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Abstract

In this paper -we-,&tvmty the divergence operator acting on continuous

piecewise polynomials of degree p + 1 , p > 3 , on triangulations of a plane

polygonal domain _a. - give a characterization of the range of the diver-

gence operator and the full details of a combinatorial verification of this.

As the central result we show that for very general families of

meshes it is possible to find a maximal right inverse for the divergence

operator with a H(L H1) norm which is bounded independently of the mesh

size. The norm of this right inverse grows at most algebraically with p

but it necessarily blows up as a certain measure of singularity of the meshes

approaches 0
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1. Introduction

Incompressibility constraints, such as constraints on the divergence of

a velocity field or a displacement field, occur in many equations of physical

interest, e.g. the Navier-Stokes equations or the equations of elasticity.

When analyzing the stability of finite element approximations to these

equations a central question concerns the behaviour of the divergence operator,

or a discrete version thereof, on the corresponding spaces of piecewise

polynomials (see for instance [4,7,17,19]). It is well documented that continuous

piecewise polynomials of low degree applied directly to the velocity- (or

displacement-) formulation are often inadequate, due to the lack of a uniformly

bounded right inverse for the divergence operator. This has led various

authors to study non-conforming low order elements in connection with mixed

formulations. The analysis in this paper points in another direction: our

results imply that continous piecewise polynomials of degree four or higher

directly applied to the velocity - (or displacement-) formulation lead to

optimal (uniform) convergence rates (for a discussion of this, see [121).

The paper [181 contains a characterization of the range of the divergence

operator on spaces of continuous piecewise polynomials of degree p + 1 , p > 3

on an arbitrary triangulation (Theorem 2.1 and Remark 2.1); it also gives a

proof of the fact that on a fixed triangulation it is always possible to

construct a maximal right inverse for the divergence operator, the norm of

Swhich grows at most algebraically with p (Theorem 2.1). These results were

4used to prove that the so-called p-version of the finite element method, when

applied directly to the displacement formulation of plane strain elasticity,

converges at optimal rate independently of the value of Poisson's ratio ([191).

The analysis presented in this paper extends the results of (18] in

a rather surprising way - it shows that the aforementioned right inverse

(p 1 3) has a 8(L2 ;H I) operator norm which is bounded independently of the

*.I
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mesh size of the triangulation. This uniform bound can only hold provided a

certain measure of singularity of the meshes is bounded away from zero (cf.

Example 3.1). Available numerical experiments (cf. [16]) and recent theoretical

results (cf. [121) indicate that a similar bound does not exists for p < 3

For zeasons of exposition we have chosen to express our main result in

terms of a bound for the norm of a maximal right inverse for the divergence

operator. It is easy to see (cf. section 5) that this is equivalent to a

uniform, positive lower bound for the expression

inf sup f -' 0.v d Xf'v I
VH1 L

as studied by other authors (here V varies over the space of piecewise

polynomials and 0 varies over the divergence of this space).

The organization of this paper is as follows: in section 2 we introduce

the necessary notation concerning the triangulations and the polynomial

subspaces. It should be emphasized that our triangulations are quite general

and only restricted by the assumption of quasiuniformity. Section 3 independ-

ently characterizes the range of the divergence operator acting on continuous

piecewise polynomials of degree p + I , p , 3 . Combinatorial proofs are carried

out both with and without boundary conditions; in the latter case the argu-

ment is identical to one found in [181 and depends crucially on the formula

for the dimension of C piecewise polynomials proven in [10]; in the first
41

case we have to establish a similar formula for C1  piecewise polynomials

that vanish to second order on the boundary (this is done in section 6).

Section 4 and 5 contain the proof of the main theorem, the existence of a

uniformly bounded maximal right inverse. The analysis relies heavily on [18],

but an important new element is the localization procedure formulated in

lemmas 4.5, 5.1 and 5.2. The idea behind lemmas 5.1 and 5.2 is in many

- -II
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ways similar to that underlying the macro-element technique and the correspond-

ing local test for stability found in [31 or (14]. Much of the rest of the

proof of the main theorem consists of verifying that the constants in various

of the estimates found in [18] scale appropriately with the mesh size.

The attention in this paper is restricted to plane domains; it should

3be interesting to see if a similar analysis could be carried out in IR

S - t.

I
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2. Notation

Throlaghoill this paper "'t denotes a hounded po I vgon;l domain in I 2

= {7-hN(h) , 0 < h c I , is a family of triangulations of P , para-
i-1 

h
metrized by mesh size h . To be more precise: the T . , 1 . i . N(h)

for fixed h , are disjoint triangles with

h
diam T h h

and

N(h) -

U T h = 7, i=l T

An edge of a triangle of 1h is called an internal edge of 1h if its interior

lies in i (not on W- ) W' assume that no vertex of a triangle of Yh

falls in the interior of an internal edge of h " This does not prevent boundary

edges from having vertices in their interior (as in Fig. 2 and Fig. 4).

Furthermore we assume that the family Y 0 < h . I , is quasiuniform in

(2.1) 0 0h  .< o(7) VT E -1h ' < h .< I

where n(T) denotes the supremum of diameters of discs contained in T , and

0 . In the rest of this section and all of the next we shall, to simplify

notation, omit the subscript h when referring to a fixed triangulation.

If J# is an arbitrary subset of the triangulation 7 , we then define

the corresponding polygonal domain*

(2.2) S(')= interior ( U TnQ)
TEj'

For any integer p > 0 and r - 0 or 1

pt(pl,r( ')

:nl in the definition of 2(Z') matters only when interior(5) " , e.g. when
Q Is a slit domain.

I .4
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denotes the set of functions in Cr ( that are given by a polynomial

of degree p on each of the triangles of '

An internal vertex of Z' is a vertex that lies in a(Z') (not on

We shall say that an internal vertex of I' is singular if the

edges meeting at this vertex fall on two straight lines (cf. [101).

3  X T i

Fig. 1. Singular internal vertex AO

Following (18] we introduce, for p 0 , the space

p[p],-l( ,)

of functions , D , which are given by a polynomial of degree p on each

individual triangle (no continuity requirements) and which have the property that

R.l: at any singular internal vertex of 1 0

i0
i-l

where 01 - ) and T ... ,T are the triangles meeting

at ,E numbered consecutively, as shown in Fig. 1.

An explanation for the requirement (R.1) is most easily given by the

following simple observation.



b

Proposition 2.1

For any I' C and any p > 0

V.(P [p+l],0 ) f[, D) × P p1,-l( ,)

The proof of this proposition consists of a straightforward calculation,

the details of which we lehve as an exercise. Special cases of this result

have been used by other authors, e.g. Mercier (91 and Fix et al. [6].

When homogeneous Dirichlet boundary conditions are imposed, a new set of

requirements become important. Let

0o

P[p1,r( ') , p >, r + 1 , r = 0,1

denote the subspace of P[p],r ) consisting of those functions that vanish

to order r + I on 30(1') ; that is, functions in [P],r(,) are always

zero on 3Q(;.) , and in addition, functions in P],(Q) are required to

have a vanishing normal derivative.

Remark 2.1

In this paper we use the very natural convention, that a point on )Q(Y')

which is a vertex for k different parts of 3a(') , be considered k different

boundary vertices. As an example there are two different boundary vertices at the

point P in Fig. 2. A similar convention is applied to edges that lie on "internal"

b3undaries. These are considered two different boundary edges if they are

common to two different triangles of ' Note that, conforming with this

convention, our definitions of piecewise polynomial spaces do not impose any

continuity conditions at vertices or edges where the boundary intersects itself.

_
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different boundary vertices.

A vertex as?(Z' is called a singular boundar.y vertex of I

ll th dg s ofI i

all~ ~ ~ Z thmde o j feeting at this vertex fall on two straight lines.
There are four possible conf iguration 

for a singular boundary vertex, as
shown In Fig. 3. (The fourth case in Fig. 3 differs slightly from that in

(1)since it also illustrates 
the Possibility 

of a boundary vertex lying
in the Interior of a boundary edge.)

--.
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k-I A=

T 
71T

Fig. 3. The four types of singular boundary vertices of
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We let

,[ ,- (X,) , p o.

denote the subspace of P[P],-l() consisting of functions, , which

additionally satisfy the following two requirements, that

R.2: At any singular boundary vertex of ',

kik (-1IYi(2o) = 0

where = 'T (.) , and T1 ... ,Tk are the triangles of

z' meeting at 0(k can be any number from I to 4, and the

triangles are numbered consecutively as shown in Fig. 3).

R.3: For any connected component of Q(J') , Q"

f dx = 0

It is a simple exercise to show that the following holds.

Proposition 2.2

For any ' _ and any p > 0

£' ~.(Of[p+l],0 W[ ) - [p+l] ,0 [)_ [p],-l(,

Our notation for Sobolev spaces is standard: if Q' c 4Q is a polygonal

k
(sub) domain then H (Q') , k E 1 , denotes the set of functions with deriva-

tives of order . k in L,(.1') ; the corresponding norm is denoted 11'[1k, ,

Ak(,) is the closure of Co(2') in Hk (0')

0

t - -- --
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3. Characterizing the range of the divergence operator

For the analysis of finite element discretizations of equations with a

divergence constraint it is important to have precise information about the

range of the divergence operator on the finite dimensional subspaces. In

general a uniform norm estimate of a right inverse is sufficient to guarantee

stability, however, in order to estimate the convergence rate, the algebraic

character of the range of the divergence operator has to be known. In the

present situation it furthermore turns out that the characterization of the

range automatically leads to a necessary condition for the existence of a

uniformly bounded right inverse. For ease of notation we omit the subscript

h when referring to a fixed triangulation. The following result was

proven in [18].

Proposition 3.1

For any Z' and any p > 3 the divergence operator maps

onto

As shown in [18] this result permits a simple combinatorial proof. We give

the full details of the combinatorial argument belovi.

Consider first the case that Q(1 is simply connected. The curl operator

ax2 ax1

maps p[p+ 2 ],l(, onto the nullspace of the divergence operator

A.



Np+I(V.) c P [p+l]0() x P[p+],

In [101 it is shown, that for p , 3

(3.1) dim (p[p+
2 ],l()) =

1/2(p+3)(p+4)T - (2p+5)E0 + 3V0 + O

where T is the number of triangles, E0  is the number of internal edges,

V0  is the number of internal vertices and o0 is the number of singular

internal vertices, all of the subset ' . Since the nullspace of the

curl operator consists of only the constants, it follows from Grassmann's

dimension formula, that

(3.2) dim(NP+l(V-)) = dim(P[P+2],l(1')) - i

If RP(V ") denotes the range of the divergence operator acting on

P[p+l],0(J,) x p[P+l],O(J') , then the same dimension formula gives that

(3.3) dim(RP(V.)) = dim(P[P+
1 1'0 ( ) x p[p+l(,0())

- dim(NP+l(V.))

The first term in the right hand side of (3.3) is easily found to be

(3.4) (p-l)pT + 2pE + 2V

where T is as before, E denotes the total number of edges and V the

total number of vertices of ' Inserting (3.1), (3.2) and (3.4) into

(3.3) one gets

I4
. i o", . ) "*



(3.5) dim(RP(V)) = 1/2(p -9p-12)T + 2(p+l)(E+EO)

-2E + 3E0 + 2V- 3V - 0 +1

= 1/2(p+3)pT + E - V - o0 + ,

with the second identity based entirely on the relations V - V0  E - E0  and

E + E0 = 3T . Euler's formula states that

T-E+V=I,

and in combination with (3.5) this gives

(3.6) dim(RP(V)) = 1/2(p+2)(p+l)T - 0 .

The right hand side of (3.6) is exactly the expression for the dimension of

p[P]-I(z') .This observation together with Proposition 2.1 implies that

Rp(,7.) p] - ( )

If Q(') is not simply connected then we extend any function in p(p]l()

by piecewise linear functions onto triangles filling the holes of 2(Z') This

can be done in such a way that the extension is still in P and we may

now rely on the previous argument to ensure the existence of a field in

p P+l]O X p[p+I]O with the right divergence. (It has here implicitly been

assumed that the holesof Q( ') have boundaries that are not selfintersecting:

selfintersecting boundaries can be dealt with by a perturbation argument.)

With homogeneous Dirichlet boundary conditions the corresponding result is:

Proposition 3.2

For any ' C and any p > 3 the divergence operator maps

P[P+11 C X P P+l]IO('
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P[pJ,-l (J,).

The analysis given in (181 verifies this for p sufficiently large by an

approximation argument. At t h' end o)f sec t ion 4 wt- -lhw ho3w tiltt r,ill IIs oht iined

for general " , and p ; 3 . ['or completenvess we briefly outline the key

ingredients of a combinatorial argument. Suppose that Q(') is simply

connected; in that case

di(p+2 1,1( )

(3.7) dim(p

1/2p(p-5)T + (2p-l)E 0 + 3V0 + ,

where a denotes the total number of singular vertices of I' • The formula

(3.7) is verified in section 6 by a method based on [10]. We furthermore

know that

(3.8) dim(P[P l W'([) × P[P+I]'O(I')) = (p-l)pT + 2pE 0 + 2V0

dim(pP]'-l(J')) = I/2(p+2)(p+l)T - - 1

The formulae (3.7) and (3.8) in combination with an argument like the preceding

may now 1-. ioplicd to nrove Proposition .2 whenever f(') is simply connected.

No-siia-l," , ontted doains ma he tredLed by a slight variation of this

arglmt,'nt (,-f. Remark h.1).

Remark 3.1

Propositions 3.1 and 3.2 remain valid also for p = 2,1 or 0 on

any ' such that l2(7') is simply connected and the formula (3.1),

respectively (3.7), holds. The formula (3.1), which was conjectured by

Strang f151 I. his h,.n verified for certain triangolations F' (in decreasing

generality, is p decreases) by Morgan and Scott [11]. The formula (3.7),

however, ftil on the most natuiral triangulations as soon as p < 2 . For

a more detailed discussion we refer to [12].

f 'I
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The main goal in this paper is to verify the existence of a maximal

right inverse for the divergence operator, the norm of which is bounded

uniformly in the mesh size and grows at most algebrically with p . It turns

out that our proof of this fact does not depend on Propositions 3.1 and

3.2, to the contrary, it provides independent proofs of these. However, these

propositions demonstrate the necessity of a certain non-degeneracy condition

on the meshes, if one wants to obtain a uniformly bounded right inverse.

Let 20 denote any non-singular vertex of 1' and let ei , 1 : i < k

be the angles of the triangles Ti , 1 i < k , meeting at 20 (the triangles

are numbered consecutively as before). We define

R(x) = max(Oi+ej-vl : li,j~k and i-j = 1 mod k}

R(xO) thus measures how close is to being singular. We furthermore set

(3.9) R(J') = min(R(0) x is a non-singular

internal vertex of '

and

(3.10) R(V') = min{R(Xo) :So is a non-singular

vertex of I'.

Example 3.1

Let be the simple traingulation shown in Fig. 4, with R(Z6) 6 .

Let 6 , 6 small, be the piecewise constant that is given by'0.
( I in T4

0 otherwise.
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N-.-

r r

r 
A)

I 4

Fig. 4 .

Proposition 3.1 ensures that for 6 > 0 there exists V E (10('

X P [41,0 (J) with

but ~ cannot stay bounded as 5 0 . If 11 1'
but- 6___ uniformly

as . - 0 ,then we could extract a weakly convergent subsequence, which would

converge to a field

saitisfying

0 the-rwise.

This is a contradiction, since 2 is a siglrinternal vertex for 10

The previous example shows that it is in general necessary to have (3.9)

(or (3.10)) hounded from below in order to establish uniform bounds for the

8(.;H )norm of 1inixma I right inverso for tie d ivergence operator.

. , .- *
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4. Local construction of a right inverse for V-.

The first in a series of lemmas is an extension of Lemma 2.6 in [18].

Lemma 4.1

Assume that

R(Zh) ' 6 > 0

where R( h) is the measure of singularity introduced in (3.9), and 6 is

independent of h . Let Z' denote any subset of Zh and let * be any

element of P[P]1([h) . There exists V ( x P],31 0 ) such that

(4.1a) - 7.-V = 0 at all vertices of h and

(4.1b) 11] II l," [h < C(p+I)K]II 0, ([h,)

with constant C and K that are

independent of I,' h,p and #

Proof:

Let T and TI be two adjacent unit sized triangles, as shown in

Fig. 5.

A0

Fig. 5. Two adjacent triangles.

A . . ..
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If a is any constant, then it is possible to find a continuous piecewise

cubic field U on T IUT2  satisfying

V-U --a at 20

(4.2) V.U = 0 at all other vertices, and

U =0 on W(TUr)
1 2

From the construction in [18] it follows that

11u111 1,T UT2 < Cial

where C only depends on the minimal angle of T. i 1,2 If furthermore

e1 + 8 2 n and a, a2 are any two constants, then one can find a continuous

piecewise cubic field U' on T UT2 , such that

V Iri O a for i = 1,2,

(4.3) V.U' 0 at all other vertices

U' 0 on a(TU)
-~ 12

and

l 1'l 1 C(la 1 +la2 ),

11 2
where C depends on the minimal angle of T., i 1,2, and 0+2 .

Let , be a non-singular internal vertex with N corresponding triangles

of unit size, and let ai , 1 < i < N , be N arbitrary constants. Using

(4.2), (4.3) and the same argument as in (18] we obtain a continuous piecewise

cubic field W with

V.W ( ) a. for 1 i N,

(4.4) W - 0 at all other vertices
1N! W - 0 on 3 U
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This field can be estimated by

N

(4.5) llWfl1 ,% : C lail

where C only depends on the minimal angle of T , 1 < i < N ,and R(X)

(C blows up when either of these become too small). At any singular internal

vertex we may similarly find a continuous piecewise cubic field satisfying
4

(4.4), (4.5) provided (-I) ia = 0 . The constant C here depends only on
i=l

the minimal angle. Since we are not imposing any boundary conditions (4.4)

and (4.5) can also be satisfied for any boundary vertex and any set of

constants a i , with a constant C that only depends on the minimal angle.

By rescaling we see that all these versions of (4.4), (4.5) remain valid

with a constant that is Ch , where h is the size of the triangles. For

each vertex of 1h we select a. , 1 :< i < N , to be I h ( )--  ; the

previous construction then leads to 
1

IIWII < C(p+l)KIjj _IIJT. O,tJT1- i

for K > 2 (f. [181). Adding the individual W's we arrive at a

field V , satisfying (4.1a) and (4.1b) . The constant C is independent of

since both R( and the minimal angle are bounded away from 0 (the

latter because of the quasiuniformity assumption). ID

Remark 4.1

Assume that R(h) > 6 > 0 and that 0 E P[P]I(Jh) with * - 0 at

the boundary vertices of Q(Y~ Then it is possible to find V E (h

X P [31,0(1' ) such that (4.la-b) hold. It is crucial that * = 0 at the

vertices on a( h ) provided we want to maintain R( 1) as the measure of

singularity. If we make the alternate assumption that R(I,) > 6 > 0 then

.h
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it is possible to find V E P[ 3 1 'O(*') P[31 'O( h )  satisfying (4.la-b) for

any E plP]'-(h) These slight variations of Lemma 4.1 follow by a proof

very similar to the previous.

h h

Let T1 be two arbitrary triangles of with a common edge

(as in Fig. 6).

4 /
\ /

11 /

/K

/•-- -.. N
/

h

Fig. 6.

Denote by

h W h + h + 01 4
(x) i I + ix2 +Yi=0,

the four lines on which the remaining edges lie, and define

22 h1 t 2 ,x E T 1

cg-g4 2 f 2 2 T h

where c is chosen such that ' is continuous in T . Let n be a
1 2

normal direction to the common edge, and introduce

l .4
8 "1
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W(x) = d P(x) n

Any such W satisfies

J V-W dx ~V.W dx
rh h1 r

and by choosing d # 0 appropriately we thus obtain

Lemma 4.2
h h

Let T and be two triangles of Lh with a common edge. It is

possible to find a continuous field W such that

(4.6a) W is given by polynomials of degree < 4 on each of the

h -h -htriangles T, and W = 0 on -IUT 2
h(T 1UT2)

(4.6b) 7.W = 0 at all vertices of Th , i = 1,2,

fi
(4.6c) - V.W dx V-W dx = 1

(46d 9w

(4.6d) i ,b Dh I where D is independent of T and h

Note: In the estimate (4.6d) we have used the fact that the triangulation 1h

satisfies a minimal angle condition due to the assumption of quasiuniformity.

Definition

A subset = {T 1t of Zh is called connected if the corresponding

h ii i h

polygonal domain Q(1,) interior( U fhn) is connected.
h i-IJ

Lemma 4.3

Let D be the same constant as in the previous lemma. For any connected

subset = h I I and any set of numbers {b I w4 ."
1h -, c 1h
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b =0

one can find V E 4 (Ed satisfying

(4.7a) V-V = 0 at all vertices of Ih

(4.7b) V-V dx = b. 1 < i. Z and

(4.7c) vh , h DZh - I i=l lb i

Proof

For I = the result follows trivially by choosing V identically

zero. The proof proceeds by induction. Let h= {T be a connected
= i Z

subset of Zh and let {bi } be a set of numbers, with I b i = 0, > 1.
i=1 i=l

Select T E so that \{T} is connected (it is easy to see thatSelct Ih Iota = Ih

this is always possible); to simplify notation we shall assume that the

numbering of Zh is such that T = Th and that T and -h share a common

edge. We define

b F I + bt

and use the induction hypothesis to construct

V E 0[4]'( h) 0 [41,0(I ,,)V P

with

(4.Sa) = at all vertices of I"

- -- - - -h
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(4. 8b) fV.V dx =b. 1 < i t 1 ,and

-1c-(4. 8c) III1 a [ ) "D( -1)h- J bi I

h i= 1

Let W be the field constructed in Lemma 4.2 corresponding to the triangles

9_ and T and s e t

(4.9) V= + bW

where V and W are interpreted to be zero outside and -

respectively. This V clearly satisfies (4.7a) and (4.7b); from (4.9), (4.8c)

and (4.6d) it follows that

(4.10) h D(C-l)h 1 C- l + Dh- Ib

--~D h jbij

(remember that D at all points in this lemma is the same constant as in Lemma 4.2.)

This completes the induction argument. __

Remark 4.2

Based on (4 .7c) we immediately conclude that

(4.7c') lIVII , D t3/2h ( bil) / 2

'L~h i=l

it is this estimate that shall be used later on.

A simple rescaling of Lemma 2.5 in [18] leads to the following.
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Lemma 4.4

Let Th be a single triangle of 1h , and let OP be a polynomial of

degree :< p such that OP = 0 at the three vertices of Th and JhoPdx = 0.

There exists a field Vp+l of polynomials of degree < p + 1 satisfying

(4.11a) Vp+ 1 = 0 on 3Th

(4.llb) V-Vp+ I =P

(4 .11c) 11v +1 1l,Th < C(p+l)Kk P1I 0,Th

with constants C and K that are independent

h pof T , h , p and p

In this lemma we have again used the fact that 1h satisfies a minimal

angle condition.

Lemmas 4.1 through 4.4 give rise to a local construction of a right

inverse for the divergence operator. We give the details of this construction

with particular boundary conditions; this result shall prove useful in our

proof of Theorem 5.1.

Proposition 4.1

Assume that

R(jh) > 6 > 0

where R(7h) is the measure of singularity introduced in (3.9), and 6 is, h

independent of h . Let = T= denote anv subset of h and let

be any element of [Pp >, 3 that vanishes at all boundary

vertices of Q(Vh) Assume that

i' ' - " "
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f 4 dx= 0,

for any connected component Q of 0() There exists V E [

h)-

P ] such that

(4.12a) 7.V- = in h , and

(4.12b) Hla(h <C p K 1211$10,QJ( h)

with constants C and K that are

independent of h h , p and .

Proof:

We shall without loss of generality restrict our attention to the case that

i(Yh ) has only one connected component. Lemma 4.1 in combination with Remark 4.1

shows how to construct V E P t31 0j[ ( 3] 0() with

VV I = 0 at all vertices of

Lemma 4.3 applied with

b = ( -V"Vl)dx , 1 < i .

yields V2 E P 41O(1h) × 4Oh0) such that

V-.(V +V2) = 0 at all vertices of h and

(0-v.(V+v2))dx - 0 for any T E I'

The problem is now completely localized, and applying Lemma 4.4 triangle by

triangle we find V3 E P +''O(jh) , satisfying

-3'

- " II i i I
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- (1V-2) = .V3

i.e., the field

0[pl+l)~Oy' x Pfp+l3,Q0.'

- l -L2 -3 (Yh xr

has the desired property (4.12a). It follows directly from Lemmas 4.1 and

4.4 that

(.13)iY , (lh) .< c pK Iio,(h) and

K 2

iV3[l,(jh) C pK (Ci fl , + 2 IIvj 1l1n(h
,1 <, h) j=l J h

Since

lbil = fT h ($-V'VI)dxi < C h(1j1fl h+"l1il h )

1 OTi 'Ti

the estimate (4.7c) shows

(4.14) }_20,(h ) .<C 3/2( ,I,(.),+11_.Yl111 h)

A combination of (4.13) and (4.14) yields the estimate (4.12b) for V __

The previous argument, with minor changes, provides proofs of both

Proposition 3.1 and Proposition 3.2. Note, however, that for the estimate

(4.12b) to be valid for h E PP'-(h) and corresponding V E P[P+I]O(h) x

[p~ ,O we have to require that R(Eh) > 6 > 0 , independent of

and h (this latter is the reason we use Proposition 4.1 and not the

corresponding version of Proposition 3.2 in our proof of Theorem 5.1). If

taken to be a h (h-2
[his tae11 e l of ,h then f 't Oh ) , and the estimate (4.12b) reads

r: "' g ""
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IVK 'P C Ph IIJO,

* i.e., the local construction does not immediately give a bound for a right

inverse which is uniform in h



27

5. The main theorem

As announced earlier the main focus of this paper is to estimate the

norm of a right inverse for the divergence operator. Our estimate is the

central part of the following theorem.

Theorem 5.1

Let h " 0 h i , be a quasiuniform fimily of triangulations of

the polygonal domain , and let p be an integer > 3 . Assume that

R(h) 0 >0, 6 independent of h

where R(Zh) is the measure of singularity introduced in (3.9). Then

V.(pp+I],O(1h) × P [P+l],O( ()) = p[P],-l(1h)

and there exists a linear operator

L h :PIpl,-l (Ih_ plp+l,O (Ih ×P[p+ll,O (Ih

such that

i(5.1a) ?-(L h0) = V0 (, P [P]'-(h)

(5.1b) IIi h I < Cp K  1 0
p OS

with constants C and K that are independent

of h , p and .

Note: The first part of Theorem 5.1 is simply a restatement of Proposition 3.1.

Also note that the assumption R(1h) > 6 > 0 does not rule out the presence of

singular vertices, it merely prevents the nonsingular vertices from becoming

too close to singular.

- .4

*1 ' III . A
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Since

V(p[ (1h) x [ (h) ) c P[P]

it is well known that the statements of Theorem 5.1 are equivalent to the so-

called inf-sup condition (c = C - )

v E PIP],-,l( 1h)

(5.2) V- v dx

v_ ll_l 1,dx

with the supremum taken over V E P X P [ 1 'o(1) (cf. [21). We

shall make use of this fact in the case p = 3 of our proof. The proof of

Theorem 5.1 relies heavily on the analysis of [18], but an added new element is

the localization procedure which has certain similarities to the macro-element

concept found in [3,14]; howeverour triangulations are quite arbitrary,

except for the assumption of quasiuniformity.

Lemma 5.1

There exists a constant C such that for any given positive integer k and

h sufficiently small (how small depends on k ) it is possible to partition [h

into a disjoint union of connected subsets (m) 1 < m . M(k,h) withh "

(5.3a) each subset I(m )  containing at most Ck triangles,
h

(5.3b) each Qm) = interior( U ,f--2) containing a ball

h TEIm)

of radius ikh

I 5
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Proof:

(M)
Let mh 1 m < 1'(k,h), be those vertices of the uniform lattice,

with sidelength 2(/k+l)h, that lie in Q and lie at least a distance A h

(in)
away from DP . Let D denote the open disc of radius /k h , centered at

(M) (m)
All triangles of [h that intersect D will be assigned to the

subset , thus ensuring that (5.3b) is satisfied. At this point the sets

C(m) are connected, mutually disjoint and each contains at most Ck triangles.

h

It is now easy to distribute the remaining triangles of h among the Z(m) inh h '

such a way that their individual connectivity is preserved, and they still

satisfy (5.3a) (possibly with a larger constant C).

Remark 5.1

Based on Lemma 5.1 we may immediately conclude that for h sufficiently

small (how small depends on k) it is possible to partition 1h into a

disjoint union of connected subsets ,
( m , I < m .< M(k,h) satisfyingh

C(m)
(5.4a) each subset 1h contains at most k triangles,

(5.4b) each i) = interior( TnQ) contains a disc of radius cyik h
h T

The constant c is independent of k and h .

Lemma 5.2

Let k be a positive integer. For h sufficiently small, let y(m)
-h

I .m .< M(k,h) be the partition of 1h introduced in Remark 5.1. For any

1 m s M(k,h) and any constant b , one can find 4 (m) E -[l],0(1m)) such that

(pm) m) dx= b

and

f ~
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I C M) C Cih) I

'h

~C Cm tkVK) I1(Vl) -) Ib

:1 Proof:
From (5.4b) we know that there exists z E 0 h such that

D(C~h)m)

where D C r) is the open disc of radius r centered at z .Selecting z to be

the origin and rescaling by c Xh we obtain

D 0(l) C (m)

where Cm is the translated, rescaled image of h~m Let ~() be the

triangulatidin of 2Cm yM) it is then possible to construct

iP E ptl((m)) satisfying

(5.5a) 0 on the boundary of (n

(5.5b) i~m p dx = 1I and

(5.5c) (m 1 C

The function

C m) Cx) =b (Clkh) 2 2L
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is an element of that satisfies the requirements in this

lemma. J-I

We are now ready for the

Proof of Theorem 5.1

Consider the case p = 3; we shall verify that for h sufficiently

t small and for any 0 E P[ (1h) there exists W E P[4],O(h) x [4],0(1h)

with

(5.6a) 11-V '{I O,2 " 1/2I11110,p and

(5.6b) 1I111 "  114 o,0

It follows immediately from (5.6a-b) that

f V.V dx f V-W, dx
sup >

vlilwil 1,0

f1 2dx -J ( -V.W) ¢ dx

2 d II

2 wl1 1,l

i.e., the inequality in (5.2) holds for p - 3 According to the comments

i made earlier this proves the theorem, in the case p = 3 , for h sufficiently

small. For p = 3 and large h the theorem follows directly from the

constructive proof of Proposition 3.1, discussed at the end of section 4.

The construction of W proceeds in several steps.



32

Step 1: Using Lemma 4.1, with = and p = 3 one finds

V E x ([1h)0(XN) such that

(5.7a) - V-VI = 0 at all vertices of 1h

(5.7b) 1JV I,0 < C intodcedi

Step 2: Let {(m)P(_,h) be the disjoint partition of introduced in

(m) 0[11,0 -(m)
Remark 5.1. Let E (1h )) be the function constructed in Lemma 5.2

corresponding to

b = (-7.Vl)dx

and define

(m) ~ (M'
$(x) (x) for x E 1m) I m M(k,h)

It follows from Lemma 5.2 and (5.7a-b) that

(5.8a) - - = 0 at all vertices on the

boundaries of Qj() I, 1 < M(k,h)
h

(5.8b) f()(4-V.vI- )dx= 0 , 1 <, m. M(k,h)

(5.8c) tl11o, . C and ' , . c(1+(Vkh)-l 1l 1 1o,;

Step 3: The function f 7-V P vanishes at all

boundary vertices of h 1 i m M(k,h) ; it also satisfies

(i (4-VVI-4)dx 0

h
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We apply Proposition 4.1 with = (m) to this function for each

1 . m < M(k,h) By composition of the individual solutions we get

(1h

satisfying

(5.9a) V-V2 = - V-V - in Q , and

(5.9b) 11Y2111,2 C k 3 / 2 fI I(0 ,

Step 4: Finally we shall construct a field V3  P [4],O(1h) x [4],O(1h)

such that

(5.10a) II -0 V3 110,Q . Co(h+VU) f1II0 ,Q , and

(5.10b) jlv 3 111,s . C C1"0,2

In combination with (5.7b) and (5.9a-b) this leads to

(5.11a) lII -V-W( 0,1 Co(N+Y-I 11 O , and

(5.11b) Wil I, " C k 3 / 2 11 0 110,

[ where W = [ V. E 0 h ) 
'h )  If k is chosen sufficientlywr W j=l-

large and h is sufficiently small, then we obtain

C0 (h+vT -!) < 1/2

and (5.11a-b) therefore verifies the existence of a field W with the

properties (5.6 a-b).

f . , . . *
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The construction of V3 is based on an approximation argument. Let

be a function satisfying

(5.12) = in Q , with

(5.13a) 11 112,P2 < C 11 110,2 and

(5.13b) 3 IIQ3 c II 1,P,

(note that we do not specify any boundary condition on a , and this is

what makes it possible to obtain (5.13a-b), although 32 is not smooth).

Let V3 E (h ) x P '(1h) be an approximation to vo in the

sense that

(5.14a) IVs-V 3 111 , i< Ch 11,113,Q and

(5.14b) I1Iv311 1,Q .< C [1PI12,0 ;

(5.12) and the estimates (5.13b), (5.14a) then lead to

N I-V-v311o,0--IIV.(wv4-3)'1o, 2

.< ChII~tI3, n

. ChIkII11

so that by virtue of (5.8c)

ll j-V'V3 11 o ,C(h+A!k-1)IIloa

The remaining inequality (5.10b) follows immediately from (5.8c) , (5.13a)

and (5.14b).

,,. *?1', * 
j
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This completes the Proof of Theorem 5.1 in the case p 3

Let p be an arbitarv integer [ 4 . Given E P[PI'l(1h) it is

possible on each triangle T of 1h to find a quadratic qT withTI
q h = at the three vertices of 9I

f qdX h dx , and

(5.15)

jjq Th I _h ( <  C h sug (x )j < C p K' -] r

x ET OMh

for K' :- 2

(in (5.15) we have used the Sobolev Imbedding Lemma and Bernstein-type

inequality, cf. [18]). Define

q(x) (x) for x 7 TT41

then q E P P[3P(-l(()h) 7 sin " ; From (5.1 )
Lh -

we conclude that

(5.16) Ijq lo( ' C K ,I 10,..

and

(5.17) Ol-qll 0, < C p K[ 0 dO,

Due to our method of construction

- q - 0 at all vertices of 1h 'and

fT(-q)dx- 0 on all triangles of h

I-
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We may now apply Lemma 4.4 separately on each triangle,and by piecing together

we get

V1 E P[P+II,0 (h) x P[P+l]0( h)

with

(5.18a) VV = - q in 0 , and

(5.18b) I-I I I, < C p K J -qjj0,

.C pK+K'[ 1 10,

Since q E p[3],-l(1h ) we may use this theoremin the case p= 3 (which has

already been verified) to find

Y2 ( P [4I3,0h x P[4],O (1h),

such that

(5.19a) . 2 = q in S2 and

(5.19b) I 211 1,Q "  C HIqll o,2

<C p I10 IIo,0, 2

in the last inequality we used (5.26). Defining

V -VI,+ V2 9

the theorem follows directly from (5.18a-b) and (5.19a-b) in the case

p 1 4 . This concludes our proof. II

L. -- i...,'> 4
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The proof presented above immediately carries over to the case of homo-

geneous Dirichlet boundar, conditions, except for the construction of P and

V3 . We need an additional result concerning the invertibility of the diver-

gence operator with homogeneous boundary conditions. The following lemma is

proven in [1]; the method of proof relies heavily on the characterization of

trace spaces for function spaces on polygonal domains, as found in [8]. Sobolev

spaces HS() , 0 < s , with noninteger indices are defined by interpolation;

1* denotes the norm on H () .

Assume that all internal angles at corners of the domain Q are less

than 27 . Suppose that 0 E Hs(,) , for some 0 < s < I , with

J dx 0

for all connected components of .2 Then there exists U E Hs+l GO

such that

V-U = 0 in Q

U = 0 on 3f

and

lUi 1,0 C nIIo

with C independent of .

t,. , , ~ pm , - , .. .. * '_
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Let be as introduced in step 2 of the proof of Theorem 5.1;

clearly lies in H /(Q) , and it has integral zero on each

3/2
connected component of 2 . Let U3 E H (Q) 1 H(2)

be the field, corresponding to , which is defined by Lemma 5.3. If V 3

P [IIhO ) P ([1'O([h) is an approximation to U3 in the sense that

111~ 3-Y3 H1 ,Q Chi/2 11 K3131/2  and

? Il~1v3111,Q -C11NS11,Q

then

(5.20a) $I -7V 3 II = II(U 3-V3)IO0 f

310,' 11V (u3- 3 )1 1, 1

11Eh/2ll 3113/2,2

<chl/2 ]1 P111/2, l

and

(5.20b) 11V31, <cl I~

Due to (5.20a), (5.8c) and "logarithmic convexity" of the Sobolev norms it

follows that

i
! II$-v'v~3110,2 <  C (h+v' -l l 2l*[

from (5.20b) and (5.8c) it follows that

. . 14
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l"Y ll1, - C 0ll , Q

For k sufficiently large and h sufficiently small V 3 therefore has

the same properties

i lj+-v v3110" <  1 I 10' and

i I11-Y311l,Q - C'1 1lo,0

as the field constructed in step 4 of the previous proof. V 3  furthermore

vanishes on 30 and hence it may be used in a construction of a field with

homogeneous Dirichlet boundary conditions. The rest of the proof proceeds as

before, thus completing our verification of

Theorem 5.2

Assume that all internal angles at corners of the polygonal domain Q are less

than 27 . Let .h 0 < h .< I be a quasiuniform family of triangulations

of Q , and let p be an integer >. 3 . Assume that

R( 1h) > 6 > 0 , 6 independentof h

where R(7h) is the measure of singularity introduced in (3.10). Then

i ?~~~.(;[p+ll'( h x ;P+l]'O(h) = ['-(1h),

and there exists a linear operator

such that

, ,i- I-~i "  -I -

r -I
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(5.31a) V-(Lh,) = * V, E
p

(5.31b) l C p l[ l0 Os

with constants C and K that are

independent of h , p and .

Remark 5.3

Theorem 5.1 and 5.2 may directly be used to show that minimization of

the displacement energy of two dimensional plane strain linear elasticity over

the space of continuous piecewise polynomials of degree p + I , p 3

is an accurate numerical approach. On a quasiuniform family of triangulations

(with R( h) or R( h) bounded away from 0) it leads to approximate solutions

that coverge at optimal rate in h and at arbitrarily close to optimal rate

in p , uniformly with respect to Poisson's ratio (cf. [12,19]). Theorem 5.1

and 5.2 thus disprove a conjecture made by the second author in

Remark 3.2 of [19]; it was conjectured, based on numerical evidence,

that the h-convergence rates would never be optimal, uniformly in Poisson's

ratio. However, the numerical experiments referred to (cf. [161) were all

for polynomials of degree p + 1 , p < 3 , i.e., exactly the case the

theorems here do not cover, and they are not characteristic of the

behaviour for p , 3

-low
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6. A basis for the divergence free space

In many applications, it is of interest to work directly with the null-

space of the divergence operator acting on Pp+l]O Pp+, (or

(P[p+lIO P [l],O) As observed in section 3 the curl operator maps

p[p+2 1,l([,) (respectively p[p+2],l(,)) onto this nullspace (provided

Q(J') is simply connected). Thus a basis for the nullspace can be obtained

from one for p[p+2 1,l (or [p+2]) A basis for p[p+2 ],l was given in

[10]. We shall extend slightly that work here to construct a basis for

p Our method of proof is to verify the dimension formula

(6.1) dim(P[P+2 ],l(z')) = 2'(p-5)T + (2p-l)E0 + 3V0 + ,

and in the process exhibit this many linearly independent functions in

(these functions form a subset of the basis given in [10]); T here denotes

the number of triangles of O , E V0 denotes the number of internal edges and

internal vertices of Y' respectively and 0 is the total number of singular

vertices of [' . The polygonal domain Q( ') is assumed to be simply connected.

The operator V. maps the space

0 0

into

The nullspace of 7- is isomorphic to

I [~p+2 ],l(,1

and it thus follows that

I~
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(6.2) dim(P~p~l] x[p+l],O) _ dim(Pt p+2 ],1 )

I dim( p ' - )

The first and the last of the dimensions in this formula have already been

computed to be (p-l)pT + 2pE0 + 2V0  and (p+2)(p+l)T - a - I respectively,

i.e., based on (6.2) we get

dim( P[p+2] ) 1 (p-5)T + 2pE0 + 2V0 + a - T + I.

Since T - E + V = 1 and V -V 0 = E - E0 , this implies

0 0

(6.3) dim(P[P+ 2 ]'l([ )) > 2P(p-5)T + (2p-l)E0 + 3V0 + a

The inequality (6.3) proves half of the identity (6.1), and it thus remains

to verify that

(6.4) dim(P[P+ 2 ]l([')) < p(p-5)r + (2p-l)E0 + 3V0 + a

In [10] it is shown that

(6.5) dim(P [p+ 2 1,l(')) =-(p+3)(p+4)T - (2p+5)E 0 + 3V0 + 00

through the construction of a purely local basis for this space. Among the

corresponding nodal values are

(a) the value and x and x2 derivatives at each vertex,

(b) the value at each of p - 3 distinct points in the

interior of each edge,

(c) the (edge) normal derivative at each of p - 2 distinct points

in the interior of each edge.

I4
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The remaining nodal values are more complicated to describe, but for vertices

on the boundary of S()') they do include

(d) one cross derivative (i.e. for each vertex on the boundary,

select adjacent edges e1  and e2 meeting there and take

the el , e2  cross derivative at that vertex),

(e) the second edge derivative for all the edges meeting there.

For functions in [ the nodal values in (a)-(c) corresponding to

vertices and edges on the boundary of must vanish; by a simple count

we get that

(6.6) 3(V-V0 ) + (2p-5)(E-EO)

nodal values must vanish. The second derivatives along the boundary edges at

vertices on the boundary (e) must also vanish, and give rise to 2 vanishing

nodal values per vertex. Finally, if we pick e1  or e2  in (d) to be one

of the boundary edges, it is clear that this produces one additional nodal

value that must vanish for functions in p[P+ 2 I(I') . In combination with

(6.6) we get a total of

(6.7) 3(V-V0 ) + (2p-5)(E-E0) + 3(V-V0 )

2p(E-E0 ) + (V-V0 )

vanishing nodal values. Using (6.5), (6.7) and the fact that E + E- 3T

and E -E 0 . V - V0 we thus obtain

(6.8) dim(P[P+ 2 '(')) i pp-5)T + (2p-1)E0 + 3V0 + a

+ ((V-v O) - (-O0))

S.A
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The right hand side of (6.8) is exactly as desired in (6.4) except for the

additional term (V-VO ) - (o-0) ; this term is always nonnegative and it

equals the number of nonsingular boundary vertices. In order to verify (6.4)

it therefore suffices to find one nontrivial linear constraint, for the nodal

values corresponding to each nonsingular boundary vertex, which must be

satisfied by functions in P[ 2 I() a constraint, that is, which is

not already counted in (6.7).

Let be a boundary vertex and let the triangles Ti , angles ei

and edges ei meeting at this vertex be numbered consecutively as shoun in

iT!T

+ +1

re r e
r 

e

Fig. 7. Boundary vertex

eLet D denote the directional derivative in the direction parallel ta the

edge e . There is a simple relationship among all the cross derivatives of

E p[p 2 ],l(y,) , namely,



45

(6.9) sece i  ( a T.)(1  ) = esecei 1  (e. )(30 )
" ?ei~~~ei+l .1 e- 3i T-

+ (cotei+cote i ) 3 2

2 i . r (see [10] and also [5]). Summation of (6.9) with alternating

signs yields

r2S(_l)i(cotei+Cotei l) S2

For eE(¢1 i-i )( 0e TSsecl a 17.)(0 (x -_)r sec 6ar (OIT )(A0 )

o e I e ( 1 aenr aer+l r

For E (P[P2' h both 9 e1 ae 2 ( IT1) and 3 e ~ (OIT) must vanish

12 1r r+l r

at -0 and we thus arrive at the constraint

r2

(6.10) (-1 i(cote+te )32 (! )(x) 0
i=2 ei ii

At any nonsingular boundary vertex, r is at least 2 and cote1 + cote 0

for some i , so that (6.10) represents a nontrivial linear constraint among

the second edge derivatives, which is not counted in (6.7); this completes the

proof of the identity (6.1). At the nonsingular boundary vertices the expression

r 1~t 4 t 2 (.XO1 1 (-1) (cotei+cotei-l)a2 (OIT )( 0

can be used as a nodal value for ptp+2],l in place of one of the second edge derivativ

(one, for which cot8 i + coto_ 1 0) . Using these nodal variables we

obtain a basis for P[P+2 ]91(I') directly from the basis for P[p+2],l

by deleting members corresponding to the aforementioned

2p(E-EO ) + 2(V-VO ) - O-o)

vanishing nodal values.
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Remark 6.1

In the case is not simply connected, one finds that the nulispace of

12 V s ti cur o ~t htstihspat consist. 1, ing of func Lions that

are constant on each component of )P anti whose normal derivatives vanish

011 )S Tii is -ae h .i s ai ii, i i r, iIi. ha i is, and L ts d imen sion e xc e ed s (6. 1)

exactly by the nutmber of components of 3,i . Using the corresponding Euler's

formula we can thus extend our combinatorial proof of Proposition 3.2 to domains

that are not simply connected.

. .. *ee-
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