3) HO,Q

chllell, o

enfléll, o -

so that by virtue of (5.8c)

18-9¥ .1l g g <Coi™) Mo llg o -

The remaining inequality (5.10b) follows immediately from (5.8¢c) , (5.13a)

and (5.14b),




bes e o Xt

e

B

This completes the proof of Theorem 5.1 in the case p = 3 .

Let

p be an arbitarvy integer 3 4 . Given ¢ € P[p]’-l(Z )

h

possible on each triangle Th of Zh to find a quadratic q b with

(5.13)

T

= ¢ at the three vertices of Th

J q ,dx = J ¢ dx , and
h

sCh suple)] s ¢C P

HthH o7 - ile HO,Th

it is

(in (5.15) we have used the Sobolev Imbedding Lemma and .. Bernstein-type

inequality, cf. [18]). Define

then q ¢ pl2l,-

q(x)

l « _pl3i,-1
(&h) = p ih

we conclude that

(5.16)

and

(5.17)

K’
lo-all g , s co Hloily

Due to our method of construction

¢ - q =0 at all vertices of Zh » and

JTh(é-q)di = 0 on all triangles of Zh .

From (5.153)

35
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We may now apply Lemma 4.4 separately oun each triangle,and by piecing together

we get

v, € POy o plertlOcp sy
with
(5.18a) vV, = ¢-q in @, and
(5.18b) ¥,y g cpt llomallg g

K+K'
cCop el g -

Since q ¢ P[B]’-l(zh) we may use this theoremin the case p=23  (which has

already been verified) to find

41,0 41,0
v, € PELO ) POy

such that
(5.19a) V-XQ =q in Q@ and
(5.19b) Y0 g <€ Hlallg g

K'
sC p ||¢||0'Q;

in the last inequality we used (5.16). Defining

Ve !1 + !2 ’

the theorem follows directly from (5.18a-b) and (5.19a-b) in the case

p 2 4 . This concludes our proof. | __
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The proof presented above immediately carries over to the case of homo-
geneous Dirichlet boundary conditions, except for the construction of ¢ and
!3 . We need an additional result concerning the invertibility of the diver-
gence operator with homogeneous boundary conditions. The following lemma is
proven in {l1]; the method of proof relies heavily on the characterization of
trace spaces for function spaces on polygonal domains, as found in [8]. Sobolev

s . ] L. . . ,
spaces H (1) , 0 s s , with noninteger indices are defined by interpolation;

S/
el denotes the norm on H ()

Lemma 5.3

Assume that all internal angles at corners of the domain Q are less

than 27 . Suppose that ¢ € #°(2) , for some 0 <s <1 , with

J é dx = O
Q'
B o _ s+l
for all connected components .. of . Then there exists U € H ¢))
such that

VeU = ¢ in O ,

U=0 on 3k ,

and

Holl g s € oll, g

lolly o < © lollg

with C independent of ¢ .




Let ¢ be as introduced in step 2 of the proof of Theorem 5.1;

. . 1/2
clearly lies in H / (Q) , and it has integral zero on each

connected component of @ . Let 93 € H3/2(Q) N ﬁ(ﬂ)
be the field, corresponding to b , which is defined by Lemma 5.3. If !3 €

P[l]’o(zh) x P[l]’o(ih) is an approximation to U

U, in the sense that

1/2
”E3‘!3”1’Q ¢ Ch ”93“ and

3/2,02

V311, o <cllyglly o s

l6=-v,ll4 o = ll7-Wy-v g g

1/2 ;
Ch Hgylm,Q

1/2~
S E /.

and
(5.20b) Heslly o s cllélly g -

Due to (5.20a), (5.8c) and "logarithmic convexity'" of the Sobolev norms it

follows that

- -1.1/2
”¢—V'!3”0’Q < C(h+/k ™) |l¢”0‘g

.
b

from (5.20b) and (5.8c) it follows that
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vyl o« cllell
3lh,g 0,8

3

For x sufficiently large and h sufficiently small V_ therefore has

3
the same properties

~ 1
”¢-v'!3”0’g < E-l'¢”0,ﬂ and
19301y o < Cliellg g

as the field constructed in step 4 of the previous proof. !3 furthermore
vanishes on 3Q and hence it may be used in a construction of a field with

homogeneous Dirichlet boundary conditions. The rest of the proof proceeds as

before, thus completing our verification of

Theorem 5.2

Assume that all internal angles at corners of the polygonal domain Q are less
than 27 . Let Zh , 0 <h g1l be a quasiuniform family of triangulations

of Q, and let p be an integer > 3 . Assume that
Q
R(Zh) >8§ 20, 6 independemof h |,

where ﬁ(zh) is the measure of singularity introduced in (3.10). Then
v_(p[P+1]9o(zh) x p[P+1]:0(Zh)) = ﬁ[P].'l(Zh) ,

and there exists a linear operator

Lh : ﬁ[P],'l(z

o h) > ;[p+1]’o(zh) % ;[P+1],0(zh)

such that

ar———

[
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(5.31a) v-(Lgtb) =¢ v € f’[p]"l(Zh)
h K
(5.31b) it elly o s Collelly g
with constants C and K that are
independent of h , p and ¢ .
Remark 5.3

Theorem 5.1 and 5.2 may directly be used to show that minimization of
the displacement energy of two dimensional plane strain linear elasticity over
the space of continuous piecewise polynomials of degree p+ 1 , p 2 3,
is an accurate numerical approach. On a quasiuniform family of triangulations
(with R(Zh) or E(Zh) bounded away from 0) it leads to approximate solutions
that coverge at optimal rate in h and at arbitrarily close to optimal rate
in p , uniformly with respect to Poisson's ratio (cf. [12,19]). Theorem 5.1
and 5.2 thus disprove a conjecture made by the second author in
Remark 3.2 of [19]); it was conjectured, based on numerical evidence,
that the h-convergence rates would never be optimal, uniformly in Poisson's
ratio. However, the numerical experiments referred to (cf. [16]) were all
for polynomjials of degree p+ 1, p < 3, i.e., exactly the case the

theorems here do not cover, and they are not characteristic of the

behaviour for p 2 3 .
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6. A basis for the divergence free space

In many applications, it is of interest to work directly with the nulle

space of the divergence operator acting on P[p+1],0 x P[p+1],0

plp*11,0  plp+i],0,

(or

As observed in section 3 the curl operator maps
P[p+2],l(z') (respectively ;[p+2]’1(2')) onto this nullspace (provided
Q(Z') is simply connected). Thus a basis for the nullspace can be obtained

P[p+2),l (or ;{p+2]ﬂ)

from one for A basis for P[p+2]’1 was given in

{10]. We shall extend slightly that work here to construct a basis for
plp+21,1

Our method of proof is to verify the dimension formula
Q
(6.1) ain(PP1 1Y)y = Looos) + (2p-1Ey + 3, 4 0,

Q
and in the process exhibit this many linearly independent functions in P[p+2]’1
(these functions form a subset of the basis given in [10]); T here denotes

A
the number of triangles of X s EO s VO denotes the number of internal edges and

]
internal vertices of Z respectively and ¢ 1is the total number of singular
vertices of Z' . The polygonal domain Q(Z') is assumed to be simply connected.

The operator V¢ maps the space

PlotLLO gy pLeL10 (g ﬁ
into

plpl=1epy
The nullspace of V- is isomorphic to

5[p+2]y1(2')

14

and it thus follows that
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(6.2) aim(PLPHL10 | plptl],0y o (plp¥2]sty
< dim(P{p]’-l)

The first and the last of the dimensions in this formula have already been

computed to be (p~1)pT + ZpEo + ZVO and %(p+2)(p+l)T - 0 - 1 respectively,

i.e., based on (6.2) we get

dim(;’[‘”z]’l(f')) 2 lp(p-S)T + 2pE0 + 2V0 +0-T+ 1.

N

Since T -E+ V=1 agnd V -~ V0 = E - EO , this implies

(6.3) atn(PIP*21 (1Y) 5 Loo-5)T + (2p-DiEy + 3V, + o

The inequality (6.3) proves half of the identity (6.1), and it thus remains

to verify that

(6.4) dim(PIPH2 115y ¢ 1p(p=5)T + (2p-1)E, + W, + o

In [10] it is shown that

(6.5) dim(Pl P21 51y o L(p+3) (pH)T = (2p4S)Ey + W, + o

through the construction of a purely local basis for this space. Among the
corresponding nodal values are
(a) the value and Xy and X, derivatives at each vertex,
(b) the value at each of p - 3 distinct points in the
interior of each edge,

(c) the (edge) normal derivative at each of p - 2 distinct points

in the interior of each edge.
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The remaining nodal values are more complicated to describe, but for vertices
on the boundary of 2() ) they do include
(d) one cross derivative (i.e. for each vertex on the boundary,
select adjacent edges e and e, meeting there and take
the e , e, cross derivative at that vertex),
(e) the second edge derivative for all the edges meeting there.
For functions in ;[p+2],l(zg) the nodal values in (a)-(c) corresponding to

vertices and edges on the boundary of z; must vanish; by a simple count

we get that

(6.6) 3(V-V0) + (2p—5)(E-EO)

nodal values must vanish. The second derivatives along the boundary edges at
vertices on the boundary (e) must also vanish, and give rise to 2 vanishing
nodal values per vertex. Finally, 1f we pick e, or e, in (d) to be one
of the boundary edges, it is clear that this produces one additional nodal

-]
value that must vanish for functions in P[p+2]’l(z') . In combination with

(6.6) we get a total of

(6.7) 3(V-Vy) + (2p-5) (E~Ey) + 3(V-V,)
= 2p(E~Ep) + (V-Vy)

vanishing nodal values. Using (6.5), (6.7) and the fact that E + E, = 3T

0
and E - EO =V - V0 we thus obtain
(6.8) atn(PP21 1 (1Y) < Lp(p-s)T + (2p-1)E, + 3V, + 0

+ ((V-VO) - (o-oo)) .
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! The right hand side of (6.8) 1is exactly as desired in (6.4) except for the
additional term (V—VO) - (0-00) ; this term is always nonnegative and it

equals the number of nonsingular boundary vertices. In order to verify (6.4)

it therefore suffices to find one nontrivial linear counstraint, for the nodal
values corresponding to each nonsingular boundary vertex, which must be 1
|

L]
satisfied by functions in P[p+2]’l(2') s+ a constraint, that is, which is

"
m“‘-'?-j'ru‘,;‘ -

o ——

not already counted in (6.7).

Let X, be a boundary vertex and let the triangles Ti , angles ei

i and edges e meeting at this vertex be numbered counsecutively as shown in

Fig. 7.

T aa(lh

——

Fig. 7. Boundary vertex

— My o ma. .. .

Let ae denote the directional derivative in the direction parallel to the
edge e . There is a simple relationship among all the cross derivatives of

¢ € p[P+2],1(;') , namely,
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(6.9) secg; 3, ? Coly (%) = - sech _, 3

3 (¢] ) (x.)
& %141 i 61 ¢ Ty O

1

2
+ (cotei+cotei_1)aei(¢lri_1)(§o) .

2 ¢igr (see [10] and also [5]). Summation of (6.9) with alternating

signs yields

r

§(-1)icots +cots, )3 (o], I(x.) =
129 i 1-1 ey Ti-l =0

e e

sec@, 3 3 (¢|+ )(x,) + (-1)Tsece_ 3 3 (¢ )(x)
1 1 % Ti =0 T % %41 Tf =0

For ¢ € P[p+2]’1(2é) both 3, 3 (¢[T ) and 3, 3, (¢fT ) must vanish
1 72 1 r r+l r
at 50 and we thus arrive at the constraint

r
i 2
(6.10) § (~1)*(cota, +cots, )3° (¢lr I(x,) =0 .
Ly 1 1-17% T %0

At any nonsingular boundary vertex, r 1is at least 2 and cotg, + cotei_1 £ 0

i
for some 1 , so that (6.10) represents a nontrivial linear constraint among
the second edge derivatives, which is not counted in (6.7); this completes the

proof of the identity (6.1). At the nonsingular boundary vertices the expression

5 1 2
I (-1)7(cots +coto, ,)a,

(¢} ) (x4)
1=2 i T4 O

+21,1
can be used as a nodal value for P[p ]

in place of one of the second edge derivativaj
(one, for which cotei + cotei_1 # 0) . Using these nodal variables we

L]
obtain a basis for P[p+2]’l(z') directly from the basis for P[p+2]’1(z')

by deleting members corresponding to the aforementioned

2p(E-Ey) + 2(V-V,) - (o-04)

vanishing nodal values.
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. | Remark 6.1
: In the case ¢ 1is not simply connected, one finds that the nullspace of
¥ . . +2 1,1 S .
! Ve is the curl of the subspace in P[P B consisting of functions that
g are constant on each component of 320 , and whose normal derivatives vanish

on N . This space has a natural basis, and its dimension exceeds (6.1)
3 exactly by the number of components of 3 . Using the corresponding Euler's

F | formula we can thus extend our combinatorial proof of Proposition 3.2 to domains

that are not s.mply connected. ™

—

-

— s —
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