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Lt EXECUTIVE SUMMARY
;3
lﬁ This specification establishes design criteria for an Airspace Probe
' algorithm, part of the initial automation for the advanced automa- :
) tion system of the Federal Aviation Adainistrarion's (FAA's) Air '
. . Traffic Control (ATC) system. The algorithm provides data to ]
g construct a message to air traffic controllers when an aircraft is
ﬁ predicted to get too close to terrain or other areas wherein flight
Y is restricted.
4 Alrspace Probe is designed to be compatible with current air traffic
o« control procedures and its design is an extension of the Enroute
L Minimum Safe Altitude Warning function of NAS Stage A. Airspace
3 Probe extends the geographical coverage by providing a warning for
¥ controllers if an aircraft flight plan penetrates Enroute Minimum

' Safe Altitude Warning areas or Special-Use Airspaces. Airspace
o Probe also extends the time over which & warning may occur by using
the flight plan to predict penetratioms.

Airspace Probe algorithms assume that each airspace area is repre-
sented by a polygonal volume. The geographical coordinates, activa-
tion and deactivation times, and a maximum and minimum altitude have
been provided by adaptation or supervisor interactiom. After boun-
M daries are defined, the Airspace Probe algorithm automatically
detects penetrations of these areas. It processes aircraft trajec-
» tories vwhich are derived from ATC approved flight plans for aircraft
N operating within an Instrument Flight Rule (IFR) cottext. The
) trajectory 1s checked to see if it intersects any Enroute Minimum
Safe Altitude Warning areas or Special-Use Airspaces in the Planning

i: Region. If any intersections are found, data describing the pene-
e , trations are stored in the data base. The Airspace Probe 1s invoked
™ automatically when an incoming aircraft's flight plan is received by

‘ a center, when an aircraft's flight plan is amended and when flight
plans are resynchronized. When any of these things occur, trajec-

. : tories are reprobed to account for the change. If a supervisor
activates and deactivates an area, the trajectories are also
:j reprobed to. incorporate this change.
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l. INTRODUCTION

R

G

:ﬁ The Federal Aviation Administration (FAA) is currently in the
"" process of developing a new computer system, called the

v Y-

Advanced Automation System (AAS), to nelp control the nation's
air traffic. The AAS will consist of new or enhanced hardware
(i.e., Central Processing Units, memories, and terminals) and
new software.
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The new software will retain most or all of the functions in
the existing National Airspace System (NAS) En Route Stage A
software. The algorithms will need to be coded and, in some
cases, revised. In addition, the new AAS software will contain
several new functions that make greater use of the capabilities
of automation for Air Traffic Control (ATC). When fully
implemented, these new functions are intended to detect and
resolve many routine ATC problenms.
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The initial implementation of the AAS, described in the AAS
Specification [1], will provide the ability to detect some
common ATC problems. To meet the requirements of the AAS,
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'?;_‘. several new ATC functions need to be postulated and described.
Ry Four of these functions are described im this document:
Trajectory Estimation, Flight Plan Conflict Probe, Airspace

;}i Probe, and Sector Workload Probe ([Volumes 1, 2, 3, and 4].
—":i Together, they represent an initial level of automation and the
‘;\4 beginnings of the evolution of the ATC system in accordance
X 4,3. with the NAS Plan [2]. The NAS Plan represents an overview of
M the complete set of changes proposed to NAS in the coming

, decade.
E.; 1.1 NEBO.G

vy
b The purpose of this volume is to identify design criteria for
' Airspace Probe. Airspace Probe is one of the advanced automa-
‘ . tion functions called for in the AAS Specification. The design
h 1 criteria specified in this volume are based on the existing NAS
ol and the specification of the AAS. The AAS specification
o) describes the Airspace Probe function and proposed some high-
N level requirements for this function.
T
1.2 Scope

This algorithmic specification presents design criteria for a
o computational framework of Airspace Probe. The framework 1is a
>y set of algorithms which collectively describe how it may be
il possible to detect aircraft that are in danger of violating
certain separation standards with given airspace volumes where

% 1-1




normal flight 18 restricted. It may be viewed as a candidate
Y - for consideration in the final design. However, it 1is not
o intended to be the complete final design for Airspace Probe in
<N the AAS,

N

The framework establishes the requirments for input and output
data and provides a description of the flow of control of data
as it is transferred from inmput to output. Some of the prin-
cipal requirements have been identified in the "Operational and
Functional Description of AERA 1.01" [3]. To the extent pos—
sible, the data are discussed using existing NAS terminology. .

1.3 Organization of This Document

The remainder of Section 1 provides a description of Airspace

g Probe's role in the larger ATC context and in future enhance-
ments of the ATC System. Both the operational considerations
and processing methods of Airspace Probe are summarized. Sec-
tion 2 defines the terminology used in the specification and
discusses the factors which influence the design of the algo-
rithas.

Descriptions of the algorithms are contained in Section 3,
Airspace Probe PFunctional Design, and in Section 4, Detalled
Description. The Airspace Probe function, 1like the other
advanced automation functions, is divided hierarchically (from
top to bottom) into subfunctions, components, and elements
(underlined words in Sections 1 and 2 are critical to the
understanding of this specification and their definitions can
be found in the Glossary, Appendix D). Section 3 specifies the
design, environment, and assumptions of the subfunctions (e.g.,
the First-Order Coarse Filter), and outlines their components
(e.g., Grid Chain Generation). Section 4 provides a detailed
description of each subfunction's components, including their
mission, data requirements, and processing details, and in some
cases includes a discussion of a component's elements,

Appendix A defines the data shared by the various subfunctions
’ of Airspace Probe. (Similarly, Volume 5 of this document
: contains the global data shared by the functions defined in
Volumes 1 through 4.) Appendix B provides a description of
several elements used in several places in Section 4., Appendix
C provides mathematical derivations of certain formulas used in
the specification. Supplementary information concerning poly-
gon penetration computations 1s provided. Appendix D, as
mentioned above, contains a glossary of those terms that are
critical to an understanding of this specification.

1-2
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A Program Design Language (PDL) which describes high-level

" control logic using structured English is used as needed to

describe the algorithms in this specification. A description

of this PDL is contained in Appendix E. Finally, Appendix F
provides a complete list of references.

1.4 Role of Airspace Probe in the Overall Air Traffic Control

System

The Airspace Probe algorithm evolves from the functions of the
current Alr Traffic Control System and the needs of the future
Ailr Traffic Control System as given in the FAA's National Air-
space System Plan [2,4].

1l.4.1 System Context

The Continental United States airspace is partitioned among 20
centers or Air Route Traffic Control Centers (ARTCCs). The
ARTCCs control regions bounded horizontally by polygons that
stretch vertically from the center floor to 60,000 feet. Each
center's airspace i1s further divided into areas, which are in
turn divided into sectors. Areas and sectors are polygonal
regions with floors (either a specified altitude or the center
floor), and ceilings. The sectors of each area are staffed by
a group of air traffic controllers (or controllers) specific-
ally trained for that area.

In the current ATC system, pilots decide their desired means to
reach their destination consistent with current navigational
and ATC practices. This intent is then filed with the ATC sys-
tem as a flight plan and approved as filed or altered by ATC
for operating under Instrument Flight Rules (IFR). Alterna-
tively, flight plans that are executed daily or on a regularly
scheduled basis reside in a data base and are retrieved auto-
matically unless altered or suspended. A flight plan modifica-
tion may be initiated by a controller or the pilot. Advanced
automation functions of the AAS can deal only with those air-
craft filing IFR flight plans.

Controllers are responsible for monitoring flights as they pass
through their sectors and for helping pilots achieve their
objectives. They watch a block of symbols representing the
aircraft's radar track position as 1t moves across a display
console; the aircraft's identity, altitude, and other informa-
tion are also displayed. Controllers institute control actions
as needed to perform such functions as helping pilots avoid
close approaches with other aircraft, honoring pilot requests
for new routes, rerouting flights to avoid special airspaces

1-3
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or severe weather, and queuing aircraft into the major terminal

3 areas,
;* 1.4,1.2 Need for Airspace Probe
2
The FAA has developed an automated tool for the controller, En
e Route Minimum Safe Altitude Warning (E-MSAW), to assist in
:J“ detection of penetration of restricted flight airspaces. In
2‘-} that function, aircraft track positions and velocities are com-
A pared to the coordinates of terrain obstructions to determine
BN if penetrations of minimum safe altitude could -cur. The con- .
’ troller receives a displayed warning upon algc. .aic detection
i of an imminent penetration of minimum safe al wude standards.
P E-MSAW provides the controller with an alert .r potentially
Ry dangerous situations where aircraft might g too close to
& terrain obstructions (matural or man-made). / . ‘g as pilots
e stay on published routes, controllers need > , short-term
warnings when flights stray too close to ter.ain or volumes
-{!’ wherein general flight is restricted. Pilots filing published

. routes are provided with both minimum altitude requirements and
¥ the assurance that no published route penetrates a restricted
‘ flight regime. A flight violating published altitude require-
! ments or penetrating a restricted area implies the need for
"blunder” detection for the controller. Such a detection
device is not a strategic prediction of problems.

With the increase in the use of unrestricted, user-preferred
routes expected as the advancing level of automation allows,

;‘: pilots will run the risk of unintentionally filing too close to
restricted flight airspaces. Controllers need more efficient

W3 long-term warnings for penetrations predicted for this growing

Pon class of flyers.

SN

?3' The Airspace Probe is an extension of the E-MSAW concept. Air-

L X space Probe can alert the controller long periods in advance of

- any projected penetration of pertinent airspace volumes. It

M _ uses an ATC-derived aircraft trajectory rather than track

\’\ information. Airspace Probe provides for an alert not only for

E-MSAW areas but for other areas as well. These could include

,:Gs' NAS-adapted Restricted Areas and Warning Areas, Military Opera- .

DN tions Areas, and other Special-Use Airspac2s. The alert can

i then lead to a resolution of the penetration far in advance of

&,:, projected entry time, thus helping to avoid 1inefficient

*‘. maneuvers while facilitating greater use of user-preferred

BT

. ",I routes,

lﬁ .

BY

R

."TEI 1-4




:“ \]
B
°
-,
2’y
i-:
k-
1.4.2 Role of Airspace Probe in Future System Enhancements
BN
-i} ‘In cthe init!al version of the Advanced Automation System [1],
i{ the Airspace Probe will be only a detection service which
i: provides results for a manual resolution process. Later,
' results will feed into an automatic resolution service. As
, initially conceived, the Airspace Probe dete-:ts conflicts, the
: i display gencration functions are responsible for gathering
T information for the controller and displaying that information,
ﬁﬂ and the controller plans resolution maneuvers for the air-
>3 craft. In a scenario of the evolution of ATC automation [5],
&t - future plans provide for continuing the current strategic
. detection service and decreasing the controller's responsibil- |
o ity for generating resolution maneuvers., This may be done by
53 allowing the controller to choose from a ranked list of alter-
A native resolutions or by providing the automatic resolution
33 service itself.
. Future automation plans also provide that Airspace Probe and
AR related functions will predict and resolve penetrations with an
':J enhanced set of geographic areas and include a mechanism for
f: strategic conflict detection and resolution for dynamic areas
3 (such as weather), as well.
" 1.5 Airspace Probe Summary
jﬂj The Airspace Probe provides an aid for controllers to determine
I if an aircraft flight plan penetrates designated areas called
.:ﬂ "Minimum Safe Altitude Warning Areas” and "Special-Use Air-
. spaces.” Special-Use Airspaces are defined in the Airman's
" Information Manual {6]. These include, but are not limited to,
{f Restricted Areas, Warning Areas, Prohibited Areas, and Military
;j Operations Areas. Each aircraft's planned route of flight ic
-:c compared against all these areas to check for intersections or
N penetrations. If a penetration is found, the identity of the
- area and the penetration coordinates are saved for retrieval
" . and display as appropriate by the display functionms.
A
f;s 1.5.1 Operational Description
O
;?2 ) Airspace Probe operates within the context of the AAS [1]. i

7.

Other functions separate from Airspace Probe provide Airspace ?
Probe with the environmental data needed to predict penetra- '
tions of certain airspaces. These data are discussed 1in
adaptation guidelines {7]. Adaptation is that process of col-
lecting 1important, relatively static environmental data and
storing them in system-accessible data bases. Included in such

1-5
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data are the geographical boundaries of the volumes of airspace
which are used by Airspace Probe.

From a controller's point of view, Airspace Probe (in combina-
tion with the display generating functions, Situation Display,
and Trajectory Estimation) provides information to help detect
penetrations of special airspaces. The Airspace Probe function
uses data describing the Special-Use Airspaces and E-MSAW areas
and maintains the data describing any penetrations predicted.
When a penetration is detected between an aircraft trajectory
and a Special-Use Airspace or E-MSAW area, data for a control-
ler display is updated. This operation is described in more
detail by Swedish et al. [3]. The displays may provide such
details of the penetrations as:

Alrcraft involved

Location

Conflict type

Time to conflict

Graphical display of conflict

From this information, the controller may develop a tentative
resolution approach such as amending the flight plan. This may
be done in the context of the Trial Plan Probe described oper-
ationally by Swedish [3}. If a change in the flight plan is
involved, the controller may receive probe results to make sure
the tentative resolution resolves the penetration and does not
create new ones. If the penetration is not resolved, the con-
troller may try another tentative resolution. If the penetra-
tion 1is resolved, the flight plan change may be accepted (by
the controller) and the flight plan data base is updated (in
functions separate from Airspace Probe). The controller does
not invoke Airspace Probe by itself but always in the context
of a flight plan amendment. The controller has, at all times,
the means to ask for the display of penetrations in a different
form (i.e., graphical rather than textual).

1.5.2 Processing Overview

Data describing special airspaces are maintained in the data
base by their x,y geographical coordinates. Other information
about the area is also maintained such as the airspace identi-~
fication, the minimum and maximum altitude, and the activation
and deactivation times (where applicable). Polygons may be
convex or may be mixed (with some concave angles). Area coor-
dinates may only be changed in adaptation, but the area may be
temporarily activated or deactivated by supervisor request.

1-6
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Alrcraft trajectories for IFR aircraft with valid flight plans

':.' " are constructed by the Trajectory Estimation function. These
: trajectories are maintained as a series of points designating
R x,y (horizontal position), z (altitude) and t (time) at each
o

point. Once these trajectories are available, then Airspace
Probe can derive airspace penetration informatiom.

et Airspace Probe works in tandem with Trajectory Estimation:
Ny whenever the trajectory for an aircraft changes, Airapace Probe
is automatically invoked to maintain the airspace penetrations
. data base. Airspace Probe compares the trajectory against all

pertinent airspaces that are currently active using a series of

N progessively finer filters. The First-Order Coarse Filter and

A Second-Order Coarse process all polygons to accumulate candi-

-«,": date intersecting object polygons. The Fine Filter process

N this object polygon 1ist to determine the intersection coordin-

al ates (1f any). When trajectories intersect an area, a data
structure which maintains information about the penetration is

defined and stored in the data base. Any of the information

maintained in the data base may be available for display to the

- controller.
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Alrspace Probe includes E-MSAW capabilities along with new
capabilities. Inclusion of ar extended set of airspace areas
widens the responsibilities of Airspace Probe over that of
E-MSAW, but the basic purpose remains unchanged and, so, the

algorithms of Airspace Probe remain deeply rooted in the
previous E-MSAW work.

This section introduces terminology used in this specifica-
tion. Also provided is a set of design considerations which
place Airspace Probe firmly within the AAS context.

2.1 System Design Definitioms

Some terms introduced in Section 1 of this specification are of
global interest across the AAS environment and include (4in
order of presentation):

1. Subfunction
2. Component

3. Element
4. Center
5. Areas

6. Sectors

7. Controllers
8. Flight Plan
9. Penetration
10. Adaptation

Other terms of interest only to Airspace Probe are introduced
below.

2.1.1 Airspace Types

Special-Use Airspaces are areas wherein ajrcraft operations are
limited. This section lists and defines the set of Special-Use
Alrspaces referenced in this specification. Airspace types are
further defined in the Airman's Information Manual [6].

e Controlled Firing Areas

Controlled Firing Areas are areas which contain activ-
ities which could be hazardous to nonparticipating
aircraft. A unique feature of these areas is that
activities are suspended if spotter aircraft, radar, or
ground look-out positions indicate that a nonpartici-
pating @ircraft is approaching.

2-1
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e Military QOperations Areas

Military Operations Areas (MOAs) consist of airspace
defined by vertical and lateral 1limits which are
established to separate military training activities
from IFR traffic.

e Prohibited Areas

Prohibited Areas are airspace volumes within which the
flight of aircraft is prohibited. They contain air-
space of defined dimensifons identified by an area on ]
the surface of the earth. These areas are established
for security or other reasons associated with the
national welfare.

@ Restricted Areas

Restricted Areas are airspace volumes within which the
flight of aircraft is restricted. Aircraft activities
within these areas must be confined because of the
content of activities occurring in the area.
Restricted areas denote the existence of unusual, often
invisible hazards.

o Warning Areas

Warning Areas are airspace beyond the three-mile limit
over international waters which may contain hazards and
should not be penetrated during periods of activity.
Even though the activities in warning areas may be as
hazardous as those 1in restricted areas, areas over
international waters cannot be legally designated as
restricted areas.

2.1.2 Modeling Environment Terms

A center represents a volume of airspace for air traffic con-
trol. Enclosing the center is the planni region. The
boundary of the planning region is considered to be some hori-
zontal distance outside that of the center: some 20 to 30
minutes of flying time in all directions.

Trajectory Estimation [Vol. 1] provides Airspace Probe with a
trajectory for each aircraft with an IFR flight plan. A

trajectory 1s a predicted path for the aircraft through the
three spatial dimensions (x, y, z) and time. Each trajectory
is conceptually a continuous, smooth curve ga four dimensions.
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. However, trajectories are modeled as a series of lines (in
15 space-time) called segments, joined together at their end-
‘ points, called cusps. The data base provides trajectory infor-
b mation as a list of cusps:
Wy
* {Ci'(x,y,z,t)iIi'l,...,n}
s The segments are the implied straight lines joining adjacent
a7 cusps. The trajectory is the ordered sequence of these seg-
ments.
. It is convenient for purposes of Airspace Probe to enclose the
-y horizontal extent of the planning region in a grid. The grid
;“}: _ covers the planning region with squares, called cells, aligned
~:‘- with the x,y coordinate axes of the coordinate system used by
\::: Trajectory Estimation. These cells provide a reference for
A geographical features in terms of their location within a
v numbered cell.
-'é:::-* The grid structure associated with E-MSAW is the underlying
.‘-f-: Radar Sort Box grid structure which is used primarily in Radar
M Data Processing. This grid structure was updated to 1incor-
..-,::‘ porate E-MSAW information as described in NAS Stage A Automatic
Tracking specification [8]. The requirements of Airspace Probe
- are satisfied by this grid structure. However, there 1s no
X guarantee that the AAS will incorporate the Radar Sort Box
N concept. Consequently, the remainder of this document refers
A to an Airspace Probe "grid"” to give emphasis to the fact that a
.p;: similar type of grid structure is necessary for Airspace Probe
" algorithms.
T 2.1.3 Airspace Probe Terms
et
R Alrspace Probe works with a trajectory and a set of airspace
NOW volumes. The trajectory is said to belong to the subject air-
craft. The airspace volumes, which are assumed by Airspace
“RY . Probe to be cross-referenced to the grid through adaptation,
..,4. form the set of object polygons.
A
O
\f ; The Airspace Probe algorithm is executed through a sequence of
2 filters. A filter is a logical subalgorithm the input of which
— is a subset of all object polygons and the output of which is a
subset of the input. 1Input to the first filter, called the
. First-Order Coarse Filter, 1is the entire object polygon set.
f Output from the last filter, called the Fine Filter, is the set
::-f: of encounters. An encounter 18 an object polygon penetrated by
o the subject's trajectory. A nominee is an object polygon which
= is input to any filter except the First-Order Coarse Filter.
14
093 2-3
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The subject's trajectory, upon initial processing in Airspace
Probe, must be cross-referenced to the grid., In this process,
the 1list of cells that the trajectory penetrates, called the
grid-chain, is computed. The logical entity responsible for
the cross-referencing is called the grid-chain generator.

“., {.‘..‘. l’,‘l'; ]

2.2 Design Considerations

Environmental adaptation is assumed to record the identities,
geometry and coordinates of all E-MSAW areas and Special-Use
Airspaces (SUAs) that are physically within the planning
region. The E-MSAW areas and SUAs are simple polygons in an
(x,y) projection with flat tops and bottoms. The E-MSAW areas
may cover the planning region giving an approximation to the 1
geography and radar receiving capabilities of the underlying ]
map. They all touch the ground and are under 25,500 feet in 3
altitude. The other SUAs may be detached, floating above the )
planning region. The estimated population of protected air- '

A

A

) ‘i_ XN

e &)
440007

NN
R araala

spaces is about 500 where most of them are E-MSAW polygons.

A typical planning region is a polygon with vertices established ‘
as latitude, longitude points. In environmental adaptation, 4
the planning region is apportioned among multiple cells. Next, '
all E-MSAW areas and SUAs are positioned in the grid as shown
in Figure 2-1. When adaptation is completed, each cell data
element contains the identity of all polygons which intersect
that cell. The opposite 1s also true. Each polygon data
element adapted contains the list of grid cells the polygon
intersects. Maintenance of both the polygon-by-cell and
cell-by-polygon data bases 1is required to provide access to the
cells when the polygons are activated or deactivated, and to
provide access to the polygons when the cells enclosing the
flight plan segment change.
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The E-MSAW function which exists in NAS Stage A has been used
as a source of some of the algorithms of Airspace Probe. The
E-MSAW function has limited warning capabilities in comparison
¥ to those which have evolved for Airspace Probe. E-MSAW

provides a tactical warning message to controllers when air-
;s craft are too close to terrain obstructions, E-MSAW warns of
imminent penetration of airspaces where “imminent"” is defined
to be less than five minutes into the future.

-

' At the other end of the tactical-strategic spectrum, Airspace
i Probe provides information to construct a warning message to
N controllers when planned aircraft trajectories get too close to
v terrain and other Special-Use Airspaces. Using aircraft
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trajectories, Airspace Probe performs the same function without
the temporal limitations.

The algorithm supporting the Airspace Pr,be has evolved from
the E-MSAW algorithm [8,9]. The NAS Adaptation Process [7]
provides the environmental data. Adaptation and the E-MSAW
algorithm can be summarized as shown below:

e E-MSAW Area Adaptation:

1. The airspace of the planning region is divided 1into
a regular grid.

2. The airspace terrain polygons are cross referenced
with respect to the grid.

e E-MSAW é}gotithm:

1. The current position and velocity of the aircraft
are projected ahead for some fixed time period
(nominally two minutes) based on radar track data.

2. The intersections between projected line segments
and polygons are determined.

3. The intersections are reported to the controller.

The two new features of Airspace Probe are incorporation of
additional airspace volumes and the use of the aircraft trajec-
tory for early penetration prediction. In addition, penetra-
tions are maintained in the data base for display to the
controller (either immediate or later display). The Airspace
Probe algorithm works as shown below:

e E-MSAW Area and Special-Use Airspace Adaptation:

1. The airspace of the planning region is divided into
a regular grid.,

2. The E-MSAW areas and Special-Use Airspaces are
crogss-referenced with respect to the grid.

e Airspace Probe Algorithm:

1. The planned aircraft trajectory is examined.

2-6
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2. The intersections between planned trajectories and

polygons are determined.

3. The intersections are stored in the data base.
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3o 3.  AIRSPACE PROSE FUNCTIONAL DESIGN
) X
3-3 This section identifies the environment in which Airspace Probe
T 18 to work in the AAS. The input and output data are identi-
% fied along with activation sequences. At the end of this
) section, the major subfunctions of Airspace Probe are identi-
3 fie1 and a description of each subfunction is provided.
!
-
'.;} 3.1 Environazent
74
; . The prediction process of Airspace Probe uses the stored
polygon information along with the predictions of future posi-~
vl tions for aircraft from Trajectory Estimation to search for
% positions where an aircraft path (in four dimensions) pene-
K. trates an E-MSAW or Special-Use Airspace volume, Figure 3-1
o depicts the Airspace Probe functional environment.
3.1.1 Input Data and Activation
4
'*; The Airspace Probe function requires an initialized data base
; containing various types of data defining the environment. The
{ environment is divided into a regular grid covering the entire
ha x,y extent of the planning region. The (x,y,z,t) coordinates
of E-MSAW and Special-Use Airspaces are input and cross-
T referenced to the grid.
-5
'4 Airspace Probe uses this environmental definition and data
:‘3‘ which specifies the trajectory to be probed. The algorithm |
RS typically processes one alircraft trajectory. In either case,
e the algorithm operates the same way. An aircraft is selected
£ (separate from the Airspace Probe algorithm) and the traiectory
:: is compared against the object polygons. A 1list of those poly-
: gons which intersect the aircraft trajectory is formed and data
Y is stored describing the intersection.
( 3.1.1.1 Input Data
3 Alrspace Probe requires input data through adaptation. Polygon ]
N adaptation ensures that the following data are accumulated .
":.: which describe the E-MSAW and Special-Use Airspace environment:
. e Grid specification
-, e Airspace polygon coordinates, (x,y,z,t), for each \
o4 E-MSAW Area and Special-Use Airspace ;
<
o N
» e Polygons further defined in a polygon data base cross- b
e referenced with the grid l
’ C
> '
f..: 3-1
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Airspace Probe must further be provided with an aircraft's
L trajectory which describes the path the aircraft is predicted’
g to take through the planning region.

£
{q 3.1.1.2 Automatic Activation Sequences

Alrspace Probe may be initiated automatically to determine
penetrations of protected airspace whenever the following
events occur:

=3 y’; YA

e The trajectory estimate for an aircraft changes. This

. could occur when a new aircraft enters the system,
. updates to trajectory time values are made, or a
x candidate plan is being examined by the controller.
Y]
N
‘ﬁ ¢ The time bounds on any one Special-Use Airspace change
" through supervisory action. (See Section 3.1.1.4)
fﬁ 3.1.1.3 Controller Initiating Sequences

A controller may implicitly initiate Airspace Probe when he has !
' used his strategic planning mechanism (i.e., Trial Plan Probe -
' as described by Swedish [2]) to include some alteration in the

aircraft's plan such as a change to the asgsigned altitude or

speed. In these cases, Airspace Probe is invoked automatic-

ally. If the trajectory is not changed, however, the control-

ler should not request Airspace Probe since no new information ]
can be generated. He may only request more information about !
the penetrations already detected and stored.

!
~0

3.1.1.4 Supervisor Activation and Deactivation

The supervisor may implicitly initiate the Airspace Probe when.

he activates or deactivates an area. In this case, the super-

visor would change the time limits on a certain Speclal-Use

. Airspace. This action externally activates an Airspace Probe

' on a (possibly large) population of aircraft. The activation

of Airspace Probe for each aircraft involved in this population

is automatic. This activation sequence 18 not described fur-
ther in this specification.

3.1.2 Output

The penetration detection algorithms of Airspace Probe identify :
encounters and store the data for use by the controller. )
Several types of data are stored (cf: Vol. 5, “"Environmental_

Conflict").

< 3-3
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. e Polygon identification
e @ Alrcraft identification
Wty e Encounter time
R e Encounter coordinates
izﬁ; e Advisory time

3.1.2.1 Information to the Controller

The Alrspace Probe stores penetration information and makes it
available for display by the display function. Any time a
penetration between an alrcraft trajectory and E-MSAW areas or
Special-Use Airspaces is predicted, data for a controller dis- -
play is updated. This data provides information about the

\ A penetrations of all aircraft into E-MSAW and Special-Use
_?xj Airspace polygons such as:
X
.L,; e Aircraft identification
: e Sector, grid, and polygon identification
- e Penetration coordinates
‘élﬁ o Time to penetrations
WP,
).f The display function is maintained as a separate entity. Thus,
%? it has logic of its own to determine encounters eligible for
e display to the appropriate controller, select appropriate data
" to display, provide the desired display format, and choose the
ﬁ logical display on the appropriate logical device.

“1 The display function sorts Airspace Probe encounter data by
A time and generates two types of warnings. If the time to pene-
tration is more than X (system parameter) minutes, an advisory
message is sent to the controller who is currently responsible

Y
gvg for the aircraft., If the time to penetration is less than X
X0y (system parameter) minutes, an alert message is sent to the
% controller responsible at the position of penetration.
o
3;- The display function selects appropriate data for display to
o the controller and provides the display format such as arrange-
x&ﬁ ment, choice of graphic or alphanumeric information, and
:;: (possibly) color of data items. In both the advisory and alert
S messages, the controller 1s presented with information required
ﬂfﬂ to identify the penetration and formulate a resolution. All
s information necessary to support the display function exists in
s the penetrations data base maintained by Airspace Probe.
n','.l
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3.1.2.2 Information to the Supervisor

When areas are activated or deactivated by the supervisor, no
special information is provided from the initiation of Airspace
Probe. However, the display functions should inform the super-
vigor that his request has been honored.

3.2 Design Assumptions

This section describes some assumptions made in the design of
Airspace Probe algorithms. Of special importance are those
agsumptions placed on the context of the environmental data.

3.2.1 Polygon Adaptation

Adaptation of E-MSAW areas and Special-Use Airspace is assumed
in this specification to provide the environmental information
used by Airspace Probe algorithms. As in E-MSAW, the polygons
are assumed to be cross-referenced to a grid where each polygon
data element contains the identity of all the cells it inter-
sects, and each cell data element contains the identity of all
the polygons that intersect it. In particular, the following
data are assumed:

o Cell data element (cf: Vol. 5, "Environmental Cell”)
= cell identification

- the polygon 1identification for each polygon
intersecting this cell

e Polygon data element (cf: Vol. 5, Special Use_ Airspaces
and E_MSAW_Areas)

- polygon identification

- cell identification for each cell this polygon
intersects

~ airspace type (E-MSAW, etc.)
- polygon type (convex, mixed)

- 1list of (x,y) vertices for the polygon

3-5
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~ altitude extent of the polvgen
- time extent of the polygon

The vertices of the polygon are assumed to be stored in a
consistent ordering scheme: “clockwise” 18 wused in this
specification since that convention was adopted by E-MSAW.
Furthermore, this specification assumes that the vertices
stored for a polygon extends the real boundary of the polygon
by a system parameter number of miles. This 18 necessary to
account for the lateral positional uncertainty in a trajec- -
tory. This notion is portrayed in Figure 3-2. ) i

3.2.2 Inherited E-MSAW Assumptions

Several major design assumptions are derived from the design of
E-MSAW [8,9]:

O Y G W |

® Special-Use Airspaces can be processed algorithmically
like E-MSAW polygons are processed.

e It is not necessary to restrict Special-Use Airspace .
Polygons to convex polygons. )

® When trajectories intersect a polygon several times,
certain multiple intersections can be treated as one
unique penetration.

3.3 Subfunctions

Three subfunctions to Airspace Probe are 1identified and
described in this section. Each subfunction refines an input
list of object polygons. At the termination of the Airspace
Probe process, an output set of encounters is produced.

3.3.1 First-Order Coarse Filter

The First-Order Coarse Filter defines a nominee in terms of the
X,y closeness of a polygon to a trajectory. The trajectory
representing the aircraft's path is logically superimposed on
the planning region grid and the grid-chain extracted. Poly-
gons named in each cell of the confining grid-chain are added
to the list of first level nominee polygons. Each such nominee
has the property that the aircraft's trajectory intersects a
grid cell the polygon also intersects. They are, theretore,
"clogse"” (relative to the grid). This process 1is shown 1in
Figure 3-3.
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3.3.2 Second-Order Coarse Filter

The Second-Order Coarse Filter defines a nominee in terms of an
X,y,2,t closeness measure of a polygon to the trajectory. The
polygons identified in the First-Order Coarse Filter are again
compared to the trajectory. A series of interval intersection
tests are performed between trajectory segments and ome- and
two-dimensional circumscribed right rectangles that envelop the
polygon.

3.3.3 Fine Filter

The Fipne Filter defines an encounter in terms of an exact
intersection between the polygon and a trajectory segment. The
polygons identified by the Second-Order Coarse Filter are again
compared to the trajectory segment. Those polygons with the
property that they intersect the aircraft trajectory are
identified.

3.3.4 Encounter Processing

Encounter Prucessing stores information about the encounters
identified by the Fine Filter, This data includes information
gsuch as the aircraft ID, route, altitude, time and position of
penetration, and the identification of the Special-Use Airspace
or E-MSAW area.

3.4 Extendability

Alrspace Probe 1is expected to be enhanced in the future to
predict penetrations of aircraft trajectories against weather
polygons. This might be accomplished by generating 2 series of
static polygons representing the weather cell at various times
t-minutes apart, each with a lifetime of t-minutes or more.
Such an extension requires no changes in the current algo-
rithm, An alternative approach might define polygons to be
dynamic in nature with an implied velocity vector and time
extent. This dynamic nature would force changes in the Air-
space Probe algorithm in two areas.

First, the moving polygon concept does not fit well with the
grid structure serving the First-Order Coarse Filter. There is
no temporal limit in the grid structure, itself, and a moving
area would then cut a "“swath” into the grid. For this reason,
each moving polygon should not be incorporated into the Grid,

but each moving polygon should automatically become a First-
Order Nominee for every aircraft.
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Second, the incorporation of moving polygons into the polygon
population forces several upgrades in the execution of the
Second-Order Coarse Filter and in the Fine Filter. The logic
of these two entities can be easily changed to consider every
polygon a dynamic polygon (with E-MSAW and Special-Use Air-
spaces having an assumed zero-velocity vector). A switch to a
relative geometry (or aircraft centered) coordinate system can
be made at the outset of processing, and the remainder of the
filters executed as specified.
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23] 4.  DETAILED DESCRIPTION

Y

. The penetrat-on det=ction algorithms of Airspace Probe are
arranged 1in a series of progressively more discriminating

filters. Al space Probe 1s composed of a First-Order Coarse

Filter, a Second-Order Coarse Filter, a Fine Filter and an

) Encounter Prccessing routine. Polygons passing through all the
filters are placed on a list of polygons which intersect the
aircraft trajectory. Figure 4-1 illustrates the relationship
of the components in the Airspace Probe.

3 4.1 First-Order Coarse Filter

AN

\ 4,1.1 Mission

_ The First-Order Coarse Filter for Airspace Probe is a mechanism
for quickly selecting the proper subset of polygons (i.e.,
those which may intersect the aircraft trajectory) for further
- Airspace Probe processing. The 1inclusion of Minimum Safe
N Altitude Warning Areas into the population of polygons con~-
N sidered by Airspace Probe makes such a filter mandatory for
reasons of efficiency. There can be, in the adaptation data
base, several hundred Minimum Safe Altitude Warning Areas which

:-}: can describe the topography of the underlying planning region.
‘.:j In fact, the whole planning region could be covered by such
:, polygons.

o

The First-Or-ier Coarse Filter of Airspace Probe is especially

'_ constructed to use stored (adapted) geographical information
o about the location of polygons and information from the
- £ trajectory of the aircraft to eliminate polygons on the basis
. of some a priorl measure of closeness. Conceptually, 1if the
- pat: of the aircraft is contained entirely in the southern
section of a planning region while a polygon is in the north,
i~ the polygon should be eliminated from further processing.
: The selected polygons which are close to the aircraft path
oy resulting from such a coarse filter should be a small subset of
i) the total polygon population. That subset comprises a set of
- nominees. Fven though the aircraft's path 1s close to the
N polygon, the path of the aircraft may or may not intersect the
~a extent of a nominee polygon. Further Airspace Probe processing
o5 is necessary to determine the actual penetration status of the
:’,: aircraft path with respect to each nominee.
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ROUTINE Airspace Probe;

2 PARAMETERS

2 Toc_F1_Id IN;

‘;.-. DEFINE VARLABEES

BT Loc F1.1d.- - - - .The’ identification of the aircraft being
e - .. -probed for airspace conflicts ;.

#H ' o
' CALL First: Order Coarse. Filce't(Loc F1 Id IN),
N ' CALL Second Order_Goarse . Filter; '
p” CALL Fine Filter, .
. CALL Encounter Processing(Loc F1_1d IN);
Y END Airspace_Probe;

B FIGURE 4-1
AIRSPACE_PROBE
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4.1.2 Design Considerations and Component Environment

The First-Order Coarse Filter of Airspace Probe is designed to

provide an efficient mechanism for examining an aircraft
trajectory with respect to the airspace polygon environment.
It uses an adapted grid structure to select a set of nominee
polygons from the polygon population. These may intersect the
trajectory of the aircraft. The complement of the set of
nominees is a set of polygons which clearly do not intersect
the trajectory. To perform its function, the First-Order
Coarse Filter requires input defining the aircraft trajectory
and input defining the environmental polygons cross-referenced
to a grid structure. It produces output defining a 1list of
Nominees.

The sequence of elements associated with the First-Order Coarse
Filter is shown in Figure 4-2. Program design language 1is
provided in this section for each element shown in Figure 4-2
with the exception of Grid and Linear_ Discriminant_Classifier.
A description of those two elements is provided in Appendix B.

Input Data

The 1input data required by the First-Order Coarse Filter
consists of:

e System Global Data Base
- TRAJECTORIES

The aircraft's trajectory 1s obtained from the
trajectories table using the flight identification
input to the Airspace Probe algorithm.

- VOLUMES
The celling altitude of each airspace volume identi-
fied by the grid-chain generator 1is obtained for
checking purposes.

-~ ENVIRONMENTAL_CELL_CONTENTS

A cell identified by the grid-chain generator 1is
cross~referenced to each alirspace polygon Iinter-
secting the cell., The 1identities of each polygon
are retrieved for possible addition to the 1list of
noninees.
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First_Order Coarse Filter
Cusps_To_Segments
Grid_Chain Generation
) Set_Up_Segment_ Scan
b Grid
3 Scan_Segment To Pick Up Cells
ar Grid
Add Box
& Get Lower Left Corner Points
N — — — -
o Grid
Linear Discriminant Classifier

FIGURE 4-2
ELEMENTS OF THE FIRST-ORDER COARSE FILTER
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- g
= - ENVIRONMENTAL GRID_PARAMETERS A
e N
=% The nominal cell width is obtained. -
% = ENVIRONMENTAL CELLS 1
X The extent of a cell is retrieved. In particular, K
. the x and y extents are obtained to construct the S
P boundary of the cell. .
) Output Data
vy
§ The First-Order Coarse Filter produces a list of nominee poly~
o gons which must be processed through the remainder of the
fi Airspace Probe algorithm.
. e Shared Local Data Base
-
A = FIRST ORDER_NOMINEES
;f The 1identifies of the First-Order Coarse Filter
Nominee polygons are stored in this table. These
polygons must have the property that they intersect
: a cell that the aircraft's trajectory intersect and
~ the ceiling altitude of the polygons are above the
N minimum altitude of the trajectory.
- FL_CUSPS
LY
ﬁ The trajectory of the aircraft is brought into local
v storage.
3
oy — SEGMENTS
. The trajectory, which 1s a 1list of cusps, 1is
j arranged to yield an explicit line segment by line
j segment representation.
> 4.1.3 Component Design Logic
& The Airspace Probe First-Order Coarse Filter 1is responsible for
. constructing a 1list of polygons known to be “close"” to the
'y toute of the aircraft. The route of the aircraft is provided
2 by the XYZT-Segments. Figure 4-3 provides a description of the
) control logic for the First-Order Coarse Filter. In the
b element Cusps_To_Segments (Figure 4-4), the trajectory of the
X aircraft is obtained and processed to yield the ordered set of
‘ segments which represents the aircraft's route.
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ROUTINE First_Order_Coarse_ Filter;
PARAMETERS

Loc_F1 Id IN; The Flight Identifica*ion
REFER TO GLOBAL

TRAJECTORLES (N,

VOLUMES IN; .o
REFER TO SHARED LOCAL )
FIRST ORDER_NOMINEES OUT,
FL_CUSPS OUT; -

DEFINE TABLES
GRID_CHAIN VOLUMES The volumes found in the grid chain
describing the aircraft trajectory
volume id The volume identifier
first cusp_time The first cusp before the grid chain

cell containing the volume
all AGGREGATE (volume id,first_cusp_time);
DEFINE VARIABLES -

Loc_F1 1d The Flight Identification
Min  F1 ! A The minimum altitude over the flight
Ceiling_Altitude The ceiling altitude of the polgon

being examined;
#H

FL_CUSPS = SELECT FIELDS time,x,y,2
FROM TRAJECTORIES :
WHERE TRAJECTORIES.fl id EQ Loc_F1 Id :
ORDER BY TRAJECTORIES.time;

CALL Cusps_To_Segments;

CALL Grid Chain Generation (GRID_CHAIN VOLUMES OUT); :

'SELECT FIELDS z :
FROM FL_CUSPS
INTO Hin Fl1 Z
WHERE FL_{ , CUSPS.z EQ MIN(FL_CUSPS.z);

REPEAT FOR FACH GRID_¢ CHAIN VOLUMES RECORD;

SELECT FIELDS ceiling altitude
FROM VOLUMES
TNTO Ceiling Altitude
WHERE GRID_CHAIN VOLUMES.volume id EQ VOLUMES.volume_ id;
IF Min_. Fl Z LT Ceiling Altitude
THEN
INSERT INTO FIRST_ORDER NOMINEES
(all = GRID_CHAIN VOLUMES.all);
END First Order_Coarse_Filter;

. 8"

o g N R

5 AKEEL 2 a2 9 A

FIGURE 4-3
FIRST_ORDER COARSE_FILTER
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"r: o
- 9
fﬁ . ROUTINE Cusps_To_Segments;
o REFER_TO SHARED TOCAL
?; FL_CUSPS IN,
, . SEGMENTS OUT;
DEPINE VARIABLES
21 First Cusp The flag indicating that the first cusp of
fﬁ the trajectory is being processed
b Previous_Time The time of the previous cusp;
#H

First Cusp = "true”
REPEAI FOR EACH FL CUSPS RECORD;
IF First_Cusp EQ "true®

o THEN
T INSERT INTO SEGMENTS
7 (begin = FL_CUSPS.cusp);
A Previous Time = FL_( CUSPS time;
First Cusp = "falge"
ELSE
N UPDATE IN SEGMENTS
s (end = FL ,_CUSPS.cusp)
P WHERE SEGMENTS .begin_t EQ Previous_Time;
o IF FL_ FL CUSPS.time NE MAX (FL_CUSPS. time)
THEN
e T INSERT INTQ SEGMENTS
. (begin = FL_CUSPS.cusp);
) Previous Time ~ FL CUSPS.time;
v END Cusps_jq_Segments-

. FIGURE 4-4
CUSPS_TO_SEGMENTS
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o The Grid Chain Generation (Figure 4-5) represents Airspace

¥ Probe's capability to cross-reference the aircraft's trajectory

) " to the grid structure. The output of this routine is the list

' of all the volumes assoclated with the cells that the
aircraft’s trajectory intersects (in the horizontal plane).

“ In the element Set Up_Segment Scan (Figure 4-6), the slope for
> a trajectory segment 1s cowputed to determine the coordinate
' with the fastest change per unit distance. This 1s done so

that the algorithm may increment the faster-changing variable
A (called the "independent variable®) to step to the mext row (or
. column) of grid cells assuming that the other coordinate will
r'a

change at most one cell in either a positive or negative
direction (see Figure 4~7)., The element also identifies the
cells containing the first and last points on the segment.

Ao

|
At each grid cell, the independent variable is incremented omne I
step in grid-cell coordinates and the dependent variable is '

2

'5: recalculated by the element Scan Segment To Pick Up Cells

Ay (Figure 4-8). The next grid cell is determined from these new

& grid cell values. If it is found that the dependent variable

ﬂ has changed indicating a new row (or column) for the next grid
cell, the element Add Box (Figure 4-9) is invoked to find the

. intermediate cell which has been crossed (see Figure 4-10).

o

5 The element Add Box determines which intermediate cell the

rd trajectory passes through as follows (see Figure 4-11):

1. First, it is determined in what relation the current
cell stands to the previous cell (upper right, etc.)

Second, the point between the two cells is found.

3. Next, the current trajectory segment is compared to
the point between the cells. This enables the
algorithm to determine if the trajectory segment
passes to the right or left of the point. This
: uniquely determines the cell that the trajectory must
pass through in order to reach the current cell. -

i ORI
N
L]

Py “‘I g

e
. B

= 4, lastly, this intermediate cell 1s added to the grid
chain and falls in the proper order.

!
J
A\
B
Ri
i
O
[
-
i
i
<
<
LY
1
L
-

4 The service wutilities Get Lower_Left Corner_Points (Figure
4-12) and Put_Box In Grid Chain (Figure 4-13) perform data
retrieval and depositing to support Add Box. The former
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{:- ..
e ROUTINE Grid_Chain_Generation;
SR PARAMETERS
2] GRID CHAIN VOLUMES OUT;
LT REFER TO GLOBAL
"ENVIRONMENTAL CELL_CONTENTS IN;
Al REFER TO SHARED LOCAL
SN ~ SEGMENTS 1IN;
) DEFINE TABLES
o GRID_CHAIN CEILS The cells the trajectory intersects
¢ cell id~ The cell identifier
first cusp time The time of the first cusp before the
X cell
T GRID_CHAIN_ VOLUMES The volumes within the cells which
;::: intersect the trajectory
SR volume id The volume identifier
"< first cusp_time The time of the first cusp before the
, cell
R TEMP A temporary table
O volume id The volume identifier;
i_\: DEFINE VARIABLES
-‘Q Prev_Box The last cell looked at
5 Box The current cell
Last_Box - The final cell of the trajectory segment
: ?., Slope The Y vs X slope of the segment
.}}: Step X The independent variable increment
kL Step_Y The independent variable increment
¢ Indep Var The independent variable;
o /Ry ## -
. REPEAT FOR EACH SEGMENTS RECORD;
o CALL Set Up_Segment Scan (SEGMENTS pair IN, Box OUT,
N " Last_Box OUT, Slope OUT, Step X OUT, Step_Y OUT,
NN Indep_Var OUT, GRID_CHAIN CELLS OUT);
o CALL Scan_Segment_To_PIck Up Cells (SEGMENTS.pair IN,
" Box IN, Last_: Box IN, siope IN, Step X IN, Step Y IN,
Indep Var IN, GRID_CHAIN CELLS INOUT);
S REPEAT FOR EACH GRID_CHAIN_CELLS RECORD;
it TEMP = SELECT FIELDS volume id
:g FROM ENVIRONMENTAL_CELL CONTENTS
g'-,‘ - WHERE ENVIRONMENTAL CELL , CONTENTS.cell 1d EQ
SAN "~ GRID_CHAIN_CELLS.cell id;
REPEAT FOR EACH TEMP RECORD'
.‘ . INSERT INTO GRID_( CHAIN V. _VOLUMES
ey zvolume 1d = TEMP. volume id, first cusp time =
N GRID_CHAIN CELLS.first _cusp_time);
3 END Grid Chain_Generation;
e FIGURE 4-5
Py GRID_CHAIN_GENERATION
N 4-9
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ROUTINE Set Up Segment Scan;

PARAMETERS
SEGMENT IN,
Box OUT,
last:§3k OouT,
Slope OUT,
Step X OUT,
Step Y _?T"
Indep Var OUT

GRID CHAIN | CELLS OUT;

REFER TO GLOBAL

Environmental_CelL_Width IN

DEFINE TABLES
SEGMENT
begin x
begin y
begin:}
begin t
end x
end y
enq:z
end t
GRID_CHAIN CELLS
cell id
firsE;cusp_time

DEFINE VARIABLES
Box
Last Box
Slope

Step X
Step Y
Indep Var
Delta X
Delta Y

The current trajectory segment
The first cusp of the segment

The second cusp of the segment

The cells intersecting the trajectory
The cell identifier
The time of the first cusp before the
cell;

The first cell intersected

The last cell intersected

The slope vf the segment with respect to
the independent variable

The independent variable increment

The independent variable increment

The independent variable

The segment X extent

The segment Y extent;

FIGURE 4-6
SET_UP_SEGMENT_SCAN
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S
‘a3
b CALL Grid (SEGMENT.begin x IN, SEGMENT.begin y IN,
1R8e "~ Box OUT);
A INSERT INTO GRID CHAIN CELLS
e (cell id = Box, first_cusp_time = SEGMENT.begin t);
Delta X = SEGMENT.end x - SEGMENT.begin x;
NN Delta Y = SEGMENT.end y - SEGMENT.begin y;
DY) Step X = SIGN (Delta X) * Environmental Cell Width;
N Step_Y = SIGN (Delta_Y) * Environmental Cell Width;
~2) Slope = Delta Y/Delta X;
IF ABS(Slope) 1T 1
THEN
;g Indep Var = "X";
o ELSE
< " Indep Var = "Y";
o0 Slope = Delta X/Delta Y;

) CALL Grid (SEGMENT. end x IN SEGMENT.end_y 1IN,
Last Box OUT);
END Set Up Segment Scan;

A3y FIGURE 4~6 (Concluded)
c SET_UP_SEGMENT SCAN
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INDEPENDENT VARIABLE SELECTION
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RO
O
A%
s
NN ROUTINE Scan_Segment_To_Pick Up_Cells;
$~‘_ PARAMETERS
o SEGMENT IN,
Box IN,
Last_Box IN,
-~ Slope IN,
_:'\' . Step_X IN,
s Step Y IN,
:-:: Indep_Var IN,
S GRID CHAIN CELLS INOUT;
REFER TO GLOBAL -
R ENVIRONMENTAL CELLS;
20 REFER TO SHARED LOCAL
Wy SEGMENTS IN;
; 5, DEFINE TABLES
s SEGMENT The current trajectory segment
T begin x The first cusp of the segment
~Ix ~ begin y
oo begin z
% begin t - \
MM end_x The second cusp of the segment
WX end_y
end z
e, end _t
N GRID_CHAIN CELLS The cells intersecting the trajectory
o cell_id The cell identifier
S first_cusp_time The time of the first cusp before the
op "4 cell;
« DEFINE VARIABLES
Y Box The first cell intersected
AN Last_Box The last cell intersected
3. Slope The slope of the segment with respect to the
S independent variable
s s Step X The independent variable increment
' Step Y The independent variable increment
RN Indep Var The independent variable
- Prv_Box The previous cell intersected
o Prv_Box X The minimum X value of the previous cell
N Prv_Box Y The minimum Y value of the previous cell
' Box X The minimum X value of the current cell
Box_ Y The minimum Y value of the current cell
j'\.:: Step Count The number of independent varlable gteps
A X The X coordinate of the current step
:::.;: Y The Y coordinate of the current step;
0
T FIGURE 4-8
™ SCAN_SEGMENT_TO_PICK_UP_CELLS
o
.u;:: 4-13




Step Count = 0;

REPEAT WHILE Box NE l.ast_Box;
Step Count = Step Count + 1;
I : Prv_ Box = Box;
) SELECT FI)LDS min x,min_y
N FROM ENVIRONMENTAL CELLS
o8 INTO X.Y
. WHERE "NVIRONMINNTAL_CELLS.cell id EQ Prv_Box;
b IF Indep ar EQ "X"
. THEN

T X=X+ Step_X;
Y = SEGMENT.begin y + Slope * Step Count;
iﬂ CALL Grid X IN, Y IN, Box OUT)
Py SELECT FIELDS min Ly
£ FROM ENVIRONMENTAL CELLS
&y INTO Prev_Box Y
WHERE ENVIRONMENTAL , CELLS.cell_id EQ Prv_Box;

SELECT FIELDS min_y
-l FROM ENVIRONMENTAL CELLS
< 4 INTO Box_Y
WHERE ENVIRONMENTAL CELLS.cell id EQ Box;
o IF Box Y NE Prv_Box Y
THEN
ra CAL] Add_Box (Prv_Box IN, Box IN, SEGMENT IN,
o GRID_CHAIN_CELLS INOUT);
FLSE
i-'- Y = Y + Step Y;

X = SEGMENT. begin x + Slope * Step_Count;
CALL Grid (X IN, Y IN, Box OUT);
SELECT FIELDS m min X

FROM ENVIRONMENTAL . CELLS

»
i

» INTO Prv_Box_X
2 WHERE ENVIRONMENTAL CELLS.cell id EQ Prv_Box;
oy SELECT FIELDS min_x
- ~FROM ENVIRONMENTAL_CELLS
INTO Box_X
o WHERE ENVIRONMENTAL CELLS.cell 1d EQ Box;
o IF Box X NE Prv_Box X
Sl THEN
"~ CALL Add_Box (Prv_Box IN, Box IN, SEGMENT IN,
- GRID_CHAIN CELLS INOUT);
N INSERT INTO GRID_CHAIN CELLS
::;j (cell_id = Box, first _cugp_time = SEGMENT.begin t);

-7 END Scan Segment To_Pick Up Cells;

FIGURE 4-8 (Comcluded)

o SCAN_SEGMENT_TO_PICK UP_CELLS
b
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e
T
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g
5y ROUTINE Add Box;
o PARAMETERS
. Prev_Box 1IN,
o Box IN,
.;;-Z SEGMENT IN,
N GRID_CHAIN CELLS INOUT;
LN DEFINE TABLES
~,) SEGMENT The current trajectory segment
o begin x The first cusp of the segment
~ begin y
A begin_z
«.:-:-; begin t
e end x The second cusp of the segment
A end y
end z
e end t .
o GRID_CHAIN CELLS The -cells which interseot the traject'oty ¢
7y cell id The cell identifier
'-:1:: first cusp_time The time of the first cusp before the
A cell;
. DEFINE VARIABLES
L5 Prev_Box The previous cell intersected
22 Box The current cell intersected
-7 Prev_Box X The minimum X value of the previous cell
g-';‘: Prev_Box Y The minimum Y value of the previous cell
"o Box X The minimum X value of the curremt cell
™ Box Y The minimum Y value of the current cell
X Side The side of the line where the point is;
X
‘..‘_:‘
ey . FIGURE 4-9
- ADD_BOX
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CALL Get_Lower_Left Corner_Points (Prev_Box IN, Box IN,
T Prev_Box X OUT, Prev_Box . Y OUT, Box X OUT, Box Y OUT)
'CHOOSE CASE
WHEN Box X GT Prev_Box X AND Box Y GT Prev_Box Y THEN
ii__Cééé—ﬁrncai uibLIlﬂlnant Liassif?i?"fSEunnui.btgia——‘_i
IN, SEGMENT.end IN, Box X IN, Box_ Y IN, Side OUT)
.. . IF ‘Side EQ "left”
o - THEN
-'% -+ * , T CALL Put_Box In_Grid Chain (Prev_Box X IN,
¢ ‘ : . . L T Box Y IN, SEGHENT IN, GRID_( CHAIN CELLS INOUT);
i . ELSE
CALL Put_Box - Ia:Grid | Chafn.(Box.X IN, Prev Box Y IN,
" SEGMENT IN, GKID CHAIN_GELLS, mour),
WHEN Box X GT Prev__ v Box X AND Box Y LT Prev | Box Y THEN
CALL Linear Discriminant Classifier (SEGMENT .begin 1IN,
~ SEQMENT.end IN, Box X IN, Prev_Box Y IN, side OUT)
"*IF Side EQ "left”
THEN
CALL Put_Box In Grid Chain (Box X IN, Prev Box Y IN,
~ SEGMENT IN, GRID CHAIN_CELLS INOUT);

ELSE
T CALL Put_Box In Grid Chain (Prev_Box X IN,
Box Y IN, SEGMENT IN, GRID cuAm CELLS INOUT);
WHEN Box X LT Prev Box X AND Box Y GT Prev Box Y THEN
CALL Linear Discriminant Classifier (SEGMENT.begin IN,
~ SEGMENT.end IN, Prev Box X IN, Box Y IN, Side OUT);
IF Side EQ "left"
THEN
CALL Put_Box In Grid Chain (Box X IN, Prev Box Y IN,
SEGMENT IN, GRID CHAIN CELLS INOUT)

ELSE
CALL Put_Box In _Grid Chain (Prev_Box X IN, Box Y IN,
SEGMENT IN GRID CHAIN CELLS INOUT)
WHEN Box X LT Prev Box X AND Box Y LT Prev Box Y THEN
CALL Linear Discriminant nt Classifier (SEGMENT. begin IN,
" SEGMENT.end IN, Prev_ Box X IN, Prev Box Y IN, Side OuT)
IF Side EQ "left"
THEN
CALL Put_Box In Grid Chain (Prev_Box X IN,
Box_Y 1IN, TSEGMENT . IN, GRID CHAIN CELLS INOUT)
ELSE
CALL Put_Box In Grid _Chaln (Box X IN, Prev_Box Y IN,
T SEGMENT IN, GRID CHAIN CELLS INOUT),
END Add_Box;

FIGURE 4-9 (Concluded)
ADD_BOX
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INTERMEDIATE GRID CELL RECOGNITION
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INTERMEDIATE GRID CELL DETERMINATION
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§ ROUTINE Get_Lower Left Corner_Points;
S PARAMETERS
Prev_Box IN,
. Box IN,
! Prev_Box X OUT,
? Prev_Box Y our,
-~ Box X OUT,
X Box Y OUT,
REFER TO GLOBAL
~ ENVIRONMENTAL CELLS IN;
. DEFINE VARIABLES
: : Prev Box The previous cell intersected
o Box The current cell intersected
L Prev_Box X The minimum X value of the previous cell
Prev Box Y The minimum Y value of the previous cell
\ Box X The minimum X value of the current cell
i + Box Y The minimum Y value of the current cell;
SELECT FIELDS min x,min y
d FROM ENVIRONMENTAL CELLS
' INTO Prev_Box X, Prev Box Y
> WHERE ENVIRONMENTAL CELLS. cell id EQ Prev_Box;

SELECT FIELDS min x,nin y
FROM ENVIRONNENTAL CELLS
INTO Box X, Box Y
WHERE ENVIRONMENTAL CELLS.cell 1d EQ Box;
END Get Lovwer_left_Corner Points,

4

i FIGURE 4-12

Y- GET_LOWER _LEFT CORNER_POINTS
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ROUTINE Put_Box_In Grid_Chain;
PARAMETERS

T X IN,

Y IN,

SEGMENT 1IN,

GRID_CHAIN CELLS INOUT;
DEFINE TABLES

SEGMENT The current trajectory segment
begin x The first cusp of the segment
begin_y
begin z
begin t
end x The second cusp of the segment
end_y
end 2
end t
GRID_CHAIN CELLS The cells intersecting tlie trajectory
cell id The cell identifier
first_cusp_time The time of the first cusp before the
cell;
DEFINE VARIABLES
X The X coordinate of the point
Y The Y coordinate of the poiant
" Cell 1d The cell which includes the point (X,Y);

CALL Grid (X IN, Y IN, Cell Id ouT);
INSERT INTO GRID CHAIN CELLS
(cell _id = Cell Id, first cusp_time = SEGMENT.begin t);

END Pu;_nox_ln_prid_pﬁhin;

FIGURE 4-13
PUT_BOX_IN GRID_CHAIN
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2 obtains the lower (least y) left (least x) hand cormer poinf,
,‘Ej for two boxes. The latter inserts a cell identification (along
' with the time at the segment initial point) into the grid-chain
o table.

¥ 4.2 Second-Order Coarse Filter

\“1' .

4.2.1 Mission

P2

First-Order Coarse Filter processing has identified a set of
Nominee polygons. The Second-Order Coarse Filter is a finer
filter which processes the First-Order Nominee polygons to
reduce the set of potentially intersecting polygons. At this
level of granularity, “"close” 1is defined so as to include only
those nominee polygons (approximated by the smallest right
rectangle aligned square to the coordinate axes) which inter—
sect the trajectory segments. The polygons passing this filter
o4 are examined in greater detail in the Fine Filter.

.‘-’rw“v"a' o
2P et et

4,2.2 Désign Considerations and Component Environment

s,

o,

In the Second-Order Coarse Filter, the algorithm accesses, for
the first time in Airspace Probe, the actual dimensions of the
four-dimensional polygons. However, the polygons, themselves,
are not processed, but enclosed in a parallelepiped. The
extents in the x, y, z, and t dimensions are used to comnstruct
the parallelepiped (Figure 4-14). One-dimensional intersection
tests alone on this volume rapidly eliminate non-candidate
polygons, especially those not intersecting the trajectory in
the altitude and time dimensions (dimensions not incorporated
into the First~Order Coarse Filter).

&4

ot 'L‘JJ)

.

The sequence of elements associated with the Second-Order
Coargse Filter is given in Figure 4~15. Program design language
is provided in this section for each element of Figure 4-15
with the exception of Linear Discriminant Classifier. A
description of that element is provided in Appendix B.

et S

- Input Data
The input data required by the Second-Order Coarse Filter
§ consists of: h
%
‘ »
{
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FIGURE 4-14
APPROXIMATION OF AN AIRSPACE BY
RECTANGLES IN EACH ORIENTATION PLANE
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Linear Discriminant _Classifier

FIGURE 4-15
ELEMENTS OF THE SECOND-ORDER COARSE FILTER
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e System Global Data Base
- SPECIAL USE_AIRSPACES

The activation and deactivation times associated
with 1ndividual polygous are retrieved to support
time interval intersection tests.

= VOLUME_COORDINATES

The (x,y) coordinates of each vertex of each polygon
are contained in this table. Only thé maximum and
minimum x's and y's are obtained. The ceiling and
floor altitudes for the polygon are used to describe
the vertical extent.

e Shared Local Data Base
- SEGMENTS

The aircraft's trajectory has been stored for
Ailrspace Probe use as an ordered sequence of 1line

segments. Each trajectory segment 1is checked for
possible intersection with parallelepipeds
containing First-~-Order Nominees. :

= FIRST_ORDER_NOMINEES

This table contains the identity of each polygon
thought to be "close™ to the trajectory.

Output

The Second-Order Coarse Filter produces a 1ist of nominee
polygons which must be processed through the remainder of the
Airspace Probe algorithm,

o Shared Local Data Base
-~ SECOND_ORDER_NOMINEES

The identities of the polygons which are identified
by the Second-Order Coarse Filter are stored in this
table. These polygons must have the property that a

parallelepiped enclosing the volume intersects the
trajectory of the aircraft.
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- 4.2.3 Componuat Design Logic
D The Second-01ter Coarse Filter (Figure 4-16) examines each
O Firs:-0Order Ncainee to determine if an intersection can exist
e with the ai-rraft trajectory. Each nomince is processed
Y separately, f rst by obtaining the maximum and minimum x, y, z,
- and t values .cross the polygon. This first step is performed
- by the element Retrieve Polygon Extents (Figure 4-17).
- Each trajectory segment, beginning with the cusp associated
with the nominee, is examined for potential intersectiomns.
A Each segment passing through the process undergoes tests
ﬁ}j against the rectilinear space circumscribed about the polygon
o being checked. To perform this test, a sequence of filtration
b steps are performed. The two major steps check if the aircraft
.. trajectory segment intersects: (1) the extent of the polygon
-~ in single dimensions (Figure 4-18), and (2) the extent of the
AT polygon in certain planes (Figure 4-19). If an intersection is
;{j not found at any particular step, the aircraft trajectory will
,fti not intersect the polygon. Consequently, the polygon 1is
NS rejected as a Nominee immediately 1f this condition is detected.
) The first step, given in the element One Dim Checks (Figure
NN 4-20), sets up comparisons of the aircraft trajectory segment
- with the extent of the polygon. The comparigsons done in
O Segment_Vs_Segment_Intersection (Figure 4-21) check to see if
e the l-dimensional extent of the trajectory segment intersects
- the 1-dimensional extent of the polygon in corresponding
. dimensions. The order in which dimensions are checked should
e be ordered in such a way as to take advantage of the
f}: distribution of trajectory segment and polygon data. For
,3 example, if most aircraft trajectory segments input to the
23 Second~Order Coarse Filter indicate that checking the altitude
o would drop half the cases but checking one of the horizontal
b dimensions would drop only a quarter of the cases, then the
3R altitude check should be made before the horizontal checks.
55 The second step, given in the element Two _Dim Checks (Figure

7 4-22), sets up comparisons of the extent of the aircraft
. trajectory to the extent of the polygon in various orientation
planes. The comparisons done in Segment_ Vs Plane Intersection

- (Figure 4-23) check to see if the 2-dimensioral extent of the

:t; trajectory segment intersects the 2-dimensjonal extent of the

:;: polygon. Only the x-y, y-z, x-z, and z-t planes are examined.

-(: It is not necessary to check the x-t and y-t planes or the

‘-f x-y-z volume since the planes checked account for these

. orientations. The Second-Order Coarse Filter examines the ‘
ﬂ? polygon from the various orientation planes 1n this coarse f
A9 i
* t
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ROUTINE Second Order_Coarse Filter;
REFER TO SHARED LOCAL
SEGMENTS 1IN,
FIRST ORDER_ NOMINEES 1IN,
SECOND ORDER NOMINEES O OuT;

DEFINE TABLES
POLYGON_EXTENTS The extents of the polygon in each
dimension N
min x The minimum value of the x dimension
min y The minimum value of the y dimension
min z The minimum value of the z dimension
min t The minimum value of the t dimension
max x The maximum value of the x dimension
max_y The maximum value of the y dimension
max z The maximum value of the z dimension
max t The maximum value of the t dimension;

DEFINE VARIABLES
Segment Intersection This flags a segment intersection
Plane Intersection This flags a plane intersection;
#H
REPEAT FOR EACH FIRST ORDER NOMINEES RECORD;
CALL Retrieve Polygon Extents
(F FIRST ORDER NOMINEES.volume id IN, POLYGON |_EXTENTS OUT)
REPEAT FOR EACH SEGMENTS RECORD
WHERE SEGMENTS.begin | time GE
FIRST ORDER NOMINEES first cusp_time AND
FIRST ORDER ] _NOMINEES .volume_id IS NOT IN
SECOND ORDER NOMINEE.volume id;
CALL One_ Dim Checks (SEGMENTS .pair IN, POLYGON_EXTENTS IN,
Segment Intersection OUT);
IF Segment_Intersection EQ “true”
THEN
T CALL Two Dim 1 Checks (SEGMENTS.pair IN,
" POLYGON |_EXTENTS IN, Plane_Intersection oUT);
IF Plane Intersection_gg "true”
THEN
" INSERT INTO SECOND_ORDER_NOMINEES
(all = FIRST ORDER NOMINEES.all);
END Second Order_Coarse Filter;

FIGURE 4-16
SECOND_ORDER_COARSE_FILTER
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e ROUTINE Retrieve Polygon Extents;
N PARAHBTERS
kg Volume 1d IN,
s POLGON_EXTENTS OUT;
b REFER TO GLOBAL
SPECIAL USE_AIRSPACES 1IN,
s VOLUME_COORDINATES IN;
et DEFINE TABLES
e POLYGON_EXTENTS The extents of the polygon in each
s dimension
Ny min x The minimum value of the X extent
o min y The minimum value of the Y extent
By min z The minimum value of the Z extent
N min t The minimum value of the T extent
D max_x The maximum value of the X extent
*‘Q max y The maximum value of the Y extent
"':E‘; max z The maximum value of the Z extent
1 max t The maximum value of the T extent;
St DEFINE VARIABLES
: Volume Id The volume identifier
e Start Time The activation time of the polygon
:;.‘-: Stop_ Time The deactivation time of the polygon;
o DEFINE CONSTANTS
AN Earliest Possible Time The earlist representable time
Ty Latest_Possible Time The latest representable time;
FIGURE 4-17
. RETRIEVE_POLYGON_EXTENTS
2
~0
‘Q
4
b
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IF Volume_Id IS IN SPECIAL_USE AIRSPACES.volume_id
THEN

T SELECT FILLDS start_time,stop time
FROM SPECIAL | USE . AIRSPACES
INTO Start Time Stop Time
WHERE <PECIAL USE AIRSPACES volume id Volume Id;

ELSE ¥ Volume Id must be for an E-MSAW area
T Start _Time = Earliest_Possible Time;
Stop_ Time = Latest Possible Time,

INSERT INTO POLYGON_EXTENTS
min t = Start_Time, max t = Stop Time);

UPDATE IN POLYGON_EXTENTS

(min x = VOLUME_COORDINATES.x)

WHERE VOLUME_COORDINATES .volume_id EQ Volume Id AND :
VOLUME COORDINATES .x EQ MIN TVOLUHE COORDINATES.x) AND
POLYGON EXTENTS.min t Q Start_’ Time-

UPDATE IN POI.YGON_EXTENTS

znax x = VOLUME_COORDINATES.x)

WHERE VOLUME COORDINATES volume id EQ Volume Id AND
VOLUME COORDINATES . x EQ MAX TVOLUME COORDINATES.x) AND
POLYGON |_EXTENTS .min t Q Start Time,

UPDATE IN POLYGON EXTENTS

(min_y = VOLUME_COORDINATES.y)
WHERE VOLUME COORDINATES.volmne id EQ Volume_Id AND
" VOLUME COORDINATES.y EQ MIN (VOLUME COORDINATES. y) AND
POLYGON EXTENTS.min t _Eg Start Time,
UPDATE IN POLYGON EXTENTS
(max Ly - VOLUME ,_COORDINATES. y)
WHERE VOLUME COORDINATES.volume id EQ Volume Id AND
T VOLUME_COORDINATES.y EQ MAX (VOLUME_COORDINATES.y) AND
POLYGON | EXTENTS.min t EQ " Start T:lne'
UPDATE IN POLYGON EXTENTS
(min_z = VOLUMES.floor_altitude)
WHER.E VOLUMES .volume . id E EQ Volume Id AND
POLYGON EXTENTS.min t EQ Start Time,
UPDATE IN POLYGON EXTENTS
(max z = VOLUMES. ceiling altitude)
WHERE VOLUMES.volume_id EQ Volume Id AND
POLYGON EXTENTS . min t EQ Start Time,
END Retrieve Polygon Extents; H

FIGURE 4-17 (Concluded)
RETRIEVE_POLYGON EXTENTS
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AN ROUTINE One_Dim Checks;
R PARAMETERS

N SEGMENT 1IN,

e POLYGON_EXTENT IN,

: Segment_Intersection In All Dimensions OUT;
N DEFINE TABLES
-:' SEGMENT The current trajectory segment

Y begin x The first cusp of the segment

- begin_y
293 begin 2

::." begin t

w-j end x The second cusp of the segment
Lo end y

% end 2

“ end t

s POLYGON_EXTENT The extent of the polygon in each
g dimension

N2 min x The minimum value of the X extent
N min y The minimum value of the Y extent
\"; min z The minimum value of the Z extent
N min t The minimum value of the T extent
o max x The maximum value of the X extent
N max_y The maximum value of the Y extent
o max z The maximum value of the Z extent
o max_t The maximum value of the T extent;
R DEFINE VARTABLES

- Segment Intersection In All Dimensions Flag

I Segment_Intersection Flag;
1.%

Ay
AN

G . FIGURE 4-20
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3 Segment_Intersection_In All Dimensions = "false"; -

. CALL Segnent Vs Segment " Intersection (SEGMENT. begin t IN,
g~ SEGHENT.end t IN, POLYGON EXTENT.min t IN,

33 POLYGON_EXTENT.max t IN, Segnent Intersection OUT);

™ IF Segment " Intersection EQ "true”

A THEN

' T CALL Segment Vs_Segment_Intersection (SEGMENT.begin z IN,

- SEGHENT.end z IN, POLYGON EXTENT.ain z IN,
e POLYGON_EXTENT.max z IN, Segnent Intersection OUT);

N IF Segment Intersection EQ “true”

3 THEN
N " CALL Segment Vs _Segment_Intersection (SEGMENT.begin x IN,

T SEGMENT. end x IN, POLYGON EXTENT.min x IN,
POLYGON_EXTENT.max x IN, Segment Intersection ouT);
: IF Segment_ Intersection EQ "true”
'I'HEN
CALL Segment Vs Segment Intersection
35 T (SEGMENT. begin_y IN, SEGHENT.end_y IN,
POLYGON_EXTENT. min Ly IN, POLYGON EXTENT . max .y IN,

@ Segment__ Intersection OUT-T,

%y IF Segment . Intersection | EQ "true”

¥ THEN

. ~ Segment_Intersection In_All Dimensions = “true”;

X END One_ Dim Checks;

T

» FIGURE 4-20 (Concluded)
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ii ROUTINE Segment Vs Segment Intersection;

; - PARAHETERS

28 " Segment_Minimum IN,

‘1 Segment Maximum IN,

o1 Polygon Minimum IN,

Jf Polygon Maximum IN,

’ Seg-ent Intersection OUT;

DEFINE VARTABLES

5 Segment Minimum The minimum value of the segment extemt
d for a given dimension

" Segment Maximum The maximum value of the segment extent
(7. for a given dimension

; Polygon Minimum The minimum value of the polygon extent

for a given dimension

2 Polygon Maximum The maximum value of the polygon extent
iy for a given dimension A
3 g:gnenq_;nteraection The flag for a segment/polygon intersection;
! IF Segment Minimum GT Polygon Maximum OR

) Segment Maximum LT Polygon Minimum

THEN
,i Segment Intersection = "false";
y ELSE

3 Segment Intersection = “true";
% END Segment Vs Segment Intersection;

FIGURE 4-21
SEGMENT_VS_SEGMENT INTERSECTION

| RS

TR A
.

i

4-33

§ o AR

Pl

=

PO e, . e e a e
.t T e, PRRY PN Y -
. e et PR -



B N . e r - v, it it e o . T,
L 2 ST Ny X X - A% 1N - P I R N L e e R R AN R A . R A R A I PR

Wilaa

2T - AT

>

ROUTINE Two Dim Checks;

s PARAMETERS
’ SEGMENT IN, -
) POLYGON_EXTENT 1IN,
8 Plane Intersection In All Orientations OUT;
4 DEFINE TABLES
% SEGMENT The current trajectory segment
;‘ begin x The first cusp of the segment
R begin y
: begin 2z
N begin t
* end x The second cusp of the segment
> end_y
A end z

end t
‘ POLYGON EXTENT The extent of the polygon in each
5 dimension v
: min x The minimum value of the X extent
) min y The minimum value of the Y extent
2 min z The minimum value of the Z extent

min t The minimum value of the T extemnt
i max X The maximum value of the X extent
\, max y The maximum value of the Y extent
: max z The maximum value of the Z extent
max t The maximum value of the T extent;
N DEFINE VARIABLES
- Plane Intersection In All Orientations Flag

Plane_Intersection Flag;
)
$ FIGURE 4-22
i TWO_DIM_CHECKS
“..
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Plane_ Intersection In All Orientations = "false";

CALL Segment_Vs_Plane ] Intersection (SEGMENT.begin t IN,
T SEGMENT. begin z IN, SEGMENT.end_t 1IN, Sm.end z IN,
POLYGON | EXTENT. -:ln t IN, POLYGON mm.nx t IN,
POLYGON EXTENT.min z IN, POLYGON EXTENT.max z IN,
‘Plane Intertection OU.'I-'T H

IF Plane_Intersection EQ "true”

THEN
CALL Segment Vs_Plane Intersection (SEGMENT.begin x IN,

T SEGMENT. begin z IN, SEGMENT.end x IN, SEGMENT.end z IN,
POLYGON_EXTENT. lin x IN, POLYGON mm.ux x IN.
POLYGON ] | EXTENT.min z IN, PCI.YGGI m.ux z IN,
Plane Intersection OUT);
IF Plane_Intersection EQ “true”
THEN
CALL Segment Vs_Plane Intersection (SEGMENT.begin y IN,
smm.beg:ln z IN, SEGMENT.end y IN,
SEGMENT.end z IN, POLYGON_EXTENT. lin__y N,
POLYGON mm.lax_y IN, POLYGQI EXTENT.min z IN,
POLYGON_EXTENT.max 2 IN, Plane Intersection OUT);
IP Plane_Intersection EQ ' true”

—EALL Segment Vs_Plane Intersection
"(SEGMENT .bDegin x IN, SEGMENT.begin y IN,
SEGMENT.end x IN, “SEGMENT. end y IN,
POLYGON_] EXTENT.min L x IN, POLYGON ] EXTENT.I&: x IN,
POLYGON | i EXTENT. Iin_y IN, POLYGON | | EXTENT. llax_y IN,
Plane Intetcection Ollﬁ.
IF Plane_Intersection EQ "true”

Plane Intersection In All Orientations = “true”;

END Two_Dim_Checks;

FIGURE 4-22 (Concluded)
TWO_DIM_CHECKS
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ROUTINE Segment Vs Plane Intersection;

PARAMETERS .
§Egneng_8tarq_p‘;§,
Segment Start V IN,
Segment End U IN,
Segment " end V IN,
Polygon Minimum U IN,
Polygon | Hiniuul \') IN,
Polygon | Mnxilul U IN,
Polygon | anilul v IN,

Segment _ - Intersection OUT;

DEFINE VARIABLFES
Segment Start_U

Segment_Start V
Segment End U
Segment End V
Polygon Minimum U
Polygon | Mininu- \
Polygon | Haxiuun U
Polygon | aniuun \
Plane _ Intersection
First_ " Side

Side

The value of the U coordinate for the
first cusp of the segment

The value of the V coordinate for the
first cusp of the segment

The value of the U coordinate for the
second cusp of the segment

The value of the V coordinate for the
second cusp of the segment

The minimum U extent of the polygon

The minimum V extent of the polygon

The maximum U extent of the polygon

The maximum V extent of the polygon

The segment/plane intersection flag

The side of the segment on which the
first polygon vertex lies

The side of the segment on which the

current polygon vertex lies;

FIGURE 4-23

SEGMENT_VS_PLANE_INTERSECTION
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Plane_Intersection = “true®;

CALL Linear > Discriminant | CIauifier (Segment_Start_U IN,
Seg-ent Stcrt v IN, Seglent End U IN, Segnent End V IN,
Polygon H:I.nim U . IN, Polygon | H:l.nim V IN, First s:l.de ouT);

CALL L‘lneu' Discriminant cmu.ﬁer (Seglent Start U IN,
SCpent Starl: vV 1IN, Seglent End U IN, Seglent End V . IN,
Polygon_Maximum U IN, Polygon Minimum V IN, Side OUL);

IF Side EQ Pirst Side

CALL Linear Discriminant Classifier (Segment Start U IN,
Seglent Start V IN, Segnent End U IN, Segnent End V . IN,

Polygon Maximum U IN, Polygon Maximum V IN, Side OUD);
IF Side EQ First Side
THEN

T CALL Linear_Discriminant Classifier (Segment_Start U IN,
Segnnt Start V 1IN, Seglent End U IN, Seg-ent End V IN,

Polygon Minimun U . IN, l’olygon Maximun  V IN, Side OUTT
IF Side EQ First Side

" Plane Intersection = “false";

END Segment Vs Plane Intersection;

FIGURE 4-23 (Concluded)
SEGMENT_VS_PLANE_INTERSECTION
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manner. The entire polygon 18 not examined but rather the
smallest rectilinear space square to the coordinate akes
circumscribed about it.

To deterrine whether a segment 1intersects a given rectangle
coarsely describing the extent of the polygon in a certain
orientation plane, a linear discriminant is used. The Linear
Discriminant Classifier 1s described in Appendix B. With the
information it provides , one can classify points in the
orientation plane as being left or right of the trajectory
segment. A trajectory segment will intersect the rectangle
about the polygon extent (in a given plane) if points of the
polygon are found both to the left and to right of the segment
(1.e. a8 1line of the rectangle must cross the segment).

4.3 Fine Filter Processing

4,3.1 Mission

The Second-Order Coarse Filter processing has identified a set
of Nominee polygons that are close to, but do not necessarily
intersect, the aircraft's trajectory. The Fine PFilter
processing now must determine whether the given polygons do
indeed intersect the alrcraft's trajectory. The processing for
each polygon 18 more involved than that in the coarse filters
since the polygons may have concave sides and the exact points
of intersection in 4-space must be determined. The information
found by the Fine Filter is passed on to Encounter Processing
to set up the relevant global data structures.

4.3.2 Design Considerations and Component Envirorcment

In the Fine Filter, the coordinates of the vertex points of
each Second-Order Nominee are used to construct line segments
to test for intersection with a trajectory segment. For
efficlency reasons, the logic should consider convex and
nonconvex polygons separately.

The sequencing of elements associated with the Fine Filter is
given in Figure 4-24. Program design language 1is provided in
this section for each element of Figure 4-24 with the exception
of Find Polygon Boundary Intersections, Linear Discriminant
Classifier, and Time To Violation. A description of these
elements is provided in Appendix B.
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Fine Filter
Convex ¢ Polygon Intersection Check
Find Polygon Boundary_. Intersections
Linear Diacrilinant Classifier
Time !l‘o Violation
Mixed Polygon Intersection Check
Find Polygon Boundary_. Intersections
Linear Discriminant ._Classifier
Time To ) Violation
Group_. Into | Intersection Pairs
Vertical Violation Check
Find Enct Violation Points

FIGURE 4-24
ELEMENTS OF THR® FINE FILTER
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Input

The input data required by the Fine Filter consists of:
o System Global Data Base
- VOLUMES
The volume type 1is obtained--either “convex" or
"mixed.” This fileld is used to determine which
polygon intersection test routine to use.

= VOLUME_COORDINATES

The vertex points of the polygons are obtained for
line intersection tests.

e Shared Local Data Base
- SEGMENTS

The trajectory of the aircraft is stored locally as
an ordered sequence of line segments.

- SECOND_ORDER_NOMINEES

This table contains the 1dentity of each polygon
passing the tests of the Second-Order Coarse Filter.

Output

The Fine Filter produces a list of environmental conflicts
which are stored locally.

= ENVIRONMENTAL CONFLICT DATA
This table contains all information necessary to
identify an encounter. This table is inmput to
Encounter Processing.

4.3.3 Component Design Logic

The Fine Filter (Figure 4-25) examines each Second-Order Nomi-
nee separately to determine if an intersection truly exists
with the aircraft trajectory. To perform this task, three steps
are taken. First, the extent of the horizontal penetration is
determined. Second, the extent of the vertical penetration is
determined. And third, the points of intersection are found.
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ROUTINE Fine_Filter;
REFER TO GLOBAL

VOLUMES IN;
REFER TO SHARED LOCAL
SEGMENTS IN
SECOND_ORDER NOMINEES IN;
DEFINE TABLES
~ SECHENT_INTERSECTION_POINTS The table of all intersections
time The time of the intersection
type Notes a boundary or interior intersection
last_cusp time The time of the last cusp before the
intersection
INTERSECTION PAIRS The table of all in/out intersections
start_time The time of the intersection going in
stop_time The time of the intersection going out
begin x Start cusp of segment on which intersection
begin y occurred '
begin z
begin_t
end x End cusp of segment on which intersection
end y occurred
end z
end t

all AGGREGATE (start_time,stop_time,begin x,begin y,begin z,
begin t,end x,end y,end z,end_t);
DEFINE VARIABLES

Polygon Type Concave or mixed concave/convex polygon

Vertical Violation Flag indicating intersection in the
vertical dimension

Encounter Flag indicating that the trajectory
intersects the polygon;

FIGURE 4-25
FINE_FILTER
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‘-4 REPEAT FOR EACH SECOND_ORDER_NOMINEE RECORD;
SELECT FIELDS polygon type
FROM VOLUMES
o, INTO Polygon Type
2N WHERE VOLUMES.volume id EQ SECOND_ORDER_NOMINEE.volume id;
+H REPEAT FOR EACH SEGMENTS RECORD
2 WHERE SEGMENTS.begin_time GE

SECOND ORDER | NOMINEE. first ._cusp_time; -
IF Polygon_'rype EQ "convex”
THEN

" CALL Convex ¢ Polygon Intersection Check

" i zSEGMBN'IS.pair Ii, SECOND_| oanm NOMINEES .volume id IN,
oA SEGMENT_INTERSECTION | POINTS INOUT),

b ELSE

) CALL Mixed Polygon Intersection Check

Yip (SEGMENTS.pair IN,

e SECOND_ORDER muNEEs.volune id 1IN,

5% SEGMENT_INTERSECTION_POINTS INOUT);

Pl CALL Group_Into Intersection Pairs

(SEGMENT IN'I‘ERSECTION POINTS IN, INTERSECTION_ PAIRS OUT),
Encounter = “"false”;
Y REPEAT FOR EACH INTERSECTION PAIRS RECORD;
Pl T CALL Vertical Violation Check (INTERSECTION PAIRS INOUT,
p SECOND ORDER NOMINEES.volume id IN,
Vertical Violation ouT);
5 IF Vertical Violation EQ EQ "true”

oy THEN

P T Encounter = “true”;

% ELSE

E' " DELETE FROM INTERSECTION PAIRS

A " WHERE (INTERSECTION PAIRS.all EQ
. Iu'rmszcnon |_PATRS.all);

ki IF Encounter EQ “true”

23 THEN

;.f:: " CALL Find Exact_Violation Points (INTERSECTION PAIRS IN,
241 SECOND_ORDER_NOMINEES.volume id IN);
2 END Fine Filter;

i FIGURE 4~25 (Concluded)
¥y FINE_FILTER
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The first step deals with the horizontal extent only. Convex

~ and Mixed polygons are treated differently in Coovex Polygon

Intersection Check (Figure 4-26) and a  Mired Polygon_

Intersection Check (Figure 4-27), respectively; the objective

is to check all sides of the polygon for possible penetra-

tions. This 1is done to 8creen out polygons which are very

close to the aircraft's trajectory but do not intersect 1it.

. The detail: of this step are taken primarily from E-MSAW

documentation [8,9]. Appendix C of this document contains

updated details. The outcome of this process is information

concerning the preliminary points of penetration (more

specifically, the times associated with these points) in the

horizontal extent. The number of intersection points may be

one (for trajectories which begin or end in the polygomn), two

(for Convex and Mixed polygons), or more thap two (for Mixed
polygons).

The hor’zontal points of penetration to be considered are
selected by considering the relation of the trajectory segment
to the polygon. If the trajectory begins/ends in the polygon,
then the starting/stopping point 1s considered as one point of
an intersection pair with the intersection of the polygon side
as the other. If the trajectory segment intersects only two
sides of either type polygon, these are used. If the trajec-
- tory intersects a Mixed polygon in several places, a set of
intersection pairs will be formed. Each pair will consist of
an entry point and exit point from the polygon. Th-se penetra-
tion points are grouped into “"enter-exit” pairs in the element
Group_Into_Intersection Pairs (Figure 4-28).

The second ~tep examines the vertical extent of penetration for
each interscction pair. This is done in the element Vertical_
Violation Check (Figure 4-29). Figures 4-30 and 4~31 1llus-
trate this step. Since the polygons are defined by minimum and
maximum altitudes, there can be at most two points of penetra-
tion per segment in vertical extent. The process begins by
assuming the vertical points lie immediately over the hori-
zontal points of penetration (h} and h,) and intersect the
aircraft trajectory (denoted by "x"s). en these points are
compared with the extent of the polygon in the vertical dimen-
sion. If both vertical penetration points 1lie within this
range, the exact points of intersection have already been found
and the polygon is added to the list of encounters. If both of
the vertical penetration points lie above the polygon or both
lie below, then the trajectory does not intersect the polygon,
the polygon i8 screened out and rejected.
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331 ROUTINE Convex Polygon Intersection Check;
B PARAMETERS
- SEGMENT 1IN,
‘ Volume Id IN,
G SEGMENT_INTERSECTION POINTS INOUT;
2 DEFINE TABLES
% SEGMENT The current trajectory segment -
x1 The first cusp point of the segment
ey y1
Sy gl
3 A tl
3 xg The second cusp point of the segment
g y
- 22
s t2
R begin AGGREGATE (x1,yl)
". end AGGREGATE (x2,y2)
3‘4’% SEGMENT_INTERSECTION POINTS The intersections with the polygon
EN time The intersection time
type The intersection location
. “"boundary” of "interior” .
3% last_cusp_time The time of the last cusp before
' the intersection
ORIENTATIONS The orientation of the cusps (IN or OUT)
>3 begin orient The orientation of the first cusp !
begin time The time of the first cusp !
L end orient The orientation of the end cusp
t?;ij end_time The time of the end cusp
;m time The time to violation;
& DEFINE VARIABLES
L Iosum Counter The IN/OUT intersection counter
Begin Orient The orientation of the first cusp
53 Begin Time The time of the first cusp
R End_Orient The orientation of the second cusp
‘a End Time The time of the second cusp;
i\x
- FIGURE 4-26

CONVEX_POLYGON_INTERSECTION_CHECK
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CALL Find Polygon Boundary Intersections (SEGMENT IN, Volume Id
— IN, ORIENTATIONS OUT, SEGMENT INTERSECTION_POINTS INOUT);™
* CHOOSE CASE
WHEN Iosum Counter EQ 2 THEN
T INSERT INTO SEGMENT | INTERSECTION POINTS
. (time = SEGMENT.t1, type = "interior",
last_cusp time = SEGMENT.tl);
INSERT INTO SEG!EN'I INTERSECTION_POINTS
(time = SEGMENT.t2, type = "interior”,
last_cusp time = SEGMENT.t2);
WHEN Iosum Counter EQ -2 THEN
— ¥ do nothing #;
OTHERWISE
SELECT FIELDS begin orient, begin time
FROM ORLENTATIONS
IN'].‘O Begin Orient, Begin Time
WHERE ORIENTATIONS.time EQ MIN (ORIENTATIONS.time)
IF Pegin ,_Orient EQ "in"

E

T INSERT INTO SEGMENT _. INTERSECTION POINTS
(time = = Begin ' Time, type = "interior"”,
last_cusp_! time = Begin . Time);
SELECT FIELDS end | orient, end time
TIONS
INTO End Orient, End Time
HHER.E ORTENTATIONS.time EQ MAX (ORIENTATIONS. time)
IF End Orient EQ "in"

E

T INSERT INTO SEGMENT_INTERSECTION POINTS
(time = End 'rine, type = "interior”,
. last_cusp_time = End Time);
END Convex Polygon . Interaection Check;

FIGURE 4-26 (Concluded) .
CONVEX_POLYGON_INTERSECTION_CHECK
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ROUTINE Mixed Polygon Intersection Check;

PABAHBTERS

sxcm IN,
Volume IJ IN,

SEGMENT INTERSECTION POINTS INOUT;

DEFINE TABLES
~ SEQEENT

x1
yl
zl
tl
x2
y2
22
t2

The current trajectory segment

The first cusp point of the segment

The second cusp point of the segment

begin AGGREGATE (x1,yl)
end AGGREGATE GREGATE (x2,y2)
SEGMENT INTERSEC’ ' INTERSECTION POINTS The intersections with the polygon

time
type

last_cusp_time

ORIENTATIONS
begin orient
beg:ln time
end otient
end | time
time

DEFINR VARIABLES

osum Counter

Begin Oriemt

hg:ln Time

End Orient

End | Time

The intersection time
The intersection location
"boundary” of "interior"
The time of the last cusp before
the intersection
The orientation of the cusps (IN or OUT)
The orientation of the first cusp
The time of the first cusp
The orientatin of the end cusp
The time of the end cusp
The time to violation;

The IN/OUT intersection counter
The orientation of the first cusp
The time of the first cusp

The orientation of the second cusp
The time of the second cusp;

FIGURE 4-27

MIXED_PQLYGON INTERSECTION CHECK
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23 CALL Find Polygon Boundary Intersections (SEGMENT IN, Volume Id
b2 . IN, ORIENTATIONS QUT, SEGMENT INTERSECTION_POINTS INOUT);
LN CHOOSE_CASE
13 WHEN Iosum Counter EQ 2 THEN
NG = INSERT INTO SEGMENT INTERSECTION_POINTS
(time = SEGMENT.tl, type = "interior",
e last_cusp_time = SEGMENT.tl);
2N WHEN Iosum Counter EQ -2 THEN
AT ¥ do nothing #;
2 OTHERWI SE
I$ SELECT FIELDS begin orient, begin time
FROM ORIENTATIONS :
5 INTO Begin Orient, Begin Time
3 WHERE ORIENTATIONS.time EQ MIN (ORIENTATIONS.time);
N2 IF Begin Orient EQ "in”
3 THEN
X 2=
R INSERT INTO SEGMENT_INTERSECTION POINTS
(time = Begin Time, type = "interior”,
. last_cusp time = Begin Time);
AN SELECT FIELDS end orient, end time
v FROM ORIENTATIONS
b INTO End Orient, End Time
W WHERE ORIENTATIONS.tIme EQ MAX (ORIENTATIONS.time);
IF End Orient EQ "in"
C THEN
"X INSERT INTO SEGMENT_INTERSECTION_POINTS
-ij'_ﬁ (time = End Time, type = "interioxr”,
2 last_cusp_time = End Time);
o END Mixzed Polygon_Intersection Check;
R4 FIGURE 4-27 (Concluded)
33 MIXED_POLYGON_INTERSECTION CHECK
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ROUTINE Group_Into_Intersection Pairs;
PARAMETERS :
~ SECMERT INTERSECTION POINTS IN, -
INTERSBCTION PAIRS OUT :
: REFER TO SHARED LOCAL 3
; SEGMENTS 1N; .
DEFINE TABLES
SEGMENT_INTERSECTION POINTS The intersection points
time The intersection time
type The location of the intersection
(boundary or interior)
last_cusp_time The time associated with the last
. cusp before the intersection
N INTERSECTION PAIRS The intersections grouped into the
3 enter and exit violation points
start_time The time associated with the
. intersection entering the polygon
stop_time The time associated with the
intersection exiting the polygon ‘
5 '+ begin x The segment on which the intersection ;
i lies !
’; begin y (the first cusp) ;
begin =z k
: begin t
end x (the second cusp)
end_y
end z
"end t :
segment AGGREGATE (begin x,begin y,begin z,begin t, _ '
_ end x,end y,end z,end t), :
DEFINE VARIABLES
Point The flag indicating the first or last :
¥ : point of a segment 1
15 Start_Time The time of the first cusp of a segment;
FIGURE 4-28

GROUP_INTO_INTERSECTION_PAIRS
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DELETE FROM SEGMENT_INTERSECTION_ POINTS
T WHERE NOT ( SEGMENT_INTERSECTION POINTS.time EQ
~ MIN (SEGMENT_INTERSECTION_POINTS.time) OR
SEGMENT_INTERSECTION POINTS.type EQ "boundary” OR
SEGMENT INTERSECTION POINTS,TIME %"
m (SEGMENT_INTERSECTION POINTS ) );
Point = “start” H
REPEAT FOR EACH SEGMENT_INTERSECTION POINTS RECORD
~ IF Point EQ “start”

T Start_Time = SEGMENT_INTERSECTION_POINTS.time;
SEGMENT = SELECT FIELDS ALL
FROM SEGMENTS
wnm (SEGMENTS .begin t EQ Start Time);
INSERT INTO INTERSECTION PAIRS (start_time =
NT_INTERSECTION POINTS.time, segment = SEGMENT);
Point = “"stop”;
ELSE
UPDATE IN INTERSECTION PAIRS (stop_time =
SEGMENT INTERSECTION_POINTS.time)

WHERE INTERSECTION PAIRS..tart time EQ Start Time;
Point = “"start” H

END Group_Into_Intersection_Paira;

FIGURE 4-28 (Concluded)
GROUP_INTO_INTERSECTION PAIRS
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ROUTINE Vertical Violation Check;

PARAMETERS

INTERSECTION DATA INOUT,

Volume Id IN

Vertical Violation OUT;

REFER TO GLOBAL
VOLUMES IN;
DEFINE TABLES
ON_DATA

start_time
stop_time
begin x
begin y
begin z

begin t
end x
end y
end 2
end t;

DEFINE VARTABLES

Volume Id
Vertical Violation

Floor
Ceiling
Start_Time
Stop_Time
Begin T
Begin Z
End T

Z Vel
T

T

T2
21
2

The intersections grouped into the

enter and exit violation points

The time associated with the
intersection entaring the polygon

The time associated with the
intersection exiting the polygon

The segment on which the intersection
lies

(the first cusp)

(the second cusp)

The volume identifier

The flag indicating that a violation in
the vertical dimension has occurred

The minimum vertical extent of the polygon

The maximun vertical extent of the polygon

The time of entrance violation

The time of exit violation

The first cusp time

The first cusp altitude

The second cusp time

The second cusp altitude

Average vertical velocity on the segment

Intermediate variables

FIGURE 4-29

VERTICAL VIOLATION CHECK
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_ SELECT FIELDS floor_altitude,ceiling altitude
o FROM VOLUMES
! INTO Floor,Ceiling ‘
X WERB VOLUMES .volume_id EQ Volume Id;
] SELECT FIELDS start_ time s8top_time begin z,begin t,end z,end t
R - FROM INTERSECTION DATA
IN'.l'O Start Tile,Stop Time,Begin Z,Begin T,End Z,End T;
ZVel'(Besinz-mdz) / (Mdr-negin'r),
1= Start_ Time - Begin T;
T2 = Stop Time - End T;
z1-zVe'I*n+negin Z;
22-2Ve1*1'2+ne31nz-
IF (z1 GT Ceiling AND Z2 GT Ceiling) OR
(21 I.'r Floor AND Z2 LT Floor)
THEN
Vettical_Violation = “false";

R AT
B At e

P e

Fa ¥ W
o

ELSE
IF Z1 GT Ceiling

IE

Start_Time = Tl + (Ceiling - Z1)/Z Vel;
IF Z1 LT Floor

7o

Start Time = T1 + (Floor ~ Z1)/Z Vel;
IF 22 GT Ceiling

E

o
st_p7

" Stop_Time = T2 + (Ceiling - 22)/Z Vel;
IF 22 LT Floor

: }}, '

boos

]

Stop_Time = T2 + (Floor - 22)/Z Vel;
UPDATE IN INTERSECTION DATA
start_time = Start ' T:lne, stop_time = Stop Time);
Vertical | Violation = "true”
END Vertical Violation Check;

Iy

FPIGURE 4-29 (Concluded)
VmICAL_VIOLATION_CHECK
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! VERTICAL PENETRATION CHECK
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If neither of the above cases hold, then the process must
determine the true points of intersection. Thi: is dome in
Find Exact_Violation Points (Figure 4-32) by first computing
the difference between the assumed penetration altitude
(denoted by "aj"s in Figure 4-31) and the altitude boundary
of the polygon. From the aircraft's verti:al velocity
(approximated by consideration of segment data) und the above
difference in altitude, a new time of intersection is computed.

After the intersection times have been found, the true four-
dimensional extent of penetration 1is determined by projecting
in x,y and z using their respective derived velocities. For
the mixed polygon case with multiple intersection points, only
the first-in and last-out points of penetration will be
recorded, The case is i1llustrated in Figure 4-33.

4.4 Encounter Processing

4.4.1 Mission

The Fine Filter has determined that an encounter is present for
the given aircraft trajectory segment. Encounter Processing

records the relevant information about the encounter in the
global data base. The list of Encounters is used elsewhere 1

the system for the display of conflict information. '

4.4.2 Design Considerations and Component Environment

This component exists to copy information from the local data
base into the global data base.

Input
The input data required by Encounter Processing consists of:
e System Global Data Base
- CURRENT TIME

The current system time is stored in this table.

4-54
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AN ROUTINE Find Exact Violation Points;
n PARAMETERS
X INTERSECTION POINTS 1IN,
W Volume_Id IN-
REFER TO SHARED LOCAL
; ENVIRONMENTAL CONFLICT DATA OUT;
SHNE DEFINE TABLES
'»;.: INTERSECTION POINTS The intersections grouped into the
> enter and exit violation points
& - start_time The time associated with the
intersection entering the polygon
- stop_time The time associated with the
< intersection exiting the polygon
! begin x The segment on which the intersection
) lies
’ begin y (the first cusp)
begin z : !
P begin t ‘ !
: end x (the second cusp)
end_y .
end z .
end_t;
. DEFINE VARIABLES
i Volume Id The volume identifier
5 Start_Time The time of entrance violation ‘
Stop Time The time of exit violation y
< Begin T The first cusp time R
“ Begin X The first cusp X
Begin Y The first cusp Y
" Begin Z The first cusp altitude \
o End T The second cusp time j
e End X The second cusp X
" End Y The second cusp Y _ '
End Z The second cusp altitude
First_In The intersection point when the trajectory
v first enters the polygon .
] Last_Out The intersection point when the trajectory :
) last exits the polygon K
" : Avg X Vel The average velocity in X over the segment X
“ Avg Y Vel The average velocity in Y over the segment
‘ Avg_z_Vel The average velocity in Z over the segment; '
ei :
b FIGURE 4-32 R
N FIND_EXACT VIOLATION_POINTS
3
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‘(i SELECT FIELDS start time
NS FROM INTERSECTION_POINTS
INTO First_In
WHERE INTERSECTION POINTS.start time EQ
~ " MIN (INTERSECTION_POINTS.start_time);
- SELECT FIELDS stop_time
N FROM INTERSECTION POINTS
N INTO Last_Out

WHERE INTERSECTION POINTS.stop time EQ
T MAX (INTERSECTION_POINTS.stop_time);

SELECT FIELDS begin x begin _y,beg:ln z,begin t,

end x,end y,end : z,end t
5 FROM INTERSECTION_POINTS
i INTO Begin X,Begin Y,Begin Z,Begin T,End X,End Y,End Z,End T
i WHERB INTERSECTI(N POINTS .start_| time EQ First Tine,

Avg_X Vel = (End X - Begin X) / (End T - Begin T);

-3 Avg Y Vel = (End Y - Begin V) / (End T - Begin T);
3 Avg_Z Vel = (End_Z - Begin 2) / (End T - Begin T);
; ‘ X = Begin X + Avg_X Vel * (Start_T - Begin T);

Y = Begin Y + Avg_Y Vel * (Start T - Begin ' , T);

Z = Begin Z + Avg Z Vel * (Start T - Begin | T),
INSERT INTO ENVIRONMENTAL CONFLICT DATA

» (time = Start_Time, x = X, y = Y, altitude = Z,
. volume id = Volume  1d);

SELECT FIELDS begin x,begin _y,begin_z,begin t, .
end x,end y,end : z,end t
FROM INTERSECTION ] POINTS
- INTO Begin X, Beg:ln Y,Begin Z,Begin T,End X,End Y,End Z,End T
u WHERE INTERSECTION ) POINTS.stop time EQ Stop 'r:lne,
Avg_X Vel = (End X - Begin X) / (End T = Begin T);
Avg_Y Vel = (End_Y - Begin Y) / (End_T - Begin T);
Avg_Z Vel = (End_Z - Begin 2) / (End_T - Begin r),
X = Begin X + Avg_X Vel * (Stop T - Begin T);
Y = Begin Y + Avg_Y Vel * (Stop T - Begin T);
Z = Begin Z + Avg_Z Vel * (Stop_T - Begin 'I‘),
INSERT INTO ENVIRONHENTAL CONFLICT DATA
time = Stop Time, x = "X, y = Y, altitude = Z,
volume id = " Volume  1d);
END Find ] Euct Violation Points;

FIGURE 4-32 (Concluded)
FIND_EXACT_VIOLATION_POINTS
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FIRST-IN AND LAST-OUT SELECTION
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e Shared Local Data Base

- ENVIRONMENTAL CONFLICT DATA

33

‘-;}} Information stored locally which includes the enter

' and exit positions of the trajectory with respect to

iy each penetration. Altitudes and times are also

P 2 given,

Y

= Output

e Encounter Processing updates the global data base to include:

3.; e System Global Data Base

o

2:9 -~ ENVIRONMENTAL CONFLICTS

3

o Encounter information is stored for access by other

[ system functioms.

o o )

'5 4.4.3 Component Design Logic

o

3 Encounter_Processing (Figure 4-34) 1is essentially a “"house-
keeping” "function used to record the encounters found for a

ol given aircraft. The data recorded in the table ENVIRONMENTAL

g CONFLICT_DATA by the Fine Filter is used. The time that the

ot system should display this predicted penetration to the

Tg cognizant controller is given as "now.”
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ROUTINE Encounter_ Processing;
PARAMETERS
Toc ﬁ _1d; The local Flight Identifier
REFER TO SHARED LOCAL
ONMENTAL CONFLICT DATA IN;
REFER TO GLOBAL
' TIME 1IN,
ENVIRON}EI'.I.‘AL CONFLICTS OUT;
DECLARE VARIABLES
' Loc F1 1d The local Flight Identifier;
REPEAT FOR_EACH ENVIRONMENTAL CONFLICT DATA RECORD;
INSERT INTO ENVIRONMENTAL CONFLICT
(f1 id = Loc_F1 1d,
time = ENVIR(R‘IENTAL , CONFLICT DATA.time,
x = ENVIRONMENTAL ( CONFLICT DATA.x,
y®= ENVIRMN’IAL CONFLICT | ’ DATA.y,
altitude = BNVIRONHENTAL CONFLICT ' DATA.altitude,
volume 1d = ENVIR(NHBNTAL CONFLICT DATA.volume id,
display as advisory_time = CURRENT TIME.time);
END Encounter_Processing;

FIGURE 4-34
ENCOUNTER_PROCES SING
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APPENDIX A
AIRSPACE PROBE DATA TYPES
FL_CUSPS
Il ™ | x | y | =z |

cusp AGGREGATE (time,x,y,z)

This table contains the cusps associated with the trajectory
being examined.

TIME The time associated with the cusp point

X The x coordinate of the cusp point
y The y coordinate of the cusp point
z The z coordinate of the cusp point
SEGMENTS

| BEGINTIME |  beginx | beginy |  beginz |

| endtime | endx | endy | endz

+-4

begin AGGREGATE (begin time,begin x,begin y,begin z)

end AGGREGATE (end time,end x,end y,end z)

pair AGGREGATE (begin time,begin x,begin y,begin z,end time,
end x,end_y,end z)

This table contains the trajectory segments associated with
the current trajectory being examined.
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e BEGIN TIME The time associated with the cusp at the beginning
* of the segment.

't begin x The x coordinate associated with the cusp at the
3 beginning of the segment.

begin y The y coordinate associlated with the cusp at the
beginning of the segment.

begin z The z coordinate associated with the cusp at the
oy . beginning of the segment.

end time The time associated with the cusp at the end of

R the segment.

f;ﬁ end x The x coordinate associated with the cusp at the

s end of the segment.

% end y The y coordinate aasoci&ted with the cusp at the

A end of the segment.

1

3 end z The z coordinate assoclated with the cusp at the

ee, end of the segment. .

o

%; FIRST_ORDER _NOMINEES

1 + t

Y | VoLUME ID |  first_cusp_time I

all AGGREGATE (volume id,first_cusp_time)

s

i‘#‘ This table contains the volumes which have passed the First

5t Order Coarse Filter.

e VOLUME 1D Identifier of a volume.

I '
t;’:' first_cusp_time The time associated with the cusp known

\3‘;; to be close to the volume. .
:,ju.w ‘
] |
s |
i ‘t{ |
A-2
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SECOND_ORDER NOMINEES

VOLUME ID |  first_cusp_time I

—de
v

E 3 —*F

all AGGREGATE (volume_id,first cusp_time)

This table contains the volumes which have passed the Second
Order Coarse Filter.

VOLUME_ID Identifier of a volume.

first cusp_time The time associated with the cusp known
to be close to the volume.

ENVIRONMENTAL CONFLICT_DATA

VOLUME ID | TIME | x | y | altitude

-!I-'—'L

+—4

This table contains information on environmental conflicts
for the current trajectory being examined.

VOLUME ID The identifier of the volume with which the
environmental conflict occurred

TIME The time associated with the environmental
conflict

x The x coordinate associated with the eanvironmental
conflict

y The y coordinate associated with the environmental
conflict

altitude The z coordinate associated with the environmental
conflict

A-3
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APPENDIX B
AIRSPACE PROBE ALGORITHMS

This Appendix presents the detailed Airspace Probe elements refer-
red to by the four Airspace Probe components. Those elements used
for the determination of horizontal penetrations are found in
Appendix C. Those elements are segregated to emphasize the close
correlation with Appendix C of Reference 8. All other elements are
listed below.

Intersection checks are performed using a linear discriminant. The
discriminant is used to discriminate between points on the left
side of a line and the points on the right (we may interpret the
line as having a direction). This technique may be used to find
which side of a trajectory segment the points of the rectangle
lie. If all points lie only to one side, the segment does not
intersect the rectangle. If points lie on both the left and right
side, an intersection must occur (see Figure B-1).

B.1 Grid

This routine is responsible for accepting an input (x,y) position
and finding the grid cell that the point is in. The Cell Id of the
grid cell is returned.

ROUTINE Grid;
PARAMETERS
N,
‘1 1IN,
Box ou'r,

REFFR TO GLOBAL

ENVIRONMENTAL CELL DIMENSIONS;

DEFINE VARIABLES
X, The X coordinate of the point

Y, The Y coordinate of the point
Box; The cell which the point (X,Y) is in
B-1
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2t SELECT FIELDS cell id
FROM ENVIRONMENTAL CELL DIMENSIONS
. INTO Box
WHERE ENVIRONMENTAL CELL DIMENSIONS.min x LE X AND
ENVIRONMENTAL CELL DIMENSIONS.max x GT X AND
ENVIRONMENTAL CELL DIMENSIONS.min y LE Y AND
. ENVIRONMENTAL CELL DIMENSIONS.max y GT Y;
END Grid;

B.2 Ilinear Discriminant Classifier

This routine uses the coordinates of the endpoints of a line segment
and the coordinates of a third point to determine which side of the
line segment (left or right as measured from the first point to the
second point) the third point is on. The method involves the
determinant of a two-dimensional matrix whose elements are composed
of the differences between the line points and the third point.

AT

ROUTINE Linear Discriminant Classifier;
PARAMETERS
Ul 1IN,

R U2 1IN,

R vi 1N,

) v2 IN,

H Up IN,

i~ Vp IN,

Side OUT;

s DEFINE VARTABLES

i Ul The U coordinate of the first point on the line

¥y v2 The U coordinate of the second point on the line

e vl The V coordinate of the first point on the line

e V2 The V coordinate of the second point on the line
Up The U coordinate of the point to be classified

. vp The V coordinate of the point to be classified
Side The side of the line on which the point "p" lies

“ Discriminant The value of the discriminant

Discriminant = (U2 - Ul) * (Vp - V1) - (Up - U1l) * (V2 - V1);
IF Discriminant GT 0

3 THEN

b3 Side = "left"

bk ELSE

¥ Side = "right";

END Linear Discriminant Classifier;

B~3
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B.3 Find Polygon Boundary Intersections

-

This routine will accept a line segment and a set of vertices repre-
senting a polygon and determine the horizontal intersection points
(1f there are any). The returned information is a table containing
the intersection points of the segment with the polygon.
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ROUTINE Find Polygon Boundary Intersections;
PARAMETERS
SEGMENT IN,
Volume Id IN,
ORIENTATIONS OUT,
SEGMENT_INTERSECTION_POINTS INOUT;
REFER TO GLOBAL
VOLﬁﬁE_COOﬁDENAIES IN;
DEFINE TABLES

SEGMENT The current trajectory segment
x1 The first cusp point of the segment
vyl
zl
tl
x2 The second cusp point of the segment
y2
z2
t2
KL begin AGGREGATE (x1,yl)
1 end AGGREGATE (x2,y2)
e SEGMENT INTERSECTION_POINTS The intersections with the polygon
time The intersection time
A type The intersection location
D "boundary” of “"interior”
o last cusp time The time of the last cusp before
N - the intersection
> ORIENTAT IONS The orientation of the cusps (IN or OUT)
begin orient The orientation of the first cusp
. begin time The time of the first cusp
o end orient The orientation of the end cusp
188 end_time The time of the end cusp
. time The time to violation
- B4
»
-

RN Y
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POLYGON_VERTICES The vertices of the polygon

x The x coordinate of the vertex

y The y coordinate of the vertex

vertex number The sequence number of the vertex
PV The previous vertex point

x The x coordinate of the vertex

y The y coordinate of the vertex
cv The current vertex point

x The x coordinate of the vertex

y The y coordinate of the vertex

DEFINE VARIABLES

Volume Id The volume identifier
C_Side The orientation of the current vertex
P_Side The orientation of the previous vertex
Begin Side The orientation of the first cusp point
End Side The orientation of the second cusp point
Order The sequence number of the current vertex
Violation Time The time to violation
Int Count The number of intersections thus far
::cm s Counter; The number of IN/OUT intersections

POLYGON VERTICES = SELECT FIELDS x,y,vertex number
FROM VOLUHE COORDINATES
wnm VOLUHE COORDINATES .volume id EQ Volume Id;
PV = SELECT FIELDS x,y
FROM POLYGON VERTICES
VBERB POLYGON VERTICES .vertex number EQ 1;
Order = 2;
Int_Count = 0;
Iosul Counter = 0;
CALL L:lnear Discriminant Classifier (S.begin IN, S.end IN,
— PV IN, P " Side ouT);
REPEAT FOR EACH POLYGON_VERTICES RECORD;
WHERE POLYGON ' VERTICES. vertex n umber NE 1 AND Int Count LT 2;
CW™ SELECT FIELDS x,y
HOH POLYGON VERTICES
WHERE POLGON VERTICES.vertex number EQ Order;
CALL Linear_ Discriminant | Classifier (S.begin IN,
~ S.end IN, CV IN, C_Side OUT);

B=5
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IF C_Side NE P_Side
THEN

CALL Linear_Discriminant Classifier (PV IN, CV ]N,
" S.begin IN, Begin_Side OUT);
CALL Linear D Discriminant Classifier (PV IN, CV 1IN,
" S.end IN, End Side ouT);
CHOOSE CASE
WHEN Begin Side EQ "in" AND End Side EQ "in" THEN
Iosum Counter = Iosum Counter + 1;
WHEN Begin Side EQ "out™ AND End Side EQ "out” THEN
Ioau- Counter = Josum | Counter - 1;
OTHERVISE
CALL Time To Violation (PV IN, CV IN, S.begin IN,
~ S.end IN, Violation Time OUT),
INSERT INTO SEGMENT INTERSECTION_?OINTS
time = Violation Time, type = "boundary”,
last_cusp_time = S, begin t);
INSERT INTO ORIENTATIONS
Zbegin orient ™ Begin Side, begin time = S.begin t,
end_q orient = End 81de, end time = " S.end | t,
time = Violation Time);
Int_Count = Int Count +1;
LAST VERTEX = SELECT FIELDS ALL
FROM THIS_VERTEX;
Order = Order + 1;
END Find Polygon Boundary Intersections;

B.4 Time To Violation

This routine determines the time on a given trajectory segment that
a violation occurs.

ROUTINE Time To_Violation;
PARAHETERS

T Mix 1IN, IN,

Nly 1IN,

N2x IN,

N2y IN,

Cx IN,

5
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%
o DEFINE TABLES
Y VN The vector from points N1 to N2
S ;
- Ve The vector from points N1 to C
‘.‘ X
) y
2‘*- ve The vector from points C to P
o x
- y
) DEFINE VARIABLES :
A Nx The x value of the point N1
:-""5 Ny The y value of the point N1
e N2x The x value of the point N2
- N2y The y value of the point N2
Cx The x value of the point C
o Cy The y value of the point C
o ct The t value of the point C
. Px The x value of the point P
b :\ Py The y value of the point P
ooy Pt The t value of the point P
! Tp The time from point C to P
R NXC The cross product of N with C
) NXP The cross product of N with C
o) H The time to the violation
\.',:‘ "
) VN.x = N2x - Nlx;
b VN.y = N2y - Nly;
vc.! = Cx - Nl!;
-.3 VC.y = Cy - Nly;
v VP.x = Px - Cx;
o VP.y = Py - Cy;
’.q Tp = Pt - Ct;
— NXC = CROSS(VN,VC);
- . NXP = CROSS(VN,VP);
2 Tv = (NXP * Tp)/(NXC + NXP);
':Q END Time To Violation;
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APPENDIX C
POLYGON HORIZONT L VIOLATION DETERMINATION

This Appendix was taken mainly from the NAS E-MSAW Computer Program
Functional Specification (CPFS) [9] and is segregated from the rest
of the Airspace Probe Specification to emphasize that fact. The
algorithms have been modified to account for the strategic nature of
the trajectory/polygon conflicts.

An aircraft trajectory is determined to be in penetration with a
polygon if any portion of any trajectory segment penetrates the
adapted volume of airspace.

sides are adapted such that concave angles are formed, the following
procedure will be divided into two separate algorithms to facilitate
the handling of the simpler (and possibly more frequent) geome-
tries. The individual configurations considered by each algoritha
are as follows:

Due to the increased complexity of possible shapes when polygon l

e Algorithm 1 will op:rate on polygons that contain only
convex angles.

e Algorithm 2 will op:rate on polygons with a mixture of |
concave and convex ang les.

An indication of which algorithm 1s applicable to which polygons is
derived by Polygon Adaptation.

C.1l Known Quantities and Relstionships

The trajectory segment will be defined by the following quantities:

e Initial cusp: Cj = (x,y,z,t)y
e Next cusp: Cjy41 = (x,¥,2,t)44]

The polygon is defined by the following adaptation derived data: 1

e Algorithm: Indication of which algorithm applies to this
polygon 1

e Altitudes: Minimum and Maximum

o Total Lines: N (the total number of polygon line segments)

C-1
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X The polygon vertices which make up the N line segments are defined

;‘-.f, in a clockwise direction. This consistent ordering 1is necessary
p“:.s since the algorithms assume that the polygon lies to the right of
';;9, line segments defined by the vertices. Counterclockwise ordering
cod (only) may be used with the proper changes in the algorithms.

L C.2 Linear Discriminant Clessifier

'::-‘-ﬁ

P A concept essential to the understanding of the algorithms, and a
[N computation used frequently by them, is the orientation of & point

to a line. The orientation will be determined by considering an
infinite line defined by the points N; = (U;,V;) and Ny =

(U, V5) and a vector N, defined from point N, to N, as
follows:

N= (Uz-Ul ’VZ-VI)

Consider also a vector P, from point Ny to point p = (U, Vp)
as (see Pigure C-1):

An expression for sin 6 can be obtained by taking the cross product
from N to P:

—

NxP = [Nl [Pl sin @ = (Up=Uj)(Vp=Vy)=(Up=U3 )(V2-V}) [c-1]

Since the magnitudes of vectors N and P are always nonnegative, the
sign of sin @ 1s positive if:

(Up~U1 ) (Vp=V1) = (Up-U1)(V2-V1) = 0.*

Note that if the above expression is true, the point p is confined
to the area to the left of the line (as shown in Figure C-1) or is
on the line. This situation will define a "left” (or "OUT") orien-
tation of p to line NjN;. If the above expression is false,
then the sign of sin 1is lesa than zero and p is to the right of the
line. This will define a "right" (or "IN") orientation of p to the
line.

*Note: This form corresponds to Ax mentioned in Appendix B.
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Note further that if the orientation of one endpoint of a segment is
“right” and the other endpoint is "left” then the segment must cross
the line at some point, but not necessarily between Nj and Nj.

C.3 Time to Penetration

Ty will be determined as follows:

Consider the example in Figure C-2 where the trajectory segment is
defined by its Cusps, C = (U,, V,) and P = (U,, !P) and,
the polygon side is determined by 1ts endpoints, &1 (Ul,Vﬁ_)
and N = (Up,Vp). Note also that T, = t, = "t. is  the
time to travel between the cusps.

The time to intersection is defined with respect to the distance to
the intersection point, d, as:

d
S A o [c-=2]
or
d = |sl T,

where S is the speed along the segment.
The total distance traveled during the trajectory segment 1is:

ce = Is| T, [c-3]

By similar triangles (see Figure C-2):

- [c-4]

If Equations C-2 and C-3 are now substituted into Equation C-4, and
the velocity factored out, then the following expression is obtained
which relates Ty to the distances a and b:

Ty a

TP a+b

Cc-4
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The distance a is then determined as:*
-a = |C] sin
And the iistance b as:
IP| sin v

By considering the cross product of N to C:

IC] sin p = -2XC
N

And the cross product of N to P:

ﬁ’-l siny = -r-‘_!.g-

N

The following relationship is obtained:

N . a . NxC.
T P a+b (NxC)+(NxP)

Tv can now be expressed in terms of TP and the cross products
NxC and NxP as:

(NxC)T
T = -_-_--2.—

V. (a)+(WaP)

C.4 Convex Polygon Intersections

The Convex Polygon Intersection Check (Figure 4-26) operates on
polygons that contain only convex angles between sides. This algo-
rithm is very similar to Mixed Polygon . Intersection Check (Figure
4-27) which 1s a more general algorithm The convex case is dis-
cussed separately here, since certain efficiencies (not addressed
here) can be incorporated to enhance the performance of the algo-
rithm on convex polygons. The algorithm loops through the sides of

*Angles are measured in a counter-clockwise direction.

Cc-6




a sy A Y

“%
.
*

A

3 2o W,

EY e "
'~\~ PRrLPR N

A o
0.0y .. of
[P Wi

‘A
b " o
o

RIS

.
- s a's'w

(T o4

O
~
A
~
-
-

the polygon to determine if intersections exist. A possible inter-

section is noted if the orientation of a vertex does not match the.

orientation of the previous vertex (sequencing in a clockwise
fashion). To find 1f an intersection truly exists, the orientation
of the cusps with respect to the polygon side are examined. If an
intersection indeed exists, then the time to penetration is cal-
culated and recorded in the 1list of intersections for the given

polygon/trajectory segment pair.

If no Iintersections occur, the algorithm checks to see 1if the
segaent is completely within the polygon. If only ome intersection
occurs, the algorithm checks to see which cusp is inside the poly-
gon. In both cases the included points are added to the intersec-
tion 1list. See section C.5 for more discussion on inclusion/
exclusion of points with respect to a polygon.

C.5 Mixed Polygon Intersections

Mixed Polygon Intersection Checks (Figure 4-27) operates on polygons
which contain both convex and concave angles. The algorithm will
loop through the sides which define the polygon. The orientation of
the polygon sides to the trajectory segment will be examined to
determine whether a penetration is possible.

To gain an understanding of how the mixed algorithm operates, a few

points that must be assumed will be presented.

o If any polygon is crossed by an "infinite” length line, the
“ends” of that line are outside the polygon area (see Figure
c-3)o

@ As a point moves along this line, each time it crosses a
polygon side its state is altered. 1Its state varies between
IN or OUT of the polygon area.

e An "infinite” line crossing any polygon will cross an even
number of sides. Since such a line begins outside of the
polygon and ends outside of the polygon, an even number of
crosses must have occurred.

e If a point is within a polygon area, and an "infinite" line
is laid over the point, the point would cross an odd number
of sides 1f the point moved to either end of the line. This
is because its state has been altered from IN to OUT.
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e If a point 18 cutside the polygon and an "infinite” line is
laid over the print, the point would cross an even number of
sides (or no siles) as it moved to either end. This 1is true
because its staie (OUT) has not changed.

It is visually easy to sec if a point is IN or OUT by counting the
sides crossed as it mo'es towards an end, but computationally dif-
ficult. All sides must bte searched to see if they are crossed by
the line and if they lie between the point and the chosen end.

The mixed algorithm uses the above information in a slightly dif-
ferent form. Instead of a point, the trajectory segment is used and
an infinite vector is laid over it (see Figure C-4).

The infinite vector is called the trajectory path. In most cases
the mixed algorithm must search all sides to see if they have been
crossed by the trajectory path. If a side i1s crossed by the path, a
cross product is employed to see if the trajectory path is IN or OUT
relative to the particular side. (If the trajectory path actually

entered at the side, it would instantly be known that part of the
path is inside the polygon.)

To relate this back to rhe idea of moving from a point to the end of
an infinite line (see Figure C-4), an iIN orientation would mean that

the moving point was IN the polygon area before it crossed the side
moving towards an end.

The mixed algorithm keeps a running sum of the INs and OUTs, where
IN = +1 and OUT = -1. A final sum of 0 means that an even number of
sides were crossed between the trajectory segment and either end of
the trajectory path, Therefore, a sum of 0 means that the
trajectory segment was entirely outside the polygon area. A final
sum of +2 means that an odd number of sides were crossed in either
direction and the entire trajectory segment is therefore inside the
polygon area (see Figure C-5).

Special situations which can occur are as follows:

o The trajectory path coincides with a polygon vertex, but a
moving point passing through the vertex would not alter its
state of being IN or OUT (gee Figure C-6). In Figure C-6a,
vertex V; coincides with the trajectory path. Since a
point moving through this vertex would always remain outside
the polygon, the running sum should not change. In Figure
C-6b we have the same situation, but the point never varies

from being inside the polygon as it passes through vertex
Vbo

........................




FIGURE C-3
INFINITE LINE CROSSING A MIXED POLYGON
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FIGURE C-4
MIXED POLYGON AND TRAJECTORY SEGMENT OUTSIDE
c-10

LN AN L IR P P L R T Fo Pt AT, LT, NIRPAA A, . ...- MEATATATY v, -...-.-..... .,..‘...........,..... VY PP A.....
J--"-- * .-I --A.-:-.o AN . -M\-\A!\h-\{\h.!\ ’ n..n-\- ,-. \.«.-.a ' qsunu-uwsc -\-..<- .» 1, -«. -\-&-n.\.-“p.-«- L el > ..-,q. . ..f.. ~c-A-.Im- .nA .-..-..s-.. Y "y yyy .« . ..... f\f%.-qo -., - .




REARAR S T

RN A -‘\

FIGURE C-5
MIXED POLYGON AND TRAJECTORY SEGMENT INSIDE
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MIXED POLYGON SPECIAL SITUATION 1
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moving point's state would be altered as it crossed over the
vertex (see Figure C-7). In Figure C-7a, at vertex V., a
+1 should be added to the running sum. In Figure C-7b, at
vertex Vd, a -1 should be added to the sum.

The trajectory path coincides with a side of the polygon,
and like situation 1, the running sum should not change (see
Figure C-8).

The trajectory path coincides with a side of the polygonm,
snd like situation 2, the running sum should change (see
Figure C-9).

Cc-13
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MIXED POLYGON SPECIAL SITUATION 3
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APPENDIX D
GLOSSARY

Numbers in parenthesis at the end of the definition refer to the
section in which the term is first used.

AAS Advanced Automation System (1.1).
Adaptatioa The process of collecting environmentsl data and :
storing it in system data bases (1.5.1). K
Aloag Route The distance of a converted fix on the route from
Distance the first converted fix (2.1.1).
ARRA The concept of sutomated en route air traffic
control described in "The AERA Concept”™ [12] (3.4).
A An AGD variable is an element (gradient, direction
Variable or acceleration) of the AGD Vector (2.1.3). (See
also "AGD Vector™)
AGD Vector The AGD vector is the 3-tuple (acceleration, gra-
dient and direction) controlling the construction
of a segment (2.1.3).
Alr Traffic See "Controller” (1.4.1).
Controller
Area An area 18 a second level division of the conti-
nental United States Airspace. Controllers are
specially trained for an area's airspace, a region q
bounded horizontally by a polygon and having some .
vertical extemt (1.4.1). (See also "Center" and ,1
"Sector”) :4
ARTCC Alr Route Traffic Control Center (1l.4.1). (See ,"
also"Center”) 1
ATC Alr Traffic Control (1.1). N
“
Cell A discrete compartment of the wind grid (2.1.1). N
|
i
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Center

Clearance

Controller

Converted Fix

Converted
Route

Coordination
Fix

Cusp

FAA
Fix

Grid Cells

A center is the administrative headquarters and the
operational facility for control of the first-level
division of the Continental United States Airspace.
The center controls a region bounded horizontally
by a polygon and vertically by the Center floor and
an altitude of 60,000 feet (1.4.1). (See also
"Area”™ and "Sector"™)

A specially formatted order from the controller to

the pilot which commands the pilot to execute a
maneuver (2.1.3).

Third-level algorithmic unit in the breakdown of an

automation function (1.3). (See also "Subfunction”
"Element”)

An en route radar controller as defined in (1.4.1).

A fix that is a component of the aircraft route
after Route Conversion processing (1.4.1.2)., (See
also "Fix" and "Coordination Fix")

The filed route of flight as augmented in Route
Conversion with preferred arrival routes, among
others (1.5.2).

A special purpose fix used for a reference location
when flight plans are transmitted to the next con-
trol area (1.5.2). (See also "Fix" and "Convgrted

Fix")

An aircraft trajectory is represented as a serles
of points called cusps. The cusps are the points
of possible AGD vector discontinuity (2.1.2).
Fourth-level algorithmic unit in breakdown of an
automation function (1.3). (See also "Subfunction”
and "Component")

Federal Aviation Administration (1.1).

A named x,y location (1.4.1.2).

Discrete compartments of the wind grid (2.1.1).
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Interface

Next Cusp

Past Cusp

Action List

Profile
Reference
Point

Sector

-----------

Interaction mechanism provided by the computer’

system to translate human input into internal
format and translate internal format into human
readable form (2.1.2).

National Airspace System (1.1).

The next position to which the aircrft route will
be modeled (2.1.2).

The position to which the aircraft route has been
modeled (2.1.2). (This point may be at some future
position in terms of the current actual aircraft
position.)

Program Design Language (1.2 and Appendix E).

A list which contains planned actions which may
effect the aircraft trajectory from the past cusp
onward (2.1.3). (See also “"Past Cusp” and "Planned
Action™)

A set of planned actions for an aircraft (1.5.2).
(See also the definition of "Planned Action”)

An internal representation of a proposed change of
aircraft clearance which can be modeled into the
aircraft trajectory (2.1.2).

The geographic area over which the Trajectory Esti-
mation algorithm operates. This area includes the
extent of an entire Air Route Traffic Control
Center) (ARTCC) and also 1includes a buffer area
(2.1.1).

A 4-space position used to initialize Trajectory
Estimation (1.5.2).

A sector is the third level division of the Conti-
nental United States airspace. A sector 1is the
division to which a controller is assigned (1.4.1).
(See also the definition of “"Center” and "Area")
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Subfunction

Trajectory
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A segment is a part of an aircraft trajectory
represented by an implied line between two adjacent
cusps. The gradient, direction, and acceleration

2! thcj aircraft are constant across the segment
2.1.2).

A stimulus is one of several flight path events
related to a planned action which initiate the
planned action processing component (2.1.3).

The second-level algorithmic unit in the breakdown
of an automation function (1.3). (See also
“Component” and "Element”)

A description of an aircraft's position in
(x,y,z,t) space, produced by applying altitude and
timing assumptions to the filed flight plan and
revising when necessary (1.4.1.2).

A grid structure overlaid on the planning regiom to
relate geographic coordinates to wind speed,
direction and temperature at that location (2.1.1).
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APPENDIX E

AERA PDL LANGUAGE REFEREMCE SUMMARY

E.1l Overview of the Use of AERA PDL

The AERA Program Design Language (PDL) has been created for the
single purpose of presenting algorithms in this specification
document. It evolves from previous AERA uses, and from MITRE
WP-81W552, "All About E,” October 1981.

The description of this appendix is intended to support readers and
users Oof AERA PDL. AFRA PDL supports readable, yet structured and
consistent, descriptions of algorithms.

AFRA PDL Features

® Relational data tables can be defined and manipulated by

constructs in the language.

Builtin functions are used to provide routine calculations
without showing all of the detail.

Routines are used to modularize logic paths and data scope.

Indentation is wused to 1indicate statement
statement continuation, and levels of nesting.

grouping,

o Routines explicitly define data or refer to predefined data.

AFRA PDL Statements

The types of statements used in AERA PDL are:

English language statements
assignment statements )
routine declaration statements
data manipulation statements
flow of control statements

E.2 Elements of AFRA PDL

Keywords

Keywords are words reserved for the usage of AERA PDL. Figure
E-1 presents all the keywords used in the current version of
AERA PDL, grouped for convenience.

E-1




Ly
......................

routine construction keywords

5
>
L3 CALL END ROUTINE
»Ni
g} data reference keywords
PARAMETERS IN

. REFER TO GLOBAL oUT

3. REFER TO SHARED LOCAL INOUT
b DEFINED IN GLOSSARY

<

data definition keywords

= DEFINE CONSTANT(S)
o DEFINE VARIABLE(S) :
- DEFINE TABLE(S) ' ]
" common arithmetic builtin function keywords

:ﬁ AVG MIN ABS  EXP  CDS  ARCCOS

5! SlM  MAX CEIL  10G SIN ARCSIN

q PROD  MEDIAN FLOOR SQRT  TAN ARCTAN

. SICNUM

MOD

f; coordinate geometry builtin function keywords
B

‘s o
¥ DIST DOT INTERSECTION

MAGNITUDE CROSS INTERPGLATE

¥ DIRECTION LINE

- set builtin function keywords T
3 UNIQUE COUNT CONCAT BOOL !
-~ .
" FIGURE E-1
}‘ KEYWORD GROUPINGS




set operator keywords

UNION  INTERSECT

table manipulation keywords

SELECT FIELDS ALL
INSERT INTO FROM
DELETE FROM INTO
GPDATE IN WHERE
- ORDERED BY

value constant keywords

TRUE FAISE NULL

comparison keywords

Nor 6T EQ ANy
OR GE NE ALL
AND IT Is_IN

LE IS NOT IN

flow of control keywords

.I_F L Y ) m [ N ] EISE

CHOOSE CASE ... WHEN ... THEN ... OTHERWISE
FOR ... 10 -
REPEAT WHILE

REPEAT UNTIL

REPEAT FOR EACH ... RECORD

GO TO

FIGURE E-1 (Concluded)
KEYWORD GROUPINGS
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Operators
The operators of AERA FDL are summarized in Figure E-2.

The Assignment Operator

o The format of the assignment statement is:
"target” = “expression”

e The target may be any type of data allowed by AERA PDL.

e The assignment operator includes the ability to fill a table
from data contained in other tables. The form of this use
of the assignment operator is:

"table name” = “"table expression” ;

Builtin Functions

The builtin functions of AFRA PDL accept either an single value
or data organized into an array. The author of a routine must
make it clear in comments and text what form of data is being
processed by the builtin function. Builtin functions are
listed in Figure E-3.

Routine Construction

LR AP

(RN

The order of appearance of constructs in a routine is:

: - .
Ja /a, }llg .‘L -

.

ROUTINE -- required

PARAMETERS — optional

REFER TO GLOBAL -- optional

REFER TO SHARED LOCAL — optional

DEFINED IN GLOSSARY —— optional

DEFINE CONSTANTS -- optional

DEFINE VARIABLES — optional

DEFINE TABLES — optional

logic flow -- required, but will vary by routine.
END —- required

Three of the constructs are noted below:

a‘r.‘

The ROUTINE Construct

e a
s &
o4 %
PP

S
’

!

3

)

.l}‘

4

’
-

2
h &
a

>,

¢ The ROUTINE comstruct names the routine.

e The syntax of the ROUTINE construct is:
ROUTINE "routine name” ;

E-4
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A

assignment operator

4 A=DB A 18 assigned the value of B

- arithmetic operators

A+ B A plus B
A-B A minus B
z A*B A times B :
- A/B A divided by B R
- A*® B A to the power of B

comparison operators ' y

A 18 less than B

A 18 less than or equal to B

A 18 greater than B

A 1s greater than or equal to B
A 18 equal to B

A is not equal to B

D>
[&lsISlslElS
oW w

logical operators

; NOT A The logical opposite of A
e AORB Logical OR of A and B
~ A AND B Logical AND of A and B
~
N set operators
. A INTERSECT B The set intersection of A and B
4 A UNION B The set union of A and B
" AJIS INB A is an element of the set B
! A IS NOT IN B A is not an element of the set B
FIGURE E-2

GROUPINGS OF AERA PDL OPERATORS
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FUNCTION MEANING

ABS(x) Absolute value of x

M(x,y) Inverse cosine of the ratio of y to x

ARCSIN(x,y) Inverse sine of the ratio of y to x

ARCTAN(x,y) Inverse tangent of the ratio of y to x

AVG(A) Mean of the elements in A

BOOL(x) Numerical equivalent of logical condition:
1 1f x 18 TRUE, O if x is FALSE

CEIL(x) Smallest integer greater than or equal to x

CONCAT(s1,82,...,8N) Concatenation of strings sl through sN

Cos(x) Casine of x

COUNT(A) Number of elements of a set A

gRO_SS(vl,vZ) Cross product of vectors vl and v2

DIRECTION(p1, p2) Direction of p2 from pl in degrees from the
north; usually will be expressed in degrees
clockwise from true north

DIST(p1,p2) Fuclidean distance between points pl and p2

DoT(vl,v2) Dot product of vectors vl and v2

EXP(x) e to the x power

FLOOR(x) Greatest integer less than or equal to x

FIGURE E-3
BUILTIN FUNCTIONS

FIARTATETATRIRY
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o FUNCTION MEANING
4;:‘ . INTERPOLATE(a,b,t)  The point (1-t)a+tb
¢
i INTERSECTION(L1,L2)  The point of intersection of the lines L1 and
LSgl] L2
s LINE(pl,p2) Vector (a,b,c) corresponding to the 1line
ax + by = ¢ which passes through the points
Qj'_f pl and p2
¢ LOG(x) log of x in base e
N 5!
MAGNITUDE(v) Length (i.e., norm) of the vector v
) ':::ﬁ MAX(A) Largest of the elements in the set A
o2
d E}' MEDIAN(A) Median value of the elements in set A
x4
v MIN(A) Smallest of the values in set A
< MOD(x1,x2) Remainder when x1 1s divided by x2
o
e PROD(A) Product of the elements in A
| SIGNIM(x) Function yielding 1 if x GT 0, -1 if x LT 0,
and 0 1f x EQ 0
2
j;_:ﬁj SIN(x) Sine of x
SQRT (x) Square root of x
o SUM(A) Sum of the elements in A
i
:73 TAN(x) Tangent of x
> UNIQUE(A) The set A with no duplicate elements
2 FIGURE E-3 (Concluded)
!':': BUILTIN FUNCTIONS
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The CALL Construct

e The CALL construc 1invokes use of another routine as a
subroutine and ps ses to it the data on which it is to
operate.

e The syntax of the .LL comstruct is:
CALL "routine n.se” ( "data usage list” ) ;
e The date usage list in the CALL statement must match in
number and data utilization (IN, OUT, INOUT) the PARAMETERS
statement of the called routine.

The END Comstruct

o The END construct shows the formal end of the routine.

o The syntax of the END construct is:
END "routine name” ;

E.4 Data Definitions

Data usage is defined in the constructs placed at the beginning of
each routine,

The structures, or organization of data, recognizable to AERA PDL
include constants, atomic variables, hierarchically structured
variables, arrays, tables, and field-types. The hierarchically
structured variables are the same as the structure variables of PL/I.

Within a table, the values corresponding to the definition of a
field-type are called fields when they are referred to individ-
ually. The values for a whole column of a table (or a subset of the
whole column) may be referred to as a set of fields.

The fcllowing data definition comstructs appear in the order shownm,
if any are needed. The first line of each construct begins in
column 1, aligned with the ROUTINE comstruct.

The PARAMETERS Construct

o This construct provides usage information about the data
that are being provided by the calling routine in the form
of specification of read-only 'IN', write-only 'OUT', or
modification of an existing value 'INOUT'. -




........................

local data for the routine being defined and as such appear

~ :
; @ Variables appearing in the PARAMETFRS construct are still:
~ in the definition constructs.

o The syntax of the PARAMETERS construct is:
PARAMETERS "data usage 1list” ;

The REFER TO GLOBAL Comstruct

[

e Thig construct provides reference to, and usage information
for, data from the Global data model.

o The syntax of the REFER TO GLOBAL comstruct is:
REFER TO GLOBAL “data_usage list™ ;

i Ja Bl Bat e

The REFER TO SHARED LOCAL Comstruct

- e This construct provides reference to, and usage information
| for, data from the Shared local data model described in
3 Appendix A of the specification.

1

e The syntax of the shared local comstruct is:
REFER TO SHARED LOCAL "data usage list™ ;

) The DEFINED IN GLOSSARY Construct
4 ,
% e This construct provides reference to, and usage information

for, data from a specially prepared Glossary that central-
- izes the definition of data variables that are used re-
3 peatedly within a given function of the algorithmic
- specification.
-
Y e The syntax of the shared local construct is:

DEFINED IN GLOSSARY “data usage list” ;

» The DEFINE CONSTANTS Construct
# -
f:'; - e The use of named constants instead of in-line numerical .
™ constants is available at the discretion of the author of an R
- algorithm. Named constants, if present, are to be declared -
™ with this construct. ﬁ
; e The syntax of the DEFINE CONSTANTS conmstruct is: -
DEFINE CONSTANTS “constant_definition block” ; 3
¥
.
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The DEFINE VARIABLES Construct

e The syntax of the DFFINE VARIABLES construct is:
DEFI! £ VARIAILES "variable definition block” ;

l.vl' ‘I'J' -l. -.' N

The DEFINE TABLES Conmstruct

e The syntax of the DEFINE VARIABLES construct 1s:
DEFINE TABLES “table definition block";

P W SN

E.5 Flow of Control Constructs

The IF...THEN...ELSE Construct

e The syntax of the IF...THEN...ELSE construct is:
IF “condition”
THEN
=y "statement block”
e [ ELSE
"statement block” ]

POl L L Tt ' R |

The CHOOSE CASE Construct

2 e This construct provides a choice of one of several alterna-

N tive logic paths depending on the first condition satisfied
among the conditions specified.

4 e The OTHERWISE phrase is optional.

- e The syntax of the CHOOSE CASE construct is:
- CHOQSE CASE
WHEN “condition™ THEN
X “"statement_block"
‘ [ WHEN phrases repeated as necessary ]
[ OTHERWISE
> ~ "statement_block" ]
-

LRV TN

3
1LY

. The REPEAT WHILE Construct

P e The syntax of the REPEAT WHILE construct is:
REPEAT WHILE “"condition" ;
"statement_block"”

0 . S TN IR - § YN

. v
Lo

The REPEAT UNTIL construct

v,
v

g

(4

LN YR

o The syntax of the REPEAT UNTIL construct is:
REPEAT UNTIL "con: itiomn” ;
“statement_plock"
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E.6
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The REPEAT FOR EACH RECORD Construct

e This construct explicitly loops over all records in table,
or the subset of a table as specified in a WHERE phrase.

e The syntax of the REPEAT FOR EACH comstruct is:

REPEAT FOR EACH "table name” RECORD

condition” ];
'statemenq_block"

o Within the statement block of this loop, the construct of
“table name”."field name” means only the ONE value that is
associated with the record for that iteration of the loop.

o If it is necessary to refer to entire columns of the table
that is being looped on, the correct form of the reference
is ALL("table_pame"."field name”). This construct means
exactly what “table name "."fleld | name” would have meant if
the loop had not been in effect. .

The GO TO Construct

e The syntax of the GO TO comstruct is:
GO TO "label” ;

The FOR...TO... Construct

e The syntax of the FOR...T0... construct is:

FOR "loop index” = "initial value” TO "last_value” ;
“statement :_block”

Table Manipulation Constructs

The SELECT FIELDS Construct

e This construct extracts data from a table, or from a collec-
tion of tables, and makes it available to the routine.

e The syntax of the SELECT FIELDS construct is:
SELECT FIELDS [ UNIQUE ] [ "field 1ist™ | ALL]
able name . st
[ INTO "local - variable name list” ]
[ WHERE "condition” ]
[ ORDERED BY "field name” ]
[ RETURN COUNT ( "local variable” ) ] ;

E-11
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1 3,' The INSERT INTO Construct
258 : :
4.::: o This construct allows a new record to be inserted into a
P table.

2

e The syntax of the INSERT INTO construct is:

T INSERT INTO "table name” ("field assignments”) |
2% T WHERE “condition”] ; o
'Z_‘_'.‘_j, o All insertions will preserve the assumption of no duplicate
s records allowed in the table. -
A The UPDATE IN Construct

L2

$::: e This construct allows exiasting records in a table to have

RO certain of their values changed.

2 e The syntax of the UPDATE IN comstruct 1s:

< UPDATE IN "table name” ("field assignments”)

ed T WHERE "conditIon” ] ;

o The DELETE FROM Construct

e This construct removes selected records from a table.

e The syntax of the DELETE FROM construct is:
DELETE FROM "tasle_nane"
[ WHERE "condition” ] ;

s‘s.; E}_.'
Py Wy

o

- E.7 Glossary

e

E}-’.:. comparison

"i\ o There are four possible syntaxes for the comparison. These
are not given separate names, but will all be shown as 1if

- they shared the same element of the language.

£l

'\; ¢ The first syntax is for arithmetic comparisons:

g “individual® GE|LE|GT|LT "individual®

-“. —— =

‘-A‘.

2 e The second syntax is for general comparisons:

— "individual® EQINE “individual”

o Both of these syntaxes are also valid if they are used to
compare two variables with the same complex organizationm,
o for example two vectors of the same length or two field
. types from the same table. In this case the result has as
many answers as there are elements in the compared variables,

32 E-12
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e The third syntax is for arithmetic comparisons:

e The fourth syntax is for general comparisons:
“individual™ IS IN|IS NOT IN "set”

e The latter two syntaxes are used to qualify an individual
based on any value in a set of values.

-
- ~
4
o

NSy
‘oo

..‘
A

"condition”

-

e The syntax of the condition is:
"comparison” [AND|AND NOT|ORIOR NOT "comparison”]

« B ¥
o
.

e The optional part of this syntax can be repeated as often as
required.

"constant definition block”

¥

f. ‘,"}'; e The content of the constant definition block 1is three
"ﬁ columns: the constant names, the constant values, and the
$ constant descriptionms.

™y

o The constant names are aligned in a column 3 spaces indented
from the DEFINE CONSTANTS line.

.fJ\‘
S
a.j-:; e The other two columns are aligned as convenient, so that
e there is no visual overlap between the columns.
-":i
- "data usage list”
,.:.;:: ® A routine must declare the type of use for all of its data
- that are known outside the routine.
I:: o The three types of use are: read only (IN), create (QUT),
— and modify an existing copy (INOUT).
oo o The format of a data usage list is:
-l-;-. "variable name" "usage type", ...
\ ' e An example of the format for data usage list is:
— An_Input Parameter IN, A LOCAL TABLE INOUT
35 "expression”
oY
.‘.}_) " @ Variables may be formed implicitly in expressions without
being separately named or defined.
R

I.\': ‘ E-13




e Expressions are combinations of defined variables with 'the
-operators and builting functions of AERA PDL.

e In an expression, the implicit variable output from any
builtin function may be used as the input to any other
builtin function or operator.

v,

"-‘. .
:f, e An expression, when fully evaluated, yields one variable.
'\J.‘
Q:: “field assignments”
e This term only appears in statements referring to exactly
% one table: INSERT and UPDATE.
.:: )
,-.-_ji e The form of the term is a comma-separated list:
" "field assignment”, ...
ASA - .
. e The form of a asingle assignment is:
G “field name” = “value_expression”
o '
\3‘. e In this term the field names do not have to be qualified by
3N the table name (that is given in the statement).
o “table definition block"
2} o Three types of definition are made in this block: table defi-
g\ nitions, field-type definitions, and AGGREGATE definitions.
-"'
e e Table definition lines are formatted as:
: “table_name” “table_definition”
*
’;'_" o Field-type definitions lines are formatted as:
j:‘_',' "field name” "field definition”

()
]
[‘.&
[ ]

Aggregate definitions are formatted as:

iR "aggregate name" AGGREGATE ("fleld name list™)

~'..-"

';."5’ o Fields will contain only atomic (single-valued) variables.

.

f-j e Aggregates may be used so that a program can manipulate

% sultiple fields in one statement when it makes sense to do
80.

Iiﬁjlf "table~expression”

'J‘.'-

.’: e Tables may be used implicitly in assignments or comparisons

being separately named or defined.

..n.:

-~

-
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. ® A table expression is either a table name or a SELECT state-
ment specifying the contents of the implicit table.

“table name”

Generally, this is just the name of a table.

In a few statements, there is a syntax that allows a user to
define a synonym and use it in the rest of that statement.
The intent of this option is to allow shorter where clauses
that are easier to read. The format of the synonym refer-
ence 1is:

“existing table name” ( "synonym” )

The statements that allow this use are those that have the
where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT.

"variable definition block”

The content of the variable definition block is two columns:
variable names and variable descriptions.

Align variable names in a column that is indented 3 spaces
from the DEFINE VARIABLES line. ‘

Align variable definitions in a column as convenient; when a
structure element is defined, both the variable name and the
variable definition should be indented three spaces from the
name and definition of the next higher level variable.

Three types of variables may be defined in this block:
atomic variables, arrays, and structured variables.

Each element variable is described by a line:
“variable name"” “variable definition”

Each array variable is described by a line:
“variable name” ("dimersions”) "variable definition”

Each structured variable is described by multiple lines, ome
line per lowest level element, and one line for each named
level of grouping/structure, with indentation levels used to

indicate the grouping.

The names of subordinate elements of a structured variable
are named in all lower case letters.

E-15
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o The use of complex structured variables 1is not encouraged;
‘one reasonable use for them 18 to receive the values of
AGGREGATES.

E.8 Other Uses and Conventions

Use of Special Characters in AERA PDL

¢ Parentheses are used for grouping statements and setting o_f
special parts of the comstructs.

o Semicolons are used as statement terminators.

e Colons are used to terminate labels.

o Underscore 1s used to separate words in multi-word
identifiers.

e The symbols ‘'+','-','®', and '/' are used as arithmetic
operators.

e The pound sign '#' is used as a comment delimiter, for
beginning and end of each comment line.

e Commss are used as separators in lists of operanis.

e Periods are used to separate fully qualified names.

Naming Conventions

e Keyword identifiers use only uppercase letters and are
underlined. They are the only underlined identifiers in the
PDL.

e Table identifiers from the relational data base also use
only uppercase letters.

¢ AGGREGATE identifiers for combinations of fields use no

uppercase letters.
References to fields in a table, used in the normal course

of reference in AERA PDL, will be fully qualified by
including the table name.

E-16
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pther Identifiers

e Identifiers for constants, routines, labels, arrays, and

hiererchisslly_prruaturad variahles are all be pamed using )

word-initial capitals. ;‘

® For hierarchically structured variables, all of the sub-
ordinate elements within the structure use only lowercase
letters.

® For hierarchically structured variables, all references to
the subordinate elements in the structure will be in fully
qualified form using separate identifiers.

® Global data and shared local data can include both tables

and parameters. The individual parameters are named using
word-initial capitals.

Use of the Formal Constructs in AFRA PDl, Statements

@ Statements may use formal constructs or clear English
descriptions to specify the intended test or actionm.

® Any AERA PDL statement 18 terminated by a semicolon,
including any English statement outside of a comment.

o Below the level of statement, some statements have a finer
organization in terms of “"phrases”, usually occupying a line
per phrase and indented one level from the first line of the
original statement.

Statement Organization

e Indentation 18 wused to 1indicate statement grouping,
statement continuation, and levels of nesting.

@ Any statement may have a label starting in colummn 1.

e Continuation 1lines are indented three spaces from the
original line of the statement.

e Comments are used as needed, bracketed by the special
character '#'.
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