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QV' used to make choices under risk are simulated using a production system
framework. . Phis framework allows the estimation of the effort required to
use the strategy in a choice environment, while simultaneously measuring
its accuracy relative to a normative model. A series of Monte-Carlo studies
varied several aspects of the choice environments, including the complexity
of the task and the presence or absence of dominated alternatives. These
simulations identify strategies which approximate the accuracy of normative

~ >4 [

procedures while requiring substantially less effort.

These results, however,

are highly contingent upon characteristics the task environment.

effects in decisions and the learning of effort/accuracy tradeoff

discuss the potential of production system models in understanding task

Fig’ally , we
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INTRODUCTION

One of the major findings of years of decision research is that
individuals use many different cognitive processes (strategies) in making a
decision. The strategy used is contingent upon chiracﬁerintics of the
decision task such as the number of alternatives available [37]. Many
theorists suggest that the selection of decision strategies is, in part, a
function of the strategy's accuracy, that is its ability to produce an
accurate response, and the strategy's effort, that is its demand for mental
resources [3], [19], [24), ([41), ([42], [48]). A view of strategy selection as
involving costs and benefits has several appealing aspects. First, such a
principle can maintain the assumption of calculated rationality on the part of
the decision maker [29]. The use of an apparently suboptimal rule becomes
optimal once again, once the costs of the decision process itself are included
in the assessment of rationality. 'Even the most grievous errors, such as
intransitive preferences, may be seen as the outcome of a rational process.

As Tversky [49] has noted:

"It seems impossible to reach any definite conclusions concerning
human rationality in the absence of a detailed analysis of the
sensitivity of the criterion and the cost involved in evaluating
the alternatives (p. 45-46)."

Second, because the costs and benefits of decision procedures will vary
between tasks, this perspective may partially explain the wide variety of
strategies seen in deéision behavior [37].

In examining this perspective a major difficulty has been the development

of measures defining the costs and benefits associated with various decision

procedures. This paper proposes an approach to measuring the costs and

benefits as.ociatcd with decision processes based on production systems models
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and computer simulation. This approach allows the estimation of effort and

accuracy as the task and context of decision situations vary. Furthermore, we i“;

will argue that production system models are a reasonable framework for N

exploring how decision strategies may be learned, and for guiding the design }

of decision support systems [22]. - ;
The paper is organized as follows: First we present a task analysis of :

the choice domain of concern, decisions under risk. Within this task we

discuss previous definitions of accuracy and effort, and then develop possible 4

- alternative metrics. Next, we present production system representations of E

several heuristic decision processes, and conduct a series of Monte-Carlo

experiments which estimate the accuracy and effort associated with these

heuristics. The paper ends with a discussion of the cost-benefit approach to

.-’-‘—-‘ .

strategy selection and its relationship to learaning.

Ny i

Task Analysis

We focus on decisions under risk for two reasons: First, the task is

2L

.

representative of a large number of real-world decision situatiomns that

involve uncertain outcomes. Second, important previous work examining the

FT R UAR A

accuracy of heuristics by Thorngate (48], concerns risky choice.

A risky choice problem consists of three basic components: (1) The

- o

alternatives available to the decision maker, (2) Events or contingencies that

P P Bt IR P
-

relate actions to outcomes, and (3) The values associated with the outcomes.

] SRS

These informational elements, along with a goal statement (such as "choose the

preferred alternative.”), represent the heart of the risky choice task

$ o Y W TS,

environment presented to a decision-maker. The decision maker's internal i

representation of this task environment is the individual's problem space,

¥
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containing the solution (i.e. the preferred alternative) which must be




»
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‘is identified. Newell and Simon ([34] present a more detailed discussion of the

25 concept of a problem space.

'ji Risky choice heuristics can be defined as rules which systematically
%ng simplify search through the problem space by disregarding some elements of the
E; problem space. _Alternntive simplifications represent different heuristics: A
é;h decision msaker can, for example, choose to ignore certain alternatives, either
::h by deciding that an acceptable slternative has already been found (satisficing)
’té or by eliminating an alternative from future consideration because of an

‘;T. objectionable outcome, such as a ruinous loss. Other simplifications consist of
-?ﬁ selective examination of the outcomes. The Maximin choice procedure, for

A;j instance, suggests that a decision maker evaluates alternatives by examining

'33 only the outcome for each alternative with the lowest payoff. The alternative
e with the highest minimum payoff is selected. Another suggestion is that

S%‘ decision makers might ignore some of thc\evcnt 1nfornnt16n present in the

%é problem space. Thorngate [48], for example, describes the equiprobable

u procedure, which ignores ptobabi}ities, selecting the alternative with the

ié highest average payoff. Finally, other simplifications can occur in the process
?g of combining attributes, such as calculating differences in payoffs and

T: probabilities, as suggested by the additive difference rule [49].

Eg 0f course, actual choice behavior is probably not a straightforward

Fﬁ execution of one choice strategy or another. Bettman (4] suggests that choice
20 may be more constructive. That is, "choice heuristics may not be stored in

ig their entirety in memory, but may exist only as fragments—-subparts which are put
if togethcf constructively at the time of processing, at the time of making a

‘% decision or a choice [4, p. 33]". Nonetheless, we feel that identifying the

‘?E characteristics of prototypical strategies such as Maximim and

E: Elimination-by-aspects [50] is a useful first step in understanding why a

}é decision maker utilizes different strategies as a function of task dcnand; (37).
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Finally oﬁher characteristics besides the accuracy and effort of choice
heuristics, may influence strategy use, for example, justification ([45].

Accuracy and effort, however, are likely to play a major role in strategy

selection.

Measuring Accuracy
At a general level, quality of choice can be defined by consistencies in

preference, e.g., transitivity. In the case of risky choice, however, more
specific criteria have been suggested. The expected utility rule, for
example, builds on principles of consistency to provide a specific mechanism
for combining value and belief information into a decision. A special case of
the EU rule is maximization of expected value. The main advantage of Expected
Value as a choice rule is that the values of an individual decision maker are
not required to operationalize the rule.:

Previous work on the accuracy of heuristics by Thorngate (48] adopted
this EV criterion. Using a Monte-Carlo simulation, Thorngate determined the

proportion of decisions for which several heuristics selected the alternative

with the highest expected value. For purposes of comparison with Thorngate's

results, we adopted the same measure of accuracy, and term it proportion
accurate choices (PAC).

A limitation of Thorngate's measure of accuracy, and consequently of our
PAC measure, is its insensitivity to near misses, such as the selection of an
alterantive near the best in expected value. We therefore adopt an additional
measure of accuracy that allows us to compare the relative performance of
heuristics, in terms of EV, to a strict expected value rule and to a baseline

response of random choice, which involves no search of the problem space:

AR I A
B

L )
D

-
-



X 5

?3 Relative ) EV Heuristic Choice - EV Random Choice 0

i Performance EV optimal Choice - EV Random Choice

;g This measure of relative performance is bounded with a value of 1.00 for the

13 expected value maximization strategy, and 0.0 for random selection. The

' measure has the property that it controls for the chance of an accurate

% respounse as a function of number of alternatives, as well as reflecting the

§ relative sizes of errors made by heuristics for each set of alternatives.

4 Additional measures of choice accuracy are possible. As noted above, for

i example, the EV rule is just a special case of the maximization of expected

?f utility strategy for risky choice. Consequently, we examine the accuracy of

2 heuristics using a third set of measures based on the expected utility

] strategy with utility defined by a power function U(x) = X2/3. This type of

ﬁ utility or value function has been recently discussed by Kahneman and Tversky

3 [21]. "

‘? Finally, we examine a fourth measure of accuracy that is independent of

N the form of the value or utility functione. That measure is based on the

i frequency of selection of dominated alterantives [15]. The number of times a

-; dominated alternative (an alternative inferior to another on all attributes)

.2 is selected by a heuristic is a useful metric in that it is clear

E choice error. However, the prevalence of choice sets containing dominated

vé alternatives is not readily apparent.

:j In summary, several possible definitions of a decision error exist. We

é use two expected value based measures: (1) The proportion of accurate :
}7 choices, i.e., éhonc with maximum EV, and (2) relative performance, which ﬁ
i reflects the degree of improvement in EV over a random choice. Our focus on é
; expected value based measures is due to the use of the EV concept by Thorngate 5
;- [48] . However, we also examine both expected utility and dominance-based ;

measures of accuracy. The appropriateness of these different measures of v
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accuracy will be a function of the choice task. One advantage of simulation,

however, is the ease of examining multiple measures of accuracy.

Measuring Effort

Mental effort has a long and venerable history as a theoretical comstruct
in decision-making research, and cognitive psychology in gemeral (20], [32],
[41), [47]). For example, Russo and Dosher [41] discuss several
interpretations of the concept of cognitive effort. They define effort as thu
total use of cognitive resources required to complete the task. Since this
seems a useful approach for decision research, we ;dopt that definition of
effort.

Attempts to compare decision rules in terms of an effort metric are just
beginning. Shugan [42], for example, suggested that effort or "the cost of
thinking” could be captured by “a measuszle (1.e. well-defined and calcula~-
ble) unit of thought.” He proposes the binary comparison of two alternatives
on an attribute as that basic unit. The more comparisons made, the more
effortful the choice. Unfortunately, Shugan's use of the binary comparison as
a fundamental unit of effort restricts his analysis to certain decision rules.
An important contribution of Shugan's work, however, is (1) the notion that
decomposing decision strategies into components can provides estimates of
their relative costs, and (2) the observation that the effort required by a
choice rule can be affected by task characteristics such as the covariance
between attributes. Similiar ideas were also suggested by Wright ([51].

Huber {18) and Johnson [19] expand this notion of decomposing choice
strategies into a set of components. Drawing on ideas of Newell and Simon
[34] they independently suggest that heuristic strategies can be constructed
from a small set of elementary 1nfornacion'ptoces§es (EIP's). Thus a decision

rule or strategy could be thought of as a sequence of events, such as reading
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the values of two alternatives on an attribute, comparing them, etc. Chase

[9] provides a more general discussion of the use of the EIP concept in the
analysis of information processing.

The EIP's described by Huber [18] and Johnson [19] for decision
strategies arc.sililar to those postulated for other cognitive tasks such as
mental arithmetic [10] and problem solving [34]. A hope of those advancing
the concept of EIP's is that there exists a small set of elementary processes
common to s variety of tasks [9]. Additionally, Newell and Simon [34] have
proposed that effort can be measure by the total number of elementary
information processes used in a task. A relationship has been shown between

the number of EIP's predicted by models and response times for a variety of

cognitive tasks. For example, Carpenter and Just [8] use a production system
model using elementary information processes to explain latencies in
sentence-picture verification. Card, Ho;an and Newell (7] apply similar
techniqucs to a more complex task, computer text editing.

Our measure of decision effort builds upon the Newell and Simon [34] h
suggestion. Effort will be measured in terms of the number of elementary

information processes used to select an option.

Production Systems as Models: Combining Accuracy and Effort

The decomposition of common decision heuristics into component processes

yields insight into the relative complexity of these rules. At the same time,

the assumptions necessary to derive simple closed form expressions for
estimating effort greatly limit the decision tasks that can be examined [9].
Thus, although one obtains a detailed picture of each decision rule, the
picture aspplies to a small class of possible decision problems.

Another way of estimating effort is to implement heuristics as formal

symbolic systems which can be simulated on a computer. One framwork is a
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production system [34], which consists of a set of productions, a task

environment, and a working memory. The productions specify a set of actions
(EIP'S) and the conditions under which they occur. These are expressed as a
(condition) —> (action) pair, and the actions specified in a production are
performed (fire) only when the condition side is satisfied by matching the
contents of working memory. Working memory is a set of synbdlo, both those
read from the external environment, and those deposited by the actions
performed by previous productions. The set of productions possessed by an
individual can be :hought.of as being part of long-term memory. Arguments for
the value of production systems as a representation of human cognitive
processes and further descriptions of production systems are presented by
Newell [33]. Note that productions are similar to the types of if-then rules
that are often used to represent knowledge in expert or artificial
intelligence systems designed to aid human judgments [11].

Table 1 lists the set of elementary processes, similar to those described
by Johnson and Huber, which were used in building the production system
representations of the choice rules. Figure 1 contains the production system
representation of the expected value rule, which selects the alternative with
the highest expectation from the set. This production system contains three
productions, each of which performs the actions listed on the right-hand side
of the figure only when the condition on the left hand side is true. Thus, at
the beginning of the decision, only the third production would be true, and
the production system would then READ the payoff for the first alternative
into working memory, MOVE its attention to the probability of that outcome,
READ it, and use the PRODUCT operator to weight the payoff by is probability.
This result is then ADDed to a running sum for that alternative, and attention

is then MOVEd to the next payoff. This production continues to be applied

until all outcomes have been examined. Now the second production fires, and




5' COMPAREs this alternative to the best found until now, and marks the winner as j
the current best alternative found. This process repeats until all

alternatives have b§¢n exanined, and the condition side of the first -
production in the list becomes true, announcing that the alternative which is

the current best alternative has been chosen.

There are several things worth noting about this production systeam -

\y P

its components. First, although expectation-based decision rules are
generally thought to be among the most effortful, the rule can be imple rad

without making large demands on working memory. This is accomplished by

SN K

combining the partial results as soon as possible (note the ADD operation in ;
Figure 1). All the decision rules we discuss operate similarly, and do not

store results in long-term memory. Additionally, all are designed to minimize

-~ 8 -

A o e
ks 2 LB

Py

the nuaber of operations. Because human decision makers may not necessarily

5 adopt this technique, our inplclcntatiog; represent minimun estimates of the
effort required to use each strategy. For cxanpli. variations of the b
strategies that would use long-term memory operations would lead to greater

Y estimates of effort. Recognize also that the adjustment of values by

g probabilities implied by the product operator, for example, may not involve a K

2 literial multiplication of two numbers, rather they may be combined by some

snalogical process which adjusts the value of one quantity given another (27(.

. There also are several conflict resolution mechanisms proposed to select a
production to execute if more than one is true. Qur implementations simply
assumes that the first production in the list whose condition side is matched

fires. PFinally, it is worth noting that these elementary processes are

B~ =TE-8 -8 &

similar to those found in studies of other cognitive taks, and that estimates

of the time required for each operation have been made. In principle it

AR

should be possible to construct and test estimates of the time necessary to

t g
g

o exscute these rules. We will turn to this point lster.
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:j Implementating production systems as a computer programs is straight
“»

forward. Through Monte-Carlo techniques, it is possible to observe the choice
that would be made by each rule over many trials, as done by Thorngate [48];
while simultaneously counting the number of mental operations required by each
heuristic. In the next section, we describe a series of simulations which

perform these tasks.

Simulation

s

Heuristics :
We examine six heuristics which make quite different simplifications of

the problem space for risky choice. These rules clearly differ along several

' e

dimensions, such as the method used to integrate probability -nd payoff

PPl I

information. However, they also differ markedly in the amount of available

information that they consider. A ptioti, we might expect this to be an

;L.ﬁ A -‘_ a

important determinant of both the accuracy and the effort resulting from their

use. ]
; At one extreme is the Expected value rule, which does ot simplify the f

problem space at all. The selection of an alternative is based on complete S

search of the available information. The Equiprobable heuristic similarly .
~; examines all the alternatives and all outcomes. It, however, ignores ome of ;
13 the two outcome attributes, probability, implicitly treating all events as :
i equally likely. To choose a lottery, the Equiprobable heuristic adds the ;
Ls payoffs for the outcomes of each alternative, and choses the alternative with i
-S the highest total. This heuristic is similar to an equal weight model. The E
- MostLikely heuristic, in constrast, examines only one outcome for each ;

| Foroe e s es
-
=]
®
[
"
"
-
[}
. T
s
®
fe—
=]
[
"
g
r
®

Y

-
.




~
% 1 |
5; alternative, the outcome with the highest probability of occurrence, and é
(\ gselects the alternative with the largest payoff for this outcome. Thus, this ’
3 rule searches each event to find the most-likely outcome, and examines only i
E the payoff associated with that event. This heuristic is similar to a g

; lexicographic rule. The Maximin heuristic ignores probabilities entirely and *
“g selects the alternative with the largest minimum payoff. This heuristic is i
; related to the conjunctive rule. Elimination-by-aspects is a choice rule j
i proposed by Tversky [50]. We implement a version discussed by Thorngate [48] ?
N )
E -I;s:r: ;1;ure 1 About Here 1
- e L L oo, ]
Z‘ which attends only to payoff information. Each payoff of a gamble is compared ’
‘ﬁ to a cutoff equal to the mean payoff. If a payoff is less than the cutoff, E
N the gamble is eliminated from further consideration. The rule terminates when a
?E either (1) one alternative remains or (2; all attributes have been considered, E
_§ and one must choose randomly from the remaining alternatives. ;
. Elimination-by-aspects ignores probabilities entirely, and performs only

‘3 partial search of the payoff information. Finally, the Random choice rule

3 serves as a baseline, simply choosing an alternative at random with no search.

o Appendix A provides a listing of the production system representation of all

13 rules but the random.

-

Task and Context Variables

.j The terms task variables and context variables have often been used

:g interchangeably in the literature. After Payne (37], we adopt the following

i distinction: Task variables are those assoéiated with general characteristics

.z of the decision problem, such as the number of alternatives, which are not ?
: dependent on the particular values of the objects of the decision sets. ;’
; Context variablei, in contra.t, are associated with the particular values of "
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the objects, such as the correlation between attributes. Other possible
distinctions between task and context are a.scussed by Einhorn and Hogarth
(12].

A frequently explored task variable is the complexity of the decision
problem, usually manipulated through variation in the number of altermatives
and outcomes presented by the choice problem. We vary the number of risky
alternatives and outcomes at levels of 2, 4, and 8. These levels match
previous behavioral and simulation research [36], [48]. We expect the
decision strategies to show differential increases in effort as tasks become
more complex [19]. We also expect decreases in the accuracy of heuristics as
the complexity increases [48]. This makes variations in task complexity
particularly interesting: It may be possible, for example, to identify
heuristic rules which remain relatively effortless, and substantially
accurate, as tasks become more complex."

Context effects have received considerably less attention than task
effects in decision research. In part, this is because there is little
systematic theory to guide the exploration of the impact of context on the
accuracy and effort of choice rules. Indeed, previous work has made general
statements about the viability of some decision rules based upon results
obtained from a single context. For example, Thorngate [48) suggests that
probability information may be relatively unimportant in making accurate risky
choices:

“A wide variety of decision heuristics will usually pro&uce optimal,
or close to optimal results and can thus be termed relatively efficient.

The ... equiprobable heuristic deserves further comment... its high

efficiency suggest that 'good' choices can very often be made with scant
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regard for the subtleties of accurate probability estimation procedures

(p. 223-224)."
Although Thorngate did manipulate task complexity, this generalization is
based upon a single context and should be viewed with some caution.

The probabilities in a risky choice must, by definition, sum to 1.
Within this constraint, the variance of the distribution of probabilities
can vary from a minimum of 0 when all outcomes are equally likely (p -.l for
all m outcomes) to a maximum of l_- 1 when one of the m events is cert:in
(p = 1), the rest impossible (p : 0). Thorngate's method for comstructing
gambles ensured that the variance in the probability distribution would be
small relative to the variance in payoffs. Since expected value is the
product of these two quantities, it is not surprising that probability
information had little impact on the performance of his rules. Further, since
the tendency of Thorngate's method to p?&ducc low variance in probabilities
increases exponentially with the number of outcomes, we should be particularly
cautious in interpreting his results for more complex environments. In the
simulation we implement another method of probability generation which
produces larger variances in the probability distributions. Characteristics
of the two methods are discussed in Appendix B.

Another context variable which can vary between choice sets is the

presence or absence of dominated alternmatives. Although random generation

itself can produce dominated alternatives, it has been argued that decision
makers ignore them, effectively reducing the size of the choice set [23]. Omn
the other hand, dominated alternatives can impact choice [17]. It has also

been suggested that the success of one simplified strategy, the equal

weighting of attributes, is dependent upon the presence of dominated
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alternatives [30]. In the simulations that follow, we examine decision sets 5

o & oty

with dominated alternatives present and those with dominated alternatives

removed.

A b0, Y

Method

Each of the six decision rules was applied to 200 randomly generated

PRINS of W )

decision problems in each of 36 conditions defined by a 3 (Number of
Alternatives) by 3 (Number of Outcomes) by 2 (Variance of Probabilities) by 2

(Presence or Absence of Dominated Alternatives) factoriasl. After each trial

¥ A S N NS N

the alternative selected was recorded along with a tally of each elementary

A operation used by the decision rule.

% 3. "%,

Payoffs were randomly selected from a uniform distribution bounded by 0
e and 1000 by the multiplicative congruence method using the IMSL subroutine
GGUBS. Probabilities were generated by one of two methods: The low-variance

condition replicates Thorngate's [48]) procedure. The required number of

TalaTaAr N

deviates, m, was generated from a uniform distribution and divided by the sum,

normalizing the sum to 1.0. In contrast, the high variance method first

a«a

selected a deviate from range 0, 1. Each subsequent deviate was randomly
selected from the interval (0, 1 - Ipy) where p; are the previously generated
deviates. When m - 1 probabilities had been generated the procedure halted

and the mth probability was set to 1 - Ipy.

00,57,

The presence or absence of dominated alternatives was manipulated by
testing for the presence of first-order stochastic dominance. First order

stochastic dominance describes a relation between two risky alterntives, A and

' AL AL

[}

B that ensures that A will always produce a higher utility than B for a

decision maker with a finite, monotomically increasing utility function. It

M- v e

is analogous to simple dominance for riskless choice. A detailed description

of the alternative generation procedure is available in Appendix B.
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':f Note that despite the widely differing characteristics of the four cells
created by the two types of context effects, all cells will have the same mean
payoff and probability, and that the correlation between pnyoffl and
probabilities will be close to 0. The differences due to context effects are
g reflected in the variance of the probabilities, and in the covariation of the
:2{ payoffs across gambles.
5 All {oitiaslization, execution, and recording routines for the simulation
s sre written in PASCAL, with the exception of random number generation
T;ﬁ performed by the Fortran language IMSL subroutines. Copies of the PASCAL
R source code are available from the first author.
Analysis
i;, ‘ The significance of the results was established by an analysis of
a variance of the cell means based upon the 200 trails. This five way ANOVA
sé analysed the task effects, that is, number of alternatives (2, 4 or 8), and
,:: number of outcomes (2, 4 or 8) and the context effects, that is the presence
;t“ or absence of dominated alternatives and variance of probabilities (low or
‘Ezi high). The final factor in the design was decision rule. For some dependent
;:‘ measures the cells in the analysis contained constants, and subsequently no
3§ within-cell variance. For example, the Expected Value strategy always chose
:55 the correct answer, resulting in a proportion of correct choice equal to !.0.
;2: To provide an analysis which did not violate the assumption of homogeneous
_ng within-cell variance, we used an error-term based upon the within-cell
éz variances of the non-constant cells. Although the resulting test is
?f conservative, the experimental design provides sufficient power for hypothesis
‘;g testing.
55 While the large number of trials ensures stable estimates, it also
.'* provides ovcrvholning statistical significance for many effects. Accordingly,
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in reporting results it becomes more important to examine the size of each
effect relative to the others. Since all factors use the same error term, the
magnitude of the F statistic is an index of the size of effects and is a

linear function of other measures such as w?.

Results ]

The two dependent measures, accuracy and effort, will be disucssed v
o
sequentially, and we will then discuss their relationship. For each measure, J

we will start with the low-variance, dominated alternative condition, the cell

which most closely replicates Thorngate's [48] results, and then discuss the

results for the remaining experimental conditionms.

The Accuracy of Heuristics

Table 2 presents the proportion of accurate choices, i.e. the proportion
of trials in which each heuristic selects the gamble with the highest expected
value, while Table 3 presents their relative performance, i.e. the percent
improvement in expected value relative to a random choice. The low-variance,
dominance present cell, labeled (1) in the tables, resembles the task
environment used by Thorngate, and.our results closely replicate his. The
equiprobable rule, for example, appears to be quite accurate. A.decision
maker using such a heuristic in this task environment will select the best
option about 752 of the time (see Table 2) and will average almost 90 percent
of the expected value provided by the normative model relative to random
choice see Table 3. 1In general, the heuristics demonstrate impressive

accuracy in this task environment.



A7 & P ~ud e Ak e Wk A AU AT LA L SO NN e A s A SE LIRS SR A S S A A N A B A AR R
- I

c",

.".," A

- :';ﬁ

T

Sale )

(' . I".'

-,

RS

N

2 .).Zc;./_;‘ '

g 28

& c‘_ 3R ‘.. .

el

wfelen el § ‘ A

» o e ¥

17

Note, however, that increases in task complexity have different effects
upon the various rules. Increasing the number of outcomes, for example, does
not affect the level of absolute and relative accuracy of the equiprobable
heuristic. Other rules, in contrast, sth decreases in accuracy as the number
of outcomes increases.

The results for the two measures of accuracy, Table 2 and 3, tend to
agree on the ranking of the heuristics with respect to accuracy. Both
absolute and relative measures of accuracy based on expected utility
maximization with utility defined by a bover function {21], showed a similar
pattern of results. Other utility functions are, of course, possible.
Nonetheless, our results do not appear to be limited to just expected value
based measures.

A different view of heuristics emerges, however, when the variance of the
probabilities, relative to the payoffl,\increcsco. For the high variance,
dominated alternatives present condition, labeled (2) in the tables, the Most
Likely heuristic is now the most accurate, while the Equiprobable heuristic
displays a marked decrease in accuracy. Similarly, the Most Likely rule now
appears to be the only rule which remains accurate as the number of outcomes
increases. Thus, these results suggest that Thorngate's results are of

limited generality. The unimportance of probability information is not

apparent in this context where a rule which considers probability information,
the Most Likely, is superior to a rule which does not, such as the a
Equiprobable. These results are particularly important in light of the

suggestion made by Beach [2] that Thorngate's results justify deemphasizing

the importance of probabilities in decision aids.
The effect of our other context manipulation, the removal of dominated

alternatives, is dramatically demonstrated in Tables 2 and 3, conditions (3)
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and (4). The Maximin and Elimination-by-aspects heuristics, which were

reasonably accurate in the presence of dominated alternatives, now perform at

A near chance levels. Note also the effect of increases in the number of
wiLS]

o .

§;j alternatives and outcomes. As can be seen in the Tables, the removal of

dominated alternatives increases the impact of task effects on several of the

;;{: heuristics. Why is this the case? We must conclude that the apparent

;Ei accuracy of source of heuristics in the presence of dominated alternatives is
o due to their ability to screen truly inferior alternatives. Almost all the
jsg choice strategies examined successfully avoid dominated alternatives. The
\§§§ only rules selecting a dominated alternative with any frequency were the

random and elimination-by-aspects. When dominated alternatives are removed,

the heuristics, (except the Most Likely heuristic) become virtually

indistinguishable from random selection.

\

.?ﬁ The analyses of variance conducted ﬁpon both dependent measures, N
225 proportion of accurate choices (Table 2) and relative expected value (Table
2\ 3), confirm the significance of the observed differences. The ANOVA's showed
;g a significant, p < .0001, effect of rules, number of alternatives and

ﬁé; outcomes, and context manipulations. In addition, the interactions of rules
~

o with number of alternatives, number of outcomes, and both context variables,
E ? were significant for both dependent measures, p < .000l. These analyses also
E?g allow the computation of confidence intervalp for the two measures. Both

b a priori (simple t-test) and a posteriori (Tukey's method for pairwise

ég; comparisons) confidence intervals are noted in each table.

};g In summary, while Thorngate correctly suggested that heuristic rules can

:47' approximate the performance of normative procedures, he incorrectly suggested
b;; that these findings were generalizable. The "right” heuristic to use in a

-~ choice task seems to be strongly influenced by context effects. A
—]
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decision-maker trying to maximize accuracy using heuristic strategies would
need to know (1) several heuristics and (2) the appropriate conditions for

their use. Thus, like Newell & Simon (34, p. 139), we conclude that "the

effectiveness of particular heuristics is a function of the problem space.”

Effort and Heuristics

The simulation yields a count of the numbers of each of the elementary
processes listed in Table 4. To discuss the overall effort of any choice
procedurs, however, we need to develop some meaningful procedure for
aggregation. We consider two possible schemes for combining the component
counts into an overall index: First, if each heuristic contains approximately
equal proportions of each elementary information process, their sum would
generate a convenient estimate of overall effort (Newell and Simon, [34], p.
130). The ordering of the strategies on this index will be invariant over

various estimates of the effort required by individual operations.

Insert Table 4 About Here

Second, we could use empirical estimates of effort for each elementary
process, and weight the tally by the estimates. One source of suéh estimates
is previous research attempting to paraneterize the time necessary.co execute
similar EIPs. Work in mental arithmetic suggests that simple ADDs and
PRODUCTs are well described as fact-retrieval processes. While the time
required to perform each is somewhat deﬁéﬁdent upon the size of the operands,
university students typically average between .8 and l.l seconds to perform
single digit multiplications or additions [10]. Dansereau suggests that .3
seconds may be required to encode single digits, an operation analogous to our
READ psrameter. Comparison between two digits (similar to the COMPARE

operator) may take .3 seconds [10]. While there is no direct analogy to the

Ados a4
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ELIMINATE operator, similar operations in psycholinguistics (the marking of a
relation) take between .l and .4 seconds [9]. The MOVE operator is similar to
an eye fixation which has a typical duration of about .23 seconds [40]. These

approximations suggest that equal weighting of each elementary operation may

‘not seriously misrepresent effort costs. To explore the sensitivity of these

effort estimates to the weights applied to each operator, we compared an equal
weight estimate to one based upon the empirical estimates:

Effort = ,3 * READ + .23 * MOVE + .3 * ELIMINATE + .3 * COMPARISON

4+ 9 * ADD + 1.2 * MULT.'

The resulting high correlation, r = .97, suggests that a parameterless,
equal weighting model is sufficient to describe these simplified decision
tasks.

Table 5 displays the total number of operations required by each rule as
a function of the number of alternative;%and the number of outcomes. It is
apparent from Table 5 that the rules differ in the impact of increasing task
complexity upon effort. For example, Elimination-b&-aspects is the least
effortful of the non-random choice procedures at all levels of complexity,
while the Expected Value rule is always the most effortful. The other
heuristics we examine, such as the Maximin, Equiprobable and the Most Likely,
require approximately equal, intermediate amounts of effort.

Increases in the amount of information presented to the decision-maker
affect these heuristics differently: Some rules increase in effort more
rapidly than others. For example, Elimination-by-aspects is practically
unaffected by an increase in the number of outcomes (26.0 operators for two

outcomes, 29.4 for eight), while the Expected Value rule shows a large

increase (70.0 vs. 238.0). 1In general, the effort required to use the

heuristics increases more slowly than the effort required to use Expected
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Value. Elimination-by-aspects requires only 42 more operators when the number

of alternatives increases from 2 to 8. For the Equiprobable rule the )
equivalent increase in 130 operations. Expected Value requires 186 additional
operators. Thus, all other things being equal, the Expected Value rule may
seen less attractive, relative to the other rules, as the number of
alternatives or ocutcomes in a choice set increases. This matches empirical
results reported in Payne and Braunstein ([38]. Finally, it is worth noting
that the two heurigtics that are quite accurate relative to expected value,
the Equiprobable and the Most Likely, require substantially less effort than
Expected Value, suggesting that these may be attractive strategies to a
decision-maker willing to trade some accuracy for effort.

A striking feature of the effort estimates not apparent from the Table

Insert Table 3 about here

is their invariance across context effects. The effort levels associated with
many of the strategies we examine are unaltered by changes in the variance of
the probabilities or by the removal of dominated alternatives. This implies
that a decision maker who minimizes effort will be relatively insensitive to
context effects in the selecting strategies. On the other hand, the accuracy
of this set of choice rules is strongly affected by context. This suggests
the hypothesis that effort is greatly affected by task variables and not by
context variables, while accuracy is greatly affected by context variables and
less so by task variabies. This is strongly confirmed by the results of the
ANOVA conducted upon these results. Although the analysis shows that the
impact of the task effects and their interactions are all quite significant, >
¥ > 10,000 in many cases, the effects of the context effects and their -
interactions are much smaller, F < 22. Again the analysis provides confidence

A intervals as noted in Table 5.
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Trading Accuracy and Effort

Central to a cost-benefit analysis of strategy selection is the existence
of an accuracy-effort tradeoff, a continuum of rules in which increases in
effort result in increases in accuracy. The estimates of accuracy and effort
provided by the simulation allow the construction of such a display, shown in
Figure 2. The figure shows the results from the low variance and high
variance, dominance present contexts averaged over task variables. Drawn for
each context is a line connecting the strategies which, for a given level of
total effort, are the most accurate in terms of relative performance (see
Table 3). Strategies not on this line are dominated, and are inferior (in
terms of accuracy and effort) to those on the frontier. The differences
between the two frontiers illustrate an important point: The rules which
describe an accuracy-effort tradeoff vary with context. The equiprobable rule
decreases greatly in accuracy when the ;itiaucc of probabilities increases,
without a connennutate'decreaae in effort. As a consequence it falls far
beloy the efficient frontier. It is interesting to note that these shifts
seem to result from context effects rather than changes in task effects. An
examination of the data shows that the set of efficient strategies does not
vary as the number of alternatiQes or outcomes change. However, as Figure 2

shows, the set does change with the variance manipulation.

This yields an interesting implication for a cost-benefit perspective.

Inherent in this perspective is the idea that the importance of the decision

will affect the choice of the decision rule. The more important the decision,

the more effort a decision-maker will expend (moving to the upper left : i 2

accuracy-effort curve). However, the current data suggest that the curve is

not consistent across task environments. Relatively subtle chances in
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context, such as the variability in probabilities, or the presence of

dominated alternatives, should change preferences for choice strategies.

Discussion

We need to interpret the results of the simulation with some caution.
Although we have examined several task environments, many more task and

context variations can be investigated. These should include nonrisky and

R T OO R

dynamic choice environments. As we have shown, the accuracy and effort

associated with a heuristic are sensitive to task environments. For example,

o P

the Equiprobable and Most Likely rules reversed in their rank in accuracy as a
function of the variance in probabilities. There are however, several
generalizations that are suggested by our results: First, the data show that
heuristics, in at least som# task environments, can approximate the accuracy
of normative rules with substantial laviﬁgs in effort. Second, no single
heuristic will do well across all contexts. Instead, if decision makers
strive to maintain a high level of accuracy vwith a sinimum of effort, they
would choose among a repertoire of strategies. Finally, our results suggest

that task effects tend to have greater influence on effort while context

effects tend to have greater influence on accuracy.

Combined Decision Rules
The present paper has treated each decision rule as one that would be
uniquely applied to a decision problem. There is evidence, however, that F?

decision makers will employ strategies that combine rules. For example, Payne 3

(36] reports that subjects faced with choice task involving a large number
of alternatives will first use an elimination-by-aspects process to eliminate

alternatives. When the choice problem is reduced to a smaller set of

alternatives, e.g., two, decision makers shift to a more compensatory decision
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empirical grounds that an early stage in a complex decision process might
involve the reduction of alternatives [28], [31], [52]. . The general rationale .

seems to be that such a procedure provides a way for the decision maker to

simplify a complex task.

We examined one such combined rule suggested by previous empirical
evidence: This rule used elimination by aspects until only three alternmatives
remained, then calculated expected value of the alternatives on their
unexamined attributes. This rule showed some improvement over simple
elimination by aspects, choosing the alternative with the highest expected
value 152 more often. Most importantly, when compared to the other heuristics
this rule shows much slower increases in effort when the number of
alternatives increases. While the equiprobable heuristic shows a four-fold
increase in effort as the number of alternatives increases (43.3 vs. 173.3),
the equivalent increase for the phased rule is less than two-fold (39.3 vs.
59.7). Thus the combined rule has two attractive aspects: (1) it increases
the accuracy of the elimination strategy while (2) maintianing that strategy
relatively low effort in large choice sets. More research on combined

decision strategies seems warranted.

Task Effects and Production System Models

In a recent review of decision research, Einhorn and Hogarth [12] note
that "The most important empirical results in the period under review have
shovp the sensitivity of judgment and choice to seemingly minor changes in
tasks™ (p. 61). In addition to its descriptive interest, the lack of
invariance in decision behavior across seemingly similar tasks is a concern to
those attempting to improve decision performance. At the least, the lack of

invariance raises question about the validity of the judgmental inputs needed

to operationalize the normative procedures. (See H.rshey, Kunreuther, &
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iE Schoemaker [16] for exanpfes of biases in the assessment of utility

f:a functions.)

E% Decomposing common decision strategies into component processes (EIP's) ]
‘§§ and simulating them as production systems may offer an appealing way to

identify and understand the potential impact of task variables on decision

b
5 g 4 A
PN n"‘

behavior. The present study, for example, shows that increasing numbers of
alternatives affect differently the effort associated with expectation and

elimination-by-aspects strategies. If effort is a consideration in strategy

o, I
:.IA.J LR
shemafindted oIS el doninmes,

gelection, one should not be surprised that choice behavior is sensitive to

MBS

}; the number of alternatives (see Olshavsky, [35]; Payne, [36]; Payne &

i, Braunstein, [38], for empirical evidence and Klayman, [24], for additional _
‘é evidence from a computer simulation). ;
}3 Although not investigated in this paper, manipulation of information -

formats provides additional examples of the potential value of decomposing
byl strategies into EIP's. Huber [18], for instance, reports that the display of

information in a verbal form (e.g., very good or poor) as opposed to a

Xl v
int B cteechucdiocctn B S

numerical form (e.g., 8 on a nine point scale) reduces the use of strategies

AN

i% containing concatenation or summing types of EIP's. Huber explains the result

= by suggesting that before concatenation "can be performed on verbal

55 information, it somehow has to be transformed, e.g., by counting the verbal i

5; steps between two verbal lables™ [p. 192]. The transformation process is i

$ assumed to involve additional effort (EIP's) and therefore reduces the é

f attractiveness of strategies involving concatenation or summation under verbal X

.5 displays. Important display effects also are reported by Bettman and Kakkar '
(5], Payne and Braunstein [38], Russo (39], Yates, Jagacinski, and Faber [53]

?5 among others. Many of these effects may be understood in terms of the impact

2,

3 of display variables upon the effort required by EIP's such as READ and MOVE.




Sl

s s

«Fs ]
_t_r_llﬁ'l

P LT

4
sl
3

ety

% %

Y P

-

YR

) . n' "n““c A ".. LA h )‘_). (A l‘. ’,". -4’.

/
.

' “-’.b ':". 4, : *,

26

Bettman and Kakkar, for example, report that information acquisitioq tends to
proceed in a fashion consistent with the display format. The suggestion that
the amount of interdimensional processing increases when the memory load
placed on a decision maker is increased [38] is another example. finally, a
result readily apparent in Table 4 is that decision rules make differential
use of the various operators. For example, only the Expected Value and
Equiprobable heuristics use the arithmetic operations ADD and PRODUCT. This
suggests that strategies may be affected differently when an operator becomes
more effortful. If the outcomes of a gamble were described by three digit
numbers, for example, the literature would suggest that these arithmetic
operators would be much more cumbersome, while other operators such as
comparisons would be only minimally affected. This should make rules that
depend on arithmetic operators like Expécted Value or Equiprobable more
effortful relative to rules that utilize comparisons such as
Elimination-by-aspects. From a cost-benefit perspective, this makes the
former rules less attractive relative to the latter.

The importance of task variables in the design of messages which inform
people about ris4 [44) and in the design of decision support systems [22] is
clear. Researchers need to continue to conduct experiments identifying task
and context effects. In addition, researchers should begin to explore the
impact of various types of processing aids on decisions. We believe such
research would be facilitated by the decomposition of decision strategies into
sets of productions that can be studied under various task conditions through

computer simulation.

Validation

One method of validating estimates of accuracy and effort would be

indirect, through the correct prediction of the impact of task and context
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ii; effects upon the selection of decision rules. As we have discussed, the
g;é current framework is compatible with several existing results in the
‘3iﬁ literature. However, much more direct tests of the degree of correspondence
;&S between the efficient strategies for a given decision problem identified by

N our simulations and the actual strategies people use need to be conducted. A
ii: variety of process tracing techniques may prove useful in such studies (4],
B [36].

i Another approach to validation would use elementary operations to explain
'éé and predict decision related behavior such as the total time required to make
ESﬁ a decision or self-reports of cognitive effort. The success of these attempts
?f? depends upon:

ffﬁ l. The serial nature of human information processing in higher

%;5 level cognitive tasks, and

2 2. The assumption that each mental operation, on average,

%E possesses a characteristic amount of effort.
\:; Although such assumptions are clearly false for some cognitive tasks,
'?é such as as highly practiced visual search, their validity for decision tasks
::3 is an empirical question.

$? To conduct this research, we must first decompose decision strategies and
- tally the elementary operations required by each strategy. These estimates
£§ can then be used in a regression model to explain both total decision time,
2 and self reports of effort. There are two interrelated manipulations which
T might allow us to estimate effort:

é;; l. Subjects could be instructed to use a given rule, and the
fg; simulations' estimates of effort would predict latency and

:s; reports of effort. A pilot study by John Conery using a

ig similar procedure is reported in Russo and Dosher ([4l]).

;\(
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E;; 2. Observe, through process tracing tecnhiques, such as verbal
)vi reports or information search, the strategies used by untrained
\é; decigsion makers, and infer which elementary processes are used.
*Eé Whichever method is used, we would hope that such estimates both fit the data
- well and are consistent across different tasks.
2;- Note that this analysis does not necessarily predict that decision
Ezzi latency and self reports of effort will necessarily agree. Kahneman [20]
1?;1 suggests that two'cognitive processes which require the same amount of time
i;f may require quite different levels of mental effort. Thus a comparison may
;&;i take about as long as an addition, but require less cognitive resources or
. zttention. Subjects may report that comparison intensive rules such as the
<3N
;E%S MostLikely are less effortful than addition-intensive rules, such as the
3:}? Equiprobable, even tﬁough the rules may have identical latencies.

o - ; |

;;i Deciding how to choose and learning accuracy/effort tradeoffs
:;% As we have noted, part of the concern with accuracy and effort is

)i_ motivated by the role these concepts may play in strategy selection. As

2:; Einhorn and Hogarth [12] note: "The wide range of strategies one can use in
“<
;}S any given situation poses important questions about how one decides how to
;;; choose” (p. 69). Accuracy and effort are just some of the considerations

§££ which may help determine a decision-maker's selection of a strategy.
ES? Strategies themselves may be viewed as multidimensional objects [12], and

;}? include additional considerations such as justifiability, speed of decision,
?ég and awareness of conflict. Such a perspective suggests several obvious
K., 7 questions about strategy selection: (1) Which dimensions are most important.
}{% (2) 1Is strategy selection itself compensatory or non-compensatory? (3) When,
'22 and how often, does the evaluation of potential strategies occur? Let us

- examine, in closing, these questions in light of the simulation results ard
aé. o _.c?rffps ;#Ffraturc in decision making.
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;& As discussed in the preceding section, there are phenomena that appear

ot consistent with the view that decision makers are influenced by effort. There
’f& is less evidence demonstrating the influence of accuracy. (See Klein [25] for
ég a discussion of how utility considerations may guide strategy use.) Because
ks the most accurate decision procedure, maximization of expected utility, is

:é often not used in choice, it is difficult to argue that accuracy doainates

‘;: rule selection.

f;{ A cost-benefit model implies a compensatory tradeoff between accuracy and
z; effort that should be related to the importance of the decision. With

?; sufficient incentive, decisions may involve the use of expected value

i: maximization. However, the use of heuristic strategies seems to persist, even ?
Q: in situations involving substantial incentives [14], [26].

An alternate viewpoint is that effort and information processing

limitations represent constraints which limit the strategies that can be

o]

.
aladad ol ataRin a2

(3]
a‘e o
Ll

adopted. Simon [43], for example, views a decision-maker as using heuristics

3

5 and satisficing "not because he prefers less to more, but because he has no .

;g choice (p. 36)." It is important to note, however, that the concepts f

:g underlying a process of expected utility maximization, while quite demanding 3
/ of the information processor, are not inconsistent with our current !

_éé understanding of human cognition. Such processes, however, could well require '

:? inordinate amounts of time, and in practice, be impossible for the unaided '

= decision-maker. Processing constraints, therefore, may impose severe *
N

:E limitations upon the strategies and thereby provide a boundary for the

% feasible region in which accuracy-effort tradeoffs could be made. The

E: ultimate status of the cost-benefit perspective awaits further research, but

35 it may be necessary to modify the notion to include an upward bound upon

- prdcnoaing capacity. Thus, while effort seems securely ensconced as a

» explanatory variable in strategy selection, the role of accuracy and its
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relation to effort seems less clear.
One difficulty with the idea that people deliberately decide how to

choose is a potential infinite regress: Ome has to decide how to choose to

;; decide how to choose.... A more reasonable perspective is that such decisions
o are not made often but that the relationship between task and context effects

E; and the efficiency of a decision strategy is learned over time. For example,
§3 a decision maker may leafn over time that a screening pﬁase will substantially
‘3 " reduce effort in large choice sets. This knowledge can exist as part of the
Zé conditions which must be met for a production to fire. More generally, a

,y decision maker may develope over time a task specific strategy that is highly
:f accurate while requiring substantially less information processing than a

i normative rule. Klein [25] suggests the similar idea that a decision maker's

A use of heuristics may be related to leaguing about the nature of task

:‘ environments. The potential importance ;£ learning makes a production system

7: representation especially useful for the study of strategy development in

_ decision making. As Simon [43] notes: “"what makes production systems

E; especially attractive for modeling is that it is relatively easy to endow them

3 with learning capabilities~to build so called adaptive production systems.
(p. 121)." |
3 However such an approach to strategy selection must come to grips with i
W the nature of outcome feedback in risky choice. Seldom is such feedback }
-1 immediately available, and in a risky choice, there is no deterministic link
‘? between the outcome obtained and the alternative selected. Even if outcome

;: feedback is available, learning may be hamﬁered because the feedback is
i related to the alternative selected [13]. In the extreme, it has been argued

' that learning seldom occurs even under optimal presentation of outcome

§_' feedback [6].

.
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1f outcome feedback is such a problematic mechanism for learning, how
else might decision makers change strategies? In addition to outcome
feedback, the decision maker has access to a fairly rich data base about the

course of their own decision processes. This process feedback could provide

information necessary for strategy change. By noticing possible shortcuts in
past and current decisions, the decision maker could induce less effortful
choice procedures. For example, & decision-maker might induce the Most Likely
heuristic by noticing that certain outcomes seem much more probable than
others. To evaluate the impact of this change the decision maker might check
that the output of the new heuristic is consistent with several general
principles of choice. For example, the decision maker might check that the
new procedure does not select dominated alternatives, and that it selects
alternatives that have satisfactory levgll of Fhe other outcomes. Like a
problem solver that has induced a new ltéa:cgy for mental addition, the

decision maker evaluates the strategy change by examining the answer for

'consis:ency with previous procedures. The notion that learning occurs on the

basis of trace information has been discussed in other cognitive tasks by

Anzai and Simon [1l].

Summary

This paper uses production system models and computer simulation to
axplore the accuracy and effort of various decision strategies in different
choice environments. The results show that heuristic strategies can be highly
accurate while substantially reducing effort relative to normative procedures.
The accuracy and effort of strategies, however, is highly contingent on

characteristics of the choice task. This result provides a partial

"explanation for the finding of contingent decision behavior [37]. However,
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the entent to which decision makers actually tradeoff effort and accuracy, and
do so optimally, are open empirical questions. Much more research is required
to understand more completely the selection among decision strategies and how

one may learn the relationships between task demands and the accuracy/effort

properties of choice strategies.
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3o

' READ Read an alternative's value on an attribute into STM.

R COMPARE Compare two alternatives on an attribute.

DIFFERENCE Calculate the size of the difference of two alternatives for

N

f:f an attribute.

5 ADD Add the values of an attribute in STM.

i_ PRODUCT Weight one value by another (Multiply).

._‘E

‘kg ELIMINATE Remove an alternative from consideration.

>N

. MOVE Go to next element of external environment.

CHOOSE Announce preferred alternative and stop process.

»
-4

ey

Table 1: Primitive operations used in simulation.
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i:j TABLE 2 .
Jij Proportion of Accurate Choicesl
;\' Context Choice Task Conditions
E;E Condition Rule Number of Alternatives, Number of Out comes?
2 s 8 2 4 8 |
-~ 1. Low Variance  Equiprobable 84 .76 .65 g7 04 T3 }
e Dominated MostLikely 78 .64 .48 J7 .60 .53

. Alternatives Maximin «73 «56 46 .69 58 48

EBAJ 63 .51 .36 58 .49 .43

ﬁi 2. High Variance Equiprobable J7 60 .46 © a3 59 .50
§§ Dominated MostLikely .86 .5 .62 78 75 .70
= Alternatives  Maximin 68 47 .36 .65 48 .35
.Zg EBA 63 47 .29 ST W4l .36
- 3. Low Variance  Equiprobable 68 .39 .21 46 W42 .39
20 No Dominated  MostLikely 72 .52 .38 61 .53 .48
% Alternatives  Maximin 58 .30 .09 25 W34 .38
ﬂ? EBA 56 W24 .12 28 33 .32
?; 4. High Variance Equiprobable .58 35 .20 42 .38 22
;ﬁ} No Dominated  MostLikely 81 .65 .55 .68 .65 .68
o Alternatives  Maximin S50 .23 .06 23 .27 .30
< EBA .50 .27 .13 30 .29 .31
if Expected Value 1.00 1.00 1.00 1.00 1.00 1.00
= Random «50 25 .13 «29 29 .29
':i .

:i -lpercent of EV Maximization Choices

' 2pifferences exceeding .02 are significant, a priori, .047 a posteri,

= p < .05.
jSi 3Elimination-by-Aspects Rule.
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TABLE 3

Relative Performance of Heuristicsl
;*i Context Choice Task Conditions
{;
N Condition Rule Number of Alternatives, Number of Outcomes
ol 2 4 8 2 4 82
LS - - - - - -
x'f l. Low Variance Equiprobable .83 .90 .88 91 .86 .84
\ Dominated MostLikely 75 IS5 .72 .88 77 .57
;ii Alternatives Maximin 54 67 .69 81 «63 45
.r\;:'

EBA3 35 .55 .58 63 .52 .32 |
|
2§E 2. High Variance Equiprobable 68 65 .71 81 .67 .49 |
1o Dominated MostLikely 93 94 .93 91 .87 .87 |
) :-:"'\

_ Alternatives Maximin 52 56 59 82 53 32
oo EBA 38 .46 .50 62 .45 .27
; *'.:-t
Stf 3. Low Variance Equiprobable 46 35 .23 42 39 .23
e No Dominated  MostLikely 60 61 .56 67 .62 .48
o Alternatives  Maximin 18 .1 .00 00 .13 16
=N EBA 16 .10 .03 0 .18 .0l
~he 4. High Variance Equiprobable «26 25 .13 .38 .20 .07
e No Dominated  MostLikely .83 .86 .77 .83 .82 .8l
b Alternatives  Maximin .05 .03 .00 02 .04 .00
N EBA 012 01" 000 -14 010 002
= Expected Value 1.00 1.00 1.00 1.00 1.00 1.00
N
-l Random .00 .00 .00 .00 .00 .00
3
-ﬁfi 1Petcentage of Expected Value Gained over Random Choice
‘Zif 2pifferences exceeding .0l16 are significant, a priori, .036 a posteri,
o
N 3Elimination-by-Aspec:s.
Do
N
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TABLE 4

L iy . . .
U

Average Number of Production Operators
Utilized by each Rule

41

Choice

Rule

Equiprobable
Most Likely
Maximin

Elimination-
by-Aspects

Expected
Value

Randonm

Oggratorsl
Moves Read Product Add Eliminate

52.9 21.7 0 21.8 0
66.9 26 .4 0 0 0
52.9 21.7 0 0 0
10.0 7.7 0 0 3.8
52.9 43.6 21.8 . 21.7 0

1.8 0 0 0 0

Comparison
6.7

20.8

26.4

6.7

4.7

Total

103.1
114.1

101.1

28.2

144.7

lCHOOSE is not listed since it is constant (1) for.all rules.
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TABLE 5

Total EIP'S by Task Complexity

Choice Rule Task Condition

7 Number of Alternatives Number of Qutcomes
b 2 4 8 2 4 8
\ .

Random .5l 1.5 3.5 1.8 1.8 1.8

R Elimination- " 9.1 23.9 51.1 26.0 28.6 29.4
¢\j
by-aspects .

s
o

a4
PN

)
——

MostLikely 48.3 97.7 196.3 64.3 106.7 163.3

o

SN DN

Equiprobable 43.3 86.7 173.3 51.3 88.7 163.3

Expected Value 62.0 126.0 248.0 70.0 126.0 238.0

s lpifferences exceeding .074 are significant at p < .05 a priori, .134 a
posteriori.
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™ (1f at the end of alternatives) then (Choose alternstive which is currently
[ the best)

20
(ij (if at the end of the outcomes) then (COMPARE the Current Alternative to
A\.‘.
b the current best; winner becomes
:% current best)

:£ (1f not at the end then (READ the outcome's payoff;

of the ocutcomes) MOVE to the probability;

“l

- READ the outcome's probability;

:. 5

:} PRODUCT the probability times the payoff;

ADD the Result to the Current Alternative;

<.
.53 MOVE to the next outcome's payoff)

<
. Figure l: The Expected Value Rule
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£ Expegted Utility
:::.': ) 100 n --a.
2 Most-Likely™

90 - \ N
i ; N
N Equiprobable

80 -

Most=Likely 0

70 -
Equiprobable +

Minimax 0
60 -
Minimax +

50 -

404

W
Relative Expected Value
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\ Appendix A: Description of Production System Implementations of Choice Rules
: This appendix presents English-like representations of the production
AN
}t..- systems used to implement the decision processes in the simulation. The
h
:‘:3:-.- equivalent representation of the expected value rule is in Figure l. All the
. systems assume a specific form of conflict resolution: that the first true
33 production is executed in each cycle. Instances of the operators in Table 1
are noted in capitals.
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Production System for
Elimination-by-Aspects

(1f only one alternative is left) => (CHOOSE that alternative; stop)

(1f at the end of all attributes) => (CHOOSE randomly from the remaining

alternatives)
(1f at the end of an attribute) => (MOVE to the next payoff)

(1f the current alternative's payoff is known and

is less than the cutoff => (ELIMINATE the alternative)

(if the current alternative's payoff is

known and is greater than the cutoff) => (MOVE to next alternative)

(if no cutoff is present) => (READ cutoff; READ the current alternatives

payoff)

(1f the current alternative's => (READ current alternatives payoff for this

payoff is not known) attribute; COMPARE to cutoff)
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Production System
for Most-Likely Heuristic

(if at end of the alternatives) => (CHOOSE the current best)

(if at the end of this (COMPARE the payoff of this altermatives

most-likely outcome to

alternatives outcomes) => payoff of the most-likely outcome of the current best;

MOVE to next alternative)

(1f not at the beginning of an => (MOVE to the next probability;
alternative) READ probability; COMPARE current
alternatives probability to the

best-so-far)

(if at the beginning of an => (MOVE to payoff; READ probability;

alternative) Assign to best-so-far)
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Production System for

. a

~

~0 Equiprobable Heuristicl

A
* %
sty 0

(1f at the end of the alternatives) (CHOOSE the current best)

e,

(if at the end of this alternative) (COMPARE this altetqatives subtotal to

) ‘.",-.'.' 7’. M
[]

o
)
P
LIPS P N

current best; MOVE to next

alternative; MOVE to next payoff)

WX RAN
AN F I

(1f not at end or beginning of an (READ Payoff;

alternative) ADD to this alternatives subtotal)

Fof'cus

it

(1f at the beginning of an (READ Payoff - make it this

R,
)

alternative) ~ alternatives subtotal)
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lMaximin 1s similar, but a COMPARE replaces the ADD in the third production,
and the subtotal is replaced by the minimum payoff.
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Appendix B: Description of Context Manipulations

The context effects manipulafed in the simulation study can be viewed as
changes in the distribution of two random variates: p, the probabilities and X
the payoffs. This appendix describes the two versions of each variate which
yield the 2 x 2 factorial utilized in the simulation.

Each gamble consists of M events, and since the probabilities sum to 1,

the mean of any distribution of probability will be if Subsequently, the
M
average correlation between all pairs of probabilities py, Py i#* ] will be

=1 | and the variance of the distribution can range from a minimum of 0 (all
M-1
Pi = l) to a maximum of.i -1 (for example one pj = 1, the rest 0). Although

M M
no closed form exists for the probability generation method used by Thorngate

(48), an expansion of the Taylor series results in the approximation 1 . The
alternative method used here possesses a variance of g;l. Subsequentiﬁ% the
two methods yield radically different digtributions, and these differences
increase with increases in the number of outcomes. For example, the variance
in probebilities for the levels used in the current simulation would be:

Maximum Possible

Low Variance High Variance Variance
M 2 .083 «125 «250
4 021 046 .187
8 .005 014 .109

Thus, Thorngate's results, equivalent to our low variance environment, may be
of limited generality. His method of generalizing probabilities resulted in
distributions of low variance, and the range of probabilities incorporated in
the resultant gamble become quite small as M increased.

All payoffs in the current simulation are drawn from a uniform

distribution, range 0 to 1000. To remove stochastically dominated
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3'.__ alternatives we used a rejection method. However, dominance is frequent with

]

}\j increases in N, the number of gambles in a choice set. Consequently, to
.-- improve the efficiency of generating gambles, we first ensured that the
' payoffs of all alternatives avoided simple dominance: i.e. for all pairs of “
AN i
g:- gambles, a and b, a had a higher payoff than b on at least one outcome, while
) b had a higher payoff than a on another outcome. While this maintains the

<

::: same mean and variance of the distribution of probabilities, it does introduce '
' a correlation between the Xi of the alternatives. For all pairs of

) alternatives the correlation between payoffs will be -1 . Probabilities are
N M-1

1 then assigned to the gambles and the choice sets were then examined to ensure

:‘f;: that no gamble was first-order stochastic dominant over another. 1f such a

-:3 pair existed, the choice set was rejected and a new one created.

’1 Since payoffs are independent of probabilities, the average expected

-".1

value of all gambles generated (and the expected value of a random choice) is
M

" i £ Pixg or $500. The average maximum will vary, however, as a function of

~a M i=]

\j} the variance of p and x.
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