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EXECUTIVE SUMMARY

This specification establishes design criteria for an Airspace Probe
algorithm, part of the initial automation for the advanced automa-
tion system of the Federal Aviation Administration's (FAA's) Air
Traffic Control (ATC) system. The algorithm provides data to
construct a message to air traffic controllers when an aircraft is
predicted to get too close to terrain or other areas wherein flight
in restricted.

Airspace Probe is designed to be compatible with current air traffic
control procedures and Its design is an extension of the Enroute
Minimm Safe Altitude Warning function of NAS Stage A. Airspace
Probe extends the geographical coverage by providing a warning for
controllers if an aircraft flight plan penetrates Enroute Minimm
Safe Altitude Warning areas or Special-Use Airspaces. Airspace
Probe also extends the time over which a warning may occur by using
the flight plan to predict penetrations.

Airspace Probe algorithms assume that each airspace area is repre-
sented by a polygonal volume. The geographical coordinates, activa-
tion and deactivation times, and a maximum and minimum altitude have
been provided by adaptation or supervisor interaction. After boun-
daries are defined, the Airspace Probe algorithm automatically
detects penetrations of these areas. It processes aircraft trajec-

tories which are derived from ATC approved flight plans for aircraft
operating within an Instrument Flight Rule (IFR) cottext. The
trajectory is checked to see if it intersects any Enroute Minimum

Safe Altitude Warning areas or Special-Use Airspaces in the Planning
Region. If any intersections are found, data describing the pene-
trations are stored in the data base. The Airspace Probe is invoked
automatically when an incoming aircraft's flight plan is received by

a center, when an aircraft's flight plan is amended and when flight
plans are resynchronized. When any of these things occur, trajec-
tories are reprobed to account for the change. If a supervisor
activates and deactivates an area, the trajectories are also
reprobed to incorporate this change.
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• 1. .!NTRODUTIr]ON

.4

The Federal Aviation Administration (FAA) Is currently in the
process of developing a new computer system, called the
Advanced Automation System (AAS), to nelp control the nation's
air traffic. Th. AAS will consist of new or enhanced hardware
(i.e., Central Processing Units, memorieR, and terminals) and
new software.

The new software will retain most or all of the functions in

the existing National Airspace System (NAS) En Route Stage A
software. The algorithms will need to be coded and, in some
cases, revised. In addition, the new MAS software will contain
several new functions that make greater use of the capabilities
of automation for Air Traffic Control (ATC). When fully
implemented, these new functions are intended to detect and
resolve many routine ATC problems.

The initial implementation of the AAS, described in the AAS
4.. Specification [11, will provide the ability to detect some

common ATC problems. To meet the requirements of the MB,
several new ATC functions need to be postulated and described.
Four of these functions are described in this document:
Trajectory Estimation, Flight Plan Conflict Probe, Airspace
Probe, and Sector Workload Probe (Volumes 1, 2, 3, and 4].
Together, they represent an initial level of automation and the
beginnings of the evolution of the ATC system in accordance
with the HAS Plan [2]. The NAS Plan represents an overview of
the complete set of changes proposed to HAS in the coming
decade.

1.1 Purpose

The purpose of this volume is to identify design criteria for
Airspace Probe. Airspace Probe is one of the advanced automa-
tion functions called for in the AAS Specification. The design
criteria specified in this volume are based on the existing NAS
and the specification of the AAS. The AAS specification
describes the Airspace Probe function and proposed some high-
level requirements for this function.

1.2 Scope

This algorithmic specification presents design criteria for a
computational framework of Airspace Probe. The framework is a
set of algorithms which collectively describe how it may be
possible to detect aircraft that are in danger of violating
certain separation standards with given airspace volumes where

1-1
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normal flight is restricted. It may be viewed as a candidate
for consideration in the final design. However, it is not
intended to be the complete final design for Airspace Probe in
the AAS.

The framework establishes the requirments for input and output
data and provides a description of the flow of control of data
as it is transferred from input to output. Some of the prin-
cipal requirements have been identified in the "Operational and
Functional Description of AERA 1.01" [3]. To the extent pos-
sible, the data are discussed using existing NAS terminology.

1.3 Organization of This Document

The remainder of Section 1 provides a description of Airspace
Probe's role in the larger ATC context and in future enhance-
ments of the ATC System. Both the operational considerations
and processing methods of Airspace Probe are summarized. Sec-
tion 2 defines the terminology used in the specification and
discusses the factors which influence the design of the algo-
ri thms.

Descriptions of the algorithms are contained in Section 3,
Airspace Probe Functional Design, and in Section 4, Detailed
Description. The Airspace Probe function, like the other
advanced automation functions, is divided hierarchically (from
top to bottom) into subfunctions, components, and elements
(underlined words in Sections 1 and 2 are critical to ihe
understanding of this specification and their definitions can
be found in the Glossary, Appendix D). Section 3 specifies the
design, environment, and assumptions of the subfunctions (e.g.,
the First-Order Coarse Filter), and outlines their components
(e.g., Grid Chain Generation). Section 4 provides a detailed
description of each subfunction's components, including their
mission, data requirements, and processing details, and in some
cases includes a discussion of a component's elements.

Appendix A defines the data shared by the various subfunctions
of Airspace Probe. (Similarly, Volume 5 of this document
contains the global data shared by the functions defined in
Volumes 1 through 4.) Appendix B provides a description of
several elements used in several places in Section 4. Appendix
C provides mathematical derivations of certain formulas used in
the specification. Supplementary information concerning poly-
gon penetration computations is provided. Appendix D, as
mentioned above, contains a glossary of those terms that are
critical to an understanding of this specification.

1-2
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A Program Design Language (PDL) which describes high-level
control logic using structured English is used as needed to
describe the algorithms in this specification. A description
of this PDL is contained in Appendix E. Finally, Appendix F
provides a complete list of references.

1.4 Role of Airspace Probe in the Overall Air Traffic Control
System

The Airspace Probe algorithm evolves from the functions of the
current Air Traffic Control System and the needs of the future
Air Traffic Control System as given In the FAA's National Air-
space System Plan [2,41.

1.4.1 System Context

The Continental United States airspace is partitioned among 20
centers or Air Route Traffic Control Centers (ARTCCs). The
ARTCCs control regions bounded horizontally by polygons that
stretch vertically from the center floor to 60,000 feet. Each
center's airspace is further divided into areas, which are in
turn divided into sectors. Areas and sectors are polygonal
regions with floors (either a specified altitude or the center
floor), and ceilings. The sectors of each area are staffed by
a group of air traffic controllers (or controllers) specific-
ally trained for that area.

In the current ATC system, pilots decide their desired means to
reach their destination consistent with current navigational
and ATC practices. This intent is then filed with the ATC sys-
tem as a flight plan and approved as filed or altered by ATC
for operating under Instrument Flight Rules (IFR). Alterna-
tively, flight plans that are executed daily or on a regularly
scheduled basis reside in a data base and are retrieved auto-
matically unless altered or suspended. A flight plan modifica-
tion may be initiated by a controller or the pilot. Advanced
automation functions of the AAS can deal only with those air-
craft filing IFR flight plans.

Controllers are responsible for monitoring flights as they pass
through their sectors and for helping pilots achieve their
objectives. They watch a block of symbols representing the
aircraft's radar track position as it moves across a display
console; the aircraft's identity, altitude, and other informa-
tion are also displayed. Controllers institute control actions

as needed to perform such functions as helping pilots avoid
close approaches with other aircraft, honoring pilot requests
for new routes, rerouting flights to avoid special airspaces

1-3
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or severe weather, and queuing aircraft into the major terminal
areas,

1.4.1.2 Need for Airspace Probe

The FAA has developed an automated tool for the controller, En
Route Minimum Safe Altitude Warning (E-MSAW), to assist in
detection of penetration of restricted flight airspaces. In
that function, aircraft track positions and velocities are com-
pared to the coordinates of terrain obstructions to determine
if penetrations of minimum safe altitude could -cur. The con-
troller receives a displayed warning upon algc ,Laic detection
of an imminent penetration of minimum safe al ude standards.
E-MSAW provides the controller with an alert ._ potentially
dangerous situations where aircraft might g( too close to
terrain obstructions (natural or man-made). I -g as pilots
stay on published routes, controllers need - short-term
warnings when flights stray too close to terLaln or volumes
wherein general flight is restricted. Pilots filing published
routes are provided with both minimum altitude requirements and
the assurance that no published route penetrates a restricted
flight regime. A flight violating published altitude require-
ments or penetrating a restricted area implies the need for
"blunder" detection for the controller. Such a detection
device is not a strategic prediction of problems.

With the increase in the use of unrestricted, user-preferred
routes expected as the advancing level of automation allows,
pilots will run the risk of unintentionally filing too close to
restricted flight airspaces. Controllers need more efficient
long-term warnings for penetrations predicted for this growing
class of flyers.

The Airspace Probe is an extension of the E-MSAW concept. Air-
space Probe can alert the controller long periods in advance of
any projected penetration of pertinent airspace volumes. It
uses an ATC-derived aircraft trajectory rather than track
information. Airspace Probe provides for an alert not only for
E-MSAW areas but for other areas as well. These could include
NAS-adapted Restricted Areas and Warning Areas, Military Opera-
tions Areas, and other Special-Use Airspacas. The alert can
then lead to a resolution of the penetration far in advance of
projected entry time, thus helping to avoid inefficient
maneuvers while facilitating greater use of user-preferred
routes.

1-4



1.4.2 Role of Airspace Probe in Future System Enhancements

In che initial version of the Advanced Automation System [i,
the Airspace Probe will be only a detection service which
provides results for a manual resolution process. Later,
results will feed into an automatic resolution service. As
initially conceived, the Airspace Probe detects conflicts, the
display generation functions are responsible for gathering
information for the controller and displaying that information,
and the controller plans resolution maneuvers for the air-
craft. In a scenario of the evolution of ATC automation [5],
future plans provide for continuing the current strategic
detection service and decreasing the controller's responsibil-
ity for generating resolution maneuvers. This may be done by
allowing the controller to choose from a ranked list of alter-
native resolutions or by providing the automatic resolution
service itself.

Future automation plans also provide that Airspace Probe and
related functions will predict and resolve penetrations with an
enhanced set of geographic areas and include a mechanism for
strategic conflict detection and resolution for dynamic areas
(such as weather), as well.

1.5 Airspace Probe Summary

The Airspace Probe provides an aid for controllers to determine
if an aircraft flight plan penetrates designated areas callea
"Minimum Safe Altitude Warning Areas" and "Special-Use Air-
spaces." Special-Use Airspaces are defined in the Airman's
Information Manual [6]. These include, but are not limited to,
Restricted Areas, Warning Areas, Prohibited Areas, and Military
Operations Areas. Each aircraft's planned route of flight is
compared against all these areas to check for intersections or
penetrations. If a penetration is found, the identity of the
area and the penetration coordinates are saved for retrieval
and display as appropriate by the display functions.

1.5.1 Operational Description

Airspace Probe operates within the context of the AAS [1].

Other functions separate from Airspace Probe provide Airspace
Probe with the environmental data needed to predict penetra-
tions of certain airspaces. These data are discussed in
adaptation guidelines [71. Adaptation is that process of col-
lecting important, relatively static environmental data and
storing them in system-accessible data bases. Included in such
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data are the geographical boundaries of the volumes of airspace
which are used by Airspace Probe.

From a controller's point of view, Airspace Probe (in combina-
tion with the display generating functions, Situation Display,
and Trajectory Estimation) provides information to help detect
penetrations of special airspaces. The Airspace Probe function
uses data describing the Special-Use Airspaces and E-MSAW areas
and maintains the data describing any penetrations predicted.
When a penetration is detected between an aircraft trajectory
and a Special-Use Airspace or E-MSAW area, data for a control-
ler display is updated. This operation is described in more
detail by Swedish et al. [3]. The displays may provide such
details of the penetrations as:

e Aircraft involved

* Location
e Conflict type
* Time to conflict
* Graphical display of conflict

From this information, the controller may develop a tentative
resolution approach such as amending the flight plan. This may
be done in the context of the Trial Plan Probe described oper-
ationally by Swedish [3]. If a change in the flight plan is
involved, the controller may receive ptobe results to make sure
the tentative resolution resolves the penetration and does not
create new ones. If the penetration is not resolved, the con-
troller may try another tentative resolution. If the penetra-
tion is resolved, the flight plan change may be accepted (by
the controller) and the flight plan data base is updated (in
functions separate from Airspace Probe). The controller does

, not invoke Airspace Probe by itself but always in the context
of a flight plan amendment. The controller has, at all times,
the means to ask for the display of penetrations in a different
form (i.e., graphical rather than textual).

* 1.5.2 Processing Overview

Data describing special airspaces are maintained in the data
base by their x,y geographical coordinates. Other information
about the area is also maintained such as the airspace identi-
fication, the minimum and maximum altitude, and the activation
and deactivation times (where applicable). Polygons may be
convex or may be mixed (with some concave angles). Area coor-
dinates may only be changed in adaptation, but the area may be
temporarily activated or deactivated by supervisor request.

1-6



Aircraft trajectories for IFR aircraft with valid flight plans
are constructed by the Trajectory Estimation function. These
trajectories are maintained as a series of points designating
x,y (horizontal position), z (altitude) and t (time) at each
point. Once these trajectories are available, then Airspace
Probe can derive airspace penetration information.

Airspace Probe works in tandem with Trajectory Estimation:
whenever the trajectory for an aircraft changes, Airspace Probe
is automatically invoked to maintain the airspace penetrations
data base. Airspace Probe compares the trajectory against all
pertinent airspaces that are currently active using a series of
progessively finer filters. The First-Order Coarse Filter and
Second-Order Coarse process all polygons to accumulate candi-
date intersecting object polygons. The Fine Filter process
this object polygon list to determine the intersection coordin-
ates (if any). When trajectories intersect an area, a data
structure which maintains information about the penetration is
defined and stored in the data base. Any of the information
maintained in the data base may be available for display to the
controller.

S.1
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2. DEFINITIONS AND DESIGN CONSIDERATIONS

Airspace Probe includes E-MSAW capabilities along with new
capabilities. Inclusion of an extended set of airspace areas
widens the responsibilities of Airspace Probe over that of
E-MSAW, but the basic purpose remains unchanged and, so, the
algorithms of Airspace Probe remain deeply rooted in the
previous E-MSAW work.

This section introduces terminology used in this specifica-
tion. Also provided is a set of design considerations which
place Airspace Probe firmly within the AAS context.

2.1 System Design Definitions

Some terms introduced in Section 1 of this specification are of
global interest across the AAS environment and include (in
order of presentation):

1. Subfunction
2. Component
3. Element
4. Center
5. Areas
6. Sectors
7. Controllers
8. Flight Plan
9. Penetration
10. Adaptation

Other terms of interest only to Airspace Probe are introduced
below.

2.1.1 Airspace Types

Special-Use Airspaces are areas wherein aircraft operations are
limited. This section lists and defines the set of Special-Use
Airspaces referenced in this specification. Airspace types are
further defined in the Airman's Information Manual [6).

* Controlled Firing Areas

Controlled Firing Areas are areas which contain activ-
ities which could be hazardous to nonparticipating
aircraft. A unique feature of these areas is that
activities are suspended if spotter aircraft, radar, or
ground look-out positions indicate that a nonpartici-
pating aircraft is approaching.

2-15.
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A.

e Military Operations Areas

Military Operations Areas (MOAB) consist of airspace
defined by vertical and lateral limits which are

established to separate military training activities
b. from IFR traffic.

* Prohibited Areas

Prohibited Areas are airspace volumes within which the

flight of aircraft is prohibited. They contain air-
,4 space of defined dimensions identified by an area on

the surface of the earth. These areas are established
for security or other reasons associated with the
national welfare.

* Restricted Areas

Restricted Areas are airspace volumes within which the
flight of aircraft is restricted. Aircraft activities
within these areas must be confined because of the

content of activities occurring in the area.
Restricted areas denote the existence of unusual, often
invisible hazards.

* Warning Areas

Warning Areas are airspace beyond the three-mile limit
over international waters which may contain hazards and
should not be penetrated during periods of activity.
Even though the activities in warning areas may be as
hazardous as those in restricted areas, areas over
international waters cannot be legally designated as
restricted areas.

2.1.2 Modeling Environment Terms

*A center represents a volume of airspace for air traffic con-
trol. Enclosing the center is the planning region. The
boundary of the planning region is considered to be some hori-
zontal distance outside that of the center: some 20 to 30
minutes of flying time in all directions.

Trajectory Estimation [Vol. 11 provides Airspace Probe with a
trajectory for each aircraft with an IFR flight plan. A
trajectory is a predicted path for the aircraft through the
three spatial dimensions (z, y, z) and time. Each trajectory
is conceptually a continuous, smooth curve four dimensions.

2-2
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However, trajectories are modeled as a series of lines (in
.space-time) called segments, joined together at their end-
points, called cusps. The data base provides trajectory infor-
mation as a list of cusps:

{Ci - (x, y, z, t)i 1 i- 1,. . ., n

The segments are the implied straight lines joining adjacent
cusps. The trajectory is the ordered sequence of these seg-
ment s.

It is convenient for purposes of Airspace Probe to enclose the
horizontal extent of the planning region in a grid. The grid
covers the planning region with squares, called cells, aligned
with the x,y coordinate axes of the coordinate system used by
Trajectory Estimation. These cells provide a reference for

geographical features in terms of their location within a

numbered cell.

The grid structure associated with E-MSAW is the underlying
Radar Sort Box grid structure which is used primarily in Radar
Data Processing. This grid structure was updated to incor-
porate E-MSAW information as described in NAS Stage A Automatic
Tracking specification [8). The requirements of Airspace Probe
are satisfied by this grid structure. However, there is no
guarantee that the AAS will incorporate the Radar Sort Box
concept. Consequently, the remainder of this document refers
to an Airspace Probe "grid" to give emphasis to the fact that a
similar type of grid structure is necessary for Airspace Probe
algorithms.

2.1.3 Airspace Probe Terms

Airspace Probe works with a trajectory and a set of airspace
volumes. The trajectory is said to belong to the subject air-
craft. The airspace volumes, which are assumed by Airspace
Probe to be cross-referenced to the grid through adaptation,
form the set of object polygons.

The Airspace Probe algorithm is executed through a sequence of
filters. A filter is a logical subalgorithm the input of which
is a subset of all object polygons and the output of which is a
subset of the input. Input to the first filter, called the

First-Order Coarse Filter, is the entire object polygon set.
Output from the last filter, called the Fine Filter, is the set
of encounters. An encounter is an object polygon penetrated by
the subject's trajectory. A nominee is an object polygon which

is input to any filter except the First-Order Coarse Filter.
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The subject's trajectory, upon initial processing in Airspace
Probe, must be cross-referenced to the grid. In this process,
the list of cells that the trajectory penetrates, called the
grid-chain, is computed. The logical entity responsible for
the cross-referencing is called the grid-chain generator.

2.2 Design Considerations

Environmental adaptation is assumed to record the identities,

geometry and coordinates of all E-MSAW areas and Special-Use
Airspaces (SUAs) that are physically within the planning
region. The E-MSAW areas and SUAs are simple polygons in an
(x,y) projection with flat tops and bottoms. The E-MSAW areas
my cover the planning region giving an approximation to the
geography and radar receiving capabilities of the underlying
map. They all touch the ground and are under 25,500 feet in
altitude. The other SUAs may be detached, floating above the
planning region. The estimated population of protected air-
spaces is about 500 where most of them are E-MSAW polygons.

A typical planning region is a polygon with vertices established
as latitude, longitude points. In environmental adaptation,
the planning region is apportioned among multiple cells. Next,
all E-MSAW areas and SUAs are positioned in the grid as shown
in Figure 2-1. 1hen adaptation is completed, each cell data
element contains the identity of all polygons which intersect
that cell. The opposite is also true. Each polygon data
element adapted contains the list of grid cells the polygon
intersects. Maintenance of both the polygon-by-cell and
cell-by-polygon data bases is required to provide access to the
cells when the polygons are activated or deactivated, and to
provide access to the polygons when the cells enclosing the
flight plan segment change.

The E-MSAW function which exists in NAS Stage A has been used
as a source of some of the algorithms of Airspace Probe. The
E-MSAW function has limited warning capabilities in comparison
to those which have evolved for Airspace Probe. E-MSAW
provides a tactical warning message to controllers when air-
craft are too close to terrain obstructions. E-MSAW warns of
imminent penetration of airspaces where "imminent" is defined
to be less than five minutes into the future.

At the other end of the tactical-strategic spectrum, Airspace

Probe provides information to construct a warning message to
controllers when planned aircraft trajectories get too close to
terrain and other Special-Use Airspaces. Using aircraft
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FIGURE 2-1
SPECIAL-USE AIRSPACE DEFINED ON

PLANNING REGION GRID
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trajectories, Airspace Probe performs tho same function without
the temporal limitations.

The algorithm supporting the Airspace Pr.Jbe has evolved fror,
the E-MSAW algorithm [8,9]. The NAS Adaptation Process [7]
provides the environmental data. Adaptation and the E-MSAW
algorithm can be summarized as shown below:

e E-MSAW Area Adaptation:

1. The airspace of the planning region is divided into
a regular grid.

2. The airspace terrain polygons are cross referenced
with respect to the grid.

9 E-MSAW Algorithm:

1. The current position and velocity of the aircraft
are projected ahead for some fixed time period
(nominally two minutes) based on radar track data.

2. The intersections between projected line segments
and polygons are determined.

3. The intersections are reported to the controller.

The two new features of Airspace Probe are incorporation of
additional airspace volumes and the use of the aircraft trajec-
tory for early penetration prediction. In addition, penetra-
tions are maintained in the data base for display to the
controller (either immediate or later display). The Airspace
Probe algorithm works as shown below:

" E-MSAW Area and Special-Use Airspace Adaptation:

1. The airspace of the planning region is divided into
a regular grid.

2. The E-MSAW areas and Special-Use Airspaces are
cross-referenced with respect to the grid.

" Airspace Probe Algorithm:

1. The planned aircraft trajectory is examined.

2-6
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2. 7he intersections between planned trajectories and
polygons are determined.

3. The Intersections are stored in the data base.

4
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3. AIRSPACE PROE FUNCTIONAL DESIGN

This section identifies the environment in which Airspace Probe
%'4.. is to work in the AAS. The input and output data are identi-

fied along with activation sequences. At the end of this
section, the major subfunctions of Airspace Probe are identi-
fiel and a description of each subfunction is provided.

A 3.1 Environment

The prediction process of Airspace Probe uses the stored
polygon information along with the predictions of future posi-
tions for aircraft from Trajectory Estimation to search for

.' positions where an aircraft path (in four dimensions) pene-
trates an E-NSAW or Special-Use Airspace volume. Figure 3-1
depicts the Airspace Probe functional environment.

3.1.1 Input Data and Activation

The Airspace Probe function requires an initialized data base
containing various types of data defining the environment. The
environment 1h divided into a regular grid covering the entire
xy extent of the planning region. The (x,y,z,t) coordinates
of E-MSAW and Special-Use Airspaces are input and cross-
referenced to the grid.

Airspace Probe uses this environmental definition and data
which specifies the trajectory to be probed. The algorithm
typically processes one aircraft trajectory. In either case,
the algorithm operates the same way. An aircraft is selected
(separate from the Airspace Probe algorithm) and the trajectory
is compared against the object polygons. A list of those poly-
gons which intersect the aircraft trajectory is formed and data
is stored describing the intersection.

3.1.1.1 Input Data

Airspace Probe requires input data through adaptation. Polygon
adaptation ensures that the following data are accumulatedSwhich describe the E-MSAW and Special-Use Airspace environment:

- Grid specification

* Airspace polygon coordinates, (xyzt), for each
E-MSAW Area and Special-Use Airspace

* Polygons further defined in a polygon data base cross-
referenced with the grid

3-1
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AIRSPACE PROBE FUNCTIONAL ENVIRONMENT
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Airspace Probe must further be provided with an aircraft's
trajectory which describes the path the aircraft is predicted'
to take through the planning region.

3.1.1.2 Automatic Activation Sequences

Airspace Probe may be Initiated automatically to determine
penetrations of protected airspace whenever the following
events occur:

. The trajectory estimate for an aircraft changes. This
could occur when a new aircraft enters the system,
updates to trajectory time values are made, or a

candidate plan is being examined by the controller.
(See Section 3.1.1.3)

4 The time bounds on any one Special-Use Airspace change
through supervisory action. (See Section 3.1.1.4)

3.1.1.3 Controller Initiating Sequences

A controller may implicitly initiate Airspace Probe when he has
used his strategic planning mechanism (i.e., Trial Plan Probe
as described by Swedish [2J) to include some alteration in the
aircraft's plan such as a change to the assigned altitude or
speed. In these cases, Airspace Probe is invoked automatic-
ally. If the trajectory is not changed, however, the control-
ler should not request Airspace Probe since no new information
can be generated. He may only request more information about
the penetrations already detected and stored.

3.1.1.4 Supervisor Activation and Deactivation

The supervisor may implicitly initiate the Airspace Probe when
he activates or deactivates an area. In this case, the super-

visor would change the time limits on a certain Special-Use
Airspace. This action externally activates an Airspace Probe
on a (possibly large) population of aircraft. The activation
of Airspace Probe for each aircraft involved in this population

is automatic. This activation sequence is not described fur-
ther in this specification.

3.1.2 Output

The penetration detection algorithms of Airspace Probe identify
encounters and store the data for use by the controller.
Several types of data are stored (cf: Vol. 5, "Environmental_
Conflict").

3-3
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" Polygon identification
" Aircraft identification

,., " Encounter time
, " Encounter coordinates

" Advisory time

3.1.2.1 Information to the Controller

The Airspace Probe stores penetration information and makes it
available for display by the display function. Any time a

, penetration between an aircraft trajectory and E-MSAW areas or
Special-Use Airspaces is predicted, data for a controller dis-
play is updated. This data provides information about the
penetrations of all aircraft into E-MSAW and Special-Use
Airspace polygons such as:

o Aircraft identification
o Sector, grid, and polygon identification
o Penetration coordinates
o Time to penetrations

The display function is maintained as a separate entity. Thus,
it has logic of its own to determine encounters eligible for
display to the appropriate controller, select appropriate data
to display, provide the desired display format, and choose the
logical display on the appropriate logical device.

The display function sorts Airspace Probe encounter data by
tine and generates two types of warnings. If the time to pene-
tration is more than X (system parameter) minutes, an advisory
message is sent to the controller who is currently responsible
for the aircraft. If the time to penetration is less than X
(system parameter) minutes, an alert message is sent to the

controller responsible at the position of penetration.

The display function selects appropriate data for display to
the controller and provides the display format such as arrange-

'3 ment, choice of graphic or alphanumeric information, and
(possibly) color of data items. In both the advisory and alert
messages, the controller is presented with information required
to identify the penetration and formulate a resolution. All

information necessary to support the display function exists in
the penetrations data base maintained by Airspace Probe.

S.•. . - ..3-4



3.1.2.2 Information to the Supervisor

When areas are activated or deactivated by the supervisor, no
special information is provided from the initiation of Airspace
Probe. However, the display functions should inform the super-
visor that his request has been honored.

3.2 Design Assumptions

This section describes some assumptions made in the design of
Airspace Probe algorithms. Of special importance are those
assumptions placed on the context of the environmental data.

3.2.1 Polygon Adaptation

Adaptation of E-MSAW areas and Special-Use Airspace is assumed
in this specification to provide the environmental information
used by Airspace Probe algorithms. As in E-MSAW, the polygons
are assumed to be cross-referenced to a grid where each polygon
data element contains the identity of all the cells it inter-
sects, and each cell data element contains the identity of all
the polygons that intersect it. In particular, the following
data are assumed:

" Cell data element (cf: Vol. 5, "EnvironmentalCell")

- cell identification

- the polygon identification for each polygon
intersecting this cell

" Polygon data element (cf: Vol. 5, SpecialUseAirspaces
and EMSAWAreas)

- polygon identification

- cell identification for each cell this polygon
intersects

- airspace type (E-MSAW, etc.)

- polygon type (convex, mixed)

- list of (x,y) vertices for the polygon
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- altitude extent of the polygon

- time extent of the polygon

The vertices of the polygon are assumed to be stored in a
consistent ordering scheme: "c lockwise" is used in this
specification since that convention was adopted by E-MSAW.
Furthermore, this specification assumes that the vertices
stored for a polygon extends the real boundary of the polygon
by a system parameter number of miles. This is necessary to
account for the lateral positional uncertainty in a trajec-
tory. This notion in portrayed in Figure 3-2.

3.2.2 Inherited E-MSAW Assumptions

Several major design assumptions are derived from the design of
E-MSAW [8,91:

e Special-Use Airspaces can be processed algorithmically
like E-MSAW polygons are processed.

e It is not necessary to restrict Special-Use Airspace
Polygons to convex polygons.

* When trajectories intersect a polygon several times,
certain multiple intersections can be treated as one
unique penetration.

3.3 Subfunctions

Three subf unctions to Airspace Probe are identified and
described in this section. Each subfunction refines an input
list of object polygons. At the termination of the Airspace
Probe process, an output set of encounters is produced.

3.3.1 First-Order Coarse Filter

The First-Order Coarse Filter defines a nominee in terms of the
x,y closeness of a polygon to a trajectory. The trajectory
representing the aircraft's path is logically superimposed on
the planning region grid and the grid-chain extracted. Poly-
gons named in each cell of the confining grid-chain are added
to the list of first level nominee polygons. Each such nominee
has the property that the aircraft's trajectory intersects a
grid cell the polygon also intersects. They are, therefore,
"close" (relative to the grid). This process Is shown in
Figure 3-3.
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3.3.2 Second-Order Coarse Filter

The Second-Order Coarse Filter defines a nominee in terms of an
xy,z,t closeness measure of a polygon to the trajectory. The
polygons identified in the First-Order Coarse Filter are again
compared to the trajectory. A series of interval intersection
tests are performed between trajectory segments and one- and
two-dimensional circumscribed right rectangles that envelop the
polygon.

3.3.3 Fine Filter

The Fine Filter defines an encounter in terms of an exact
intersection between the polygon and a trajectory segment. The
polygons identified by the Second-Order Coarse Filter are again
compared to the trajectory segment. Those polygons with the
property that they intersect the aircraft trajectory are
identified.

3.3.4 Encounter Processing

Encounter Processing stores information about the encounters
identified by the Fine Filter. This data includes information
such as the aircraft ID, route, altitude, time and position of
penetration, and the identification of the Special-Use Airspace
or E-MSAW area.

3.4 Extendability

Airspace Probe is expected to be enhanced in the future to
predict penetrations of aircraft trajectories against weather
polygons. This might be accomplished by generating a series of
static polygons representing the weather cell at various times
t-minutes apart, each with a lifetime of t-minutes or more.
Such an extension requires no changes in the current algo-
rithm. An alternative approach might define polygons to be
dynamic in nature with an implied velocity vector and time
extent. This dynamic nature would force changes in the Air-
space Probe algorithm in two areas.

First, the moving polygori concept does not fit well with the
grid structure serving the First-Order Coarse Filter. There is
no temporal limit in the grid structure, itself, and a moving
area would then cut a "swath" into the grid. For this reason,
each moving polygon should not be incorporated into the Grid,
but each moving polygon should automatically become a First-
Order Nominee for every aircraft.
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Second, the incorporation of moving polygons into the polygon
population forces several upgrades in the execution of the
Second-Order Coarse Filter and in the Fine Filter. The logic
of these two entities can be easily changed to consider every
polygon a dynamic polygon (with E-HSAW and Special-Use Air-

spaces having an assumed zero-velocity vector). A switch to a
relative geometry (or aircraft centered) coordinate system can
be made at the outset of processing, and the remainder of the
filters executed as specified.
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4. DETAILED DES({IPTION

The penetrat on detection algorithms of Airspace Probe are
arranged in a series of progressively more discriminating
filters. Ai space Probe is composed of a First-Order Coarse
Filter, a Sccond-Order Coarse Filter, a Fine Filter and an
Encounter Processing routine. Polygons passing through all the
filters are placed on a list of polygons which intersect the
aircraft trajectory. Figure 4-1 illustrates the relationship
of the components in the Airspace Probe.

4.1 First-Order Coarse Filter

4.1.1 Mission

The First-Order Coarse Filter for Airspace Probe is a mechanism
for quickly selecting the proper subset of polygons (i.e.,
those which may intersect the aircraft trajectory) for further
Airspace Probe processing. The inclusion of Minimum Safe
Altitude Warning Areas into the population of polygons con-
sidered by Airspace Probe makes such a filter mandatory for
reasons of efficiency. There can be, in the adaptation data
base, several hundred Minimum Safe Altitude Warning Areas which
can describe the topography of the underlying planning region.
In fact, the whole planning region could be covered by such
polygons.

The First-Orler Coarse Filter of Airspace Probe is especially
constructed to use stored (adapted) geographical information
about the Location of polygons and information from the
trajectory of the aircraft to eliminate polygons on the basis
of some a priori measure of closeness. Conceptually, if the
pat, of the aircraft is contained entirely in the southern
section of a planning region while a polygon is in the north,
the polygon should be eliminated from further processing.

*The selected polygons which are close to the aircraft path
resulting from such a coarse filter should be a small subset of
the total polygon population. That sutset comprises a set of
nominees. Even though the aircraft's path is close to the
polygon, the path of the aircraft may or may not intersect the

extent of a nominee polygon. Further Airspace Probe processing
is necessary to determine the actual penetration status of the
aircraft path with respect to each nominee.
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ROUTINE Airspace _Probe;
PARAMETERS

LocF1_Id IN;
DEFINE VAERI.ABLES

LocFlId. .h*eidehtification of the alrcraft being
p robed for airspace coniflicrta

CALL FirstOrder CoarsePi1l-tW(LocFlId IN);
CALL SecondOrderCoa-rsm-eFilter;

4.4 CALL PineFilter;
CALL EncounterProceseing(LocFlId IN);

'I' END AirspaceProbe;

."V FIGURE 4-1
AIRSPACEPROBE

4-2

% N '~ * -~



4.1.2 Design Considerations and Component Environment

The First-Order Coarse Filter of Airspace Probe is designed to
provide an efficient mechanism for examining an aircraft
trajectory with respect to the airspace polygon environment.
It uses an adapted grid structure to select a set of nominee
polygons from the polygon population. These may intersect the
trajectory of the aircraft. The complement of the set of
nominees is a set of polygons which clearly do not intersect
the trajectory. To perform its function, the First-Order
Coarse Filter requires input defining the aircraft trajectory
and input defining the environmental polygons cross-referenced
to a grid structure. It produces output defining a list of
Nominees.

The sequence of elements associated with the First-Order Coarse

Filter is shown in Figure 4-2. Program design language is
provided in this section for each element shown in Figure 4-2
with the exception of Grid and LinearDiscriminantClassifier.
A description of those two elements is provided in Appendix B.

Input Data

The input data required by the First-Order Coarse Filter

consists of:

e System Global Data Base

- TRAJECTORIES

The aircraft's trajectory is obtained from the

trajectories table using the flight identification
input to the Airspace Probe algorithm.

- VOLUMES

The ceiling altitude of each airspace volume identi-
fied by the grid-chain generator is obtained for
checking purposes.

- ENVIRONMENTALCELLCONTENTS

A cell identified by the grid-chain generator is
cross-referenced to each airspace polygon inter-
secting the cell. The identities of each polygon
are retrieved for possible addition to the list of
noninees.
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FIGURE 4-2
ELEMENTS OF THE FIRST-ORDER COARSE FILTER
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o- ENV IRONMENTAL__GRIDPARAMETFE S

The nominal cell width is obtained.

- ENVIRONMENTAL CELLS

The extent of a cell is retrieved. In particular,
the x and y extents are obtained to construct the
boundary of the cell.

Output Data

The First-Order Coarse Filter produces a list of nominee poly-
gons which must be processed through the remainder of the
Airspace Probe algorithm.

e Shared Local Data Base
"4

- FIRST ORDER NOMINEES

The identifies of the First-Order Coarse Filter
Nominee polygons are stored in this table. These
polygons must have the property that they intersect
a cell that the aircraft's trajectory intersect and
the ceiling altitude of the polygons are above the
minimum altitude of the trajectory.

- FLCUSPS

The trajectory of the aircraft is brought into local
storage.

- SEGMENTS

The trajectory, which is a list of cusps, is
arranged to yield an explicit line segment by line
segment representation.

4.1.3 Component Design Logic

The Airspace Probe First-Order Coarse Filter is responsible for
constructing a list of polygons known to be "close" to the

route of the aircraft. The route of the aircraft is provided
, by the XYZT-Segments. Figure 4-3 provides a description of the

control logic for the First-Order Coarse Filter. In the
element Cusps To Segments (Figure 4-4), the trajectory of the
aircraft is obtained and processed to yield the ordered set of
segments which represents the aircraft's route.
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ROUTINE FirstOrderCoarseFilter;
PARAMETERS

Loc Fl Id IN; The Flight Identification
REFER TO GLOBAL

TRAJECTORIES _N,
VOLUMES IN;

REFER TO SHARED LOCAL
FIRST ORDER NOMINEES OUT,
FL CUSPS OUT;

DEFINE TABLES
GRID CHAIN VOLUMES The volumes found in the grid chain

describing the aircraft trajectory
volume id The volume identifier
first.cusptime The first cusp before the grid chain

cell containing the volume
all AGGREGATE (volumeid,firstcusp._time);

DEFINE VARIABLES
Loc F1 Id The Flight Identification
Min"F1-Z The minimum altitude over the flight
Ceiling_Altitude The ceiling altitude of the polgon

being examined;

FLCUSPS - SELECT FIELDS time,x,y,z
FROM TRAJECTORIES
WHERE ECTORIES.fl id EQ LocF1Id
ORDER BY TRAJECTORIES.time;

CALL CuspsTo_Segments;
CALL Grid Chain_Generation (GRID CHAIN VOLUMES OUT);
SELECT FIELDS z

FROM FL CUSPS
INTO Min F1 Z
WERE FL CUSPS.z EQ MIN(FL CUSPS.z);

REPEAT FOR EACH GRID CHAIN VOLUMES RECORD;
SELECT FIELDS ceiling_akltitude

FROM VOLUMES
-A INTO CeilingAltitude

WHERE GRID-CHAIN VOLUMES.volume id E_ VOLUMES.volumeid;
IF Min Fl Z LT CeilingAltitude
HTHENw

INSERT INTO FIRSTORDERNOKINEES
E Fr (all - GRID CHAIN VOLUMES.all);
END First Order Coarse Filter;

FIGURE 4-3
FIRSTORDER_COARSE_FILTER
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ROUTINE Cusps To Segments;
REFER TO SHARED LOCAL

FL CUSPS IN,
S EUMT MOUT

DEFINE VARIABLES
First Cusp The flag indicating that the first cusp of

the trajectory is being processed

Previous Time The time of the previous cusp;
I.

First Cusp - "true";
REPEAT FOR EACH FL CUSPS RECORD,;

IF First Cusp EQ "true"
MHN

INSERT INTO SEGMENTS
(begin - FLCUSPS.cusp);

Previous Time - FL CUSPS.time;
FirstCusp - "false";

ELSE
UPDATE IN SEGMENTS

(end - FL CUSPS.cusp)
WHERE SEGMENTS.begin_t 12 Previous Time;

IF FL CUSPS.time NE MAX (FL CUSPS.time)
THEN

INSERT INTO SEGMENTS
(begin - FL CUSPS.cusp);

Previous Time - FLCUSPS.time;

END CuspsToSegments;

FIGURE 4-4
CUSPSTOSEGMENTS
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The Grid Chain Generation (Figure 4-5) represents Airspace
Probe's capability to cross-reference the aircraft's trajectory
to the grid structure. The output of this routine is the list
of all the volumes associated with the cells that the
aircraft's trajectory intersects (in the horizontal plane).

In the element Set__Up_SegmentScan (Figure 4-6), the slope for
a trajectory segment is computed to determine the coordinate
with the fastest change per unit distance. This is done so
that the algorithm may increment the faster-changing variable
(called the "independent variable") to step to the next row (or
column) of grid cells assuming that the other coordinate will
change at most one cell in either a positive or negative
direction (see Figure 4-7). The element also identifies the
cells containing the first and last points on the segment.

At each grid cell, the independent variable is incremented one
step in grid-cell coordinates and the dependent variable is
recalculated by the element Scan Segment To Pick Up Cells
(Figure 4-8). The next grid cell is drtermind From theie new
grid cell values. If it is found that the dependent variable
has changed indicating a new row (or column) for the next grid
cell, the element Add Box (Figure 4-9) is invoked to find the
intermediate cell whilc has been crossed (see Figure 4-10).

The element Add Box determines which intermediate cell the
trajectory passes through as follows (see Figure 4-11):

1. First, it is determined in what relation the current
cell stands to the previous cell (upper right, etc.)

2. Second, the point between the two cells is found.

3. Next, the current trajectory segment is compared to
the point between the cells. This enables the
algorithm to determine if the trajectory segment
passes to the right or left of the point. This
uniquely determines the cell that the trajectory must
pass tlrough in order to reach the current cell.

4. Lastly, this intermediate cell is added to the grid
chain and falls in the proper order.

The service utilities Get Lower Left Corner Points (Figure
4-12) and Put Box In Grid Chain (Figure 4-13) perform data
retrieval and depositing -to support AddBox. The former
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ROUTINE Grid._Chain_Generation;
PARAMETERS

GRID CHAIN VOLJMES OUT;
REFER TO GLOML

ENVIRONMENTAL CELL CONTENTS IN;
REFER TO SHARED LOCAL-

SEGMENTS IN;
DEFINE TABLE-

GRID CHAIN CELLS The cells the trajectory intersects
* .4 cell id- The cell identifier

firsEcusp_time The time of the first cusp before the
cell

GRIDCHAIN VOLUMES The volumes within the cells which
intersect the trajectory

volume id The volume identifier
firstusp_time The time of the first cusp before the

cell
TEMP A temporary table

, volume id The volume identifier;
DEFINE VARIABLES

Prey_Box The last cell looked at
Box The current cell
Last Box The final cell of the trajectory segment
Slope The Y vs X slope of the segment
Step_X The independent variable increment
Step_Y The independent variable increment
IndepVar The independent variable;

4.#

REPEAT FOR EACH SEGMENTS RECORD;
CALL Set_Up_SegmentScan (SEGMENTS.pair IN, Box OUT,

LastBox OUT, Slope OUT, Step_X OUT, Step Y OUT,
IndepVar OUT, GRID CHAIN CELLS OUT);

CALL ScanSegment_To_Pick_UpCells (SEGMENTS.pair IN,
Box IN, Last Box IN, Slope IN, Step X IN, StepY IN,
IndePVar IN, GRIDCHAIN CELLS INOUT);

REPEAT FOR EACH GRID CHAIN CELLS RECORD;
TEMP - SELECT FIELDS volume id

FROM ENVIRONMENTAL CELL CONTENTS
WHERE ENVIRONMENTAL CELL CONTENTS.cell-id EQ

GRID CHAIN CELLS.cei id;
REPEAT FOR EACH TEMP RECORD;

INSERT INTO GRID CHAINVOLUMES
(volume id - TEMP.volume id, firstcusp_time -

GRIDCHAINCELLS.first_usp_time) ;
END GridChain_Generation;

FIGURE 4-5
GRIDCHAINGENERATION
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ROUTINE Set_Up_SegmentScan;

PARAMETERS
SEGMENT IN,
Box OUT,
Last Box OUT,
Slope OUT,
Step__X OUT,
StepY Off,
Indep Var OUT
GRID CHAIN CELLS OUT;

1 REFER TO GLOBAL

Environmental_.CellWidth IN;
DEFINE TABLES

SEGMENT The current trajectory segment

beginx The first cusp of the segment
begin y
begin z
begin t
end x The second cusp of the segment
end y
end-z
end-t

GRID CHAIN CELLS The cells intersecting the trajectory
cell id- The cell identifier
first _cusptime The time of the first cusp before the

cell;
DEFINE VARIABLES

Box The first cell intersected
Last Box The last cell intersected
Slope The slope of the segment with respect to

the independent variable
Step X The independent variable increment
StepY The independent variable increment
IndepVar The independent variable
Delta X The segment X extent
Delta-Y The segment Y extent;

. FIGURE 4-6

SET UP SEGMENT SCAN
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CALL Grid (SEGHENT.begin-x IN, SEGMENT.beginjy IN,
Box OUT);

INSERT INTO GRIDCHAINCELLS
(cell 'id - Box, firsit cusp_ time - SEGMENT.begin-t);

DeltaX SEGNENT.end x- SEGMENT.begin-xz;
Delta Y -SEGMENT.endy -SEGMENT.begin y;
Step_.X - SIGN (Delta_-X) *Environmental Cell Width;
Step_Y - SIGN (Delta -Y) *EnvironmentalCellWidth;
Slope - Delta YfDeltaX;
IF ABS(Slope) LT 1

IndepVar - ""
ELSE

IndepVar - ""
Slope - DeltaX/DeltaY;

CALL Grid (SEGMENT.end~x IN, SEGMENT.end~y IN,
Last_-Box OUT);

END Set_Up_SegmentScan;

FIGURE 4-6 (Concluded)
SETUPSEGMENTSCAN
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FIGURE 4.7
INDEPENDENT VARIABLE SELECTION
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ROUTINE ScanSegmentTo_PickUp_Cells;
PARAMETERS

SEGMENT IN,
Box IN,
LastBox IN,
Slope IN,
Step_X IN,
Step_Y IN,
IndepVar IN,
GRID CHAIN CELLS INOUT;

REFER Td GLOBL -

ENVIRONMENTAL CELLS;
REFER TO SHARED LOCAL

SEGMENTS IN;'i DEFINE TABLES-

DSEGMENT The current trajectory segment
beginx The first cusp of the segment
begin_y
begin_z
begin t
end x The second cusp of the segment
end_y
end z
end-t

GRID CHAIN CELLS The cells intersecting the trajectory
cell id- The cell identifier
firs-tcusp_time The time of the first cubp before the

cell;
DEFINE VARIABLES

Box The first cell intersected
-" Last Box The last cell intersected

Slope The slope of the segment with respect to the
independent variable

Step_X The independent variable increment
StepY The independent variable increment

9.. Indep_Var The independent variable
-,-, Pry Box The previous cell intersected

PrvBoxX The minimum X value of the previous cell
PrvBox Y The minimum Y value of the previous cell
Box X The minimum X value of the current cell
Box Y The minimum Y value of the current cell
StepCount The number of independent variable steps
X The X coordinate of the current step

e. Y The Y coordinate of the current step;

FIGURE 4-8

SCANSEGMENTTOPICKUPCELLS
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Step Count - 0;
REPEAT WHILE Box NE 1LastBox;

StepCount - Step Count + 1;
Pry Box = Box;

SELECT FIJ LDS min x,min_y
FROM ENVIRONMENTALCELLS
INTO X.Y
WHERE 'NVIRONMENTALCELLS.cell id E Pry_Box;

IF Indep_: ar EQ "X"
THEN

X - X + StepX;
Y - SEGMENT.begin_.y + Slope * Step_Count;

CALL Grid (X IN, Y IN, Box OUT);
SELECT FIELDS mL_y

FROM ENVIRONMENTAL CELLS

INTO Prey Box Y
WERE ENVIRONMENTALCELLS.cell Id _ Pry_Box;

SELECT FIELDS m 3n_y

FROM ENVIRONMENTALCELLS
INTO Box Y
W5E ENVIRONMENTALCELLS.cell id EQ Box;

IF Box Y NE Pry Box Y
THEN

CALL Add Box (Pry Box IN, Box IN, SEGMENT IN,
GRID CHAIN CELLS NOUT);

ELSE

Y - Y + Step.Y;
X - SEGMENT.begin_x + Slope * StepCount;
CALL Grid (X IN, Y IN, Box OUT);
SELECT FIELDS mn _x

FROM ENVIRONMENTALCELLS
INTO Pry Box X

WHFRE ENVIRONMENTALCELLS.cell.id EQ Pry_Box;
SELECT FIELDS min x

FROM ENVIRONMENTALCELLS

INTO Box X

WHERE ENVIRONMENTALCELLS.cell.id M Box;
IF Box X NE Prv Box X
THEN

CALL Add Box (Pry Box IN, Box IN, SEGMENT IN,
GRID CHAIN CELLS TNOUT);

INSERT INTO GRIDCHAIN CELLS
(cell-id = Box, first cusp_time - SEGMENT.begin_t);

END ScanSegment To Pick Up Cells;

FIGURE 4-8 (Concluded)
SCANSEGMENTTOPICKUPCELLS
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ROUTINE Add Box;
PARAMETERS

Prey Box IN,
Box IN,
SEGMENT IN,
GRID CHAIN CELLS INOUT;

,.- . DEFINE TABLES-
SEGMENT The current trajectory segment

begin z The first cusp of the segment
beginy
beginz
begin t
end x The second cusp of the segment
endj
end z
end t

' ," GRID CHAIN CELLS The cells which interseat the- traJec.t-Y
,cellId The cell identifier

first cusptime The time of the first cusp before the
cell;

DEFINE VARIABLES
Prev Box The previous cell intersected
Box The current cell intersected
Prey Box X The minimum X value of the previous cell
PrevBoxY The minimum Y value of the previous cell
Box X The minimum X value of the current cell
Box-Y The minimum Y value of the current cell
Sid-e The side of the line where the point is;

FIGURE 4-9
ADD BOX

%1

,'. 4-15
''S



.I

CALL Get Lower Left Corner Points (Prey Box IN, Box IN,
Prev Box X OUT, Prev Box Y OUT, Box X OUT, Box Y O-UT);

CHOOSE CASE
WHEN Box X GT PreyBox X AND Box Y GT Prey Box Y THEN

-C-!~-.~~ecA. DJbirml ancUslerkb ri.. -IN, SEGMENT.end IN, BoxX IN, BoxY IN, Side OUT)
IF Side EQ "left"
THEN

S,, CALL Put Box In Grid Chain (Prey Box X IN,
BoxY M IN,-SGN-IN, GkIDCHAIN CELLS INOUT);

EtSE
-CALL Put Box-I-n'.Gtid 9ha-n'(-Box.X.N,, Prev Box Y IN,

SEGMENT IN,. G-.f ChAINGELLSNOUT) - --
WHEN Box X GT PreyBox X AND Box Y LT Prey Box Y THEN

CALL Linear Discrimlnant Classifier (SEGMENT.begin IN,
SEGENT.end IN, Box_X IN, Prey BoxY IN, iide OUT)

" 1_F Side EQ "left"
THEN

CALL Put Box In Grid Chain (Box X IN, Prey Box Y IN,
SEGMENT IN, GRID CHAIN CELLS INOUT);

- ELSE
CALL Put Box In Grid Chain (Prey Box X IN,

Box Y IN, SEGMENT-N, GRID CHAIN CELLS INOUT);
WHEN Box X LT Prev Box X AND Box Y GT Prey Box Y THEN

CALL Linear Discriminant Classifier (SEGMENT.begin IN,
SEGENT.end IN, Prey Box X IN, BoxY IN, Side OUT;

IF Side EQ "left"
THEN

CALL Put Box In Grid Chain (Box X IN, PrevBox Y IN,
SEGMENT IN, GRID CHAIN CELLS INOUT);

ELSE
CALL Put Box In Grid Chain (Prey Box X IN, BoxY IN,

SEGMENT IN, GRID CHAIN CELLS INOUT);
WHEN Box X LT PreyBox X AND Box Y LT Prey Box Y THEN

CALL Linear Discriminant Classifier (SEGMENT.begin IN,
SEGMENT.end IN, Prey Box X IN, Prey_Box Y IN, Side OUT)

IF Side EQ "left"
THEN

CALL Put Box In Grid Chain (Prey Box X IN,
BoxY IN, SEGMENT-IN, GRIDCHAIN_CELLS INOUT);

ELSE
CALL Put Box In Grid Chain (BoxX IN, PrevBoxY IN,

" SEGMENT IN, GRIDCHAIN_CELLS INOUT);
END AddBox;

V FIGURE 4-9 (Concluded)

a ,. ADD BOX

4-16



-.1-

y

previous current
-x

(a) Independent variable is x and no change in y,
therefore no intermediate grid cell.
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(b) Independent variable is x and a change in
y of +1 (grid cell coordinates) indicates

an intermediate box is intersected (in

dashed lines).

FIGURE 4-10
INTERMEDIATE GRID CELL RECOGNITION
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FIGURE 4-11
INTERMEDIATE GRID CELL DETERMINATION
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ROUTINE GetLower LeftCornerPoints;
PARAMETERS

Prey Box IN,
Box IN,

* PreyBox X OUT,
Prey"BoY- -dUT,
Box X OUT,
Box Y OUT;

REFER TO GLOBAL
ENVIRONMENTAL_CELLS IN;

.DEFINE VARIABLES
Prey_Box The previous cell intersected
Box The current cell intersected
Prey Box X The minimum X value of the previous cell
Prey-Box-Y The minimum Y value of the previous cell
Box X The minimum X value of the current cell
Box Y The minimum Y value of the current cell;

SELECT FIELDS min x,min_y
FROM ENVIRONMENTAL CELLS
INTO Prev Box X, Prev Box Y
WHE-RE ENVIRON MTAL ELLScell id EQ Prey_Box;

SELECT FIELDS mn x,min__y
FROM ENVIRONMENTALCELLS
INTO Box X, BoxY
WHERE ENVIROiMENTALCELLS.celltid EQ Box;

END Get LowerLeftCornerPoints;

FIGURE 4-12
GETLOWERLEFTCORNERPOINTS

4'19
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ROUTINE PutBoxIn Grid_Chain;
PARAMETERS

X IN,
Y W,
SEGMENT IN,
GRID CHAIN CELLS INOUT;

DEFINE TABLES--
SEGMENT The current trajectory segment

begin.x The first cusp of the segment
begin y
begin_z
begin _t
endx The second cusp of the segment
endjy
end z
end t

GRID CHAIN CELLS The cells intersecting the trajectory
cell id- The cell identifier
firs _cusp time The time of the first cusp before the

cell;
DEFINE VARIABLES

X The X coordinate of the point
Y The Y coordinate of the point
CellId The cell which includes the point (X,Y);

CALL Grid (X IN, Y IN, Cell Id OUT);
INSERT INTO GRID CHAINCELLS

(cell 1id - Ce-lId, firstcusp__time - SEGMENT.begint);
END PutBoxIn._Grid_Chain;

FIGURE 4-13
PUTBOXINGRID CHAIN
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obtains the lower (least y) left (least x) hand corner point
for two boxes. The latter inserts a cell identification (along
with the time at the segment initial point) into the grid-chain
table.

4.2 Second-Order Coarse Filter

4.2.1 Mission

First-Order Coarse Filter processing has identified a set of
Nominee polygons. The Second-Order Coarse Filter is a finer
filter which processes the First-Order Nominee polygons to
reduce the set of potentially intersecting polygons. At this
level of granularity, "close" is defined so as to include only
those nominee polygons (approximated by the smallest right
rectangle aligned square to the coordinate axes) which inter-

sect the trajectory segments. The polygons passing this filter
are examined in greater detail in the Fine Filter.

4.2.2 Design Considerations and Component Environment

In the Second-Order Coarse Filter, the algorithm accesses, for
the first time in Airspace Probe, the actual dimensions of the
four-dimensional polygons. However, the polygons, themselves,
are not processed, but enclosed in a parallelepiped. The

Nextents in the x, y, z, and t dimensions are used to construct
the parallelepiped (Figure 4-14). one-dimensional intersection

tests alone on this volume rapidly eliminate non-candidate
polygons, especially those not intersecting the trajectory in

the altitude and time dimensions (dimensions not incorporated
into the First-Order Coarse Filter).

The sequence of elements associated with the Second-Order

Coarse Filter is given in Figure 4-15. Program design language
is provided in this section for each element of Figure 4-15
with the exception of LinearDiscriminantClassifier. A
description of that element is provided in Appendix B.

Input Data

The input data required by the Second-Order Coarse Filter
consists of:
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FIGURE 4-14
APPROXIMATION OF AN AIRSPACE BY
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FIGURE 4-15
ELEMTS OF THE SECCND-ORDER COARSE FILTER
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.77

e System Global Data Base

-"SPECIAL USEAIRSPACES

"he activation and deactivation times associated
with individual polygons are retrieved to support
time interval intersection tests.

- VOLUME COORDINATES

The (x,y) coordinates of each vertex of each polygon
are contained in this table. Only the maximum and
minimum x's and y's are obtained. The ceiling and
floor altitudes for the polygon are used to describe
the vertical extent.

e Shared Local Data Base

-SEGMENTS

N The aircraft's trajectory has been stored for

Airspace Probe use as an ordered sequence of line
segments. Each trajectory segment is checked for
possible intersection with parallelepipeds
containing First-Order Nominees.

- FIRST ORDER NOMINEES

This table contains the identity of each polygon
thought to be "close" to the trajectory.

output

The Second-Order Coarse Filter produces a list of nominee
polygons which must be processed through the remainder of the
Airspace Probe algorithm.

a Shared Local Data Base

- SECONDORDER NOMINEES

The identities of the polygons which are identified
.... by the Second-Order Coarse Filter are stored in this
.4g table. These polygons must have the property that a

parallelepiped enclosing the volume intersects the

trajectory of the aircraft.

4-24



4.2.3 Compon.nt Design Logic

The Second-Oi ler Coarse Filter (Figure 4-16) examines each
Firs'-Order Nf,,inee to determine if an intersection can exist
with the air-raft trajectory. Each nominee is processed
separately, f rst by obtaining the maximum and minimum x, y, z,
and t values -cross the polygon. This first step is performed
by the element RetrievePolygonExtents (Figure 4-17).

Each trajectory segment, beginning with the cusp associated
with the nominee, is examined for potential intersections.
Each segment passing through the process undergoes tests
against the rectilinear space circumscribed about the polygon
being checked. To perform this test, a sequence of filtration
steps are performed. The two major steps check if the aircraft
trajectory segment intersects: (1) the extent of the polygon

in single dimensions (Figure 4-18), and (2) the extent of the
polygon in certain planes (Figure 4-19). If an intersection is
not found at any particular step, the aircraft trajectory will
not intersect the polygon. Consequently, the polygon is

rejected as a Nominee immediately if this condition is detected.

The first step, given in the element One Dim Checks (Figure
4-20), sets up comparisons of the aircraft trajectory segment
with the extent of the polygon. The comparisons done in
SegmentVsSegment Intersection (Figure 4-21) check to see if
the 1-dimensional extent of the trajectory segment intersects
the 1-dimensional extent of the polygon in corresponding
dimensions. The order in which dimensions are checked should
be ordered in such a way as to take advantage of the

distribution of trajectory segment and polygon data. For
example, if most aircraft trajectory segments input to the
Second-Order Coarse Filter indicate that checking the altitude
would drop half the cases but checking one of the horizontal
dimensions would drop only a quarter of the cases, then the
altitude check should be made before the horizontal checks.

The second step, given in the element Two Dim Checks (Figure
4-22), sets up comparisons of the extent of the aircraft
trajectory to the extent of the polygon in various orientation
planes. The comparisons done in Segment_-VsPlaneIntersection
(Figure 4-23) check to see if the 2-dimensioral extent of the
trajectory segment intersects the 2-dimensional extent of the
polygon. Only the x-y, y-z, x-z, and z-t planes are examined.

.4., It is not necessary to check the x-t and y-t planes or the
x-y-z volume since the planes checked account for these
orientations. The Second-Order Coarse Filter examines the
polygon from the various orientation planes in this coarse

"4 4-25
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ROUTINE Second Order CoarseFilter;
REFER TO SHARED LOCAL

SEGMENTS IN,
FIRST ORDER NOMINEES IN,
SECOND ORDER NOMINEES OUT;

DEFINE TABLES
POLYGONEXTENTS The extents of the polygon in each

dimension
min X The minimum value of the x dimension
miny The minimum value of the y dimension
min z The minimum value of the z dimension
min _t The minimum value of the t dimension
max x The maximum value of the x dimension
maxy The maximum value of the y dimension
max z The maximum value of the z dimension
max-t The maximum value of the t dimension;

DEFINE VARIABLES
SegmentIntersection This flags a segment intersection
Plane Intersection This flags a plane intersection;

REPEAT FOR EACH FIRST ORDER NOMINEES RECORD;
CALL Retrieve PolygonExt'ents

-- RST_ORDERNOMINEES.volumeid IN, POLYGONEXTENTS OUT);
REPEAT FOR EACH SEGMENTS RECORD

WHERE SEGMENTS.begin time GE
FIRST ORDER NOMINES.first cusp time AND
FIRST-ORDER-NOMINEES.volume id YS NCtFI
SECOND ORDER NOHINEE.volume_id;

CALL One _m Checks (SEGMENTS.pair IN, POLYGON EXTENTS IN,
SegmentIntersection OUT); -

IF SegmentIntersection EQ "true"
THEN

CALL Two Dim Checks (SEGMENTS.pair IN,
POLYGON EXTENTS IN, Plane Intersection OUT);

IF Plane Intersection EQ "true"
THEN

INSERT INTO SECOND ORDER NOMINEES
(all - FIRST_ORDER_NOMINEES.all);

END SecondOrderCoarse_Filter;

FIGURE 4-16
SECOND ORDERCOARSEFILTER
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"-: ROUTINE Retrieve-Polygon Extents;

Volume Id IN,

REFER TO LODAL
"-'..."SPECIAL USE AIRSPACES.IN,
"-VOLUM U0O0INTES IN;-

.i. -

DEFINE TAiLES
POLYGON EXTENTS The extents of the polygon in each

dimension

min x The minimum value of the X extent
minj The minimum value of the Y extent

min_z The minimum value of the Z extent
min t The minimum value of the T extent
maxx The maximum value of the X extent

A maxy The maximum value of the Y extent
maxz The maximum value of the Z extent
max t The maximum value of the T extent;

DEFINE VARIABLES
Volume Id The volume identifier
Start Time The activation time of the polygon
Stop Time The deactivation time of the polygon;

DEFINE CONSTANTS
Earliest Possible Time The earlist representable time

A LatestPossibleTime The latest representable time;

FIGURE 4-17
RETRIEVEPOLYGONEXTENTS
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IF VolumeId IS IN SPECIALUSEAIRSPACES.volume id
TEN

SELECT FIELDS start-time,stop_time
FROM SPECIALUSEAIRSPACES
INTO StartTime,Stop Time
WHERE SPECIALUSEAIRSPACES.volume~id EQ VolumeId;

ELSE 7 Volume Id must be for an E-MSAW area7
Start Time -EarliestPossibleTime;

-~StopfTime -LatestPossible Time;
INSERT INTO POLYGONEXTENTS

-~ (min t - StartTime, max _t - Stop Time);
UPDATE IN POLYGONEXTENTS

(min _x VOLUME COORDINATES.x)
WHERE VOLUME COORDINATES .volume Id M Volume Id AND

VOLUME COORDINATES .x R MIN TVOLUME COORDINAES .z) AND
POLYGON EXTENTS. min t Mg Start Time;

UPDATE IN POLYGONEXTENTS-
_-m-x - VOLUMEf COORDINATES.x)

WHERE VOLUME COORDINATES.volume id EQ Volume Id AND
VOLUMECOORDINATES.x z M -CVOLUMECOORDINKAfES. x) AND
POLYGON EXTENTS .min t EQ StartTime;

UPDATE IN POLYGONEXTENTS-
(min-y - VOLUME COORDINATES.y)

WHERE VOLUME COORDINATES .volume id EQ Volume Id AND
VOLUME COO0RDINATES *y Q MIN (VOLUME COORDINATES. y) AND
POLYGON EXTENTS.min t EQ StartTime;

UPDATE IN POLYGONEXTENTS-
(max.jr - VOLUME COORDINATES.y)
WHERE VOLUMECOORDINATES .volume id _% Volume Id AND

VOLUIME COORDINATES .y N MAX I(VOLUMECOORDIKATES.y) AND
POLYGON-EXTENTS.min t BQ Start Time;

UPDATE IN POLYGONEXTENTS
4.(min _z - VOLUMES.floor altitude)

WHERE VOLUMES *volumeI d E2. Volume Id AND
POLYGON-EXTENTS .min t EQ Start-Time;

v * UPDATE IN POLYGONEXTENTS
(mi- - VOLUMS.ceiling_altitude)

WHEREf VOLUNES.volume id Mg Volume Id AND
POLYGONEXTENTS * min-t EQ Start-Time;

END Retrieve PolygonExtents;

FIGURE 4-17 (Concluded)
' -, RETRIEVE POLYGON EXTENTS
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9 FIGURE 4-10
TRAJECTORY/POLYGON ONE-DIMENSIONAL INTERSECTION
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ROUTINE One_Dim_Checks;
PARAMETERS

SEGMENT IN,
POLYGON EXTENT IN,
Segment7intersection In All_Dimensions OUT;

DEFINE TABLES
SEGMENT The current trajectory segment

begin x The first cusp of the segment
beginy
begin_z
begin7t
end x The second cusp of the segment
endj
end z
end-t

POLYGON_EXTENT The extent of the polygon in each
dimension

min x The minimum value of the X extent
1mn-y The minimum value of the Y extent
min z The minimum value of the Z extent
mint The minimum value of the T extent
max x The maximum value of the X extent
max_y The maximum value of the Y extent
max z The maximum value of the Z extent
max t The maximum value of the T extent;

DEFINE VARIABLES
Segment IntersectionIn_All_Dimensions Flag
SegmentIntersection Flag;

FIGURE 4-20

ONEDIM CHECKS
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SegmentIntersectionIn AllDimensions - "false";
CALL Segment Vs Segment Intersection (SEGMENT.beglnt IN

SEGMENT.end t IN, POLYGON EXTET.min t IN,
POLYGONEXTEff.mx_t IN, SegmentIntersection OUT);

IF Segment_Intersection EQ "true"
TEN

CALL Segment Vs Segment Intersection (SEGENT.begin z IN,
SEGMENT.end z IN, POLYGON EXTENT.min. z IN,
POLYGON EXTENT.mx z IN, Segment Intersection OUT);

IF Segmentntersection E-4 "true"
THEN

CALL SegmentVsSegment Intersection (SEGMENT.begin x IN,
SEGMENT.end_x IN, POLYGONEXTENT.min x IN,
POLYGON EXTENT.maxx IN, SegmentIntersection OUT);

IF SegmentIntersection g "true"
MEN

CALL SegmentVsSegment Intersection
(SEGMENT.begin_y IN, SEGENT.endy IN,
POLYGON EXTENT.min y IN, POLYGON EXTET.max y IN,

Segment-_Intersection OT3T--
,IF SegmentIntersection EQ "true"
THEN

Segment-_Intersection _InAllDimensions "true";
END One-Dim Checks;

FIGURE 4-20 (Concluded)
ONE DIM CHECKS
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ROUTINE Segment Vs_Segment Intersection;

PARAM TERS
SegmentMinimum IN,
SegmentMaximum IN,
Polygon Minimum IN,
PolygonMaximum WN,
Segment Intersection OUT;

DEFINE VARIABLES
Segment_Minimum The minium value of the segment extent

for a given dimension
Segment Maximum The maximum value of the segment extent

for a given dimension
PolygonMinimum The minimum value of the polygon extent

for a given dimension
Polygon Maximum The maximum value of the polygon extent

for a given dimension
Segment Intersection The flag for a segment/polygon intersection;

IF Segment Minimum GT PolygonMaximum OR
SegmentMaximum T PolygonMinmum

Segment Intersection - "false";
ELSE

Segment Intersection - "true";

END Segment_Vs_SegmentIntersection;

FIGURE 4-21
SEGMENT VSSEGMENT INTERSECTION
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ROUTINE TVo DimChecks;

PCLYGON EXTENT IN,
Plane Intersection_InAllOrientations OUT;

DEFINE TAND_
SEGMENT The current trajectory segment

beginx The first cusp of the segment
beginjy
begin z
begin t
end x The second cusp of the segment
endj
end z
end-t

POLYGO_ EXTENT The extent of the polygon in each
dimension

min x The minim value of the X extent
min y The minimum value of the Y extent
min z The minimum value of the Z extent
ain t The minuimm value of the T extent
max x The maximum value of the X extent
maxj The maximum value of the Y extent
max z The maximau value of the Z extent
max t The maximum value of the T extent;

DEFINE VAMABLES
PlaneIntersection InAllOrientations Flag
Plane Intersection Flag;

FIGURE 4-22
TWO DIM CHECKS
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Plane-Intersection In All Orientations -"false";

* CAII Segment Vs Plane Intersection (SEGIENT.begin t IN,
SEGMENT .begin z IN, SEGHENTend t IN, SEGMENT .end z IN,

4.. POLYGONEXENT.min t IN, POLYGON EXTENT.maz t IN,
POLYGON zTDIT.minaz IN, P(IYGoi XTUI.mzz W,
?lane Intersection odi;

IF Plane Intersection "true"

-AT- Segment Vs Plane Intersection (SEONEN.begLn x IN,
UGNDT.beginta I N, SBGNRI.end z IN, SEGHDI.end-z IN,
POLYGON EXTUI.in x IN, POLYGN IUTI.max:z IN,
POLYGN IUTEIT.uin. z IN, POLYGON EXTDITmmza IN,
Plane fntersectiosn0-y3;

IF Plane Intersection 7truem
MEN-

CALL Segment VsPlaneIntersection (SEGHM.beginj y

POLYGN MdiNPOL NPYGON TETuinIN_

bLLUA Segment Vs Plane Intersection
TSEGMENT .bjginz INX, SEGMENT .beginj IN
SEGfENT.end. x IN, SEGENT.end y IN,
POLYGON EXTET.in x IN, POLYGON EXTENT.maz x IN,
POLYGON EXTEN. SInC IN, POLYGONEXMENT. maxJ IN,
Plane Itersection bM15;

IF Plane Intersection true"

Plane Intersection In All Orientations -"true";

END Two Din Checks;

FIGURE 4-22 (Concluded)
TWODIN CHECKS
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ROUTINE Segment Vs Plane Intersection;
PARAMETERS

SegmentStart U IN,
Segment Start V IN,
Segment End U IN,
SegmentendmV IN,
Polygon-'Min m_--U IN,
Polygon MinimmV IN$
Polygon aximm U IN,
PolygonMmximmV IN;
Segment Intersection OUT;

DEFINE VARIABLES
Segment StartU The value of the U coordinate for the

first cusp of the segment
Segment Start V The value of the V coordinate for the

first cusp of the segment
Segment End U The value of the U coordinate for the

second cusp of the segment
Segment End V The value of the V coordinate for the

second cusp of the segment

Polygon Minimum U The minimm U extent of the polygon
Polygon inkimum V The minimum V extent of the polygon
PolygonMaximum-U The maximum U extent of the polygon
Polygon Maximum V The maximum V extent of the polygon
Plane Intersection The segment/plane intersection flag
First"Side The side of the segment on which the

first polygon vertex lies

Side The side of the segment on which the
current polygon vertex lies;

FIGURE 4-23
SEGMENT VS PLANE INTERSECTION
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Plane Intersection- "true";
CALL Linear Discriminant Classifier (Segment Start U IN,

Segment_StartV IH, Segment EndU IN, Segment EndV IN,
Polygon Minimum U IN, Polygon Minium V IN, First Side OUT);

CALL Lineaer Discriminant Classifler (Sement Start U IN,
Segmen .Start V IN, SegmentEndU IN, Segment End V IN,
Polygon VAxPtium U IN, Polygon Minimsv IN, Side OI3

IF Side .. First Side
THEN

CALL Linear Discrimtnant Classifier (SegmentjStart U IN,
Segment Start V IN, Segment End U IN, Segment End V IN,
PolygonMaximm_-uIN, PolygoMaxiwmv IN, Side oUT37

IF Side E First Side
CALL Linear Discrimlnant Classifier (SegmentjStart U IN,

Segment Start V IN, Segment End U IN, Segment Fd VVIN,
Polygon Minimum U IN, Polygon Maximum V IN, Side OUT'

IF ide IFirst STde-
IfEN

Plane Intersection - "false";
END Segment Vs_PlneIntersection;

FIGURE 4-23 (Concluded)
SEGMENT VS PLANE INTERSECTION
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manner. The entire polygon is not examined but rather the
smallest rectilinear space square to the coordinate axes
circumscribed about it.

To determine whether a segment intersects a given rectangle
coarsely describing the extent of the polygon in a certain
orientation plane, a linear discriminant is used. The Linear
Discriminant Classifier is described in Appendix B. With the
information it provides , one can classify points in the
orientation plane as being left or right of the trajectory
segment. A trajectory segment will intersect the rectangle
about the polygon extent (in a given plane) if points of the
polygon are found both to the left and to right of the segment
(i.e. a line of the rectangle must cross the segment).

4.3 Fine Filter Processing

4.3.1 Mission

The Second-Order Coarse Filter processing has identified a set
of Nominee polygons that are close to, but do not necessarily
intersect, the aircraft's trajectory. The Fine Filter
processing now must determine whether the given polygons do
indeed intersect the aircraft's trajectory. The processing for
each polygon is more involved than that in the coarse filters
since the polygons may have concave sides and the exact points
of intersection in 4-space must be determined. The information
found by the Fine Filter is passed on to Encounter Processing
to set up the relevant global data structures.

4.3.2 Design Considerations and Component Environment

In the Fine Filter, the coordinates of the vertex points of
each Second-Order Nominee are used to construct line segments
to test for intersection with a trajectory segment. For
efficiency reasons, the logic should consider convex and
nonconvex polygons separately.

The sequencing of elements associated with the Fine Filter is
given in Figure 4-24. Program design language is provided in
this section for each element of Figure 4-24 with the exception
of FindPolygon_Boundary Intersections, Linear Discriminant
Classifier, and Time To Violation. A description of these
elements is provided i- Appendix B.
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Fine Filter
Convex Polygon Intersection Check

FindPolygon..BoundaryIntersectitons
Linear Discriainant Classifier
Time To Violation

Mixed Polygon Intersection Check
Find Polygon BoundaryIntersections

Linear_ DiscrininantClassifier
TimeToViolation

Group_In to IntersectionPairs
Vertical Violation Check
Find Eza7t Violation Points

FIGURE 4-24
ELEMENTS OF T~ FINE FILTER
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* 'Input

The input data required by the Fine Filter consists of:

• System Global Data Base

- VOLUMES

The volume type is obtained--either "convex" or
"mixed." This field is used to determine which
polygon Intersection test routine to use.

- VOLUMECOORDINATES

The vertex points of the polygons are obtained for
line intersection tests.

" Shared Local Data Base

- SEGMENTS

The trajectory of the aircraft is stored locally as
an ordered sequence of line segments.

- SECOND ORDER NOMINEES

This table contains the identity of each polygon
passing the tests of the Second-Order Coarse Filter.

output

The Fine Filter produces a list of environmental conflicts
which are stored locally.

- ENVIRONMENTALCONFLICT _DATA

This table contains all information necessary to
4 identify an encounter. This table is input to
14Encounter Processing.

4.3.3 Component Design Logic

The Fine Filter (Figure 4-25) examines each Second-Order Nomi-
nee separately to determine if an intersection truly exists

- with the aircraft trajectory. To perform this task, three steps

4are taken. First, the extent of the horizontal penetration is
determined. Second, the extent of the vertical penetration is
determined. And third, the points of intersection are found.
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ROUTINE Fine .Filter;
REFER TO M6OMLL

VOLME IN; ~-S * S

REFE TO SHED LOCAL

DEFINE TAR=ES
EO W 9ESCION POINTS The table of all Intersections

time-- %e time of the Intersection
type Notes a boundary or Interior Intersection
last eusp_ttIme The tim of the'last cusp before the

Intersection
INTERSECTION PAWR The table of all in/ot Intersections

start tize The time of the intersection going in
stop_ tue The time of the intersection going out
begin x Start cusp of segment on which intersection
begin y, occurred
begin z
begin..t
end 3C End cusp of segment on whi~ch intersection
end y occurred
end zend't

i all"AGGEGATE (start time,stop time,begin x,bagSIn~y,begvLn s
begin-_t, end x,n ,d.y, end-z ,end-t ),

ODEFINE VARIAlteS

SPolygon _Type Concave or mixed concave/convex polygon
Vertical Violation Flag Indicating intersection in the

vertical dimension
SEncounter Flag indicating that the trajectory

' intersects the polygon;

FIGURE T-25
FINE FILTER
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REPUT FOR EACH SECONDORDER NOMINEE RECORD;

FROM VOLUMES
INOPolygon Type

WHERE VOLUMES .volume id _% SECOND-ORDER NOKINEE. volume id;
REPEAT FOR EACH SEGMENTS RECORD

WHERE SEGMENTS .begin time GE
ffCONDORDER NOMINEE. first-cusp_tine;

IF PolygonType EQ "convex"
THEN

CALL Convex Polygon _Intersection Check
TSEGMENI.pair IN, SECOND ORDU- NOMNEES .volume-id IN,

4. SEGMENT iNTERsECimNPois INOuT);
ELSE

CALL Mixed Polygon Intersection. Check
TSEGMNTS. pair IN,

SECOND ORDER NOMINEES .volume id IN,
SEGMENTf INTERSECTION POINTS IOU-TT;

CALL GroupIntoInutersection Pairs
(SEGMENT INTERSECTIONPOINTS IN, INTERSECTION-PAIR OUT);

Encounter - "fiseM ;
REPEAT FOR EACH INTERSECTION PAIRS RECORD;

CALL VerticalViolation Cgeck (INTERSECTIONPAIRS INOUT,
SECONDORDER NOMINEES .volume id IN,

* VerticalViolation OUT);
IF Vertical Violation7M "true";
HEN
Encounter - "true";

ELSE
DELETE FROM INTERSECTION PAIRS

WHERE (INTERSECTIONPAIRS *all EQ
INTERSECTIONPAIRS .all);

IF Encounter EQ " true";

CALL FindExactViolationPoints (INTERSECTIONPAIRS IN,
SECONDORDERNOMINEES .volume id IN);

END FineFilter;

FIGURE 4-25 (Concluded)
FINE-FILTER
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The first step deals with the horizontal extent orly. Convex
and Mixed polygons are treated differently in ConvexPolygon_
Intersection Check (Figure 4-26) and a MiredPolygon_

Intersection-Check (Figure 4-27), respectively; the objective
Is to check all sides of the polygon for possible penetra-
tions. This Is done to screen out polygons which are very
close to tie aircraft's trajectory but do not intersect it.
The detaillo of this step are taken primarily from E-MSAW
documentation [8,91. Appendix C of this document contains
updated details. The outcome of this process is information
concerning the preliminary points of penetration (more
specifically, the time associated with these points) in the
horizontal extent. The number of intersection points may be
one (for trajectories which begin or end in the polygon), two
(for Convex and Mixed polygons), or more thap two (for Mixed
polygons).

The hor4 zontal points of penetration to be considered are
selected by considering the relation of the trajectory segment
to the polygon. If the trajectory begins/ends in the polygon,
then the starting/stopping point is considered as one point of
an intersection pair with the Intersection of the polygon side
as the other. If the trajectory segment intersects only two
sides of either type polygon, these are used. If the trajec-
tory intersects a Mixed polygon in several places, a set of
intersection pairs will be formed. Each pair will consist of
an entry point and exit point from the polygon. Th-se penetra-
tion points are grouped into "enter-exit" pairs in the element
GroupInto IntersectionPairs (Figure 4-28).

The second step examines the vertical extent of penetration for
each intersection pair. This is done in the element Vertical
Violation Check (Figure 4-29). Figures 4-30 and 4-31 illus-
trate this step. Since the polygons are defined by minimum and
maximum altitudes, there can be at most two points of penetra-
tion per segment in vertical extent. The process begins by
assuming the vertical points lie immediately over the hori-
zontal points of penetration (ha and h 2 ) and intersect the
aircraft trajectory (denoted by x"s). Then these points are
compared with the extent of the polygon in the vertical dimen-
sion. If both vertical penetration points lie within this
range, the exact points of intersection have already been found
and the polygon is added to the list of encounters. If both of
the vertical penetration points lie above the polygon or both
lie below, then the trajectory does not intersect the polygon,
the polygon is screened out and rejected.
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ROUTINE Convex Polygon Intersection Check;
PARAMBTERS

SEGN T IN,
volume ITXN,
SEGMENT INTERSECTION POINTS INOUT;

DEFINE TABLES
EThe current trajectory segment

xl The first cusp point of the segment
yl

ti

z2 The second cusp point of the segment
y2
%2
t2
begin AGGREGATE (xl,yl)
end AGGREGATE (x2,y 2 )

SEGMENTINTERSECTIONPOINTS The intersections with the polygon
time The intersection time
type The intersection location

"boundary" of "interior"
last.cusptime The time of the last cusp before

the intersection
ORIENTATIONS The orientation of the cusps (IN or OUT)

begin orient The orientation of the first cusp
begin time The time of the first cusp
end orient The orientation of the end cusp
end time The time of the end cusp
time The time to violation;

DEFINE VARIABLES
Iosum.Counter The IN/OUT intersection counter
Begin Orient The orientation of the first cusp
Begin Ttime The time of the first cusp
End Orient The orientation of the second cusp
End-Time The time of the second cusp;

FIGURE 4-26
CONVEX POLYGON INTERSECTION CHECK
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CALL Find Polygon Boundary Intersections (SEGMENT IN, Volume Id
IN, ORIENTATIONS OUT, SEGMENT INTERSECTIONPOINY INOUT); _

* CHORE CASE
WHEN Iornm Counter EQ2 2 THEN

INSERT IN4TO SEGMENT INTERSECTION POINTS
te -SEGMENT. ti, type - "interior",,
last cusp_ time - SEGMENT.tl);

INSERT IN1TO SEGMENTINTERSECTION POINTS
rt -SEGHENT. r2, type - "interior",

last cusp time - SEGMENT. t2);
WHEN Iosus Counter R2 -2 THEN!

7 do no~hig I
OTIRWISE

SELECT FIELDS begin _orient, begin time
WON1 ORIENTATIONS
INTO Begin Orient, Begin Time
WHERE ORIENTATIONS.time h MIN (ORIENTATIONS.time)

IF %egin Orient EQ "in"

INSERT INTO SEGMENTINTERSECTION POINTS
(time -BeginTime, type =- "interior",
last cusp_t ime - Begin Time);

SELECT FIELDS end orient, end time
FROM ORENIn'AONS
INTO End Orient, End Time
WHERE ORIfENTATIONS * ime EQ MAX (ORIENTATIONS.* time)

IF End orient EQ "in"
ifEN -

INSERT INTO SEGMENTINTERSECTION POINTS
(time - End Time, type - "interior",
last-Cusp time -End Time);

END Convex Polygon-Intersection Check;

FIGURE 4-26 (Concluded)
CONVE POLYGON IN TER SECTION CHECK
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ROUTINE Mixed Polygon IntersectionCheck;

SEGMENT INS
Volume ITIN,
SEQEEN INTERSECTION POINTS INOUT;.

DEFINETA M
slame-The current trajectory segment

zl Tbh. first cusp point of the segment

X1
ti
x2 The second cusp point of the segment
y2
x2

begin AGGREGATE (zlvyl)
end AGGREGTEW(zy2)

SEQINT INTERSECTION POINTS The intersect ions with the polygon
time The intersection tine
type The intersection location

"boundary" of "Interior"
last cusp time The time of the last cusp before

the Intersection
ORIENTATIONS The orientation of the cusps (IN or OUT)

begin orient The orientation of the first cusp
begin time The time of the first cusp
end orent The orientatin of the end cusp
end time The time of the end cusp
tin; The time to violation;

DEFINE1 VARIAMLE
Tosum Counter The IN/OUT intersection counter
Begin Orient The orientation of the first cusp
Begin Tim The time of the first cusp
EhddRient The orientation of the second cusp
hdiTime The time of the second cusp;

FIGURE 4-27
MIXED POLYGONINTERSECT ION CHECK
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CALL Find Polygon Boundary Intersections (SEGMENT IN, Volume Id
I, oRIENTATioNs OUT, SEGMENT INTERSECTioN_PoiJf INOUT);-

CHOOSE CASE
'WN 1omm_ Counter M 2 THEN

INSERT 'ITO SEGMENT AN SECTION POINTS
(time - SEGMENT.tl, type - "interior",
last cusp time - SEGMENT.tl);

wE zoom. Counter zQ -2 THEN
9 do nothing 0;
OTHERWISE

SELECT FIELDS begin orient, begin time
FROM ORIENTATIONS
INTO Begin Orient, BeginTime
WHERE 011 TAIONS. tine R HIN (ORIENTATIONS. time);

IF Begin Orient Q win"
THEN

INSERT INTO SEGMENT INTERSECTION POINTS
(time - Begin Tlie, type - "iterior",

*last cusp time - Begin Time);
SELECT FIELDS end orient, end time

FROM ORIENTATIONS
INTO End Orient, End Tim
VE ORENATIONS.time R MAX (ORIENTATIONS.te);

IF End Orient - "in"
TEN

INSERT INTO SEGMENT INTERSECTION POINTS
(time - End Time type - "interior",
last cusp.time - End Time);

END Mlied Polygon Intersection Check;

FIGURE 4-27 (Concluded)
MIXED POLYGON INTERSECTION CHECK

4-47

.. . . .. . ., . . . . . , .,, .. ,. . .. . .. .- . , .. . , . -, .. , .# , , ,.



ROUTINE GroupIntoIntersectionPairs;

U1Y INTERSECTION POINTS IN,
INTERSECTION PAIRS OUT

REFER TO SHARED LOCAL
SEGMENTS IN;

DIFINE TABLES
SEQENT INTERSECTION POINTS The Intersection points

time The intersection time
type The location of the intersection

(boundary or interior)
last cusp.tine The time associated with the last

cusp before the intersection
INTERSECTION PAIRS The Intersections grouped into the

enter and exit violation points
start time The time associated with the

intersection entering the polygon
stopt/ie The time associated with the

intersection exitlng the polygon
begin.z The segment on which the intersection

lies
begin.y (the first cusp)
begin z
beglint
end x (the second cusp)
end..
end z
endt
segment AGGREGATE (begin x,begin y,beginz,begin t,

endk:,endy, end z,end t);
DEFINE VARIAN.ES

Point The flag Indicating the first or last
point of a segment

Start-Time The time of the first cusp of a segment;

FIGURE 4-28
GROUP INTO INTERSECTION PAIRS
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DELETE FROM SEGMENT INTERSECTION POINTS
uERE NOT ( SEGMENT INTESECTION POINTS. time EQ

Ma T-SI WNT InaUsECTIOK Pofim.ti-e) OI
SEGMEN -- SECTION POINTS.type BQ "boundary" OR
SEGMENT INTESECTION POINTS .TIME EQ
r x (satm innatS oN poiNTs.-te) )

Point -stare;
REPEAT FOR EACH SEGMENTINTERSECTION. POINTS RECORD

IF Point ._ -start-

Start Time - SEGMENT INTERSECTION POINTS.time;
SEMET - SELECT FIELDS ALL

FROM SEGMENTS
WHERE (SE&MENTS. begin t BQ Start Time);

INSERT INTO INTERSECTION PAIRS (start time
SEGMENTINTERSECTION POINTS.time, segment - SEGMENT);

Point - "stopn;
ELSE

UPDATE IN INTERSECTIONPAIRS (stop time -

SEGMENT INTERSECTION PON.ttie)
WE IftERSECTION _PARS.2tart time R Start Time;

Poirt -"start";
END Group Into Intersection Pairs;

FIGURE 4-28 (Concluded)
GROUP INTO INTERSECTION PAIRS

4-49

&M% 5
9

.*. % * * .



ROUTINE Vertical Violation Check;
PARAMTRS

INTERSECTIONDATA INOUT,
Volume Id IN
VerticaViolation OUT;

REFER TO GLOBAL
VOLUMES IN;

DEFINE TAB
ION DATA The intersections grouped into the

enter and exit violation points
start time The time associated with the

intersection entering the polygon
stop time The time associated with the

intersection exiting the polygon
begin x The segment on which the Intersection

lies
begin.y (the first cusp)
begin z
begin t
end x (the second cusp)
endy
end z
end t;

DEFINE VARIABLES
Volume Id The volume identifier
Vertical Violation The flag Indicating that a violation in

the vertical dimension has occurred
Floor The minimum vertical extent of the polygon
Ceiling The maximum vertical extent of the polygon
Start Tim The time of entrance violation
Stop Time The time of exit violation
BeginT The first cusp time
BeginZ The first cusp altitude
Bad T The second cusp time
EndZ The second cusp altitude
Z Vel Average vertical velocity on the segment
Tf Intermediate variables
12
Zl
Z2;

FIGURE 4-29
VERTICAL VIOLATION CHECK
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SELECT FIELDS floor altitude ceiling_a!ltitude
FROM VOLUMES
INTO Floor,Ceiling
WHERE VOLUMES .volume Id EQ Volume Id;

SELECT FIELDS start timeustop tm~egcn.z,begin t,end z,end t
FROM INTERSECTIC9_DATA ieb

INTO StartTiue,StpTieBegin7,egin T,End Z,End T;
z Vel - (Begin . - End ) / (End T- Begin T);
Ti Start Time - Begin T;
T2 -Stop Time - End T;-
7.1 z VeT * Ti + Begin Z;
7.2 - ZVel * 12 + Begin_7.;
IF (7efT ceiling AND 72i GT Ceiling) OR

(7.1 LT Floor AND 7.2 LT Floor)
THEN

VerticalViolation - "false";
ELSE

IF ZI GT Ccli in

Start Time -T1 + (Ceiling - 7.1)/7._Vel;
IF Z1 LT Floor
TEN
StartTim T1 + (Floor -l/ 711.Vel;

IF 7.2 GT Ceiling

Stop Time - T2 + (Ceiling -Z2)/Z Vel;
IF .2 LT Floor

Stop_Time - T2 + (Floor - 72)/Z Vel;
UPDATE IN INTERSECTIONDATA

(start time a Start Time, stop_t ime -StopTime);
Vertical Violation - "true";

END Vertical Violation Check;

FIGURE 4-29 (Concluded)
VERTICAL VIOLATIONCHECK
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-A (a) Exact Intersection Found

(b) No Intersection Found

FIGURE 4430
VERTICAL PENETRATION CHECK
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If neither of the above cases hold, then the process must
determine the true points of intersection. Thit is done in
Find Exact Violation Points (Figure 4-32) by first computing
the difference between the assumed penetrat, on altitude
(denoted by "ai"s in Figure 4-31) and the altitude boundary
of the polygon. From the aircraft's verti :al velocity

4, (approximated by consideration of segment data) and the above
difference in altitude, a new time of intersection is computed.

After the intersection times have been found, the true four-
dimensional extent of penetration is determined by projecting
in x,y and z using their respective derived velocities. For
the mixed polygon case with multiple intersection points, only
the first-in and last-out points of penetration will be
recorded. The case is illustrated in Figure 4-33.

4.4 Encounter ProcessiN

4.4.1 Mission

The Fine Filter has determined that an encounter is present for

the given aircraft trajectory segment. Encounter Processing
records the relevant information about the encounter in the
global data base. The list of Encounters is used elsewhere in
the system for the display of conflict information.

4.4.2 Design Considerations and Component Environment

This component exists to copy information from the local data

base into the global data base.

i.p1
Input

The input data required by Encounter Processing consists of:

0 System Global Data Base

- CURRENT TIME

The current system time is stored in this table.
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ROUTINE Find Exact Violation Points;
PARAMtETERS

INTERSECTION POINTS IN,
Volume Id IN;

REFE TO SHARED LOCAL
ENVIRONMENTAL CONFLICT DATA OUT;

DEFINE TABLES
INTERSECTION POINTS The intersections grouped into the

enter and exit violation points
start time The time associated with the

intersection entering the polygon
stopte The time associated with the

intersection exiting the polygon
begin_x The segment on which the intersection

lies
begin y (the first cusp)
begin z
begin-t
end x (the second cusp)
endjy
end z
end t;

DEFINE VARIABLES
Volume Id The volume identifier
Start Time The time of entrance violation
StopTime The time of exit violation
Begin_T The first cusp time
Begin X The first cusp X
BeginY The first cusp Y
BeginZ The first cusp altitude
End T The second cusp time
End X The second cusp X
End Y The second cusp Y
End Z The second cusp altitude
FirstIn The intersection point when the trajectory

first enters the polygon
Last Out The intersection point when the trajectory

last exits the polygon
AvgXVel The average velocity in X over the segment
Avg_YVel The average velocity in Y over the segment
AvgLZVel The average velocity in Z over the segment;

FIGURE 4-32
FIND EXACT VIOLAT IONP OINTS
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SELECT FIELDS start time
FROM INTERSECTION POINTS
INTO First In
WHERE INTERSECTION POINTS.start-time EQ

MIN (INTERSECTIONPOINTS.start_time);
SELECTFIELDS stop_.timee

FROM INTERSECTION POINTS
INTO Last Out

SINTERSECTIONPOINTS.stop_time EQ
VAX (INTERSECTION POINTS .stoptime);

SELECT FIELDS begi..x ,begin y,begin z,begint,
end x,end_y,end-z,endt

FROM INTERSECTION PoINS
INTO Begin_X, Begin.Y,Begin .Z,Begin .T,EndX,End_Y,End_Z,End T
WHEE INTERSECTION POINTS.start time M2 First Time;

Avg Vel - (End X - iegin X) I (E)d T - Begin T3;
Av-Y-vel (EndY - Begin-Y) I (EndT - Begin T);
A-vg ZVel (End-Z - Begin Z) / (End-T - Begin7T);
X - BeginX + Avg_X Vel * (StartT -"Begin T);-
Y - Begin Y + AvgY Vel * (Start T - Begin T);
Z - Begin Z + Avg Z Vel * (Start T - BeginT);
INSERT INTO ENviRoNTAL coNFLIT DATA -

(time - Start Time, x - X, y - Y, altitude - Z,
volume id - VolumeId);

SELECT FIELDS begin.x,beginjyv,begin z,begin t,
end x,end.y,end zend t
FROM INTERSECTION POINTS
INTO Begin_.X, Begi ..Y, Begin Z,BeginT,EndX,End.Y,End.Z,End T
WHERE INTERSECTION POINTS.stop time M Stop Time;

Ava l - (EndX- Regin.X) I (idT-BeginT);
AvgYVel - (End Y - BeginY) / (End.T - BeginT);
Avg_ZVel - (End"Z - Begin Z) / (End T - BeginT);
X - Begin X + Avg X Vel * TStop T - Begin T);
Y - Begin7Y + Avg__Vel * (StopT - BeginT);
Z Begin Z + AvgZVel * (StopT - Begin T);
INSERT INO ENVIROMENTAL CONFLICT DATA

(time - Stop Time, x - -X, y - Y7, altitude Z,
volume id - Volume Id);

END Find Exact Violation_ Points;

FIGURE 4-32 (Concluded)
FIND XACT VIMaAT ION OINTS
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FIGURE 4-33
FIRST-iN AND LAST-OUT SELECTION
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* Shared Local Data Base

- ENVIRONMENTAL CONFLICT DATA

Information stored locally which includes the enter
and exit positions of the trajectory with respect to
each penetration. Altitudes and times are also
given.

output

Encounter Processing updates the global data base to include:

9 System Global Data Base

- ENVIRONNTALC ONFLICTS

Encounter Information is stored for access by other
system functions.

4.4.3 Component Design Logic

Encounter Processing (Figure 4-34) is essentially a "house-
keeping" lunction used to record the encounters found for a
given aircraft. The data recorded in the table ENVIRONMENTAL
CONFLICT DATA by the Fine Filter is used. The time that the
system should display this predicted penetration to the
cognizant controller is given as "now."
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ROUTINE Encounter Processing;

Loc l d;The local Flight Identifier
REFER YO SNiARED LOCAL

ENVIRONMENTAL CONFLICT DATA IN;
REFER TO GWU&L

CURRENT TIE IN$
ENVIRONMUTAL CONFLICTS OUT;-

DECLARE VARIJAJLES
Loc Fl Id The local Flight Identifier;

REPEAT FOR EACH ENVIRONMENTALCONFLICT DATA RECORD;
INSERT INTO ENVIRONMENTALCCOLICT

(fl id Lotc Fl Ido
tim - ENViROSIENTALCONFLICT DATA. time,
x - ENVIRONHKNTAL COFLICT DATA. z,

y- ENVIRONMENTALCONFLICT DATA. y,
altitude - ENVIRONMENTALCNFLICT DATA.altitude,7
volume i d -ENVIRONMENTAL CONFLICT DATA. volume id,
display asL advisory_t ime Z CURRENTTIME.tlae);-

END Encounter Processing;

FIGURE 4-34
ENCOUNTER PROCES SING
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APPENDIX A

AIRSPACE PROBE DATA TYPES

n CUSPS

I TD x I y I z I

cusp AGGREGATE (tie,xy,z)

This table contains the cusps associated with the trajectory

being examined.

TIME The time associated with the cusp point

.x The z coordinate of the cusp point

y The y coordinate of the cusp point

z The z coordinate of the cusp point

SEGMENTS

I BEGIN TIME I beginx begin I begin.z

I end time I end• I end I end z

begin AGGREGATE (begin time,begin x,begin ybegin z)
end AGGREGATE (end time,end x,endjy,end z3
pair AGGREGATE (begi tme ,Vegin x,beginy,beginsmz,endtime,

end x,end y,endz)

This table contains the trajectory segments associated with
the current trajectory being examined.

A-i
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BEGIN TIME The time associated with the cusp at the beginning
of the segment.

begin x The x coordinate associated with the cusp at the

beginning of the segment.

begin y The y coordinate associated with the cusp at the
beginning of the segment.

begin.z The z coordinate associated with the cusp at the
beginning of the segment.

end time The time associated with the cusp at the end of
the segment.

end z The x coordinate associated with the cusp at the
end of the segment.

endy The y coordinate associated with the cusp at the
end of the segment.

end z The z coordinate associated with the cusp at the
end of the segment.

FIRST ORDER NOMINEES

I VOLU-EID I first-cusp time [

all AGGREGATE (volume id,first cusp..time)

This table contains the volumes which have passed the First

Order Coarse Filter.

VOLVIE ID Identifier of a volume.

first cusp time The time associated with the cusp known
to be close to the volume.

A-2
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SECOND ORD NOMINEES

I VOLUME ID i first cusptime I

all AGGREGATE (volumed,first cusp time)

This table contains the volumes which have passed the Second

Order Coarse Filter.

VOL=M3 ID Identifier of a volume.

first cusp-tIme The time associated with the cusp known
to be close to the volume.

NVIRONMEITAL CONFLICT DATA

I VOLUME ID TIE I I y I altitude

This table contains Information on environmental conflicts
for the current trajectory being examined.

VOLUME ID The identifier of the volume with which the
environmental conflict occurred

TIME The time associated with the environmental
conflict

x The x coordinate associated with the environmental
conflict

y The y coordinate associated with the environmental
conflict

altitude The z coordinate associated with the environmental
conflict

A-3



APPENDIX B

AIRSPACE PROBE ALGORITH14S

This Appendix presents the detailed Airspace Probe elements ref er-
red to by the four Airspace Probe components. Those elements used
for the determination of horizontal penetrations are found in
Appendix C. Those elements are segregated to emphasize the close
correlation with Appendix C of Reference 8. All other elements are
listed below.

Intersection checks are performed using a linear discriminant. The
discrizinant is used to discriminate between points on the left
side of a line and the points on the right (we may interpret the
line as having a direction). This technique may be used to find
which side of a trajectory segment the points of the rectangle
le. If all points lie only to one side, the segment does not
intersect the rectangle. If points lie on both the left and right
side, an intersection must occur (see Figure B-1).

B.1 Grid

This routine is responsible for accepting an input (x,y) position
and finding the grid cell that the point is in. The Cell Id of the
grid cell is returned.

ROUTINE Grid;
PFAAMTS

Y IN,

Box OUT;
REFE TO GLOBL

ENVIROtIENTAL CELL DIMENSIONS;
DEFINE VARIABLS

The X coordinate of the point
Yo The Y coordinate of thig point
Box; The cell which the point (X,Y) is in
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S.f

SELECT FIELDS cell id
FROM ENVIRONMENTAL CELL DIMENSIONS

Bo- -
WHERE ENVIRONMENTAL CELL DIMENSIONS.min x LE X AND

- ENVIRONMENTAL CELL DIMENSIONS.max x GT X AND
ENVIRONMENTALCELL_-DIMENSIONS .miny LU Y AND
ENVIRONMENTAL_CTUDIMENSIONS.maxy GT Y;

END Grid;

B.2 Linear Discriminant Classifier

This routine uses the coordinates of the endpoints of a line segment
and the coordinates of a third point to determine which side of the
line segment (left or right as measured from the first point to the
second point) the third point is on. The method involves the
determinant of a two-dimensional matrix whose elements are composed
of the differences between the line points and the third point.

ROUTINE Linear Discriminant Classifier;
PARAMETERS

Ul IN,
U2 IN,
Vl IN,
V2 IN,
Up IN,
Vp IN,
Side OUT;

DEFINE VARIABLES
Ul The U coordinate of the first point on the line
U2 The U coordinate of the second point on the line
V1 The V coordinate of the first point on the line
V2 The V coordinate of the second point on the line
Up The U coordinate of the point to be classified
Vp The V coordinate of the point to be classified
Side The side of the line on which the point "p" lies
Discriminant The value of the discriminantI,
DiscriminAnt - (U2 - Ul) * (Vp - V1) - (Up - Ul) * (V2 - Vi);
IF Discriminant GT 0
TEN

Side - "left"
ELSE

Side - "right";
END Linear Discrininant.Classifier;
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B.3 Find Polygon Boundary Intersections

This routine will accept a line segment and a set of vertices repre-
senting a polygon and determine the horizontal intersection points
(if there are any). The returned information is a table containing
the intersection points of the segment with the polygon.

ROUTINE FindPolygonBoundary Intersections;

PARAMETERS
SEGMENT IN,
Volume 13IN,
ORIENTATIONS OUT,
SEGMENT INTERSECTION POINTS INOUT;

REFER TO GLOBAL.VMUMECOORDINAES IN;
: DEFINE TABLES

SEGMENT The current trajectory segment
xl The first cusp point of the segment
yl

tl
x2 The second cusp point of the segment
y2
z2
t2
begin AGGREGATE (xl,yl)
end AGGREGATE (x2,y2)

SEGMENT INTERSECTION POINTS The intersections with the polygon
time The intersection time
type The intersection location

"boundary" of "interior"
lastpusp_tlme The time of the last cusp before

the intersection

ORIENTATIONS The orientation of the cusps (IN or OUT)
begin orient The orientation of the first cusp

- begin time The time of the first cusp
end orient The orientation of the end cusp

end-time The time of the end cusp
time The time to violation
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POLYGON VERTICES The vertices of the polygon
x The x coordinate of the vertex
y The y coordinate of the vertex
vertex number The sequence number of the vertex

PV The previous vertex point
x The x coordinate of the vertex
y The y coordinate of the vertex

CV The current vertex point
x The x coordinate of the vertex
y The y coordinate of the vertex

DEFINE VARIABLES
Volume Id The volume identifier
C Side The orientation of the current vertex
P-Side The orientation of the previous vertex
Begln Side The orientation of the first cusp point
End Side The orientation of the second cusp point
Order The sequence number of the current vertex
Violation Time The time to violation
Int Count- The number of intersections thus far
iomum Counter; The number of IN/OUT intersections
f#

POLYGON VERTICES - SELECT FIELDS x,y,vertex.number
FROM VOLUME COORDINATES
WHERE VOLUME COORDINATES.volumeid R Volume_Id;

PV - SELECT FIELDS x,y
FROM POLYGON VERTICES
WHERE POLYGON VERTICES.vertex number BQ 1;

Orde-r- 2;
Int Count - 0;
ioum Counter - 0;
CALL Linear Discriminant Classifier (S.begin IN, S.end IN,

PV IN, P Side OUT); -
REPEAT-FOR EACH POLYGON VERTICES RECORD;

WHERE POLYGON VERTICES.verex..n-er NE 1 AND IntCount LT 2;
C'- SELECT FIELDS x,y

PROM POLYGON VERTICES
WHERE POLGONVTICES.vertex number R Order;

CALL Linear Discriminant Classifier (S.begin IN,
S.end IN, CV IN, C Side OUT);
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IF C Side NE P Side
THEN

CALL Linear Discrimdnant Classifier (PV IN, CV IN,
-S.begin IN, Begin Side OUT);
CALL Linear Discriminant Classifier (PV IN, CV IN,

S.end IN, EndSide OUT);
CHOOSE CASE

WHEN Begin Side EQ "in" AND End Side M "in" THEN
losum Counter - Iosum Counter + 1;

WHEN Begin Side EQ "out" AND End Side R "out" -

losum Counter - losum Counter - 1;
oHwEsRS

CALL Time To Violation (PV IN, CV IN, S.begin IN,
S.end IN, Violation Tiue-UT); -

INSERT INTO SEGMENT INTERSECTION POINTS
(time - Violation Time, type - "boundary",
last cusp time I S.begint);

INSERT INTO ORIENTATIONS
(begin orient - Begin Side, begin time - S.begint,
end orient - End Side, end time - S.end t,
time - ViolationTime);

Int Count - Int Count + 1;
LAST VERTEX Z SELECT FIFLDS ALL

FROM THISVETEX;
Order Order + 1;

END FindPolygon_BoundaryIntersections;

B.4 Time To Violation

This routine determines the time on a given trajectory segment that
a violation occurs.

ROUTINE Time To Violation;
PARAMETERS

N1x IN,
Nly IN,
N2z IN,
N2y IN,
Cx IN,
Cy IN,
Ct IN,
P x IN,

, Pt IN,
Tv OUT;
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DEFINE TABLES
VN The vector from points Ni to N2

x

y
VC The vector from points Ni to C

Y

VP The vector from points C to P

y
DEFINE VARIABLES

Nix The x value of the point Ni
lily The y value of the point Ni
N2x The z value of the point N2
N2y The y value of the point N2
Cx The z value of the point C
Cy The y value of the point C
Ct The t value of the point C
Pf The x value of the point P
Py The y value of the point P
Pt The t value of the point P
Tp The time from point C to P
NxC The cross product of N with C
NXP The cross product of N with C

Tv; The time to the violationH
VN.z - N2x - Nlx;
VN.y - N2y - Nly;
VC.z - Cx - Nlx;
VC.y - Cy - Nly;
VP.x - P - Cx;
VP.y - Py - Cy;
Tp Pt -Ct;
NXC - CROSS(VN,VC);
NXP -CROS(VNVP);
TV - (w-T Tp)/(Nxc + NXP);

END TimeToViolation;

V B-7
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APPENDIX C

POLYGON HORIZONT L VIOLATION DETERMINATION

This Appendix was taken mainly from the NAS E-MSAW Computer Program
Functional Specification (CPFS) [9] and is segregated from the rest
of the Airspace Probe Specification to emphasize that fact. The
algorithms have been modified to account for the strategic nature of
the trajectory/polyon conflicts.

An aircraft trajectory is determined to be in penetration with a
polygon if any portion of any trajectory segment penetrates the
adapted volume of airspace.

Due to the increased complexity of possible shapes when polygon
sides are adapted such that concave angles are formed, the following
procedure will be divided into two separate algorithms to facilitate

the handling of the simpler (and possibly more frequent) geome-
tries. The individual configurations considered by each algorithm
are as follows:

" Algorithm 1 will op.:rate on polygons that contain only
convex angles.

1 . Algorithm 2 will opt rate on polygons with a mixture of

concave and convex anv les.

An indication of which algorithm is applicable to which polygons is
derived by Polygon Adaptation.

C.1 Known Quantities and Relationships

The trajectory segment will be defined by the following quantities:

e Initial cusp: Ci = (x,y,z,t)i
s Next cusp: Ci+l - (x,y$z,t)j+l

The polygon is defined by the following adaptation derived data:

o Algorithm: Indication of which algorithm applies to this
polygon

* Altitudes: Minimum and Maximum

* Total Lines: N (the total number of polygon line segments)

. Vertices: (X1 ,Y1 ),(X2 ,Y2) . . . (XN,YN)

C-1
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The polygon vertices which make up the N line segments are defined
in a clockwise direction. This consistent ordering is necessary

since the algorithms assume that the polygon lies to the right of

line segments defined by the vertices. Counterclockwise ordering

(only) may be used with the proper changes in the algorithms.

C.2 Linear Discriminant Cl~ssifier

A concept essential to the understanding of the algorithms, and a

computation used frequently by them, is the orientation of a point

to a line. The orientation will be determined by considering an
infinite line defined by_ the points N1  - (Ul,V l ) and N2  -

(U2, V2) and a vector N, defined from point N1  to N2  as

follows:

N - (u2-ul,V2-Vl)

Consider also a vector Y, from point N1 to point p ( (Up, Vp)
as (see Figure C-l):

P- (Up-U1,Vp-Vl)

An expression for sin e can be obtained by taking the cross product
from N to F-

x in INW I I sin e - (u2 -u 1 )(Vp-Vl)-(Up-U 1 )(V 2-V1 ) [C-l]

Since the magnitudes of vectors N and P are always nonnegative, the

sign of sin 0 is positive if:

(U2-Ul)(Vp-Vl) - (Up-U1)(V2-Vl ) a 0.*

Note that if the above expression is true, the point p is confined

to the area to the left of the line (as shown in Figure C-l) or is

on the line. This situation will define a "left" (or "OUT") orien-

tation of p to line N1N2. If the above expression is false,

then the sign of sin is less than zero and p is to the right of the

line. This will define a "right" (or "IN") orientation of p to the

line.

*Note: This form corresponds to Ax mentioned in Appendix B.
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Note further that if the orientation of one endpoint of a segment is
"right" and the other endpoint is "left" then the segment must croks
the line at some point, but not necessarily between N1 and N2.

C.3 Time to Penetration

Tv will be determined as follows:

Consider the example in Figure C-2 where the trajectory segment is
defined by its Cusps, C - (Ut, Vc) and P - (U Vo) and,
the polygon lde is determined by its endpoints, ?1 (U1 ,V)
and N2  - (U2 ,V2). Note also that T p tp - tc is tie
tine to travel between the cusps.

The time to intersection is defined with respect to the distance to
"-S the intersection point, d, as:

T -- ~ [C-21V S..

or

d - ISI TV

where S is the speed along the segment.

The total distance traveled during the trajectory segment is:

CP - ISI T [C-3]

By similar triangles (see Figure C-2):

d a [C-4]
CP a+b

If Equations C-2 and C-3 are now substituted into Equation C-4, and
the velocity factored out, then the following expression is obtained
which relates TV to the distances a and b:

TV a

Tp a+b

.4 C-4
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The distance a is then determined as:*

a 1I0 sin u

And the listance b as:

b IPI sin Y

By considering the cross product of N to C:

ICI sin e
N

And the cross product of N to :

IPI sinY -
=  

-

N

The following relationship is obtained:

T p a+b (Nx)+ (NP)

TV can now be expressed in terms of Tp and the cross products

NxC and NxP as:

TV- (NxC)T P

V "(Nx)+(xP)

C.4 Convex Polygon Intersections

The ConvexPolygonIntersection Check (Figure 4-26) operates on
polygons that contain only convex angles between sides. This algo-
rithm is very similar to Mixed PolygonIntersection Check (Figure

.- 4-27) which is a more general algorithm. The convex case is dis-
cussed separately here, since certain efficiencies (not addressed
here) can be incorporated to enhance the performance of the algo-

4 rithm on convex polygons. The algorithm loops through the sides of
'-a.

*Angles are measured in a counter-clockwise direction.
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the polygon to determine if intersections exist. A possible inter-
section is noted if the orientation of a vertex does not match the.
orientation of the previous vertex (sequencing in a clockwise
fashion). To find If an intersection truly exists, the orientation
of the cusps with respect to the polygon side are examined. If an
intersection indeed exists, then the time to penetration is cal-
culated and recorded in the list of intersections for the given
polygon/trajectory segment pair.

If no intersections occur, the algorithm checks to see If the
segment is completely within the polygon. If only one intersection
occurs, the algorithm checks to see which cusp is inside the poly-
Son. In both cases the included points are added to the intersec-
tion list. See section C.5 for more discussion on Inclusion/
exclusion of points with respect to a polygon.

C.5 Mied Polygon Intersections

mixed Polygon Intersection Checks (Figure 4-27) operates on polygons
which contain both convex and concave angles. he algorithm will
loop through the sides which define the polygon. The orientation of
the polygon sides to the trajectory segment will be examined to
detemine whether a penetration is possible.

To gain an understanding of how the mixed algorithm operates, a few
points that must be assumed will be presented.

e If any polygon is crossed by an "infinite" length line, the
"ends" of that line are outside the polygon area (see Figure
C-3).

0 As a point moves along this line, each time it crosses a
polygon side its state is altered. Its state varies between

IN or OUT of the polygon area.

e An "Infinite" line crossing any polygon will cross an even
number of sides. Since such a line begins outside of the
polygon and ends outside of the polygon, an even number of
crosses must have occurred.

9 If a point is within a polygon area, and an "infinite" line
Is laid over the point, the point would cross an odd number
of sides if the point moved to either end of the line. This
is because Its state has been altered from IN to OUT.
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0 If a point is outside the polygon and an "infinite" line is
laid over the pint, the point would cross an even number of
sides (or no si,,es) as it moved to either end. This is true
because its staie (OUT) has not changed.

It is visually easy to seu if a point is IN or OUT by counting the
sides crossed as it mo les towards an end, but computationally dif-
ficult. All sides must be searched to see if they are crossed by
the line and if they lie between the point and the chosen end.

The mixed algorithm uses the above information in a slightly dif-
ferent form. Instead of a point, the trajectory segment is used and
an infinite vector is laid over it (see Figure C-4).

The infinite vector is called the trajectory path. In most cases
the mixed algorithm must search all sides to see if they have been
crossed by the trajectory path. If a side is crossed by the path, a
cross product is employed to see if the trajectory path is IN or OUT
relative to the particular side. (If the trajectory path actually
entered at the side, it would instantly be known that part of the
path is inside the polygon.)

To reli~te this back to the idea of moving from a point to the end of
an infinite line (see Figure C-4), an IN orientation would mean that
the moving point was IN the polygon area before it crossed the sie
moving towards an end.

The mixed algorithm keeps a running sum of the INs and OUTs, where
IN - +1 and OUT - -1. A final sum of 0 means that an even number of
sides were crossed between the trajectory segment and either end of
the trajectory path. Therefore, a sum of 0 means that the
trajectory segment was entirely outside the polygon area. A final
sum of +2 means that an odd number of sides were crossed in either
direction and the entire trajectory segment is therefore inside the
polygon area (see Figure C-5).

Special situations which can occur are as follows:

9 The trajectory path coincides with a polygon vertex, but a
moving point passing through the vertex would not alter its
state of being IN or OUT (see Figure C-6). In Figure C-6a,
vertex Va coincides with the trajectory path. Since a
point moving through this vertex would always remain outside
the polygon, the running sum should not change. In Figure
C-6b we have the same situation, but the point never varies
from being inside the polygon as it passes through vertex
Vb•
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FIGURE C-3
INFINITE UINE CROSSING A MIXED POLYGON

c-9



C--



-Chb-4 -.. W W%

'in

c p
-In

FIGURE C-5
MIXED POLYGON AND TRAJECTORY SEGMENT INSIDE

C-1



In outI

, 1 .4-,4
N6a

6b

,

e

G%

FIGURE C-6
MIXED POLYGON SPECIAL SITUATION 1

C-12

7P2

.................. **%



The trajectory path coincides with a polygon vertex, but a
moving point's state would be altered as it crossed over the
vertex (see Figure C-7). In Figure C-7a, at vertex V_, a
+1 should be added to the running sum. In Figure C-7b, at
vertex Vd, a -1 should be added to the sun.

e The trajectory path coincides with a side of the polygon,

and like situation 1, the running sum should not change (see
Figure C-S).

e The trajectory path coincides with a side of the polygon,
ad ike situation 2, the running sum should change (see
Figure c-9).
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APPENDIX D

GLOSSARY

Numbers in parenthesis at the end of the definition refer to the
section in which the term is first used.

AAS Advanced Automation System (1.1).

Adaptation The process of collecting environmental data and
storing it in system data bases (1.5.1).

Amieg Route The distance of a converted fix on the route from
Distswe the first converted fix (2.1.1).

AMU The concept of automated en route air traffic
control described in "The AERA Concept" [12] (3.4).

AMD An AGD variable is an element (gradient, direction
Variable or acceleration) of the AGD Vector (2.1.3). (See

also "AGD Vector")

AGD Vector The AGD vector is the 3-tuple (acceleration, gra-
dient and direction" controlling the constructionof a segment (2.1.3).

Air Traffic See "Controller" (1.4.1).
.ContrOl

.4.

Area An area is a second level division of the conti-
nental United States Airspace. Controllers are
specially trained for an area's airspace, a region
bounded horizontally by a polygon and having some
vertical extent (1.4.1). (See also "Center" and
"Sector")

,.

AZTC Air Route Traffic Control Center (1.4.1). (See
also"Center")

LXV Air Traffic Control (1.1).

can A discrete compartment of the wind grid (2.1.1).

D-1
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Center A center is the administrative headquarters and the
operational facility for control of the first-level
division of the Continental United States Airspace.

! **The center controls a region bounded horizontally
by a polygon and vertically by the Center floor and
an altitude of 60,000 feet (1.4.1). (See also
"Area" and "Sector")

Clearance A specially formatted order from the controller to
the pilot which commands the pilot to execute a
maneuver (2.1.3).

Campoment Third-level algorithmic unit in the breakdown of an
automation function (1.3). (See also "Subfunction"
"Element")

Controller An en route radar controller as defined in (1.4.1).

--. Converted Fix A fix that in a component of the aircraft route
after Route Conver ion processing (1.4.1.2). (See
also "Fix" and "Coordination Fix")

Converted The filed route of flight as augmented in Route
Route Conversion with preferred arrival routes, among

others (1.5.2).

Coordlnation A special purpose fix used for a reference location
Fix when flight plans are transmitted to the next con-

trol area (1.5.2). (See also "Fix" and "Converted
Fix")

Cusp An aircraft trajectory is represented as a series
of points called cusps. The cusps are the points
of possible AGD vector discontinuity (2.1.2).

Element Fourth-level algorithmic unit in breakdown of an
automation function (1.3). (See also "Subfunction"

Sand "Component")

FAA Federal Aviation Administration (1.1).

Fix A named x,y location (1.4.1.2).

Grid Celle Discrete compartments of the wind grid (2.1.1).
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Nsm-1schl Interaction mechanism provided by the computer*
][xtrecae system to translate human input into internal

format and translate internal format into human
readable form (2.1.2).

NA National Airspace System (1.1).

Next OP The next position to which the aircrft route will
be modeled (2.1.2).

Pst cup The position to which the aircraft route has been
modeled (2.1.2). (This point may be at some future
position in terms of the current actual aircraft
position.)

OL Program Design Language (1.2 and Appendix E).

h gA lilst which contains planned actions which may
Action List effect the aircraft trajectory from the past cusp

onward (2.1.3). (See also "Past Cusp" and "Planned
Action")

Plea A set of planned actions for an aircraft (1.5.2).
(See also the definition of "Planned Action")

Plumed An internal representation of a proposed change of
Action aircraft clearance which can be modeled into the

aircraft trajectory (2.1.2).

Plesnifg The geographic area over which the Trajectory Esti-
Regio mation algorithm operates. This area includes the

extent of an entire Air Route Traffic Control
Center (ARTCC) and also includes a buffer area(2.1.1).

Profile A 4-space position used to initialize Trajectory
Reference Estimation (1.5.2).
Point

Sector A sector is the third level division of the Conti-
nental United States airspace. A sector is the
division to which a controller is assigned (1.4.1).
(See also the definition of "Center" and "Area")

D-3
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Segmist A segment Is a part of an aircraft trajectory
represented by an implied line between two adjacent
cusps. The gradient, direction, and acceleration

N , of the aircraft are constant across the segment
(2.1.2).

Stimulus A stimulus Is one of several flight path events
related to a planed action which Initiate the
planned action processing component (2.1.3).

-"-Subfunctii the second-level algorithmic unit in the breakdown
of an automation function (1. 3). (See also
"Component" and "lement")

* Trajectory A description of an aircraft's position in
(z,yjzt) space, produced by applying altitude and
timing assumptions to the filed flight plan and
revising when necessary (1.4.1.2).

Mand Grid A grid structure overlaid on the plannin region to
*relate geographic coordinates to wind speed,

direction and temperature at that location (2.1.1).
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APPENDIX E

AERA PDL LANGUAGE REFERENZE SUI4MARY

E.1 Overview of the Use of AERA PDL

The AERA Program Design Language (PDL) has been created for the
single purpose of presenting algorithms in this specification
document. It evolves from previous AERA uses, and from MITRE

P-8lW552, "All About E," October 1981.

The description of this appendix is intended to support readers and
users of ADA PDL. ADA PDL supports readable, yet structured and
consistent, descriptions of algorithms.

ADA PDL Features

* Relational data tables can be defined and manipulated by
constructs in the language.

" Builtin functions are used to provide routine calculations
without showing all of the detail.

* Routines are used to modularize logic paths and data scope.

" Indentation is used to indicate statement grouping,
statement continuation, and levels of nesting.

" Routines explicitly define data or refer to predefined data.

ADA PDL Statements

The types of statements used in AERA PDL are:

" English language statements
* assignment statements
" routine declaration statements
* data manipulation statements
" flow of control statements

E.2 Elements of ADA PDL

Keywords

eywords are words reserved for the usage of AERA PDL. Figure
1-1 presents all the keywords used in the current version of
AEA PDL, grouped for convenience.
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routine construction keywords

CALL END ROUTINE

data reference keywords

PARAMETERS IN
REFER TO GLOBAL OUT
REFER TO SHARED LOCAL INOUT
DEFINED IN GLOSSARY

data definition keywords

DEFINE CONSTANT(S)
DEFINE VARIABLE(S)
DEFINE TABLE(S)

common arithmetic builtin function keywords

AVG MIN ABS EXP Cos ARCCOS
MWX CEIL L-G SIN ARCSIN

PROD WRDAN -FLOOR §9QR TAN ARCTAN

MOD

coordinate geometry builtin function keywords

DIST DOT INTERSECTION
MAGNITUDE CROSS INTERPOLATE
DIRECTION LINE

set builtin function keywords

U.IUE COUNT CONCAT BOOL

FIGURE E-1
KEYWORD GROUPINGS
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set operator keywords

UNION INTERSECT

table manipulation keywords

SELECT FIELDS ALL
INSERT INTO M
DELETE FROM IT
UPDATE IN WHERE

ORDERED By
aM' M T

-• -' value constant keywords

TRUE FALSE NULL

comparison keywords

NOT GT EQANY
OR GE NEAL
AND LT IS IN

Lm ISNOTIN

flow of control keywords

IF ... THEN ... ELSE
CHOOSE CASE ... WHEN ... THEN ... OTHEWISE
FOR ... TO

REPEAT WMHlE
REPEAT UNTIL
REPEAT FOR EACH ... RECORDGO To . ..

FIGURE E-1 (Concluded)

KEYWORD GROUPINGS

a'E.
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Operators

The operators of AERA PDL are summarized in Figure E-2.

The Assignment Operator

e The format of the assignment statement is:
"target" - "expression"

* The target may be any type of data allowed by AERA PDL.

o The assignment operator includes the ability to fill a table
from data contained in other tables. The form of this use
of the assignment operator is:

"table name" - "table expression" ;

Builtin Functions

The builtin functions of AERA PDL accept either an single value
or data organized into an array. The author of a routine must
make it clear in comments and text what form of data is being
processed by the builtin function. Builtin functions are
listed in Figure E-3.

E.3 Routine Construction

The order of appearance of constructs in a routine is:

* ROUTINE -- required
e PARAMETERS - optional
* REFER TO GLOBAL -- optional
9 REFER TO SHARED LOCAL - optional
* DEFINED IN GLOSSARY - optional
* DEFINE CONSTANTS - optional
9 DEFINE VARIABLES - optional
e DEFINE TABLES - optional
* logic flow -- required, but will vary by routine.
9 END - required

Three of the constructs are noted below:

The ROUTINE Construct

e The ROUTINE construct names the routine.

9 The syntax of the ROUTINE construct is:
ROUTINE "routine name";

E-4



assignment operator

A - B A is assigned the value of B
-9

" arithmetic operators

A + B A plus B
A - B A minus B
A B A times B
A /B A divided by B
A ' B A to the power of

*comparison operators

A LT B A Is less than B
ALE B A is less than or equal to B
A GT B A is greater than B
A G-E B A is greater than or equal to B
A E B A is equal to B
A NE B A is not equal to B

logical operators

NOT A The logical opposite of A

A OR B Logical OR of A and B
A RD B Logical IND of A and B

set operators

A INTERSECT B The set Intersection of A and B

A UNION B The set union of A and B
A IS IN B A is an element of the set B
A IS NOT IN B A is not an element of the set B

FIGURE E-2

GROUPINGS OF AERA PDL OPERATORS

E-5
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FUNCTION MEANING

ABSWz) Absolute value of x

ARCCOS(x,y) Inverse cosine of the ratio of y to x

ARCSIN(x,y) Inverse sine of the ratio of y to x

ARCTAN ,y) Inverse tangent of the ratio of y to x

*AVG(A) Mean of the elements in A

BOOL(x) Numerical equivalent of logical condition:
1 If x is TRUE, 0 if x is FALSE

CEIL(x) Smallest integer greater than or equal to x

CONCAT(sls2,...,sN) Concatenation of strings si through sN

COSWz Cosine of x

COUNT(A) Number of elements of a set A

CROSS(vlv2) Cross product of vectors v1 and v2

DIRECTION(pl,p2) Direction of p2 from p1 in degrees from the
north; usually will be expressed in degrees
clockwise from true north

', ~DIST(pl,p2) Euclidean distance between points p1 and p2

DOT(vl,v2) Dot product of vectors v1 and v2

EXPW e to the x power

FWOORWx Greatest integer less than or equal to x

FIGURE E-3
BUILTIN FUNCTIONS

E-6
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FUNCTION MEANING

INTEPOLATE(a,b,t) The point (l-t)a+tb

INTD.SECTION(Ll.L2) The point of intersection of the lines L1 and
L2

LINE(plp2) Vector (a,b,c) corresponding to the line
ax + by - c which passes through the points
pl and p2

LOG(•) Log of x in base e

NAIhITUDE(v) Length (i.e., norm) of the vector v

N1X(A) Largest of the elements In the set A

* MEDIAN(A) Median value of the elements in set A

MIN(A) Smallest of the values in set A

MOD(xlz2) Remainder when xl Is divided by x2

PROD(A) Product of the elements In A

SIGINI(z) Function yielding 1 if x GT 0, -1 if LT 0,
and 0 if x 0

SIN(x) Sine of x

S (x) Square root of x

SUM(A) Sum of the elements in A

T_(z) Tangent of z

UIQUE A) The set A with no duplicate elements

FIGURE E-3 (Concluded)
BUILTIN FUNCTIONS
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The rAUL Construct

" The CALL construc invokes use of another routine as a
subroutine and ps '.es to it the data on which it is to
operate.

* The syntax of the ,LL construct is:
CALL "routine niAe" ( "datausagelist" ) ;

" The data usage list in the CALL statement must match in
number and data utilization (IN, OUT, INOUT) the PARAMETERS
statement of the called routine.

The END Construct

* The END construct shows the formal end of the routine.

* The syntax of the END construct is:

END "routine name" ;

E.4 Data Definitions

Data usage is defined in the constructs placed at the beginning of
each routine.

The structures, or organization of data, recognizable to AERA PDL
include constants, atomic variables, hierarchically structured
variables, arrays, tables, and field-types. The hierarchically
structured variables are the same as the structure variables of PL/I.

Within a table, the values corresponding to the definition of a
field-type are called fields when they are referred to individ-
ually. The values for a whole column of a table (or a subset of the
whole column) may be referred to as a set of fields.

The following data definition constructs appear in the order shown,
if any are needed. The first line of each construct begins in
column 1, aligned with the ROUTINE construct.

The PARAMETERS Construct

e This construct provides usage information about the datathat are being provided by the calling routine in the form

of specification of read-only 'IN', write-only 'OUT', or
modification of an existing value r'INOUT'.

E-8
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9 Variables appearing in the PARAMETERS construct are still
local data for the routine being defined and as such appear
in the definition constructs.

* The syntax of the PARAMETERS construct is:
PARAMETERS "data.usage list" ;

The REFER TO GLOBAL Construct

" This construct provides reference to, and usage Information
for, data from the Global data model.

" The syntax of the REFER TO GLOBAL construct is:
REFER TO GLOBAL "data usage list" ;

The REFER TO SHARED LOCAL Construct

9 This construct provides reference to, and usage Informationfor, data from the Shared Local data model described in

Appendix A of the specification.

0 The syntax of the shared local construct is:
REFER TO SHARED LOCAL "data usage list" ;

The DEFINED IN GLOSSARY Construct

" This construct provides reference to, and usage information
for, data from a specially prepared Glossary that central-
izes the definition of data variables that are used re-
peatedly within a given function of the algorithmic
specification.

" The syntax of the shared local construct is:
DEFINED IN GLOSSARY "data usage list" ;

The DEFINE CONSTANTS Construct

e The use of named constants instead of in-line numerical
constants is available at the discretion of the author of an
algorithm. Named constants, if present, are to be declared
with this construct.

* The syntax of the DEFINE CONSTANTS construct is:
DEFINE CONSTANTS "constant definition block" ;

05,
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The DEFINE VARIABLES Cunstruct

o The syntax of the DEFINE VARIABLES construct is:
DEFI! F. .ARIAiLES "variable-def inition block"

The DEFINE TABLES Construct

o The syntax of the DEFINE VARIABLES construct is:
DEFINE TABLES "table definUiinblock";

E.5 Flow of Control Constructs

The IF ... THEN...ELSE Construct

o The syntax of the IF ... THEN ... ELSE construct is:
IF "condition"

THEN
"statement block"

[ELSE
* "statement block"

The CHOOSE CASE Construcot

o This construct provides a choice of one of several alterna-
tive logic paths depending on the first condition satisfied
among the conditions specified.

o The OTHERWISE phrase is optional.

oThe syntax of the CHOOSE CASE construct Is:
CHOOSE CASE

'--statement blck*'
IWHE~N phrases repeated as necessary
COTHERWISE

.statement block"]

The REPEAT WHILE Construct J

o The syntax of the REPEAT WHILE construct Is:*
REPEAT WHILE "condition";

"statement block"

I

The REPEAT UNTIL construct

o The syntax of the REPEAT UNTIL construct is:
REPEAT UNTIL "convariaedn

"statement block"

E-10
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The REPEAT FOR EACH RECORD Construct

* This construct explicitly loops over all records in table,
or the subset of a table as specified in a WHERE phrase.

e The syntax of the REPEAT FOR EACH construct is:
REPEAT FOR EACH "table name" RECORD
[ WHERE "condition" F;

lwtatement block"

e Within the statement block of this loop, the construct of
"table name"."field name" means only the ONE value that is
associated with the record for that iteration of the loop.

If it is necessary to refer to entire columns of the table
that is being looped on, the correct form of the reference
is ALL("table name"."field name"). This construct means
exactly what "Table name"."field name" would have meant if
the loop had not been in effect.

The GO TO Construct

e The syntax of the GO TO construct Is:
GO TO "label" ;_

The FOR...TO... Construct

* The syntax of the FOR...TO... construct is:

FOR "loop index" - "initial value" TO "last-value" ;
"stateient block"

E.6 Table Manipulation Constructs

The SELECT FIELDS Construct

" This construct extracts data from a table, or from a collec-

tion of tables, and makes it available to the routine.

" The syntax of the SELECT FIELDS construct is:
SELC FIELDS IQUE "field_list" I ALL]

FERMwE5e n jells t"
SIO "local'variable name list"

[ WHERE "condition" ]
[ ORDEED BY "field name" ]
. RETURN COUNT ( "lJcal variable" ) ] ;

4I E-11
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The INSERT INTO Construct

o This construct allows a new record to be inserted into a
table.

o The syntax of the INSERT INTO construct is:
INSERT INTO "table name" ("field assignments")

[ WHERE "condition] ;e

- All insertions will preserve the assumption of no duplicate
records allowed in the table.

The UPDATE IN Construct

'V. * This construct allows existing records in a table to have
certain of their values changed.

" The syntax of the UPDATE IN construct is:
- UPDATE IN "table name" ("field.assignments")

T U"conditTon" ]
'.5.."

The DELETE FROM Construct

" This construct removes selected records from a table.

" The syntax of the DELETE FROM construct is:
DELETE FROM "tablene"
[ WHERE "conditioj" ];

SE.7 Glossary

"comparison"

* There are four possible syntaxes for the comparison. These
are not given separate names, but will all be shown as if
they shared the same element of the language.

o The first syntax is for arithmetic comparisons:
"individual" GEILEIGTILT "individual"

" The second syntax is for general comparisons:
"individual" EQJNE "individual"

- Both of these syntaxes are also valid if they are used to
compare two variables with the same complex organization,
for example two vectors of the same length or two field
types from the same table. In this case the result has as
many answers as there are elements in the compared variables.

E-12• St.
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* The third syntax is for arithmetic comparisons:
"individual" GEILEIGTILT ANY[ALL "set"

e The fourth syntax is for general comparisons:
"individual" IS INIIS NOT IN "set"

e The latter two syntaxes are used to qualify an individual

based on any value in a set of values.

"condition"

e The syntax of the condition is:
"comparison" [AND [AND NOT IORIOR NOT "comparison"]

e The optional part of this syntax can be repeated as often as
required.

- constant definition block"

0 The content of the constant definition block is three
%>0 columns: the constant names, the constant values, and the

constant descriptions.

* The constant names are aligned in a column 3 spaces indented
from the DEFINE CONSTANTS line.

* The other two columns are aligned as convenient, so that

there is no visual overlap between the columns.

"data usage list"

- A routine must declare the type of use for all of its data

that are known outside the routine.

, The three types of use are: read only (IN), create (OUT),
and modify an existing copy (INOUT).

• The format of a data usage list is:
,., "variable name" "usage type".

e An example of the format for data usage list is:
Az InputParameter IN, ALOCAL TABLE INOUT

"expression"

* Variables may be formed implicitly in expressions without

being separately named or defined.
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* Expressions are combinations of defined variables with 'the
-operators and builting functions of AERA PDL.

. In an expression, the implicit variable output from any
builtin function may be used as the Input to any other
builtin function or operator.

* An expression, when fully evaluated, yields one variable.

"field assignments"

9 This tern only appears in statements referring to exactly
one table: INSERT and UPDATE.

* The form of the term is a comma-separated list:
"field assignment",

* The form of a single assignment in:
"fleld name" - "value expression"

9 In this tern the field names do not have to be qualified by
the table name (that is-given in the statement).

"table definition block"

* Three types of definition are made in this block: table defi-
nitions, field-type definitions, and AGGREGATE definitions.

"* Table definition lines are formatted as:
"table name" "table definition"

* Field-type definitions lines are formatted as:
"field name" "field definition"

9 Aggregate definitions are formatted as:
"aggregate name" AGGREGATE ("field name list")

* Fields will contain only atomic (single-valued) variables.

* Aggregates may be used so that a program can manipulate
multiple fields in one statement when it makes sense to do
so.

"table-expression"

o Tables may be used implicitly in assignments or comparisons
being separately named or defined.

41
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- A table expression is either a table name or a SELECT state-

ment specifying the contents of the implicit table.

"table name"

e Generally, this is just the name of a table.

9 In a few statements, there is a syntax that allows a user to
". define a synonym and use it in the rest of that statement.

- The intent of this option is to allow shorter where clauses
that are easier to read. The format of the synonym refer-
ence is:

S"existing tablename" ( "synonym" )

e The statements that allow this use are those that have the
where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT.

"variable definition block"

s The content of the variable definition block is two columns:

variable names and variable descriptions.

* Align variable names in a column that is indented 3 spaces
from the DEFINE VARIABLES line.

Align variable definitions in a column as convenient; when a
structure element is defined, both the variable name and the
variable definition should be indented three spaces from the
name and definition of the next higher level variable.

4 Three types of variables may be defined in this block:
atomic variables, arrays, and structured variables.

9 Each element variable is described by a line:
"variable name" "variable definition"

e Each array variable is described by a line:
"variable name" ("dimepsions") "variable definition"

e Each structured variable is described by multiple lines, one
line per lowest level element, and one line for each named
level of grouping/structure, with indentation levels used to
Indicate the grouping.

* The names of subordinate elements of a structured variable
are named in all lower case letters.

E-15
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* The use of complex structured variables is not encouraged;
one reasonable use for them is to receive the values of
AGGREGATEs.

E.8 Other Uses and Conventions

Use of Special Characters in AERA PDL

* Parentheses are used for grouping statements and setting oA

special parts of the constructs.

e Semicolons are used as statement terminators.

9 Colons are used to terminate labels.

• Underscore is used to separate words in multi-word
identifiers.

e The symbols '+', , , a are used as arithmetic
operators.

• The pound sign '#' is used as a comment delimiter, for
beginning and end of each comment line.

e Cors are used as separators in lists of operands.

• Periods are used to separate fully qualified names.

Naming Conventions

• Keyword identifiers use only uppercase letters and are
underlined. They are the only underlined identifiers in the
PDL.

* Table identifiers from the relational data base also use
only uppercase letters.

* AG RWATE identifiers for combinations of fields use no
uppercase letters.

e References to fields in a table, used in the normal course
of reference in AERA PDL, will be fully qualified by
Including the table name.
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v. Other Identifiers

* Identifiers for constants, routines, labels, arrays, and
... i: .,_ - - ^-turA yurn4Ahl.n arP all be named usina

word-initial capitals.

. For hierarchically structured variables, all of the sub-
ordinate elements within the structure use only lowercase
letters.

0 For hierarchically structured variables, all references to
. the subordinate elements in the structure will be in fully

qualified form using separate identifiers.

* Global data and shared local data can include both tables
and parameters. The individual parameters are named using
word-initial capitals.

Use of the Formal Constructs in AERA PDL Statements

o Statements may use formal constructs or clear English
descriptions to specify the intended test or action.

. Any AERa PDL statement is terminated by a semicolon,
. including any English statement outside of a comment.

s Below the level of statement, some statements have a finer
organization in terms of "phrases", usually occupying a line
per phrase and indented one level from the first line of the
original statement.

Statement Organization

o Indentation is used to indicate statement grouping,
statement continuation, and levels of nesting.

e Any statement may have a label starting in column 1.

' Continuation lines are indented three spaces from the
original line of the statement.

e Comments are used as needed, bracketed by the special
- character 'I'.

.* ' E-17
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