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Summary

=—- Estimation of rms target posltion accuracy for a radar is of grest importance
to radar manufacturers and customers alike.. With increasing frequency customers
insist on direct measurement with small RCS aircraft on radial flight paths. Too
often, however, a colocated precision reference radar is unavalisble from which to
accurately define the true target flight path, In these cases the totai error can be
tested in two parts: the bias component can be estimated from stetic measurements
and the random component (jitter and thermal error) is estimated aa a variance,
Here the true target flight path is traditiorally modelled as entirely radial, ’’niortun-
atei, «on small deviatione from a true radial can lead to large errors {n variance
estimation, particularly when the target is close to the radar where the radar error is
expected to be small, If the cu tomer requires proof of theoretical accuracy then the
model error can be larger than (he radar error and the radar will falsely fail the test,

DA136862

The approach to variance estimation developed here is to estimate the mesn
target path along with the tri-coordinate position variance and thus avoid the error
associated with assuming a simple flight path model. The method is quite general4o
sensors and targets of all types even tacugh the specific application it was de#loped
for was a radar under test with an sircraft on a radial path, The m iy as-
sumed to be a su.n of orthogonal polynomials of ordw ow. that 80 lcng as
M is greater than or equal to K, the effective true nrehes of the mean path (overfitting),
that the variance estimate is unbiased in th an, Moreover the adjacent-point
corrolation toeflicient {8 shown to be a spfisitive indicator of overfitting. The method
is shown to be practical in the face of ul@ation and reai flight data even with mise-
ing data pointa 8s from missed detections AIn addition to unbiased optimal ¢stima-
tion of variance, expressiorns are develuped for the uncertainty in the estimate and
related to the producer's and consumer's 1isks of falsely failing or falsely passing a
tri-coordinate pusition accuracy test, Considerable development is accorided sound
test design with ‘hese principles, and expreasions are developed for confidence limits
to infer bounds or true variance given the test results_.r_/
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SECTION I
INTRODUCTION

Estimation of the root-mean-square (rms) target position accuracy of a radar system
is of great importance to both radar manufacturers and customers. To determinc whether
a system meeis specifications, tests are performed on real targets and position error is
estimmated from data which is stochastic in nature, and reflects aircraft deviations from the
expected flight path as well as from sources of error within the radar itself.,

For a 3-D radar, one would like to estimate the rms error in each of three coordin-
ates: range, height, and azimuth, Three major components contribute to this error in each
case, The first of these is bias, which is usually highly correlated from sample to sample,
but has an error component which is random over the long run ir addition to a fixed com-
ponent. This error can only be characterized with reference to some external standard,

The second and third comnonents of error are jitter and thermal noise, These are bcth
random errors which are uncorrelated from sample to sample. Their comblined contribu-
tion can, In principle, be characterized without need for an external standard. The jitter
component is due to a variety of independent random sources and can usually be treated
accurately as Gaussian and independent of target range. The contribution of range-dependent
thermal noise i8 also Gaussian, and because the coordinate estimation processes are only
weakly nonlinear, the sum of these effects is still effectively Gaussian, It is the variance

of these random components that we wish to estirxate as zero mean processes, thus requiring
a separation of the mean flight path from the measurement errors.

The traditional procedures for determining positional accuracy consist of a series of
controlled flights. These generally involve an aircraft flying an approximately radial flight
path (with respect to the radar) at a constant altitude, The intent here is to control the target
radar cross sec ion (RCS) and to permit simplified flight path models. Usually two or more
legs are run (e, g. inbound and cutbound) at each of several altitudes. Quite often little or
no thought is given to the quality of the measured and estiraated quantities in terms of the
effect of limited sample sizes on estimation error, Both the producer and the buyer thus
suffer unknown risks of the radar falsely failing the test or falsely passing, respectively.
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The total rms error (bias and random) of the radar under test can be estimated by T
reference to the simultaneous track of a precision tracking radar with known errors which
are significantly less than the radar under test. Alternatively the error can be separated i
into two parts, with bias error determined through static tests or other means and the \j
random error estimated from leaat squares fits of the tracking data to some simple trend ;i
model (¢.g., zeroth-order in height and azimuth and lirear in range for a radial flight :
path),

Several practicai problems are immediately evident when analyzing data from flight
teats. First, if the tests are manually conducted using an operator-uontrolled track ball/
target window on the plan position indicator (PPI) for instance, operator error can be a
significant contribution to the total error. This is especially true near .he limits of cover-
age and detection, in the vicinity of crossing aircraft, and in regions of clutter leak through,
Second, deviations frem a true radial flight path, incl:ding offsets and perturbations as from
gusts, can cause severe nonlinearities with equivalent polynomial orders of fit as high as ten
or more, particularly when the target is near the radar. Because of these reasons, simple
a priori models can lead to position errors many iimes larger than the contribution from the
radar system alone,

Often the radar will be tested in a Incation which precludes the availability of a separ-
ate reference radar and the second approach is the only practical alternative. Accordingly,
this paper addresses the problem of estimating the variance of the random error component
without a precision reference standard, providing a systematic, rigorous approach which
is unbiased in the mean and independent of Lthe true aircraft flight path,

The method is quite general to sensors and targets of all types even though the specific
application it was developed for was a radar vnder test with an aircraft on a radial path,

The statistics of the estimate are known and the concept of risk can be used to ef-
fectively design the test (e.g., number of legs) ir the first place, while the concept of con-
fidence bourds can be used to effectively evaluate the test results afterwards,

Figures 1-1 and 1-2 are PPI plots of actual radar data taken from a modern tactical
radar. They illustrate some of the difficulties involved in flying easily modelled paths.
The target in Figure 1-1 is a Lear jet attempting to fly radial flight paths. The actual
paths being flown are not even linear in cartesian space, much less in the space defined
by the crordinates of range (R), height (H), and azimuth (A), Beacause of this, a linear
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model is severely inadequate as a trend mode. The target in Figure 1-2 is a military
fighier plane, sigo attempting to fly radial flight paths. Here, the path is very close to
being linoar in cartesian space, but ia still very nonlinear in radar space particularly at
close range. Again, if simple flight path madels are used, they will give ris. to severe
estimation errors.

As evidencs of this thesis, Figure 1-3 shows the estimated error in azimuth as a
function of range for ona of the flights in Figure 1-2. The dotted line in this figure repre-
sents the theoreti.al standard deviation of the random error as predicted by theoretical
models of the radar, These models include the effects of stepped (clutter-rejection; atten-

PPy

uators which cause the discontinuties in the curve. The dashed line is the one-sigma random
error caiculated from the flight data after removal of the mean. This corresponds to an '
assumed radial flight path. Thae solid line shows the one-sigma random error calculated b
from the flight data after the removal of an assumed linear (in azimuth) trend. The broken '
[
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Figure 1-3. Rms Azimuth Accuracy for Fighter at 38 kft

line shows the one-sigma random error calculated by the method proposed in this paper,
where the order of the assumed trend is determined from the data itself. Notice that

the constant azimuth assumption leads to severe overestimation and even the assumption
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ol a linear trend produces relatively large estimation errors. The error estimate calcu-
lated by the proposed method, however, shows good correlation with the predicted value,

‘ult . WL,

Figure 1-4 shows a plot of the one-s/gma random error in range, as a function of
range, for a fighter at 17,000 f*, As before, error ca'culations based on a linear trend
appear as a solid line, calcuiations based on the proprsed method as a broken line, and
predicted theoretical errcr as a dotted line, Notice again hcw poorly the linear trend
assumption compares with the proposed model,

L -._‘ L.:°

!

These figures illustrate the need for a method of variance estimation which
isolates the random errors in the system from the mean flight path, The method developed
here addresses this problem directly and, in doing so, overcomes many of the pitfalls of
the simpler methods,

758 -
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Figure 1-4, Rms Range Accuracy for Fighter at 17 kit
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1,1 SUMMARY

Because the random components of error in all three coordinates (R, H, and A) are
c'osely represented by zero~-mean Gaussjan processes, it is assumed that the analysis
below can be applied with equal validity to any of these parameters, For this reason, the
analysis has been carried out in terms of the general coordinate Z, which can be either R,

PR xS
S

o

1S,

H, or A, It will be shown that the variance of the random components of error, ¢ 2, can be
estimated from incomplete data (data points missing), using a polynominal trend model.
This estimate is unbiased and independent of the trend removal process in the mean. The
trend removal process is adaptive, statistically sound, rigorous, and independent of a

priori or external data. It will be shown that overfitting the trend gives the same estimate
of the variance in the mean as optimal fitting, It will also be shown that the adjacent point

l.' -0 W_N -
- P
CALAN |

correlation coefficient can be used as an indication of overfitting, thereby insuring proper fit.

After developing the variance estimation procedure, the statistics of the estimation
errox wiil be derived and shown to be directly relatable to the way in which the test is
carried out. Then the producer's risk of the radar falsely failing the test and the buyer's
risk of the radar falsely passing the test will be derived as a function of the statistical
uncertainty created by limited sample sizes. These are important features of a well
designed acceptance test in which both types of statistical risks are quantified and con-
strained to 1nutually agreed levels, | Additionally expressions are developed and algorithms
presented for estimating confidence bounds on the true variance given the actual estimate.

In all cases, simulation has been used to confirm theoretical techniques in the face of
real-world applications. Also shown are the results of a comparison of this technique with
the use of an extermal standard of reference in conjunction with data collected during actual
flight tests,
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| SECTION II

| UNBIASED OPTIMAL ESTIMATION OF VARIANCE

2.1 DERIVING THE UNBIASED FORM FOR XNCWN POLYNCMINAL CRDER K

RIS - § SRS |

| 2

‘ As a starting point, assume that the actual polynominal trend of the mean target flight
path is of known order, K, with additive independent samples of Gaussian noise, Taking N
measured data points, denote

+

- T_ 2-1)
, Z2=[2;Z,....2y] =B R+¥ (

el A-A!‘

~e @
S

P

as the set of measured positions, e.g., range, azimuth, or height, in a specified time or
range interval, where

-
S

F
L ¥y

»-F
g

T
v={vivye.eovp ] (2-2)

is the set of independent noise samples with

2
E(vi)=0 and E(vivj) =g 61j‘ (2-3)

th

The j- point of the true mean flight path is

K+1

Zj’"z _bipji (2-4)
i=1

where the P‘1 are polynominals with j € N and ieK +1, The vector of true coefficients is

g=[b1b2....bx+1]T

and the polynominal matrix is

PraPigreeoo Prga
P- | " = (2-6)
(NxK+1)] : CoL
Py K+1
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\ If a polynominal of order K is assumed (it doesn't mattar whether it is the same polynominal

80 long as it is complete over the same space), then the nssumed trend is (2-5) ::".‘;'-
| 2-»b (2~17) mf
) - == NP
: ~_1'!
:l wherc by the method of lesst squares, ?:::
] i

- T 3
A T 1T Y
| b =l_‘61 b .. -%x+1] -@'P) P Z. (2-8) m
3 K
Defining the set of residuals j_}.i
~ A S
z%z-% (2-9) N

and ignoring a weighting matrix for simplicity, the maxiinura likelihood estimate

of the variance & is
2 _ 1y

o _ 12T
ML N

N~
z. (2-10)

In.ovrder to examine the structure of the estimate, firsi introduce Equations (2-1), (2-7),
and (2-8) into the expression for tke residual, i.e., Equation (2-9). Thus

4™
Z=(L-My, (2-11)
where I is the identity matrix and

MER@E'R R, (2-12)

~
Note that the expected value of Z is zerc so that the residuals themselves are unbiased.
Introducing equations (2-11) and (2-12) into (2-10), recognizing that M is idempotent
2
(i.e., M"=M) and symmetric (i.e., MT = M) then

v a-My. (2-13)

Because this is in quadratic form and the noise samples are uncorrelated, the
expectation value is

N 2
E02=

ML

Trace (I-M) . (2-14)

Zia

2-2
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Note thai the diraensions of I are NxN and that

Trace (I-M) = N -Trace P (I_’TE)”IBT

= N-Trace (P P) 1PTP = N - (K+1)

because the dimensions of Pare NxK+1, Thus

(/)) _qz(N K-1) (2-15
ML

which is biased low for all K > 0. An unbiased estimate of variance can be consiructed
however from

AN

3 7 T3
o > = (2-16)
N~(K+1)
where
N
E(@% =0 (2-17)

forall N> K+1,

This formulation reflects the equivalent loss of data points in the estimation of the
K+1 poiynominal coefficients from the same data for whick the variance is estimated.
The roader will note the familiar form this reduces io when K = 0, i.e.,

N
‘ E = 2
/\ (2,-2,) (2-18)
2 _i=
¢ = N-1

for which the mean trena is just the average value of the data

(2-19;

2-3/2-4
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SECTION 1II

RIS g PR RD N WA S

SUBOPTIMAL ESTIMATION OF VARIANCE

In genoral, the true order of the mean flight path, K, is unknown. Computationally,

an order, M, is assumed whlch may oe less than (underfitting) or greater than (overfitting)
the true order K,

L
R
N
o
I‘.
A
‘x
-

3.1 UNDERFITTING WITH ORDFR M<K

Intuitively, it is clear that underfitting is dangerous because actual deviations of the true
flight path froin the agsumed flight path will show up as a bias in the variance estimate.
To eee this analytically, conaider the estimation of the M + 1 polynominal coefficients and

the resulting residuals, Thus, we partition all matrices at the boundary of estimatable
quantities such that

rp.llo-oo-. 1M+11P1 M+2...P1 K+1-

. . i
! . . ) . . (3-1)
P _ [Pl ' P, - L. .
(NxM+1) P - Co .
(NxM+1) (NxK-M) N T
Nl..‘...'PN,M"'l; PN,M+~...'PN K+1
and
A A A A A AN A Ay T
/T AT | T_ A oA A
g_lﬁ_} by ] - [‘61%2...%”3 %M+2...bK+1] (3-2)
[} i
where
] T, -1,.T
b, = (p," Pyl 2 (3-3)
and %
By =0, (3-4)
Defining a new matrix
A T, -1_T
w # pelny e @

3-1

------- S, .(. ottt '._.r—.'~.--.\~-._.._ :.
51;-_. -' ’_,q"\'.{.--,.(."-*-'-‘w'-,




then

A A
Z=Pb+y-P 1=(I_“M1)(P2b?+!) (3-6)
and
(M
E(Z)=(-M,) P, b2 £ 0, (3-7)

Thus the residuals have an incorrectable bias error because of the unknown true
coefficients b2 #0. Moreover, after substituting into Equation (2-10) for the traditional
variance estimate

B oMM )
' N K+1 2
%«Z (Z by u) (1‘M1 >
=1\ M2 1 (3-8)
N K+1
-2 E Mljzz b ‘32 b,P,,
1 =3+1 {=M+2 i=M+2

it is clear that while the first term is of the form which has a ccrrectable bias, the
remainder is hopelessly structured with the unknown and arbitrary true polynominal
coefficients b2 .
errors which_éxplain the large errors seen in Figures 1-3 and 1-4*, Clearly under-
Hitting is to be avoided at all costs,

Thus, underfitting causes uncontrollable ard arbitrarily large bias

*While it has not yet been proved in general, simulation supports the notion that underfitting
leads invariably to overestimation. As an example, consider the simplest case where K=1
and M=0, Using the unbiased expression for variance, i.e., Equation (2-16), replacing K
by M and equally spaced data points At seconds apart then

E(;})—a + Nl N1 b at?

such that
N2
E(@“>0" forall N>1,

,,,,,,
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3.2 OVERFITTING WITH ORDER M>K |
—

Intuitivaly, overfitting appears dongerous because the polyncminal fit to the trend may .

fit the roise we wish to characterize, Surprisingly, this fear is not justified. Consider a
new partitioning at the boundary of true quantities such that

-
Pra-eeeees Pi ket | Ppogezee Py oMa
, . Co
P =fp1'1>]= : . (3-9)
(NxM+1) t— | -2 ’ ' |
(NxK+1) (NxM-K) P
i N1 N, K+1 : Py ksg 0 Py, M1 |
and
£ T t 1 T
A A LA A A A P A A
b=l b BT = |bb, ...b !k b 3-1
= | 1 2 Sl A2 KA bgez oo PMel (8-10)
]
where
A
A -1
b -(2'p) 2"z (3-11)
and
R A
_Z_=_P_1h+!~.139 (3-12)
Substituting Equation (3-11) into (3-12) and simplifying
2
Z=(IM2Z=(I"MP b1 + (I-M)y, (3-13)
which is the same as Equation (2-11) for the case of M- except for the first term.
But since
(-M) P = 0 (3-14)
i
B
tii
A 3-3

-------------------------
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all partitions of (I-M) P must be zero as well. Thus

(L-!) Pl bl,_ =0 (3-15)
and

A

...z. = (L‘l_‘.‘) Y, (3-16)

which is exactly the same result achieved for the optimal case where the polynomial order is
known beforehand, Thus overfitting leads to unbiased residuals and an unbiased estimate of
variance can be constructed from

A A
~T
Ao Az 2 (3-17)
7 2N-(MD)
with
A
Z =@Mz (3-18)

where the hat implies suboptimization in the sense that K is not known but M > K is somehow
guaranteed (i. e., overfitting).

The surprising result of this analysis is that an unbiased optimal ¢ *imate of variance
can be achieved, i.e.,

A
E (0)= 02 (3-19)
for all
K < M< N-1, (3-20)

Intuitively, it seems as though cverfitting merely fits the noise, If M = N-1 then this
notlon is correct. However, so long as M < N-2 the trend does not quite fit the noise
(although it is influenced by it), and the variance estimation formula, i.e. Equation (3-17)
exactly scales the residuals in the mean to their correct value just us if M = L.,

3-4
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Figures 3-1 and 3-2 illustrate this, The dashed curve in Figure 3-1 shows simulated
noise as fit by the curve when M = N-1 and K = 0, The solid curve represents an overfit ;:
where M = N-2, Note that while influenced by the noise, there are still finite residuals as -.]
shown in Figure 8-2. These residuals ave exactly scale in the mean to their optimal value, j
i,e. M = K, by the factor y'N/(N-M-TJ, 5

w
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Figure 8-1, Measured Data (Gaussian Noise Plus Zeroth
Order Trend)
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Figure 3-2, Residuals for M = N-2
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To fix ideas about the variance estimate, consider Figure 3-8 which shows the »ffect
of residual scaling for N=10, K=0, ¢ =1 as a function of M, the assumed order. The lower ;.
curve on the left shows the standard deviation (root variance estimete) without scaling. Here §
is the support for our intuition of decreasing variance until M = N-1 where the noise ir X
exactly fit. The upper curve on the left shows that the bias correction factor \/ N/(R-M-1) w
exactly scales the residuais for all A < N-1, ;
TRUTH /wrrn BIAS CORRECTION q
r -‘
1.0 x\/ailz z) g 5 T “
| e Nl B 3
0.8 <
P
3
g 0.8 ‘ : ,
{ NO CORRECTION g ,
0.4 —
Ve(he ) ; =
N | - O
" ] 9 |
i | il R o Lll . l.l
0133456 7TN2\,, 0138345867 N2\y,

Figure 3-3. Numerical Examrle of Variance Estimates
with Overfitting (N = 10, K = 0)

The plot on the right shows the variation of the bias coireciion factor as a function
of M (for K=7). Here it cun pe seen that this correction factor which scales the residuals
must increase as M is .ncreased over K until at M=N-1 this factor must be unrealizably
infinite for the corrcspondingly zero residuals, The messege here is that so long as
K< M <N-2 the correction factor works and unhiased estimates of variance will result.

3-6
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SECTION IV
ADJACENT POINT AUTOCORRELATION AS AN INDICATOR OF OVERFITTING

It was shovn, on the one hand, that underfitting leads to uncorrectable bias errors
while overfitting, on the other hand, will always yield an unbiased estimate so long as

N-1 >M>K. 4-1)

This result 13 only useful when accompanied by a reliable method for ensuring that M > K.
As it happens, a sensitive indicator of overfitting is the adjacent point correlation coefficient
defined by

T
~ ~
A 1 Z Uz
s 1N oy -

where all definitions are as before except for the lag matrix defined by

rOlo'..'..oq

v & oot. 4-3)
- = : <100
(RxN) | 10
: 01
0 veenenes 0 0]

4.1 CONCEPT

Underfitting results in residuals which are positively correlated because adjacent pairs
are mostly of the same sign. This effect is illustrated in Figure 4-1, Moreover, the greater
the underfit, the more positive the correlation, Overfitting, on the other hand, results in
i aidvals which are negatively correlated because adjacent pairs are mostly of opposite sign.
This effect is illustrated in Figure 4-2. The greater the overfit, the more negative the cor-
relation, Only in the limit of M = N-1 does the correlation coefficient reach -1,

Thus, one can expect that the mcan value of,;) will become negative when M lust exceeds
K. Of course, it isn't really necessary to deiermine this point precisely because the variance
estimate will still be unbiased no matter how much M exceeds K (except for M = N-1). This
provides a cushion to protect against the fluctuations in the estimate of ﬁ .
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Figure 4~1, Measured Data and Residuals with an Underfit Trend
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4.2 ANALYSIS

A
The expectation value of p from Equations (3-18) and (4-2) when M > K ia,

\ . T Trace (U M)
E(p) = Ny Trace EL—M) Q(I_‘M)] T T TN-(M+]) (-4

where we note that Trace U = 0 and (I-M) is idempotent, From tne definition of M,

-1
Trace(U M) = Trace(le_lf) g_ggT . (4-5)

If P is a complete set of orthogonal polynomials over domain N then

N 0;2 Ak
P
P, P N (4-6)
PV B 13
j=1 XZ Pj;‘: ;1=K
=1
and §3T2 is diagonal. Thus,
K+1
; P.P, +......+P P
¢ Trace(UM) = Z —1k_2k N N-1, k Nk (4-7
< k=1 p2 )
l | i
j=1
\ and
N-1
\
A & 2 PP

. : - 1 =1 -
h E(p) = - N-M-1 oy {’ N ( . (4-8)
| T Tg
) jk

=1

Withcut formal proof, laborious analyses for M = 0, 1, and 2, and numerical simulations
for M as high as 20 establish that

M+1

A
E(p)=- N H

N-1>M>K, (4-9)

4-3

et . v e Rm L . T AT e . TETET e MW TR T Te Ta WTTE @ W T e TaT s m w7 T W T, YT LT P N L T S I )

. L ) ~
+ >t
., . e v .
. « %%

PSS
1%
s %
a & £

’ -h_'

L

> 8 a8
n'o"'.:"-
'r % v

-
farss
(’_-

-
. ;n"
‘\.

b




- - T~ e D Fd Ut arTerye
?IU!"“I‘IF?(“I."‘ NT WA LA AS ST SISENE QIR NN RIS o) RLREER LS SR A Sl GL AR AL &4 S AR AN LA A N N e WA DA .

This remarkable result is independent of the choice of prlynomial, orthogonal or otherwiae, .
80 long as it is complete over the domain of N, .

Of course Equation (4-2) is not a form suitable for calculation because of the need to
kncw o 2, the true variance, beforehand. A practical expreasion for this purpose which has
the same expectation value, i.e., Equation (4-9), is as follows:

A A
)
i=1 . (4-10)
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SECTION V
REDUCING ESTIMATION ERROR

AL

Because the meximum likelihood estimate is the minimum variance estimator of variance,
the esiimation error wili be increased by the bir s c<_ rection factor N/(N-M-1), A practical
way of reducing this error is to use a larger data set for the trend removal than for the
variance estimate,

=
~
A
>
o
!
o

5.1 ANALYSIS

Consider the partitioning of the N data points for trend removal into three parts, the cen-
tral one being used for the estimate of variance. Thus,

1T 1 T
Z =12,712, :23 = [zlzz....z :zr+1....zs: 'se1” ZN (5-1)

and Pis similarly partitioned horizontally as

T
B =[P 1 B 1 Py .
(N x K+1) (r x K+1) (s-r x K+1) (N-s x K+1)
Then

(5-3)

(5-4)

5-1
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with the | - M matrix partitioned

.
=My "M I Mg n
S P S v
I-M = - My, ! L-M, - Mo (5-5) .'.i
i T 3
- Mg, ' “Mgy, 1 L-Mgg l
R | | . T
then -l:
" T ] ;i'
“~
N
— — — "‘.‘4
I-M '~
V. = =" - 1 I- - (5-6) )
22 22 x [ Ma :l Moo Mza] ' X
T
Because Equation (5-3) is in the quadratic form
S 1T
oML © 8-t X :’2_! (5-64A)
thea
N 2
o2 = Z_ Trace (5-6B)
ML 8-r 22 ¢ -

From Appendix A where the polynomials are assumed to be orthogonal,

S
2
M-:1 Z Pnk

E(ogy) =S5 |sr - D, (5-6C)

N
k=1 z: p2

--------
LA > -
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80 thut an unbiased estimate of variance for

s-r <N
is,
'.'AT (4 "]
Z Z
02 & 2 =
2
M+1 2 Pk (5-17)
8=I - ' -%Fl_
k= 2
Pnk
n=

which reduces to the prior result, i.e. Equation (3-17) for s-r = N, To see tnat the un-
certainty in the variance estimate has heen decreased byAextending the domsin of the fit to
the trend, consider that the bias correction factor o 2/E(0le) is much less for a given number

of data points s-r., Thus if s-r data points are used for the variance estimate in either case,
the ratio of bias correaction factors with N > s-r and N = s-r is,

8-r - (M+1)
S P2
k
M+1 z n
n=r+l -

k=1 2
E Pnk

n=1

<1,

This is so because

S N
2 2 (5-9)
Pnk < Z: Pnk
n=r+l n=1

N Toral i SNSRI




Figure 5-1 i8 a plot of this ratio for s-r=10 and N=30 for ¢ ~ M < 9 with K=0. Notice
that for M=9, the numerator goes to zero because in the case where L=N=30, N-1=9 and all
points are precisely fit. As discussed in Section III, the residuals are scaled exactly to
truth in the meen for all cases where M < N-1, Thus we see here another advantage to in-

GO, JSNnt

a

creasing N over L in that it permits higher order fits without fitting all the points. This is

.,..
LS

offset somewhat however in that the larger N is (with a given spacing),the larger M has to be

s

in general, Nevertheless the advantage still accrues for many cases of interest. Later

. xy
PLE -

in par, 7.3, it will be shown that this ratio is preciseiy the ratio of the variances of
the estimates for these two cases,
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Figure 5-1. Ratio of Normalization Factors for Variance
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SECTION VI
MISSING DATA POINTS

The previous development implied evenly spaced data at every one of the N points, Be-
cause this procedure is to be used with real-world equipment with a probability of detec-
tion less the unity, it is clear that variance estimates will be required in regions huving
missaing data points.

LA B AP N § o W I S I N

6.1 ORTHOGONAL POLYNOMIALS FOR MISSING DATA POINTS

Define a vector H with dimension N' that consists cf N ones for N detections and N' - N
zeros for missed detections,

:i
|
d
3
3

Ha[H Hy. .. HG] T, (6-1)
with
N' r' s'
ma Z Hi ra Hi s - H, (6-2)
j=1 3=1 j=1

where the relationships between r and r' and s and s8' are the same for N and N,

Moreover, define a quasi-identity matrix I' with H as its diagonal, i.e.

o -
" O
t -
ra H2 . (6-3)
O
L o
Then the variance estimate becomes,
~n zTm
0 = ——mm—— (6-4)
Trace 1'2_2 .
6-1
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where
2 =12z (6-5) i
A
and .
s' ,,
2 g
s' M+1 Z Pnk Hn '
' = Z _ } : n=r'+1 . :_'
Trace .1’_2_2- H] N! 9 (6-6) A
=y! =
j=r'+l k=1 Z P H
n=1

The polynomial set is orthogonal in domain N' with weighting matrix H. The orthogonality
relation is

N' pam— ¥
Z Pok Png By N’ €-7)
n=1 -\_ E P2 H ; k=2.
nk n
n=1
The recursion relation for these polynomials is
= [§{-1- - . < -
Pk = (3717 By) P~ 7y Bypqs 2SksM (6-8)
with
Nt N'
8, & 2 @) piH [y PH (6-9)
k = tk 1 tk g’
1=1 =1
Nt N
y, A sz H E p2 . (6-10)
k = 1k 1 , k-1 1
£=1 1=1
6-2
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and >
=

N N v

P = I-1- 2 (t-1) H, 2 H, (6-11) ,

=1 1=1 4

<

| C

P, =1, forally. (6-12) .
Details of this set of orthogonal polynomials and its use can be found in Ref, (1), ’_1,_1

x
S

6.2 COMPUTATIONAL EQUATIONS

These matrix forms of the equations for estimating variance from an incomplete data
set, i.e., which include missing data points, have the following algebraic equivalents for
computational purposes:

8
a2
H (z - z)

D TCR)

99 = Trace "é_z (6-13)
while Trace v2'2 is given by Equation (6-6) and

(6-14)
(6-15)
6-3



The expression for the adjacent point correlation coefficient in the face of missing data
voints is generalizred to

A, | 2Tz
b - 02 — — (6-16)
or,
N'
2 2 -Z\z. . -3 \HH
A L;.?_l(j 1 )(J N'J 1) JAj‘l - 6-17)
Z( 2) H 2, (7 2) j
j=2 =2

with Monte-Carlo simulation again demonstrating that

A
Ep =- M2 (6-18)

wheneve: ‘7 > K,
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SECTION VII
STATISTICS OF THE VARIANCE ESTIMATE

It was shown earlier that the variance estimate is unbiased; that is the expectation value
of the estimate is the true variance of the noise, Nevertheless the estimate itself is a random
variable subject to uncertainty which arises primarily from three sources:

1. The assumption of a finite polynomial trend
2, Overfitting the trend
3. Insufficient sample size.

This section explains these sources of uncertainty and offers practical approaches to con-
straining them which have already been proven both by simulation and application to actual
test flights,

7.1 POLYNOMIAL ASSUMPTION

Even a cartesian-linear flight path which doesn't overfly the radar will be trigonometric
in the radar's polar coordinate system., Figures 7-1 and 7-2 show the range and azimuth
histories of such a flight path with north offset of 10 nmi and asymptotic azimuth of 30°. In
principle a polynomial fit to this data, particularly at close range would require an infinite
number of terms. In practice, equivalent polynomial orders less than eight or nine are
usually sufficient to fit mean flight paths down to a small fraction of the radar noise so long as
two conditions are satisfied.

1, No range interval for estimating the mean target path extends beyond the point
of closest approach.

2 These intervals must be adjusied downwards in lengtii to accommodate the
increasing curvature (in radar coordinates) encountered near the radar.

Both conditions stem from the fact that the equivalent polynomial order increases rapidly
in the v cinity of the point of closest approach. An interval which straddles this point will
require a much higher order of fit than one which places it at its boundary; thus the first
condition., Nevertheless the reader is cautioned that this innermost interval may have to be
broken up further, i.e., reduced in range extent, if the equivalent polynomial order of fit
turns out to be too high for the computer being used. A 500-knot target with a radar having a
revisit time of 12 seconds (5 rpm) will have about 6 data points in a 10-nmi range interval,
Experience shows that a computer with 32-bit floating point capability can easily handle the
10-15th order polynomials sometimes required in the innermost 10~nmi range interval,
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The second condition addresses the need to optimize the number of data points used in
the fit, N, and the assumed polynomial order of fit, M, for a given set of data used for the
variance estimate, L. The total flight path is usually divided into a number of intervals con-
taining 6~ to 10-data points a piece, i.e, L, starting with the point of closest approach to the
radar. But there are two competing sources of error which require disparate optimal
strategies for picking N and M. On the ore hand, we'd like N as smal] as possible near the
radar to minimize the true order of fit K, and thus avoid possible bias error from inadvertant
underfitting in the region where the finite polynomial assumption begins to breakdown. On
the other hand, it will be shown in par. 7.3 that increasing N for a given L and true order K
will result in a dramatic dacreéso in the estimation uncertainty., After many simulations and
the processing of much real data, the following strategy was derived which appears to provide
a robuet balance between these seemingly disparate requirements.

1, The order of fit M is increased from unity to the maximum permitted by the
computation system with accuracy, and all those cases where the correlation
coefficient is negative for M, M-1 and M-2 Are accepted as legitimate
variance estimates. The requirement that p be negative for M, M-1 and M-2
has been shown by experience to effectively eliminate the effects of sampling
fluctuation on the instantaneous estimate 6 (M;N).

2. For ranges less than 4LAR (where AR is the distance between data points)
N=L and we pick the order of fit M to be the largest possible on the computer
n use subject to the additional constraint on the correlation coefficient that
p be negative for M+1 as well to provide additional assurance that the
polynomial approximation is valid,

3. For ranges larger than 4LAR, N is systematically increased from L to 4L
and M increased from the minimum established in step (1) to the maximum
permitted by the accuracy of the computer (e.g. 10-15). The particular
values of N and M used are those that correspond to the maximum Trace (V2'2 )

[as calculated by Equation (6-6)] from the entire list of legitimate estimates,

4, The optimum strategy regarding the geometrical relationship between N and L
is to use symmetry wherever possible, i.e. for L to be centered in N. This
stems from the fact that while all possibilities will lead to unbiased (or minimally
biased) estimates, the centered case results in the minimum estimation un-
certainty. Near the ends of coverage or the point of closest approach L cannot
be centered and some increased uncertainty must be tolerated.

Examples of the efficacy of these procedures are given in Appendices C and D.
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7.2 DISTRIBUTION AND MOMENTS OF THE ESTIMAT.'
Basically the estimate of variance, as represented by Eq\iation (6-13) can be viewed as

a proceas whereby s-r Gaussian, zero-mean variates, i.e,, Z i =2, - 2, are aquared and

summed, and then normalized by Trace v22' . Now it {s commonly known that a random
variable which is the sum of the squares o} N independent zero-mean Gaussian variates is chi-
square distributed with ¥ =N degrees of freedom. Moreover if the mean is estimated from
averaging the data, then one degree of freedom is lost and v=N-1, It is a straightforward
proof to show that when M+1 coefficients are required for the estimation of the mean then

M+1 degrees of freedom are lost and ¥=N-M-1, For L=N then it is clear that

N\ 02 2
X
o2 - —=¥ (7-1)

where o 2 is the true variance and v the number of degrees of freedom of the random
variable x>, . For L=N

% otx)
o = NM1 (7-2)
Since
E(x2\= v (7-3)
v
and
VAR (xf) = 2V, (74)
we gee that
A\
( 2) g2 2\ _ 2 (7-5)
elo?) - T E() = 0

which shows again that the estimate is unbiased, and

(’)) a2 2 2 204 (7-6)
e - o -
VAR o = N"M"l > VAR (x V) N_M_l ’

which i8 a new result,
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" .
S What happens when N > L ard » = Trace "2."2 ? With the proof in Appendix B, we state f:‘:f
} here that the normalized random variable Trace vis (o /a 2)13 still chi-square distributed f:;:
with Trace v}, degrees of freedom. Thus, '_ i
2 2 -3
N 7 XTrace Vi N
02 = F—— TN (1-7) :f;
Trace v} o
22 n
From Equation (7-3), _:
AN, 2
E (02) =g .
and
7\ 4
2) _ _20 . (7-8)
VAR(O ~ Trace v2'2

Because Truce v2'2

certainty in the estimate is reduced by the procedure of using more points for the trend
removal than for the variance estimate itself.,

> 8~-r-M-1, as seen from Equation (5-8), it is easy to see that the un-

7.3 OVERFITTING THE TREND

It was already shown that overfitting does not introduce a bias, Nevertheless there is
a penalty which appears as an increased uncertainty in the estimate. This may be seen
clearly from Equation (7-6), which is the form of the variance of the estimate when N=L,
The standard deviation of the estimate then varies almost inversely as the square root of
order of fit, i.e.,

(’? ) > N-M,-1
SIG \o = SIG (0‘0 )= N-M-1 ° (7-9)

For N=10, Table 7-1 gives the increase in the standard deviation for the estimate with M0
as the parameter,

A A M db
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TABLE 7-1

INCREASED UNCERTAINTY DUE TO OVERFITTING WHEN N=L=10

P e

w .
M 0 1 2 3 4 5 6 7 )
] 1 .06 :
2 1.14 1.07 l
4 1.34 1.26 1.18 1.10 K
5 1.50 1.41 1.32 1.22 1.12 :"
6 1.73 1.63 .53 1.41 1.29 1.15
7 2.12 2.00 1.8 1.73 1.58 1.4 1.22
8 3.00 2.83 2.65 2.45 2.24 2.00 1.73 1.41
)
From this table, the uncertainty can almost triple when the true order is zero and increase 5
by a factor of 2 when the true order is 5.
The general form of Equation (7-9), where N > L, is i
[
L
D o Trace V22 (N,L, M) 4
2 2 LE\" " J
SIG (“ ) = SIG ("o ) J Trace vy, (N, L, M) (7-10) ]

As a means of comparison, consider two examples, In both cases, we will keep L~=10,
analogous to the example from which Table 7-1 was constructed. Tables 7-2 and 7-3, on
the other hand, present the results for N=20 and 40, respectively, where the L data points
used for variance estimation are centrally located among the N data points used for trend
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TABLE 7-2

INCREASED UNCERTAINTY DUE TO OVERFITTING WHERE L=10 AND N=20

———————— e R NG e S L s T R o U A AT CLE L CLUARS, £ i LA R A LR L AT LI R S AN

No

M 0 1 2 3 4 5 6 7
1 1.007

2 1.028 1.021

3 1.051 1.044 1.022

4 1.067 1.060 1.038 1.016

5 1.092 1.085 1.062 1.039 1.023

6 1.120 71.112 1,089 1.066 1.049 1.025

7 1.143 1,136 1.112 1.088 1.071! 1,047 1.021

8 1.175 1.167 1.143 1.11¢ 1.100 1.076 1.049 1.027

TABLE 7-3
INCREASED UNCERTAINTY LA'E TO OVERFITTING WHERE L=10 AND N=40
M. ]

M 0 ] 2 3 4 5 6 7
1 1.000

2 1.015 1.015

3 1.019 1.018 1.004

4 1.031 1.030 1.015 1.012

5 1.039 1.038 1.023 1.020 1.008

6 1.048 17.047 1.032 1.028 1.017 1.009

7 1.060 1.057 1.044 1.040 1,028 1,020 1.011

8 1.067 1.067 1.051 1.047 1.035 1.027 1.018 1.007
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K

:E It snould be evident from these tables that the effect of increasing N for a given I, are dra-

NS matic, For instance, when the true order is zero, the uncertainty barely \crcases by 18%
. for N=20 and 7% for N=40. Compare this to the 300% increase shown in Ta le 7-1, The

:3:2 length of these tables are kept to match Table 7-1 and not out of any theoretical restriction,

recalling that

K< M< N-2 (7-11)

L SN AR & M s e 8 8 m—— ®

is the only restriction and we could have increased M to 18 for Table 7-2 and 38 for Table

7-4, if needed, The point here is that there is very little penalty for reasonable amcunts of .
) overfitting with N > 2L, leading to a robustness for the technique. In practice we have found ;
! that increasing N beyond 4L is unnecessary from the point of view of constraining the un-
:’ certainty in the estimate.
AL ! ‘ .
3 7.4 INSUFFICIENT SAMPLE SIZE

Because a typical air defense radar may only revisit & target once every 6 to 12 seconds,
the total number of samples available for a variance estimate will be small on a single flight
leg. As an example, a 500-knot target will yield only 6 unique data points in a 10-nmi range
interval for a radar revisit time of 12 seconds. How big will the uncertainty in the estimate
be? From Equation (7-8) we find that

Fa
SIG ( 2)- —2 2 (7-12)
g /= Trace v,, )

For L=6, N=4L=24, MO =0, and M=8 for example

Trace v 2 = 4.54 ,

M| —_

» Thus

s

N /\
SIG (02) = 0.6640°2 (7-13)

WML P2

which means that the uncertainty in the estimate of variance is larger than 65% of the true

L

variance itself, From estimate-to-estimate then a considerable fluctuation will be en-
countered, perhaps far more that we would like.

A AAA S
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)

One way to reduce this uncertaiuty is to extend the range interval, i.e. L, over which
the estimate is made. This has several disadvantages, First, a large increase in L muy
force an averaging of true variance which may vary significantly over the range interval
because &t long range

02 ccR4.

Secondly, the pressure increases greatly for a higher order of fit than perhaps can be
handled with precision on a typical computer,

An alternative approach which has proved quite effective in practice is to increase the
rumber of flight legs for the same (or similar) conditions, Thus for p - flight iegs where

we average the variance estimates in like range intervals after removing the trend on each
leg.

/\ /\ .
a: =1 2 ol . (7-14)

N\
E(a‘) = g2, (1-15)

Moreover,

Vo2

————

"\2 2 4 1
g
VAR (ap) = 2 Z Trace ( ) : (7-16)
i i

For planning purposes, consider all N, L, and M identical from leg to leg for a given range
interval,

Then,

/2\ 20
=
VAR (a ) p Trace v ' (7-17)
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Suppose, for the example just considered we wish to reduce SIG (o g ) to only 30% of o 2.
; Then from Equations (7-13) and (7-18), the number of legs required would be 5, not unreason-
"3
.A- e
‘ able. On the other hand, 44 legs wouid be required to reduce SIG (o:) to 30%, perhaps
too many to justify economically,
i
jj /’Zhia leads naturally into questions of test planning. What value of the ratio
i
SIG (0!2) )is really appropriate ? This is where the concept of statistical risk is useful; a
B subject treatad in Section VIII,

7.5 UNCERTAINTY IN THE ESTIMATE OF STANDARD DEVIATION

(7-18)

legs then
2 2

» /} g Xp,,.
s 0% = ——m——
4 P pv
ey
b3
by and
P. T
P
b )
Do J—BY
3 P = pv
Therefore,
?q
i /\ /\ /\
¥ vm(é\)z_\r: ?—E(a )(2=E(0)2—E2(a)
™ p/= o P S p p
',t..;
|
15
N
%
0

L N

Wt .l‘.i.‘L- "J\'..l o~

From Equation (7-7) we see that the variance estimate is a random variable related to
the chi-square variate with v = Trace v' dagrees of freedom. Generalizing for p - flight

(7-19)

(7-20)
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7\ 1\
But E( op\) 2. E(o 2) = g 2 , 8ince the variance estimate is unbiased and

VAR ({7;) =o2- Ez(é:). (7-21)

From Equation (7-20) and the chi-square pdf,

£(8) - JE) e — (%)

DY ] (_QL) L I F(jﬁ (7-22)

/\
Note that the expectation value of a'p2 , 1l.e, {7\p , is biased while E 1/2 ( p ) is not. The

thought arises that an alternate strategy could have been developed whereby we could have

censtructed an unbjiased estimate of 6\p in the first place from

pv T ; 1/2
sf\ A 2 (7-23)
p = V 2/pv

The reason for not doing this is the desirability for combining estimates of the variance of the
random component of error, as treated in this paper, with estimates of the variance of bias
components, as estimated elsewhere (Ref. 2 for example). In this way, each variance
estimate must itself be unbiased.

From Equations (7-21) and (7-22) then,

14
/\) 2 g *1
V

(%)

7-12
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SIG (/o'\ ) = 1. -2 Tz 1) (7--25) '
’ P v v 1
4 P r 2~ s
2 .
i i
K
where ‘
v A Trace v} 7 -i
= 22 (7-26) Y

Note that
TR+ 1 1/2 ;
Um 2 = (222) {

e T
so that

lim A
pv—e= SIG (crp) =0

as expected.
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SECTION VIII
STATISTICAL RISK AND CONFIDENCE BOUNDS

While the uncertainties in the estimate (variance or standard deviation) are useful in a
comparative sense, they provide little direct information helpful in designing tests or evalu-
ating test results. On the other hand, the concept of statistical risk is quite useful in design-
ing teats to both constrain the producer's risk of falsely failing and to illuminate the spectrum
of buyer's risks of falsely passing (as a function of his least acceptable performance); each
deriving solely from insufficient sample sizes. Moreover, upper and lower confidence bounds
can be derived to infer limits to truth implied by the test results. Analytical expressions
for these concepts are derived here and numerical examples presented to illustrate their use.

8.1 DISTRIBUTION OF THE ESTIMATE

In the previous section, we stated that the distribution of the normalized variance estimate
for one leg and range interval was chi-square with v A Trace v, degrees of freedom, i.e.,

‘22
v t
tE-l e--‘":
fxz t) = v - (8-1)
y 22 1"('2')
where
N\
2 (."2
Xy = V=5 . (8-2)

An estimate averaged over p legs, on the other hand, is not in general related to the chi-
square variable because

2
A\ | X
o 2 = —1- :} = L? Vi (8"'3)
p p Z | p E v .

iep iep

Only when all =V is the esuimate clearly still related to the chi-square variable, i.e.,

A
2 = g_f_ ( 2) _ g? 2 8-d4
p "~ pv Xv ] = v Xpw (8-4)

8-1
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with

p»-1 _ ¢t
2 2 '
to0 = ——2 - (8-5) |
X 2&'
p¥ pv
2 r(3)

Returning momentarily to the general formulation of Equation (8-3), we see that the dis-

tribution of t = xz / visa special case of the gamma pdf , i.e.,
v
i

Laar™l l4 AR N ECEE P R

l‘
a -1 = t/ b
g = 2—t ! e By (8-6)
i
BT @)
where
i
e =3 (8-7)
and
8, = 1/¢1i (8-8)

which has a characteristic function,

i
a
_ i . (8-9)
’i(u)_ [ai—jw]

Because we are dealirg with a summation over p such terms the characteristic function of

a: /o 2 becomes,

. (= T T (8-10)
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There are two reasons for needing the pdf in the general case,

1. To recompute pass/fail thresholds (par, 8.2) and buyer's limits (par. 8. 3) after
the test when the actual { vi} set will have been known in each range interval,

n

2. To compute relevant confidence bounds to true performance after thetest asinferred
by achieved performance and the actual {vl} set,

in lieu of an analytical distribution (general invarse to Equation (8-10), a histogram can be
generated numerically after the specific set is known from a suitable chi-square random
number generator structured according to the leg-averaged variance estimate, i.e.,
Equation (8-3)., Another way is to numerically perform the inverse to the general charac-
teristic function with a specific {,"1} set; perhaps using a discrete Fourier (ransform, i.e.,

vi/2
g ® = fwn /2 > e 19 4o (8-11)
/\2 R 7 lep v172-jw
o /o
P
so that,
vi/2
N-1
A vi/2 -j-wnk
LAFN (k) = Aw Z 1 V.72 - jo. e g (8-12)
2/ 2 =0 iep i n
g /0

k=20,12,..... N-1,
N

where t is a sample of the ¢ 2/0 2 random variable and we evenly sample all of t-space at
least 2N times, Note that when all {vi} are equal for each leg that

B = -2; ; a = B (8-13)

so that the distribution becomes gammas with pv = n Trace V'22 degrees of freedom, An

example of this technique is shown in Appendix F.
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8.2 PRODUCER'S RISK

The producer's risk is conceptually defined as the probability of his product failing a
test when in truth it should have passed, i.e., falsely failing. Thus in terms of parameters
of interest to us here,

RPQ Pr[cr2 > ¢ 2

2 2
P T “f"'r] (8-14)

where o .., is the pass/fail threshold such that the producer passes the test if

T !
Az 2
It is a simple matter to express this risk matheinatically as,
-
P _ 2 2 _
R —I /02 g’q 9 (t ) SO'T)dt. (8-18)
PT ) p /o

Figure 8-1 is a plot of this risk where all y=v and the total number of degrees of freedom
is

i
i
h
N
|
,
:
:1

pv = p Trace (8-17)

]
Voo

Noting that the abscissa is oT/o =‘/3\2 / o , consider a producer's risk of 10%. If the

number of degrees of freedom is only one, then the pass/fail threshold on ':2‘ , l.e,, o T
must be almost 65% more than the true value ¢, This is the tolerance required to fairly
accommodate the sampling fluctuation expected in the estimate while still leaving the producer
with a 10% chance of faisely failing. If the buyer thinks this tolerance (or discrimination ratio)
too large, he can insist on a larger sample size, In our case, tkis translates to more flight
legs, i.e,, increasing p v. Note that for pv = 50, the pass/fail threshold on o only has
to be alittle over 10% greater than the theoretical value o, op
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Becususe the pass/fail threshold is always related to the theoretical value, it is necessary :

to make an estimate of 0 prior to the test, A reasonable candidate is the expacted perfor- A

manae given that the product performs as promised. Thus ihe producer and the buyer must i

i agree to this o as part of the test package which includes the producer's risk, the number of

E flight legs, and other more mundane details of the test, e.g. altitude, speed, range interval, »\
b

flight azimuth, etc. It is also important to relate these details to expected values for

v = Trace "'22 . Figure 8-2 is helpful in this regard for it is a plot of ¥ for an eighth order
polynomial fit against N as the independent variable and L as the parameter. Note that L is
uniquely dependent on the speed of the aircraft and the revisit time of the radar under test and
is assumed here to be centrally positioned with respect to { N} . The test planner can pick
some representative value for N = 2L and use the resulting v for test planning purposes, For
range intervals close to the radar, the value of v used should probany be halved because of
the increased pressure for higher order fits and the asymmetry of { L} with respect to

{N}.

8.3 BUYER'S RISK

-

L 11

PR S

~
S
-

The buyer's risk is conceptually defined as the probability of the product passing the
test at the pass/fail threshold when in truth it should have failed at the limit of his acceptable
performance, i,e., the buyer's limit. In terms of parameters of interest to us here,

2 2
g > 0p ] (8~18)

Where o 5 18 the buyer's limit which must be greater than both the pass/fail threshold o T
and the theoretical or expected performance ¢ for the buyer's risk to be lower than about
50%. There is an asymmetry between the two risks shown here because it is the producer's
product under test and the buyer's risk arises only because of his perception that ¢ >¢o T?
which can never be known for sure, Once the parameters of the test are picked, i.e., RP,
p, E (Trace V! 22), and ¢, the pass/fail threshold is uniquely determined. But the buyer's
limit is a parameter which can be traded off against the buyer's perceived risk. Figure

8-3 is helpful here in seeing this point. For UT/UB = 0,5 as an example, and pv = 1 the
buyer's risk will be ae high as 38%, but his penalty is 100%, i.e. oB/aT-l =1, If P, is in-
creased to 50, on the other hand, his perceived risk becomes vanishingly small, even though
his penality remains high. On the other hand, if he wishes to stand a risk of 10% with pv = 50
then the buyer may only have to accept a radar which is about 16% worse (i.e., 1/0.86-1)
than the test threshold, assuming that it passes the test, Compare this to the 100% penalty

he must accept in the prior example where his risk is almost zero.
8-6
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8.4 CONFIDENCE BOUNDS

The concepts of producer's and buyer's risks are seen to be useful in providing
tradeoffs to the design of effective, statistically meaningful tests, to the degree one can
estimate expected performance, i.e., o, prior to the test, Once the test is performed, it
is natural to want to make inferences about the true perforinance implied by the test results,

KXXXRS | e

-

A standard way of doing this is to provide upper and lower bounds to true performance,

given the test result, associated on a one-tc-one basis with a leve! of confidence. Figure 8-4
illustrates these bounds for the distribution of interest, i.e., Equation (8-13). Witk C the
confidence level, a numerical solution is sought for o L and o H from

@
g A (t,{vi })dt = 1—;—,9- (8-19)
72,2
S 2
A / o
and
73
op/a
? N (t'{vi}) a = 2 - (8-20)
%
0
g(t)
1-c
2

Q
:u‘u
o]

P e
9 | q
N o
S’
i
b
Q
ad X

Figure 8-4, Distribution of the Variance Estimate Showing the Confidence Bounds of Interest I_:: )
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It is interesting to note thet because the distribution is asyrametric, the bounds will be

asymmetric. as well, As an example, consider pv = 10 and /}Z =1 kft. Then the square
c

p
root of the 95% upper and lower confidence bounds for true variance are

Ty = 2,16 kft

and

o = 0,63 kft,

L

As another example, consider a tenfold increase in p¥ to 100 with ’} still 1 kft. Then
a
p

o, = 1,26 kft,

and

Oy = 0. 856 kft.

8.5 ADDITIONAL CONSIDERATIONS IN TEST DESIGN

Often an acceptance test on a radar may include five to ten separate performance mea-
sures, e,g. detection probability, height accuracy, range resolution, etc., several different
altitudes, and 20 or more separate range intervals, The total number of independent tests
may run up to the hundreds, If the producer's overail risk is to be kept to 10%, for example,
and the criterion for passing is that he must pass all of say 100 tests, it should Le obvious
that his allocated risk per performance measure, per altitude, per range intervai will be
very small, i.e,

1/100
r¥ = 1-(1-rP) = 0.105%.

8-10
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The tolerance, i.e. or,r/o , will be much larger than for the single tests discussed in par,
8.2. Similarly, the buyer's risk per elemental subtest will be much higher than for the
single test discussed in par. 8.3., i.e,,

1/100
B _(gB

A 2 4 AMENG ST . 4 4 B m A ceeamm s v &

= 97.7% »

probably intolerable to most customers without considerable explanation, The reason for
the dramatic telescoping of risks is the buyer's pass/fail criterion for passing the test; that
is the producer must pass each and every elemental subtest to pass overall. A slight loosen-

-
a
]
4
|
i
-
«
1
N
~
Bl
o

ing of this criteria can pay dividends here. Suppose, for instance, that the producer can fatl
one or more, say m, subtests and still pass overall. Maihematically this is expressed as

N Ns-n

P i Ns : (rp)n (l-rp) (8-21)

! -n) !
n.(Ns n)!

=
i

n=m+1
and
Ns
N -n
<™ N ! n -]
RB = L ‘-;ngﬁ-s-_—n)i (I‘B) (I-I‘B) (8‘22)
n=NS-m

where RP and RB are the overall test risks, rP and rB are the elemental subtest risks, N’s
is the total number of subtests, and m is the number of permitted subtest failures.

These equations are solved numerically for rP and rB in Figures 8-5 and 8-6,

respectively, for RP = RB

= 10%. As an example with N, =100 and m = 10 for example
B 85%, somewhat better than for the case where o failures were permitted.

% and r
Each test situation will demand its own tradeoffs and these ideas are orly to focus attention
on the procedures for efiectively designing tests which are statistically fair to producer and
buyer alike,

v XDt AR il
o

$e?

B SR
¥ B

SO VS IR A S RICIAS



p—tﬂl;wv-m.'e‘.h-ﬂ".lv‘il’»‘.“.!ﬁ'—h‘i‘.ﬂ‘)‘ﬁ'}'}'J‘ﬂ‘!'J LARAR S RTRA RS B/C A s Mt i o A SO o/l o S it A AT A AL

{u
‘ol
Xy
wd
99 ™
98 .:
) 95 .
= 90
M=10 A
80 oo
o
-lr—qs ‘ 70 -’ﬁ
3 \ 60 = Al
2 A 50 = :."1‘
| - w0 ¥ £
! 30 &
N N N @ !
\‘ N = .':‘4
0 N (x|
13 =t
b - 4 10 S L
b a
e &
2
- 1
\\
ey
m 0.1
0.05
| | 0.01
1 2 3 4 5678910 20 30 40 60 80 100
50 7090

NO, OF INDEPENDENT TESTS (I\'s)

Figure 8-£, Producer's Risk per Test vs Total Number of Tests with Overall
Risk of 10% and the Number of Permitted Failures as a Parameter -

99

95
90

8¢

i’

\
\
N AN
Ay
\
AN

Ak

€q
30

~
b ..
Z |\ /7 10
30

“hav4
' / 20
v / :

7T}
—3

™

BUYER's RISK (%)

"~

s

OOO

.1
.0
L i .0

1 2 3 4 5678910 20 30 10 5060 5¢C 100
70 90

[

NO. GF INDEPENDENT TESTS (NS)

Figure 8-, Buyer's Risk per Test vs Total No, of Tests with Overall Risk of 10%
and the No, of Perinitted Failures as a Parameter

g~-12

RN =.,,.., L.Lf:}-.',a /. _.i --Jn_i {L. .leﬂu




----------

!mmwm‘u“\“ﬁ'&“ﬁ&i LATAT ARAERY SAR FLA AL L AN UL EI LAl Pt AR AR AR Sl gt o2 P At R SCS St St R T it

\

SECTION IX
REFERENCES

1, 8.D, Conte, C. deBoor, Elementary Numerical Analysis, An Algorithmic Approach,
McGraw-Hil!, 1980,

2. B. A, Deresh, Radar Heﬁt Bias Estimation for a Ground Based Radar Using an
Alrcraft Altimeter as a Reference, General Electric Technical Information is
Series Report No, R82EMHS, June 1982,

9-1/9-2




LSV TLT o PRI RR LT G SR T 0 T wl 31T SLARN L SAS LG O ALRE WA ad LSS A St 0 b Re i W ' R bt LML 20 S S M S

PO WG R

APPENDIX A
DERIVATION OF THE TRACE V22
From Equation (5-~5), RY
N
n
r=-m" @M (a-1) =
where g
- »
M=p @R pT (A-2) 5
and P is partitioned horizontally as, .
-
[ _P_l (r x M+1)
P
P = 2 (8-r x M+1) (A-3)
(Nx M+l) |- == --
P, (N-8 x M+1)
resulting in a two~dimensional partition of M as
(r) (s-r) (N-8)
o ] 1 -1
My : Mg+ My )
..... ,_____;___--..
1
M M,y : My, , My, (s-r) (A~4)
NxN | . oo .-
[} -
Mgy , Mg, 1 Mg, | (N-s)
' )




Defining

B

(M+1 X M+1)

T

& PP

e R T L T, PSR AT S R BE - L% R L A N R S S AR N O AR GE AAN £ AR E LN ST

(A-5)

one firds for orthogonal poiynomials that the matrix is diagonal with elements

N
B, = ;{E p2

jk

without any partitioning, The structure of M is thus

=

- e e w e o

(A-6)

(A-7)

(A-8)
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------------------------

Now

veg = L-M), Q- (A-9)
(NxN) (Nxs-r) (8-rxN)

T
Trace_vg Trace (I - M, @- li{)2

Trace (L- M), (L- M), (A-10)

Trace Byg

Thus the ijth partitioning of u is thus

3
T
= - - A-11
by = Y0 (L-M)y, (L-M), (A-11)
2 =1
But only the diagonal elements of 4 are needed for the Trace Boo
and
= (I-M), (I-M)T+(I-My, 0-M)T+(1-M), I-M (A-12)
By = (1= (1-M)py +(1-Myy =My +(1- M5 (- Mg

Specifically from Equation (A-8),

2
Bop = My My vo(L-Myy) t Myy My
(8-r X 8-r) (B=-rxrxrxs-r) (8-r x s~-r X 8~r X 8-r) (8-r X N-8 X N-8 x 8-r)
(A-13)
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kk

[Ny

ARV~

n=r+l k= keke i=r+1 L k=1 RY
in N

i

N

s N M+1 2

P, P
AP D M v
kk

n=r+] I=8+1 k=1

where the middle term reflects the differeat structure of the diagonal of I - M, noting
that

00T | PANREIIRY | Ny

-

—~—y
A
A

IO |

8
g = D (-m C- M,

i=r+l

in general and

8 o
“’.-T‘
ynj=-Mjn(1-Jim)-Mnj (-‘-ij)»r Z M, Mji

f=r+l o

bén J}

14] o

\:;'

Ry

g

>

g
i

e T
Hon = (1 Mpg)"* Mg (A-15) o

i=r+l

i#n
for n = j in particular,
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Combining the terms in Equation (A-14), adding and subtracting I::
2 -
2 A
+1 Pnk
Bkk ’ \_::-
n=r+l k=1 o
\":‘
one gets 2
2 &
B
8 N M+l P, P ;:_:
2 lk nk A e
Trace V = —_— '3y
2 By o
n=r+l1 | i=1 k=1 :E
2 2 5‘
M+1 P2 M+l P 2 %
nk !
+|1- Z nk - E 5 . (A-16) .
k=l Pk k=1 kk N
; Defining
| 2 )
Ml p o p P, P P.,P_. [P.P P,. .P
} 'n 2 Z : —dk nk | . Z(_i'_t.la_n‘t_)+ 2 ;31 nl ( 1123 n2 ... iéM+1 n, Mwi)
| L By k Kk 11 22 M+l, M+l
P P P P
+ — ——+2 ig[ nM ié M+l n, M+l ,
‘ MM M+l, M+l
| then

| 2
N N +1 M+1
| 2 : v = Pie Pakc | _ Z Pk
‘ in B
=1

B
i=1 i k=1 kk k=1 kk

from successive application of the orthogonality relations [Equation (4-5)] .
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Introducing this result into Equation (A-16), expanding and cancelling terms,

8 M+1 D 2
Trace ¥, = Z 1- Z —ok_
22 Bk %

n=r+1 k=1

and finally with the definstion of B, i

(A-17)

n=

A-6
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APPENDIX B
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DISTRIBUTION FOR THE PARTITIONED DATA SET

From Equations (6-4) and (5-6A), we have that \
., ;
A 2T vvpe ¥ X
race Vo2 race V28 >
N
80 that a
3 _ 2
E(O‘ ) =0 . (B-2)

In general, the estimate of variance involves the summation of L=N squares of partially
correlated zero-mean Gaussian variables, Zero-correlation (totally independent variables)
requires that each variable be zero-mean a priori. In this case, the estimate is chi-square
distributed with L degrees of freedom. Unity correlation (completely dependent variables)
requires that each variable be essentially the same. In the case, the estimate is still chi-
sguare, but with 1 degree of freedom. Moreover we have seen that estimation of an Mth
order polynomial trend model uses up M+1 degrees of freedom, partially correlating the
data in the process, In this case, the estimate is chi-square distributed with L-(M+1)
degrees of freedom. In summary, the summation of L squared zero-mean, partially
correlated, Gaussian variables always leads to a chi-square distribution with v = L, - x

degrees of freedom, For the partitioned case, L = s-r and

M+1 Z P
X = ]"r+1 (B-3)

k=1

Py

j=1

Note that x =0 forp =0andx=L-1forp=-1,i.e., M = N-1,
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With this line of reasoning, we can use Equation (B-1) to redefine the variance :7
estimate as '
N\ 2 2 !
A (B-4) :
1 . - A
Trace Vao :
Thus, i
R
E(/a}) e B - o (B-5) ;
- 1 1 -
Trace 312. v Trace 12_&
From Equations (B-2) and (B-5) then
v = Trace v}, °* (B-6)

_22

the number of degrees of freedom for the general case.

B-2
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APPENDIX C
MONTE-CARLO SIMULATIONS TO VALIDATE TEE TECHNIQUE

Many simulations were performed to help validate the technique in increasingly
realistic steps. The common elements of each simulation were as follows:

1, Gaussian noise was added to simple models for the mean flight
path (trend).

¢ Independent samples

e representstive models for radar measurement noise including
range dependent and range independent components,

2. The target was assumed to have a constant speed and mean cross section,
typical of small military aircraft,

3. The radar rotated at 5 rpm and was assumed to have typica! signal

processing fcatures and radar coverage.

Two simulations will be reported which both illustrate the value and validity
of specific features of the technique developed here and demonstrate its robustness as
well,

C.1 TRENDS OF KNCWN AND CONSTANT POLYNCMIAL ORDERS

The first simulation of interest is one in which the mean flight path was linear ia
range and constant in azimuth, i.e. truly radial, so as to provide a closely controlled
teat, Each data iaterval inclnded L=10 points for the variance estimate and N=30 points
for the trend removal process, A detection prohshility of 90% was assumed at all ranges
and 500 Monte-Carlos were performed. Each Monte-Carlo wes independent, wherehy
samples were drawn tirst from Gauseiar random number generators scaled for range and
azimuth positici errors, and then from a uniform random number gererator (simulating
a 90/10 coin flip) to determine radar detectability, After a 30-point data set was assem-
bled, the estimation process was‘ initiated and the autocorrelation and variance estimates
were stored, This process was repected 500 times (all independent) and the estimates
averaged to approximate an expectation valne. Typical results are shown in Table C-1,

e i R R S T NI S L SR S
o S e ~ . R
SRR, PP s SE T A R "R P



TABLE C-1

PO e e TG T Wi W TR AR AT AT 374 B RS B A AR iy s

[ ]
L]
.
*

ONSTANT TREND MODEL

re

~
:
g
«
B
3
4
)
B
3
e
&
v
(<

Q

&

w~

=

<2}
5]
[+

2a0v0008R2L008000000R00RAGOGORNORGE]Y

SOSPRRN L B0 ARRNCRDBR0R0RBARSA00000RILDREBRENDNBECININECBALO0CRMINSRL

=
- -
° DS
. DR w
. [t
. e
. ex
-
.
* -
.
.
. =
s =
= aw
[ SE~
. B% 8L
s G bt
* wma LA
o« AP <
. -
s =R
* =&
* Ja
. -
* o
* w -
.
H g
. 4
. <
. L J
-
*so e

=& gD FPN AW T G hmg*“'ﬁ-.\ﬂﬁ‘
Lot 2— —01—.:“&.0::

s S Pmp On RIS PP 0 I GaT B 0T T g O - O g O OB O g O O

L il -l

ssevscac e
NN AR PR AGAY NGBS QN AP D
- e v - T L]

$ o/=

&
{
b 34
14

|
1
|}
1
1
1
1

S rsede ve e p
E I gt ot guw
-

e ¢S OSO0SA
e QRLOORO® A
heaalnad

s ees s 00t an
b OODOND

(]
-
*e

by 28

+
-

N B
1A WP WA O
Wl l
S0 00 90000

§
ib

' (A

~ -
L ] LA N J
codd ~ O
-

-

»

POINTS USESD FOR S16%: 10

P319TS VSED In FlIV: 3D

LE L L L X 1 J L X 1 3
PR (NI PP P
Eoeseveastecr e

TP o om w0 B g
-

-t e O e O
OPBed>NEN>
N o= o~ —
[REXEIX] .
:-aeneoeaoeno
-
e I NN NN
e Ty Ty,

WD DG -9 O
"~ CBAES TN O

- PN VA o
so0 0t s

SO0 DO OO
NN RN NN

NURDER OF REPLTITIONS: 300
Toutn ;
:
i
$
]

v

[ tod
WaDernnene 0O
- -

"
oe

T T AT e
L. PR ¥ P R L oA

AP P R

v

!




i o . o [ R - TECWTR ATV WL T L e e o
e s At A S AL ST L LAY S0 A ora gt INE LI LACINE A oA Talie sl ) £ A A B s e A Wl R S e A LN

L R S L L S

(%

[

*.':,

.

-

The upber get of tavles show the actual range and szimuth of the aircraft, and the noise ,
models for root-treck position variance used to scale the Gaussian random number gen- :J
eralors at each range point. Data points 11 warough 20 have asterisks indicating those !
used te estimate variance, The lower set of tables show the r2sults versus assi:med t
"

order of fit, These tables are grouped first for range measurement and second for azimuth o

measurement, Within each groupirg are two tables, the first summarizing performance in
estimating the adjacent point autocorrelation function and the second summarizing per-
formance ir estimating the root-variance of radar measurement error. Both truth (whicn

we know with certainty in this case; and results (labeled "expected') are given for compari-
son, The following summarizes the results:

AR

R
PR
DU P

.', "

1, In all cases where the correlation coefficieut is negative, the root-variance

estimatcs are excellent, exhibiting the level of deviution from truth expested
from the sample size of 500,

2. The correlation coefficient goes negative for a first order fit iv range and a
zero orcer fit for azimuth, as predicted,

5 oD

v s
ot

3. Al estimaies with overfitting are excellent with very little growth seen in
the standard deviations of estimation error, 2s indicated by the "+/-"
symbols,

4, The Monte-~-Carlo calculated values for uncertainty in the variance estimate
are very close to theoretical expectation, For example consider M=§,
From Figure 2-2 with N=30 and L=10, ¥ 7. From Equation (7-8), ‘)

A\ 4
VAR (¢} = 22 - (C-1)

t
.

5 . | 2O

)

From Table C-1 and M=8, ¢
Equetion (C-1),

=114.3 ftando , = 1.682 mrad, Then from

R A

83.6 ft

1/4 /\2 —

@ —

N— 1.23 mrad

which compare quite favorably to the Mcnte-Carlo results reported, i.e.,
81.1 ft and 1, 213 respectively,
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C.2 COMPLEX TRIGOMETRIC TREND MODELS

Ar exaxnple ig given here of a Monte-Carlo simulation that was actuaily used as an
acceptance tost for the data reduction techaique by a GE custoimner, An aircraft was sim-
ulatad tc be flying &t 40 kft at a speed of 487 knots, It flew 10 east-west legs out to 200 umi
with a north offset of 0.5 nmi, The actual aircraft flight path oscillated about the radial in
both plan-position and height uccording to the following equations:

N = 0.5 nmi + 0,0234 SIN (42.TE + d:lj (C-2)

H = 40,000 ft + 300 SIN (43.2 £ +4¢,) (C-3)
where

E = distacce east of the radar (nmi)

N = distance north of the radar (nmi)

¢ = arbitrary phase angles (deg), and

H = gltitude (ft) .

At the start of each leg, the phase was reinitialized inde pendently for distance and
altitude. The maximum aircraft amplitude deviation from rad.al was 142 ft with a period
05 €2,3 8 (8.43 nmi). The maximum amplitude deviation in height was 300 ft with ¢
period of 61.57 8 (8. 33 nmi).

On top of this mean aircraft motion was meusuremernt noise arawno indenpendently
point-to-point from a Gaussian raadom number generator s.caied to a typical model
for noise vs range.

Pass/tuil thresholds were calculated based un a 1% risk of 12l3sly failing due to
statistical uncertainty. Sixty tests were made in ali (2( range intervals each for range,
height, and azimuth), The results are given in Tables C-2, C-3. and C-4 for range,
keight, and azimuth, respectively. The first two cowwans give ‘he range intervals, The
second column shows the theoreticai standard deviaiicn ¢f messurement erro: from which
the roise was added tc the data, The fourth column gives the estimates made by the tech-
nique described here and the last column presents ihe pass/fail thresnolds,

C-4
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TABLE C-2

SIMULATION RESULTS FOR
RANGE ACCURACY

INTIIE LT L¥FIYY

Rl R2 THECRY PASS/FAIL ESTIMATION
(NMI) _(FEET) (FEET) (FEET)
4. 4. 60.7 88.4 54.9
10. 0. 60.7 88.4 60.7
—on, 30. . N 9.8
30, ~30. 61.2 — 80,1 65,1
0, — 50, . 90.3 56.3
Q- 60. XD 92.0 "58.0
50, 70, 0.1 9.2 —__62.8
0. 80, 59.8 101.7 —67.9
N\ o . - 5506 1 o 72aa
0. T00. ~— 82.4 . 88.1
T00. 10, o1.7 33.5 Z.
. _ 120, 102.0 148.5 04,8
Y20, . ~113.9 165.8 “128.
T30. . 127.2 185.4 141.3
. Ly, 42.3 2071 ~ V.2
T30, TE0. TS8.7 — 231.0 I i
YolU. Y70, 17687 259.2 /1.0
170, — T80, 193.0 289.0 TBI.R
“m~ l§U. _—m—o—s 3|§uj ) 22‘3:2
18y, 199, 739.5 588.5 —247.0
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TABLE C-3

SIMULATION RESULTS FOR
HEIGHT ACCURACY

R} THEORY PASS/FAIL ESTIMATION
(NMI) ~ (FEET) (FEET) (FEET)

4, 14, 124.5 181.3 178
—20. 30. 248.4 361.5 26/
—30. — 40, 335.6 503.0 384
0. 50, LLL W 546.9 507
~B0. 0. 536. 3 . 508
16;. :ul szglJ * m
0. 80, 7232 052.5 680
—B0. ~50. " 818. 1 190.6 844
—90. 00. 922.6 1332.7 926
T00. T0. 1028.9 397.5 905
T10. . T129.7 34,2 T204
T20. . " 1233.7 1795.5 1431
T30. 0. T34T.6 1952.5 1348
T40. 50. Y454.2 . 1397
T50. 160, 1572.7 — 2288.8 673
T80. 170. 709.0 2887 .3 1729
Y70. 180. . 2698.8 1754
T8U. Y390, T998.5 2508.6 1910
189. 199. 2138.0 3111.6 1873
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TABLE C-4 .
SIMULATION RESULTS FOR {
AZIMUTH ACCURACY !

-q
R1 R2 THEORY PASS/FAIL ESTIMATION
(n1) (MRAD) (WRAD) > (4RaD) i
4. 14, 1.998 2.907 2.59 !
0. 20. T.998 2.907 2.06 :
—30. 10, T.998 2.908 Z2.12
. 50 7000 7.010 T8 i
TU. ~50. 2,002 2.914 .91
~§0. 70. 2.006 ~2.920 1.93 3
~70. —80. 2.012 2.920 T./9 3
~80. —90. 2.022 — 2.042 T.90 ;
I, o0 703 AR T 3
T00. T10. 2.055 2.992 2.06
TT0. T120. 2.079 3.02¢ 2.134
T20. T30. — 2.110 3.0/1 EALHR .
130. 0. — 2.148 3.126 2.33 '
T40. ) 2.194 3.103 221 .
T50. 160. 2.289 — 3,073 2.00 -
T80. 170. 2.320 3.3/6 2.21
\ T70. T80, 2. 802 3.496 2,32
| T89. —199. 2.5790 3.703 2.80
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The a priori expectation of faisely failing one of the 60 tests is the risk times the
number of tests, i.e., 1% x 60 =60%. It is interesting that no failures occured. This is
indeed remarkable particularly for height accuracy close to the radar where the amplitude
of the real aircraft motion was almost three times larger thaun the rms noise level,
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APPENDIX D
SAMPLE RESULTS FOR A REAL FLIGHT TEST

In Appendix C we saw how well the techinique worked for simulated flight trends
with known and constant polynomial crders on the one hend and coraplex trigonometric
paths of variable and unknown order on the other, In the first case, 500 Monte-Carlos
were performed so that the estimation error was small, In the second example, 10 flight
legs were averaged, equivalent to 10 Monte-Carlos, and the larger fluctuations were ac-
commodated by pass/fail thresholds calculated from the risk concepts of Section VIII. Here
we show results for a single range interval and a single isg (1-Monte-Carlo) from an actual
flight test using a Lear jet on & near-radial flight path.

Figure D-1 shows one leg that we will examine in detail. Tables D-1, D-2, and D-3
summarize the results for the interval between 30 and 40 nmi for range, azimuth, and height
errors respectively, versus assumed order of fit, Because we have in effect only one Monte-
Carlo these are instantaneous estimates, not expectation values, It i8 not surprising then to
see reasonable estimates corresponding to positive values of correlation coefficient. Never-
theless the following conclusions may be drawn from this example:

1, For all three coordinates, an asymptotic estimate is reached with remarkably
low fluctuation,

2. The coordinates start off with truly poor estimates when the insiantaneous
correlation coefficient is above 0, 8.

3. Even though the pilot was attempting to fly a constant height, radial flight
path (i.e., KR =1, K A= 0, K4 = () the estimates for these implied orders

of fit are cruly poor.

4, Estimates of the theoretical values are:

°n = 114 ft
c A = 0,79 mrad
oy = 229 ft
D-1
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Note that by applying the rule for picking the best estimate at ranges less b
than 40 nmi (see par, 7,1), estimates are chosen with the fewest points, N
N, and the highest order of fit such that negative autoccrrelations are a
achieved for M-1, M and M+1. From Tables D-1, D-2, and D-3 then the |
selected estimates are: N
2 N
op = 160ft X
3
A
g, = 0.8 mrad !
t
A
oy = 2061t g

which ara not bad for instantaneous estimates.

TABLE D-1
RANGE ERROR ESTIMATION FOR 30-40 nmi RANGE INTERVAL
N=L=8

M CORR SIGMA (FEET) TRACE
0 0.883 19583.7 7.00
1 -0.426 N7.6 6.00
2 -0.502 122.2 5.00
3 -0.459 131.7 4.00
3 -0.548 149. 5% 3.00
5 -0.645 159.9 2.00

*This is the selected estimate,

TABLE D-2
AZIMUTH ERROR ESTIMATION FOR 30-40 nmi RANGE INTERVAL
N=L=8

M CORR SIGMA (MRAD) TRACE
0 0.834 3.900 7.00
1 -0.663 0.693 6.00
2 -0.729 0.755 5.00
3 -0.733 0.836 4.00
4 -0.677 0.857* 3.00
5 -0.726 1.030 2.00

*This 18 the selected estimate,
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TABLE D-3 |
HEIGHT ERROR ESTIMATION FOR 30-40 nmi RANGE INTERVAL (
N=L-8 '
' M CORR SIGMA (FEET TRACE
0 0.162 231.5 7.00
1 -0.114 194.2 6.00 ;
2 -0.058 206.3 5.00
3 -0.392 204.0 4.00
4 -0.393 2048+ 3.00
5 -0.629 65.6 2000

*This is the selected eastimate,

Figure D-2 shows all of the legs combined for this flight test, Unifortunately for
the (30-40 nmi) range interval there were only 2 legs. The estimates are:

SR = 115ft
s = 0,862 mrad
SH = 236 ft

in some cases closer to our theoretical expectations, To demonstrate that these estimates
are truly consistent with theory within the limits of sampling-induced uncertainty, consider

that the sum of the 2 traces from Tables D-1, D-2, and D-3 are 14,3, 14,8, and 15.7 re-

spectively, The square-root of the upper and lower 90% confidence bounds to the above esti-
mates are shown below as bracketing thenry in all these cases.

RANGE
88.4 < 114 ft < 168
AZIMUTH
0.663 < 0.79 mrad < 1.26
HEIGHT

183 < 229 ft < 339 .
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As an example of the method used beyond 40 nm, bssed on the leg plotted in Figure
D-1, Tables D-4, D-5, and D-8 summarize the results for the interval between 50 and 60 nmi
for range, azimuth, and height errors respectively versus the best estimate for each number
of points, N, from L to 4L.

.0 & v o e

~TEEERE . £

The estimates of the theoretical values for this case are:

s

- .
7R = 114 ft i
°A = 0.4 mrad :
= i
o 310 ft i

This time the rule for picking the best estimate at ranges greater than 40 nmi is
applied (se< par. 7.1). For each number of points, candidates are chosen with the minimum
order of fit, M, such that negative autocorrelations are achieved for M-2, M-1 and M. The
candidate with the maximum trace is then chosen as the best estimate. For Tables D-4,
D-5, and D-6, the best estimates are:

A
cR = 121 ft
A
6‘H = 241 ft

Again, from Figure D-2, only two legs (p=2) were available for this range interval
(30-60 nmi) with the 2-leg average given as:

33 = 93.7ft

8 = 0,411 mrad
OA = . m

A

OH = 237.6

.
N
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TABLE D-4
RANGE ERROR ESTIMATION FOR 50-60 nmi RANGE INTERVAL

————. e e G

CORR CORR CORR CORR
" (M-3) (4-2) (#-1) (M) M SIGMA (FEET)  TRACE
8 038  -0.250 -0.250  -0.513 3 140.6 4.00 :
9 0.909  -0.,24] -G.246  -0.263 3 136.6 4.86 ~
10 0.927 -0.235  -0.235  -0.192 3 130.3 5.65 ]
11 0.941 -0.331 -0.292  -N.304 3 125.6 5.87 )
12 0.951 -0.205  -0.244  -0.242 3 126.5 6.07 l
13 0.959  -0.095  -0.295  -0.281 3 124.1 6.24
%% 0.103  -0.255  -0.258  -0.334 4 124.3 6.01 ]
1> 0.164  -0.263  -0.278  -0.376 4 122.5 6.17 :
1€ 0.324  -0.267  -0.267 -0.355 4 122.5 6.33 ,
17  0.430  -0.323  -0.319  -0.370 4 122.0 6.45
18 0.540  -0.316  -0.32 -0.350 4 122.1 6.55
i9  0.554  -J.157  -0.230  -0.214 4 123.3 6.62
20  0.637  -0.150  -0.222  -0.212 4 122.8 6.70
2y 0.617  -0.144  -0.283  -0.290 4 120.9 6.76
22 0.600  -0.162  -0.145  -0.228 4 128.5 6.82
23 0.635 -0.158  -0.173  -0.216 4 128.0 6.87
24 0.580  -0.263  -0.253  -0.369 4 1211 6.92
25 0.599  -0.277  -0.283 -0.340 4 121.3 6.96
26 0.655  -0.303  -0.303 -0.364 4 121.9 7.00
27  0.693 -0.312  -0.325  -0.373 4 121.4 7.03
23 \0.722  -0.293  -0.293 -0.374 & 121.0 7.06
. 0.73¢  -0.309  -0.308  =0.371 4 122.0 7.09
30 0.764  -0.293  -0.290  -0.370 4 121.7 7.12
31 0.733 -0.245  -0.250  -0.261 4 124.2 7.15
32 0.825  -0.261 -0.c34  -0.289 4 123.0 7.17
33 0.83y  -0.2i4  -0.273 -0.289 4 121.3 7.20%
* This is the selected esiimate,
D-7 :
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TABLE D-5

AZIMUTH ERROR ESTIMATION FOR 50-60 nmi RANGE INTERVAL

CORR CORR CORR CORR
N (M3 (w2) (M) (M) M SIGMA (mrad)  TRACE
8 0.777  -0.390  -G.400  -0.345 3 0.541 4.00 :
9 0.852  -0.355  -0.440  -0.440 3 0.503 4.86 ;
10 0.879  -0.361  -0.369  -0.402 3 0.476 5.65 z
11 0.895  -0.310 -0.395  -0.421 3 0.463 5.87 |
12 0.918  -0.302 -0.3;7  -0.439 3 0.451 6.07
13 0.935  -0.050 -0.19%  -0.442 3 0.446 6.24
14 0.9  -0.052 -0.153  -0.412 3 0.439 6.37 -
15  0.956  -0.200  -0.261  -0.270 3 0.464 6.49 3
16 0.962  -0.195  -0.258  -0.270 3 0.461 6.60 1
i7  0.967  -0.084  -0.080  -0.079 3 0.477 6.70 -
18 0.972 -0.055  -0.081  -0.080 3 0.484 6.78
19 0,973  -0.105  -0.102  -0.148 3 0.463 6.86
20 0.974  -0.022  -0.083  -0.163 3 0.457 6.93
21 0.065  -0.055  -0.056  -0.072 4 0.456 6.76
22 0.009  -0.067  -0.021  -0.021 4 0.432 6.82
23 0.26  -0.030  -0.013  -0.142 7 0.472 6.14
24 0.058  -0.025 -0.018 -0.121 5 0.467 6.66
25 0.057  -0.051  -0.051  -0.088 5 0.445 6.72
26  0.068  -0.055  -0.052  -0.072 5 0.443 6.77
27 0.053 -0.117  -0.116  -0.144 5 0.455 6.82
28 0104 -0.116 -0.113  -0.142 & 0.452 6.87
29  0.035  -0.020 -0.127  -0.148 6 0.449 6.76
30 0.003  -0.077  -0.074  -0.147 6 0.430 6.80
31 0.300 -0.008  -0.145  -0.085 5 0.440 7.00
32 0.343  -0.051  -0.164  -0.152 5 0.445 7.0
33 0.055  -0.219  -0.224  -0.245 6 0.433 6.91

% This is the selected est' mate.
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

*This is the selected estimate,
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TABLE D-6 .
|
HEIGHT ERROR ESTIMATION FOR 50-60 nmi RANGE INTERVAL i
CORR CORR CORR CORR 3
(M-3) (M-2) (M-1) (M) M SIGMA (FEET)  TRACE .
0.051  -0.329  -0.396  -0.667 5 166.2 2.00 !
0.075  -0.160  -0.207  -0.609 5 209.7 3.00 X
0.085  -0.067  -0.084  -0.441 5 217.5 3.97 :
0.089  -0.007  -0.020  -0.282 5 220.3 4.59 :
0.026  -0.185  -0.211  -0.520 7 191.1 3.85
0.051  -0.106 -0.129  -0.378 7 199.4 4.30
0.044  -0.038  -0.054  -0.289 7 207.6 4.64
0.006  -0.002  -0.202  -0.233 8 221.2 4.50
0.001  -0.043  -0.013  -0.126 7 234.6 5.22
0.128  -0.007  -0.000  -0.007 5 237.9 6.07
0.007  -0.047  -0.050  -0.048 6 245.5 5.87
0.054  -0.057  -0.050  -0.097 5 233.8 6.28
0.019  -0.048  -0.085 -0.098 5 232.2 6.37
0.007  -0.052  -0.050  -0.149 5 231.6 6.45
0.604  -0.015  -0.058  -0.126 3 228.5 7.04
0.63  -0.047  -0.078  -0.122 3 230.8 7.09
0.547  -0.181  -0.241  -0.216 3 237.6 7.14
0.57%6  -0.196  -0.237  -0.225 3 236.6 7.18
0.542  -0.161  -0.274  -0.273 3 233.5 7.22
0.606  -0.108  -0.269  -0.264 3 231.9 7.25
0.539  -0.074  -0.283  -0.284 3 241.5 7.28
0.613  -0.003  -0.283  -0.271 3 240.9 7.31*
0.106  -0.285  -0.304  -0.383 4 236.3 7.12
0.106  -0.273  -0.310  -0.335 4 240.0 7.15
0.106  -0.191  -0.278  -0.276 & 242.3 7.17
0.106 -0.180  -0.219  -0.210 4 240.1 7.20
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mo demonstrate that these estimates are truly consistent with the theory within the 1imits of
sampling-induced uncertainty, coasider that tbe sum of the two traces are 13.6, 14,2, and

14, 3 for range, azimuth, and height respectively. Once again the square-root of the upper
and lower 90% confidence brunds for the estimates are shown below as bracketing theory in
all these cases.

RANGE

71.4

LA

114 ft

tA

139

AZIMUTH
0.316 < 0.4 mrad < 0.600
HEIGHT )
183

A

310 ft < 347

Figures D-3 through D-7 show the results for all legs included in this flight test
(plotted in Figure D-2). Figure D-3 shows the probability of detection based on 10-nmi
range intervals, Not until the size of the range intervals is reduced (Figure D-4) is multi-
path interference observable, Figures D-5, D-6, and D-7 piot the averaged estimates for
range, azimuth and height error respectively. These are the standard ploited outputs avail- }
able from the statistics package constructed from the conceptis introduced in this report. :
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Figure D-5.
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APPENDIX E

STATISTICAL COMPARISON OF RESULTS FROM A REAL-FLIGHT TEST
WITH A CO-LOCATED PRECISION REFERENCE STANDARD

This Appendix documents a recent opportunity to validate the autonomous ‘echnique
by direct comparison with the results obtained by ths mere conventional method, i.e., using
a precision reference standard,

Comparisons were made for approximately 6 flight legs for ranges between 20 and
200 nmi, A small aircraft flew closely controlled radial legs and the results for both tech-
niques are presented for 20 nmi range bins in Figures E-1, E-2, and E-3 for the standard
deviation of range, azimuth, and height respectively. The dark solid lines are the results
for the autonomous method, while the lighter solid lines are the results from comparison
with a precision reference standard., Both estimates are independ:nt random variables
because of the limited sample size (7 to 14 samples per range bin), Because these variance
estimates are subject to sampling uncertainty, I have also shown 95% confidence bounds for
both methods. The dotted iines are bounds for the autonomous method, while the dashed
lines are bounds for the method using the reference standard. The cross-hatched areas
represent regions of overlap. A reasonable interpretation is that if either estimate lies
within an overlapped region, then the two estima.:s can be considered consistent with 95%
confidence, Estimates for all three coordinates are consistent between the two methods for
all nine range bins,

.
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APPENDIX F

AN EXAMPLE OF THE INVERSE CHARACTERISTIC FUNCTION
BY DISCRETE FOURIER TRANSFORMS

From par. 8.1, it was stated that inverse characteristic functions could be numeri-
ocally computed from discrete Fourier transforms. Consider taie Gamma distribution as an

example,
gty = 21— t Tl t/B (F-1)
r@m
whevre
a = v/2, (F-2)
and
B = 1M, (F-3)

and which has a characteristic function

$(w) = (-r‘%;,—) ‘) (F-4)

Suppose we have a random variable which is the sum of p gamma-distributed variates.
Then the characteristic function of this sum is

a
i

a
&g (w) =7T(T.iﬁ) (F-5)

iep

which has no known general inverse for arbitrary {vi}.

F-1

- .
-----
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The distribution for the general sum can be obtained from the inverse characteristic
function

/2 W2 ot )
s t) = J 1T (V 2-jw> e dw, (F-6)

As a discrete Fourier transform,

/ vi/2
v./2 n
g k) = Aw Z Tr ( — 7T ) e , (F-7)

n=0 iep
k - 0’ 1. 2,!.....N_1’

where t is a sample of the random variable ¢ 2 /o 2 and we evenly sample ail of t-space
b2

at least 2N times, Nota that when all {Vi} are equal for each leg that

B = S a = py/2 (F-8)

so that the distiibution becomes gamma again with p Trace v 2 degrees of freedom,

22
Figure F-1 shows the resulis of such a numerical inverse for N=4096 with ten legs,
each having v =6, so that 8 =1/3 and @ = 30, Here we have plotted the cumulative distri-
bution, i.e. solid line, since this is the statistic important to risk and confidence consider-
aticns. The circles are samples of the theoretical gamma distribution with the same

T P T Sl x

parameters. The agreement is excellent cver the entire range of interest. To illustrate

the error encountered by assuming that the sum Z vi is the only parameter of importance, ;
iep
consider the second curve (dashed) in Figure F-1 which preserves i e total number of de-

grees of freedom, i.e. 60, but which has different values of Y from leg-to-leg. The differ-
ence can be quite large. For example, if a producer's risk of 0,1% is desired, then the
irue pass/fail threshold would be \]'1_8—7' o instead of the assumed threshold of {J16.5 o,
a difference of about 6. 5%.

...........
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Figure F-1, Examples of Cumulative Distributions from Inverse
Fourier Transforms
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ENGLISH-METRIC/METRIC-ENGL ISH CONVE RSION TABILE

mm = 0.1em 1b = 453.6 g
cm = 0. 3937 in. 1b = 0.4536 ke
cm = 0, 0328 fit metric ton = 1.12 tons (U.8.)
™, T Mmmo m = 39.37m,
cm3 = 1.076 - lg ft m - 1.0936 yd
‘ em = 0.061 in. 5 2 = 10.76 n2
1 cm = 3.831- 10" nt mz = 1.196 de
‘ f = 30.48 cm mS =  35.32 f°
fi =  0.3048 m mS = 1.430yd®
2 ~ 2
“2 = 0.0929m 0 mi =  1.6093 km
ftz = 929. 37 cm-3 . mi - 5280 ft
“3 = 9.2 19 km mi =  0.87 nmi
f = 0.0283m . - 17603
In. =  2.54 cm . mi =  2.59 km2
in.2 = 6.452 cem? mi/h =  0.87 knots
3 ~ 2
in. = 16. 387 cin ami - 1.852 km
um = 0.001 mm nmi = 6076 ft
(micron) -6 umi = 1.15 mi
uam = 10 'm
um - 1 0—4 cm yd = 0.9144 m
. 2 _ 2
uin. = 2.54- 10 %mm yds = 0.83m s
yd = 0.7645 m
kg - 2.2046 lbs
' qt = 0. 946 liter
km = 32 liter = 1.057 qt
km = 0.6214 mi .
km - 0.55 omi acre = 43,560 ft
K - 1076 - 107 a2 acre = 4046.72 m®
km?2 = 0.381 mi® rad =  57.2958°
km/h = 09131t/ deg = 0,017 red
knot = 1.152 mi/a
/ °F = 9/5(°C) +32
oz = 28,35
g C = 5/(F° - 82)
og = 0. 062 Ibs
n‘ """ " A .F_q: .l; ‘q\‘ ) "n.'.\.fi
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GENERAL ELECTRIC COMPANY TECHNICAL INFORMATION

Within the limitations imposed by Government data export regulations and security
clagsifications, the availability of General Electric Company technical information
is regulated by the following classifications in order to safeguard proprietary infor-
mation:

CLASS 1: GENERAL INFORMATION

Available to anyone on request .
Patent, legal and commercial review
required before issue,

CLASS 2: GENERAL COMPANY INFORMATION

Available to any General Electric Company
employee on requast.

Available to any General Electric Subsidiary
or Licensee subject to existing agreements.
Disclosure outside General Electric Company
requires approval of originating component.

CLASS 3: LIMITED AVAILABILITY INFORMATION

Original Distribution to thoge individuals with
specific need for information.

Subsequent Company availability requlrea
originating component a~proval.

Disclosure outside Gene. . Electric Company
requires approval of origitating component .

CLASS 4: HIGHLY RESTRICTED DISTRIBUTION

Original distribution to those indivldua.ls person-
ally responsible for the Company 8 interests in
the subject,

Copies serially numbered, assigned and recorded
by name.

Material content, and knowledge of exiatence,
restricted to copy holder.

GOVERNMENT SECURITY CLASSIFICATIONS, when required, take precedence '
in the handling of the material. Wheraver not specifically disallowed, the General

Electric classifications should also be included in order to obtain proper handling

routines.

HMEZ: 40238 (%-65)
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