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med to sake. rhoices under risk are simulated using a production system

frmework. .hts framework allows the estimation of the effort required to
use the strategy in a choice environment, while simultaneously measuring
its accuracy relative to a normative model. A series of Monte-Carlo studies
varied several aspects of the choice environments, including the complexity
of the task and the presence or absence of dominated alternatives. These
simulations identify strategies which approximate the accuracy of normative
procedures while requiring substantially less effort. These results, however,
are highly contingent upon characteristics the task environment. Fiyally, we

. discuss the potential of production system models in understanding Vask
effects in decisions and the learning of effort/accuracy tradeoffs.I!N'

3°'m

I I

SZCURITY CLAWUIiCATION OF THIS PAGEE'Wh.DO Sa. 84

'%!"7



INTRODUCTION

One of the major findings of years of decision research is that

individuals use many different cognitive processes (strategies) in making a

decision. The strategy used is contingent upon characteristics of the

decision task such as the umber of alternatives available [371. Many

theorists suggest that the selection of decision strategies is, in part, a

function of the strategy's accuracy, that is its ability to produce an

accurate response, and the strategy's effort, that is its demand for mental

resources [31, [19], [24], [41], [42], [48]. A view of strategy selection as

involving costs and benefits has several appealing aspects. First, such a

principle can maintain the assumption of calculated rationality on the part of

the decision maker [29]. The use of an apparently suboptimal rule becomes

optimal once again, once the costs of the decision process itself are included

in the assessment of rationality. Even the most grievous errors, such as

Intransitive preferences, may be seen as the outcome of a rational process.

As Tversky [49] has noted:

"It seems impossible to reach any definite conclusions concerning

human rationality in the absence of a detailed analysis of the

sensitivity of the criterion and the cost involved in evaluating

the alternatives (p. 45-46)."

Second, because the costs and benefits of decision procedures will vary

between tasks, this perspective may partially explain the wide variety of

strategies seen in decision behavior [37].

In examining this perspective a major difficulty has been the development

of measures defining the costs and benefits associated with various decision

procedures. This paper proposes an approach to measuring the costs and

benefits associated with decision processes based on production systems models

.. 84 01 16026
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and computer simulation. This approach allows the estimation of effort and

accuracy as the task and context of decision situations vary. Furthermore, we

will argue that production system models are a reasonable framework for

exploring how decision strategies may be learned, and for guiding the design

of decision support systems [223.

The paper is organized as follows: First we present a task analysis of

the choice domain of concern, decisions under risk. Within this task we

discuss previous definitions of accuracy and effort, and then develop possible

alternative metrics. Next, we present production system representations of

several heuristic decision processes, and conduct a series of Monte-Carlo

experiments which estimate the accuracy and effort associated with these

heuristics. The paper ends with a discussion of the cost-benefit approach to

strategy selection and its relationship to learning.

Task Analysis

We focus on decisions under risk for two reasons: First, the task is

representative of a large number of real-world decision situations that

involve uncertain outcomes. Second, important' previous work examining the

accuracy of heuristics by Thorngate [48], concerns risky choice.

A risky choice problem consists of three basic components: (1) The

alternatives available to the decision maker, (2) Events or contingencies that

relate actions to outcomes, and (3) The values associated with the outcomes.

These informational elements, along with a goal statement (such as "choose the

preferred alternative."), represent the heart of the risky choice task

environment presented to a decision-maker. The decision maker's internal

4 representation of this task environment is the individual's problem space,

containing the solution (i.e. the preferred alternative) which must be
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identified. Newell and Simon [34] present a more detailed discussion of the

concept of a problem space.

Risky choice heuristics can be defined as rules which systematically

simplify search through the problem space by disregarding some elements of the

problem space. Alternative simplifications represent different heuristics: A

decision maker can, for example, choose to ignore certain alternatives, either

by deciding that an acceptable alternative has already been found (satisficing)

or by eliminating an alternative from future' consideration because of an

objectionable outcome, such as a ruinous loss. Other simplifications consist of

selective examination of the outcomes. The Maxiain choice procedure, for

instance, suggests that a decision maker evaluates alternatives by examining

1only the outcome for each alternative with the lowest payoff. The alternative

with the highest minimum payoff is selected. Another suggestion is that

decision makers might ignore some of the event information present in the

problem space. Thorngate [483, for example, describes the equiprobable

procedure, which ignores probabilities, selecting the alternative with the

highest average payoff. Finally, other simplifications can occur in the process

of combining attributes, such as calculating differences in payoffs and

probabilities, as suggested by the additive difference rule [49].

Of course, actual choice behavior is probably not a straightforward

execution of one choice strategy or another. Bettman [4] suggests that choice

say be more constructive. That is, "choice heuristics may not be stored in

their entirety in memory, but may exist only as fragments-subparts which are put

together constructively at the time of processing, at the time of making a

decision or a choice [4, p. 33]". Nonetheless, we feel that identifying the

characteristics of prototypical strategies such as Maximim and

Elimination-by-aspects [50] is a useful first step in understanding why a

decision maker utilizes different strategies as a function of task demands [37].
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Finally other characteristics besides the accuracy and effort of choice

heuristics, may influence strategy use, for example, justification [45].

Accuracy and effort, however, are likely to play a major role in strategy

selection.

Measuring Accuracy

At a general level, quality of choice can be defined by consistencies in

preference, e.g., transitivity. In the case of risky choice, however, more

specific criteria have been suggested. The expected utility rule, for

example, builds on principles of consistency to provide a specific mechanism

for combining value and belief information into a decision. A special case of

the EU rule is maximization of expected value. The main advantage of Expected

Value as a choice rule is that the values of an individual decision maker are

not required to operationalize the rule."

Previous work on the accuracy of heuristics by Thorngate [48] adopted

this EV criterion. Using a Monte-Carlo simulation, Thorngate determined the

proportion of decisions for which several heuristics selected the alternative

with the highest expected value. For purposes of comparison with Thorngate's

results, we adopted the same measure of accuracy, and term it proportion

accurate choices (PAC).

A limitation of Thorngate's measure of accuracy, and consequently of our

PAC measure, is its insensitivity to near misses, such as the selection of an

alterantive near the best in expected value. We therefore adopt an additional

measure of accuracy that allows us to compare the relative performance of

heuristics, in terms of EV, to a strict expected value rule and to a baseline

response of random choice, which involves no search of the problem space:

*. *.:. ',
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Relative EV Heuristic Choice - EV Random Choice- . ... [11
Performance EV Optimal Choice - EV Random Choice

This measure of relative performance is bounded with a value of 1.00 for the

expected value maximization strategy, and 0.0 for random selection. The

measure has the property that it controls for the chance of an accurate

response as a function of number of alternatives, as well as reflecting the
..,

relative sizes of errors made by heuristics for each set of alternatives.

Additional measures of choice accuracy are possible. As noted above, for

example, the EV rule is just a special case of the maximization of expected

utility strategy for risky choice. Consequently, we examine the accuracy of

heuristics using a third set of measures based on the expected utility

strategy with utility defined by a power function U(x) -'X2/3 . This type of

utility or value function has been recently discussed by Kahneman and Tversky

[21].

Finally, we examine a fourth measure of accuracy that is independent of

the form of the value or utility functions. That measure is based on the

frequency of selection of dominated alterantives [15]. The number of times a

dominated alternative (an alternative inferior to another on all attributes)

is selected by a heuristic is a useful metric in that it is clear

choice error. However, the prevalence of choice sets containing dominated

alternatives is not readily apparent.

In sugary, several possible definitions of a decision error exist. We

use two expected value based measures: (1) The proportion of accurate

choices, i.e., those with maximum EV, and (2) relative performance, which

reflects the degree of improvement in EV over a random choice. Our focus on

expected value based measures is due to the use of the EV concept by Thorngace

[481. However, we also examine both expected utility and dominance-based

measures of accuracy. The appropriateness of these different measures of
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accuracy will be a function of the choice task. One advantage of simulation,

*however, is the ease of examining multiple measures of accuracy.

Measuring Effort

S- Mental effort has a long and venerable history as a theoretical construct

in decision-;king research, and cognitive psychology in general [20], [321,

b1 [41], [47]. For example, Russo and Dosher [41] discuss several

interpretations of the concept of cognitive effort. They define effort as thk

total use of cognitive resources required to complete the task. Since this

seems a useful approach for decision research, we adopt that definition of

effort.

Attempts to compare decision rules in terms of an effort metric are just

beginning. Shugan (421, for example, suggested that effort or "the cost of

thinking" could be captured by "a measurable (i.e. well-de.fined and calcula-

ble) unit of thought." He proposes the binary comparison of two alternatives

on an attribute as that basic unit. The more comparisons made, the more

effortful the choice. Unfortunately, Shugan's use of the binary comparison as

a fundamental unit of effort restricts his analysis to certain decision rules.

An important contribution of Shugan's work, however, is (1) the notion that

decomposing decision strategies into components can provides estimates of

their relative costs, and (2) the observation that the effort required by a

choice rule can be affected by task characteristics such as the covariance

between attributes. Siiliar ideas were also suggested by Wright [51].

Huber [181 and Johnson [19] expand this notion of decomposing choice

strategies into a set of components. Drawing on ideas of Newell and Simon

[341 they independently suggest that heuristic strategies can be constructed

from a small set of elementary information processes (EIP's). Thus a decision

rule or strategy could be thought of as a sequence of events, such as reading
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the values of two alternatives on an attribute, comparing them, etc. Chase

[9) provides a more general discussion of the use of the IP concept in the

analysis of information processing.

The EIP's described by Huber [18] and Johnson [19] for decision

strategies are similar to those postulated for other cognitive tasks such as

mental arithmetic [10] and problem solving [34]. A hope of those advancing

the concept of ZIP's is that there exists a small set of elementary processes

coson to a variety of tasks [91. Additionally, Newell and Simon [34] have

proposed that effort can be measure by the total number of elementary

information processes used in a task. A relationship has been shown between

the number of EIP's predicted by models and response times for a variety of

cognitive tasks. For example, Carpenter and Just [8] use a production system

model using elementary information processes to explain latencies in

sentence-picture verification. Card, Moran and Newell [7] apply similar

techniques to a more complex task, computer text editing.

Our measure of decision effort builds upon the Newell and Simon [34]

suggestion. Effort will be measured in terms of the number of elementary

information processes used to select an option.

Production Systems as Models: Combining Accuracy and Effort

The decomposition of common decision heuristics into component processes

*! yields insight into the relative complexity of these rules. At the same time,

the assumptions necessary to derive simple closed form expressions for

estimating effort greatly limit the decision tasks that can be examined [9].

Thus, although one obtains a detailed picture of each decision rule, the

picture applies to a small class of possible decision problems.
• 'p

Another way of estimating effort is to implement heuristics as formal

symbolic systems which can be simulated on a computer. One framwork is a

. . . . . . .
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production system [341, which consists of a set of productions, a task

environment, and a working memory. The productions specify a set of actions

* (EIP'S) and the conditions under which they occur. These are expressed as a

(condition) -> (action) pair, and the actions specified in a production are

performed (fire) only when the condition side is satisfied by matching the

contents of working memory. Working memory is a set of symbo ls, both those

read from the external environment, and those deposited by the actions

performed by previous productions. The set of productions possessed by an

individual can be thought of as being part of long-term memory. Arguments for

the value of production systems as a representation of human cognitive

processes and further descriptions of production systems are presented by

Newell [33]. Note that productions are similar to the types of if-then rules

that are often used to represent knowledge in expert or artificial

intelligence systems designed to aid human judgments [11].

Table I lists the set of elementary processes, similar to those described

by Johnson and Hiuber, which were used in building the production system

representations of the choice rules. Figure 1 contains the production system

-q representation of the expected value rule, which selects the alternative with

the highest expectation from the set. This production system contains three

productions, each of which performs the actions listed on the right-hand side

of the figure only when the condition on the left hand side is true. Thus, at

the beginning of the decision, only the third production would be true, and

the production system would then READ the payoff for the first alternative

Into working memory, MOVE its attention to the probability of that outcome,

READ it, and use the PRODUCT operator to weight the payoff by is probability.

This result Is then ADDed to a running sum for that alternative, and attention

is then MOVEd to the next payoff. This production continues to be applied

until all outcomes have been examined. Now the second production fires, and
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COMPAREs this alternative to the best found until now, and marks the winner as

the current best alternative found. This process repeats until all

alternatives have been examined, and the condition side of the first

production in the list becomes true, announcing that the alternative which is

the current best alternative has been chosen.

S, There are several things worth noting about this production system

% its components.* First, although expectation-based decision rules are

generally thought to be amng the most effortful, the rule can be imple' r-td

without making large demands on working memory. This Is accomplished by

combining the partial results as soon as possible (note the ADD operation in

* Figure 1). All the decision rules we discuss operate similarly, and do not
SS

'*1 store results in long-term memory. Additionally, all are designed to minimize

the ==ambr of operations. Because human decision makers may not necessarily

adopt this technique, our impl ementations represent minimum estimates of the

effort required to use each strategy. For example, variations of the

strategies that would use long-term memory operations would lead to greater

estimates of effort. Recognize also that the adjustment of values by

probabilities implied by the product operator, for example, my not involve a

literial multiplication of two numbers, rather they may be combined by some

.4 analogical process which adjusts the value of one quantity given another 1271.

* There also are several conflict resolution mechanism proposed to select a

production to execute if more than one is true. Our implementations simply

aesms that the first production in the list whose condition side is matched

* fires. Finally, It Is worth noting that these elementary processes are

similar to those found in studies of other cognitive take, and ;hat estimates

* of the time required for each operation have been made. In principle it

should be possible to construct and test estimates of the time necessary to

execute thes rules. We will turn to this point later.



* 10

Implementating production systems as a computer programs is straight

forward. Through Monte-Carlo techniques, it is possible to observe the choice p

that would be made by each rule over many trials, as done by Thorugate [48];

while simultaneously counting the number of mental operations required by each

heuristic. In the next section, we describe a series of simulations which

perform these tasks.

Simulation

Heuristics

We examine six heuristics which make quite different simplifications of

the problem space for risky choice. These rules clearly differ along several

dimensions, such as the method used to integrate probability -nd payoff

information. However, they also differ markedly in the amount of available

information that they consider. A priori, we might expect; this to be an

important determinant of both the accuracy and the effort resulting from their

use.

At one extreme is the Expected value rule, which does aot simplify the

problem space at all. The selection of an alternative is based on complete

search of the available information. The Equiprobable heuristic similarly

examines all the alternatives and all outcomes. It, however, ignores one of

the two outcome attributes, probability, implicitly treating all events as

equally likely. To choose a lottery, the Equiprobable heuristic adds the

payoffs for the outcomes of each alternative, and choses the alternative with

the highest total. This heuristic is similar to an equal weight model. The

MostLikely heuristic, in constrast, examines only.one outcome for each

---

Insert Table I About Here
---
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alternative, the outcome with the highest probability of occurrence, and

selects the alternative with the largest payoff for this outcome. Thus, this

N rule searches each event to find the most-likely outcome, and examines only

the payoff associated with that event. This heuristic is similar to a

lexicographic rule. The Naximin heuristic ignores probabilities entirely and

selects the alternative with the largest minimm payoff. This heuristic is

related to the conjunctive rule. Elimination-by-aspects is a choice rule

proposed by Tversky [50]. We implement a version discussed by Thorngate [48]

Insert Figure I About Here

which attends only to payoff information. Each payoff of a gamble is compared

to a cutoff equal to the man payoff. If a payoff is less than the cutoff,

the gamble is eliminated from further consideration. The rule terminates when

either (1) one alternative remains or (2) all attributes have been considered,

and one must choose randomly from the remaining alternatives.

Elimination-by-aspects ignores probabilities entirely, and performs only

partial search of the payoff information. Finally, the Random choice rule

serves as a baseline, simply choosing an alternative at random with no search.

Appendix A provides a listing of the production system representation of all

rules but the random.

Task and Context Variables

The terms task variables and context variables have often been used

interchangeably in the literature. After Payne [37], we adopt the following

distinction: Task variables are those associated with general characteristics

of the decision problem, such as the number of alternatives, which are not

dependent on the particular values of the objects of the decision sets.

Context variables, in contrast, are associated with the particular values of

,,' a , a,,... . .,. .:-..... /,..... .....-.-..... -.-4 -,... -.. .. .
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the objects, such as the correlation between attributes. Other possible

distinctions between task and context are a-a&cussed by Einhorn and Hogarth

(12].

A frequently explored task variable is the complexity of the decision

problem, usually manipulated through variation in the number of alternatives

and outcomes presented by the choice problem. We vary the number of risky

"" alternatives and outcomes at levels of 2, 4, and 8. These levels match

previous behavioral and simulation research [36], [48]. We expect the

decision strategies to show differential increases in effort as tasks become

more complex [19]. We also expect decreases in the accuracy of heuristics as

- the complexity increases [48]. This makes variations in task complexity

particularly interesting: It may be possible, for example, to identify

heuristic rules which remain relatively effortless, and substantially

accurate, as tasks become more complex.

Context effects have received considerably less attention than task

effects in decision research. In part, this is because there is little

systematic theory to guide the exploration of the impact of context on the

accuracy and effort of choice rules. Indeed, previous work has made general

statements about the viability of some decision rules based upon results

obtained from a single context. For example, Thorngate [48] suggests that

probability information may be relatively unimportant in making accurate risky

choices:

A wide variety of decision heuristics will usually produce optimal,

or close to optimal results and can thus be termed relatively efficient.

The ... equiprobable heuristic deserves further comment... its high

efficiency suggest that 'good' choices can very often be made with scant

-- 4
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regard for the subtleties of accurate probability estimation procedures

(p. 223-224)."

Although Thorngate did manipulate task complexity, this generalization is

based upon a single context and should be viewed with some caution.

The probabilities in a risky choice must, by definition, sum to 1.

Within this constraint, the variance of the distribution of probabilities

'. can vary from a minimum of 0 when all outcomes are equally likely (p - for

all m outcomes) to a maximum of 1- when one of the a events Is certain

(p - 1), the rest impossible (p - 0). Thorngate's method for constructing

gambles ensured that the variance in the probability distribution would be

small relative to the variance in payoffs. Since expected value is the

product of these two quantities, it is not surprising that probability

information had little Impact on the performance of his rules. Further, since

the tendency of Thorngate's method to produce low variance in probabilities

increase& exponentially with the number of outcomes, we should be particularly

* cautious in Interpreting his results for more complex environments. In the

simulation we implement another method of probability generation which

* produces larger variances in the probability distributions. Characteristics

of the tvo methods are discussed in Appendix B.

Another context variable which can vary between choice sets is the

J presence or absence of dominated alternatives. Although random generation

Itself can produce dominated alternatives, it has been argued that decision

makers ignore them, effectively reducing the size of the choice set [23]. On

* the other hand, dominated alternatives can impact choice [17]. It has also

been suggested th~t the success of one simplified strategy, the equal

weighting of attributes, is dependent upon the presence of dominated
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alternatives [30]. In the simulations that follow, we examine decision sets

with dominated alternatives present and those with dominated alternatives

removed.

Method

Each of the six decision rules was applied to 200 randomly generated

decision problems in each of 36 conditions defined by a 3 (Number of

Alternatives) by 3 (Number of Outcomes) by 2 (Variance of Probabilities) by 2

(Presence or Absence of Dominated Alternatives) factorial. After each trial

the alternative selected was recorded along with a tally of each elementary

operation used by the decision rule.

Payoffs were randomly selected from a uniform distribution bounded by 0

and 1000 by the multiplicative congruence method using the IMSL subroutine

GGUBS. Probabilities were generated by one of two methods: The low-variance

condition replicates Thorngate's [48] procedure. The required number of

deviates, m, was generated from a uniform distribution and divided by the sun,

normalizing the sum to 1.0. In contrast, the high variance method first

selected a deviate from range 0, 1. Each subsequent deviate was randomly

selected from the interval (0, 1 - Epi) where Pi are the previously generated

deviates. When m - I probabilities had been generated the procedure halted

and the mth probability was set to I - Epi.

The presence or absence of dominated alternatives was manipulated by

testing for the presence of first-orrer stochastic dominance. First order

stochastic dominance describes a relation between two risky alterntives, A and

B that ensures that A will always produce a higher utility than B for a
"D

decision maker with a finite, monotomically increasing utility function. It

is analogous to simple dominance for riskless choice. A detailed description

of the alternative generation procedure is available in Appendix B.

S*, , .,,, ' ,, ' ' ,,''.,,. .*" ,., , "- -" "t"•"¢ / . ... ,, . , ". " , .. "". ". ' " ., ,, '
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Note that despite the widely differing characteristics of the four calls

created by the two types of context eff ects, all cells will have the saw man

* payoff and probability, and that the correlation between payoffs and

*probabilities will be close to 0. The differences due to context effects are

reflected In the variance of the probabilities, and in the covariation of the

payoffs across gambles.

All initialization, execution, and recording routines for the siulation

-. are written In PASCAL, with the exception of random number generation

performd by the Fortran language IML subroutines. Copies of the PASCAL

source code are available from the first author.

* Analysis

The significance of the results was established by an analysis of

variance of the cell mans based upon thea 200 trails. This f ive way ANOVA

analyzed the task effects, that Is, number of alternatives (2, 4 or 8), and

N number of outcome (2, 4 or 8) and the context effects, that is the presence

or absence of dominated alternatives and variance of probabilities (low or

high). The final factor in the design was decision rule. For some dependent

measures the cells in the analysis contained constants, and subsequently no

within-cell variance. For example, the Expected Value strategy always chose

the correct answer, resulting in a proportion of correct choice equal to 1.0.

To provide an analysis which did not violate the assumption of homogeneous

within-cell variance, we used an error-term based upon the within-cell

variances of the non-constant cells. Although the resulting test is

conservative, the experimental design provides sufficient power for hypothesis

testing.

5, While the large number of trials ensures stable estimates, it also

provides overwhelming statistical significance for many effects. Accordingly,

. . . . . .
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in reporting results it becomes more important to examine the size of each

effect relative to the others. Since all factors use the same error term, the

magnitude of the F statistic is an index of the size of effects and is a

linear function of other measures such as w2 .

Results

The two dependent measures, accuracy and effort, will be disucased

sequentially, and we will then discuss their relationship. For each measure,

we will start with the low-variance, dominated alternative condition, the cell

which most closely replicates Thorngate's [48] results, and then discuss the

results for the remaining experimental conditions.

The Accuracy of Heuristics

Table 2 presents the proportion of accurate choices, i.e. the proportion

of trials in which each heuristic selects the gamble with the highest expected

value, while Table 3 presents their relative performance, i.e. the percent

improvement in expected value relative to a random choice. The low-variance,

dominance present cell, labeled (1) in the tables, resembles the task

environment used by Thorngate, and our results closely replicate his. The

equiprobable rule, for example, appears to be quite accurate. A decision

maker using such a heuristic in this task environment will select the best

option about 75% of the time (see Table 2) and will average almost 90 percent

* of the expected value provided by the normative model relative to random

. choice see Table 3. In general, the heuristics demonstrate impressive

accuracy in this task environment.

Insert Table 2 and Table 3 about here

*. •. Vv.. . : . - - .. -' 5 *. . . . .-. - . . . . . - . - -
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Note, however, that increases iu task complexity have different effects

upon the various rules. Increasing the number of outcomes, for example, does

not affect the level of absolute and relative accuracy of the equiprobable

heuristic. Other rules, in contrast, show decreases in accuracy as the number

of outcomes increases.

The results for the two measures of accuracy, Table 2 and 3, tend to

agree on the ranking of the heuristics with respect to accuracy. Both

absolute and relative measures of accuracy based on expected utility

maximization with utility defined by a power function [21], showed a similar

pattern of results. Other utility functions are, of course, possible.

Nonetheless, our results do not appear to be limited to just expected value

based measures.

A different view of heuristics emerges, however, when the variancs of the

probabilities, relative to the payoffs, increases. For the high variance,

dominated alternatives present condition, labeled (2) in the tables, the Host

Likely heuristic is now the most accurate, while the Equiprobable heuristic

displays a marked decrease in accuracy. Similarly, the ost Likely rule now

appears to be the only rule which remains accurate as the number of outcomes

increases. Thus, these results suggest that Thorngate's results are of

limited generality. The unimportance of probability information is not

apparent in this context where a rule which considers probability information,

the Most Likely, is superior to a rule which does not, such as the

Equiprobable. These results are particularly important in light of the

suggestion made by Beach [21 that Thorngate's results justify deemphasizing

the importance of probabilities in decision aids.

The effect of our other context manipulation, the removal of dominated

alternatives, Is dramatically demonstrated In Tables 2 and 3, conditions (3)

%o.•. . ..
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and (4). The Msximin and Elimination-by-aspects heuristics, which were

reasonably accurate in the presence of dominated alternatives, now perform at

near chance levels. Note also the effect of increases in the number of

alternatives and outcomes. As can be seen in the Tables, the removal of

dominated alternatives increases the impact of task effects on several of the

heuristics* Why is this the case? We must conclude that the apparent

accuracy of source of heuristics in the presence of dominated alternatives is

S., due to their ability to screen truly inferior alternatives. Almost all the

choice strategies examined successfully avoid dominated alternatives. The

only rules selecting a dominated alternative with any frequency were the

* .. random and elimination-by-aspects. When dominated alternatives are removed,

the heuristics, (except the Most Likely heuristic) become virtually

indistinguishable from random selection.

The analyses of variance conducted upon both dependent measures,

proportion of accurate choices (Table 2) and relative expected value (Table

3), confirm the significance of the observed differences. The ANOVA's showed

A.; a significant, p < .0001, effect of rules, number of alternatives and

outcomes, and context manipulations. In addition, the interactions of rules

with number of alternatives, number of outcomes, and both context variables,

were significant for both dependent measures, p < .0001. These analyses also

allow the computation of confidence intervals for the two measures. Both

a priori (simple t-test) and a posteriori (Tukey's method for pairwise

comparisons) confidence intervals are noted in each table.

In su mary, while Thorngate correctly suggested that heuristic rules can

approximate the performance of normative procedures, he incorrectly suggested

that these findings were generalizable. The "right" heuristic to use in a

choice task seem to be strongly influenced by context effects. A
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decision-maker trying to maximize accuracy using heuristic strategies would

need to know (1) several heuristics and (2) the appropriate conditions for

their use. Thus, like Newell & Simon (34, p. 139), we conclude that "the

effectiveness of particular heuristics is a function of the problem space."

Effort and Heuristics

The simulation yields a count of the numbers of each of the elementary

processes listed in Table 4. To discuss the overall effort of any choice

procedure, however, we need to develop some meaningful procedure for

aggregation. We consider two possible schemes for combining the component

counts into an overall index: First, if each heuristic contains approximately

equal proportions of each elementary information process, their sun would

generate a convenient estimate of overall effort (Newell and Simon, [34], p.

130). The ordering of the strategies on this index will be invariant over

various estimates of the effort required by individual operations.

Insert Table 4 About Here

Second, we could use empirical estimates of effort for each elementary

process, and weight the tally by the estimates. One source of such estimates

is previous research attempting to parameterize the time necessary to execute

similar ZIPs. Work in mental arithmetic suggests that simple ADDs and

PRODUCTs are well described as fact-retrieval processes. While the time

required to perform each is somewhat dependent upon the size of the operands,

university students typically average between .8 and 1.1 seconds to perform

single d~git multiplications or additions [10]. Dansereau suggests that .3

seconds may be required to encode single digits, an operation analogous to our

BEAD parameter. Comparison between two digits (similar to the COMPARE

operator) my take .3 seconds [101. While there is no direct analogy to the

. .6
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ELIMINATE operator, similar operations in psycholinguistics (the marking of a

relation) take between .1 and .4 seconds [9]. The MOVE operator is similar to

an eye fixation which has a typical duration of about .23 seconds [40]. These

approximations suggest that equal weighting of each elementary operation may

not seriously misrepresent effort costs. To explore the sensitivity of these

effort estimates to the weights applied to each operator, we compared an equal

weight estimate to one based upon the empirical estimates:

Effort - .3 * READ + .23 * MOVE + .3 * ELIMINATE + .3 * COMPARISON
Nt

+ .9 * ADD + 1.2 * MULT.

The resulting high correlation, r - .97, suggests that a parameterless,

equal weighting model is sufficient to describe these simplified decision

tasks.

Table 5 displays the total number of operations required by each rule as

a function of the number of alternatives and the number of outcomes. It is

apparent from Table 5 that the rules differ in the impact of increasing task

complexity upon effort. For example, Elimination-by-aspects is the least

effortful of the non-random choice procedures at all levels of complexity,

while the Expected Value rule is always the most effortful. The other

heuristics we examine, such as the Maximain Equiprobable and the Most Likely,

require approximately equal, intermediate amounts of effort.

Increases in the amount of information presented to the decision-maker

affect these heuristics differently: Some rules increase in effort more

rapidly than others. For example, Elimination-by-aspects is practically

unaffected by an increase in the number of outcomes (26.0 operators for two

outcomes, 29.4 for eight), while the Expected Value rule shows a large

increase (70.0 vs. 238.0). In general, the effort required to use the

heuristics increases more slowly than the effort required to use Expected

.?
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Value. Elimination-by-aspects requires only 42 more operators when the number

of alternatives increases from 2 to 8. For the Equiprobable rule the

equivalent increase in 130 operations. Expected Value requires 186 additional

operators. Thus, all other things being equal, the Expected Value rule may

seen loe attractive, relative to the other rules, as the number of

alternatives or outcomes In a choice set increases. This matches empirical

results reported in Payne and Braunstein [38]. Finally, it is worth noting

that the two heuristics that are quite accurate relative to expected value,

the Equiprobable and the Most Likely, require substantially less effort than

Expected Value, suggesting that these may be attractive strategies to a

I decision-maker willing to trade some accuracy for effort.

A striking feature of the effort estimates not apparent from the Table

Insert Table 5 about here

Is their invariance across context effects. The effort levels associated with

many of the strategies we examine are unaltered by changes in the variance of

the probabilities or by the removal of dominated alternatives. This implies

* that a decision maker who minimizes effort will be relatively insensitive to

context effects in the selecting strategies. On the other hand, the accuracy

of this set of choice rules is strongly affected by context. This suggests

the hypothesis that effort is greatly affected by task variables and not by

context variables, while accuracy is greatly affected by context variables and

less so by task variables. This is strongly confirmed by the results of the

ANOVA conducted upon these results. Although the analysis shows that the

Impact of the task effects and their interactions are all quite significant,

1> 10,000 In many cases, the effects of the context effects and their

Interactions are such smaller, F < 22. Again the analysis provides confidence

* Intervals as noted In Table 5.
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Trading Accuracy and Effort

Central to a cost-benef it analysis of strategy selection is the existence

of an accuracy-effort tradeoff, a continuum of rules in which increases in

effort result in increases in accuracy. The estimates of accuracy and effort

provided by the simulation allow the construction of such a display, shown in

Figure 2. The figure shovs the results from the low variance and high

".4
variance, dominance present contexts averaged over task variables. Drawn for

each context is a line connecting the strategies which, for a given level of

total effort, are the most accurate in terms of relative performance (see

Table 3). Strategies not on this line are dominated, and are inferior (in

terms of accuracy and effort) to those on the frontier. The differences

N between the two frontiers illustrate an important point: The rules which

describe an accuracy-effort tradeoff vary with context. The equiprobable rule

decreases greatly In accuracy when the variance of probabilities increases,

without a comensurate decrease in effort. As a consequence it falls far

* below the efficient frontier. It is interesting to note that these shifts

seem to result from context effects rather than changes in task effects. An

examination of the data shows that the set of efficient strategies does not

vary as the number of alternatives or outcomes change. However, as Figure 2

shows, the set does change with the variance manipulation.

Figure 2 about here

-.- - - -

This yields an interesting implication for a cost-benefit perspective.

N Inherent in this perspective is the idea that the importance of the decision

will affect the choice of the decision rule. The more important the decision,

N the more effort a decision-maker will expend (moving to the upper left I I a

accuracy-effort curve). However, the current data suggest that the curve is

* . not consistent across task environments. Relatively subtle chances in

V.-%
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* context, such as the variability in probabilities, or the presence of

dominated alternatives, should change preferences f or choice strategies.

Discussion

We need to interpret the results of the simulation with some caution.

Although we have examined several task environments, many more task and

context variations can be investigated. These should Include nonrisky and

dynamic choice environments. As we have shown, the accuracy and effort

associated with a heuristic are sensitive to task environments. For example,

the Equiprobable and Most Likely rules reversed in their rank in accuracy as a

function of the variance in probabilities. There are however, several

generalizations that are suggested by our results: First, the data show that

heuristics, in at least somo task environments, can approximate the accuracy

of normative rules with substantial savings in effort. Second, no single

heuristic will do well across all contexts. Instead, if decision makers

strive to maintain a high level of accuracy with a minimum of effort, they

would choose among a repertoire of strategies. Finally, our results suggest

a. that task effects tend to have greater influence on effort while context

effects tend to have greater influence on accuracy.

* Combined Decision Rules

The present paper has treated each decision rule as one that would be

* uniquely applied to a decision problem. There is evidence, however, that

decision makers will employ strategies that combine rules. For example, Payne

[361 reports that subjects faced with choice task involving a large number

of alternatives will first use an elimination-by-aspects process to eliminate

alternatives. When the choice problem is reduced to a smaller set of

alternatives, eag., two, decision makers shift to a more compensatory decision

process. A number of researchers also have suggested on both theoretical and
6L'.$% . V-



, . s -4 't V. I. . . . . . . . . .. . .

24

empirical grounds that an early stage in a complex decision process might

involve the reduction of alternatives [28], [31], [52]. The general rationale

seems to be that such a procedure provides a way for the decision maker to

simplify a complex task.

We examined one such combined rule suggested by previous empirical

evidence: This rule used elimination by aspects until only three alternatives

remained, then calculated expected value of the alternatives on their

unexamined attributes. This rule showed some improvement over simple

elimination by aspects, choosing the alternative with the highest expected

value 15% more often. Most importantly, when compared to the other heuristics

this rule shows much slower increases in effort when the number of

alternatives increases. While the equiprobable heuristic shows a four-fold

increase in effort as the number of alternatives increases (43.3 vs. 173.3),

the equivalent increase for the phased rule is less than two-fold (39.3 vs.

59.7). Thus the combined rule has two attractive aspects: (1) it increases

the accuracy of the elimination strategy while (2) maintianing that strategy

relatively low effort in large choice sets. More research on combined

decision strategies seems warranted.

Task Effects and Production System Models

In a recent review of decision research, Einhorn and Rogarth [12] note

that "The most important empirical results in the period under review have

shown the sensitivity of judgment and choice to seemingly minor changes in

tasks" (p. 61). In addition to its descriptive interest, the lack of

invariance in decision behavior across seemingly similar tasks is a concern to

those attempting to improve decision performance. At the least, the lack of

invariance raises question about the validity of the judgmental inputs needed

to operationalize the normative procedures. (See Hurshey, Kunreuther, &

L OS, .o -o •. . . .. o . ,. , . . o .° - ' o . . . . , . - • . • . o
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Schoemaker [16] for examples of biases in the assessment of utility

functions.)

Decomposing common decision strategies into component processes (EIP's)

and simulating them as production systems may offer an appealing way to

identify and understand the potential impact of task variables on decision

behavior. The present study, for example, shows that increasing numbers of

alternatives affect differently the effort associated with expectation and

elimination-by-aspects strategies. If effort is a consideration in strategy

selection, one should not be surprised that choice behavior is sensitive to

the number of alternatives (see Olshavsky, [35]; Payne, [36]; Payne &

Braunstein, [38], for empirical evidence and Klayman, [24], for additional

evidence from a computer simulation).

Although not investigated in this paper, manipulation of information

formats provides additional examples of the potential value of decomposing

strategies into EIP's. Huber [18], for instance, reports that the display of

information in a verbal form (e.g., very good or poor) as opposed to a

numerical form (e.g., 8 on a nine point scale) reduces the use of strategies

containing concatenation or sumaing types of EIP's. Huber explains the result

by suggesting that before concatenation "can be performed on verbal

information, it somehow has to be transformed, e.g., by counting the verbal

steps between two verbal lables" [p. 192]. The transformation process is

assumed to involve additional effort (EIP's) and therefore reduces the

attractiveness of strategies involving concatenation or summation under verbal

displays. Important display effects also are reported by Bettman and Kakkar

(5], Payne and Braunstein (38], Russo [39], Yates, Jagacinski, and Faber [53]

among others. Many of these effects may be understood in terms of the impact

of display variables upon the effort required by LIP's such as READ and MOVE.
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Bettman and Kakkar, for example, report that information acquisition tends to

. proceed in a fashion consistent with the display format. The suggestion that

* the amount of interdimensional processing increases when the memory load

placed on a decision maker is increased [38] is another example. Finally, a

result readily apparent in Table 4 is that decision rules make differential

use of the various operators. For example, only the Expected Value and

Equiprobable heuristics use the arithmetic operations ADD and PRODUCT. This

suggests that strategies may be affected differently when an operator becomes

more effortful. If the outcomes of a gamble were described by three digit

numbers, for example, the literature would suggest that these arithmetic

operators would be much more cumbersome, while other operators such as

comparisons would be only minimally affected. This should make rules that

depend on arithmetic operators like Expected Value or Equiprobable more

effortful relative to rules that utilize comparisons such as

Elimination-by-aspects. From a cost-benefit perspective, this makes the

former rules less attractive relative to the latter.

The importance of task variables in the design of messages which inform

people about ris4 [44] and in the design of decision support systems [22] is

clear. Researchers need to continue to conduct experiments identifying task

and context effects. In addition, researchers should begin to explore the

impact of various types of processing aids on decisions. We believe such

research would be facilitated by the decomposition of decision strategies into

sets of productions that can be studied under various task conditions through

computer simulation.

Validation

One method of validating estimates of accuracy and effort would be

indirect, through the correct prediction of the impact of task and context
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effects upon the selection of decision rules. As we have discussed, the

current framework is compatible with several existing results in the

literature. However, much more direct tests of the degree of correspondence

N:,> between the efficient strategies for a given decision problem identified by

our simulations and the actual strategies people use need to be conducted. A

variety of process tracing techniques may prove useful in such studies [4],

[36].

Another approach to validation would use elementary operations to explain

and predict decision related behavior such as the total time required to make

a decision or self-reports of cognitive effort. The success of these attempts

depends upon:

1. The serial nature of human information processing in higher

level cognitive tasks, and

2. The assumption that each mental'operation, on average,

possesses a characteristic amount of effort.

Although such assumptions are clearly false for some cognitive tasks,

such as as highly practiced visual search, their validity for decision tasks

is an empirical question.

To conduct this research, we must first decompose decision strategies and

tally the elementary operations required by each strategy. These estimates

can then be used in a regression model to explain both total decision time,

and self reports of effort. There are two interrelated manipulations which

might allow us to estimate effort:

1. Subjects could be instructed to use a given rule, and the

simulations' estimates of effort would predict latency and

reports of effort. A pilot study by John Conery using a

similar procedure is reported in Russo and Dosher (41.

,.4-.. ,: ,, . -: , ': ,, , ., . . . °,,,. . ... . . . .. .... : .. o .. • . ., .- "
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-.. 2. Observe, through process tracing tecnhiques, such as verbal

reports or information search, the strategies used by untrained

decision makers, and infer which elementary processes are used.

Whichever method is used, we would hope that such estimates both fit the data

well and are consistent across different tasks.

Note that this analysis does not necessarily predict that decision

latency and self reports of effort will necessarily agree. Kahneman [20]

suggests that two cognitive processes which require the same amount of time

S-may require quite different levels of mental effort. Thus a comparison may

take about as long as an addition, but require less cognitive resources or

-S. attention. Subjects may report that comparison intensive rules such as the

MostLikely are less effortful than addition-intensive rules, such as the

Equiprobable, even though the rules may have identical latencies.

Deciding how to choose and learning accuracy/effort tradeoffs

As we have noted, part of the concern with accuracy and effort is

motivated by the role these concepts may play in strategy selection. As

Einhorn and Hogarth (12] note: "The wide range of strategies one can use in

any given situation poses important questions about how one decides how to

choose" (p. 69). Accuracy and effort are just some of the considerations

which may help determine a decision-maker's selection of a strategy.

S" Strategies themselves may be viewed as multidimensional objects [12], and

include additional considerations such as justifiability, speed of decision,

and awareness of conflict. Such a perspective suggests several obvious

questions about strategy selection: (1) Which dimensions are most important.

(2) Is strategy selection itself compensatory or non-compensatory? (3) When,

and how often, does the evaluation of potential strategies occur? Let us

examine, in closing, these questions in light of the simulation results avd

current literature in decision making.
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As discussed in the preceding section, there are phenomena that appear

consistent with the view that decision makers are influenced by effort. There

is less evidence demonstrating the influence of accuracy. (See Klein [25] for

a discussion of how utility considerations may guide strategy use.) Because

the most accurate decision procedure, maximization of expected utility, is

often not used in choice, it is difficult to argue that accuracy dominates

rule selection.

A cost-benefit model implies a compensatory tradeoff between accuracy and

effort that should be related to the importance of the decision. With

* sufficient incentive, decisions may involve the use of expected value

maximization. However, the use of heuristic strategies seems to persist, even

a, in situations involving substantial incentives [14], [26].

An alternate viewpoint is that effort and information processing

limitations represent constraints which limit the strategies that can be

adopted. Simon [43], for example, views a decision-maker as using heuristics

and satisf icing "not because he prefers less to more, but because he has no

N choice (p. 36)." It is important to note, however, that the concepts

underlying a process of expected utility maximization, while quite demanding

of the information processor, are not inconsistent with our current

-~ understanding of human cognition. Such processes, however, could well require

* inordinate amounts of time, and in practice, be impossible for the unaided

decision-maker. Processing constraints, therefore, may impose severe

limitations upon the strategies and thereby provide a boundary for the

* feasible region In which accuracy-effort tradeoffs could be made. The

* ultimate status of the cost-benefit perspective awaits further research, but

it may be necessary to modify the notion to include an upward bound upon

processing capacity. Thus, while effort seems securely ensconced as a

explanatory variable in strategy selection, the role of accuracy and its
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relation to effort seems loe clear.

One difficulty with the idea that people deliberately decide how to

*choose is a potential infinite regress: One has to decide how to choose to

decide how to choose.... A more reasonable perspective is that such decisions

are not made of ten but that the relationship between task and context effeacts

and the efficiency of a decision strategy Is learned over time. For example,

a decision msker may learn over time that a screening phase will substantially

reduce effort in large choice sets. This knowledge can exist as part of the

conditions which must be met for a production to fire. More generally, a

decision maker may develope over time a task specific strategy that is highly

4, accurate while requiring substantially less information processing than a

normative rule. Klein [25] suggests the similar idea that a decision maker's

use of heuristics may be related to learning about the nature of task

environments. The potential importance of learning makes a production system

representation especially useful for the study of strategy development in

decision making. As Simon (43] notes: "what makes production systems

especially attractive for modeling is that it is relatively easy to endow them

with learning capabiliLties-to build so called adaptive production systems.

(p. 11.

However such an approach to strategy selection must come to grips with

the nature of outcome feedback in risky choice. Seldom is such feedback

ime diately available, and in a risky choice, there is no deterministic link

between the outcome obtained and the alternative selected. Even if outcome

feedback is available, learning may be hampered because the feedback is

related to the alternative selected (13]. In the extreme, it has been argued

that learning seldom occurs even under optimal presentation of outcome

- feedback [61.
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If outcome feedback is such a problematic mechanism for learning, how

else might decision makers change strategies? In addition to outcome

feedback, the decision maker has access to a fairly rich data base about the

course of their own decision processes. This process feedback could provide

information necessary for strategy change. By noticing possible shortcuts in

past and current decisions, the decision maker could induce less effortful

choice procedures. For example, a decision-maker might induce the Most Likely

heuristic by noticing that certain outcomes seem such more probable than

others. To evaluate the impact of this change the decision maker might check

that the output of the new heuristic is consistent with several general

principles of choice. For example, the decision maker might check that the

new procedure does not select dominated alternatives, and that it selects

alternatives that have satisfactory levels of the other outcomes. Like a

problem solver that has induced a new strategy for mental addition, the

decision maker evaluates the strategy change by examining the answer for

consistency with previous procedures. The notion that learning occurs on the

basis of trace information has been discussed in other cognitive tasks by

Anzai and Simon [1).

Summary

This paper uses production system models and computer simulation to

explore the accuracy and effort of various decision strategies in different

i choice environments. The results show that heuristic strategies can be highly
,.

accurate while substantially reducing effort relative to normative procedures.

The accuracy and effort of strategies, however, is highly contingent on

characteristics of the choice task. This result provides a partial

explanation for the finding of contingent decision behavior (37]. However,

*.*;-. .. , . .. .,.... . . . .. . . . . .-.. . . . . . . . .- ... . . .-.. .- -. ,.. . . .,
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the entent to which decision makers actually tradeoff effort and accuracy, and

do so optimally, are open empirical questions. Much more research is required

to understand more completely the selection among decision strategies and how

one may learn the relationships between task demands and the accuracy/effort

properties of choice strategies.
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BRAD Read an alternative's value on an attribute into STM.

COMPARE Compare two alternatives on an attribute.

DI M RENCE Calculate the size of the difference of two alternatives for

an attribute.

ADD Add the values of an attribute in SmH.

PRODUCT Weight one value by another (Multiply).

ELIMINATE Remove an alternative from consideration.

MOVE Go to next element of external environment.

CHOOSE Announce preferred alternative and stop process.

Table 1: Primitive operations used in simulation.
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TABLE 2

Proportion of Accurate Choices
1

Context Choice Task Conditions

Condition Rule Number of Alternatives, Number of Outcomes
2

2 4 8 2 4 8

1. Low Variance Equiprobable .84 .76 .65 .77 .74 .73

Dominated MostLikely .78 .64 .48 .77 .60 .53

Alternatives Naximin .73 .56 .46 .69 .58 .48

EBA3 .63 .51 .36 .58 .49 .43

2. High Variance Equiprobable .77 .60 .46 .73 .59 .50

Dominated MostLikely .86 .75 .62 .78 .75 .70

Alternatives Maximin .68 .47 .34 .65 .48 .35

EBA .63 .47 .29 .57 .41 .36

3. Low Variance Equiprobable .68 .39 .21 .46 .42 .39

No Dominated ostLikely .72 .52 .38 .61 .53 .48

Alternatives Maximin .58 .30 .09 .25 .34 .38

EBA .56 .24 .12 .28 .33 .32

4. High Variance Equiprobable .58 .35 .20 .42 .38 .&2

No Dominated MostLikely .81 .65 .55 .68 .65 .68

Alternatives Maximin .50 .23 .06 .23 .27 .30

EBA .50 .27 .13 .30 .29 .31

Expected Value 1.00 1.00 1.00 1.00 1.00 1.00

Random .50 .25 .13 .29 .29 .29

APercent of EV Maximization Choices

2 Differences exceeding .02 are significant, a priori, .047 a posteri,

p < .05.

3Eliaination-by-Aspects Rule.

. . . . . . . .
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TABLE 3 4

Relative Performance of Heuristics'

Context Choice Task Conditions

Condition Rule Number of Alternatives, Number of Outcomes

2 4 8 2 4 82

1. Low Variance Equiprobable .83 .90 .88 .91 .86 .84

Dominated MostLikely .75 .75 .72 .88 .77 .57

Alternatives Maximin .54 .67 .69 .81 .63 .45

EBA3  .35 .55 .58 .63 .52 .32

2. High Variance Equiprobable .68 .65 .71 .81 .67 .49

Dominated HostLikely .93 .94 .93 .91 .87 .87

Alternatives Maximin .52 .56 .59 .82 .53 .32

" EBA .38 .46 .50 .62 .45 .27

3. Low Variance Equiprobable .46 .35 .23 .42 .39 .23

No Dominated MostLikely .60 .61 .56 .67 .62 .48

Alternatives Maximin .18 .11 .00 .00 .13 16

EBA .16 .10 .03 .10 .18 .01

4. High Variance Equiprobable .26 .25 .13 .38 .20 .07

No Dominated MostLikely .83 .86 .77 .83 .82 .81

Alternatives Maximin .05 .03 .00 .02 .04 .00

EBA .12 .14 .00 .14 .10 .02

Expected Value 1.00 1.00 1.00 1.00 1.00 1.00

Random .00 .00 .00 .00 .00 .00

IPercentage of Expected Value Gained over Random Choice

2Differences exceeding .016 are significant, a priori, .036 a posteri,
-I. p < .05.

3ElImination-by-Aspects.

, - - -' .'"-',,',S--".". -". .'-" " "- - "- "- - ." • " "- ," ' " " ". "-. ..
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TABLE 4

Average Number of Production Operators
Utilized by each Rule

Choice Operatorsl

Rule Moves Read Product Add Eliminate Comparison Total

Equiprobable 52.9 21.7 0 21.8 0 6.7 103.1

Most Likely 66.9 26.4 0 0 0 20.8 114.1

Maximin 52.9 21.7 0 0 0 26.4 101.1

Elimination-
by-Aspects 10.0 7.7 0 0 3.8 6.7 28.2

Expected
Value 52.9 43.6 21.8 . 21.7 0 4.7 144.7

Random 1.8 0 0 0 0 0 1.8

ICHOOSE is not listed since it is constant (1) for all rules.

- L_4,
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-TABLE 5

Total EIP'S by Task Complexity

Choice Ru.le Task Condition

• . " -iNumber of Altearnatives Number of outcomes

€ 2 4 8 2 4

Random .51 1.5 3.5 1.8 1.8 1.8

IElimi nation- 9.1 23. 51.1 2.0 28.6 29.

by-aspectsI

M'" aximt n 43.3 86.7 173.3 51.3 88.7 163.3

_M- os tLikely 48.3 97.7 196.3 64.3 106.7 163.3

S.,"

• .Equiprobable 43.3 86.7 173.3 51.3 88.7 163.3

' Expected Value 62.0 124.0 248.0 70.0 126.0 238.0

#

IDfferences exceeding .074 are significant at p < .05 a pCdor, .134 a

posteruorb.

i .

. . .. • ,; , ,R.a.ndom ,.,... ,. 51 1.5. 3.5 1.8. 1.8, 1.8....,.' , .. ... . .. ... .
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(if at the end of alternatives) then (Choose alternative which is currently

the best)

(if at the end of the outcomes) then (COMPARE the Current Alternative to

the current best; winner becomes

current best)

(if not at the end then (READ the outcome's payoff;

of the outcomes) HOVE to the probability;

READ the outcome's probability;

PRODUCT the probability times the payoff;

ADD the Result to the Current Alternative;

MOVE to the next outcome's payoff)

Figure 1: The Expected Value Rule

.. . . . .
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Appendix A: Description of Production System Implementations of Choice Rules

This appendix presents English-like representations of the production

systems used to implement the decision processes in the simulation. The

equivalent representation of the expected value rule is in Figure 1. All the

systems assume a specific form of conflict resolution: that the first true

production is executed in each cycle. Instances of the operators in Table 1

are noted in capitals.

e 'p

'.

' "I . . . " " . - . .' -" . - .o.

.'. ,, - . - _. '. ,- ., , . - . . . , .



Production System f or
Elimination-by-Aspects

(if only one alternative is left) -> (CHOOSE that alternative; stop)

(if at the end of all attributes) 0> (CHOOSE randomly from the remaining

alternatives)

(if at the end of an attribute) 0> (MOVE to the next payoff)

(if the current alternative's payoff is known and

is less than the cutoff 0> (ELIMINATE the alternative)

(if the current alternative's payoff is

known and is greater than the cutoff) 0> (MOVE to next alternative)

(if no cutoff is present) -> (READ cutoff; READ the current alternatives

payoff)

(if the current alternative's 0> (READ current alternatives payoff for this

Apayoff is not known) attribute; COMPARE to cutoff)



Production System
for Most-Likely Heuristic

(if at end of the alternatives) a> (CHOOSE the current best)

(if at the end of this (COMPARE the payoff of this alternatives

most-likely outcome to

alternatives outcomes) - payoff of the Imost-likely outcome of the current best;

HOVE to next alternative)

(if not at the beginning of an -> (MOVE to the next probability;

alternative) READ probability; COMPARE current

alternatives probability to the

best-so-far)

(if at the beginning of an > (MOVE to payoff; READ probability;

alternative) Assign tO best-so-far)

.5,

S.' . g r * - - % . .'_._.- .' .% . ' . - . . - . -. . . .. . .
:. . . " r e . ..wy.",' r " ' ' .r . ,., q' d: .... ' ' ' .. ,. ' ' . . °L'.'.J ' ' ' ' "



Production System for

Equiprobable Heuristic 1.

(if at the end of the alternatives) (CHOOSE the current best)

(if at the end of this alternative) (COMPARE this alternatives subtotal to

current best; MOVE to next

alternative; MOVE to next payoff)

(if not at end or beginning of an (READ Payoff;

alternative) ADD to this alternatives subtotal)

(if at the beginning of an (READ Payoff - make it this

alternative) alternatives subtotal)

5, .°

Iainissimilar, bta COMPAR replaces the ADD in the third production,

and the subtotal is replaced by the minimum payoff.
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Appendix B: Description of Context Manipulations

The context effects manipulaeed in the simulation study can be viewed as

changes in the distribution of two random variates: p, the probabilities and X

the payoffs. This appendix describes the two versions of each variate which

yield the 2 x 2 factorial utilized in the simulation.

Each gamble consists of M events, and since the probabilities sun to 1,

- the man of any distribution of probability will be 1. Subsequently, the
i

average correlation between all pairs of probabilities Pi, pj i * j will be

-1 , and the variance of the distribution can range from a minimu of 0 (all
M-1

P i) to a maximum of I - I (for example one pi - 1, the rest 0). Although

no closed form exists for the probability generation method used by Thorngate

[48], an expansion of the Taylor series results in the approximation I . The
3;j2

alternative method used here possesses a variance of M-1. Subsequently, the

two sethods yield radically different distributions, and these differences

increase with increases in the number of outcomes. For example, the variance

in probabilities for the levels used in the current simulation would be:

Maximum Possible
Low Variance High Variance Variance

H 2 .083 .125 .250

4 .021 .046 .187

8 .005 .014 .109

Thus, Thorngate's results, equivalent to our low variance environment, may be

of limited generality. Ris method of generalizing probabilities resulted in

distributions of low variance, and the range of probabilities incorporated in

the resultant gamble become quite small as M increased.

All payoffs in the current simulation are drawn from a uniform

distribution, range 0 to 1000. To remove stochastically dominated



alternatives we used a rejection method. However, dominance is frequent with

Increases in N, the number of gambles in a choice set. Consequently, to

improve the efficiency of generating gambles, we first ensured that the

payoffsa of all alternatives avoided simple dominance: i.e. for all pairs of

gambles, a and b, a had a higher payoff than b on at least one outcome, while

b had a higher payoff than a on another outcome. While this maintains the

same mean and variance of the distribution of probabilities, it does introduce

* a correlation between the Xi of the alternatives. For all pairs of

alternatives the correlation between payoffs will be -1 . Probabilities are

* . then assigned to the gambles and the choice sets were then examined to ensure

that no gamble was first-order stochastic dominant over another. If such a

*1 pair existed, the choice set was rejected and a new one created.

Since payoffs are independent of probabilities, the average expected

value of all gambles generated (and the expected value of a random choice) is
M
E pixi or $500. The average maximum will vary, however, as a function of

the variance of p and x.
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