

,

1.1.1

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

DE FERRENDER REGESCONSE MERRENDER IND

US Department of Transportation Federal Aviation

Office of Systems Engineering Management Washington, D.C. 20591

Automated En Route Air Traffic Control Algorithmic Specifications

DATA SPECIFICATION

Volume 5

September 1983

Report No. DOT/FAA/ES-83/8

This document is svailable to the U.S. public through the National Technical Information Service, Springfield, Virginia 22181

	2. Government Accession No.	3. Nucleiant's Cotolog No
DOT/FAA/ES-83/5	HD-A134 85	
. Title and Subtitle	l <u>/</u>	5. Report Date
Automated En Route Air	Traffie Control	Suptember 1983
Algorithmic Specific	ations	6. Performing Organization Code
UATA SPECIFICATION	Volume 5	6. Perfermine Organization Reservice
Author's)	W Sobuck	
Performine Areaniantication, U.		F/A-ES-33-8
Systems Engineering Se	rvice	TV. WORL UNIT NO. (TRAIS)
Department of Transpor	tation	11. Contract or Grant No.
Federal Aviaiton Admin	istration	
Sponsoring Agency Name and Add	S.W., Washington, D.C. 2059	J J J J J J J J J J J J J J J J J J J
Same as #9 above.		14
		14. aponsoring Agency Code AFS
Supplementary Notes		ADG)
Abstract		
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr	on System (AAS). The need to the existing National Airsy inction is provided with desc final, most detailed descri- carsformations taking place w	for each function is discussed pace System (NAS). A top-town criptions on increasingly note iption of each function identif within each function.
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr	on System (AAS). The need is the existing National Airsy inction is provided with desc final, most detailed descri- carsformations taking place w s of five volumes. Volume f portant data constructs used tions. The data are accumul s of this specification prov- ajectory Estimation	for each function is discussed pace System (NAS). A coparator criptions on increasingly made iption of each function identif within each function. 5, Data Specification, contained d across all the lated in a modified relations? vide design criteria for the
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai	on System (AAS). The need is the existing National Airsy inction is provided with desc final, most detailed descri- carsformations taking place w s of five volumes. Volume f portant data constructs used tions. The data are accumul s of this specification prov- ajectory Estimation rspace Probe	for each function is discussed pace System (NAS). A top-down criptions on increasingly note iption of each function identif within each function. 5, Data Specification, contained d across all the lated in a modified relationsk vide design criteria for end
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl	on System (AAS). The need is on System (AAS). The need is inction is provided with descent final, most detailed descent ansformations taking place with s of five volumes. Volume f portant data constructs used tions. The data are accumulated s of this specification prov- ajectory Estimation rspace Probe ight Flan Conflict Probe	for each function is discussed pace System (NAS). A coparator criptions on increasingly much iption of each function identif within each function. 5, Data Specification, contained d across all the lated in a modified relations? vide design criteria for ene
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl o Volume 4, Se	on System (AAS). The need is on System (AAS). The need is inction is provided with descent final, most detailed descent ansformations taking place we s of five volumes. Volume f portant data constructs used tions. The data are accumulated s of this specification prov- ajectory Estimation repace Probe ight Plan Conclict Probe- ctor Workload Probe	for each function is discussed pace System (NAS). A top-down criptions on increasingly note iption of each function identif within each function. 5, Data Specification, contain d across all the lated in a modified relations? vide design criteria for end
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl o Volume 4, Se	on System (AAS). The need is on System (AAS). The need is inction is provided with descent final, most detailed descent carsformations taking place with s of five volumes. Volume f portant data constructs used tions. The data are accumulated s of this specification prov- ajectory Estimation repace Probe ight Plan Conclict Probe- ctor Workload Probe	for each function is discussed pace System (NAS). A coparative criptions on increasingly much iption of each function identif within each function. 5, Data Specification, contained d across all the lated in a modified relations? vide design criteria for the
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl o Volume 4, Se Ker Werde utomation, Air Traffic ated Decision Making, ontrol, Artificial Int dvanced Automation System	on System (AAS). The need in on System (AAS). The need is the existing National Airsy inction is provided with descen- transformations taking place is s of five volumes. Volume 9 portant data constructs used tions. The data are accumul s of this specification prov- ajectory Estimation rspace Probe ight Plan Conclict Probe- ctor Workload Probe Control, Auto- En Route Tractic celligence, ster.	for each function is discussed pace System (NAS). A copense criptions on increasingly near iption of each function identia within each function. 5, Data Specification, contain d across all the lated in a modified relations? vide design criteria for ene vide design criteria for ene statement of is available technology of the National Towns.
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl o Volume 3, Fl o Volume 4, Se Key Werds utomation, Air Traffic ated Decision Making, ontrol, Artificial Int dvanced Automation Sys	on System (AAS). The need in on System (AAS). The need is the existing National Airsy inction is provided with descen- transformations taking place is s of five volumes. Volume 9 portant data constructs used tions. The data are accumular s of this specification prov- ajectory Estimation rspace Probe ight Plan Conclict Probe- ctor Workload Probe . Control, Auto- En Route Trachic celligence, Sten. 20. Security Classif. (of this page)	for each function is discussed pace System (NAS). A top-sour criptions on increasingly note iption of each function identia within each function. 5, Data Specification, contain d across all the lated in a modified relationsk vide design criteria for end vide design criteria for end the National Teach othe National Teach rvice, forthy factor of the 21 No. of Pages 22 Page
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl o Volume 4, Se Key Worde utomation, Air Traffic ated Decision Making, ontrol, Artificial Int dvanced Automation Systems Security Clessif. (of this report) nclassified	<pre>ancertons to be included in the on System (AAS). The need is on System (AAS). The need is on System (AAS). The need is included with description is provided with descriptions is of five volumes. Volume is of five volumes. Volume is of this specification provide a jectory Estimation repace Probe ight Plan Conclust Probe ctor Worklead Probe is control, Auto-En Route Tractic En Route En Route Tractic En Route En Route En Rout</pre>	for each function is discussed pace System (NAS). A top-sour criptions on increasingly much iption of each function identia within each function. 5, Data Specification, contain d across all the lated in a modified relations? vide design criteria for one vide design criteria for one statement of is available to top of criter, for hyperback, contained prvice, for hyperback, contained 21. No. of Pages 22. Page
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl o Volume 3, Fl o Volume 4, Se Key Werds utomation, Air Traffic ated Decision Making, ontrol, Artificial Int dvanced Automation System Security Clessif. (of this report) nclassified m DOT F 1700.7 (8-72)	<pre>and biologic included in the one system (AAS). The need is in the existing National Airsy inction is provided with descent in the existing National Airsy inction is provided with descent is an analysis of five volumes. Volume is of five volumes. Volume is of this specification provided a portant data constructs used tions. The data are accumul is of this specification provided a portant data constructs on the data are accumul is of this specification provided a portant data constructs on the data are accumul is of this specification provided a probe ight Flan Convlict Probe ctor Workload Probe Control, Auto- En Route Traffic through the boounes through the set is a set in the data are accumul is a set in the set</pre>	A set of the set of th
the Advanced Automati within the context of definition of each fu detailed levels. The the data flows and tr This document consist the definitions of im algorithmic specifica data base. The other four volume following: o Volume 1, Tr o Volume 2, Ai o Volume 3, Fl o Volume 3, Fl o Volume 4, Se Key Worde utomation, Air Traffic ated Decision Making, ontrol, Artificial Int dvanced Automation Systems Security Clessif. (of this report) nclassified m DOT F 1700.7 (8-72)	<pre>ancertons to be included in the on System (AAS). The need is on System (AAS). The need is on System (AAS). The need is the existing National Airsy inction is provided with describations final, most detailed describes and five volumes. Volume is of five volumes. Volume is of this specification provations. The data are accumulated in the data are accumulated in</pre>	<pre>state and function is discussed pace System (NAS). A top-sour criptions on increasingly much iption of each function identia within each function. 5, Data Specification, contain d across all the lated in a modified relations vide design criteria for ene * State and the tester of the formed 21. No. of Pages 22. Page # orland</pre>

TABLE OF CONTENTS

1. 1	INTR	DUCTION		1-1
1	1 1	Purpous		1-1
1	1 · 1	Propose of Document		1-1
1	1.+2	Prostical Orientation		· · ·
1	L • J	Fractical Orientation		ų
2. D	DATA	MODEL AND DESCRIPTION		2-1
2	2.1	Goals of the Data Model		2-1
2	2.2	The Relational Model		2-1
2	2.3	Normalization, Key to the Re	lational Model	2-4
2	2.4	Methods		2-5
2	2.5	Terminology and Use		2-5
2	2.6	Naming Conventions		2-0
2	2.1	Aggregates		2-9
2	2.8	Global Tables and Parameters)-y
3. T	THE C	DATA MODEL		3-3
3	3.1	Environmental Data		3-1
3	3.2	Real-Time Data		5-7
3	3.3	Planning Data		3 12
3		Aircraft Characteristics		2-12
נ ג	1 2 7 1	Trajactory Data		3-92
2	1 3.3	Conflict Data		337
,		outrice sala		
3	3.4	System Parameters		1-53
APPEND	DIX A	.: NORMALIZATION RULES		A1
APPEND	DIX B	ALPHABETICAL LIST OF FULL AND PARAMETERS	Y QUALIFIED NAMES	B • 1
APPEND	DIX C	: FIELD AND TABLE CROSS REF	ERENCE	C-1
APPEND	DIX U	: INDEX OF TABLE TYPES		D-1
APPEND	DIX E	: REFERENCES		<u>F</u> :1
			Accession For	
			NTIS GRA&I	
		÷ :	Ry	
			Pistrilates	`
			Ave	()
				(, coro
			n i se	
				A yes
			A/I	COFY
. م. د. م		a an	E. S. Martin and S. S. S. S. S. S. S. S.	The seal of

Page

r,0 LI'S

LIST OF ILLUSTRATIONS

Page

FIGURE 2-1:	THE STATES MODEL IN HIERARCHICAL FORM	2-2
FIGURE 2-2:	THE STATES MODEL IN NETWORK (PLEX) FORM	2-3
FIGURE 2-3:	THE RELATIONAL STRUCTURES	2-6

Same Same

1. INTRODUCTION

1.1 Purpose

This volume supports the AERA 1.01 algorithmic specifications in Volumes 1-4 of this report. The Data Specification documents all common data used by the Trajectory Estimation, Airspace Probe, Sector Workload Probe and Flight Plan Conflict Probe Specifications. Data names referenced in these documents are described in detail, and the relationships among the data are specified. This document is not intended to be a complete description of all data required by an Advanced Automation System (AAS). Local data used in deriving the results of these functions are not included; only data which are shared between algorithmic functions are included.

It is intended that the Data Specification be general enough to be applicable to any software implementation and flexible enough to be easily expanded as further algorithmic specifications are developed. The data are organized in a natural, intuitive manner, aggregated into functionally related categories, and presented in an application-independent manner. The data are discussed in the context of existing National Airspace System (NAS) En Route Automation terminology where possible. In cases where existing terminology is insufficient for identifying data, new terminology is introduced rather than attempting to extend or redefine NAS terminology.

This document is not intended to be a design for the data base in the AAS, since the development of that design is the responsibility of the AAS contractor.

1.2 Organization of Document

A relational data model is used in this specification to describe the AERA 1.01 data. An overview of this model and the rationale behind its selection are contained in Section 2. Section 3 presents the AERA data model organized into four functional categories: Environmental Data, Real-Time Data, Planning Data, and System Parameters. The data are defined and the relations among the data are specified. Appendix A contains a brief description of normalization procedures for a Appendix B contains an alphabetical list of relational model. the data elements in each table. Appendix C contains a cross reference between data elements and tables. Appendix D contains an index of table types. Appendix E lists references.

1.3 Practical Orientation

This data model is based on the practical needs of the first AERA 1.01 functional specifications, and does not strictly reflect all the design goals of a relational model described in Section 2. The data model will be refined during further development stages of the AERA Specifications.

2. DATA MODEL AND DESCRIPTION

2.1 Goals of the Data Model

and all a latter as

The following guidelines were used when choosing a method to represent the AERA 1.01 data:

- The model must describe the data used in the four functions included in AERA 1.01.
- The data must be presented in a simple, logical and intuitive manner.
- References must not be made (or implied) to storage, implementation, or design techniques.
- The data descriptions must aid the algorithmic development of the AERA 1.01 functions.

To meet these guidelines, a relational data model was chosen.

2.2 The Relational Model

A relational data model describes data in terms of relationships among the data and uses no devices or structures for definition. To illustrate what this means, it is useful to show other types of models which do rely on underlying structure (such as a hierarchy or a network) to define data. Consider a simple model:

STATE occurs 50 times; COUNTY (descendant of STATE) occurs 100 times; CITY (descendant of COUNTY) occurs 300 times;

When this model is represented in a hierarchical form, it appears as in Figure 2-1. To determine the value of CITY, it is first necessary to know which occurrence of COUNTY has been selected; in order to know this, the selected STATE must be known. The value of any item depends as much on the item's location in the hierarchy as on its definition. In fact, the location of an item is part of its definition.

A network, or plex model, permits more than one parent for any child, so that many-to-many relationships are easily represented. The disadvantage of this method is that pointers and chains are inherently a part of the model (see Figure 2-2).

FIGURE 2-2 THE STATES MODEL IN NETWORK (PLEX) FORM

The same data presented in a relational model is a twodimensional table which contains all meaningful combinations of STATE, COUNTY and CITY:

		والتشكيل فيستعمد ومستعدي والمنتقل المتحد والمتحد
STATE	COUNTY	CITY
Florida	Volusia	Daytona Beach
Virginia	Fairfax	Vienna
Illinois	Cook	Chicago
Florida	Volusia	Smithville
- 	,	
	•	

Pennsylvania	١	Allegheny	1	Pittsburgh	Ì
Pennsylvania	1	Cook		Smithville	┍

This relation is represented by a named "table," perhaps the STATES table, which is simply depicted:

4		وقجه ه		~~~~~~~~~~~~~~~	•
	STATE	ł	COUNTY	CITY	
H		-			

This notation removes references (real or implied) to structures and pointers. It is a convenient way to think of the data, and it does not influence data base design or implementation methods.

2.3 Normalization, Key to the Relational Model

Normalization is a step-by-step process to reduce complex data relationships to two-dimensional tabular forms characteristic of a relational model.

Normalization principles have been formalized into five rules. Each rule reduces a data relation to a normalized form. First normal form is the lowest level of normalization, fifth is the highest. Any relation in fifth normal form is also in first, second, third and fourth normal forms. The normalized model has the advantages that redundancy of data is reduced by grouping related data elements, and the resulting structures are simple, easy to understand. Appendix A gives a brief description of the normalization rules.

2.4 Methods

12721 122222

The data in Section 3 were defined as follows:

- The AERA testbed data base was examined for tables which contain data describing the four function to be included in AERA 1.01. Items depending on a p. inular testbed implementation were deleted or modified
- The tables were condensed to contain only glo data; data local to a particular task or function romot included in the model. Data shared between con unctions, however, were included.
- Descriptions of data not included in the current AERA data base were taken from the AERA 1.01 specifications. Deletions and changes were also made.
- The information was reduced to normalized form using normalization rules 1 through 3 (Appendix A). Since the model is a practical representation of the AERA 1.01 algorithmic specifications, normal rules 4 and 5 were not always enforced because of the rigid requirements they sometimes placed on algorithm design.

2.5 Terminology and Use

Certain terms used often in this paper have precise definitions:

• FIELD

The smallest unit of data in a table is a field. (Also called a data item.) (See Figure 2-3)

RECORD

A group of related fields of information treated as a unit. (See Figure 2-3)

FIGURE 2-3 THE RELATIONAL STRUCTURES

• TABLE

A named aggregate of records, all of which have the same field types. Tables contain all the records for a defined relation. (See Figure 2-3)

• KEY

One or more fields which uniquely identify a record in a table. Key fields can not be null.

• PARAMETER

A data item which has a constant value, and is identifiable by its name alone.

• NORMALIZED FORM

A data description which has been reduced to a simpler representation by use of normalization rules.

• FIELD TYPE

A field type is the name given to a column of a table. A field type may have a modifier (such as min_ or max_) which helps to distinguish fields of the same type (such as min_altitude, max_altitude, min_speed, max_ speed, etc.).

Capitalized names denote a field that is part of the key, so that the table to describe the route of an aircraft looks as follows:

t				ه دی. به دی چه دین ه							۲,
I	FL	ID	ł	ALONG	ROUTE	DISTANCE	1	x	1 3	y	
+			_								L

Each table described in Section 3 refers to a collective set of data. To refer to the whole set, the table name is used. To refer to one field, the fully qualified name is used, which is the table name and the field type separated with a period. For instance, when working with the current position of an aircraft one would refer to the "AIRCRAFT TRACKED POSITION" table, and "AIRCRAFT TRACKED POSITION.x" would refer to all the x fields of the table (a column). Although a key uniquely identifies a single record, groups of records may be located on other criteria. For instance, in the above table, FL ID will uniquely identify a single record in the table. In algorithms referencing this table, however, the key does not have to be used to locate a record. All of the following are legitimate requests:

- "find all unique routes"
- "find all routes where x = a and y = b"
- "find all routes where along route distance = 100"

The key is generally only of importance when defining tables and putting them into normalized form. The key must uniquely identify a record: entries with duplicate keys are not permitted. Neither are null values permitted in key fields.

2.6 Naming Conventions

Fields have identifiable types which are cross-referenced in Appendix C to the tables in which they occur. Examples of field types are "altitude," "distance," "name," and "id." Wherever one of these field types occurs, the last word of the field name is always the type. Modifiers (such as "min" and "max," "beg" and "end") are given to further describe the field.

When referenced in the program design language (see Appendix E of Volumes 1-3 or Appendix C in Volume 4) or text, table names are always in full capital letters; field types are always in all lower case letters. Parameters (in Section 3.4) have the first character capitalized but all other characters lower case. Words in names are separated with an underscore. In the table definitions only, the field types of the key are capitalized.

Examples

Tables	WINDS, FLIGHT PLANS
Fields	fix_names, volume_id
Parameters	Density_Coefficient, Conflict_Count

A distinction is made in the tables between a "name" and an "id." A name is an alphanumeric identifier which is known to the outside world, such as J41 (an a_rway) or DCA (a fix); an id may be thought of as an identifier to be used as a pointer into another table. Ids have value only as an identifier into a table, and ray be thought of as a computer-assigned code.

2.7 Aggregates

ale le claste de ser de ser de ser en se

Some combinations of fields are standard, and can be referred to by aggregate names. The most common aggregates are listed below.

Aggregate Name	Combined Fields
coordinate	x , y
position	· x, y, z
cusp	x, y, z, time
velocity-vector	velocity_x, velocity_y,
	velocity_z

Where aggregates exist, they are defined with the table, both pictorially and in the text by means of the keyword AGGREGATE. These groupings may be retrieved from the model either in the aggregate form or as individual fields.

2.8 Global Tables and Parameters

The data defined in this document are global data. Global data include the following:

- Data which is shared among functions. For instance, the TRAJECTORIES table is shared between the Trajectory Estimation function and the Flight Plan Conflict Probe function.
- Data which is input to the functions from the outside world, such as data entered through the Man-Machine Interface or adaptation of the environmental data base.
- Data which is output from the functions to the outside world, such as results of conflict probes or any information to be displayed.

3. THE DATA MODEL

The relational model for AERA 1.01 is described by a set of tables which fall into four categories:

Environmental Data Real-Time Data Planning Data System Parameters

3.1 Environmental Data

The AERA planning regions are geographical areas, each corresponding to an existing Air Route Traffic Control Center (ARTCC) or a future Area Control Facility (ACF). There are twenty ARTCCs (centers) in the continental United States. Each AERA region will contain a center's airspace and extend the center boundary slightly so that incoming and outgoing traffic can be seen even when it is not in the center's airspace.

Each center controls an airspace bounded by a polygon which stretches vertically from the ground to 60,000 feet. Each of the center airspaces is also divided into areas, which are in turn divided into sectors. Areas and sectors are also polygons with floors and ceilings. Area airspace extends upward from the ground or a specified altitude to 60,000 feet. Sectors may be stacked on top of each other in shelf-type arrangements which can vary during different traffic pattern hours, especially around large airports.

Each planning region also contains environmental obstructions of the airspace for which a minimum altitude for clearance is maintained in the data base. These are En route Minimum Safe Altitude Warnings (EMSAWs). EMSAWs are defined in the data base as polygons that have the ground as floor and their altitude as ceiling. They include mountains, large buildings, and towers.

Airways are named routes, where "route" is the generic term for a path which an aircraft traverses over the surface of the earth. Airways are defined as a series of fixes and airway intersections. A fix is a named, geographical point used for navigation and identified on navigational maps.

Other environmental data defined in this data model are special use airspaces and intersecting airways. Special use airspaces are volumes of airspace which aircraft may not enter at certain times. They include six types: alert area, controlled firing area, military operations area, prohibited area, restricted area, and warning area. A special use airspace contains a start and stop time as part of its definition, since the space may not be restricted all of the time.

Intersecting airways are defined as the geographical points where airways intersect, and are referenced in pilot filed flight plans by juxtaposing the two airway names in a route string, e.g., "J41 J42" (see drawing below).

All of these environmental features are described in the data base. The tables contained in environmental data are the following:

• AIRWAYS

- SECTORS
- SECTOR_SHELVES
- SPECIAL USE AIRSPACES
- E MSAW AREAS
- VOLUME COORDINATES
- VOLUMES
- ADAPTED FIXES

H

\IRWAYS:	
AIRWAY_NAME VERTEX_NUMBER fix_name	
• <u></u>	

1.1

The airways table lists the fixes in a named, adapted route.

- AIRWAY_NAME Name of the adapted route, such as J41 (J denotes a high-altitude route) or V307 (V denotes a low-altitude route).
- VERTEX_NUMBER The number of the vertex in the sirway. The fix_name identifies the point coordinates.
- fix_name The name of a fix that identifies a vertex in the airway.

SECTORS:

•				
ł	SECTOR NUMBER	sector name	center name	volume id
-				

This table describes the sectors within the center.

SECTOR_NUMBER The number of a sector.

sector name The name of the sector.

center_name The name of the ARTCC that controls the sector.

volume_id ID of the volume which describes the sector boundaries.

SECTOR_SHELVES:

3

		وحله هردهه هه بکا کا کا							-+-
	SECTOR	NUMBER	I	SHELF	NAME	vol	ume_	id	I
L									-

This table defines the shelves within a sector.

SECTOR_NUMBER The number of a sector.

SHELF_NAME The name of a shelf within the sector.

volume_id The ID of the volume which defines the shelf boundary.

SPECIAL USE AIRSPACES:

SPECIAL	USE	AIRSPACE	NAME	airspace_	type	start_time	9
+	ند ی د بی						
				+			

| stop_time | volume_id |

This table relates a special use airspace name to information about the airspace. Special use airspaces are defined to be alert areas, military operations areas, prohibited areas, restricted areas, or warning areas.

SPECIAL_USE_AIRSPACE_NAME	Name of a special use airspace.
airspace_type	The type of special use airspace: alert, military operation, prohibited area, restricted area, or warning area.
start_time	Time when the area becomes restricted.
stop_time	Time when the area ceases to be restricted.
volume_id	Identifier of a volume which defines the boundaries of the special use airspace.

E MSAW AREAS:

| E_MSAW_NAME | volume_id |

This table defines an En Route Minimum Safe Altitude Warning area in the planning region.

E MSAW NAME Name of an E-MSAW area.

volume_id A volume which defines the boundaries of the E-MSAW area.

VOLUME COORDINATES:

VOLUME_1	ID	VERTEX	NUMBER		x	1	у	+
+				1	coor	din	ate	ī

This table contains the vertex coordinates of each volume. An entry exists for each vertex of every volume, where a volume is an E-MSAW area, a sector, a shelf, or a special use airspace.

VOLUME ID A volume identifier.

VERTEX_NUMBER A number assigned to each vertex in counting order.

The x coordinate of the vertex defined by this entry.

y The y coordinate of the vertex defined by this entry.

coordinate AGGREGATE (x,y).

VOLUMES:

VOLUME_ID	volume_type	floor_altitude	ceiling_altitude
	ند بای که کرد ها، ها، ها، ها، خون هم بای که ک	وبوهم محموية بوهم معيها بوا	ه هر ها کارو وی دو بین برا کا او بی برمین من من مربع بدن ک

| polygon_type |

This table defines the minimum and maximum altitudes of a volume, the polygon type of the volume, and the volume type. One entry exists for each adapted volume.

VOLUME ID A volume identifier.

volume_type Type of the volume: E-MSAW, sector, shelf, or special use airspace.

floor altitude Minimum altitude of the volume.

ceiling altitude Maximum altitude of the volume.

polygon_type The type of the polygon: either convex or concave.

ADAPTED FIXES:

FIX_NAME	fix_type	x	l y	+
			dinate	

This table defines a named fix, including its type and location.

- FIX_NAME A name of an identified geographical point (a fix).
- fix_type The type of the fix. May be vor, vortac, beacon, airport, waypoint, or airway-airway intersection.
- x The value of x at the geographical point.

y The value of y at the geographical point.

coordinate AGGREGATE (x,y).

3.2 Real-Time Data

The tables in this section are updated often and describe data within the planning region which are dynamic in nature. The following tables are included:

- CURRENT TIME
- WINDS
- AIRCRAFT TRACKED POSITION
- AIRCRAFT CURRENT CLEARANCE

CURRENT TIME:

| time | date |

This table gives the current time and date.

time Current time of the day.

date Current day, month, and year.

W	VINDS:
l	WIND_CELL_ID flb_x flb_y flb_z frb_x frb_y frb_z
+	flb_coordinate frb_coordinate
	blt_x blt_y blt_z time temperature
	blt_coordinate .
	direction speed

This table defines the coordinates of a wind cell and describes the most current wind conditions within the cell. Each cell is defined by three points: the front left bottom, the front right bottom, and the back left top. Wind information is updated every six hours.

Ŀ

WIND_CELL ID A wind cell identifier.

flb_x	The x value of the front left bottom corner.
flb_y	The y value of the front left bottom corner.
flb_z	The z value of the front left bottom corner.
frb_x	The x value of the front right bottom corner.
frb_y	The y value of the front right bottom corner.
frb_z	The z value of the front right bottom corner.
blt_x	The x value of the back left top corner.
blt_y	The y value of the back left top corner.

	The z value of the back felt top conner.
time	The time this wind cell information was last updated.
temperature	Temperature within the wind cell.
direction	Prevailing direction of the winds within the wind cell.
speed	Prevailing speed of the winds within the wind cell.

È

•

AIRCRAFT TRACKED POSITION:

FLIGHT_NAME	I TIME x y z
	position
 v	velocity_x velocity_y velocity_z
	velocity_vector
a	long_route_distance

This table gives the current tracked position and along route distance of each aircraft. Several entries exist for each aircraft because a history of tracked position is maintained.

FLIGHT NAME Aircraft identification, for instance EA195. TIME Time at the recorded position. The x component of the recorded position. x The y component of the recorded position. у The z component of the recorded position. Z The x component of the vector at the velocity x recorded position. velocity_y The y component of the vector at the recorded position. The z component of the vector at the velocity z recorded position. along route The along route distance at the recorded distance position. This is a projection of aircraft position onto the converted route. position AGGREGATE (x,y,z). velocity_vector AGGREGATE (velocity_x, velocity_y, velocity_ z).

AIRCRAFT_CURRENT_CLEARANCE:

È

İ	FLIGHT	NAME	I	altitude	1	speed	Ī
+.			-		_		

This table gives the current clearance altitude and speed for an aircraft.

FLIGHT_NAME Aircraft identification, for instance EA195.

altitude Altitude assigned by the current clearance.

speed Speed assigned by the current clearance.

3.3 Planning Data

3.3.1 Aircraft Characteristics

These tables describe the flight characteristics of each aircraft in the planning region. The characteristics may come from several sources:

- 1. Global values which are supplied by the aircraft manufacturers.
- 2. Information supplied by the airlines, which incorporates their guidelines and operating procedures.
- 3. Information supplied by the pilot, which will probably be more specific than either of the previous sources.

These data may come from a combination of the above sources, but will always be available in this standard form.

Speed and acceleration characteristics are broken into six tables to make maintenance of the tables more manageable. For example, speed characteristics have a double key, FLIGHT-ID and ALTITUDE, because the speed relationships are dependent on both of these fields. If a combined min/max, long-range-cruise, and maximum-endurance speeds table were used, there would be "holes" or null fields in some tables where a field did not have a value at a certain altitude. This might happen because a manufacturer supplied long-range-cruise statistics at different altitudes than min/max speed characteristics. The aircraft characteristics have been broken down into the smallest possible tables, in conformance to fourth and fifth normal forms.

AIRCRAFT MIN MAX SPEED:

Ì	SOURCE	ALTITUDE	ł	min_speed	I	max_speed	Ì	
								6

This table gives the minimum and maximum indicated air speeds (IAS) at an associated altitude for an aircraft type.

SOURCE This field contains the source of the information. It must be one of three possible values:

- a flight name, for flight specific information provided by the pilot
- a combination of airline and aircraft type, for airline supplied guidelines
- aircraft type, for information supplied by the manufacturer
- ALTITUDE The altitude for which the minimum and maximum speeds are stated.
- min_speed Minimum speed at the associated altitude.
- max speed Maximum speed at the associated altitude.

AIRCRAFT LRC SPEED:

+		-		-		t
I	SOURCE	١	ALTITUDE	1	speed	ł
		_		_		

The long-range cruise (LRC) speed relation gives the most operationally efficient use (in terms of fuel and flight time) cruise speeds in true air speed (TAS) at associated altitudes.

- SOURCE This field contains the source of the information. It must be one of three possible values:
 - a flight name, for flight specific information provided by the pilot
 - a combination of airline and aircraft type, for airline supplied guidelines
 - aircraft type, for information supplied by the manufacturer
- ALTITUDE An altitude which corresponds to a long-range cruise speed.
- speed Long-range cruise speed. Speed which provides the most efficient use of fuel and flight time, given in true air speed at associated altitude.

AIRCRAFT MAX ENDURANCE SPEED:

++								
SOURCE	ALTITUDE	speed						
4								

This table defines maximum endurance speeds (MES) for a range of altitudes for an aircraft type.

SOURCE This field contains the source of the information. It must be one of three possible values:

- a flight name, for flight specific information provided by the pilot
- a combination of airline and aircraft type, for airline supplied guidelines
- aircraft type, for information supplied by the manufacturer
- ALTITUDE An altitude corresponding to MES speed.

speed Maximum endurance speed.

.

AIRCRAFT ACCELERATION:

İ	SOURCE	l	ALTITUDE	ł	acceleration	İ

This table gives the normal acceleration rate of an aircraft at cruising speed and at an associated altitude.

- SOURCE This field contains the source of the information. It must be one of three possible values:
 - a flight name, for flight specific information provided by the pilot
 - a combination of airline and aircraft type, for airline supplied guidelines
 - aircraft type, for information supplied by the manufacturer
- ALTITUDE An altitude which has a corresponding acceleration rate.
- acceleration The normal acceleration rate when at cruising speed, measured in true air speed (TAS), at the associated altitude.

CLIMB MACH TO GRADIENT:

SOURCE BEG_ALTITUDE	SPEEI	GRADIENT	end	_altitude
gradient typ	+ e			

This table associates mach climb speeds with gradients at various altitudes for specific aircraft. An entry exists only at altitudes where a Mach speed indicator is applicable. Another table, CLIMB IAS TO GRADIENT, gives the IAS gradient ratios at altitudes where IAS indication is reasonable. There will be some overlap of altitudes.

- SOURCE This field contains the source of the information. It must be one of three possible values:
 - a flight name, for flight specific information provided by the pilot
 - a combination of airline and aircraft type, for airline supplied guidelines
 - aircraft type, for information supplied by the manufacturer
- BEG_ALTITUDE An altitude which represents the beginning of a climb segment.
- SPEED A speed, expressed as Mach.
- GRADIENT The climb gradient associated with the given altitude interval and speed.
- end_sltitude The top of the linear climb segment.
- gradient_type Either preferred, steeper than normal, or shallower than normal.

CLIMB_IAS_TO_GRADIENT:

Ì	SOURCE	BEG	ALTITUDE	SPEED	1	GRADIENT	1	end_altitud	e
1				 		يدة عن خيَّة حلك من جي عن هو هذ عل		*********	

1	gradient_type	

This table associates climb indicated air speed (IAS) with gradients at various altitudes for specific aircraft. An entry exists only at altitudes where an IAS speed indicator is applicable. Another table, CLIMB MACH TO GRADIENT, gives the Mach gradient ratios at altitudes where MACH indication is reasonable. There will be some overlap of altitudes.

- SOURCE This field contains the source of the information. It must be one of three possible values:
 - a flight name, for flight specific information provided by the pilot
 - a combination of airline and aircraft type, for airline supplied guidelines

- aircraft type, for information supplied by the manufacturer
- BEG_ALTITUDE An altitude which represents the beginning of a climb segment.
- SPEED A speed, expressed as Mach.
- GRADIENT The climb gradient associated with the given altitude interval and speed.
- end altitude The top of the linear climb segment.
- gradient_type Either preferred, steeper than normal, or shallower than normal.

DESCENT MACH TO GRADIENT:

	SOURCE	BEG_ALTITUDE		SPEED		GRADIENT	Ι	end_	altitude		
T	+										
	gradient_type										

This table associates mach descent speeds with gradients at various altitudes for specific aircraft. An entry exists only at altitudes where an Mach speed indicator is applicable. Another table, DESCENT IAS TO GRADIENT, gives the IAS gradient ratios at altitudes where TAS indication is reasonable. There will be some overlap of altitudes.

SOURCE This field contains the source of the information. It must be one of three possible values:

- a flight name, for flight specific information provided by the pilot
- a combination of airline and aircraft type, for airline supplied guidelines
- aircraft type, for information supplied by the manufacturer

Ы

- BEG_ALTITUDE An altitude which represents the beginning of a climb segment.
- SPEED A speed, expressed as Mach.
- GRADIENT The climb gradient associated with the given altitude interval and speed.
- end altitude The top of the linear climb segment.
- gradient_type Either preferred, steeper than normal, or shallower than normal.
DESCENT IAS TO GRADIENT:

	SOURCE	BEG	ALTITUDE		SPEED	Ι	GRADIENT	Ι	end	altitude	:	
Τ-	+											
		gr	adient tv	ъе	i							

This table associates descent indicated air speed (IAS) with gradients at various altitudes for specific aircraft. An entry exists only at altitudes where an IAS speed indicator is applicable. Another table, DESCENT MACH TO GRADIENT, gives the Mach gradient ratios at altitudes where Mach indication is reasonable. There will be some overlap of altitudes.

SOURCE This field contains the source of the information. It must be one of three possible values:

- a flight name, for flight specific information provided by the pilot
- a combination of airline and aircraft type, for airline supplied guidelines
- aircraft type, for information supplied by the manufacturer
- BEG_ALTITUDE An altitude which represents the beginning of a climb segment.
- SPEED A speed, expressed as indicated air speed.
- GRADIENT The climb gradient associated with the given altitude interval and speed.
- end altitude The top of the linear climb segment.

gradient_type Either preferred, steeper than normal, or shallower than normal.

NOMINAL CLIMB SPEEDS

Ŧ			د بي، حد حد منه منه حد			+
I	SOURCE	I	mach	l	ias	1

The nominal Mach and IAS climb speeds for an aircraft.

SOURCE This field contains the source of the information. It must be one of three possible values:

- a flight name, for flight specific information provided by the pilot
- a combination of airline and aircraft type, for airline supplied guidelines

 aircraft type, for information supplied by the manufacturer

mach The nominal Mach climb speed.

ias

The nominal IAS climb speed.

NOMINAL_DESCENT_SPEEDS

| SOURCE | mach | ias |

The nominal Mach and IAS descent speeds for an aircraft.

- SOURCE This field contains the source of the information. It must be one of three possible values:
 - a flight name, for flight specific information provided by the pilot
 - a combination of airline and aircraft type, for airline supplied guidelines
 - aircraft type, for information supplied by the manufacturer

mach The nominal Mach descent speed.

ias

3-21

The nominal IAS descent speed.

3.3.2 Trajectory Data

These data describe the filed and planned trajectories for each aircraft in the planning region, and represent a hierarchy of flight plan representations:

1. The approved flight plan, as filed by the pilot (prefiled), and approved and perhaps modified by the controller, gives the beginning and ending points of his flight along with a list of fixes that describe the horizontal path of the flight, and the intended cruise altitude and air speed.

- 2. The routes, a two-dimensional plan derived from the flight plan, lists the coordinates that occur along the horizontal route of the filed flight plan.
- 3. The TRAJECTORY is a four-dimensional adapted representation of the flight plan which is used for modeling. Trajectories are composed of cusps, or points in (x,y,z,t) space.

More than one planned flight path (FL_ID) may exist for any aircraft. The current FL ID is one which is currently being used by AERA. A temporary FL ID is one which is being formulated or tested by the system or controller in case of a reroute for a more direct route, collision avoidance, environmental conflict, or other reason. Temporary FL IDs are transitory unless "made current," when the current FL ID is replaced with the new FL ID, and all other temporary plans disappear.

The Routes and Trajectory tables are keyed by FL ID, because there may be more than one planned flight path per aircraft.

dep_arr_procedure_name

CALLAR MARKE

This table contains information about the intended route of the flight and the aircraft's unique characteristics.

FLIGHT_NAME	Name of a flight, for instance EA732.
approved_cruise_ altitude	Intended cruise altitude of the flight.
approved_true_ air_speed	Intended true air speed of the flight.
weight	Gross weight of the aircraft at takeoff.
aircraft_type	Manufacturer identification of the aircraft, for instance, B747, L1011, etc.
equippage	The aircraft's radar transponder DME or RNAV capability. One of the following:
	X No transponder
	T Transponder with no altitude encoding capability
	U Transponder with altitude encoding capability

D DME, no transponder

	В	DME, transponder with no altitude
	A	DMF transponder with altitude
	A	encoding canability
	м	TACAN only, no transponder
	N	TACAN only, transponder with no
		altitude encoding capability
	P	TACAN only, transponder with
		altitude encoding capability
	С	RNAV, transponder with no altitude
		encoding capability
	F	RNAV, transponder with altitude
		encoding capability
	W	RNAV, and no transponder
	S	Digital data link
		-
beacon_code	Transpond	er beacon code or ATC radio beacon
_	as assign	ed by the controlling facility.
approved_center_	The route	of the aircraft as a list of fix
route_string	name	s, lat/long coordinates, fix radial
	dist	ances, and airways, for that portion
	which is	relevant to the planning region.
origin	The fix n	ame of the origination airport
~~ 0 ~	1	and of the origination arrout.
destination	The fix na	ame of the destination airport.
departure_	The type of	of departure procedure appended to
procedure_type	the flight	t, if any:
—	SID	Standard Instrument Departure
	PDR	Preferred Departure Route
•		
departure_	The name of	of the departure procedure employed,
procedure_name	e.g., Calv	verton 6.
arrival	The type	of approximation apponded to
procedure type	the flicht	f anut
procedure_type	STAR	Standard Terminal Arrival Doute
	PAR	Preferred Arrival Route
		TTTTTTT METTAL WALL
arrival	771	
	Ine name d	of the arrival procedure.

dep_arr_procedureThe type of combined departure/arrivaltypeprocedure appended to the flight, if any.PDARPreferred Departure Arrival RouteNULLNo preferred Arrival Route

dep_arr_procedure_ The name of the combined departure/arrival name employed.

FLIGHT ID ASSOCIATIONS:

1			+
1	FL_ID	flight_name	fl_id_type
4	L		

This table identifies the flight plans that exist.

- FL_ID A planned path for an aircraft.
- flight_name Identifier of the flight, e.g., PA342.
- fl_id_type Type of the flight path; either current or temporary.

RO	UTES	:
----	------	---

+	FL	ID		ALONG	ROUTE	DISTANCE		x		у	+-
т								001	rdi	nate	Ī

This table lists the x,y pairs that describe the horizontal (two-dimensional) path of the flight, as derived from the flight plan route string.

FL_ID A planned path for an aircraft.

ALONG ROUTE The distance from beginning of the path to the DISTANCE point defined by this entry.

x The x component of the coordinate of the point.

y The y component of the coordinate of the point.

coordinate AGGREGATE (x,y).

TRAJECTORIES:

+•	FL	ID	1	TIME		x	ļ	у		z		ground	speed	cusp	_type	
T	cusp								1					- 1		

This table contains the cusps (x, y, z, t points) that describe the four-dimensional path of a flight. The trajectory is derived from the route (the two-dimensional x,y path of the flight)..

FL ID A planned path for an aircraft.

TIME Time at the point described by the x,y,z fields.

x The x value of the cusp.

y The y value of the cusp.

z THe z value of the cusp.

- ground_speed Instantaneous ground speed of the aircraft at this cusp.
- cusp_type The maneuver associated with the segment commencing at this cusp. It may be:

regular--a straight line traversal of the segment.

hold--a holding pattern in the horizontal plane.

vertical hold--a holding pattern with vertical extent.

vertical--a vertical maneuver.

cusp

AGGREGATE (TIME, x, y, z).

MANEUVER ENVELOPES:

4	
1	FL_ID TIME rd_x rd_y rd_z rd_t
	right_downstream_vertex
	ru_x ru_y ru_z ru_t lu_x lu_y lu_z lu_t
	right_upstream_vertex left_upstream_vertex
	1d_x 1d_y 1d_z 1d_t
	left downstream vertex

This table identifies an airspace envelope surrounding a portion of a flight plan. Each envelope is associated with a time of a cusp.

FL_ID	A planned path for an aircraft.
TIME	The time of the cusp associated with this maneuver envelope.
rd_x	The x value of the right downstream vertex.
rd_y	The y value of the right downstream vertex.
rd_z	The z value of the right downstream vertex.
rd_t	The t value of the right downstream vertex.
ru_x	The x value of the right upstream vertex.
ru_y	The y value of the right upstream vertex.
ru_z	The z value of the right upstream vertex.
ru_t	The t value of the right upstream vertex.
lu_x	The x value of the left upstream vertex.
1u_y	The y value of the left upstream vertex.
lu_z	The z value of the left upstream vertex.
lu_t	The t value of the left upstream vertex.

ld_x	The	X	value	of	the	left	downstream	vertex.
ld_y	The	у	value	of	the	left	downstream	vertex.
ld_z	The	Z	value	of	the	left	downstream	vertex.
ld_t	The	t	value	of	the	left	downstream	vertex.

SECTORS_ENTERED:

and the state of the state of the state of the state of the state of the state of the state of the state of the

+			-						-	_	-		- حداث من حد حد	_
İ	FL_	_ID	1	TIME	1	x	1	у	1	Z	ł	sector	number	
position														- •

This table defines the points where a planned trajectory crosses the different sector boundaries in the planning region.

FL_ID	A planned path for an aircraft.
TIME	The time the path crosses the sector boundary.
x	The x value at the sector crossing point.
у	The y value at the sector crossing point.
Z	The z value at the sector crossing point.
sector_number	A sector within the planning region through which the path passes.
position	AGGREGATE (x,y,z).

PLANNED ACTIONS:

۰, ۱

T.						
ł	PA_ID	f1_id	pa_type	pa_source	plan_time	1
			-			

This table contains information which is common to all planned actions. An entry exists for every planned action currently defined.

PA ID A planned action identifier.

fl id A planned path for an aircraft.

pa_type Identifies the type of planned action. May be hold, altitude change, altitude change with restrictions, speed, or vector.

- pa_source Source of the planned action, *i*ther system or controller.
- plan time Time that the planned action was created.

PLANNED ACTION DURATION:

+		
PA_ID	pa_start_time	pa_end_time
4		

This table defines the times that a planned action is active. An entry exists in this table for every planned action.

PA_ID A planned action.

pa_start_time The first time that the planned action becomes active.

pa_end_time The time that the planned action is completed or terminated.

ALTITUDE CHANGE_PLANNED_ACTIONS:

İ	PA_ID	target_altitude	transition_type	base_value_type
_				

base_x base_y	base_t	base	along	route	distance
resume_climb_time	+ +				

This table describes altitude change planned actions. An entry exists for each altitude change planned action.

PA_ID	A planned action.
target_altitude	Altitude to be reached by the end of this action.
transition_type	Transition to be performed: ascent or descent.
base_value_type	Type of planned action basing desired: coordinate, time, along route distance, or restriction coordinate.
base_x	The x value of the base point.
base_y	The y value of the base point.
base_t	Time at base point if time is selected.
base_along_route- distance	Along route distance of the base point if ard is selected. The along route distance is the distance traveled projected upon the two-dimensional path of an aircraft.
resume_climb_time	Time to resume climb if this is a climb transition (restricted or based at some other altitude rather than cleared

cruise altitude).

3-32

ALTITUDE RESTRICTIONS PARAMETERS:

						•
	PA_ID	rest_x	rest_y	rest_z	rest_qualifier	: 1
4	L					

This table contains restriction point information for altitude planned actions. An entry exist for each altitude planned action with a restriction point.

PA I	D.	An	altitude	planned	action.
				_	

- rest_x The x coordinate of the restriction point.
- rest y The y coordinate of the restriction point.
- rest_z The z coordinate of the restriction point.
- rest_qualifier Indicates whether the restriction point should be crossed at, at or above, at or below the restriction point.

SPEED_CHANGE_PLANNED_ACTIONS:

PA_ID	speed base_value_location base_value_type
T	base_x base_y base_z base_time
	base_along_route_distance

This table describes speed planned actions. An entry exists for each speed planned action.

PA_ID	A speed planned action.
speed	Speed to be reached by the end of this planned action.
base_value_ location	Location of the base point: the start or end.
base_value_ type	Type of basing requested: coordinate, time, or along route distance.
bas∍_x	The x coordinate of the base point.
base_y	The y coordinate of the base point.
base_z	The z coordinate of the base point.
base_time	Time of base value if time is selected.
base_along_route_ distance	Along route distance of the base point if along route distance is selected.

SPEED RESTRICTIONS PARAMETERS:

PA_ID | rest_qualifier |

ALAS 23 (0.40 Page 10

This table contains restriction qualifiers for speed planned actions that contain restrictions. An entry exists for each speed planned action that has a restriction.

PA ID A speed restriction planned action.

rest_qualifier Indicates whether the target speed applies before, at, or after the base point.

VECTOR PLANNED ACTIONS:

PA_ID VERTEX	SEQUENCE	NUMBER	1	X		у	+
1			I	vertex	coord	linate	e

This table completes an identification of the vector maneuver for a vector planned action. It lists all the vertices of a vector maneuver except the first which is known as the base point.

PA_ID	Identifies a planned action: in this case, a vector action.
VERT EX_SEQUENCE_ NUMBER	The sequence of this vertex with respect to the others for this vector action.
x	The x coordinate of this vertex.
у	The y coordinate of this vertex.
vertex coordinate	AGGREGATE (x,y).

HOLD ON ROUTE PLANNED ACTIONS:

PA_ID	hold_fix_x hold_fix_y inbound_direction
	hold_fix_coordinate
	efc_time leg_length_type leg_length_distance
	leg length time turn direction

This table describes hold planned actions. An entry exists for each hold planned action currently defined.

PA ID A planned action.

- hold_fix_x The x coordinate of the position assigned by the controller as a base point for the hold maneuver.
- hold_fix_y The y coordinate of the position assigned by the controller as a base point for the hold maneuver.
- inbound_direction Angular measure (from north) of the direction of inbound leg to the hold fix.
- efc_time The time for which the hold maneuver will be terminated is issued by the controller (expect further clearance time).
- leg_length_type Measure of the leg length: distance or time.
- leg_length_If the length of the leg is measured indistancedistance, this field contains the distance;
otherwise, null.

leg_length_time If the length of the leg is measured in
flying time, the field contains the time;
othrwise, null.

turn_direction Direction of the initial turn from the route for the hold maneuver.

hold_fix_ AGGREGATE (hold_fix_x, hold_fix_y).
coordinate

3.3.3 Conflict Data

The following tables describe the contents of the aircraft and environmental cells which are superimposed over the planning region. The grids containing the cells are defined in Section 3.4, System Parameters.

The tables in this section are divided into three groups:

1. Environmental information which exists prior to any conflict monitoring:

ENVIRONMENTAL CELL

2. Inputs to the conflict probes, which are defined and updated as each aircraft enters the planning region:

AIRCRAFT_GRID_CHAINS FLIGHT_PLAN/ENVIRONMENTAL_CELL

3. Outputs of the conflict probes, which define real conflicts to be presented to the controller:

AIRCRAFT_CONFLICT ENVIRONMENTAL CONFLICT SPARSE_CELLS:

FL_ID	TREE_NODE_ID min_z max_z entry_time
•	exit_time +

This table defines the cells which each flight plan trajectory enters, the range of altitudes the trajectory covers in each cell, and the times associated with the cusp preceding entry and the cusp following exit for each cell.

- FL_ID The planned path for an aircraft.
- TREE_NODE_ID Unique identifier of an airspace cell in an x,y,t grid.
- min_z The lowest altitude of this flight plan trajectory within this cell.
- max_z The highest altitude of this flight plan trajectory within this cell.
- entry_time The time associated with the cusp which precedes entry into this cell.
- exit_time The time associated with the cusp which follows exit from this cell.

ENVIRONMENTAL_CELLS:

-		و ور بی بی بی بی بی بی ب			
1	CELL_ID	min_x	max_x	min y	max y
4	L				I

This table defines the boundaries of each cell used by the airspace probe. One record exists for each cell that contains an E-MSAW area or restricted airspace.

CELL ID An environmental cell identifier.

min x The minimum x value of the cell.

max x The maximum x value of the cell.

min y The minimum y value of the cell.

max_y The maximum y value of the cell.

ENVIRONMENTAL CELL CONTENTS:

CELL_ID | VOLUME_ID |

This table associates the volume identifiers of E-MSAW areas and restricted airspaces with each environmental cell. An entry exists for each volume. If a volume is in several cells, an entry exists for each cell.

CELL_ID An environmental cell identifier.

VOLUME_ID An identifier of an E-MSAW are or restricted airspace volume.

This table lists the encounters (violations of vertical and horizontal separation criteria) of all of the aircraft in the planning region.

FIRST FL ID The planned path for one of a pair of aircraft involved in an encounter. SECOND FL ID The planned path for the second of a pair of aircraft involved in an encounter. ADV VIOL START Earliest time that the advisory horizontal TIME separation criterion is violated. adv_viol_end_time Latest time that the advisory horizontal separation criterion is violated. display as Time at which appropriate controllers are advisory time notified of an advisory violation.

prior_viol_start_ time	Earliest time that the priority horizontal separation criterion is violated.
prior_viol_end_ time	Latest time that the priority horizontal separation criterion is violated.
display_as_ priority_time	Time at which appropriate controllers are notified of a priority violation.
msep_time	Time of minimum separation between the aircraft in the horizontal plane.
msep_distance	Minimum separation distance between the aircraft in the horizontal plane.
fll_viol_start_x	The x coordinate of the first aircraft at the start of the advisory violation period.
fl1_viol_start_y	The y coordinate of the first aircraft at the start of the advisory violation period.
fll_viol_start_z	The z coordinate of the first aircraft at the start of the advisory violation period.
fll_viol_end_x	The x coordinate of the first aircraft at the end of the advisory violation period.
fll_viol_end_y	The y coordinate of the first aircraft at the end of the advisory violation period.
fll_viol_end_z	The z coordinate of the first aircraft at the end of the advisory violation period.
fl2_viol_start_x	The x coordinate of the second aircraft at the start of the advisory violation period.
fl2_viol_start_y	The y coordinate of the second aircraft at the start of the advisory violation period.
fl2_viol_start_z	The z coordinate of the second aircraft at the start of the advisory violation period.
fl2_viol_end_x	The x coordinate of the second aircraft at the end of the advisory violation period.
fl2_viol_end_y	The y coordinate of the second aircraft at the end of the advisory violation period.

fl2 viol end z

The z coordinate of the second aircraft at the end of the advisory violation period.

PRIOR ENCOUNTERS:

| FIRST FL ID | SECOND FL ID | ADV_VIOL_START_TIME

adv viol end time | display as advisory time

| prior viol start time | prior viol end time

| display as priority time | msep time

| msep distance | fll_viol_start_x | fll_viol_start_y

| fll viol start z | fll viol end x | fll viol end y

| fll viol end z | fl2 viol start x

| f12_viol_start_y | f11_viol_start_z

| fl2_viol_end_x | fl2_viol_end_y | fl1_viol_end_z

This table contains a copy of the ENCOUNTERS table before the most recent flight plan conflict probe trajectory update.

FIRST_FL_ID The planned path for one of a pair of aircraft involved in an encounter.

SECOND_FL_ID The planned path for the second of a pair of aircraft involved in an encounter.

ADV_VIOL_START_ Earliest time that the advisory horizontal TIME separation criterion is violated.

adv_viol_end_time	Latest time that the advisory horizontal separation criterion is violated.
display_as advisory_time	Time at which appropriate controllers are notified of an advisory violation.
prior_viol_start_ time	Earliest time that the priority horizontal separation criterion is violated.
prior_viol_end_ time	Latest time that the priority horizontal separation criterion is violated.
display_as_ priority_time	Time at which appropriate controllers are notified of a priority violation.
msep_time	Time of minimum separation between the aircraft in the horizontal plane.
msep_distance	Minimum separation distance between the aircraft in the horizontal plane.
fll_viol_start_x	The x coordinate of the first aircraft at the start of the advisory violation period.
fll_viol_start_y	The y coordinate of the first aircraft at the start of the advisory violation period.
fll_viol_start_z	The z coordinate of the first aircraft at the start of the advisory violation period.
fll_viol_end_x	The x coordinate of the first aircraft at the end of the advisory violation period.
fll_viol_end_y	The y coordinate of the first aircraft at the end of the advisory violation period.
fll_viol_end_z	The z coordinate of the first aircraft at the end of the advisory violation period.
fl2_viol_start_x	The x coordinate of the second aircraft at the start of the advisory violation period.
fl2_viol_start_y	The y coordinate of the second aircraft at the start of the advisory violation period.

L.

fl2_viol_start_z The z coordinate of the second aircraft at the start of the advisory violation period.

fl2_viol_end_x	The x coordinate of the the end of the advisory	second aircraft at violation period.
fl2_viol_end_y	The y coordinate of the the end of the advisory	second aircraft at violation period.
fl2_viol_end_z	The z coordinate of the the end of the advisory	second aircraft at violation period.

ENVIRONMENTAL CONFLICT:

FL	_ID	١	TIME	Ι	x		у	altitude volume_id	
•				ł	coo :	rdi	nat	2	
			die	spl	ay_a	18_	adv	lsory_time	

This table describes a real conflict that is detected by the airspace probe.

- FL_ID Unique identifier of the subject aircraft's flight plan.
- TIME Time at which the flight trajectory intersects the boundary in the cell.

x The value of **x** at the conflict.

y The value of y at the conflict.

altitude Altitude at which the flight trajectory intersects the boundary in the cell.

volume_id Identifier of the volume with which the flight plan is in conflict.

display_as_ Time at which appropriate controllers are to be advisory_ notified of an advisory violation. time

coordinate AGGREGATE (x,y).

SWP_CELL:

N.S.S.S.

•	CELL_ID x_cell_id y_cell_id min_altitude max_altitude
•	+
	+

associated with each three-dimensional cell in the ARTCC (Center) used by Sector Workload Probe.

CELL_ID	Unique identifier of an airspace cell in an x,y,z grid.
x_cell_id	Identifier for the value of the x dimension of the cell.
y_cell_id	Identifier for the value of the y dimension of the cell.
min_altitude	The lowest altitude associated with the cell.
max_altitude	The highest altitude associated with the cell.
sector number	The sector (uncombined) which this cell occupies.

SECTORIZATION SCHEDULE:

AREA_NAME | TIME | plan_type |

This table describs the sectorization schedule for an area according to the time of day. For instance, in times of light traffic, several sectors in an area may be combined. In times of heavy traffic, each sector in an area may be operating independently under the sectorization plan.

AREA NAME A name of a group of sectors.

TIME The time the sectorization plan becomes effective for this area.

plan_type A value which represents one type of sectorization plan such as:

- all sectors operating
- first sector combined
- late evening traffic flow
- midnight shift traffic flow

SECTORIZATION PLAN:

SECTOR_NUMBER	PLAN_TYPE	area_name	combined_sector	_number
+				

This table describes the sectorization plans for basic sectors in the center. The basic sector is organized under various combined sectors depending on the plan type. All possible sectorization plans which may be used are included in this table.

SECTOR_NUMBER The smallest sector number.

PLAN_TYPE A number which represents one type of sectorization plan, such as:

- all sectors operating
- first sector combined

A name of a group of sectors.

- late evening traffic flow
- midnight shift traffic flow

area name

combined_ sector number The sector number of the principal sector with which the basic sector is associated.

WORKLOAD THRESHOLDS:

SECTOR_NUMBER | WORKLOAD_MEASURE | threshold_value | time |

These records contain a threshold value which is set by the supervisor for a specific workload measure within a sector. The supervisor is notified if the measure crosses the threshold value.

- SECTOR_NUMBER The sector for which the supervisor sets the threshold value. WORKLOAD_MEASURE The measure in which the supervisor is interested. May be one of the following: aircraft count measure, planned action measure, flight plan conflict measure, airspace conflict measure, or density measure. threshold_value The threshold (set by a supervisor) for the workload measure value, above or below which the supervisor will be notified. time The time of display for a message stating the
 - ime The time of display for a message stating the threshold has been crossed.

These records define the workload statistics output by the sector workload probe.

SECTOR_NUMBER	Number of the sector.
TIME_INTERVAL_ID	The time interval for which these statistics are calculated.
total_fl_time	Total flight time of all the aircraft within the sector during the time interval specified.
fp_conflict_count	Number of encounters detected by flight plan conflict probe during the time interval for the sector.
airspace_conflict_ count	Number of encounters detected by airspace probe during the time interval for the sector.
altitude_change_ pa_count	Number of altitude change planned actions for the sector time interval.

altitude_change_ with_restrictions_ pa_count	Number of altitude change with restrictions planned action for the sector time interval.
vector_pa_count	Number of vector planned actions for the sector time interval.
speed_change_pa_ count	Number of speed change planned actions for the sector time interval.
hold_pa_count	Number of hold planned actions for the sector time interval.
density_measure	A measure of the airspace density during the time interval for the sector.
overall_workload_ measure	Combined workload measure for the sector and time interval.
aver_aircraft_ count	Average number of aircraft for the sector time interval.
weighted_pa_ measure	Weighted planned action value for the sector time interval.
pa_counts	AGGREGATE (altitude change pa count, altitude change with restrictions pa count, vector pa count, apeed change pa count, hold pa count).

These records define the workload statistics output by the sector workload probe.

SECTOR_NUMBER	Number of the sector.
TIME_INTERVAL_ID	The time interval for which these statistics are calculated.
total_fl_time	Total flight time of all the aircraft within the sector during the time interval specified.
fp_conflict_count	Number of encounters detected by flight plan conflict probe during the time interval for the sector.
airspace_conflict_ count	Number of encounters detected by airspace probe during the time interval for the sector.

altitude_change_ pa_count	Number of altitude change planned actions for the sector time interval.
altitude_change_ with_restrictions_ ps_count	Number of altitude change with restrictions planned action for the sector time interval.
vector_ps_count	Number of vector planned actions for the sector time interval.
<pre>speed_change_pa_ count</pre>	Number of speed change planned actions for the sector time interval.
hold_pa_count	Number of hold planned actions for the sector time interval.
density_measure	A measure of the airspace density during the time interval for the sector.
overall_workload_ measure	Combined workload measure for the sector and time interval.
aver_aircraft_ count	Average number of aircraft for the sector time interval.
weighted_pa measure	Weighted planned action value for the sector time interval.
pa_counts	AGGREGATE (altitude_change_pa_count, altitude change_with_restrictions_pa_count, vector_pa count, speed_change_pa_count, hold_pa_count).
cell_density_ value	Sum of percent of aircraft for cell density for sector time interval.
block_density_ value	Sum of percent of aircraft for block density for sector time interval.
sector_count	Number of basic sectors for the combined

Ç,

AND A DESCRIPTION AND A DESCRI

3-52

3.4 System Parameters

Each of the system parameters is referenced as a separate entity.

Flight Plan Conflict Probe

Advisory_Seph	Horizontal separation criterion used by Flight Plan Conflict Probe to detect advisory violations (see Flight Plan Conflict Probe for definition of advisory violations).
Priority_Seph	Horizontal separation criterion used by Flight Plan Conflict Probe to detect priority violations.
Sepz_Hi	Vertical separation criterion used by Flight Plan Conflict Probe to identify the loss of vertical separation between two aircraft, at least one of which is above FL290.
Sepz_Lo	Vertical separation criterion used by Flight Plan Conflict Probe to identify the loss of vertical separation between two aircraft, both of which are at or below FL290.
Advisory_Sept	Length of time between the notification of a controller of an advisory violation and the start of the violation.
Priority_Sept	Length of time between the notification of a controller of a priority violation and the start of the violation.

Hold PA Parameters

These parameters define the system default values for holding pattern planned actions.

Holding Leg Length Length of a holding pattern track leg.

Holding_Pattern_ The region protecting a holding pattern. Buffer

Workload Probe Parameters

These parameters include the time parameters for which the data will be accumulated, and coefficients for determining aircraft, pa, and conflict counts.

.

Time_Horizon The time interval for which the sector workload probe evaluates its workload measures.

- Display_Time_ The maximum time in the future that probe Horizon values will be displayed (this is less than the time-horizon).
- Time_Interval The smallest quantization of the time-horizon for which workload probe measures are calculated and displayed.
- Ac_Coefficient A value which is used as the coefficient for aircraft counts collected during time_ interval.
- Airspace Cfl A value which is used as the coefficient for Coefficient airspace conflict counts collected during time_interval.

Flight_Plan_
Cfl_CoefficientA value which is used as the coefficient for
flight-plan conflict counts collected during
time_interval.

Density_____A value which is used as the coefficient for
the density measures.

Altitude_Change_ A value which is used as the coefficient for Pa_Coefficient altitude change pa counts during a time interval.

Altitude Change A value which is used as the coefficient for With Restrictions altitude change with restrictions pa counts Pa Coefficient during a time interval.

Vector PaA value which is used as the coefficient for
vector pa counts during a time interval.

Speed PaA value which is used as the coefficient forCoefficientspeed pa counts during a time interval.

Hold Pa	A value	which i	is used	as the	coefficient	for
Coefficient	hold pa	counts	during	a time	interval.	

- Pa_Coefficients AGGREGATE (Altitude Change Pa_Coeff, Altitude Change With Restrictions Pa_Coeff, Vector Pa_Coeff, Speed Pa_Coeff, Speed Pa_ Coeff, Hold Pa_Coeff).
- Cell_Density_Ratio Proportion of the density value for cells used in the combined density value for cells and blocks.

Environmental Grid Parameters

Cell_Width Initial width of the cells which compose the grid.
APPENDIX A

NORMALIZATION RULES

The normalization process is explained in varying amounts of detail in different sources [1,2,3,4]. Codd's paper [1] is the first paper on relational data bases; it outlines the need for and the advantages of using the method. Kent's paper [2] is a good non-technical presentation of the whys and hows of data normalization. The book by Date [3] contains a technical presentation of relational models. The book by Martin [4] gives step-by-step implementation techniques for normalizing data relations. The following descriptions of the rules were taken largely from Kent's paper.

A.1 First Normal Form

ALL OCCURRENCES OF A RECORD TYPE MUST HAVE THE SAME NUMBER OF FIELDS, AND EACH FIELD MUST CONTAIN ONLY ONE OCCURRENCE. For example, the table

| PATH_ID | fix_1 | fix_2 | ... | fix_n |

does not conform to first normal form because there are a variable number of fixes depending on the path chosen. Neither is it legal to format the table as

| PATH_ID | list of fix_names |

since first normal form, by definition, is a flat arrangement of data containing only one occurrence of each field in a table. The table should be

+----+ | PATH_ID | fix_name | +-----+

where every occurrence of a fix is recorded in a separate table, and the table is keyed by path-id and fix-name. Fix order is not presented in any way in his table. Another table defines the location of each fix.

A-1

A.2 Second Normal Form

EACH NONKEY FIELD MUST BE A FACT ABOUT THE ENTIRE KEY. For example, the table

| AC_TYPE | ALTITUDE | min_speed | max_speed | max_passgrs |

is not in second normal form because the field (max)passgrs does not describe altitude, which is part of the key. The table must therefore be split into two tables:

AC TYPE | ALTITUDE | min speed | max_speed |

and

AC_TYPE | max_passgrs |

A.3 Third Normal Form

: : .*

A NONKEY FIELD CANNOT BE DEPENDENT ON ANOTHER NONKEY FIELD. It must describe only the key. For instance, the table

| AC_TYPE | altitude | min_speed |

does not conform to third normal form because the minimum speed is dependent on altitude, which is shown to be a nonkey field. If altitude were part of the key, the table would be valid.

A.4 Fourth Normal Form

A RECORD CANNOT HAVE TWO OR MORE INDEPENDENT MULTI-VALUED FIELDS. To illustrate, an example is taken directly from Kent's paper [2]:

"Consider employees, skills, and languages, where an employee may have several skills and several languages. We have here two manyto-many relationships, one between employees and skills, and one between employees and languages. Under fourth normal form, these two relationships should not be represented in a single table such as

1	و ها دن بن بن کا کاری دو دو د	و جاری که می جود چو برو در		F
	EMPLOYEE	SKILL	LANGUAGE	
1				L

Instead, they should be represented in the two tables

+	وي جو جو جو جو بي بي بي بي			F		+-		و هو هو من جزر بارد و ا		,
I	EMPLOYEE	I	SKILL	a	nd	I	EMPLOYEE	LANGU	AGE	
4		_		L.		4-				h

The main problem with violating fourth normal form is that it leads to uncertainties in the maintenance policies. Several policies are possible for maintaining two independent multivalued facts in one table."

A.5 Fifth Normal Form

A RECORD IS IN FIFTH NORMAL FORM WHEN ITS INFORMATION CONTENT CANNOT BE RECONSTRUCTED FROM SEVERAL SMALLER RECORD TYPES. (The case where all the smaller table types have the same key is the exception.) This form further serves to eliminate redundancies, but differs from fourth normal form because even though the fields may be related, they are still separated into different tables.

APPENDIX B

ALPHABETICAL LIST OF FULLY QUALIFIED NAMES AND PARAMETERS

The fully qualified names in each table are listed below in alphabetical order. Also listed at the end of this appendix are the global parameters in alphabetical order within a functional grouping.

ADAPTED_FIXES.FIX_NAME ADAPTED_FIXES.fix_type ADAPTED_FIXES.x ADAPTED_FIXES.y

220222

AIRCRAFT_ACCELERATION.acceleration AIRCRAFT_ACCELERATION.ALTITUDE AIRCRAFT_ACCELERATION.SOURCE

AIRCRAFT_CURRENT_CLEARANCE.altitude AIRCRAFT_CURRENT_CLEARANCE.FLIGHT_NAME AIRCRAFT_CURRENT_CLEARANCE.speed

AIRCRAFT_LRC_SPEED.ALTITUDE AIRCRAFT_LRC_SPEED.SOURCE AIRCRAFT_LRC_SPEED.speed

AIRCRAFT MAX_ENDURANCE_SPEED.ALTITUDE AIRCRAFT MAX_ENDURANCE_SPEED.SOURCE AIRCRAFT MAX_ENDURANCE_SPEED.speed

AIRCRAFT MIN MAX SPEED.ALTITUDE AIRCRAFT MIN MAX SPEED.max speed AIRCRAFT MIN MAX SPEED.min speed AIRCRAFT MIN MAX SPEED.SOURCE

AIRCRAFT TRACKED POSITION.along route distance AIRCRAFT TRACKED POSITION.FLIGHT_NAME AIRCRAFT TRACKED POSITION.TIME AIRCRAFT TRACKED POSITION.velocity_x AIRCRAFT TRACKED POSITION.velocity_y AIRCRAFT TRACKED POSITION.velocity_z AIRCRAFT TRACKED POSITION.x AIRCRAFT TRACKED POSITION.x AIRCRAFT TRACKED POSITION.y AIRCRAFT TRACKED POSITION.z

AIRWAYS.AIRWAY_NAME AIRWAYS.fix_name AIRWAYS.VERTEX_NUMBER ALTITUDE CHANGE PLANNED ACTIONS.base_along_route_distance ALTITUDE CHANGE PLANNED ACTIONS.base_t ALTITUDE CHANGE PLANNED ACTIONS.base_value_type ALTITUDE CHANGE PLANNED ACTIONS.base_x ALTITUDE CHANGE PLANNED ACTIONS.base y ALTITUDE CHANGE PLANNED ACTIONS.PA_ID ALTITUDE CHANGE PLANNED ACTIONS.resume climb_time ALTITUDE CHANGE PLANNED ACTIONS.target_altitude ALTITUDE CHANGE PLANNED ACTIONS.target_altitude ALTITUDE CHANGE PLANNED ACTIONS.target_altitude

ALTITUDE_RESTRICTIONS_PARAMETERS.PA_ID ALTITUDE_RESTRICTIONS_PARAMETERS.rest_qualifier ALTITUDE_RESTRICTIONS_PARAMETERS.rest_x ALTITUDE_RESTRICTIONS_PARAMETERS.rest_y ALTITUDE_RESTRICTIONS_PARAMETERS.rest_z

BASIC_SECTOR_WORKLOAD_MEASURES.airspace_conflict_count BASIC_SECTOR_WORKLOAD_MEASURES.altitude_change_pa_count BASIC_SECTOR_WORKLOAD_MEASURES.altitude_change_with_

restrictions pa_count BASIC SECTOR WORKLOAD MEASURES.aver_aircraft_count BASIC SECTOR WORKLOAD MEASURES.density measure BASIC SECTOR WORKLOAD MEASURES.fp conflict_count BASIC SECTOR WORKLOAD MEASURES.hold pa_count BASIC SECTOR WORKLOAD MEASURES.hold pa_count BASIC SECTOR WORKLOAD MEASURES.overall workload measure BASIC SECTOR WORKLOAD MEASURES.sECTOR NUMBER BASIC SECTOR WORKLOAD MEASURES.speed change pa_count BASIC SECTOR WORKLOAD MEASURES.speed change pa_count BASIC SECTOR WORKLOAD MEASURES.time_INTERVAL_ID BASIC SECTOR WORKLOAD MEASURES.total_fl_time BASIC SECTOR WORKLOAD MEASURES.vector_pa_count BASIC SECTOR WORKLOAD MEASURES.vector_pa_count BASIC SECTOR WORKLOAD MEASURES.vector_pa_count

CLIMB_IAS_TO_GRADIENT.BEG_ALTITUDE CLIMB_IAS_TO_GRADIENT.end_altitude CLIMB_IAS_TO_GRADIENT.GRADIENT CLIMB_IAS_TO_GRADIENT.gradient_type CLIMB_IAS_TO_GRADIENT.SOURCE CLIMB_IAS_TO_GRADIENT.SPEED

CLIMB MACH TO GRADIENT.BEG ALTITUDE CLIMB MACH TO GRADIENT.end altitude CLIMB MACH TO GRADIENT.GRADIENT CLIMB MACH TO GRADIENT.gradient_type CLIMB MACH TO GRADIENT.SOURCE CLIMB MACH TO GRADIENT.SPEED

COMBINED_SECTOR_WORKLOAD_MEASURE.airspace_conflict_count COMBINED_SECTOR_WORKLOAD_MEASURE.altitude_change_pa_count COMBINED_SECTOR_WORKLOAD_MEASURE.altitude_change_with_ restrictions_pa_count COMBINED_SECTOR_WORKLOAD_MEASURE.aver_aircraft_count COMBINED_SECTOR_WORKLOAD_MEASURE.block_density_value COMBINED_SECTOR_WORKLOAD_MEASURE.cell_density_value COMBINED_SECTOR_WORKLOAD_MEASURE.density_measure COMBINED_SECTOR_WORKLOAD_MEASURE.fp_conflict_count

COMBINED SECTOR WORKLOAD MEASURE.hold pa count COMBINED SECTOR WORKLOAD MEASURE.overall workload measure COMBINED SECTOR WORKLOAD MEASURE.sector count COMBINED SECTOR WORKLOAD MEASURE.SECTOR NUMBER COMBINED SECTOR WORKLOAD MEASURE.TIME INTERVAL ID COMBINED SECTOR WORKLOAD MEASURE.total fl time COMBINED SECTOR WORKLOAD MEASURE.speed change pa count COMBINED SECTOR WORKLOAD MEASURE.vector pa count COMBINED SECTOR WORKLOAD MEASURE.vector pa count COMBINED SECTOR WORKLOAD MEASURE.vector pa count

CURRENT_TIME.date CURRENT_TIME.time

DESCENT IAS TO GRADIENT.BEG ALTITUDE DESCENT IAS TO GRADIENT.end altitude DESCENT IAS TO GRADIENT.GRADIENT DESCENT IAS TO GRADIENT.gradient type DESCENT IAS TO GRADIENT.SOURCE DESCENT IAS TO GRADIENT.SPEED

DESCENT MACH TO GRADIENT.BEG ALTITUDE DESCENT MACH TO GRADIENT.end altitude DESCENT MACH TO GRADIENT.GRADIENT DESCENT MACH TO GRADIENT.gradient type DESCENT MACH TO GRADIENT.SOURCE DESCENT MACH TO GRADIENT.SPEED

E MSAW AREAS.E MSAW NAME E MSAW AREAS.volume_id

ENCOUNTERS.adv viol end time ENCOUNTERS.ADV VIOL START TIME ENCOUNTERS.display as advisory time ENCOUNTERS.display as priority time ENCOUNTERS.FIRST FL ID ENCOUNTERS.fll viol end x ENCOUNTERS.fll viol end y ENCOUNTERS.fll viol end z ENCOUNTERS.fll viol end z ENCOUNTERS.fll viol start x ENCOUNTERS.fll viol start y ENCOUNTERS.fll viol start z

B-3

ENCOUNTERS.f12 viol end x ENCOUNTERS.f12 viol end y ENCOUNTERS.f12 viol end z ENCOUNTERS.f12 viol start x ENCOUNTERS.f12 viol start y ENCOUNTERS.f12 viol start z ENCOUNTERS.msep distance ENCOUNTERS.msep time ENCOUNTERS.prior viol end time ENCOUNTERS.prior viol start time ENCOUNTERS.SECOND_FL_ID

ENVIRONMENTAL_CELL_CONTENTS.CELL_ID ENVIRONMENTAL_CELL_CONTENTS.VOLUME_ID

ENVIRONMENTAL CELLS.CELL ID ENVIRONMENTAL CELLS.max_x ENVIRONMENTAL CELLS.max_y ENVIRONMENTAL CELLS.min_x ENVIRONMENTAL CELLS.min_y

SSEAMANNE SAMANNE SEMANA

ENVIRONMENTAL_CONFLICT.altitude ENVIRONMENTAL_CONFLICT.display_as_advisory_time ENVIRONMENTAL_CONFLICT.FL_ID ENVIRONMENTAL_CONFLICT.TIME ENVIRONMENTAL_CONFLICT.volume_id ENVIRONMENTAL_CONFLICT.x ENVIRONMENTAL_CONFLICT.y

FL ID ASSOCIATIONS.FL ID FL ID ASSOCIATIONS.fl id type FL ID ASSOCIATIONS.flight_name

FLIGHT_PLANS.aircraft_type FLIGHT_PLANS.approved_cruise_altitude FLIGHT_PLANS.approved_route_string FLIGHT_PLANS.approved_true_air_speed FLIGHT_PLANS.arrival_procedure_name FLIGHT_PLANS.beacon_code FLIGHT_PLANS.dep_arr_procedure_type FLIGHT_PLANS.dep_arr_procedure_type FLIGHT_PLANS.dep_arr_procedure_type FLIGHT_PLANS.departure_procedure_type FLIGHT_PLANS.departure_procedure_type FLIGHT_PLANS.departure_procedure_type FLIGHT_PLANS.departure_procedure_type FLIGHT_PLANS.departure_procedure_type FLIGHT_PLANS.departure_procedure_type FLIGHT_PLANS.destination FLIGHT_PLANS.equippage FLIGHT_PLANS.FLIGHT_NAME

FLIGHT_PLANS.origin FLIGHT_PLANS.weight

Ż

HOLD ON ROUTE PLANNED ACTIONS.efc time HOLD ON ROUTE PLANNED ACTIONS.hold fix x HOLD ON ROUTE PLANNED ACTIONS.hold fix y HOLD ON ROUTE PLANNED ACTIONS.inbound direction HOLD ON ROUTE PLANNED ACTIONS.leg_length distance HOLD ON ROUTE PLANNED ACTIONS.leg_length time HOLD ON ROUTE PLANNED ACTIONS.leg_length time HOLD ON ROUTE PLANNED ACTIONS.leg_length type HOLD ON ROUTE PLANNED ACTIONS.leg_length_type HOLD ON ROUTE PLANNED ACTIONS.PA ID HOLD ON ROUTE PLANNED ACTIONS.turn_direction

MANEUVER ENVELOPES.FL ID MANEUVER ENVELOPES.1d t MANEUVER ENVELOPES.1d x MANEUVER ENVELOPES.1d y MANEUVER ENVELOPES.1d z MANEUVER ENVELOPES.lu t MANEUVER ENVELOPES.lu x MANEUVER ENVELOPES.1u y MANEUVER ENVELOPES.lu z MANEUVER ENVELOPES.rd t MANEUVER ENVELOPES.rd x MANEUVER ENVELOPES.rd y MANEUVER ENVELOPES.rd z MANEUVER ENVELOPES.ru t MANEUVER ENVELOPES.ru x MANEUVER ENVELOPES.ru y MANEUVER ENVELOPES.ru z MANEUVER ENVELOPES.TIME

NOMINAL_CLIMB_SPEEDS.ias NOMINAL_CLIMB_SPEEDS.mach NOMINAL_CLIMB_SPEEDS.SOURCE

NOMINAL_DESCENT_SPEEDS.ias NOMINAL_DESCENT_SPEEDS.mach NOMINAL_DESCENT_SPEEDS.SOURCE

PLANNED_ACTION_DURATION.pa_end_time PLANNED_ACTION_DURATION.PA_ID PLANNED_ACTION_DURATION.pa_start_time

PLANNED_ACTIONS.f1_id PLANNED_ACTIONS.PA_ID PLANNED_ACTIONS.pa_source PLANNED_ACTIONS.pa_type PLANNED_ACTIONS.plan_time

```
PRIOR ENCOUNTERS.adv viol end time
PRIOR ENCOUNTERS.ADV VIOL START TIME
PRIOR ENCOUNTERS.display as advisory time
PRIOR ENCOUNTERS.display as priority time
PRIOR ENCOUNTERS.FIRST FL ID
PRIOR ENCOUNTERS.fll viol end x
PRIOR ENCOUNTERS.fll viol end y
PRIOR ENCOUNTERS.fll viol end z
PRIOR ENCOUNTERS.fll viol start x
PRIOR ENCOUNTERS.fll viol start y
PRIOR ENCOUNTERS.fll viol start z
PRIOR ENCOUNTERS.fl2 viol end x
PRIOR ENCOUNTERS.fl2 viol end y
PRIOR ENCOUNTERS.fl2 viol end z
PRIOR ENCOUNTERS.fl2 viol start x
PRIOR_ENCOUNTERS.fl2_viol_start_y
PRIOR ENCOUNTERS.fl2 viol start z
PRIOR ENCOUNTERS.msep distance
PRIOR ENCOUNTERS.msep time
PRIOR ENCOUNTERS.prior viol end time
PRIOR ENCOUNTERS. prior viol start time
PRIOR ENCOUNTERS. SECOND FL ID
```

```
ROUTES.ALONG_ROUTE_DISTANCE
ROUTES.FL_ID
ROUTES.x
ROUTES.y
```

SECTOR SHELVES.SECTOR NUMBER SECTOR SHELVES.SHELF NAME SECTOR SHELVES.volume 1d

SECTORIZATION_PLAN.area_name SECTORIZATION_PLAN.combined_sector_number SECTORIZATION_PLAN.PLAN_TYPE SECTORIZATION_PLAN.SECTOR_NUMBER

SECTORIZATION_SCHEDULE.AREA_NAME SECTORIZATION_SCHEDULE.plan_type SECTORIZATION_SCHEDULE.TIME

SECTORS.center_name SECTORS.sector_name SECTORS.SECTOR_NUMBER SECTORS.volume_id

SECTORS_ENTERED.FL_ID SECTORS_ENTERED.sector number SECTORS_ENTERED.X SECTORS_ENTERED.X SECTORS_ENTERED.Y SECTORS_ENTERED.Z

SPARSE_CELLS.entry_time SPARSE_CELLS.exit_time SPARSE_CELLS.FL_ID SPARSE_CELLS.max_z SPARSE_CELLS.min_z SPARSE_CELLS.TREE_NODE_ID

SPECIAL USE AIRSPACES.airspace_type SPECIAL_USE_AIRSPACES.SPECIAL_USE_AIRSPACE_NAME SPECIAL_USE_AIRSPACES.start_time SPECIAL_USE_AIRSPACES.stop_time SPECIAL_USE_AIRSPACES.volume_id

SPEED CHANGE PLANNED ACTIONS.base_along_route_distance SPEED CHANGE PLANNED ACTIONS.base_time SPEED CHANGE PLANNED ACTIONS.base_value_location SPEED CHANGE PLANNED ACTIONS.base_value_type SPEED CHANGE PLANNED ACTIONS.base_x SPEED CHANGE PLANNED ACTIONS.base_y SPEED CHANGE PLANNED ACTIONS.base_z SPEED CHANGE PLANNED ACTIONS.base_z SPEED CHANGE PLANNED ACTIONS.PA_ID SPEED CHANGE PLANNED ACTIONS.speed

SPEED_RESTRICTIONS_PARAMETERS.PA_ID SPEED_RESTRICTIONS_PARAMETERS.rest_qualifier

SWP_CELL.CELL_ID SWP_CELL.max_altitude SWP_CELL.min_altitude SWP_CELL.sector_number SWP_CELL.x_cell_id SWP_CELL.y_cell_id

TRAJECTORIES.cusp_type TRAJECTORIES.FL_ID TRAJECTORIES.ground_speed TRAJECTORIES.TIME TRAJECTORIES.x TRAJECTORIES.y TRAJECTORIES.z

VECTOR_PLANNED_ACTIONS.PA_ID VECTOR_PLANNED_ACTIONS.VERTEX_SEQUENCE_NUMBER

B-7

VECTOR PLANNED ACTIONS.x VECTOR PLANNED ACTIONS.y

VOLUME_COORDINATES.VERTEX_NUMBER VOLUME_COORDINATES.VOLUME_ID VOLUME_COORDINATES.x VOLUME_COORDINATES.y

VOLUMES.ceiling_altitude VOLUMES.floor_altitude VOLUMES.polygon_type VOLUMES.VOLUME_ID VOLUMES.volume_type

WINDS.blt_x WINDS.blt_y WINDS.blt_z WINDS.direction WINDS.flb_x WINDS.flb_y WINDS.flb_z WINDS.frb_x WINDS.frb_y WINDS.frb_y WINDS.frb_z WINDS.frb_z WINDS.trb_z WINDS.trb_z WINDS.trb_z WINDS.trb_z WINDS.trb_z

WORKLOAD_THRESHOLDS.SECTOR_NUMBER WORKLOAD_THRESHOLDS.threshold_value WORKLOAD_THRESHOLDS.time WORKLOAD_THRESHOLDS.WORKLOAD_MEASURE

Environmental Grid Parameters

Cell_Width

Flight Plan Conflict Probe Parameters

Advisory_Seph Advisory_Sept Priority_Seph Priority_Sept Sepz_H1 Sepz_Lo

Hold PA Parameters

14.4.4 M

Holding_Leg_Length Holding_Pattern_Buffer

Workload Probe Parameters

Ac_Coefficient Airspace_Cfl_Coefficient Altitude_Change_Pa_Coefficient Altitude_Change_With_Restrictions_Pa_ Coefficient Cell_Density_Ratio Density_Coefficient Display_Time_Horizon Flight_Plan_Cfl_Coefficient Hold_Pa_Coefficient Pa_Coefficients Speed_Pa_Coefficient Time_Horizon Time_Interval Vector_Pa_Coefficient

APPENDIX C

FIELD TYPE AND TABLE CROSS REFERENCE

فليته فالمتحد والمتعالم المحافظ المحافظ والمعالمات والمعالمات والمحافظ والمحافظ والمحافظ والمحافظ والمعادين والمحافظ والمح

Below is a list of field types and the tables in which each field type appears. A field type is the last term of the name (for instance, the type of beg-altitude is altitude; the type of holding-pattern-buffer is buffer). Following the table name in parentheses is the modifier of the field type. When a prefix is shown in all caps, the field is also the key (or part of the key) of the table. System parameters are not included in this cross reference.

acceleration AIRCRAFT_ACCELERATION

altitude (see also "z") AIRCRAFT ACCELERATION AIRCRAFT LRC SPEED AIRCRAFT MAX_ENDURANCE_SPEED AIRCRAFT MIN MAX SPEED ALTITUDE CHANGE PLANNED ACTIONS (target) AIRCRAFT CURRENT CLEARANCE CLIMB IAS TO GRADIENT (BEG) CLIMB IAS TO GRADIENT (end) CLIMB MACH TO GRADIENT (BEG) CLIMB MACH TO GRADIENT (end) DESCENT IAS TO GRADIENT (BEG) DESCENT IAS TO GRADIENT (end) DESCENT_MACH_TO_GRADIENT (BEG) DESCENT MACH TO GRADIENT (end) ENVIRONMENTAL CONFLICT FLIGHT PLANS (approved cruise) SWP CELL (max) SWP CELL (min) VOLUMES (ceiling) VOLUMES (floor)

code

STORESS STALLARY WITH STORESS STORESS

FLIGHT PLANS (beacon)

count

BASIC_SECTOR_WORKLOAD_MEASURES (airspace-conflict_) BASIC_SECTOR_WORKLOAD_MEASURES (altitude_change_pa_) BASIC_SECTOR_WORKLOAD_MEASURES (altitude_change_with_restrictions_pa_) BASIC_SECTOR_WORKLOAD_MEASURES (aver_aircraft_) BASIC_SECTOR_WORKLOAD_MEASURES (fp conflict_)

C-1

count (continued) BASIC_SECTOR_WORKLOAD_MEASURES (hold_pa_) BASIC_SECTOR_WORKLOAD_MEASURES (speed_change_pa_) BASIC_SECTOR_WORKLOAD_MEASURES (vector_pa_) COMBINED_SECTOR_WORKLOAD_MEASURES (airspace-conflict_) COMBINED_SECTOR_WORKLOAD_MEASURES (airtude_change_pa_) COMBINED_SECTOR_WORKLOAD_MEASURES (altitude_change_pa_) COMBINED_SECTOR_WORKLOAD_MEASURES (altitude_change_with_restrictions_pa_) COMBINED_SECTOR_WORKLOAD_MEASURES (aver_aircraft_) COMBINED_SECTOR_WORKLOAD_MEASURES (aver_aircraft_) COMBINED_SECTOR_WORKLOAD_MEASURES (fp_conflict_) COMBINED_SECTOR_WORKLOAD_MEASURES (hold_pa_) COMBINED_SECTOR_WORKLOAD_MEASURES (sector_) COMBINED_SECTOR_WORKLOAD_MEASURES (speed_change_pa_) COMBINED_SECTOR_WORKLOAD_MEASURES (vector_pa_)

date

CURRENT TIME

destination

FLIGHT_PLANS

direction

HOLD_ON_ROUTE_PLANNED_ACTIONS (inbound_) HOLD_ON_ROUTE_PLANNED_ACTIONS (turn_) WINDS

distance

AIRCRAFT_TRACKED_POSITION (along_route_) ALTITUDE_CHANGE_PLANNED_ACTIONS (base_along_route_) ENCOUNTERS (msep_) HOLD_ON_ROUTE_PLANNED_ACTIONS (leg_length_) PRIOR_ENCOUNTERS (msep_) ROUTES (ALONG_ROUTE_) SPEED CHANGE_PLANNED_ACTIONS (base_along_route_)

equippage

FLIGHT_PLANS

gradient

CLIMB IAS TO GRADIENT CLIMB MACH TO GRADIENT DESCENT IAS TO GRADIENT DESCENT MACH TO GRADIENT

ias (see also "speed" and "mach")
 NOMINAL_CLIMB_SPEEDS
 NOMINAL_DESCENT_SPEEDS

id

ALTITUDE CHANGE PLANNED ACTION (PA) ALTITUDE RESTRICTIONS PARAMETERS (PA) BASIC SECTOR WORKLOAD MEASURES (TIME INTERVAL) COMBINED SECTOR WORKLOAD MEASURES (TIME INTERVAL) E MSAW AREAS (volume) ENCOUNTERS (SECOND FL) ENCOUNTERS (FIRST FL) ENVIRONMENTAL_CELL_CONTENTS (CELL) ENVIRONMENTAL CELL CONTENTS (VOLUME) ENVIRONMENTAL CELLS (CELL) ENVIRONMENTAL CONFLICT (FL) ENVIRONMENTAL CONFLICT (volume) FLIGHT ID ASSOCIATIONS (FL) HOLD ON ROUTE PLANNED ACTIONS (PA) MANEUVER ENVELOPES (FL) PLANNED ACTION DURATION (PA) PLANNED ACTIONS (PA) PLANNED ACTIONS (f1) PRIOR ENCOUNTERS (FIRST FL) PRIOR ENCOUNTERS (SECOND FL) ROUTES (FL) SECTOR SHELVES (volume) SECTORS (volume) SECTORS ENTERED (FL) SPARSE CELLS (FL) SPARSE CELLS (TREE NODE) SPECIAL USE AIRSPACES (volume_) SPEED CHANGE PLANNED ACTIONS (PA) SPEED RESTRICTIONS PARAMETERS (PA) SWP CELL (CELL) SWP CELL (x cell SWP CELL (y cell) TRAJECTORIES (FL) VECTOR PLANNED ACTIONS (PA) VOLUME COORDINATES (VOLUME) VOLUMES (VOLUME) WINDS (WIND CELL)

location

SPEED CHANGE PLANNED ACTIONS (base_value_)

mach (see also "ias" and "speed")
 NOMINAL CLIMB SPEEDS
 NOMINAL DESCENT_SPEEDS

C-3

measure

```
BASIC_SECTOR_WORKLOAD_MEASURES (density_)
BASIC_SECTOR_WORKLOAD_MEASURES (overall_workload_)
BASIC_SECTOR_WORKLOAD_MEASURES (weighted_pa_)
COMBINED_SECTOR_WORKLOAD_MEASURES (density_)
COMBINED_SECTOR_WORKLOAD_MEASURES (overall_workload_)
COMBINED_SECTOR_WORKLOAD_MEASURES (overall_workload_)
WORKLOAD_THRESHOLDS (WORKLOAD_)
```

name

ADAPTED FIXES (FIX) AIRCRAFT CURRENT CLEARANCE (FLIGHT) AIRCRAFT TRACKED POSITION (FLIGHT) AIRWAYS (AIRWAY) AIRWAYS (fix) E MSAW AREAS (E MSAW) FLIGHT ID ASSOCIATIONS (flight) FLIGHT PLANS (FLIGHT) FLIGHT PLANS (arrival procedure) FLIGHT PLANS (dep arr procedure) FLIGHT PLANS (departure procedure) SECTOR SHELVES (SHELF) SECTORIZATION PLAN (area) SECTORIZATION SCHEDULE (AREA) SECTORS (center_) SECTORS (sector) SPECIAL_USE_AIRSPACES (SPECIAL_USE_AIRSPACE_)

number

```
AIRWAYS (VERTEX_)

BASIC_SECTOR_WORKLOAD_MEASURES (SECTOR_)

COMBINED_SECTOR_WORKLOAD_MEASURES (SECTOR_)

SECTOR SHELVES (SECTOR_)

SECTORIZATION_PLAN (SECTOR_)

SECTORIZATION_PLAN (combined_sector_)

SECTORS (SECTOR_)

SECTORS ENTERED (sector_)

SWP_CELL (sector_)

VECTOR_PLANNED_ACTIONS (VERTEX_SEQUENCE_)

VOLUME_COORDINATES (VERTEX_)

WORKLOAD_THRESHOLDS (SECTOR_)
```

origin

FLIGHT_PLANS

qualifier
ALTITUDE RESTRICTIONS PARAMETERS (rest)
SPEED RESTRICTIONS PARAMETERS (rest)

BOUICE AIRCRAFT_ACCELERATION AIRCRAFT_LRC_SPEED AIRCRAFT_MIN_MAX_SPEED CLIMB_IAS_TO_GRADIENT CLIMB_MACH_TO_GRADIENT DESCENT_IAS_TO_GRADIENT DESCENT_MACH_TO_GRADIENT NOMINAL_CLIMB_SPEEDS NOMINAL_DESCENT_SPEEDS

PLANNED ACTIONS (pa)

speed (see also "ias" and "mach") AIRCRAFT_CURRENT_CLEARANCE AIRCRAFT_LRC_SPEED AIRCRAFT_MAX_ENDURANCE_SPEED AIRCRAFT_MIN_MAX_SPEED (max_) AIRCRAFT_MIN_MAX_SPEED (min_) CLIMB_IAS_TO_GRADIENT CLIMB_MACH_TO_GRADIENT DESCENT_IAS_TO_GRADIENT DESCENT_IAS_TO_GRADIENT DESCENT_MACH_TO_GRADIENT FLIGHT_PLANS (approved_true_air_) SPEED_CHANGE_PLANNED_ACTIONS TRAJECTORIES (ground_) WINDS

string
 FLIGHT_PLANS (approved_route_)

t (see also "time") ALTITUDE CHANGE PLANNED ACTIONS (base_) MANEUVER ENVELOPES (ld_) MANEUVER ENVELOPES (lu_) MANEUVER ENVELOPES (rd_) MANEUVER ENVELOPES (ru_)

temperature

WINDS

time (see also "t")
AIRCRAFT_TRACKED_POSITION
ALTITUDE_CHANGE_PLANNED_ACTIONS (resume_climb_)
BASIC_SECTOR_WORKLOAD_MEASURES (total_fl_)
COMBINED_SECTOR_WORKLOAD_MEASURES (total_fl_)
CURRENT_TIME
ENCOUNTERS (adv_viol_end_)

C-5

time (continued) ENCOUNTERS (ADV VIOL START) ENCOUNTERS (display as-advisory) ENCOUNTERS (display_as_priority_) ENCOUNTERS (msep) ENCOUNTERS (prior_viol_end_) ENCOUNTERS (prior_viol_start_) ENVIRONMENTAL CONFLICT ENVIRONMENTAL CONFLICT (display as advisory) HOLD ON ROUTE PLANNED ACTIONS (EFC) HOLD ON ROUTE PLANNED ACTIONS (leg_length_) MANEUVER ENVELOPES PLANNED ACTION DURATION (pa start) PLANNED ACTION DURATION (pa end) PLANNED ACTIONS (plan) PRIOR ENCOUNTERS (adv_viol_end_) PRIOR ENCOUNTERS (ADV VIOL START) PRIOR ENCOUNTERS (display_as_advisory_) PRIOR ENCOUNTERS (display_as_priority_) PRIOR ENCOUNTERS (msep) PRIOR ENCOUNTERS (prior viol end) PRIOR ENCOUNTERS (prior viol start) SECTORIZATION SCHEDULE SECTORS ENTERED SPARSE CELLS (entry_) SPARSE CELLS (exit) SPECIAL USE AIRSPACES (start_) SPECIAL_USE_AIRSPACES (stop) SPEED CHANGE PLANNED ACTIONS (base) TRAJECTORIES WINDS WORKLOAD THRESHOLDS type ADAPTED FIXES (fix) ALTITUDE CHANGE PLANNED ACTIONS (base_value_) ALTITUDE CHANGE PLANNED ACTIONS (transition_) CLIMB IAS TO GRADIENT (gradient) CLIMB MACH TO GRADIENT (gradient) DESCENT IAS TO GRADIENT (gradient_) DESCENT MACH TO GRADIENT (gradient) FLIGHT ID ASSOCIATIONS (f1_id) FLIGHT PLANS (aircraft) FLIGHT PLANS (arrival_procedure_)

FLIGHT_PLANS (dep_arr_procedure_) FLIGHT_PLANS (departure_procedure_) HOLD_ON_ROUTE_PLANNED_ACTIONS (leg_length_) PLANNED_ACTIONS (pa_)

```
type (continued)
SECTORIZATION_PLAN (PLAN_)
SECTORIZATION_SCHEDULE (plan_)
SPECIAL_USE_AIRSPACES (airspace_)
SPEED_CHANGE_PLANNED_ACTIONS (base_value_)
TRAJECTORIES (cusp_)
VOLUMES (polygon_)
VOLUMES (volume_)
```

value

```
COMBINED SECTOR WORKLOAD MEASURES (block density)
COMBINED SECTOR WORKLOAD MEASURES (cell density)
WORKLOAD THRESHOLDS (threshold)
```

weight

FLIGHT PLANS

x

```
ADAPTED FIXES
AIRCRAFT TRACKED POSITION
AIRCRAFT TRACKED POSITION (velocity_)
ALTITUDE CHANGE PLANNED ACTIONS (base )
ALTITUDE RESTRICTIONS PARAMETERS (rest )
ENCOUNTERS (fll viol end )
ENCOUNTERS (fll viol start )
ENCOUNTERS (fl2 viol end )
ENCOUNTERS (f12 viol start )
ENVIRONMENTAL CELLS (max)
ENVIRONMENTAL CELLS (min )
ENVIRONMENTAL CONFLICT
HOLD ON ROUTE PLANNED ACTIONS (hold fix )
MANEUVER ENVELOPES (1d)
MANEUVER ENVELOPES (1u)
MANEUVER ENVELOPES (rd)
MANEUVER ENVELOPES (ru)
PRIOR ENCOUNTERS (fll viol end )
PRIOR ENCOUNTERS (fll viol start )
PRIOR INCOUNTERS (f12 viol end )
PRIOR & COUNTERS (f12 viol start )
ROUTES
SECTORS ENTERED
SPEED CHANGE PLANNED ACTIONS (base )
TRAJECTORIES
VECTOR PLANNED ACTIONS
VOLUME COORDINATES
WINDS (blt)
WINDS (flb_)
WINDS (frb )
```

у

and the second second second second second second second second second second second second second second second

```
ADAPTED FIXES
    AIRCRAFT TRACKED POSITION
    AIRCRAFT TRACKED POSITION (velocity)
    ALTITUDE CHANGE PLANNED ACTIONS (base )
    ALTITUDE RESTRICTIONS PARAMETERS (rest )
    ENCOUNTERS (fll viol end )
    ENCOUNTERS (fll viol start )
    ENCOUNTERS (f12 viol end )
    ENCOUNTERS (f12 viol start )
    ENVIRONMENTAL CELLS (max )
    ENVIRONMENTAL CELLS (min)
    ENVIRONMENTAL CONFLICT
    HOLD ON ROUTE PLANNED ACTIONS (hold fix )
    MANEUVER ENVELOPES (1\overline{d})
    MANEUVER ENVELOPES (1u)
    MANEUVER ENVELOPES (rd )
    MANEUVER ENVELOPES (ru)
    PRIOR ENCOUNTERS (fll viol end )
    PRIOR ENCOUNTERS (fll viol start )
    PRIOR ENCOUNTERS (f12 viol end)
    PRIOR ENCOUNTERS (f12 viol start )
    ROUTES
    SECTORS ENTERED
    SPEED CHANGE PLANNED ACTIONS (base )
    TRAJECTORIES
    VECTOR PLANNED ACTIONS
    VOLUME COORDINATES
    WINDS (blt)
    WINDS (f1b
    WINDS (frb)
z (see also "altitude")
    AIRCRAFT TRACKED POSITION
    AIRCRAFT_TRACKED_POSITION (velocity_)
    ALTITUDE RESTRICTIONS PARAMETERS (rest )
    ENCOUNTERS (fll-viol end )
    ENCOUNTERS (fll viol start )
   ENCOUNTERS (f12_viol_end_)
   ENCOUNTERS (f12_vio1_start_)
   MANEUVER ENVELOPES (1d)
   MANEUVER ENVELOPES (1u)
   MANEUVER ENVELOPES (rd )
   MANEUVER ENVELOPES (ru)
   PRIOR ENCOUNTERS (fll-viol end )
   PRIOR ENCOUNTERS (fll viol start )
   PRIOR ENCOUNTERS (f12 viol end)
   PRIOR ENCOUNTERS (f12 viol start )
```

z (continued) SECTORS_ENTERED SPARSE_CELLS (max_) SPARSE_CELLS (min_) SPEED_CHANGE_PLANNED_ACTIONS (base_) TRAJECTORIES WINDS (blt_) WINDS (flb_) WINDS (frb_)

C-9

APPENDIX D

INDEX OF TABLE TYPES

	APPENDIX D	
	INDEX OF TABLE TIPES	_
		Pag
	ADAPTED_FIXES	3-7
F	AIRCRAFT ACCELERATION	3-1
	AIRCRAFT CURRENT CLEARANCE	3-1
•	ATECRAFT MAX ENDIRANCE SPEED	3-1
	AIRCRAFT MIN MAX SPEED	3-1
	AIRCRAFT TRACKED POSITION	3-1
	AIRWAYS	3-3
	ALTITUDE_CHANGE_PLANNED_ACTION	3-3
	ALTITUDE_RESTRICTIONS_PARAMETERS	3-3
	BASIC SECTOR WORKLOAD MEASURES	3-4
	CLIME IAS TO GRADIENT	3-1
	CLIMB MACH TO GRADIENT	3-1
	CUMBINED SECION WORKLOAD MEASURES	3-). 2-7
	DESCENT IAS TO CRADIENT	3-7
	DESCENT MACH TO GRADIENT	3-1
	E MSAW AREAS	3-5
	ENCOUNTERS	3-40
	ENVIRONMENTAL CELLS	3-39
	ENVIRONMENTAL CELL CONTENTS	3-39
	ENVIRONMENTAL_CONFLICT	3-44
	FLIGHT_ID_ASSOCIATIONS	3-25
	FLIGHT_PLANS	3-23
	HOLD ON ROUTE PLANNED ACTIONS	3-36
	MANEUVER ENVELOPES	3-28
	NOMINAL CLIME SPEEDS	3-21
4	NUME NAL DESCENT SPEEDS	3-21
	DIANNED ACTIONS	3-31
_	PRIOR ENCOUNTERS	3-42
S [*]	ROUTES	3-42
	SECTOR SHELVES	3-20
	SECTORIZATION PLAN	3-47
	SECTORIZATION SCHEDULE	3-46
	Sectors —	3-3
	SECTORS_ENTERED	3-30
	SPARSE CELLS	3-38
	SPECIAL USE AIRSPACES	3-5
	SPEED CHANGE PLANNED ACTIONS	3-34
	SPEED RESTRICTIONS PARAMETERS	3-35
	SWF_UGLL	3-45
	n–1	

	Page
TRAJECTORIES	3-27
VECTOR PLANNED ACTIONS	3-35
VOLUME COORDINATES	3-6
VOLUMES	3-6
WINDS	3-8
WORKLOAD_THRESHOLDS	3-48

125525

STREETS STREETS

CLARKER I

APPENDIX E

REFERENCES

 E. F. Codd, "A Relational Model of Data for Large Shared Data Banks," <u>Communications of the ACM</u>, vol. 16, no. 6 (June 1970), 377-387.

- W. Kent, "A Simple Guide to Five Normal Forms in Relational Database Theory," <u>Communications of the ACM</u>, vol. 26, no. 2 (February 1983), 120-125.
- 3. C. J. Date, <u>An Introduction to Database Systems</u>, Addison-Wesley, 1981.
- 4. J. J. Martin, <u>Computer Data-Base Organization</u>, Englewood Cliffs, N.J., Prentice-Hall, Inc., 1977.
- 5. J. A. Kingsbury et al., "Trajectory Estimation Algorithmic Specification," MTR-83W152, Vol. 1, The MITRE Corporation, September 1983
- J. A. Kingsbury et al., "Airspace Probe Algorithmic Specification," MTR-83W152, Vol. 2, The MITRE Corporation, September 1983.
- 7. W. P. Niedringhaus et al., "Flight Plan Conflict Probe Algorithmic Specification," MTR-83W152, Vol. 3, The MITRE Corporation, September 1983.
- 8. W. P. Niedringhaus and A. H. Gisch, "Sector Workload Algorithmic Specification, MTR-83W152, Vol. 4, The MITRE Corporation, September 1983.

DIEC