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ABSTRACT

ééf’A Ready Supply Store (RSS) containing repair parts which
are anticipated to be used during the production process has
been established to support the Naval Air Rework Facility
(NARF). While this supporting inven%gégaﬁuuy‘previously been
constructed using historical demand data, a single-period
model and a two-period model have been proposed which
compute stock levels based on quarterly production schedules.
This thesis extends the use of the projected production
information in calculating RSS inventory levels from two

| ) periods to multiple periods. The disadvantage of the
single-period model is that it ignores information about

future schedules. The multi-period model uses the informa-

tion on future schedules to behave more optimally. The ?

multi-period model shows significant differences in inven-
tory levels over the single-period model as a result of the
added information. The multi-period model is also easily

programmed on a computer and is preferred over the single-

period model. f;/
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I. INTRODUCTION

A. BACKGROUND

Naval Air Rework Facilities (NARFs) perform overhaul and
maintenance actions on various components utilized by fleet
aviation units. These rework activities are accomplished in
accordance with a quarterly production schedule. Informa-
tion on anticipated NARF workload requirements is also
usually available for several additional future periods.

The Naval Aviation Logistics Center (NALC) is in the process
of developing a Material Requirements Planning (MRP) type of
system which utilizes these forecasts to project requirements
for individual spare parts used in the rework process. The
intent is to accomplish the assigned NARF mission more effi-
ciently by reducing work stoppages caused by stockout

[Ref. 1]. The MRP system is expected tc also respond better
to the peaks and valleys of production and reduce surpluses
and shortages which can occur when forecasting demand based
on gross historical demand for an item.

MRP systems are intended to reduce or even eliminate
repair part inventories by phasing item arrivals to coincide
with their need within the production process. However,
random variations in demand exist because an item may not

always be replaced in an end item which is being overhauled.

As a consequence, there is the need for the establishment of

7
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some form of backup inventory support. The RSS will store
those parts expected to be used during the production
process and the Naval Supply Center (NSC) will protect
those parts from issue to other NSC customers.

The MRP philosophy of inventory management mandates that
these repair part stocks be carefully controlled. McMasters
[Ref. 2] proposed a single-period stochastic inventory model
utilizing the production information for the quarter. Hund
[Ref. 3] extended that model to a two-period one with the
purpose of determining how much to stock in the first
quarter to meet the stochastic demands of the quarter and
account for the benefits in the second quarter of any
surplus from the first quarter. Both models focused only
on those items which would not be replaced 100% of the time.

Hund postulated that surplus costs resulting at the end
of a given period on a specific item may be greatly reduced
by considering the anticipated demand for that item in
future periods. A model incorporating anticipated rework
activity beyond the upcoming production period should
provide a more accurate reflection of total expected costs
over a particular length of time, and, thus offers the
potential of creating a more cost effective inventory mix.
Hund did not go beyond the two-period model but did use the
concept of dynamic programming to develop solutions. If a
planning horizon of two periods is better than one, then an

even longer horizon can be expected to be better than two.

8




However, it is expected that the validity of future produc-
tion schedules may be questionable. 1In spite of this fact,
a general multi-period model needs to be considered before

a recommendation can be made as to what model to implement
for a NARF. Questions of model complexity and data validity
can then be answered through sensitivity analyses.

The basis for the development of the two-period and
multi-period models is the Karlin dynamic multi-period
inventory model [Ref. 4]. In that model, the demand distri-
bution may change from period to period and the optimal
policy is characterized by a single critical number repre-
senting the initial inventory value. The theorems developed
by Karlin serve as useful checkpoints for operation of the
two-period and multi-period inventory models and as a basis

for further investigation.

B. PURPOSE
The objectives of this thesis are to:

- Develop an inventory model for the RSS which utilizes
available production schedules for as many quarters as
are available;

- Obtain results from the multi-period model to compare
with the single-period model or a model with only a
two or three-period horizon to determine if there was

any advantage to using a model with a shortened time

horizon; and
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\ - Obtain results, not addressed by Karlin in his general

: multi-period model analyses, for cases of decreasing
production schedules and cyclic production schedules
and to compare these results with the case of a

constant production from quarter to quarter.

10
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II. THE SINGLE PERIOD MODEL

A. INTRODUCTION

This chapter will provide a brief synopsis of the

single-period model explained by McMasters [Ref. 2] and Hund
[Ref. 3]. This brief description will give insight into the
construction and workings of the two-period and multi-period
models.

In a single-period model, the determination of how much
inventory to carry at the beginning of a quarter to meet
that quarter's demands for a given repair part is based
solely on the production data of that one quarter. Although
data may be available for subsequent quarters' production,
only data from the gquarter under immediate consideration can

be used.

B. GENERAL ASSUMPTIONS
The following general assumptions apply to the single-
period model:

- The NARF Production schedule is known.

- The RSS inventory calculation is performed on a
periodic basis once for each quarter (a periodic
review model).

- Items which are certain to be replaced (100% of the

time) are stocked to the needed level in the usual

11
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sense of MRP and are excluded from application of this
inventory model.

Procurement leadtime for the quarterly stocking of the
RSS to the computed levels is assumed to be zero since
the supporting NSC will probably have the stock and
deliveries are frequent.

Demands in excess of RSS inventory are backordered to
the NSC. It is assumed to either have the back-up
stock or know where to get it quickly. A shortage
penalty cost will be used to measure the cost of the
inconvenience of not having a unit of the item avail-
able from the RSS.

The probability that a part will be demanded a speci-
fied number of times during the production process is
a random variable described by the binomial distribu-
tion.

In the optimization, each quarter is treated as if it
were isolated from all others.

There is no replenishment of the RSS during the
quarter to restore inventory levels for the quarter.
The model is applied to a single repair part being

used in the repair or overhaul of a single component.

COST ASSUMPTIONS

The following cost assumptions apply to the single-

period model:

12
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- There is no time-weighted holding cost since the space
allocated to the RSS is fixed and, in general, will
accommodate stocks at a high operating tempo. This
space will not be decreased if in.¢atory projections
require less space. This creates a fixed cost which
does not influence the model.

- Any ordering cost is ignored since the cost of each
quarterly periodic review and its resultant orders
would be about the same each time and essentially of a
fixed nature,

- Unit cost '"'C' is the constant cost the NARF would pay
for one unit of the item.

- Surplus cost "H" is the per unit constant penalty for
having left-over repair parts at the end of the quar-
ter's production run.

- Shortage cost "P'" is the per unit constant penalty for
having inadequate on-hand stock in the RSS to meet
production demands. The shortage cost is a measure of
the cost incurred for work stoppages due to lack of

immediately available parts.

D. THE SINGLE-PERIOD MODEL

The objective function of the model is to minimize total
expected variable costs. In so doing, the model will define
a unique number which will represent the optimal quantity of
a repair part to be in place in RSS stock at the beginning

of the NARF production quarter which is undergoing review.

13
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The objective function of the model is represented by a
total expected variable cost (TVC) equation which consists
of two components. The first component is the product of
unit cost of the item and the number of units proposed to be

procured--denoted by '"y". The second component is the sum

of expected penalty costs, both shortage and surplus, at the
end of the quarter based on making the same "y" quantity of

the repair part as proposed to be procured in the first

component available at the start of the quarter. Thus, for ‘
any given "y" a total variable cost of procuring and ‘
"carrying" that number of the item can be determined.
Plotting total variable costs for each '"y" against the "y"
values would provide a convex curve. It is at the lowest
point on the curve that the total variable cost is mini-
mized. The associated discrete y quantity minimizes the TVC.
It is denoted by "y*" since it is the optimal inventory
quantity of the repair part to be carried in the RSS for the
quarter in question.

Possible values of "y" range from zero to 100% of poten-
tial replacement actions. The latter coverage would result
in no shortage costs and the highest expected surplus costs
whereas a zero inventory would result in no surplus costs
and the highest expected shortage costs. The actual demand
will be somewhere between these extremes for y. The distri-
bution of each demand is like a "Bernoulli Trial" in that it

is discrete and is the result of either a '"go' or '"no-go"

14
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situation. When the outcomes of these trials are accumulated
over a quarter of '"m" overhauls of a component containing

the item in question, the total demand for the quarter is a
random variable which behaves according to the binomial

i probability distribution.

p (1-p) (1)

where:

u represents the possible demand for repair part;

P is the historical probability that a part will be
replaced during the overhaul of a single component.

A recursion form of equatiod (1) is useful for computer
; calculations and is given by (2).
(1-p)” for u = 0 (2)

g(u) =

-[%-(-_il—%l pg(u-1) for O<usn

Having specified the probability function for the demand u,

the sum of the expected shortage and surplus cost functions

can now be written. It is

y n
L(y;g) = H I (y-u)g(u) + P I (u-y)g(u)
u=0 u=y+1
which reduces to equation (3) when the binomial distribution

is considered.

!
i
\.
4
l
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y-1 y-1
L(y;g) = (H+P)y I g(u)-(H+P) I ug(u) + pnP-Py (3)
u=0 u=0

The equation for the total variable costs for any '"y"

value is:

TVC(y) = Cy + L(y;g) (4)

To obtain the optimal value of y, the technique of finite
differences can be used. y* will be the largest value of y

for which:

TVC(y) - TVC(y-1)<0

When this difference inequality is determined for equation
(4), the result is the inequality (5). Note that P>C is
required to get y > 0.

y-1

L g(u) <
u=0

== (5)

The minimized total variable cost can then be computed
using y* in equation (4). 1In use, there may be a surplus of
inventory available from the preceding period. If we denote
this quantity by "x" then x>0 if demand during the
preceding period was less than the stock at the start of
that period. If x<y then we need to buy the difference y-x
so that y units will be available at the start of the

quarter in question., If x>y then we actually have more

16
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than we need for that quarter and we would certainly not buy

any more. We would also not need to buy any if x = y.

17




III. THE TWO-PERIOD MODEL

-

A. INTRODUCTION

This chapter will provide a brief synopsis of the two-
period model developed by Hund [Ref. 3]. It builds upon the
single-period model and is a specific application of the
more general Karlin multi-period model [Ref. 4].

In the two-period model, the determination of how much
inventory to carry at the beginning of a quarter, to meet
that quarter's demands for a given repair part, is based
both on the production data of that quarter and the
immediately succeeding quarter. This is unlike thé single-
period model where production data from the succeeding quar-
ter was not considered in determining the optimal inventory.

The reason for this analysis was to determine if know-
ledge of productive data from the second quarter would affect
the optimal initial inventory. The comparison was performed

against the single-period model results.

B. GENERAL ASSUMPTIONS

The general assumptions of the single-period model are
also valid for the two-period model except for the assump-
tion in the optimization that each quarter is considered in
isolation. 1In addition to the single-period general assump-

tions, the following are also relevant:

18




- The periods are successive and of equal duration
(i.e., quarters of a year);
- Demand constitutes a sequence of independent ran-

dom variables over successive periods.

C. COST ASSUMPTIONS
The cost assumptions of the single-period model are

also valid for the two-period model. In addition, the

cost functions are of the same form in each period.

D. THE MODEL

The objective function of the two-period model is the
same as the single-period model--to minimize expected total
variable costs. As in the single-period model, the two-
period model will also generate a unique number which will
represent the optimal quantity of a repair part to be in
plaée in RSS stock at the beginning of the first NARF
production quarter which is undergoing review.

The total variable cost equation of the single model
will be expanded to take advantage of the additional produc-
tion information from the second quarter. In keeping with
the usual dynamic programming labelling of time periods, we
denote the last period of a two-period sequence as period
no. 1 and the first period as period no. 2.

As Hund discovered, the requirement to project the costs

i backwards from period no. 1 provided added complexity over

9

! the single-period model. In particular, the costs of the
19
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period no. 1 would be affected by a balance of inventory
remaining from period no. 2. That balance is a random vari-
able, of course. The two-period model is based on the
Karlin generalized inventory model [Ref. 4].

The dynamic programming technique uses inequality (5)
to obtain the optimal y for period no. 1. Then it requires
consideration as to whether the carry-over inventory x
between period no. 2 and period no. 1 is less or more than
this optimal y in the development of the expected total
costs over both periods. These expected total costs are
used to compute the optimal y for period no. 2.

A third component is added in the two-period model to
represent the expected optimal total variable costs for
period no. 1 when there is no inventory carry-over from
period no. 2. This expected cost is denoted by f(0;h) for
each demand situation corresponding to x = 0. Here h repre-
sents the demand distribution of period no. 1. This cost
term is computed using equation (4) since x = 0, and is

represented by
f(0;h) = TVC(k) = Ck + L(k;h) (6)

where

k represents the optimal y value for period no. 1 as
obtained from inequality (5).

This cost from period no. 1 is then multiplied by the

probability thaf the demand during period no. 2 will result

20




in x = 0. This provides the expected cost given that all
the inventory was consumed in period no. 2, and that a zero
carry-over into period no. 1 will then require the full
period no. 2 TVC to be expended. The complete form of the
third component can be written as the product:
m
£(0;h) T g(u);
=y
where:
m is the production schedule of period no. 2, and
u is the possible demand value during period no. 2.

y is the inventory established at the start of period
no. 2.

Since the third component represents the expected total
variable cost of period no. 1 when no inventory is carried-
over from period no. 2, the fourth component of the two-
period model represents expected optimal total variable cost
of period no. 1 when there is a positive inventory carry-
over from period no. 2. This results when demand during
period no. 2 is less than the unconstrained initial inven-
tory for period no. 1. Let f(y-uj;h) represent the expected
optimal costs during period no. 1 given a demand u<y
occurred during period no. 2. Its expected value over all
possible situations where u<y is given by

y=-1

T £(y-u3;h)g(u).
u=0

21




However, there are two cases which arise for this function.
One case is when the "y'" value is at leasp as large as its
counterpart second period k value; the other case is when y
is less than k.

Since the application of the method of finite differ-
ences failed to provide simplifications for determining y*,
Hund found it necessary to provide two equations for
describing the TVC model depending on y's relationship to k.
In the case where y 2k, the following formula applies to
describe all of the expected costs for the two-period mecdel.

m
TVC(y) = Cy + L(y;g) + £(0;h) I g(u) +
u=y
y-k y-u-1 y-u-1
Z {(H+P)(y-u) I h(s)=-(H+P) I sh(s) +
y=0 s=0 $=0
m k-1
pnP-P(y-u)lg(u) + £  {(H+P)k I h(s) =~
u=y-k+1 s=0
k-1
(H+P) I sh(s)+pnP+k(C-P)}g(u) (7
s=0
where:

s represents the possible demands during period no. 1.
When y <k, the following formula applies:

m

TVC(y) = Cy + L(y;g) + £(O;h) L g(u) +
u=y

y-1 y-1
L Clk=-(y-u)]g(u) + I L(k;h)g(u). (8)
u=0 u=0

22
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Hund concluded that '"the critical number y* for a two-period
binomial model may thus be identified by using equations (7)
and (8) to compute the TVC values for all possible initial
inventory quantities; it is that value of 'y' which results
in the minimum TVC." [Ref. 3]

The maximum value of y is the total quantity of a given
repair part needed for the quarter. This is the product of
the number of units of a given repair part needed by a
component and the number of components being scheduled for
overhaul during the quarter. We will denote this quantity by
the variable name n for period no. 2 and by m for period no.
1. The minimum value for y is, of course, zero. For the
enumeration process, the y value to initiate the process can
be either the maximum or zero. For the two-period model,

Hund found it most efficient to begin at n and work down.

E. TWO-PERIOD MODEL FINDINGS

The Karlin Model [Ref. 4] contains a number of conclu-
sions which are useful checks for correctness of the multi-
period model. Hund's findings which corresponded to the
conclusions of the Karlin Model can be summarized as
follows: [Ref. 3]

- "The critical number (y*) for period no. 2 of a two-
period model is always greater than or equal to the
optimal result for the corresponding one-period
model...The difference in the y* values is never more

than one."

23
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-~ "An incréasing production schedule will produce a y*
value identical to the situation in which the produc-
tion workload is constant."

- The shortage cost must be greater than the unit cost
if the item is to be stocked at all. This was also

true in the single-period model.

F. TWO-PERIOD MODEL CONCLUSIONS

The two-period model results were compared with the
single-period model results and were nearly equivalent. This
lack of a substantial difference in results in view of the
added complexity of the two-period model led to a recommen-
dation that the NARF use the single-period model pending
analysis of a multi-period model. The availability of work-
load forecasts for future periods left open a possibility

that a multi-period model might provide greater benefit t!..n

a two-period model when compared to the single-period model.
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Iv. THE MULTI-PERIOD MODEL

A. INTRODUCTION

This chapter will describe the composition of a multi-
period model. It is a general finite period model which
builds upon the two-period model of Hund and the general
Karlin multi-period model.

In the multi-period model, the determination of the
optimal inventory to carry at the beginning of a sequence of
t periods is based on the production data of that period and
as many successive periods as the user desires to include

based on available production data. The optimal inventory is

determined using dynamic programming. This model, unlike
the single-period and the two-period models, allows the user
to make use of as much quarterly production data as is
available. The user sets the time horizon (for example,
eight quarters) and then steps forward one quarter moving
the same horizon ahead one quarter. The principle for opti-
mality from dynamic programming states that:

"An optimal policy has the property that whatever tie

initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard

to the state resulting from the first decision."

{Ref. 5]

There were three goals for developing the multi-period

binomial distribution inventory model. The first was to

develop an inventory model for the RSS which utilizes

25
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? available production schedules for as many quarters as are

; available. The second goal was to obtain results from the
multi-period model to compare with the single-period model

{ or a model with only a two or three-periods horizon to
determine if there was any advantage to using a model with

a shortened time horizon. The third goal was to obtain
results, not addressed by Karlin in his general multi-period
model analyses [Ref. 4], for cases of decreasing production
schedules and cyclic production schedules and to compare
these results with the case of a constant production from

quarter to quarter.

B. ASSUMPTIONS

All general assumptions and cost assumptions associated
with the two-period model of chapter II1 apply to the
multi-period model. The general model adds the additional

freedom of allowing future periods to b discounted.

j C. THE MULTI-PERIOD MODEL
( The objective function of the multi-period model is the
|

same as the single-period and two period models--to mini-

| mize expected total variable costs for the selected time

f horizon. As in the previous models, the multi-period model

i will also generate a unique number which will represent the

i optimal quantity of a repair part to be in place in RSS
stock at the beginning of the first NARF production quarter,

period no. t, of the time horizon. The various quarters of

26

oS -




bl L it gy 31 4

the time horizon are numbered in inverse chronological
sequence. The need for this inversion will be discussed
later. A subscript "t" will be used to denote the quarter.
As an example, when t=1, yt*=k where k was the optimal y
value for period no. 1 and for the single-period model.

The cost components of the multi-period objective func-
tion are identical to those of the two-period model in
concept. The primary difference is in the third and fourth
components. When ytg yg_l, the expected total variable

cost equation for the multi-period model can be written as

max n
TVC(yt) = Cyt + L(yt;gt) + f(O;g...)u;i gt(u)
t
yt-l
+ I f(yt—u;g...)gt(u); (9)
u=0

where:

f(x;g...)=f(x358__ ,...,gl) when x is the carry-over
from the prior Be}iod;

max n represents the highest planned production schedule
of all quarters;

t=number of the period in inverse chronological sequence.
For the case when yt:>y€_1, the expected total variable cost
equation is:
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max n
TVC(y,) = Cy, + L(yt;gt) + f(O;g...)u=§ gy (u)
t

Veovio1l
+ z f(yt-u;g...)gt(u)

u=0

V-1
+ ) f(yt-u;g...)gt(u). (10)

At each periodic review, the calculation of the beginning
inventory balance (for period no. t) is performed assuming
adherence to the principle of optimality of dynamic pro-
gramming. This assures consistent application of the

model at each review. During each review, the overall
problem of finding the optimal expected total variable cost
based on data from multiple quarters is broken into as many
sub-problems as there are quarters. Also, approximate recur-
rence relations for the t period case (where period t comes
first in time) are used in functional equations as a means

of simplifying the solution to the overall problem.

The terms £(0,g) and f(y-u,g) can be generally denoted
f(x,g) where x is the carry-over. Following Karlin, f(x,g)
represents the optimal TVC of an immediately succeeding
quarter given that x is the carry-over value from the
quarter before. In the case of the third component of the
TVC equation, the carry-over is zero and the succeeding
period's optimal TVC value is represented as f(0,g).

The fourth component of the TVC equation represents the

optimal TVC of the immediately succeeding period when the
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value of carry-over is less than y{. The equation for

f(x;gt) is given by (11)
f(x;8...) = TVC(y%_l) - Cx for Og:cgyg_l; (11)

where:

Cx represents the value of the carry-over which does not
have to be procured in the succeeding quarter.

When the carry-over exceeds y§, then the optimal TVC for
the succeeding period is constrained to Ve = Xo This is

represented by (12).

f(X38...) = TVC(yt_1=x) - Cx for x2>y§ (12)

-1

The iterative application of equations (9) and (10), as
appropriate, through each of the periods from period one
thru period eight would yield an optimal TVC and its associ-
ated optimal initial inventory value which is to be carried
in the first chronological period. In the process, the
optimal inventory values for all subsequent periods are also
computed. This process would be repeated for each item in
the RSSinveﬁtory which is not stocked to meet a 100%
replacement policy. The entire periodic review for the next
quarter's production support inventory need not be made
until a quarter later. No intervening computations are
required. The earlier computed optimal inventory values
could be used for stocking for those periods or the whole

model could be re-~run. A complete re-run has the advantage
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of using firmer forecasts of the workload. In order to
facilitate understanding, the process has been put into

flowchart form in Appendix A.

D. PRESENT VALUE CONSIDERATION

The multi-period model has the capability for consi-

dering the effect of carry-over penalties for a considerable

time in the future. Since the objective function is to mini-

mize the expected total variable cost of the first chrono-
logical period, assuming optimal inventories are stocked for L
all periods, the dollar streams for all periods should be
represented in terms of their present value. The optimal
expected cost values of the future chronological periods are
contained in the f(x,g) values. Discounting these f(x,g)
values by a constant factor will therefore provide the
compounding required for all the future periods. The
selected discount factor should fit the duration of the
period to achieve the annual discount desired. The factor

is represented by "A." The location of the discount factor
for the conditions of equation (9) is shown in equation (13).
The location of the discount factor for the conditions of
equation (10) can be deduced from the comparison between (13)

and (9).
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TVC(yt) = Cyt + L(yt;gt) +

max n
A{£(03g...) L gt(u) +

yt-l

T f(y.-usg...)g.(0)] (13)
u=0 t t

If the desired annual discount is 10% then A=1 - 0.10 =

0.9 for the present value of the first year's costs. The

corresponding quarterly A factor would then be the fourth

root of 0.9 or .974.

E. MULTI-PERIOD MODEL FINDINGS
This chapter can be summarized as follows:

- The Karlin multi-period model can be easily adapted to
use with the discrete binomial distribution.

- The multi-period model requires an iterative solution
procedure based on dynamic programming principles
because of the discrete nature of the binomial distri-
bution.

- The multi-period model determines the optimal expected
total variable cost over any number of periods and
identifies the associated optimal initial inventory

quantity.
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V. MULTI-PERIOD SENSITIVITY ANALYSIS

A. DISCUSSION

As was stated in chapter IV, there are three goals for
the multi-period model. The first was to develop an inven-
tory model for the RSS which utilizes available production
schedules for as many quarters as are available. The second
goal was to obtain results from the multi-period model to
compare with the single-period model or a model with only a
two or three-periods horizon to determine if there was any
advantage to using a model with a shortened time horizon.
For the latter goal, the basis of the comparison is the
value of the optimal inventory level. The third goal was to
obtain results, not addressed by Karlin in his general
multi-period model analyses, for cases of decreasing produc-
tion schedules and cyclic production schedules and to
compare these results with the case of a constant production
from quarter to quarter. Important to all of these goals is
the behavior of the model results under changing parameter
values. This sensitivity analysis will include variations in
the overhaul schedule, the unit procurement cost, the
shortage cost, the surplus cost, and the probability of a

repair being needed for overhaul of a component. Unit,

shortage, and surplus costs are variable as well as the




probability of the need for repair of a part, and the

discount factor.

B. VARYING PRODUCTION SITUATIONS

In order to conduct the sensitivity analyses, a computer
program (see Appendix B) was written to carry out the steps
of the flow diagram in Appendix A. This program can be used
for any finite number of periods. To address the first
goal, optimal results were obtained for decreasing and
varying production schedules as well as steady state (no
change in production schedule from period to period) and
increasing production schedules. The time horizon was eight
periods, or two years, corresponding to the maximum expected
planning horizon for a NARF.

A range of quarterly production values from zero up to
thirty were selected corresponding to engine overhaul
schedules examined by Slaybaugh [Ref. 1]. A schedule of
fifteen was used as the starting value (period no. 8) in
studying the effect of variations.

In determining the parameter values, we have previously
assumed that the surplus cost should not exceed unit cost
since unit cost would be the highest credit allowed by the
supply system if the excess were returned for credit. The
shortage cost should be greater than the unit cost other-
wise, as Hund determined, the item will never be stocked

since it would be cheaper to be out of stock. Therefore, as
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Hund also determined, unit cost (C) will be selected between
H and P.

Eleven different possible cases were examined and are

explained as follows:
- Case 1: the '"steady state'" production situation where
production for any quarter is the same number of

components as for every other quarter. In this case

the following production numbers were used: n8=15,
n7=15, n6=15, n5=15, n4=15, n3=15, n2=15, nl=15.

- Case 2: the increasing production situation where the
production in each successive quarter increases. The
following production numbers were used: n8=15, n7=17,
n6=20, n5=22, n4=24, n3=26, n2=28, nl=30.

- Case 3: the decreasing production situation where the
production in each successive quarter decreases. The
following production numbers were used: n8=15, n7=12,
n6=10, nS5=8, n4=6, n3=4, n2=2, nl=0.

- Case 4: the cyclic production situation where produc-

tion erratically goes from the median to the maximum

then to the median and down to the maximum then to the
median and down to the minimum. The following numbers
were used: n8=15, n7=30, n6=15, n5=0, n4=15, n3=30,

n2=15, nl=0.

- Case 5: the cyclic production situation where produc-
tion erratically behaves the opposite from case 4 in
the equivalent polar time periods. The following
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production numbers were used: n8=15, n7=0, né6=15,
n5=30, n4=15, n3=0, n2=15, nl=30.

- Case 6: the immediate increase to maximum production
situation where in period no. 7 production increases
to the maximum allowed and remains at the maximum for

the remainder of the periods. The following production

P Rp—

numbers were used: n8=15, n7=30, n6=30, n5=30, n4=30,

n3=30, n2=30, nl=30.

- Case 7: the production termination situation where
production immediately goes to zero after the first
quarter. The following production numbers were used:
n8=15, n7=0, n6=0, n5=0, n4=0, n3=0, n2=0, nl=0.

- Case 8: The decrease to the minimum production situa-
tion where production immediately goes to the lowest
level of one per quarter and remains there. The
following production numbers were used: n8=15, n7=1,
n6é=1, n5=1, n4=1, n3=1, n2=1, nl=1.

' - Case 9: The modified two-period equivalent to Case 7

where there is decreasing production from the first to

; the second quarter and then no production thereafter.
The following production numbers were used: n8=15,

n7=5, n6é=0, n5=0, n4=0, n3=0, n2=0, nl=0. i

- Case 10: The modified two-period equivalent to Case 8

where production goes to the lowest level of one per

quarter and remains there beginning with the third
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quarter. The following production numbers were used:

n8=15, n7=5, n6=1, n5=1, n4=1, n3=1, n2=1, nl=l,.

- Case 11: The modified three-period equivalent to Case

7 where there is decreasing production from the first

to the second to the third quarters and then no

production thereafter. The following production

numbers were used: n8=15, n7=10, n6=5, n5=0, n4=0,
n3=0, n2=0, nl=0.

The fluctuations in the production numbers of some
cases, to the '"poles,'" provided worst-case scenarios for
comparison with steady-state.

For each of the cases, a number of different values of
the cost parameters were tested to determine how their vari-
ations affect the results. Ten sets of cost parameter values
were applied to each case. This "matrix" was then evaluated
for three different values of the probability of the part
requiring replacement. Probabilities of 0.1, 0.5, and 0.9
were used. A final sensitivity analysis was conducted using
the steady-state (Case 1) situation without a discount
factor in order to determine the impact, if any, of the
annual 10% discount applied on the matrices.

The results of the sensitivity analysis are presented in

Appendix C.

C. RESULTS
Karlin theorized that an increasing production schedule
would result in the initial inventory requirement Being the
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same as the steady-state production schedule (see Case 1).
Case 2 is the situation of the increasing schedule and
agrees with the Karlin findings. Surprisingly the varying
production situations in Cases 4 and 6 where production goes
up and down and increases to the maximum respectively,
behave in a manner consistently similar to the increasing
situation. The only explanation is the dominating effect of
increased production in period no. 7 on the final results.
In case 3, the gradually decreasing production situ-
ation, the y* values remained almost identical to the
steady~-state situation. In one instance the y* value went
down by one from the steady-state. In the reverse situatiouns
of Cases 2 and 4, the down-and-up situation (Case 5) was
either the same as the steady-state or one less and the
decrease to the minimum situation (Case 8) was either one or
two less than steady state except when y* was zero or when
the probability was 0.9. The situation in Case 3 seems to
indicate that a slow and gradual decrease allows the y*
value to closely correspond to the steady-state situation.

However, the more wildly fluctuating situations create a

wider gap. Case 10 forces the production decreases to the
minimum of one by the third quarter. When the probability
value was 0.1 the results were still no more than two units
below the steady-state. When the probability value was 0.5,
the results were within 1 and, when the probability value

was 0.9, the results matched the steady-state. Therefore,

37




depending on the probability, this range of numbers showed
no greater difference than two from the steady-state.

If production were to terminate entirely in the second,
third, or fourth quarter the results are different than if
some minimum level is sustained. 1In Case 7 where production
ceases immediately after the first quarter, the y* values
were further from the steady-state situation the lower the
probability and for a given probability it was lower for the
lower shortage cost. In Case 9 where the second quarter had
production and then no production in succeeding quarters,
the 0.1 and 0.5 probability situations were within two of
steady state whereas the 0.9 matrix was a match to steady-
state. In addition, this case matched Case 8 (decrease to
the minimum) except in one instance where it was one higher.
In Case 11 where the second and third quarters had
decreasing production and then no production in succeeding
quarters, the 0.1 probability matrix stays within two below
the steady-state, and the 0.5 and 0.9 matrices match the
steady-state.

As another means of comparison, Case 7 was compared to
the single-period model, Case 9 to a two-period model, and
Case 11 to a three-period model. The two and three-period
model results are in Appendix D. The eight-period y* values
are the same as or less than the respective shorter period
models. Again, the probability was a significant factor when
deviations occurred, however the shortage cost was not an
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influencing element in the differences. The three-period

ISR e

model was the most closely in line with the eight period

results. Therefore it appears that a planning horizon can

R TR e U e o

be shorter as the probability value increases. Additionally,
the accuracy of the production schedule is not so serious

several periods downstream.

In general, when the discount factor is ignored the

results are the same as in using a ten-percent discount

except when there is no surplus cost. When the probability

was 0.5 and 0.9, the y* value surged to the maximum without

a surplus cost. When the probability was 0.1, the y* values §
[ increased but not to the maximum for the state when there ;

was no surplus cost. There were occasional unpredictable

variances of one in the other states of cost parameters.

D. COMPARISONS WITH THE SINGLE-PERIOD MODEL
| Hund found the two-period model to provide some minor
improvements and a lower total variable cost than the

single-period model [Ref. 3]. The improvements, however,

e i — e e,

were more than offset by the added complexity. As a result
of the increased complexity, the single-period model was
favored over the two-period model. The question left unan-

swered was whether or not the minor improvements gained

DU VSR

by use of the two-period model would be magnified in a
multi-period model and that the benefits would then exceed

any added complexity in a multi-period model.
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Appendix E contains the results of the single-period
model when n equals 15 and the probability is 0.1, 0.5, or
0.9. In general, the single-period model results are less
than or equal to any multi-period model which behaves like
the steadily increasing or steady state situations. They
are also more than or equal to the decreasing state multi-
period model results. The multi-period model is responding
to information concerning future period requirements--infor-
mation not used in the single-period model.

The probability, of a part being required to be
replaced, is again of considerable importance as are the
penalty costs. When the probability of replacement is high
(0.9), the difference between the single-period model and
the multi-period model results, under any situation, is
never greater than one. As the probability decreases, the
frequency and magnitude of any differences increases. The
differences almost disappear as the surplus cost approaches
the unit cost or as the shortage cost increases signifi-
cantly in relation to the unit cost. The greatest differ-
ence occurs for the single period when C=250, H=0, P=1000,
the probability is 0.1, n=15 for both the 8-period steady-

state and for the single-period models.
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VI. MULTI-PERIOD MODEL CONCLUSIONS

A. GOALS RESTATED

As noted earlier, there were three goals for the multi-
period model. The first was to develop an inventory model
for the RSS which utilizes available production schedules
for as many quarters as are available. The second goal was
to obtain results from the multi-period model to compare
with the single-period model or a model with only a two or
three-period horizon to determine if there was any advantage
to using a model with a shortened time horizon. The third
goal was to obtain results, not addressed by Karlin in his
general multi-period model analyses [Ref. 4}, for cases of
decreasing production schedules and cyclic production sched-
ules and to compare these results with the case of a

constant production from quarter to quarter.

B. STEADY-STATE COMPARISON CONCLUSIONS
The following are general conclusions drawn from the
analyses of chapter V concerning the decreasing and varying
production situations when compared with the steady-state
production situation:
- Whenever there is an increase in production from the
first chronological period to the spcond period, the

results will follow the constantly increasing
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production situation and be the same as the steady-

e

state production. (There is a borderline situation

where this did not prove true. When there was no dis-

Lo dte e in > ok “ S 70l

count applied and C=250, H=0, p=.1, and P=1000 or
10,000, the increasing case provided a higher inven-
tory than the steady-state case. No known reason

could be determined for the situation and further

- e
RS~ - e S

investigation is recommended.)

- Gradually decreasing production situations will be the
same or minus one from the steady-state production
situation.

- Fluctuating production situations where the second
period production decreases from the first period
behave like the gradually decreasing situation.

- As long as succeeding periods show some production,
the y* values will be within two of the steady-state
situation sustaining the first period's production.

- A shorter planning horizon will have y* values which
are less than the eight quarters' steady-state result.
The magnitude of the probability that the part will
require replacement has a strong influence on the y

value.

C. SINGLE-PERIOD COMPARISON CONCLUSIONS:
The following are general conclusions drawn from the
analysis of chapter V concerning the comparison of e

multi-period results with single-period results:
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- For multi-period steady-state, gradually decreasing,

or increasing production schedules, the y* value for
the multi-period model exceeds or is equal to the
single-period results.

For multi-period situations where there is a rapid
decrease from the first chronological period to the
second or when production levels out at the minimum
or terminates, the y* value for the multi-period
model is less than or equal to the single-period
model.

The penalty cost values are significant determinants
of the magnitude of difference between the single-
period and the multi-period results. The lower the
penalty costs, the larger the difference.

The probability that a part will require replacement
is a significant determinant in how close a multi-
period situation will match the single-period results.
The higher the probability, the closer the y* values
correspond in the single period and multi-period
models.

The total variable cost (TVC) of the multi-period
model will exceed the single-period TVC for the equiv-
alent periods when all quarters production equal or

exceeds the single-period production.




D. RECOMMENDATIONS

In his dynamic multi-period inventory model, Karlin was
able to state that for increasing production functions, the
multi-period model would yield a critical number which was
the same as the steady state situation. No similar corollary
is apparent for the decreasing production situation. How-
ever, it is clear that the multi-period model is more
responsive to future period information.

There is an apparent benefit in using the multi-period
model based on the more realistic consideration of holding
inventories for periods in which it may never be used. The
planning horizon of the multi-period model adjusts downward
for future production downturns. It is most important to
correctly predict the production trend as to whether it is
increasing, decreasing, or cyclic and that the first two or
three periods be as accurate as possible. The downstream
numbers need not be as accurate as long as they correctly
depict the trend.

Additionally, if all periods' data is accurate at the
outset and remains unchanged, then there is no need for
future inventory calculations since the model predicts the
optimal level for each quarter.

The problem of obtaining an accurate estimate of prob-
ability for part replacement and an accurate shortage cost
would be present in any model. Both models assume that any

surplus would be returned immediately at the end of a
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quarter and the credit allowed for the turn-in is the basis
for the surplus penalty cost.

The multi-period model has proven relatively easy to
develop and use. It is a model which will provide the user
with a degree of flexibility in selecting the planning
horizons. Therefore, it is recommended that the single-

period model be replaced by the multi-period model.
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APPENDIX A
b MULTI-PERIOD INVENTORY MODEL FLOWCHART

Set Boundaries
for Problem:

, No. of Periods and Max n

1
1
1

Enter Parameter

Values:
) p!A’C’HDP

y*:()

TVC* = (In)pP

b Print Results
for Each t

I Yes
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—

Enter nt for the

Period Being Considered
Beginning with t=1

L

Use Equation (2) to
Compute gt(u)

Use Equation (3)
to Compute
L(y;g)

—




No

For Other Periods
Use Equations
(9) or (10)

Yes

All

f(x;g€g...) =0

Y

For Period 1:
TVC = Cy + L(y;g)
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(See
Note)
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P ¢

=

]

1 ‘ Y = y+1

3 ’ TVC% = TVC(y+1)

. \L 5

Use Equations (11) and (12)

to Compute f£(x3;g...)

L

Print: Quarter, p, n,

C, H, P, A, y¥, TVC}

% L

Retain y; and

f(x;g...) for Next Period

o -

e SR

T e
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t = t+l t = No. of Periods

?

Note:

To find lower boundary for any possible multiple
optimal situations, change the strict inequality of

"less than' to "less than or equal to."
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APPENDIX B

MULTI-PERIOD INVENTORY MODEL COMPUTER PROGRAM

$JOB
WRITE(6,2)
READ(8,*) A
C  **xxx*xx'A' JS FOR ALPHA WHICH IS THE FOURTH ROOT OF
(1-DISCOUNT FACTOR)
2 FORMAT(' ','ENTER ALPHA FACTOR')
PRINT, 'ALPHA=" ,A
DO 9 I=1,10
WRITE(6,3)
C **xxx*%*NOTE: DPROB=p****%x
READ(8,*)PROB
WRITE(6,4)
READ(8,*)C
WRITE(6,5)
READ(8,*)H
WRITE(6,6)
READ(8,*) P
FORMAT('0','ENTER PROB')
FORMAT('O','ENTER C')
FORMAT('0','ENTER H')

o O e w

FORMAT('0','ENTER P')
CALL MCTWO(LIM,N,A,PROB,H,P,C,TVCSTR,KYSTR,KPERIO)
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9 CONTINUE
: STOP
| END

SUBROUTINE MCTWO(LIM,N,A,PROB,H,P,C,TVCSTR,KYSTR,KPERIO)

1 DIMENSION QUARTR(8),KYSTAR(8),G(31),TVC(31),F(31)
C **REMEMBER**IF 'N' CHANGES, THEN SO DO 1,2%***%*x%
Cc

C**x*x RESET THE INPUT DATA FILE FROM LAST ITERATION ***xx
REWIND 9
C
C*****xx DEFINE THE NUMBER OF QUARTERS ****¥x*%x
LIM = 8
[ . C % 30 ok o o o o o e ok ok ook ok ok ook ok ok o ok ok ok ok ok e e ok 3 ok kR ok sk ok Kk ok oK o oK oK ok
C

IF(C.GE.P) GO TO 950

NMAX = 30
I=1
I1=0
KPERIO=0

10 KPERIO=KPERIO+1

- ———— -

II=II+1

KY=NMAX+2
READ(9,*) N

o CALCULATE THE PROBABILITY THAT N ITEMS WILL BE DEMANDED

SIS SN

c VECTORS CANNOT OPERATE WITH "O",SO G(1)=P(0),G(2)=P(1),ETC
b NPLUS1=N+1
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Q=1-PROB

DO 20 I-1,NPLUS1
IF(¥.GT.1) GO TO 21
G(1)=Q**N
GO TO 20

21 G(I)=G(I-1)*PROB*(N-(I-2))/((I-1)*Q)

20 CONTINUE

NM=NMAX+1

NPLUS2=N+2

IF(NPLUS2.GT.NM)GO TO 30

DO 22 I=NPLUS2,NM

22 G(I)=0

30 KY=KY-1

KYMIN1=KY-1

C CALCULATE L(Y,G) FOR ANY PERIOD (TPENAL)
GYSUM=0.0
GSUMU=0.0
IF (KYMIN1.LT.1.0) GO TO 24
DO 23 I=1,KYMIN1

GYSUM=GYSUM+G(I)

23 GSUMU=GSUMU+(I-1)*G(1I)
PENY=(H+P)*GYSUM*KYMIN1
PENU=(H+P)*GSUMU
TPENAL=PENY-PENU+(PROB*N*P)-(P*KYMIN1)
GO TO 25 |

24 TPENAL=PROB*N*P

54




25  GFSUM=0

? GXSUM1=0

‘' GXSUM2=0
ZEROX=0

IF (KPERIO.EQ.1 ) GO TO 800

.

C CALCULATE F(0,G) ,(ZEROX) , FOR OTHER THAN PERIOD 1
GNSUM=0.0
IF(KY.LT.1.0) GO TO 51

DO 50 I=KY,NM

GNSUM=GNSUM+G(I)
50  CONTINUE
GO TO 53
, 51 DO 52 I=1,NM
GNSUM=GNSUM+G(I)
52  CONTINUE
53  ZEROX=F(1)*GNSUM
C DECIDE IF CASE 1 (Y2.LE.Y1*) OR CASE 2 (Y2.GT.Y1*)

W=KY-KYSTR

IF(W.GT.0.0) GO TO 400

C CASE 1 ,Y2 LE Y1*

GFSUM=0.0
IF(KYMIN1.LT.1.0) GO TO 101
DO 100 I=1,KYMIN1

i
i
§
| GFSUM=GFSUM+G(I)*F(KY-(I-1))




e e . e L

100

101

102

400

405

406

450

451
452

C CALCULATE TVC ANY NUMBER OF PERIODS FOR ANY Y

800

CONTINUE

GO TO 102

GFSUM=0

GXSUM1=0

GXSUM2=0

GO TO 800

CASE 2,Y2 GT Y1*

KZ=KY-KYSTR-1+1

GXSUM1=0.0

KZK=KZ+1

IF(KZ.LT.1.0)GO TO 406

DO 405 I=1,KZ
GXSUM1=GXSUM1+G(I)*F(KY-(I-1))

CONTINUE

GXSUM2=0.0

IF (KYMIN1.LT.KZK)GO TO 451

DO 450 I=KZK,KYMIN1
GXSUM2=GXSUM2+G(I)*F(KY-(I-1))

CONTINUE

GO TO 452

GXSUM2=0.0

GFSUM=0

IF(KYMIN1.LE.0.0)GO TO 801
TVC(KY )=( (C*KYMIN1 )+TPENAL+ZEROX+GFSUM+GXSUM1+GXSUM2)

IF(KY.EQ.NM)GO TO 30




Tt

1 TVCDIF=TVC(KY)-TVC(KY+1)
IF (TVCDIF.LT.0.0)GO TO 30
TVCSTR=TVC(KY+1)

i : KYSTAR(II)=KY

KYSTR=KY+1
GO TO 805
801  TVC(1)=(TPENAL+ZEROX+GFSUM+GXSUM1+GXSUM2)
TVCDIF=TVC(1)-TVC(2)
IF(TVCDIF.LT.0.0)GO TO 802
TVCSTR=TVC(2)
KYSTAR(II)=1
, KYSTR=2
GO TO 805
802  TVCSTR=TVC(1)
KYSTAR(II)=0
KYSTR=1
| 805  IF(KYMIN1.LT.1.0) GO TO 851
| DO 850 I=1, KYMIN1
l 850  TVC(I)=0
851 DO 905 I=1,NM
IF(I.LE.KYSTR) GO TO 901
F(I)=TVC(I)-C*(I-1))*A
GO TO 905

I e —— B

901 F(I)=(TVCSTR-C*(I-1))A
905 CONTINUE

' 57




907

915

916
940

943

947

948

950

951

952

GO TO 940

PRINT 907,(G(I),I=1,11),(G(I),I=12,21),(G(I),I=22,31)
FORMAT(' ','G(U)=',11F10.7)

PRINT 915,(TVC(I),I=1,11),(TVC(I),I-12,21),(TVC(I),I=22,31)
FORMAT (' ','TVC=',11F10.2)

PRINT 916,(F(I),I=1,11),(F(I1),I=12.21),(F(1),I=22,31)
FORMAT(' ','F=',11F10.2)

QUARTR(II)=KPERIO

PRINT 943
FORMAT('0',' QTR N C H P A
1PROB v+ TVC* ')

PRINT 947 ,KPERIO,N,C,H,P,A,PROB,KYSTAR(II),TVCSTR
FORMAT('O',I3,18,F12.2F12.2,F10.2,F7.3,F7.2,17,F12.2)
IF(KPERIO.LT.LIM) GO TO 10
GO TO 1000
KY=0
NTOT=0
II=1
DO 955 I=1,LIM
READ(9,*) N
PRINT 951
FORMAT(' ','PERIOD N')
PRINT 952,I,N
FORMAT(' ',I14,I9)

NTOT=NTOT+N




955

956

1

957
1000

$ENTRY

S —

CONTINUE

TVCSTR=NTOT*PROB*P

PRINT 956

FORMAT('0','C=P CASE N c H P A
PROB  Y* TVC* ") |

PRINT 957,N,C,H,P,A,PROB,KY,TVCSTR |

FORMAT('0',I12,F12.2,F12.2,F10.2,F7.3,F7.2,17,F12.2)

RETURN

END
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