
T!S Distributio Center -

S7yracuse, New York 13221

GE NERAL() ELECT'RI C
MILITARY ELECTRONIC SYSTEM OPERATION

TECHNICAL INFORMATION SERIES

Author Subject Category NoR8E H 3B. A. DereshNoR8EH 3
R.J. Anderson Varianice Estimation DteNv18

4Title UNBIASED STAND ALONE LT ESIMTO
00 OF MEASURED POSITION VARIANCE FOR TARGETS WITH

VARIABLE AND UNKNOWN M1E.AN PATHS

Copies Available at GE No. of
MESO TIS Distribution Center Class 1 Pages
Box 4840 (CSP 4-18)

SyrauseNew ork 3221Govt
Syaue ewYr 32 Class Unclassified 98

Estimation of rms target position accuracy for a radar is of great importance
to radar manufacturers and customers alike.- With increasing frequency customers
insist on direct measurement with small RCS aircraft on radial flight paths. Too
often, however, a colocated precision reference radar IN unavailable from which to
accurately defiiw the true target flight path. In these eases the total error can be
tested in two parts: the bias component can be estimated from satic measurementsI and the random component (jitter and thermal error) Is estimated as a variance.
Here the true target flight path is traditiorally modelled as entirely radial. 'Jnfortun-
ate, -nsmall deviations from a true radial can lead to large errors in variance
estimation, particularly when the target is close to the radar where the radar error
expected to be small. If the cu.'tonier requires proof of theore~ical accuracy then 'he

1% npdel error can be larger than iihe radar error and the radar will falsely fail the test.

The approach to v'ariance estimation developed here in to estimate the mean

asoitdwt suig£sml lgtpt oe.Temto sqiegnrtarget path along with the tn-coordinate position variance and thus avoid the error

sensors and targets of all types evcn wuough the specific application It was dz, oped
for was a radar under test with an aircraft on a radial path. The m~a-~~ I& as-
sumed to be a su,n of orthogonal polynomials of order M. oe-W~ wl tht so Ilnga
M is greater than or equal to 9C, the effective tr! wp~defr f the mean path (overlitting),
that the variance estimate In unbiased in tht..ar~an. Moreover the adjacent-pointI correlation coeflclent Is eibow to bie a fSsit te Indicator of overfitting. The zthod
Is shown to be practical in the face of S ulation and real flight data even with mi.ra-
Ing data pointm a-, from missed detections,;dn addition to unbiased optimal catinia-

% tion of variance, expressions are developed for the uncertainty In the estimate and
related to the producer's and consumer's i laks of falsely falling or falsely passing a
tri-coordinate position accuracy test. Considerable development Is accoried sound
test design with '.hese principles, and expressions are developed for confidcnce limits

0.L. Ito Infer bounds or true vainegvntets eut

Th oc .(ofltoifl proprietafy in ormotiniof ath~e Gen Iectrlc Company - irerued to
i iton On .S "7 t,nii en a) Etetl Co y U less cignas

U S. he w, eepr oth t ne :' t~

lii, ocflDfl hLS ee cppoved Send to
tot pbhc eloc:O 2nd sale; its

- -- -- --



t t

GENERAL ELECTRIC COMPANY TECHNICAL INFORMATIO

Within the limitations imposed by GCvernment data export regulations and security
classifications, the availability of General Electric Company technical information
is regulated by the following classificadons in order to safeguard proprietary infor-
mation:

CLASS 1: GJ-NERAL INFORMATION

Available to anyone on request.
Patent, legal and commercial review
required before issue.

CLASS 2: GENERAL COMPANY INFORMATION

Available to any General Electric Company
employee on request.
Available to any General Electrio Subsidiary'
or Licensee subject to e.isting agreemients.
DJclosure outside General Electric Company
requires approval of originating component.

CLASS 3: LIMITED AVAILABILITY INFORMATION

Original Distributiov to those individuals with
specific need for Information.
Subsequ6nt Company availability requires
origirntng component ajproval.
Disclosure outside General Electric Company
requires approval of originating component.

CLASS 4: HIGHLY RESTRICTED DISTRIBUTION

Original distribution to those individuals person-
ally responsible for the Company's lntsreete in
dse rubject.
Copies serially numbered, assigned rnd recorded
by name.
Material centAnt, and knovledge of existence,
restricted to copy holder.

GOVERNMENT SECURITV" CLASSIFICATIONS, when required, take precedence
in the handling of the material, Wherever not specifically disalow3 d. the General
Electric classifications should also be included in order to obtain proper handling
routines.

14MED 40238 45-e5)

IRAI



-~ GEUdERAL ELECTRIC COMPANY

0 j MILITARY EL*CTRONIC SYSTEMS OPERATIONS

TECHNICAL INFORMATION SERIES

SECTION - Engineering Operationsa

UNIT Rkadar Systems Engingering

MWS ACCOUJNTINGI REFERENCE -510

* COLLABORATORS Dr. B. A. Deresh and R. J. Anderson

APRV Mgr., ESE LOCATION CSP 5-C4, Syracuse, NY
R.I.Benfey

kINIMUM DISTRIBUTION -Gqvormm.it Unc!.j-vified Material (and Ttle Pages) in C.E. Classes 1, 2, ov 3 will 6e the

C.%ples TWAle Pat@ Onl To
* Legal Section, ME@O (Syracuse)

0 1 Fi'nagr, Technological Planning, MESO 4Syrscuse)

5 6 G.E Tkochnlcal Deco Center (Schenectvdyk

MINIMUM DISTRIBUTION - Government Clossi'ied Material, Secret or Confioecntial in G.E. Classes 1, 2, or 3 will be
the following.

10 Manager, Technological Planning. MESO k,6racusel

ADDITIONAL DISTR13UTION (Keep at mfinimw,,n withiA intnnt of asigned C.2. Class.)

COPIES NAME LQCATION

5DEFENSE DOCUMENTATION CAMERON STATION,

(CLASS I ONLY) CENTER ALEXANDRIA, VA. 22314

1 L. 1. Chasen P. 0, Box 855F
Phi ladelIr...ia* Pa., 19101

1A. A. Albanese CSP 4-57, Syracuse, NY 13221
1 R.J. Anderson CSP 3-35, Syracuse, NY 13221

1C. Arabadjis CSP 3-16, Gyraruse, NY 13221
1 . L. Benfey CSP 5-C4, Syracuse, NY 13221

1 C. E. Blowi CSP 5-M8, Syracuse, NY 13221
I W. (C. Bookheimer FR? 1-6D, Syracuse, NY 13221
1 BR. W. Bush CSP 3-11, Syracuse, NY 13221
1 M. W, Clark CSP 5-#J21 Syracuse, NY 13221
1A X . B. Cross C'SP 3-il, Syracuse, NY 13221
2 B. A. Deresh CSP 5-C4. Syracuse, YY 13221
1 R~.J, Drexler CSP1 5-2J, Syracuse, NY 13221I1 W. L. FersLer CSP 5-2-J, -Syrscuse, NY 13221
1 M. M. Fitelson FTP 1-l0B, Syvra.ouse, NY 13221
1 M.I. Fox FRP 1-1D, Syracuse, NY 13221
1 E. J. Ge raten CSP 5-K4, Sy- acuse, NY 13221

1E.H, Gibbons CSP 1-8, Syracuse, NY 13221
1J. J. Gostin CSP 3-50, Syracuse, NY 13221
1W. D. Haynes CSP 5-2J, Syracuse, NY 13221
1J. F. Jaeger FRP 1-6C, Syracuse, NY 13221
1J. K. Jamison CSP 4-57, Syracuse, NY 13221
1t .L. Johndrow CSP 5-107, Syracuse, NY 13221
1J. F. Jones CSP 3-1.1, Syracuse, NYV 13 2201

MESO 4024 RtS9V. 9/S0



Name Location

1JR. A. Loomis CSP 5-J2, Syracuse, NY 13221
1J. S. Mac Blane CSP b-J2, Syrac use, NY 13221
1 ~T. A. Mataumoto CSP 1-20, Syaue N 32
IC. A. MUlerina CSP 3-35, Syracuse, NY 13221
IG. H. Millman CSP 5-4B, Syracuse, NY 13221
1A. E. Morris CSP 5-2J, Syracuse, NY 13221
1D. J. Morrow CSP 5-K7, Syracuse, NY 13221
1K. A. Olsen CSP 4-41, Syracuae, NY 13221
1J. L. Perry CSP 5-K7, Syracuse, NY 13221
1.J. E. Phillips CSP 5-W7, Syracuse, NY 13221
1P. E. Postell CSP 5-K7, Syracuse, NY 13221
1E. L. Post CSP 5-7G, Syracuse, NY 13221
IW. D. Putman CSP 5-5P, Syracuse, NY 13221
1D. T. Rakoske CSP 5-2J, Syracuse, NY 13221I1J. G. Reddeck CSP 4-5, Syracuse, NY 13221
1G. V. Richards CSP 5-K7, Syracuse, NY 13221
1E. B. Rockwood CSP 5-2J, Syracuse, NY 13221
1R. A. Schirmer CSP 3-11, Syracuse, NY 13221

1F. Schlent CSP 5-G7, Syracuse, 14Y 13221
2!E. J. Schroeder CSP 5-K7, Syracuse, NY 13221I
IT. B. Shields CSP 5-K7, Syracuse, NY 13221
1F. V. Tellon FRP 2-14R, Syracuse, NY 13221
IR.K. Urquhart 05P 3-35, Syracuse, NY 13221
1R. Wasiewicz CSP 4-5, Syracuse, NY 13221
1R. E. Wengert CSP 1-20, Syracuse, NY 13221

R. L. Winje FRP 1-6D, Syracuse, NY 13221
A. E. Zebrowski CSP 5-K7, Syracuse, NY 13221



TABLE OF CONTENTS

Section Title Page

I INTRODUCTION 1-1

1.1 Summary 1-6

II UNBIASED OPTIMAL ESTIMATION OF VARIANCE 2-1

2. 1 Deriving the Unbiased Form for Known Polynominal Order K 2-1 -

III SUBOPTIMAL ESTIMATION OF VARIANCE 3-1

3.1 Urderfltting with Order M<K 3-1
3.2 OverfittIng with Order M> K 3-3

IV ADJACENT PO-NT AUTOCORRELATION AS AN INDICATOR
OF OVERFITTING 4-1

4.1 Concept 4-1
4.2 Analysis 4-3

V REDUCING ESTIMATION ERROR 5-1 j
5.1 Analysis 5-1

VI MISSING DATA POINTS 6-1

6.1 Orthogonal Polynomials for Missing Data Points 6-1
6.2 Computational Equations 6-3

VII STATISTICS OF THE VARIANCE ESTIMATE 7-1

7.1 Polynomial Assumption 7-1
7.2 Distribution and Moments of the Estimate 7-5
7.3 Overfltting the Trend 7-6
7.4 Insufficient Sample Size 7-9
7.5 Uncertainty in the Estimate of Standard Deviation 7-11

VIII STATISTICAL RISK AND CONFIDENCE BOUNDS 8-1

8.1 Distribution of the Estimate Accession For 8-1
8.2 Producer's Risk -NTIS GRA&I 8-4
8.3 Buyer's Risk 'DTIC TAB - 8-6
8.4 Confidence Bounds u .tmounced 8-9

IX REFERENCES -- 9-1

Wist

3i
-



%I V9

TABLE OF CONTENTS (CONT)

Seoti Title Page

APPENDIX A DERIVATION OF THE TRACE v22 A-1

APPENDIX B DISTRIBUTION FOR THE PARTITIONED DATA SET B-1

APPENDIX C MONTE-CARLO SIMULATIONS TO VALIDATE THE TECHNIQUE C-1
I

APPENDIX D SAMPLE RESULTS FOR A REAL FLIGHT TEST D-1

APPENDIX E STATISTICAL COMPARISON OF RESULTS FROM A REAL-FLIGHT
TEST WITH A CO-LOCATED PRECISION REFERENCE STANDARD E-1

APPENDIX F AN EXAMPLE OF THE INVERSE CHARACTERISTIC FUNCTION
BY DISCRETE FOURER TRANSFORMS F-1

LIST OF ILLUSTRATIONS

gre Title Page

1-1 A-tual PPI Tracks of Lear Jet Legs 1-3

1-2 PPI For Fighter at 38 kft Nominal 1-3

1-3 Rms Azimuth Accuracy for Fighter at 38 kft 1-4

1-4 Rms Range Accuracy for Fighter at 17 kift 1-5

3-1 Mersvrod Data (Gaussian Noise Plus Zeroth Order Trend) 3-5

3-2 Residuals for M = N-2 3-5

3-3 Numerical Example of Variance Estimates with Overfitting
(N = 10, K = 0) 3-6

4-1 Measured Data and Residuals with an Underfit Trend 4-2

4 - Measured Data and Residuals with an Overfit Trend 4-2

5-1 Ratio of Normalization Factors for Variance 5-4

7-1 Range History for Cartesian Linear Flight Path with 10-nmi
North Offset and Asymptotic Azimuth of 300

7-2 Azimuth History for Cartesian Linear Flight Path with 10-nmi
North Offset and Asymptotic Azimuth of 30°  7-3

L_ L_.. AL. .A L ' ~A ' . .



LIST OF ILLUSTRATIONS (CONT)

Figure Title pae i

8-1 Producers Risk of Falsely Failing an Acceptance Test 8-5

8-2 Number of Degrees of Freedom for a 8th Order Polynomial Trend 8-7 q
8-3 Buyer's Risk of Falsely Passing an Acceptance Test 8-8

8-4 Distribution of the Variance Estimate Showing the Confidence Bounds
of Interest b-9

8-5 Producer's Risk per Test vs Total Number of Tests with Overall
Risk of 10% and the Number of Permitted Failures as a Parameter 8-12

8-6 Buyer's Risk per Test vs Total No. of Tests with Overall Risk of 10%
and the No. of Permitted Failures as a Parameter 8-12

. /i ' a

.I.

iiiv

' ' '" ,r ":; " ' ' " "-? " " ', " " ,\" " "- ; . : -' -, ., "" " -',: ,.'''""-,,., .,'""., -,.,""';".- "'t.'- .'"



3 5-q

SECTION I

INTRODUCTION

Estimation of the root-mean-square (rms) target position accuracy of a radar system

is of great importance to both radar manufacturers and customers. To determine whether

a system meets specifloations, tests are performed on real targets and position error is

estimated from data which is stochastic in nature, and reflects aircraft deviations from the

expected flight path as well as from sources of error within the radar itself.

For a 3-D radar, one would like to estimate the rms error in each of three coordin-

ates: range, height, and azimuth. Three major components contribute to this error in each

case. The first of these is bias, which Is usually highly correlated from sample to sample,

but has an error component which is random over the long run ir addition to a fixed corn-

ponent. This error can only be characterized with reference to some external standard.

The second and third components of error are jitter and thermal noise. These are both

random errors which are uncorrelated from sample to sample. Their combined contribu- ""

tion can, in principle, be characterized without need for an external standard. The jitter

component is due to a variety of independent random sources and can usually be treated

accurately as Gaussian and independent of target range. The contribution of range-dependent

thermal noise is also Gaussian, and because the coordinate estimation processes are only

weakly nonlinear, the sum of these effects is still effectively Gaussian. It is the variance

of these random components that we wish to estir -atc as zero mean processes, thus requiring

a separation of the mean flight path from the measurement errors.

The traditional procedures for determining positional accuracy consist of a series of

controlled flights. These generally involve an aircraft flying an approximately radial flight

path (with respect to the radar) at a constant altitude. The intent here is to control the target

radar cross sec ion (RCS) and to permit simplified flight path models. Usually two or more

legs are run (e. g. inbound and outbound) at each of several altitudes. Quite often little or

no thought is given to the quality of the measured and estimated quantities in terms of the

effect of limited sample sizes on estimation error. Both the producer and the buyer thus

sufier unknown risks of the radar falsely failing the test or falsely passing, respectively.

1-1 '



The total rms error (bias and random) of the radar under test can be estimated by Eq.

reference to the simultaneous track of a precision tracking rad'r" with known errors which

are significantly less than the radar under test. Alternatively the error can be separated

into two parts, with bias error determined through static tests or other means and the

random error estimated from least squares fits of the tracking data to some simple trend

model (e. g., zeroth-order in height and azimuth and linear in rarage for a radial flight

path),

Several practicai problems are immediately evident when analyzing data from flight

testa. First, if the tests are manually conducted using an operator-controlled track ball/

target window on the plan position indicator (PPI) for instance, operaitor error can be a

significant contribution to the total error. This is especially true near he limits of cover-
agt and detection, in the vicinity of crossing aircraft, and in regions of clutter leak through.

Second, deviations from a true radial flight path, inclrding offsets and perturbations as from

gusts, can cause severe nonlinearities with equivalent polynomial orders of fit as high as ten

or more, particularly when the target is near the radar. Because of these reasons, simple

a priori models can lead to position errors many Limes larger than the contribution from the

radar system alone.

Often the radar will be tested in a Incation which precludes the availability of a separ-

ate reference radar and the second approach is the only practical alternative. Accordingly,

this paper addresses the problem of estimating the variance of the random error component

without a precision reference standard, providing a systematic, rigorous approach which

is unbiased in the mean and independent of the true aircraft flight path.

The method is quite general to sensors and targets of all types even though the specific

application it was developed for was a radar rnder test with an aircraft on a radial path.

The statistics of the estimate are known and the concept of risk can be used to ef-

fectively design the test (e. g., number of legs) in the first place, while the concept of con-

fidence bounds can be used to effectively evaluate the test results afterwards.

-C-h,4

Figures 1-1 and 1-2 are PPI plots of actual radar data taken from a modern tactical
radar. They Illustrate some of the difficulties involved in flying easily modelled paths.

The target in Figure 1-I is a Lear jet attempting to fly radial flight paths. The actual

paths being flown are not even linear in cartesian space, much less in the space defined

by the coordinates of range (R), height (H), and azimuth (A). Because of this, a linear

1-2
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Figure 1-1. Actual PPI Tracks of Lear ,Jet Legs .

51- In 15 2

Figure 1-2. PP l For Fighter at 38 kft Nominal..

1-3
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model is severely Inadequate an a trend mode. The tar-get in Figure 1-2 is a military

fighter plane, also attempting to fly radial flight paths. Here, the path it very close to

being linear In cartesian space, but in still very nonlinear in radar space particularly at

close range. Again, if simple flight path models are used, they will give rew to severe

stimation errors.

As evidence of this thesis, Figure 1-3 shows the estimated error in azimuth as a

function of range for one of the flights in Figure 1-2. The dotted line in this figure repre-

sents the theoretical standard deviation of the random error as predicted by theoretical

models of the radar. These models include the effects of stepped (clutter-rejection) atten-

uators which cause the discontinuties in the curve. The dashed line is the one-sigma random

error calculated from the flight data after removal of the mean. This corresponds to an

assumed radial flight path. The solid line shows the one-sigma random error calculated

from the flight data after the removal of an assumed linear (in azimuth) trend. The broken

31

25-

I.I M 1 UImt

I 25 51 75 i 125 151
RtIEAE (nmi)

Figure 1-3. Rms Azimuth Accuracy for Fighter at 38 kit

line shows the one-sigma random error calculated by the method proposed in this paper,

where the order of the assumed trend is determined from the data itself. Notice that

t!he constant azimuth assumption leads to severe overestimation and even the assumption

1-4
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of a linear trend produces relatively large estimation errors. The error estimate calcu-

lated by the proposed method, however, shows good correlation with the predicted value.

Figure 1-4 shows a plot of the one-sigma random error in range, as a function of

range, for a fighter at 17,000 ft. As before, error ca'.culations based on a linear trend

appear as a solid line, calculations based on the propcsed method as a broken line, ando-

predicted theoretical error as a dotted line. Notice again how poorly the linear trend

assumption compares with the proposed model.

These figures illustrate the need for a method of variance estimation which

isolates the random errors in the system from the mean flight path. The method developed

here addresses this problem directly and, in doing so, overcomes many of the pitfalls of

the simpler methods.

75',

LINEAR TRE ID KOVAL
-- -- -ADAPTIVE TREND 0M,

256

3 25 5675 I125 M5
RANGE (nmi)

Figure 1-4. Rms Range Accuracy for FIghter at 17 kft
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1.1 SUMMARY

Because the random components of error in all three coordinates (R, H, and A) are

c'osely represented by zero-mean GauRsan processes, it is assumed that the analysis

below can be applied with equal validity to any of these parameters. For this reason, the

analysis has been carried out in terms of the general coordinate Z, which can be either R,

H, or A. It will be shown that the variance of the random components of error, a , can be

estimated from incomplete data (data points missing), using c polynominal trend model.

This estimate is unbiased and independent of the trend removal process in the mean. The

trend removal process Is adaptive, statistically sound, rigorous, and independent of a

priori or external dAta. It will be shown that overfitting the trend gives the same estimate

of the variance in the mean as optimal fitting. It will also be shown that the adjacent point

correlation coefficient can be used as an indication of overfitting, thereby insuring proper fit.

After developing the variance estimation procedure, the sttistics of the estimation

error will be derived and shown to be directly relatable to the way in which the test is

carried out. Then the producer's risk of the radar falsely failing the test and the buyer's

risk of the radar falsely passing the test will be derived as a function of the statistical

uncertainty created by limited sample sizes. These are important features of a well

designed acceptance test in which both types of statistical risks are quantified and con-

strained to mutually agreed levels. Additionally expressions are developed and algorithms

presented for estimating confidence bounds on the true variance given the actual estimate.

In all cases, simulation has been used to confirm theoretical techniques in the face of

real-world applications. Also shown are the results of a comparison of this technique with

the use of an external standard of reference in conjunction with data collected during actual

flight tests.

1--
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SECTION II

UNBIASED OPTIMAL ESTIMATION OF VARIANCE

,. I DERIVING THE UNBIASED FORM FOR KNOWN POLYNOMINAL ORDER K

As a starting point, assume that the actual polynominal trend of the mean Larget flight

path is of known order, K, with additive independent samples of Gaussian noise. Taking N

measured data points, denote

_=[Z 1 Z 2 _.... ZN]T=P b + v (2-1)

as the set of measured positions, e. g., range, azimuth, or height, in a specified time or

range interval, where

T a,

v1v v2 .... v i(2-2)

is the set of independent noise samples with

E(v.=0 and E(vivj)= , 2 ij (2-3)

thThe j point of the true mean flight path is A

K+1

Z bi P (2-4)
i ji

where the Pit are polynominals with j E N and ieK 1. The vector of true coefficients is

b=[bl 2 .... bjc+IT a

and the polynominal matrix is -

11 PI2 ...... 1,K+1

P . (2-6)
(NxK+1) 1 .

PN1........

2-1
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If a polynominal of order K is assumed (it doesa't matter whether it is the same polynIominal

so long as it is complete over the same space), then the asouned trend is (2-5)

= p _ (2-7)

wherc by the method of lehst squares, .

2'-. K.1

Defining the set of residuals

Z Z -~(2-9) -

and ignoring a weighting matrix for simplicity, the maximurm likelihood estimate
2of the variance a is

2 1 T2
aMLC N (2-10)

Inorder to examine the structure of the estimate, first introduce Equations (2-1), (2-7),

and (2-8) into the expression for the residual, I.e. Equation (2-9). Thus

Z = ___)v_,(2-11)

where I Is the identity matrix and

A -1 T
M P (pTP) P. (2-12)

Note that the expecwd value of Z is zero so that the residuals themselves are unbiased.

Introducing equations (2-11) and (2-12) into (2-10), recognizing that M is idempotent S
2 T

(1.e., M = M) and symmetric (I. e. M M) then

2 1 T
L N " .-M)v. (2-13) .

Because this Is in quadratic form and the noise samples are uncorrelated, the

expectation value is

2~ a2  (-14)E a Trace (-) (2-

ML N

2-2

. . ~ 2



Note that the dimensions of I are NxN and that

T-1 T
Trace (-M) = N-,rrace P (PT) Pa

-N-Trace (Pjp_)-pTP = N - (K+1)

because the dimensions of Pare NxK+I. Thus

2 N-K-i (2-1)

MLN

which is biased low for all K > 0. An unbiased estimate of variance can be constructed

however from

Z, (2-16)
N - (K + 1)

where

E 1(a2) =a2 2-7
(2-17 1"

for all N > K 1.

This formulation reflects the equivalent loss of data points in the estimation of the
K+1 polynominal coefficients from the same data for which the variance is estimated.

The reader will note the famillar form this reduces o when K = 0, i.e.,

N

N-Z (2-18) "

= N-I1:

for which the mean trena Is just the average value of the data

N

g=V zi. L-4

J I (2-19)

2-3/2-4
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SECTION III

SUBOPTIMAL ESTIMATION OF VARIANCE

In general, the true order of the mean fligbt path, K, is unknown. Computationally,
an order, M, is assumed which may De less than (underfitting) or greater than (overfitting)
"he true order K.

3.1 UNDERFITTING WITH ORDER M<K

Intuitively, It is clear that underfitting is dangerous because actual deviations of the true
flight path from the aesumed flight path will show up as a bias in the variance estimate.
To tee this analytically, consider the estimation of the M + 1 polynominal coefficients and
the resulting residuals. Thus, we partition all matrices at the boundary of estimatable

quantities such that

P1 
*0-13 P1) M1 l 1 M+2 .... K+1

2 I(NxM+I) (NxK-M) i N " ," P, N"+
1 ...... M+ M2.... N,K+1

and

~r: =[TrA~ A AlT
1= T= = 1 2 .. M+i tM+2" .tK+j (3-2)

where Athr 1 (p Tpl)-lP T Z (3-3)

and

2 = 0. (3-4)

Defining a new matrix

M 1  P1 (P P 1)-P (3-5)

3-1
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then AA

Z = P b+v - P 1  =(1-M 1 )(P 2 b-I+v) (3-6)

and
A

E(Z)=(-M 1 )P 2 b2  0. (3-7)

Thus the residuals have an incorrectable bias error because of the unknown true

coefficients b2 A 0. Moreover, after substituting into Equation (2-10) for the traditional

variance estimate
AM2 = 2 (N-MI-i)

ML k N
N K+1+bi Pil 1-:

J=S+2 Ml2(3-8)

N K+1- K+1-

-2 M M1  b bIPiJE b IP if

I =j+ 1 1 = M+2 I = M+2

it is clear that while the first term is of the form which has a correctable bias, the

remainder is hopelessly structured with the unknown and arbitrary true polynominal

coefficients b2 . Thus, underfitting causes uncontrollable and arbitrarily large bias

errors which explain the large errors seen in Figures 1-3 and 1-4". Clearly under-

ittting is to be avoided at all costs.

*While it has not yet been proved in general, simulation supports the notion that underfitting

leads invariably to overestimation. As an example, consider the simplest case where K=1

and M=O. Using the unbiased expression for variance, i.e., Equation (2-16), replacing K

by M and equally spaced data points A t seconds apart then

2 N(N-1) (N+1) 2 At 2

E() =a + 12 b2

such that 2
E(a )>ay for allN> 1.
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3.2 OVERFITTING WITH ORDER M> K

Intuitivaly, overfittIng appears dangerous because the polyne'minal fit to the trend may

fit the noise we wish to characterize. Surprisingly, this fear is not Justified. Consider a

new partitioning at the boundary of true quantities such that

Pll ....... 1, K+1 P1, K+2 Pl, M+I

1=M'l 1, Kt2" 1 24-2P 1  | I "m . (3 9) ."; o

(NxK+1) (NxM-K) PNi ....... N, k+I P ,K 2 . N, M+

4N

and

A FA 1 A [A A A ;A A
A , A A2 T AA A A A
b b b b .... bK bK+2 .... bM+ (3-10)

where

b (pTp PTz (3-11)

and
A
A

Z P P b 1+ v- Pb (3-12)

'V

Substituting Eauatlon (3-11) into (3-12) and simplifying %.

Z =( M) I = (L- M)P 1 b 1 + (-1-M), (3-13)

which is the same as Equation (2-11) for the case of M~-z except for the first term. .

But since

(I-M)P = 0(3-14)I0
3-3



all partitions of (i-Mg) j! must be zero as well. Thus S

(-M) Pb =0 (3-15)-

'a

and

- P b =(3-16)

which is exactly the same result achieved for the optimal case where the polynomial order is

known beforehand. Thus overfitting leads to unbiased residuals and an unbiased estimate of

variance can be constructed from

A Tk92 z "

2  Z (3-17)

N N- (N+1)

with

= -_)z (3-18)

where the hat implies suboptimization In the sense that K is not Nmown but M > K is somehow

guaranteed (I. e., overfitting).

The surprising result of this analysis is that an unbiased optimal c"*imate of variance

can be achieved, i.e.,

for all

K < M < N-I. (3-20)

Intuitively, it seems as though ,verfitting merely fits the noise. If M = N-i then this

notion is correct. However, so long as M < N-2 the trend does not quite fit the noise

(although it is influenced by it), and the variance estimation formula, i.e. Equation (3-17)

exactly scales the residuals in the mean to their correct value just as if M = I..

3-4
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Figures 3-1 and 3-2 illustrate this. The dashed curve in Figure 3-1 shows simulated

noise as fit by the curve when M = N-1 and K = 0. The solid curve represents an overfit

where M = N-2. Note that while influenced by the noise, there are still finite residuals as

shown in Figure 3-2. These residuals are exactly scaled in the mean to their optimal value,

i.e. M= K, by the factor N-M-TY.

,, M =I ,)

8__M N-I
I 2

-/' I \ (t).,
M =N-2

Time

Figure 3-1. Measured Data (Gaussian Noise Plus Zeroth
Order Trend)

2

0 
_L

r t

TI me

Figure 3-2. Residuals for M N-2
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:rn:
,- ,4 , , _.,, _4 .4 S : .. ...b '4* ,.... - -_.'., . .x - _ _ , '.- . . . . . " ' . _. -



To fix ideav about the variance estimate, consider Figure 3-3 which shows the nffect

of residual scaling for N = 10, K - 0, a = 1 as a function of M, the assumed order. The lower

curve on the left shown the standard deviation (root variance estimate) without scaling. Here

is the support for our intuition of decreasing variance until M = N-1 where the noise ir

exactly fit. The upper curve on the left shows that the bias correction factor vr97?N71TJ
exactly scales the residuais for all Av < N-1.

TRUTH WITH BLAS CORRECTION

X4 I: 11~- " -
- N- N-M-

=N11 1 I

012 3 4 56 7 N-2 N-i 0 12 3 45 6 7 N-2 N_ 1

Figue 3-3. Numerical Examrle of Variance Estimates
with Overfittiag (N = 10, K = 0)

The plot on the right shows t'ie variation of the bias co-'rec ion factor as a function

of M (for K--)). Here it can oe seen that this uorrection factor whithi scales the residua]

mubt increase as M is .ncreased over K until at M=N-1 this factor must be unrealizably

infinite for the corr spondng[, zero residuals. The message' here is that so long as

K< M<N-2 the correction factor works and unh-ased estimatesi of variance will result.

0.8 4

3-6 3

NO CORRECTION,



SECTION IV

AWIACENT POINT AUTOCORRELATION AS AN INDICATOR OF OVERFITTING

It was shovm, on the one hand, that underfitting leads to uncorrectable bias errors

while overfitting, on the other hand, will always yield an unbiased estimate so long as

N-1 >M•K. (4-1)

This result is only useful when accompanied by a reliable method for ensuring that M > K.

As it happens, a sensitive indicator of overfitting is the adjacent point correlation coefficient

defined by
T

P •- (4-2)
a 2p - (M____

where all definitions are as before except for the lag matrix defined by

o10 ...... (4-3)
U A 0 1. (4-3) '

- 100Z ±(NxN) **1 0
0 11

)........ 0 0-'

4. 1 CONCEPT --

Underf1tting results in residuals which are positively correlated because adjacent pairs

are mostly of the same s!gn. This effect is Illustrated in Figure 4-. Moreover, the greater .

the underfit, the more positive the correlation. Overfitting, on the other hand, results in

r. aiduals which are negatively correlated because adjacent pairs are mostly of opposite sign.

This effect is illustrated In Figure 4-2. The greater the overfit, the more negative the cor-

relation. Only In the limit of M= N-1 does the correlation coefficient reach -1.

A
Thus, one can expect that the mean value of p will become negative when M Just exceeds

K. Of course, it isn't really necessary to determine this point precisely because the variance

estimate will still be unbiased no matter how much M exceeds K (except for M : N-1). This

provides a cushion to protect against the fluctuations in the estimate.. of '.

4-1
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Figure 4-2. Measured Data and Residuals with an Unerfit Trend
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4.2 ANALYSES
A

The expectation value of p from Equations (3-18) and (4-2) when M > K Is,

A 1-i Trace (3j M)
E (p) Trace (I-M (4-4)

E = N-(M+l) (4+)

1~where we note that Trace U =0 and (I.-M) in Idempotent, From the definition of M,

TraceeM) = Trace(pTp) UPPT (4-5)

If P is a complete set of orthogonal polynomials over domain N then

N 0;1 k

P PN(4-6)" ....
J=1 jk":

j=1

and P P is diagonal. Thus,

PlP . .. . .. . +"PTr1 _Mk 2k + PN-1 k PNk

Trae -) = (4-8)

Nk1 k 21k

Ljk
J=1

N-1

-. Without formal proof, laborious analyses for M = 0, 1, and 2, and numerical simulations

frM ahgha20etbihthat

EN-l MK (4-9)

4-3 :
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This remarkable result is independent of the choice of pnlynomial, orthogonal or otherwiae,

so long as it is complete over the domain of N.

Of course Equation (4-2) is not a form suitable for calculation because of the need to
2kncw a , the true variance, beforehand. A practical expression for this purpose which has

the same expectation value, i. e., Equation (4-9), is as follows:

N-1 A)( )
A :Z J+-1 1)\/ (4 -10)

Ni ( 2 ( ) 21/2

7 1

4-4
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SECTION V

REDUCING ESTIMATION ERROR

Because the mrximum likelihood estimate is the minimum variance estimator of variance,

the estimation error wi), be increased by the bir. cc.:-rection factor N/(N-M-1). A practical

way of reducing this error is to use a larger data set for the trend removal than for the

variance estimate.

5.1 ANALYSIS

Consider the partitioning of the N data points for trend removal into three parts, the cen-

tral one being used for the estimate of variance. Thus,

T T
[zT~zTz I I T ,-Z. Z 1 2 I = ZiZ2 .... Zr: Zr I...+ Za Z  + ZN (5-1)

and Pis similarly partitioaed horizontally as

T
P =P3 (5-2)- 1  p2  __(N x K+1) (r x K+1) (s-r x K+1) (N-s x K+I)

Then

A2 1 _'T I r. Ta ML -- 2 s-- L M 2C I . (5-3)L sr 2 2-

Denoting

"22= IM T ETM] 
542 2 2

5-1
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with the I - M matrix partitioned

I- M -M 1 2  _ 13

I -M M ~ I 2 1  1 -M 2 2  -M 2 3 (5)

-M 3 1  g-M 32  M-l3 3 J
then

IM 

I -M 22 x -IM I- -M (5-6) '

L M230 T J - 2

Because Equation (5-3) is in the quadratic form

2 1 T~ (5-6A)
0ML s-- 22

theni

aM 2 - Trace (5-6B)

From Appendiic A where the polynomials are assumed to be orthogonal,

S

2 M+1 nk

E 2 2 s-r- Nrl (5-6C)

k=12 E~ nk 7
n=1

5-2 
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.

so thut an unbiased estimate of variance for

s-r <N

is,

~2 ~2
P

M+i nk (5-7)nffir+ 1  '
s-r - -

k=1 E 12

nk

which reduces to the prior result, i. e. Equation (3-17) for s-r " N. To see that the un-

certainty in the variance eatimate has been decreased by extending the domain of the fit to
the trend, consider that the bias correction factor ar 2/ 2) is much less for a given number

of data points s-r. Thus if s-r data point6 are used for the variance estimate in either case,

the ratio of bias correction factors with N > s-r avd N = s-r is,

s-r - (M+1) <1S p 2
nkM+1 2 nkT+

s-r nr+ (5-8)
k=1 p2

nk
n=1 I..i

This is so because

S N
2 2 (5-9)Fa nk <nk ''

n-r+1 n=1

5-3
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Figure 5-1 is a plot of this ratio for s-r=10 and N=30 for 0 M < 9 with K=O. Notice

that for M=9, the numerator goes to zero because In the case where L=N=30, N-1=9 and all

points are precisely fit. As discussed in Section III, the residuals 9re scaled exactly to

truth in the mean for all cases where M < N-1. Thus we see here another advantage to in-

creasing N over L in that it permits higher order fits without fitting all the points. This is

offset somewhat however in that the larger N is (with a given spacing),the larger M has to be

in general. Nevertheless the advantage still accrues for many cases of interest. Later

in par, 7.3, it wi!l be shown that this ratio is precisely the ratio of the variances of

the estimates for these two cases.

'-40

* 0 9 .. ... .. . - ... .- ".'.

0.9 - -------

0..4

-0.5 . .......p0.6

-0.5.

-0.

0.3 ~ .
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Figure 5-1. Ratio of Normalization Factors for Variance
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SECTION VI

MISSING DATA POINTS

The previous development implied evenly spaced data at every one of the N points. Be-

cause this procedure is to be used with real-world equipment with a probability of detec.-

tion less the unity, it is clear that variance estimates will be required in regions having

missing data points.

6.1 ORTHOGONAL POLYNOMIALS FOR MISSING DATA POINTS

Define a vector H with dimension N' that consists of N ones for N detections and N' - N

zeros for missed detections,

HH4 1 H 2 . . . . H ,N11 (6-1)

with

N' r' sl

H r A H; H (6-2)

J=1 J=1 j=1
where the relationships between r and r' and s and s' are the same for N and N'.

Moreover, define a quasi-identity matrix I' with H as its diagonal, i.e.

H1

[ H2  (6-3)

Then the variance eptimate becomes,

Z' T Z'a - - (6-4)
Trace 1(

22

6-1
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where

z, I IZ (6-5)

and
at

p2

M+1 2 nk Hn

Trace 2  H n=r2+l (6-6)=2' E N' 66).

J--r'+1 k=1 2 H
Pnk Hn

n=1

The polynomial set is orthogonal in domain N' with weighting matrix H. The orthogonality
relation is

PN' (6-7)

Fa Pnk Hn k =1 .'
n=1

The recursion relation for these polynomials is

= (J, k+ J k) Pjk -vk Jk-1 2 <k <M (6-8)

with

N' N
.1/ k~ H (1-1 2ll Hl JkI, (6 -9)

1=1

7k  1) P, k~ Hpi kl(-0

'N

6-2 ZIP



and '

=J -i-I-1HAH,(6-11)

P = 1, for all j (6-12)

Details of this set of orthogonal polynomials and its use can be found in Ref. (1).

6. 2 COMPUTATIONAL EQUATIONS

These matrix forms of the equations for estimating variance from an incomplete data

set, I. e. , which include missing data points, have the following algebraic equivalents for

computational purposes:

2 .=r1 V 2 2 (6-13)
Z Trace Y

22.-

while Trace Y' is given:by Equation (6-6) and -

22a

M+ 1

ij b H?*P (6-14)
k k jk

k=1

with

N'

E2 ZIH1 Pi
A 1=k
b k N=1 (6-15)
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F The expression for the adjacent point correlation coefficient in the face of missing data

points is generalized to

AT

~=±- (6-16)

or,

P 1= i -(6-17)

with Monte-Carlo simulation again demonstrating that

AM+
E (p) M+- N (6-18)

wheneve! ' > K.



SECTION VII

STATISTICS OF THE VARIANCE ESTIMATE

It was shown earlier that the variance estimate is unbiased; that is the expectation value

of the estimate is the true variance of the noise. Nevertheless the estimate itself is a random

variable subject to uncertainty which arises primarily from three sources:

1. The assumption of a finite polynomial trend
2. Overfitting the trend
3. Insufficient sample size.

This section explains these sources of uncertainty and offers practical approaches to con-

straining them which have already been proven both by simulation and application to actual

test flights.

7.1 POLYNOMIAL ASSUMPTION

Even a cartesian-linear flight path which doesn't overfly the radar will be trigonometric

in the radar's polar coordinate system. Figures 7-1 and 7-2 show the range and azimuth

histories of such a flight path with north offset of 10 nmi and asymptotic azimuth of 30. In

principle a polynomial fit to this data, particularly at close range would require an infinite

number of terms. In practice, equivalent polynomial orders less than eight or nine are

usually sufficient to fit mean flight paths down to a small fraction of the radar noise so long as

two conditions are satisfied.

1. No range interval for estimating the mean target path extends beyond the point
of closest approach.

2. These Intervals must be adjusted downwards in lengta to accommodate the
increasing curvature (in radar coordinates) encountered near the radar.

Both conditions stem from the fact that the equivalent polynomial order increases rapidly

in the v-'cinity of the point of closest approach. An interval which straddles this point will

require a much higher order of fit than one which places it at its boundary; thus the first

condition. Nevertheless the reader is cautioned that this innermost interval may bave to be

broken up further, i. e., reduced in range extent, if the equivalent polynomial order of fit

turns out to be too high for the computer being used. A 500-knot target with a radar having a

revisit time of 12 seconds (5 rpm) will have about 6 data points in a 10-nmi range interval.

Experience shows that a computer with 32-bit floating point capability can easily handle the

101 order polynomials sometimes required in the innermost 10-nml range interval.
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The second condition addresses the need to optimize the number of data points used in

the fit, N, and the assumed polynomial order of fit, M, for a given set of data used for the

variance estimate, L. The total flight path is usually divided into a number of intervals con-

taining 6- to 10-data points a piece, I. e. L, starting with the point of closest approach to the

radar. But there are two competing sources of error which require disparate optimal

strategies for picking N and M. On the one hand, we'd like N as small as possible near the

radar to minimize the true order of fit K, and thus avoid possible bias error from inadvertant

underfitting in the region where the finite polynomial assumption begins to breakdown. On

the other hand, it will be shown in par. 7.3 that increasing N for a given L and true order K

will result in a dramatic decrease in the estimation uncertainty. After many simulations and

the processing of much real data, the following strategy was derived which appears to provide

a robust balance between these seemingly disparate requirements.

1. The order of fit M is increased from unity to the maximum permitted by the
computation system with accuracy, and all those cases where the correlation
coefficient is negative for M, M-1 and M-2 kre accepted as legitimate
variance estimates. The requirement that p be negative for M, M-1 and M-2
has been shown by experience to effectively eliminate the effects of sampling
fluctuation on the instantaneous estimate p (M;N).

2. For ranges less than 4LAR (where AR is the distance between data points)
N=L and we pick the order of fit M to be the largest possible on the computer
puse subject to the additional constraint on the correlation coefficient that
p be negative for M+1 as well to provide additional assurance that the
polynomial approximation is valid.

3. For ranges larger than 4LAR, N is systematically increased from L to 4L
and M increased from the minimum established in step (1) to the maximum
permitted by the accuracy of the computer (e. g. 10-15). The particular
values of N and M used are those that correspond to the maximum Trace (v22

[as calculated by Equation (6-6)] from the entire list of legitimate estimates.

4. The optimum strategy regarding the geometrical relationship between N and L
is to use symmetry wherever possible, i.e. for L to be centered in N. This
stems from the fact that while all possibilities will lead to unbiased (or minimally
biased) estimates, the centered case results in the minimum estimation un-
certainty. Near the ends of coverage or the point of closest approach L cannot
be centered and some increased uncertainty must be tolerated.

Examples of the efficacy of these procedures are given in Appendices C and D.
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7.2 DITRIBUTION AND MOMENTS OF THE ESTIKAL'

Basically the estimate of variance, as represented by Equation (6-13) can be viewed as

a process whereby s-r Gaussian, zero-mean variates, i.e., Z = Z - Z are squared and

summed, and then normalized by Trace v2 2 . Now it is commonly known that a random

variable which is the sum of the squares';. N independent zero-mean Gaussian variates is chi-

square distributed with --N degrees of freedom. Moreover if the mean is estimated from

averaging the data, then one degree of freedom is lost and v= N-1. It is a straightforward

proof to show that when M+1 coefficients are required for the estimation of the mean then

M+I degrees of freedom are lost and P=N-M-1. For L=N then it is clear that

2 2

2where a is the true variance and P the number of degrees of freedom of the random
2

variable X2  For L=N

2 Y2X ."

= N-M-1 (7-2)

Since

P ' (7-3)

and

VAR(X 2 ) = 2v, (7-4)

we see that

EE ()2 (7-5)EN-M-1 P'

which shows again that the estimate is unbiased, and

4
2 2a (7-6)VAR -I VA N-M-I'

which is a new result.

7-5
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What happens when N > L and P =Trace ,. ? With the proof in Appendix B, we state

here that the normalized random varable Tra / 2)is stiUl chi-square distributed

with Trace 126 degrees of freedom. Thus,

2 2
A X Trace .
C2 Y 22 (7?7)

Trace v22

From Equation (7-3),

-i

VAR 7) 28

Trace P'2

Because 'Trace > s-r-M-1, as seen from Equation (5-8), it is easy to see that the un-

certainty in the estimate is reduced by the procedure of using more points for the trend

removal than for the variance estimate itself.

7.3 OVERFITTING THE TREND

It was already shown that overfitting does not introduce a bias. Nevertheless there is

a penalty which appears as an Increased uncertainty in the estimate. This may be seen

clearly from Equation (7-6), which is the form of the variance of the estimate when N=L.

The standard deviation of the estimate then varies almost inversely as the square root of

order of fit, i.e.,

SIG = SIG N-M-1 
(79)

For N=10, Table 7-1 gives the increase in the standard deviation for the estmate with M 0140
as the parameter.
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TABLE 7-1

INCREASED UNCERTAINTY DUE TO OVERFITTING WHEN N=L=10

M* 1 0 1 2 3 4 5 6 7

1.06
2 1.14 1.07
3 1.22 1.15 1.08
4 1.34 1.26 1.18 1.10
5 1.50 1.41 1.32 1.22 1.12
6 1.73 1.63 1.53 1.41 1.29 1.15
7 2.12 2.00 1.87 1.73 1.58 1.41 1.22
8 3.00 2.83 2.65 2.45 2.24 2.00 1.73 1.41

From this table, the uncertainty can almost triple when the true order is zero and increase

by a factor of 2 when the true order is 5.

The general form of Equation (7-9), where N > L, is

SI'i(/ SI Trace V22 (N, L, M0)

SG1T0= Trace v 2 2 (N, L, M) (7-10)

As a means of comparison, consider two examples. In both cases, we will keep L=10,

analogous to the example from which Table 7-1 was constructed. Tables 7-2 and 7-3, on

the other hand, present the results for N=20 and 40, respectively, where the L data points

used for variance estimation are centrally located among the N data points used for trend

removal.
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TABLE 7-2

INCREASED UNCERTAINTY DUE TO OVERFITTING WHERE L,1,0 AND N,20

N 0 1 2 3 4 5 6 7

1.007
2 1.028 1.021
3 1.051 1.044 1.022
4 1.067 1,060 1.038 1.016
5 1.092 1.085 1.062 1.039 1.023
6 1.120 1.112 1.089 1.066 1.049 1.025
7 1.143 1.136 1.112 1.088 1.071 1.047 1.021
8 1.175 1.167 1.143 1.118 1.100 1.076 1.049 1.027

TABLE 7-3

INCREASED UNCERTAINTY DUE TO OVERFITTING WHERE L-1O AND N-40

mo.

0 1 .. .. 2 3 4 5 6 7

4% 1 1.000
2 1.015 1.015
3 1.019 1.018 1.004
4 1.031 1.030 1.015 1.012
5 1.039 1.038 1.023 1.020 1.008
6 1.048 1.047 1.032 1.028 1.017 1.009
7 1.060 1.057 1.044 1.040 1.028 1.020 1.011
8 1.067 1.067 1.051 1.047 1.035 1.027 1.018 1.007
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It should be evident from these tables that the effect of increasing N for a given 1, are dra-

matic. For Instance, when the triie order is zero, the uncertainty barely icrease,- by 18%
rfor N=20 and 7% for N=40. Compare this to the 300% increase shown in TP e 7-1. The

length of these tables are kept to match Table 7-1 and not out of any theoretical restriction,

recalling that

K < M < N-2 (7-11)

is the only restriction and we could have increased M to 18 for Table 7-2 and 38 for Table
7-4, if needed, The point here is that there 's very little penalty for reasonable amounts of

overfitting with N > 2L, leading to a robustness for the technique. In practice we have found
that increasing N beyond 4L is unnecessary from the point of view of constraining the un-

certainty in the estimate.

7.4 INSUFFICIENT SAMPLE SIZE

Because a typical air defense radar may only revisit c target once every 6 to 12 seconds,

the total number of samples available for a variance estimate will be small on a single flight

leg. As an example, a F;00-knot target will yield only 6 unique data points in a 10-nmi range
Interval for a radar revisit time of 12 seconds. -low big will the uncertainty in the estimate

be? From Equation (7-8) we find that

jj

(^ -2 2
SIG a Trca2' (7-12)

For L=6, N=4L=24, M 0 -0, and M=8 for example

Trace v 2n 4,54

Thus

which means that the uncertainty in the estimate of variance is larger than 65% of the true

variance itself. From estimate-to-estimate then a considerable fluctuation will be en-

hcountered, perhaps far more that we would like.

1 Ta 7-9
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One way to reduce this uncertaluty is to extend the range interval, I. e. L, over which

the estimate is made. This has several disadvantages. First, a large increase in L may

force an averaging of true variance which may vary significantly over the range interval

because at long range

a 2  cc-I 4

Secondly, the pressure increases greatly for a higher order of fit than perhaps can be

handled with precision on a typical computer.

Au alternative approach which has proved quite effective in practice is to increase the

number of flight legs for the same (or similar) conditions. Thus for p - flight legs where

we average the variance estimates in like range intervals after ,.moving the trend on each

leg.

ip

Note that the result is still unbiased, i.e.

Ekorp) =@". (7-15)

Moreover,

(2) 2a 12 Trace (2) " (746)
P i~p -

For planning purposes, consider all N, L, and M identical from leg to leg for a given range

interval.

Then, *4

VAR p 9.o"ev (7-17)
S p T .22

7-10
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and

SIG (, 2.. c2

Suppose, for the example just considered we wish to reduce SIG a ) to only 30% of ar

Then from Equations (7-13) artd (7-18), the number of legs required would be 5, not unreason-

Aq

2I

able, On the other hand, 44 legs wouid be required to reduce SIG a to 30%, perhaps

too many to justify' economically,

This laade naturally into questions of test planning. What value of the ratio

, 'N. '

IG (2 )is really appropriate? This is where the concept of statistical 7sk is useful; a

O* .

subject treat2ed In Section VIo.

7.5 UNCERTAINTY IN THE ESTIMATE OF STANDARD DEVIATION

From Equation (7-7) we see that the variance e gtimate is a random variable related to

the chi-square variate with P Trace v22 degrees of freedom. Generalizing for p - flight

leg t then

,>2 2
om Eeed 

(7-19)p t

dnd

p= (7-20)

Therefore,

VAR($'A E E -EE2 ('a )

7-11
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2) 2
But E a) 2 E 2) 2, since the variance estimate is unbiased and

VA-R -2 E2  (7-21)

From Equation (7-20) and the chi-square pdf,

%I

t ,

__ ;__z_T) __ (7-22)

o.rI2 1/2 .2\
Note that the expectation value of i.e. a Is biased while E ah is not. The

thought arises that an alternate strategy could have been developed whereby we could have

ccntructed an unbiased estimate of in the first place from I p

I -.

r7z1z (7-23)

ap r lop+I) 2/pvi

The reason for not doing this is the desirability for combining estimates of the variance of the

S random component of error, as treated in this paper, with estimates of the variance of bias

components, as estimated elsewhere (Ref. 2 for example). In this way, each variance

estimate must itself be unbiased. '

From Equations (7-21) and (7-22) then,

VAR Y a2 1 [L(7-24]
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I

and

r 1/2

2 4i 'j22 (7--25)
L 2

where

A' Trace 1 (7-26) 4
- t22

Note that

+r 1 1/2U m- 2 PP)
so that

irm A
p -- o- SIG (up)= 0

as expected.

7-13/7-14
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SECTION VIII

STATISTICAL RISK AND CONFIDENCE BOUNDS

While the uncertainties In the estimate (variance or standard deviation) are useful in a

comparative sense, they provide little direct information helpful in designing tests or evalu-

ating test results. On the other hand, the concept of statistical risk is quite useful in design-

Ing tests to both constrain the producer's risk of falsely failing and to illuminate the spectrum

of buyer's risks of falsely passing (as a function of his least acceptable performance); each

deriving solely from insufficient sample sizes. Moreover, upper and lower confidence bounds

can be derived to infer limits to truth implied by the test results. Analytical expressions

for these concepts are derived here and numerical examples presented to illustrate their use.

8.1 DISTRIBUTION OF THE ESTIMATE

In the previous section, we stated that the distribution of the normalized variance estimate

for one leg and range interval was chi-square with P A Trace ,22 degrees of freedom, i. e.,

P t1- --

t 
e 

(

2 (t) = V
X 2 2Ir(2

where

2 2"
X 2 2 (8-2)

An estimate averaged over p legs, on the other hand, Is not in general related to the chi-

square variable because

2x
2~~~ -XA~i 

8

iep iEp

Only when all Pi = Y is the ebdnmate clearly still related to the chi-square variable, i.e.,

2 ~ 2 2
ipa a~~~ (X2 Xp 2 (8-4)
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with

= t •* (8-5)
t2 2

f 2 (t)=

pr 2p2 r 221L.)

Returning momentarily to the general formulation of Equation (8-3), we see that the dis-

tribution of t = x2  I is a special case of the gamma pdf, I.e.,

1 i  1- t / 1,If

a t e (8-6)a I r
,1 r (@ )

a, (8-7)2

and
81= i/a1  (8-8)

which has a characteristic function,

a,[ a 1  (8-9)

Because we are dealir.g with a summation over p such terms the characteristic function of

2 / 2 becomes,
p

a "aI  
:."

2 [= -jc 3(8-10)
a 2p/or 2 IEp

ic

which has no known general inverse for arbitrary a , } and p.
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There are two reasona for needing the pdf in the general case,

1. To recompute pass/fail thresholds (par. 8.2) and buyer's limits (par. 8.3) after
the test when the actual { PI set will have been known in each range interval.

2. To compute relevant confidence bounds to true performance after the test as inferred
by achieved performance and the actual tv t set.

in lieu of an analytical distribution (general inverse to Equation (8-10), a histogram can be

generated numerically after the specific set is known from a suitable chi-square random

number generator structured according to the leg-averaged variance estimate, i. e.,

Equation (8-3). Another way is to numerically perform the inverse to the general charac-

teristic function with a specific (vdi set; perhaps using a discrete Fourier transform, i.e.,

g Mt II Pi/2 e-t dw (8-11)

a2 la 2 _00

p

so that,

Ni vi/2
A ~ (_v.1N-1k

g (k) = w I vi/2_ e (8-12)
Cr 2 2 n= pn

p

k = 0, 1, 2, ...... N-i,

22

where t is a sample of the op2/ 2a random variable and we evenly sample all of t-space at

least 2N times. Note that when all ivi are equal for each leg that

2 (8-13)

so that the distribution becomes gamma with pv = p Trace v2 degrees of freedom. An

example of this technique is shown in Appendix F.
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8.2 PRODUCER'S RISK

The producer's risk is conceptually defined as the probability of his product failing a

test when in truth it should have passed, i. e., falsely failing. Thus in terms of parameters

of interest to us here,

RP-p p > aT 2 1 a2I < T2] (8-14)

where c T is the pass/fall threshold such that the producer passes the test if

p-2 < ( T (8-15)

It is a simple matter to express this risk mathematically as,

ac

2 gp (I a2 oT2) dt (8-1.8)

Figure 8-1 is a plot of this risk where all vI = v and the total number of degrees of freedom

pv = p Trace v22 (8-17)

Noting that the abscissa is a T/ = , / cr, consider a producer's risk of 10%. If the

number of degrees of freedom is only one, then the pass/fail threshold on /" i.e., TO/ p ' T

must be almost 65% more than the true value a. This is the tolerance required to fairly

accommodate the sampling fluctuation expected in the estimate while still leaving the producer

with a 10% chance of fa'sely failing. If the buyer thinks tlis tolerance (or discrimination ratio)

too large, he can insist on a larger sample size. In our case, this translates to more flight

legs, t, e., increasing p v. Note that for p v = 50, the pass/fail thre shold on/r2 only has

to be a I ittle over 10% greater than the theoretical value a. p

8-4
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Because the pas/fail threshold is always related to the theoretical value, it is necessary

to make an estimate of a prior to the test. A reasonable candidate is the exp3cted perfor-

mane given that the product performs as promised. Thus the producer and the buyer must

agree to this a as part of the test package which includes the producer's risk, the number of

flight logs, and other more mundane details of the test, e.g. altitude, speed, range interval,

flight azimuth, etc. It is also important to relate these details to expected values for

P= Trace V022 . Figure 8-2 is helpful in this regard for it is a plot of P for an eighth order j
polynomial-Wagainst N as the independent variable and L as the parameter. Note that L is

uniquely dependent on the speed of the aircraft and the revisit time of the radar under test and .-

is assumed here to be centrally positioned with respect to I N . The test planner can pick

Some representative value for N a 2L and use the resulting v for test planning purposes. For

range intervals close to the radar, the value of t used should probably be halved because of I
the increased pressure for higher order fits and the asymmetry of I L I with respect to

8.3 BUYER'S RISK

The buyer's risk is conceptually defined as the probability of the product passing the

test at the pass/fail threshold when in truth it should have failed at the limit of his acceptable

performance, I. e., the buyer's limit. In terms of parameters of interest to us here,

R B A 2r 2.2R - P [ s " a >a (8-18)

Where aB is the buyer's limit which must be greater than both the pass/fail threshold aT

and the theoretical or expected performance a for the buyer's risk to be lower than about

50%. There is an asymmetry between the two risks shown here because it is the producer's

product under test and the buyer's risk arises only because of his perception that a > aT,

which can never be known for sure. Once the parameters of the test are picked, i. e., R

p, E (Trace P1 ), and a, the pass/fail threshold is uniquely determined. But the buyer's

limit is a parameter which can be traded off against the buyer's perceived risk. Figure

8-3 is helpful here in seeing this point. For aT/oB = 0.5 as an example, and pp = 1 the

buyer's risk will be as high as 38%, but his penalty is 100%, 1. e. a l -1 :1. If p is in-
creased to 50, on the other hand, his perceived risk becomes vanishingly small, even though

his penality remains high. On the other hand, if he wishes to stand a risk of 10% with pv = 50

then the buyer may only have to accept a radar which is about 16% worse (i.e., 1/0. 86-1)

than the test threshold, assuming that it passes the test. Compare this to the 100% penalty

he must accept in the prior example where his risk is almost zero.
8-6
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8.4 CONFIDENCE BOUNDS

The concepts of producer's and buyer's risks are seen to be useful in providing

tradeoffs to the design of effective, statistically meaningful tests, to the degree one can

estimate expected performance, i.e., a, prior to the test. Once the test is performed, it

is natural to want to make inferences about the true performance implied by the test results.

A standard way of doing this is to provide upper and lower bounds to true performance,

given the test result, associated on a one-to-one basis with a level of confidence. Figure 8-4

illustrates these bounds for the distribution of interest, I. e., Equation (8-13). With C the

confidence level, a numerical solution is sought for a L and aH from

9^ t 1 j1P )dt -C- (8-19)

2 2
p L

and

2/2C a 
1 -C

p uJ g^ (tIli) dt 2~! (8-20) '

op
0

g(t)

X-C

22

>1c

a2 ^ 2

P (

U 2 L 2

Figure 8-4. Distribution of the Variance Estimate Showing the Confidence Bounds of Interest

8.-9 .
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I

It is interesting to note that because the distribution is asymmetric, the bounds will be

asymmetric as well. As an example, consider pv = 10 and 1 kft. Then the square

A:
root of the 95% upper and lower confidence bounds for true variance are

= 2.l16 kft

and

a L = 0.63 kft.

As another example, consider a tenfold increase )n pp to 100 with still 1 kft. Then

0 U= 1. 26 kft,

and

a L =0. 856 kft.

8.5 ADDITIONAL CONSIDERATIONS IN TEST DESIGN

Often an acceptance test on a radar may include five to ten separate performance mea-

sures, e.g. detection probability, height accuracy, range resolution, etc., several different

altitudes, and 20 or more separate range intervals. The total number of independent tests

may run up to the hundreds. If the producer's overall risk is to be kept to 10%, for example,

and the criterion for passing is that he must pass all of say 100 tests, it should be obvious

that his allocated risk per performance measure, per altitude, per range interval will be

very small, te,

1/100

= 1-(1-Re) = 0.105%.

8-'
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The tolerance, I.e. vr/O", will be much larger than for the single testn discussed in par.

8.2. Similarly, the buyer's risk per elemental subtest will be much higher than for the

single test discussed in par. 8.3., 1. e.,

1/100

rB = (RB) = 97. 7%

probably intolerable to most customers without considerable explanation. The reason for

the drumatic telescoping of risks is the buyer's pass/fail criterion for passing the test; that

is the producer must pass each and every elemental subtest to pass overall. A slight loosen-

ing of this criteria can pay dividends here. Suppose, for instance, that the producer can fail

one or more, say m, subtests and still pass overall. Mathematically this is expressed as

N N-n
p = N s (rP) (1-rP )  

(8-21)
Em+1 n! (Ns-n)!

and
N

s N-n

RB NS (B)n (,-r B ) (8-22)

n! (N -n)!
n=N -m

where t1p and RB are the overall test riskn, r P and r B are the elemental subtest risks, N
is the total number of subtests, and m is the number of permitted subtest failures.

These equations are solved numerically for rp and rB In Figures 8-5 and 8-6,

respectively, for RP = RB = 10%. As an example with N. = 100 and m = 10 for example

rp - 7% and r B = 85%, somewhat better than for the case where -o failures were permitted.

Each test situation will demand its own tradeoffs and these ideas are only to focus attention

on te procedures for efiectively designing tests which are statistically fair to producer and

buyer alike.

8-11
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APPENDIX A p.

DERIVATION OF THE TRACE .2

From Equation (5-5), V

T -1
_v -1 _)~ 1(.-M) (A-i) [

M= fpTp)- pT (A-2)

and P is partitioned horizontally as,

1 (r x M+I)

P = _2 (s-r x M+1) (A-3)

(N x M+1)------

P 3  (N-s x M+1)

resulting in a two-dimensional partition of M as

(r) (s-r) (N-s)

11-M12 M 13 (r)
I I

I p.

M M21 M 22  M2 3  (s-r) (A-4)

(N x N)

1M31 M32, M33 (N--s)

A-1

-.



. i4

Deftning

_ pTP (A-5)

(M+I X M+1)

one fnds for orthogonal polynomials that the matrix is diagonal with elements

N

B p2 (A-6)kk J j k

without any partitioning. The structure of M is thus

p 1PT- T || B -1 P T
P1- -1  ' P1 -B -  1 3, P

--- r ---------------
P1 T  - 1  T' -1 T

T ---- ----- ------ - --.. -.

I-  " I T

S  3 2 I 3- 3
L - - --
I I

a'.

II
Ml_ 12 M 13

M M 2 , -M (A-8)
21 2 23

-M 3 1  -M3 1 IM 3 3

A-2



Now

-=- _- M T  -M2(A-9)

(NxN) (Nxs-r) (s-rxN)

and

Tracev Trace T- )T

22 raejM 2  U 2

= Trace (L- M) 2  
T  (A-10)

= Trace -#22"

Thus the ij t h partitioning ofpj is thus

3

- -
( A - )

1 =1

But only the diagonal elements ofM are needed for the Trace2_22

and

T T T
(.1 = (1- I ( - _)l + (- I (- -_)23 Y-2 M) 31  (A-12)

Specifically from Equation (A-8),

A22  M 21 M12 + - M22) 2  + M23 M32
(s-r x s-r) (s-r x r x r x s-r) (s-r x s-r x s-r x s-r) (s-r x N-s x N-s x s-r)

(A-13)

A-3



Expansion yields,
2 *

Trace vP k P nk
Trac 2 2  F B kk

n=r+l 1=1 =

s ir -ii 2  2 5 M+1
+ Ii- P nk

B kk (A-14)

Mt-in

P i P pk
+ Bk

n--r+1 i= s+1 Jk=
where the middle term reflects the differeit structure of the diagonal of I - M, noting

nJ =  (  )n I L'I-M)JI

l=r+i

in general and

;&nj = - Mjn (1 -"'/nn) - Mnj (1-Mjj) + Mrd Mji

I/n

for n A j and

2 2

An (1 Mn)+ Fa Mr2  (A-15)
i=r+l

for n = J in particular.
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C U

Combining the terms in Equation (A-14), adding and subtracting "a

2

E Bkk ,,..

n--r+l k=1

one gets

2
a Nnk+1 p.-

Trace Y22 k n.
n=r+l 1=1 k--1 .,k

2 2
M+1 2 M1 2n I

pn.k - B. (A- 16)
k= kk 

Defining

M+1 p2

4,i.= kPnk 12 -n2 +iM+1 n.M+] kk k B (kk+ Bl B2  -2  BM+1, M+ 1

+- ------------------ 2 PiM PiM Pi. M+1 Pn. M+1
B MM B M+1, M+1

then

N N M+1 P ik n k  M+1 Pnk

i~li=1 k=1 k=l1k !:

from successive application of the orthogonality relations [Equation (4-5)].

-.5
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Introducing this result into Equation (A-16), expanding and cancelling terms,

M+ P nk 2

Trace 22 = a-r - nr+l (A-17)
22 N

2

P nk
n=1

A-6
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APPENDIX B

DISTRIBUTION FOR THE PARTITTONED DATA SET

From Equations (6-4) and (5-6A), we have that

T -- 2 2

a2 =- - - (B-1Trace Y I Trace (B-i)

so that r2) 2'
E c72 = (B-2)

In general, the estimate of variance involves the summation of L=N squares of partially

correlated zero-mean Gaussian variables. Zero-correlation (totally independent variables)

requires that each variable be zero-mean a priori. In this case, the estimate ic chi-square

distributed with L degrees of freedom. Unity correlation (completely dependent variables)

requires that each variable be essentially the same. In the case, the estimate is still chi-

suare, but with 1 degree of freedom. Moreover we have seen that estimation of an Mth

order polynomial trend model uses up M+1 degrees of freedom, partially correlating the

data in the process. In this case, the estimate is chi-square distributed with L-(M+I)

degrees of freedom. In summary, the summation of L squared zero-mean, partially

correlated, Gaussian variables always leads to a chi-square distribution with I = L - x

degrees of freedom. For the partitioned case, L = s-r and

M+1t P

x N1 (B-3

k=1 1 : PjkJ=l 1

Note that x 0 for p =0 and x L-I for p =-1, i.e., M =N-1.

B-1



With this line of reasoning, we can use Equation (B-i) to redefine the variance

estimate as

22V
S2 (B-4)

Trace Y,

Thus,
2I

2 2 2
E () Trace 2 E (XV)= Trace Y22 (B-5)

From Equations (B-2) and (B-5) then

= Trace 2 ' (B-6)

the number of degrees of freedom for the general case.

B-"2
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APPENDIX C

MONTE-CARLO SIMULATIONS TO VAIDATE THE TECHNIQUE

Many simulations were performed to help validate the technique In increasingly

realistic steps. The common elements of each simulation were as follows:

1. Gaussian noise was added to simple models for the mean flight
path (trend).

" independent samples

" representative models for radar measurement noise including
range dependent and range independent components.

2. The target 'as assumed to have a constant speed and mean cross section,
typical of small military aircraft.

3. The radar rotatod at 5 rpm and was assumed to have typical. signal
prouessing fsatures and radar coverage.

Two simulations will be reported which both illustrate the value and validity
of specific features of the technique developed here and demonstrate its robustness as

well.

C. 1 TRENDS OF KNOWN AND CONSTANT POLYNCMIAL ORDERS

The first simulation of interest is one in which the mean flight path was linear in

ravage and constant in azimuth, i. e. truly radial, so as to provide a closely controlled

te3t. Each data interval included L=10 points for the variance estimate and N--30 points

for the trend removal process. A detection probpbility of 90% was assumed at all ranges

and 500 Monte-Carlos were performed. Each Monte-Carlo was independent, whereby

samples were drawn first from Gaiseian random number generators scaled for range and

azimuth positici errors, and then from a uniform random number generator (simulating

a 90/10 coin flip) to determine radar detectability. After a 30-point data set was assem-

bled, the estimation process was initiated and the autocorrelation and variance estimates

were stored. This process was repeated 500 times (all independent) and the estimates

avergged to approximate an expectation value. Typical results are shown in Table C-1.

C-i
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The upper cet of tables show the actual range and ezimuth of the aircraft, and the noise

models for root-track position variance used to scale the Gaussian random number gen-

erators at each range point. Data points 11 through 20 have asterisks lndicating those

used to estimate variance. The lower set of tables show the results versus assi-med

order of fit. These tables are grouped first for range measurement and second for azimuth zi

measurement. Within each groupirg are two tables, the first summarizing performance in

estimating the adjacent point autocorrelation function and the second summarizing per-

formance in estimating the root-variance of radar measurement error. Both truth (which

we know with certainty in this case) and results (libeled "expected") are given for compari-

son. The following summarizes the results:

1. In all cases where the correlation coefficient is negative, the root-variance
estimates are excellent, exhibiting the level of deviation from truth expected
from the sample size of 500.

2. The correlation coefficient goes negative for a first order fit In range and a
zero order fit for azimuth, as predicted.

S. All estimates with overfitting are excellent with very little growth secn in
tbe otandard deviations of estimation error, as indicated by the 114/-" "symbols.

4. The Monte-Carlo calculated values for uncertainty in the variance estimate
are very close to theoretical expectation. For example consider M=6.
From Figure 8-2 with N=30 and L=10. v f7. From Equation (7-8),

2 2c
VAR( r) = 4  (C-1)

From Table C-1 and M=8, u =114.3 ft anda =1.682mrad. Thenfrom
Equation (C-1), RA

1/4_83. 6 ft

22.VAR" (a

1.23 mrad

whicb compare quite favorably to the Mcnte-Carlo results reported, i.e.,
81. 1 ft and 1. 213 respectively.

c-3
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C. 2 COMPLEX TRIGOMETRIC TREND MODELS

Arnexamnple is given here of a Monte-Carlo simulation that was actuaily used as an

acceptance tast fot' the data reduction technique by a GE customer. An aircraft was sim.-

Ulated to be flying at 40 kft at a speed of 487 knots. It flew 10 east-wes~t legs out to 200 "Imi

with a north offset of 0. 5 Dm1. The actual aircraft flight path oscillated about the radial in

both plan-position and height according to the following equations:

N = 0. 5nmi +0. 0234 SIN (42. 7E + 61 ) (C-2)

H =409 000 ft + 300 STN (43. 2 Z + ) 2) (C-3)

where

E = distarnce east of the radar (nmi)
N = distance north of the radar (nmi)
4) = arbitrary phase angles (deg), and
H = altitude (ft) .

At the start of each leg, the phase was reinittiized indf -pendently for distance and

altitude. The maximum aircraft amplitude deviation from radial was 142 ft with a Period

ofe82.3sa(8.43 nmi). The maximum amplitude deviation in htuight was 300 ft with r.

period of 61. 57 s (8. 33 Dm1).

On top of this mean aircraft motion was meksuremeiit notse QrawD independently

point-to-point from a Gaussian rt~idom number generator u.caled to a typical model

for noise vs range.

Pass/%- i thresholds were calculated based u.n a 1% ri'sk of tal7:Aoy fafling due to

statistical uncertainty. Sixty tests were made in all (2( range Intervals each f3r range,

heigbt, and azimuth, respectively. The first two coiu,~ins give the range intervals. The

second column shows the theoretical standard deviaticn of measurement erria from which

the rnoise was added to the data, The fourth column gives the estimates notde by the tech-

nique described here and the last column presents the pass/fail tbre&ernoids.
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TABLE C-2

SIMULATION RESULTS FOR

RANGE ACCURACY

RI R2 THEORY PASS/FAIL ESTIMATION(NHIl (,FEET) - _(FEET} . . (FEET) X,

4. 14. 60.7 88.4 54,9
20. 60.7 8".4 60.7

2.306. 60.8 88-.1
3040 61.Z PV 65.1

50. 62.1 90.3 ' 56.3.. . .':- " 63. 6 - 92'. 58-.9 "

-0- .. . 7 - ... 6.1 ... .96.2 '-621 '-::
70. -- ... _._..0-- 67.9

go 75.0 109.2 72.4
. . 100. - 2.4 120.0 8- .1

T U 7 IW 91.7 133.5 ....5- 92._-- ;.
-. i20o. 10z.0- ' _ 8_ -_"_104_-

130. 113. 165.8
14- 127.41 .

-M-, ... 142.3 207.1 141.2

13T - . " " 158.7 231.0 ... - ' . _

170. 180. . 89.6 11

V 219.6 319.7 22-
J-. '9 '39.5 348.5 "47,6

C-5 t
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TABLE C-3

SIMULATION RESULTS FOR

HEIGHT ACCURACY

RI R2 THEORY PASS/FAIL ESTIMATION
(NMI) (FEET) - (FEET) (FEET)

4. 14. 124.5 181,3 178
I. 20. 163.7 238.3 209
20. 30. 248.43. 26,
30. 40. 345.6 '03.0 384
40. 50. 444.1 646.3 50 -
50. 60. 536.3 780.5 598
60. 70. 629.1 915.9 594
70. go. 723.2 1052.5 680
80. 90. 818.1 11g.6r- 844
9." 100. 922.6 1342.7 .92

100. 110. 1028.9 1497.5 993110. 120. 1129.7 1944.2 ... 1204
S120. 130. 1233.7 1795.5 1431

130. 140. 1341.6 1952.5 INS140. ISO. 1442'2116.5 IM137

_16U. - 170. -- 1709.0 2487.3 '"172g',

Tf .18. 1854.3 2698.8 1754
18u. 190. 1998.5 2908.6 1910"
189. , 99. 2138.0 3111.6 '17

C-6
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TABLE C-4

SIMULATION RESULTS FOR

AZIMUTH ACCURACY

RI R2 THEORY PASS/FAIL ESTIMATION

4. 14. 1.998 2.907 2.59
10. __0.__1.____ 2.907 2.26
20. 30. 19 .02D
30. 40. 1.__ ___ ____.9 _ ___ _2.12_

W.50. 2.Ou-2.910 18
51 U0g. 2.002 2.914-7"

60. 70. 2.006 2.920 19
70. 80. 2.012 2.929 17
80. 90. 20229210

1011.2.053 2.992 20
110. 120. 2.079 3.uz2 2

130. 2,.110 3.071
130. 140. 2.12M 3.126 23
140. 1S0. 2.194 3.193
150. 160. 2.249 3.273 20
160 173. 2.320F 3.376 2.21

10lo.2. Im2 3.496 2.32
lgo. 19. 2.490 3.624 2.54
199. 199._ 2.579 3.755 2.85

0-7

p

- -.

%v~~c:I



The a priori expectation of falsely failing one of the 60 tests is the risk times the

number of tests, i.e., 1% x 60 = 60%. It is interesting that no failures occured. This is

indeed remarkable particularly for height accuracy close to the radar where the amplitude

of the real aircraft motion was almost three times larger than the rms noise level.

.58

'S_

i
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APPENDIX D I

SAMPLE RESULTS FOR A REAL FLIGHT TEST

In Appendix C we saw how well the tochnique worked for simulated flight trends

with known and constant polynomial orders on the one hend and complex trigonometric

paths of variable and unknown order on the other. In the first case, 500 Monte-Carlos

were performed so that the estimation error was small. In the second example, 10 flight

legs were averaged, equivalent to 10 Monte-Carlos, and the larger fluctuations were ac--

commodated by pass/fall thresholds calculated from the risk concepts of Section VIII. Here

we show results for a single range interval and a single ;eg (1-Monte-Carlo) from an actual

flight test using a Lear jet on a near-radial flight path.
Figure D-1 shows one leg that we will examine in detail. Tables D-1, D-2, and D-3

summarize the results for the interval between 30 and 40 nmi for range, azimuth, and height

errors respectively, versus assumed order of fit. Because we have in effect only one Monte-

Carlo these are instantaneous estimates, not expectation value&. It is not surprising then to

see reasonable estimates corresponding to positive values of correlation coefficient. Never-

theless the following conclusions may be drawn from this example:

1. For all three coordinates, an asymptotic estimate is reached with remarkably
low fluctuation.

2. The coordinates start off with truly poor estimates when the InstLantaneous
correlation coefficient is above 0. 8.

3. Even though the pilot was attempting 
to fly a constant 

height, radial flight 
14

path (i. e., KR = 1, KA = 0, K4 = 0) the estimates for these implied orders

of fit are truly poor.

4. Estimates of the theoretical values are:

'TR = 114 ft
0A - 0.79 mrad

S= 229 ft

HI

D-1
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Note that by applying the rule for picking the best estimate at ranges less
than 40 nmi (see par. 7.1), estimates are chosen with the fewest points,
N, and the highest order of fit such that negative autoccrrelations are
achieved for M-1, M and M+I1. F.rom Tables D-I, D-2, and D-3 then the
selected estimates are:

aoR  = 150 ft

A
oA 0. 86 mrad

a H 205 ft

which are not bad for instantaneous estimates.

TABLE D-I

RANGE ERROR ESTIMATION FOR 30-40 nmi RANGE INTERVAL
N =L=8

M CORR SIGMA (FEET) TRACE

0 0.883 19583.7 7.00
1 -0.426 117.6 6.00
2 -0.502 122.2 5.00
3 -0.459 131.7 4.00
4 -0.548 149.5* 3.00
5 -0.645 159.9 2.00

*This is the selected estimate.

TABLE D-2

AZIMUTH ERROR ES'IMATION FOR 30-40 nmi RANGE INTERVAL
N=L=8

M CORR SIGMA (MRAD) TRACE

0 0.834 3.900 7.00
1 -0.663 0.693 6.00
2 -0.729 0.755 5.00
3 -0.733 0.836 4.00

-0.677 0.857* 3.00
-0.726 1.030 2.00

*This Is the selected estimate.

D-3
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TABLE D-3

HEIGHT ERROR ESTIMATION FOR 30-40 nmi RANGE INTERVAL

N=L-8

M CORR SIGMA (FEET) TRACE
0 0.162 231.5 7.00
1 -0.114 194.2 6.00
2 -0.058 206.3 5.00
3 -0.392 204.0 4.00
4 -0.393 204.8* 3.00 .

5 -0.629 65.6 2.00

*This is the selected estimate.

Figure D-2 shows all of the legs combined for this flight test. Unfortunately for j
the (30-40 umi) range interval there were only 2 legs. The estimates are:

A
a R = 115 ft

A
C A =0. 862 mrad

A

H  
236 ft

in some cases closer to our theoretical expectations. To demonstrate that these estimates

are truly consistent with theory within the limits of sampling-induced uncertainty, consider

that the sum of the 2 traces from Tables D-1, D-2, and D-3 are 14.3, 14.8, and 15.7 re-

spectively. The square-root of the upper and lower 90% confidence bounds to the above esti-

mates are shown below as bracketing theory in all these cases.

RANGE

88.4 < 114 ft < 168

AZIMUTH

0.663 < 0.79 mrad < 1.26

HEIGHT

183 < 229 ft < 339

D-4

~' . ~ - . . *.'



~~mW ~ ~~-W~TW~ N ~ a* .q~ q-~-~ - -~ jj -. - ~ ~ -

ula U IIUI*
*F mm m m - m mmIII

~3 fl9~E~

I~I~I"~IK
~

I ~yI+I4I~
I -

* S .. I- ....

0

m .........................................................
.

"4

4J
0

"4

-~ 0)
N 1.4

bO

............................................................................

I

D-5



As an example of the method uoed beyond 40 nm, based on the leg plotted in Figure

D-i Tables D-4, D-5, and D-6 summarize the results for the interval between 50 and 60 nmi

for range, azimuth, and height errors respectively versus the best estimate for each number

of points, N, from L to 4L.

The estimates of the theoretical values for this case are:

R = 114 ft

rA 0.4 mrad

a H310 ft

This time the rule for picking the best estimate at ranges greater than 40 nmi is

applied (see par. 7.1). For each number of points, candidates are chosen with the minimum

order of fit, M, such that negative autocorrelations are achieved for M-2, M-1 and M. The

candidate with the maximum trace is then chosen as the best estimate. For Tables D-4,

D-6, and D-6, the best estimates are:

a R = 121 ft

'TA 0.45 mrad

A
a H241 ft

Again, from Figure D-2, only two legs (p=2) were available for this range interval

(50-60 nmi) with the 2-leg average given as:

A
IV = 93.7 ft

A
a A 0.411 rrad

A
a H = 237.6 ft

D-4i



TABLE D-4

FANGE ERROR ESTIMATION FOR 50-60 nmi RANGE INTERVAL

CORR CORR CORR CORR(' ) (4 J N SIGA (FEET) TRACE

8 o 8 -0.250 -0.250 -0.513 3 140.6 4.00

9 0.909 -0.24l -0.246 -0.263 3 1366 4.86
10 0.927 -0.235 -0.235 -0.192 3 130.3 5.65
11 0.941 -0.331 -0.292 -0.304 3 125.6 5.87
12 0.951 -0.205 -0.244 -0.242 3 126.5 6.07
13 0.959 -0.095 -0.295 -0.281 3 124.1 6.24
14 0.103 -0.255 -0.258 -0.334 4 124.3 6.01
16 0."164 -0.283 -0.278 -0.376 4 122.5 6.17
1 0.324 -0.267 -0.267 -0.355 4 122.5 6.33
17 0.430 -0.323 -0.319 -0.370 4 122.0 6.45
le 0.540 -0.316 -0.321 -0.350 4 122.1 6.55
19 0.554 -3.157 -0.230 -0.214 4 123.3 6.62
20 0.637 -0.150 -0.222 -0.212 4 122.8 6.70
21 0.617 -0.144 -0.283 -0.290 4 120.9 6.76
22 0.600 -0.162 -0.145 -0.228 4 128.5 6.82
23 0.635 -0.158 -0.173 -0.216 4 128.0 6.87

24 0.580 .-0.263 -0.253 -0.369 4 121.1 6.92
25 0.599 -0.277 -0.283 -0.340 4 121.3 6.96
26 0.656 -0.303 -0.303 -0.364 4 121.9 7.00
27 0.693 -0.312 -0.325 -0.373 4 121.4 7.U3
?'q \,0.722 -0.293 -0.293 -0.374 4 121.0 7.06

0.739 -0.309 -0.308 -0.371 4 122.0 7.09
30 0.764 -0.293 -0.290 -0.370 4 121.7 7.12
31 0.793 -0.245 -0.230 -0.261 4 124,2 7.15
32 0.826 -0.261 -0.,.84 -0.289 4 123.0 7.17
33 0.839 -0.24 -0.2F3 -0.289 4 121.3 7.20*

• This is the selected es:imate.
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TABLE D-5

AZIMUTH ERROR ESTIMATION FOR 50-60 nmi RANGE INTERVAL

CORR CORR CORR CORR
N (P-21 (K-1) M SIG4A ( mrad) TRACE

8 0.777 -0.390 -G400 -0.345 3 0.541 4.00
9 0.852 -0.355 -0.440 -0.440 3 0.503 4.86

10 0.879 -0.361 -0.369 -0.402 3 0.476 5.65
11 0.895 -0.310 -0.395 -0.421 3 0.463 5.87
12 0.918 -0.302 -0.3'7 -0.439 3 0.451 6.07
13 0.935 -0.050 -0.196 -0.442 3 0.446 6.24
14 0.946 -0.052 -0.153 -0.412 3 0.439 6.37

15 0.956 -0.201 -0.261 -0.270 3 0.464 6.49
16 0.962 -0.195 -0.258 -0.270 3 0.461 6.60
17 0.967 -0.084 -0.080 -0.079 3 0.477 6.70
18 0.972 -0.055 -0.061 -0.080 3 0.484 6.78
19 0.973 -0.105 -0.102 -0.144 3 0.463 6.86
20 0.974 -0.022 -0.083 -0.163 3 0.457 6.93
21 0.065 -0.055 -0.056 -0.072 4 0.458 6.76
22 0.009 -0.067 -0.021 -0.021 4 0.432 6.82
23 0.026 -0.030 -0.013 -0.142 7 0.472 6.14
24 0.058 -0.025 -0.018 -0.121 5 0.467 6.66
25 0.057 -0.051 -0.051 -0,084 5 0.445 6.72
26 0.068 -0.055 -0.052 -0,072 5 0.443 6.77
27 0.053 -0.117 -0.116 -0.144 5 0.455 6.82
28 0.104 -0.116 -0.113 -0.142 5 0.452 6.87
29 0.035 -0.020 -0.127 -0.148 6 0.449 6.76
30 0.003 -0.077 -0.074 -0.147 6 0.430 6.80
31 0.300 -0.008 -0.145 -0.085 5 0.440 7.00
32 0.343 -0.051 -0.164 -0.152 5 0.445 7.03*
33 0.055 -0.219 -0.224 -0.245 6 0.433 6.91

* This is the selected est' mate.
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TABLE D-6

HEIGHT ERROR ESTIMATION FOR 50-60 nmi RANGE INTERVAL

CORR CORR CORR CORR
N (N-3) (N-) ._M2 N SIGMA (FEET) TRACE

8 0.051 -0.329 -0.396 -0.667 5 166.2 2.00
9 0.075 -0.160 -0.207 -0.609 5 209.7 3.00

10 0.085 -0.067 -0.084 -0.441 5 217.5 3.97
11 0.089 -0.007 -0.020 -0.282 5 220.3 4.59
12 0.026 -0.185 -0.211 -0.520 7 191.1 3.85
13 0.051 -0.106 -0.129 -0.378 7 199.4 4.30
14 0.044 -0.038 -0.054 -0.289 7 207.6 4.64
15 0.006 -0.002 -0.202 -0.233 8 221.2 4.50
16 0.001 -0.043 -0.013 -0.126 7 234.6 5.22
17 0.128 -0.007 -0.000 -0.007 5 237.9 6.07
18 0.007 -0.047 -0.050 -0.048 6 245.5 5.87
19 0.054 -0.057 -0.050 -0.097 5 233.8 6.28
20 0.019 -0.048 -0.085 -0.098 5 232.2 6.37
21 0.007 -0.052 -0.050 -0.149 5 231.6 645
22 0.604 -0.015 -0.058 -0.126 3 228.5 7.04
23 0.636 -0.047 -0.078 -0.122 3 230.8 7.09
24 0.547 -0.181 -0.241 -0.216 3 237.6 7.14
25 0.576 -0.196 -0.237 -0.225 3 236.6 7.18
26 0.542 -0.161 -0.274 -0.273 3 233.5 7.22
27 0.606 -0.108 -0.269 -0.264 3 231.9 7.25
28 0.539 -0.074 -0.283 -0.284 3 241.5 7.28
29 0.613 -0.003 -0.283 -0.271 3 240.9 7.31*
30 0.106 -0.285 -0.304 -0.383 4 236.3 7.12
31 0.106 -0.273 -0.310 -0.335 4 240.0 7.15
32 0.106 -0.191 -0.278 -0.276 4 242.3 7.17
33 0.106 -0.180 -0.219 -0.210 4 240.1 7.20

*This is the selected estimate.
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To demonstrate that these estimateri are truly consistent with the theory within the limits of

sampling-induced uncertainty, consider that the sum of the two traces are 13.6, 14. 2, and

14.3 for range, azimuth, and height respectively. Once again the square-root of the upper

and lower 90% confidence bounds for the estimates are shown below as bracketing theory in

all these cases.

RANGE

71.4 < 114 ft < 139

AZIMUTH

0.316 < 0.4 mrad < 0.600

HEIGHT

183 < 310 ft < 347

Figures D-3 through D-7 show the results for all legs included in this flight test

(plotted in Figure D-2). Figure D-3 shows the probability of detection based on 10-nmi

range intervals. Not until the size of the range intervals is reduced (Figure D-4) is multi-

path interference observable. Figures D-5, D-6, and D-7 plot the averaged estimates for

range, azimuth and height error respectively. These are the standard plotted outputs avail-

able from the statistics package constructed from the concepts introduced in this report.
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APPENDIX E

STATISTICAL COMPARISON OF RESULTS FROM A REAL-FLIGHT TEST
WITH A CO-LOCATED PRECISION REFERENCE STANDARD

This Appendix documents a recent opportunity to validate the autonomous technique

by direct comparison with the results obtained by tha more conventional method, I. e., using

a precision reference standard.

Comparisons were made for approximately 6 flight legs for ranges between 20 and

200 nmi. A small aircraft flew closely controlled radial legs and the results for both tech-

niques are presented for 20 nmi range bins in Figures E-1, E-2, and E-3 for the standard

deviation of range, azimuth, and height respectively. The dark solid lines are the results

for the autonomous method, while the lighter solid lines are the results from comparison

with a precision reference standard. Both estimates are independnt random variables

because of the limited sample size (7 to 14 samples per range bin). Because these variance

estimates are subject to sampling uncertainty, I have also shown 95% confidence bounds for

both methods. The dotted lines are bounds for the autonomous method, while the dashed

lines are bounds for the method using the reference standard. The cross-hatched areas

represent regions of overlap. A reasonable Interpretation is that if either estimate lies

within an overlapped region, then the two estima-.s can be considered consistent with 95%

confidence. Estimates for all three coordinates are consistent between the two methods for

all nine range bins.
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APPENDIX F

AN EXAMPLE OF THE INVERSE CHARACTERISTIC FUNCTION

BY DISCRETE FOURIER TRANSFORMS

From par. 8. 1, it was stated that inverse characteristic functions could be numeri-

cally computed from discrete Fourier transforms. Consider the Gamma distribution as an

example,

g(t) a-1 e-t/1, (F-i)r~

where

a = v/2, (F-2)

and

0 1/tt, (F-3)

and which has a characteristic function

al a,*(W) = ( a )a. (F-4)

Suppose we have a random variable which is the sum of p gamma-distributed variates.

Then the characteristic function of this sum is

/ °I
S()) = r a a ) a -

iEp

which has no known general inverse for arbitrary { vi4.
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The distribution for the general sum can be obtained from the inverse characteristic

function

-00 jEp v/-

As a discrete Fourier transform,

A N-1 vi/2 Vi/2 e - jw n k

g (k)=A w ( -_ I (F-7)g; Ek = il2-jwJ '
n=0 Icp

k = 0, 1, 2, ...... N-1,

where t is a sample of the random variable a 2/a 2 and we evenly sample all of t-space
E

at least 2N times. Note that when all I vi are equal for each leg that

2 a = p v/2 (F-8)

so that the distribution becomes gamma again with p Trace v2 degrees of freedom.

Figure F-1 shows the results of such a numerical inverse for N-4096 with ten legs,

each having v = 6, so that f = 1/3 and a = 30. Here we have plotted the cumulative distri-

bution, I. e. solid line, since this is the statistic important to risk and confidence consider-

ations. The circles are samples of the theoretical gamma distribution with the same

parameters. The agreement is excellent over the entire range of interest. To illustrate

the error encountered by assuming that the sum L- Vi is the only parameter of importance,
lEp

consider the second curve (dashed) in Figure F-1 which preserves , .e total number of de-
grees of freedom, I. e. 60, but which has different values of V . from leg-to-leg. The differ-

1

ence can be quite large. For example, if a producer's risk of 0. 1% is desired, then the

true pass/fail threshold would be 7 a instead of the assumed threshold of 446. 5 ,

a difference of about 6.5%.
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ENGLISH-METRIC/METRIC-ENGLISH CONVERSION TABLE

m = 0. 1 cm lb = 4 53.6 g
cm = 0.3937 in. lb 0. 4536 kg
cm = 0. 0328 ft metric ton - 1.12 tons (U.S.)
cm 10 MM
cm2  = 0. 1550 in. 2  m = in.
cm 2  1. 076 • 1073 /t 2 rn 3.281 ftcm3 0 3 In 1 m. 0936 yd
cm 3  

0. 2  = 10.76 ft2
cm 3  = 3.531• 10- 5 ft3  2  = 1.196 yd 2

ft 30.48 cm In 3  = 35.32 ft3
ft = 0.3048m 2 n 3  1.430yd3
ft2  = 0. 0929 n 2

ft2  929.37 cm 2  Mi = 1. 6093 km
ft2  9.294 • 10-3 kmn2 mi : 5280 ftft 3 0. 02S3 10 k = 0. 87 nmi

mi = 1760 ydIn. = 2.54 cm 2n i2  = 2.59 km 2
in. 3 6.452 cm 2  Mi/h 0.87 knots
in. 3= 16.387 ci 2

nmi = 1.852 km
m = O. 001 m nmi = 6076 ft

(micron)
n~ 0- mi = 1. 15 rnium = 10-6r

JA= 10- 4 cn yd = O. 9144 Tn
min. = 2.54 10-5 mm yd 2 - 0. 836 rn2

kg = 2.2046 bs yd 3 0.7645m 3

km 3281 qt 0.946 liter
liter = 1. 057 qtkit = O. 6214mrn

km 2 0.55 nmi acre " 43,560 ft2

km2  = .1.076 • 107ft 2 acre , 4046.72 m 2

km2  = 0.381 ti 2  
rad = 57.2958"

kr/h . 913 ft/s deg = Oi0.17 rad
knot l. 152 mI/h

x 2= 9/5("C) + 32oz 2 8 .35 g

oz - 0.062 Ib. = 5/(F - 32)

-- , , , , ', ' " , ,r ,. .,., . .. ,;. . - -.-.. ,. . ... , .,-., ... ,..... . . ., .,..o ,
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GENERAL ELECTRIC COMPANY TECHNICAL INFORMATION

Within the limitations imposed by Government data export regulations and security
classifications, the availability of General Electric Company technical information
is regulated by tho following classifications in order to safeguard proprietary infor-
mation:

CLASS 1: GENERAL INFORMATION

Available to anyone on request.
Patent, legal and commercial review
required before issue.

CLASS 2: GENERAL COMPANY INFORMATION

Available to any General Electric Company
employee on request.
Available to any Genqral Electric Subsidiary
or Licensee subject to existing agreements.
Disclosure outside General Electric Company
requires approval of originating component.

CLASS 3: LIMITED AVAILABILITY INFORMATION

Original Distribution to those individuals with
specific need for information.
Subsequent Company availability requires
originating component a-proval.
Disclosure outside Gene.- IElectric Company
requires approval of origitLating component.

CLASS 4: HIGHLY RESTRICTED DISTRIBUTION
Original distribution to those Individuals person-
ally responsible for the Company's interests in
the subject.
Copies serially numbered, assigned and recorded
by namle.

Material content, and knowledge of existence,
restricted to copy holder.

GOVERNMENT SECURITY CLASSIFICATIONS, when required, take precedence
in the handling of the material. Wherever not specifically disallowed, the General
Electric classifications should also be Included In order to obtain proper handling
routines.

HMEZ, 40238 (5-65)


