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ABSTRACT

2 A Ready Supply Store (RSS) containing repair parts which

are anticipated to be used during the production process has

been established to support the Naval Air Rework Facility
O' C)

(NARF). While this supporting inventoryph.s' previously b§ _

constructed using historical demand data, a single-period

model and a two-period model have been proposed which

compute stock levels based on quarterly production schedules.

This thesis extends the use of the projected production

information in calculating RSS inventory levels from two

periods to multiple periods. The disadvantage of the

single-period model is that it ignores information about

future schedules. The multi-period model uses the informa-

tion on future schedules to behave more optimally. The

multi-period model shows significant differences in inven-

tory levels over the single-period model as a result of the

added information. The multi-period model is also easily

programmed on a computer and is preferred over the single-

period model.
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I. INTRODUCTION

A. BACKGROUND

Naval Air Rework Facilities (NARFs) perform overhaul and

maintenance actions on various components utilized by fleet

aviation units. These rework activities are accomplished in

accordance with a quarterly production schedule. Informa-

tion on anticipated NARF workload requirements is also

usually available for several additional future periods.

The Naval Aviation Logistics Center (NALC) is in the process

of developing a Material Requirements Planning (MRP) type of

system which utilizes these forecasts to project requirements

for individual spare parts used in the rework process. The

intent is to accomplish the assigned NARF mission more effi-

ciently by reducing work stoppages caused by stockout

(Ref. 1]. The MRP system is expected tc also respond better

to the peaks and valleys of production and reduce surpluses

and shortages which can occur when forecasting demand based

on gross historical demand for an item.

MRP systems are intended to reduce or even eliminate

repair part inventories by phasing item arrivals to coincide

with their need within the production process. However,

random variations in demand exist because an item may not

always be replaced in an end item which is being overhauled.

As a consequence, there is the need for the establishment of

7
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some form of backup inventory support. The RSS will store

those parts expected to be used during the production

process and the Naval Supply Center (NSC) will protect

those parts from issue to other NSC customers.

The MRP philosophy of inventory management mandates that

these repair part stocks be carefully controlled. McMasters

(Ref. 2] proposed a single-period stochastic inventory model

utilizing the production information for the quarter. Hund

[Ref. 3] extended that model to a two-period one with the

purpose of determining how much to stock in the first

quarter to meet the stochastic demands of the quarter and

account for the benefits in the second quarter of any

surplus from the first quarter. Both models focused only

on those items which would not be replaced 100% of the time.

Hund postulated that surplus costs resulting at the end

of a given period on a specific item may be greatly reduced

by considering the anticipated demand for that item in

future periods. A model incorporating anticipated rework

activity beyond the upcoming production period should

provide a more accurate reflection of total expected costs

over a particular length of time, and, thus offers the

potential of creating a more cost effective inventory mix.

Hund did not go beyond the two-period model but did use the

concept of dynamic programming to develop solutions. If a

planning horizon of two periods is better than one, then an

even longer horizon can be expected to be better than two.

8
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However, it is expected that the validity of future produc-

tion schedules may be questionable. In spite of this fact,

a general multi-period model needs to be considered before

a recommendation can be made as to what model to implement

for a NARF. Questions of model complexity and data validity

can then be answered through sensitivity analyses.

The basis for the development of the two-period and

multi-period models is the Karlin dynamic multi-period

inventory model [Ref. 4]. In that model, the demand distri-

bution may change from period to period and the optimal

policy is characterized by a single critical number repre-

senting the initial inventory value. The theorems developed

by Karlin serve as useful checkpoints for operation of the

two-period and multi-period inventory models and as a basis

for further investigation.

B. PURPOSE

The objectives of this thesis are to:

- Develop an inventory model for the RSS which utilizes

available production schedules for as many quarters as

are available;

- Obtain results from the multi-period model to compare

with the single-period model or a model with only a

two or three-period horizon to determine if there was

* any advantage to using a model with a shortened time

horizon; and

9
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- Obtain results, not addressed by Karlin in his general

multi-period model analyses, for cases of decreasing

production schedules and cyclic production schedules

and to compare these results with the case of a

constant production from quarter to quarter.

iI
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II. THE SINGLE PERIOD MODEL

A. INTRODUCTION

This chapter will provide a brief synopsis of the

single-period model explained by McMasters [Ref. 2] and Hund

[Ref. 3]. This brief description will give insight into the

construction and workings of the two-period and multi-period

models.

In a single-period model, the determination of how much

inventory to carry at the beginning of a quarter to meet

that quarter's demands for a given repair part is based

solely on the production data of that one quarter. Although

data may be available for subsequent quarters' production,

only data from the quarter under immediate consideration can

be used.

B. GENERAL ASSUMPTIONS

The following general assumptions apply to the single-

period model:

- The NARF Production schedule is known.

-The RSS inventory calculation is performed on a

periodic basis once for each quarter (a periodic

review model).

- Items which are certain to be replaced (100% of the

time) are stocked to the needed level in the usual

11
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sense of MRP and are excluded from application of this

inventory model.

- Procurement leadtime for the quarterly stocking of the

RSS to the computed levels is assumed to be zero since

the supporting NSC will probably have the stock and

deliveries are frequent.

- Demands in excess of RSS inventory are backordered to

the NSC. It is assumed to either have the back-up

stock or know where to get it quickly. A shortage

penalty cost will be used to measure the cost of the

inconvenience of not having a unit of the item avail-

able from the RSS.

- The probability that a part will be demanded a speci-

fied number of times during the production process is

a random variable described by the binomial distribu-

tion.

- In the optimization, each quarter is treated as if it

were isolated from all others.

- There is no replenishment of the RSS during the

quarter to restore inventory levels for the quarter.

- The model is applied to a single repair part being

used in the repair or overhaul of a single component.

C. COST ASSUMPTIONS

The following cost assumptions apply to the single-

period model:

12

i . .. . .. . .. ..



- There is no time-weighted holding cost since the space

allocated to the RSS is fixed and, in general, will

accommodate stocks at a high operating tempo. This

space will not be decreased if in.tatory projections

require less space. This creates a fixed cost which

does not influence the model.

- Any ordering cost is ignored since the cost of each

quarterly periodic review and its resultant orders

would be about the same each time and essentially of a

fixed nature.

- Unit cost "C" is the constant cost the NARF would pay

for one unit of the item.

- Surplus cost ''H"' is the per unit constant penalty for

having left-over repair parts at the end of the quar-

ter's production run.

- Shortage cost "P" is the per unit constant penalty for

having inadequate on-hand stock in the RSS to meet

production demands. The shortage cost is a measure of

the cost incurred for work stoppages due to lack of

immediately available parts.

D. THE SINGLE-PERIOD MODEL

The objective function of the model is to minimize total

expected variable costs. In so doing, the model will define

a unique number which will represent the optimal quantity of

a repair part to be in place in RSS stock at the beginning

of the NARF production quarter which is undergoing review.

13
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The objective function of the model is represented by a

total expected variable cost (TVC) equation which consists

of two components. The first component is the product of

unit cost of the item and the number of units proposed to be

procured--denoted by "y". The second component is the sum

of expected penalty costs, both shortage and surplus, at the

end of the quarter based on making the same "y" quantity of

the repair part as proposed to be procured in the first

component available at the start of the quarter. Thus, for

any given "y" a total variable cost of procuring and

"carrying" that number of the item can be determined.

Plotting total variable costs for each "y" against the "y"

values would provide a convex curve. It is at the lowest

point on the curve that the total variable cost is mini-

mized. The associated discrete y quantity minimizes the TVC.

It is denoted by "y*" since it is the optimal inventory

quantity of the repair part to be carried in the RSS for the

quarter in question.

Possible values of "y" range from zero to 100% of poten-

tial replacement actions. The latter coverage would result

in no shortage costs and the highest expected surplus costs

whereas a zero inventory would result in no surplus costs

and the highest expected shortage costs. The actual demand

will be somewhere between these extremes for y. The distri-

bution of each demand is like a "Bernoulli Trial" in that it

is discrete and is the result of either a "go" or "no-go"

14
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situation. When the outcomes of these trials are accumulated

over a quarter of "n" overhauls of a component containing

the item in question, the total demand for the quarter is a

random variable which behaves according to the binomial

probability distribution.

g(u) n! n-u; (1
g~)=u!(n-u)! Ulp.I

where:

u represents the possible demand for repair part;

p is the historical probability that a part will be
replaced during the overhaul of a single component.

A recursion form of equation (1) is useful for computer

calculations and is given by (2).

=(1-p)n for u = 0 (2)
g(u) =

[n-Cu-l)] pg(u-1) for O<u:n
Lu(1-p)

Having specified the probability function for the demand u,

the sum of the expected shortage and surplus cost functions

can now be written. It is

y n
L(y;g) - H Z (y-u)g(u) + P E (u-y)g(u)

u=O ufy+l

which reduces to equation (3) when the binomial distribution

is considered.

15
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y-1 y-1
L(y;g) = (H+P)y E g(u)-(H+P) Z ug(u) + pnP-Py (3)

U=O U=O

The equation for the total variable costs for any "y"

value is:

TVC(y) = Cy + L(y;g) (4)

To obtain the optimal value of y, the technique of finite

differences can be used. y* will be the largest value of y

for which:

TVC(y) - TVC(y-1)<O

When this difference inequality is determined for equation

(4), the result is the inequality (5). Note that P>C is

required to get y >0.

y-1 p-C (5)

Z g(u) < H+--(
U=O

The minimized total variable cost can then be computed

using y* in equation (4). In use, there may be a surplus of

inventory available from the preceding period. If we denote

this quantity by "x" then x> 0 if demand during the

preceding period was less than the stock at the start of

that period. If x <y then we need to buy the difference y-x

so that y units will be available at the start of the

quarter in question. If x> y then we actually have more

16
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than we need for that quarter and we would certainly not buy

any more. We would also not need to buy any if x = y.

I
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III. THE TWO-PERIOD MODEL

A. INTRODUCTION

This chapter will provide a brief synopsis of the two-

period model developed by Hund [Ref. 3]. It builds upon the

single-period model and is a specific application of the

more general Karlin multi-period model [Ref. 4].

In the two-period model, the determination of how much

inventory to carry at the beginning of a quarter, to meet

that quarter's demands for a given repair part, is based

both on the production data of that quarter and the

immediately succeeding quarter. This is unlike the single-

period model where production data from the succeeding quar-

ter was not considered in determining the optimal inventory.

The reason for this analysis was to determine if know-

ledge of productive data from the second quarter would affect

the optimal initial inventory. The comparison was performed

against the single-period model results.

B. GENERAL ASSUMPTIONS

The general assumptions of the single-period model are

also valid for the two-period model except for the assump-

tion in the optimization that each quarter is considered in

isolation. In addition to the single-period general assump-

tions, the following are also relevant:

18



- The periods are successive and of equal duration

(i.e., quarters of a year);

- Demand constitutes a sequence of independent ran-

dom variables over successive periods.

C. COST ASSUMPTIONS

The cost assumptions of the single-period model are

also valid for the two-period model. In addition, the

cost functions are of the same form in each period.

D. THE MODEL

The objective function of the two-period model is the

same as the single-period model--to minimize expected total

variable costs. As in the single-period model, the two-

period model will also generate a unique number which will

represent the optimal quantity of a repair part to be in

place in RSS stock at the beginning of the first NARF

production quarter which is undergoing review.

The total variable cost equation of the single model

will be expanded to take advantage of the additional produc-

tion information from the second quarter. In keeping with

the usual dynamic programming labelling of time periods, we

denote the last period of a two-period sequence as period

no. 1 and the first period as period no. 2.

As Hund discovered, the requirement to project the costs

backwards from period no. 1 provided added complexity over

the single-period model. In particular, the costs of the

19
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period no. 1 would be affected by a balance of inventory

remaining from period no. 2. That balance is a random vari-

able, of course. The two-period model is based on the

Karlin generalized inventory model [Ref. 4].

The dynamic programming technique uses inequality (5)

to obtain the optimal y for period no. 1. Then it requires

consideration as to whether the carry-over inventory x

between period no. 2 and period no. 1 is less or more than

this optimal y in the development of the expected total

costs over both periods. These expected total costs are

used to compute the optimal y for period no. 2.

A third component is added in the two-period model to

represent the expected optimal total variable costs for

period no. 1 when there is no inventory carry-over from

period no. 2. This expected cost is denoted by f(0;h) for

each demand situation corresponding to x = 0. Here h repre-

sents the demand distribution of period no. 1. This cost

term is computed using equation (4) since x = 0, and is

represented by

f(O;h) = TVC(k) = Ck + L(k;h) (6)

4 where

k represents the optimal y value for period no. 1 as4obtained from inequality (5).

This cost from period no. 1 is then multiplied by the

probability that the demand during period no. 2 will result

20
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in x - 0. This provides the expected cost given that all

the inventory was consumed in period no. 2, and that a zero

carry-over into period no. 1 will then require the full

period no. 2 TVC to be expended. The complete form of the

third component can be written as the product:

m
f(O;h) E g(u);

u=y

where:

m is the production schedule of period no. 2, and

u is the possible demand value during period no. 2.

y is the inventory established at the start of period
no. 2.

Since the third component represents the expected total

variable cost of period no. 1 when no inventory is carried-

over from period no. 2, the fourth component of the two-

period model represents expected optimal total variable cost

of period no. 1 when there is a positive inventory carry-

over from period no. 2. This results when demand during

period no. 2 is less than the unconstrained initial inven-

tory for period no. 1. Let f(y-u;h) represent the expected

optimal costs during period no. 1 given a demand u <y

occurred during period no. 2. Its expected value over all

possible situations where u < y is given by

y-1
Ff(y-u;h)g(u).

uinO
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However, there are two cases which arise for this function.

One case is when the "y" value is at least as large as its

counterpart second period k value; the other case is when y

is less than k.

Since the application of the method of finite differ-

ences failed to provide simplifications for determining y*,

Hund found it necessary to provide two equations for

describing the TVC model depending on y's relationship to k.

In the case where yzk, the following formula applies to

describe all of the expected costs for the two-period model.

m
TVC(y) = Cy + L(y;g) + f(O;h) Z g(u) +

u=y

y-k y-u-1 y-u-i
I {(H+P)(y-u) Z h(s)-(H+P) Z sh(s) +

y=O s=O s=O

m k-i
pnP-P(y-u)}g(u) + E {(H+P)k Z h(s) -

u=y-k+l s=O
k-i

(H+P) Z sh(s)+pnP+k(C-P)}g(u) (7)
s0O

where:

s represents the possible demands during period no. 1.

When y < k, the following formula applies:

m
TVC(y) - Cy + L(y;g) + f(O;h) E g(u) +

uuy

y-i y-I

E C[k-(y-u)]g(u) + Z L(k;h)g(u). (8)
u=O u0O
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Hund concluded that "the critical number y* for a two-period

binomial model may thus be identified by using equations (7)

and (8) to compute the TVC values for all possible initial

inventory quantities; it is that value of 'y' which results

in the minimum TVC." [Ref. 3]

The maximum value of y is the total quantity of a given

repair part needed for the quarter. This is the product of

the number of units of a given repair part needed by a

component and the number of components being scheduled for

overhaul during the quarter. We will denote this quantity by

the variable name n for period no. 2 and by m for period no.

1. The minimum value for y is, of course, zero. For the

enumeration process, the y value to initiate the process can

be either the maximum or zero. For the two-period model,

Hund found it most efficient to begin at n and work down.

E. TWO-PERIOD MODEL FINDINGS

The Karlin Model [Ref. 4] contains a number of conclu-

sions which are useful checks for correctness of the multi-

period model. Hund's findings which corresponded to the

conclusions of the Karlin Model can be summarized as

follows: [Ref. 3]

- "The critical number (y*) for period no. 2 of a two-

period model is always greater than or equal to the

optimal result for the corresponding one-period

model...The difference in the y* values is never more

than one."

23
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- "An increasing production schedule will produce a y*

value identical to the situation in which the produc-

tion workload is constant."

- The shortage cost must be greater than the unit cost

if the item is to be stocked at all. This was also

true in the single-period model.

F. TWO-PERIOD MODEL CONCLUSIONS

The two-period model results were compared with the

single-period model results and were nearly equivalent. This

lack of a substantial difference in results in view of the

added complexity of the two-period model led to a recommen-

dation that the NARF use the single-period model pending

analysis of a multi-period model. The availability of work-

load forecasts for future periods left open a possibility

that a multi-period model might provide greater benefit t' .n

a two-period model when compared to the single-period model.

24



IV. THE MULTI-PERIOD MODEL

A. INTRODUCTION

This chapter will describe the composition of a multi-

period model. It is a general finite period model which

builds upon the two-period model of Hund and the general

Karlin multi-period model.

In the multi-period model, the determination of the

optimal inventory to carry at the beginning of a sequence of

t periods is based on the production data of that period and

as many successive periods as the user desires to include

based on available production data. The optimal inventory is

determined using dynamic programming. This model, unlike

the single-period and the two-period models, allows the user

to make use of as much quarterly production data as is

available. The user sets the time horizon (for example,

eight quarters) and then steps forward one quarter moving

the same horizon ahead one quarter. The principle for opti-

mality from dynamic programming states that:

"An optimal policy has the property that whatever tie
initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard
to the state resulting from the first decision."
[Ref. 5]

There were three goals for developing the multi-period

binomial distribution inventory model. The first was to

develop an inventory model for the RSS which utilizes
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t available production schedules for as many quarters as are

available. The second goal was to obtain results from the

multi-period model to compare with the single-period mode]

or a model with only a two or three-periods horizon to

determine if there was any advantage to using a model with

a shortened time horizon. The third goal was to obtain

results, not addressed by Karlin in his general multi-period

model analyses [Ref. 4], for cases of decreasing production

schedules and cyclic production schedules and to compare

these results with the case of a constant production from

quarter to quarter.

B. ASSUMPTIONS

All general assumptions and cost assumptions associated

with the two-period model of chapter III apply to the

multi-period model. The general model adds the additional

freedom of allowing future periods to b discounted.

C. THE MULTI-PERIOD MODEL

The objective function of the multi-period model is the

same as the single-period and two period models--to mini-

mize expected total variable costs for the selected time

horizon. As in the previous models, the multi-period model

4 will also generate a unique number which will represent the

* optimal quantity of a repair part to be in place in RSS

stock at the beginning of the first NARF production quarter,

period no. t, of the time horizon. The various quarters of
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the time horizon are numbered in inverse chronological

sequence. The need for this inversion will be discussed

later. A subscript "t" will be used to denote the quarter.

As an example, when t=1, yt*=k where k was the optimal y
rt

value for period no. 1 and for the single-period model.

The cost components of the multi-period objective func-

tion are identical to those of the two-period model in

concept. The primary difference is in the third and fourth

components. When y t 1, the expected total variable

cost equation for the multi-period model can be written as

max n
TVC(yt) = Cyt + L(Yt;g t ) + f(O;g...) E gt(u)

u=Yt

yt- 1

+ E f(Y )(u); (9)
u=O

where:

f(x;g... )=f(x;g ,g1 ) when x is the carry-over
from the prior eiod;

max n represents the highest planned production schedule

of all quarters;

t=number of the period in inverse chronological sequence.

For the case when yt > Y -, the expected total variable cost

equation is:
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max n
TVC(yt) = t + L(Yt;g t ) + f(O;g...) Z gt(u)

u=O

Yt- 1t t-1
+ yt(--1 .•)t~) (10)
u=Yt-Y _1

At each periodic review, the calculation of the beginning

inventory balance (for period no. t) is performed assuming

adherence to the principle of optimality of dynamic pro-

gramming. This assures consistent application of the

model at each review. During each review, the overall

problem of finding the optimal expected total variable cost

based on data from multiple quarters is broken into as many

sub-problems as there are quarters. Also, approximate recur-

rence relations for the t period case (where period t comes

first in time) are used in functional equations as a means

of simplifying the solution to the overall problem.

The terms f(0,g) and f(y-u,g) can be generally denoted

f(x,g) where x is the carry-over. Following Karlin, f(x,g)

represents the optimal TVC of an immediately succeeding

quarter given that x is the carry-over value from the

quarter before. In the case of the third component of the

TVC equation, the carry-over is zero and the succeeding

period's optimal TVC value is represented as f(O,g).

The fourth component of the TVC equation represents the

optimal TVC of the immediately succeeding period when the
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value of carry-over is less than y*. The equation for

f(x;g t ) is given by (11)

f(x;g...) = TVC(y - Cx for 0 <x Y*_l (11)

where:

Cx represents the value of the carry-over which does not

have to be procured in the succeeding quarter.

When the carry-over exceeds y*, then the optimal TVC for

the succeeding period is constrained to yt = x. This is

represented by (12).

f(x;g...) = TVC(yt 1 =x) - Cx for x >Y*- (12)

The iterative application of equations (9) and (10), as

appropriate, through each of the periods from period one

thru period eight would yield an optimal TVC and its associ-

ated optimal initial inventory value which is to be carried

in the first chronological period. In the process, the

optimal inventory values for all subsequent periods are also

computed. This process would be repeated for each item in

the RSS inventory which is not stocked to meet a 100%

replacement policy. The entire periodic review for the next

quarter's production support inventory need not be made

until a quarter later. No intervening computations are4
required. The earlier computed optimal inventory values

could be used for stocking for those periods or the whole

model could be re-run. A complete re-run has the advantage
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of using firmer forecasts of the workload. In order to

facilitate understanding, the process has been put into

flowchart form in Appendix A.

D. PRESENT VALUE CONSIDERATION

The multi-period model has the capability for consi-

dering the effect of carry-over penalties for a considerable

time in the future. Since the objective function is to mini-

mize the expected total variable cost of the first chrono-

logical period, assuming optimal inventories are stocked for

all periods, the dollar streams for all periods should be

represented in terms of their present value. The optimal

expected cost values of the future chronological periods are

contained in the f(x,g) values. Discounting these f(x,g)

values by a constant factor will therefore provide the

compounding required for all the future periods. The

selected discount factor should fit the duration of the

period to achieve the annual discount desired. The factor

is represented by "A." The location of the discount factor

for the conditions of equation (9) is shown in equation (13).

The location of the discount factor for the conditions of

equation (10) can be deduced from the comparison between (13)

and (9).
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TVC(yt) = Cy + L(Y;g +

max n
A[f(O;g...) Z gt(u) +

: f(Yt-u;g...)gt(u)] (13)

u=O

If the desired annual discount is 10% then A=1 - 0.10 =

0.9 for the present value of the first year's costs. The

corresponding quarterly A factor would then be the fourth

root of 0.9 or .974.

E. MULTI-PERIOD MODEL FINDINGS

This chapter can be summarized as follows:

- The Karlin multi-period model can be easily adapted to

use with the discrete binomial distribution.

- The multi-period model requires an iterative solution

procedure based on dynamic programming principles

because of the discrete nature of the binomial distri-

bution.

-The multi-period model determines the optimal expected

total variable cost over any number of periods and

identifies the associated optimal initial inventory

quantity.
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V. MULTI-PERIOD SENSITIVITY ANALYSIS

A. DISCUSSION

As was stated in chapter IV, there are three goals for

the multi-period model. The first was to develop an inven-

tory model for the RSS which utilizes available production

schedules for as many quarters as are available. The second

goal was to obtain results from the multi-period model to

compare with the single-period model or a model with only a

two or three-periods horizon to determine if there was any

advantage to using a model with a shortened time horizon.

For the latter goal, the basis of the comparison is the

value of the optimal inventory level. The third goal was to

obtain results, not addressed by Karlin in his general

multi-period model analyses, for cases of decreasing produc-

tion schedules and cyclic production schedules and to

compare these results with the case of a constant production

from quarter to quarter. Important to all of these goals is

the behavior of the model results under changing parameter

values. This sensitivity analysis will include variations in

the overhaul schedule, the unit procurement cost, the

shortage cost, the surplus cost, and the probability of a

repair being needed for overhaul of a component. Unit,

shortage, and surplus costs are variable as well as the
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probability of the need for repair of a part, and the

discount factor.

B. VARYING PRODUCTION SITUATIONS

In order to conduct the sensitivity analyses, a computer

program (see Appendix B) was written to carry out the steps

of the flow diagram in Appendix A. This program can be used

for any finite number of periods. To address the first

goal, optimal results were obtained for decreasing and

varying production schedules as well as steady state (no

change in production schedule from period to period) and

increasing production schedules. The time horizon was eight

periods, or two years, corresponding to the maximum expected

planning horizon for a NARF.

A range of quarterly production values from zero up to

thirty were selected corresponding to engine overhaul

schedules examined by Slaybaugh [Ref. 1]. A schedule of

fifteen was used as the starting value (period no. 8) in

studying the effect of variations.

In determining the parameter values, we have previously

assumed that the surplus cost should not exceed unit cost

since unit cost would be the highest credit allowed by the

supply system if the excess were returned for credit. The

shortage cost should be greater than the unit cost other-

wise, as Hund determined, the item will never be stocked

since it would be cheaper to be out of stock. Therefore, as
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Hund also determined, unit cost (C) will be selected between

H and P.

Eleven different possible cases were examined and are

explained as follows:

- Case 1: the "steady state" production situation where

production for any quarter is the same number of

components as for every other quarter. In this case

the following production numbers were used: n8=15,

n7=15, n6=15, n5=15, n4=15, n3=15, n2=15, nl=15.

- Case 2: the increasing production situation where the

production in each successive quarter increases. The

following production numbers were used: n8=15, n7=17,

n6=20, n5=22, n4=24, n3=26, n2=28, nl=30.

- Case 3: the decreasing production situation where the

production in each successive quarter decreases. The

following production numbers were used: n8=15, n7=12,

n6=10, n5=8, n4=6, n3=4, n2=2, nl=0.

- Case 4: the cyclic production situation where produc-

tion erratically goes from the median to the maximum

then to the median and down to the maximum then to the

median and down to the minimum. The following numbers

were used: n8=15, n7=30, n6=15, n5=O, n4=15, n3=30,

n2=15, n1z0.

- Case 5: the cyclic production situation where produc-

tion erratically behaves the opposite from case 4 in

the equivalent polar time periods. The following
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production numbers were used: n8=15, n7=0, n6=15,

n5=30, n4=15, n3=0, n2=15, nl=30.

- Case 6: the immediate increase to maximum production

situation where in period no. 7 production increases

to the maximum allowed and remains at the maximum for

the remainder of the periods. The following production

numbers were used: n8=15, n7=30, n6=30, n5=30, n4=30,

n3=30, n2=30, nl=30.

- Case 7: the production termination situation where

production immediately goes to zero after the first

quarter. The following production numbers were used:

n8=15, n7=0, n6=0, n5=0, n4=0, n3=0, n2=0, nl=O.

- Case 8: The decrease to the minimum production situa-

tion where production immediately goes to the lowest

level of one per quarter and remains there. The

following production numbers were used: n8=15, n7=1,

n6=1, n5=1, n4=1, n3=1, n2=1, nl=1.

- Case 9: The modified two-period equivalent to Case 7

where there is decreasing production from the first to

the second quarter and then no production thereafter.

The following production numbers were used: n8=15,

n7=5, n6=O, n5=0, n4=0, n3=0, n2=0, n=0.

- Case 10: The modified two-period equivalent to Case 8

where production goes to the lowest level of one per

quarter and remains there beginning with the third
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quarter. The following production numbers were used:

n8=15, n7=5, n6=1, n5=1, n4=1, n3=1, n2=1, nl=1.

- Case 11: The modified three-period equivalent to Case

7 where there is decreasing production from the first

to the second to the third quarters and then no

production thereafter. The following production

numbers were used: n8=15, n7=10, n6=5, n5=0, n4=O,

n3=0, n2=0, nl=0.

The fluctuations in the production numbers of some

cases, to the "poles," provided worst-case scenarios for

comparison with steady-state.

For each of the cases, a number of different values of

the cost parameters were tested to determine how their vari-

ations affect the results. Ten sets of cost parameter values

were applied to each case. This "matrix" was then evaluated

for three different values of the probability of the part

requiring replacement. Probabilities of 0.1, 0.5, and 0.9

were used. A final sensitivity analysis was conducted using

the steady-state (Case 1) situation without a discount

factor in order to determine the impact, if any, of the

annual 10% discount applied on the matrices.

The results of the sensitivity analysis are presented in

Appendix C.

* C. RESULTS

Karlin theorized that an increasing production schedule

would result in the initial inventory requirement being the
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same as the steady-state production schedule (see Case 1).

Case 2 is the situation of the increasing schedule and

agrees with the Karlin findings. Surprisingly the varying

production situations in Cases 4 and 6 where production goes

up and down and increases to the maximum respectively,

behave in a manner consistently similar to the increasing

situation. The only explanation is the dominating effect of

increased production in period no. 7 on the final results.

In case 3, the gradually decreasing production situ-

ation, the y* values remained almost identical to the

steady-state situation. In one instance the y* value went

down by one from the steady-state. In the reverse situations

of Cases 2 and 4, the down-and-up situation (Case 5) was

either the same as the steady-state or one less and the

decrease to the minimum situation (Case 8) was either one or

two less than steady state except when y* was zero or when

the probability was 0.9. The situation in Case 3 seems to

indicate that a slow and gradual decrease allows the y*

value to closely correspond to the steady-state situation.

However, the more wildly fluctuating situations create a

wider gap. Case 10 forces the production decreases to the

minimum of one by the third quarter. When the probability

value was 0.1 the results were still no more than two units

below the steady-state. When the probability value was 0.5,

the results were within 1 and, when the probability value

was 0.9, the results matched the s-teady-state. Therefore,
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depending on the probability, this range of numbers showed

no greater difference than two from the steady-state.

If production were to terminate entirely in the second,

third, or fourth quarter the results are different than if

some minimum level is sustained. In Case 7 where production

ceases immediately after the first quarter, the y* values

were further from the steady-state situation the lower the

probability and for a given probability it was lower for the

lower shortage cost. In Case 9 where the second quarter had

production and then no production in succeeding quarters,

the 0.1 and 0.5 probability situations were within two of

steady state whereas the 0.9 matrix was a match to steady-

state. In addition, this case matched Case 8 (decrease to

the minimum) except in one instance where it was one higher.

In Case 11 where the second and third quarters had

decreasing production and then no production in succeeding

quarters, the 0.1 probability matrix stays within two below

the steady-state, and the 0.5 and 0.9 matrices match the

steady-state.

As another means of comparison, Case 7 was compared to

the single-period model, Case 9 to a two-period model, and

Case 11 to a three-period model. The two and three-period

model results are in Appendix D. The eight-period y* values

are the same as or less than the respective shorter period

models. Again, the probability was a significant factor when

deviations occurred, however the shortage cost was not an
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t influencing element in the differences. The three-period

model was the most closely in line with the eight period

results. Therefore it appears that a planning horizon can

be shorter as the probability value increases. Additionally,

the accuracy of the production schedule is not so serious

several periods downstream.

In general, when the discount factor is ignored the

results are the same as in using a ten-percent discount

except when there is no surplus cost. When the probability

was 0.5 and 0.9, the y* value surged to the maximum without

a surplus cost. When the probability was 0.1, the y* values

increased but not to the maximum for the state when there

was no surplus cost. There were occasional unpredictable

variances of one in the other states of cost parameters.

D. COMPARISONS WITH THE SINGLE-PERIOD MODEL

Hund found the two-period model to provide some minor

improvements and a lower total variable cost than the

single-period model [Ref. 3]. The improvements, however,

were more than offset by the added complexity. As a result

of the increased complexity, the single-period model was

favored over the two-period model. The question left unan-

swered was whether or not the minor improvements gained

by use of the two-period model would be magnified in a

multi-period model and that the benefits would then exceed

any added complexity in a multi-period model.
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Appendix E contains the results of the single-period

model when n equals 15 and the probability is 0.1, 0.5, or

0.9. In general, the single-period model results are less

than or equal to any multi-period model which behaves like

the steadily increasing or steady state situations. They

are also more than or equal to the decreasing state multi-

period model results. The multi-period model is responding

to information concerning future period requirements--infor-

mation not used in the single-period model.

The probability, of a part being required to be

replaced, is again of considerable importance as are the

penalty costs. When the probability of replacement is high

(0.9), the difference between the single-period model and

the multi-period model results, under any situation, is

never greater than one. As the probability decreases, the

frequency and magnitude of any differences increases. The

differences almost disappear as the surplus cost approaches

the unit cost or as the shortage cost increases signifi-

cantly in relation to the unit cost. The greatest differ-

ence occurs for the single period when C=250, R=0, P=1000,

the probability is 0.1, n=15 for both the 8-period steady-

state and for the single-period models.
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VI. MULTI-PERIOD MODEL CONCLUSIONS

A. GOALS RESTATED

As noted earlier, there were three goals for the multi-

period model. The first was to develop an inventory model

for the RSS which utilizes available production schedules

for as many quarters as are available. The second goal was

to obtain results from the multi-period model to compare

with the single-period model or a model with only a two or

three-period horizon to determine if there was any advantage

to using a model with a shortened time horizon. The third

goal was to obtain results, not addressed by Karlin in his

general multi-period model analyses [Ref. 4], for cases of

decreasing production schedules and cyclic production sched-

ules and to compare these results with the case of a

constant production from quarter to quarter.

B. STEADY-STATE COMPARISON CONCLUSIONS

The following are general conclusions drawn from the

analyses of chapter V concerning the decreasing and varying

production situations when compared with the steady-state

production situation:

-Whenever there is an increase in production from the

first chronological period to the second period, the

results will follow the constantly increasing
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production situation and be the same as the steady-

state production. (There is a borderline situation

where this did not prove true. When there was no dis-

* count applied and C=250, H=O, p=.1, and P=1000 or

10,000, the increasing case provided a higher inven-

tory than the steady-state case. No known reason

could be determined for the situation and further

investigation is recommended.)

- Gradually decreasing production situations will be the

same or minus one from the steady-state production

situation.

- Fluctuating production situations where the second

period production decreases from the first period

behave like the gradually decreasing situation.

- As long as succeeding periods show some production,

the y* values will be within two of the steady-state

situation sustaining the first period's production.

- A shorter planning horizon will have y* values which

are less than the eight quarters' steady-state result.

The magnitude of the probability that the part will

require replacement has a strong influence on the y

value.

C. SINGLE-PERIOD COMPARISON CONCLUSIONS:

The following are general conclusions drawn from the

analysis of chapter V concerning the comparison o" .e

multi-period results with single-period results:
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- For multi-period steady-state, gradually decreasing,

or increasing production schedules, the y* value for

the multi-period model exceeds or is equal to the

0 single-period results.

-For multi-period situations where there is a rapid

decrease from the first chronological period to the

second or when production levels out at the minimum

or terminates, the y* value for the multi-period

model is less than or equal to the single-period

model.

- The penalty cost values are significant determinants

of the magnitude of difference between the single-

period and the multi-period results. The lower the

penalty costs, the larger the difference.

- The probability that a part will require replacement

is a significant determinant in how close a multi-

period situation will match the single-period results.

The higher the probability, the closer the y* values

correspond in the single period and multi-period

models.

- The total variable cost (TVC) of the multi-period

model will exceed the single-period TVC for the equiv-

alent periods when all quarters production equal or

exceeds the single-period production.
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D. RECOMMENDATIONS

In his dynamic multi-period inventory model, Karlin was

able to state that for increasing production functions, the

multi-period model would yield a critical number which was

the same as the steady state situation. No similar corollary

is apparent for the decreasing production situation. How-

ever, it is clear that the multi-period model is more

responsive to future period information.

There is an apparent benefit in using the multi-period

model based on the more realistic consideration of holding

inventories for periods in which it may never be used. The

planning horizon of the multi-period model adjusts downward

for future production downturns. It is most important to

correctly predict the production trend as to whether it is

increasing, decreasing, or cyclic and that the first two or

three periods be as accurate as possible. The downstream

numbers need not be as accurate as long as they correctly

depict the trend.

Additionally, if all periods' data is accurate at the

outset and remains unchanged, then there is no need for

future inventory calculations since the model predicts the

optimal level for each quarter.

The problem of obtaining an accurate estimate of prob-

ability for part replacement and an accurate shortage cost

would be present in any model. Both models assume that any

surplus would be returned immediately at the end of a
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quarter and the credit allowed for the turn-in is the basis

for the surplus penalty cost.

The multi-period model has proven relatively easy to

develop and use. It is a model which will provide the user

with a degree of flexibility in selecting the planning

horizons. Therefore, it is recommended that the single-

period model be replaced by the multi-period model.
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APPENDIX A

MULTI-PERIOD INVENTORY MODEL FLOWCHART

Set Boundaries

for Problem:

No. of Periods and Max n

Enter Parameter

Values:

p, A, C, H, P

y* 0

Is TVC* = (Zn)pP

C < P

? Print Results

for Each t

Yes
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Use Equation (2) to

j ~Computeg (u

Let

L L(y;g)

724
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2

tIs

For Other Periods For Period 1:

Use Equations TVC =Cy + L(y;g)
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3

y =max nYe

(See TVC(y) - TVC(y+l) Yes -
Note)<0
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t

TVC* =TVC(y+1)t

Use Equations (11) and (12)

to Compute f(x;g...)

Print: Quarter, p, n,

C, H, P, A, y*, TVC*

t

f(x;g...) for Next Period

6
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It

6

7

t =t+1 No t = No. of Periods

Note: To find lower boundary for any possible multiple

optimal situations, change the strict inequality of

"less than" to "less than or equal to."
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APPENDIX B

MULTI-PERIOD INVENTORY MODEL COMPUTER PROGRAM

$JOB

WRITE(6,2)

READ(8,*) A

C *******'A# IS FOR ALPHA WHICH IS THE FOURTH ROOT OF

Cl-DISCOUNT FACTOR)

* 2 FORMAT(' ','ENTER ALPHA FACTOR')

PRINT,'ALPHA=' ,A

DO 9 I=1,10

WRITE(6,3)

C *******NOTE: PROB=p******

READ( 8, *)PROB

WRITE(6,4)

READ(8,* )C

WRITE(6,5)

READ(8,*)H

WRITE(6,6)

READ(8,*) P

3 FORMAT('O','ENTER PROB')

4 FORMAT('O','ENTER C')

5 FORMAT('O','ENTER H')

6 FORMAT('O','ENTER P')

CALL MCTWO(LIM,NA,PROB,H,P,C,TVCSTR,KYSTR,KPERIO)
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9 CONTINUE

STOP

END

SUBROUTINE MCTWO(LIMN,A,PROB,H,P,C,TVCSTR,KYSTR,KPERIO)

1 DIMENSION QUARTR(8),KYSTAR(8),G(31),TVC(31),F(31)

C **REMEMBER**IF 'N' CHANGES, THEN SO DO 1,2*******

C

C***** RESET THE INPUT DATA FILE FROM LAST ITERATION***

REWIND 9

C

C****** DEFINE THE NUMBER OF QUARTERS ****

LIM = 8

C

IF(C.GE.P) GO TO 950

NMAX = 30

I=1

KPERIO=O

10 KPERIO=KPERIO+1

II=II+1

KY=NIAAX+2

READ(9,*) N

C CALCULATE THE PROBABILITY THAT N ITEMS WILL BE DEMANDED

C VECTORS CANNOT OPERATE WITH "O",SO G(1)-P(O),G(2)-P(l),ETC

NPLUS1 =N+1
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Q=1- PROB

DO 20 I-1,NPLUS1

Il'(?'.GT.1) GO TO 21

G(1)=Q**N

GO TO 20

21 G(I)=G(I-1)*PROB*(N-(I-2))/((I-1)*Q)

20 CONTINUE

NM=NMAX+l

NPLUS2=N+2

IF(NPLUS2.GT.NM)GO TO 30

DO 22 I=NPLUS2,NM

22 G(I)0O

30 KY=KY-1

KYMIN1=KY-1

C CALCULATE L(Y,G) FOR ANY PERIOD (TPENAL)

GYSUMO .0

GSUMU=0.0

IF (KYMIN1.LT.1.0) GO TO 24

DO 23 I=1,KYMIN1

GYSUM=GYSUM+G( I)

23 GSUMU=GSUMU+(I-~1)*G(I)

PENY=(H+P )*GYSUM*KYMIN1

PENU=(H+P)*GSUMU

TPENAL=PENY-PENU4(PROB*N*P)-(P*KYMINl)

GO TO 25

24 TPENAL=PROB*N*P
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25 GFSUM=0

GXSUM1=0

GXSUM2O0

ZEROX=O

IF (KPERIO.EQ.1 )GO TO 800

C CALCULATE F(O,G) ,(ZEROX) ,FOR OTHER THAN PERIOD 1

GNSUM=O.Q

IF(KY.LT.1.0) GO TO 51

DO 50 I=KY,NM

GNSUM-GNSUM+G( I)

50 CONTINUE

GO TO 53

51 DO 52 I=1,NM

GNSUM=GNSUM+G( I)

52 CONTINUE

53 ZEROX=F( 1)*GNSUM

C DECIDE IF CASE 1 (Y2.LE.Y1*) OR CASE 2 (Y2.GT.Y1*)

W=KY-KYSTR

IF(W.GT.0.0) GO TO 400

C CASE 1 ,Y2 LE Y1*

GFSUM=O.O

IF(KYMIN1.LT.1.0) GO TO 101

DO 100 I=1,KYMIN1

GFSUM=GFSUM+G( I)*F(KY-( I-i))
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*100 CONTINUE

GO TO 102

101 GFSUM=O

102 GXSUM1=0

GXSUM2=O

GO TO 800

C CASE 2,Y2 GT Y1*

400 KZ=KY-KYSTR-1+1

GXSUM1=0 .0

* KZK=KZ+l

IF(KZ.LT.1.0)GO TO 406

DO 405 I=1,KZ

GXSUM1=GXSUM1+G( I)*F(KY-( I-i))

405 CONTINUE

406 GXSUM2=0.0

IF (KYMIN1.LT.KZK)GO TO 451

DO 450 I=KZK,KYMIN1

GXSUM2=GXSUM2+G( I)*F(KY-( I-i))

450 CONTINUE

GO TO 452

451 GXSUM2=0.0

452 GFSUM-O

* C CALCULATE TVC ANY NUMBER OF PERIODS FOR ANY Y

800 IF(KYMIN1.LE.O.O)GO TO 801

TVC (KY )-( (C*KYMIN1 )+TPENAL+ZEROX4-GFSUM+GXSUM'1+GXSUM2)

IF(KY.EQ.NM)GO TO 30
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TVCDIF=TVC(KY)-TVC(KY+1)

IF (TVCDIF.LT.0.O)GO TO 30

TVCSTR=TVC (KY+1)

KYSTAR( II )=KY

KYSTR=KY+1

GO TO 805

801 TVC( 1)=(TPENAL+ZEROX+GFSUM+GXSUM1+GXSUM2)

TVCDIF=TVC(l1)-TVC(2)

IF(TVCDIF.LT.0.O)GO TO 802

TVCSTR=TVC(2)

KYSTAR(II)=1

KYSTR=2

GO TO 805

802 TVCSTR=TVC(1)

KYSTAR( II )=O

KYSTR=1

805 IF(KYMIN1.LT.1.0) GO TO 851

DO 850 1=1, KYMINi

850 TVC(I)=0

851 DO 905 I=1,NM

IF(I.LE.KYSTR) GO TO 901

GO TO905

901 F(I)-(TVCSTR-C*(I-1))A

905 CONTINUE
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GO TO 940

PRINT 907,(G(I),I=1,11),(G(I),I=12,21) ,(G(I),I=22,31)

907 FORMAT(' ','G(U)=',11F1O.7)

PRINT 915,(TVC(I) ,I=1,11) ,(TVC(I),I-12,21) ,(TVC(I) ,I=22,31)

915 FORMAT C' ',ITVC=I,11F10.2)

PRINT 916,(F(I),I=1,11),(F(I) ,I=12.21),(F(I) ,I=22,31)

916 FORMAT(' ','F=',11F10.2)

940 QUARTR( II )=KPERIO

PRINT 943

943 FORMAT('0',' QTR N C H P A

1PROB Y* TVC*l)

PRINT 947,KPERIO,N,C,H,P,A,PROB,KYSTAR(II) ,TVCSTR

947 FORMAT('O' ,I3,I8,F12.2F12.2,F1O.2,F7.3,F7.2,I7,F12.2)

948 IF(KPERIO.LT.LIM) GO TO 10

GO TO 1000

950 KY=0

NTOT-O

DO 955 I=1,LIM

READ(9,*) N

PRINT 951

951 FORMAT ' ,'PERIOD N')I PRINT 952,I,N

952 FORMAT(' 1,14,19)

NTOT-NTOT+N
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955 CONTINUE

TVCSTR=NTOT*PROB*P

PRINT 956

956 FORMAT('O','C=P CASE N C H P A

1 PROB Y* TVC*')

PRINT 957,N,C,H,P,A,PROB,KY,TVCSTR

957 FORMAT('O',I12,F12.2,F12.2,F1O.2,F7.3,F7.2,I7,F12.2)

1000 RETURN

END

$ ENTRY
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