
HD-136 14 OPTIMAL SEARCH FOR THE WAKE OF A MOVING TARGET WHEN
i/i

SCHOOL MONTEREY CA D B GUTHE SEP 83

UNCLASSIFIED F/G 28/4 NL

EEEEEEEEEiEEEEEEEEEEEEEEE
EEEEEEEEEEEEEE
EEEEEEEEEEEEEE
EEEEEEEEEE-

1•8.-

1.2-5 ui 2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURE.AU OF STANDARDS-1963-A

,%~wI. Vw.. -

NAVAL POSTGRADUATE SCHOOL
Monterey, California

V. -

JAN1 3 1984

THESIS
OPTIMAL SEARCH FOR THE WAKE OF A MOVING

TARGET WHEN SEARCHER MOTION IS CONSTRAINED

by

Douglas Burden Guthe, Jr.

September 1983

CD,

LL.J Thesis Advisor: J. N. Eagle-_J _ _ _ _ _ _

Vj EL. Approved for public release; distribution unlimited

40~

I.1

_1S4CUDITV CLASSIICAI1OM OF THIS PAGE (Who Date EntoeQe ______________

* REORT OCUMNTA~ON PGEBEFORE COMPLETING FORM
1. REPORT MUM§ER 2. GOVY ACCESSION No: 3. RCIPIEN1"S CATALOG NUMBER

4. TITLE (mo SubajIe) S YEO EOT&PRO OEE

Optimal Search for the Wake of a Moving September 1983
Target when Searcher Motion is 6. PERFORMING ORG. REPORT N UNDER

4osrie 7.STO114 . CONTRACT OR GRANT NUMBSER(s)

- . Douglas B. Guthe, Jr.

9.00O11IGOGNZTO AEADADDRESS -10. PROGRAM ELEMENT. PROJECT. TASK
S. PRPOMMSONIZAIOMNAMEANDAREA A WORK(UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

111. COnYWOLLINS OFFVICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate Schoolqptzni 9R

Monterey, California 93943 13. NUMISER OFPAGES

I& WMITOINIMS AGENCY NAME 0 AOSREWIl 4010fwmt 11 01 CO&isihimg Office) IS. SECURITY CLASS. (fo this tepoit)

* Unclassified
IS&. OCCLASSIFICATION'DOWNGRAOING

SCHEDULE

14. 1311TWUTION STATEMENT (09 010 fhpee)

Approved for public release; distribution unlimited.

IS. SIPPLCM210TARV NOTES

19. Key 30565S (Comnw oi ,e oe olds N ue~eyend Idaetify by Week numbef)
I a

%Optimal Search Constrained Searcher ~ :

Discrete time and spac3 Wake detector ~ A
Moving Target l

S&. ASITRACT (CawkEo 9vwe siefwootymldmt y lc ob

A method for determining the optimal or near-optimal searc
2 .path for the wake of a moving target when the searcher's motion

is constrained is presented. The problem uses a Markov motion

model in discrete time and space for the target and assumes
that the searcher is constrained to move only from the
currently occupied cell j to a specified set of "neighbor cells
X(j) . First, a discussion of the complexity of the problem is

DO 1032 EDITION OF I NOV s is1 OesoLETE UNCLASSIFIED
S/N 0 102- 06. 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (when veo. Eiere

UNCLASSIFIED
•UCUSVTV CGLMPICATION OF THIS PAG9 fVM DO MS*

#20 - Abstract - (Continued)

presented. Next, an extension of T.J. Stewart's constrained
searcher algorithm is given. Stewart's algorithm uses S.S.
Brown's unconstrained searcher algorithm to calculate bounds
on the probability of non-detection. An extension of Brown's
algorithm to allow the use of a wake detector is also given.
Several alternatives to both algorithms are offered and compare
Finally, some further extensions to the algorithms are
suggested.

1-

iii

S, N 0102- L--014-6601

s6CuRITY CLASSIICATION OF THIS PAGE(WS.. DOl W ARIOMM

2

Approved for public release; distribution unlimited.

Optimal Search for the Wake of a loving Target
when Searcher lotion is constrained

by

Douglas B. GUth9 J'
Lieftenant, United S~itqs Navy

B.Se, Un ted States Naval Academy, 1976

*Submitted in part ial fulfillment of th%
* rvquirements for the degrees of

SISTER OF SCIEIZE IN OPERATIONS RESEARCH
and

PIASTER 0? SCIENCE IN COAPUTER SCI3NCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1933

Author:

Approved by-...... ~~5?--

hesis 10visor

Second Reader

ai ~an, Departmenp of operation~s Research

Chairman, De artment o! compa-er scisnce

Dean o f In o1! ti and Policy Sciences

3

ABSTRICT

a method for determining the optimal or near-optimal

search path for the wake of a moving target when the search-

er's motion 13 constrained is presented. The problem uses a
Markow action model in discrete time and space for the

target and assumes that the searcher is constrained to move
only from the currently occupied =all j to a specified set

of "neighbor cells", (j). First, a discussion of the

complexity of the problem is presented. Nxt, an extension
of T.J. Stewart's constrained sear-har algorithm is given.
Stewart's algorithm uses S.S. Brown's unconstrained searcher

algorithm to calculate bounds on the probability cf non-

detection. An extension of Brown's algorithm to allow the
use of a wake detector is also given. Several alternatives
to both algorithms are offered and compared. Finally, some

further extensions to the algorithms are suggested.

.4

9.

~~ - ,,--. ,.,a ,: a,, ,,-4,= - ,=. .':,' . ' .-.. ,,i "- , A' -.. *d r .. , . *,' , .. * ; *-,-._,,,7% ,~.C "-

TABLE OF CONTENTS

I. INTRODUCTION

A. THE PROBLEM e o e 9

II. THE ALGORITHMS USED

A. STEWART'S ALGORITHM

1. Definition of Symbols 11
2. Logi c o12

S 3. Alternatives 13 .-...

B. BR3 N'S ALGORITHM-.. 15

1. Definition of Symbols .17

2. Logic 18

3. alternatives 19

III. WAKE DETECTION 22

A. BACKGROUND 22

B. DEFINITION OF SYMBOLS .22

IV. RESULTS 27

A. DESCRIPTION OF THE COMPUTER PROGRAM 27

B. OPTIMALITY OF THE ALGORITHM OUTPUT 33

C. R N TIME COMPARISON OF ISE ALGORITHMS • . 34

V. EXTENSIONS .40

A. Pd AS A FUNCTION OF WAKE AGE 40

B. COUNTER-DETECTION .4............ 10

C. APPROXIMATIONS TO THE OPTIMAL SOLUTION 42

V 1. CONCLUSIONS 43
A. PR3BLEN COMPLEXITY 43

B. CICE OF A LGORITHM ... T 13

5

C. WAKE SEARCH (44

D. ACKNOWLEDGEMENTS 45

APPENDIX k: DISCUSSION OF THE COMPLEXITY OF THE

SEARCH PROBLEM 46

APPENDIX B: GRAPHICAL COMPARISON 3F ALGORITHM9

RUNTINES 50

LIST OF REFERENCES 63

INITIAL DISTRIBUTION LIST 64

'S6

o , 74 7. V. W, v 7 o -. 77

LIST OF TABLES

I. Non-Optimal Solutions 34

I. Number of solutions for 25 Zall Grid, T1=2 36

III. Algorithm Runtimes for 25 Call Grid, T1-2 37

IV. Number of Solutions for Tua=10, All Cases 38

V. Algorithm Runtime for Tuax=1D, All Cases 39

1

p,.. = -

LIST OF FIGURES

2.1 Example Search Problem 17

2.2 Sample Calculation of PooS1(1) 18

41.1 Example Deterministically Generated Problam . . 28
4.2 Example Randomly Generated Problem 28

4.3 Problem Generation Subroutines 29

4.4 Program Solution Subroutines 31

4.5 Example Program Dutput 32

5.1 Search Problem Modified for

Counter -De tection 41

B.1 4 Cell Grid, TI=0, and Tmiz.l,1O 51

B.2 4 Cell Grid, Tl-I, and Tmixul,10 52

B.3 4 Cell Grid, T1-2, and Tmizal,10 53

9.4 9 Cell Grid, T1-0, and Tmnxl,10 54

B.5 9 Cell Grid, Tl-1, ani Tmixuil0 55

B.6 9 Cell Grid, Tl-2, and Tmiaxl,1O a 56

B.7 16 Call Grid, T1=0, and Taix1,10 57

5. 8 16 CaIl Grid, Tl-I, and Tsia-I,10 58

B.9 16 Call grid, Tl-2, and Tuix-1,10 59

B.10 25 Call Grid, T1=0, and Taixul,10 60

B.11 25 Call Grid, Tll, and Tai xaI0 61

B.12 25 Call Grid, T!-2, and Tsix=I,10 62

8

r. -** * .% * . * * * . .
• ? '"."," ,9-S,. .''. . .. :.. .,..., ' ...*.'.i.,'.,,"-,' ',.-:,.,:'.' '-i ,.,'.:. --;,'

W ..-. - !7
A. THE PROBLER

The problem considered here is the search for the wake

of a moving target in discrete time and space. The targot is

assumed to move through a finite number of cells according

to a known ftrkov process. The goal is to maximize the
probability of detection by some specified time, t. The

searcher is assumed to be partially cor.strained in his
motion through the search area, being able to move, i ons

time period, from one cell to a limited r.umber of cells in
close proximity. The searcher is also assumed to have an 'n

time period wake detector.' The detector is capable of

detecting wakes left in a cell by the target up to n *ime
periods earlier.

The approach taken to solve the problem was *o extend
the method of T.J. Stewart, [Ref. 1] and S.S. Brown,

(Ref. 21. Stewart addressed searcher employment for khree
cases: where the searcher's effort was infinitely divisible
among all cells, only partially divisible, or totally indi-
visible. The three cases corresponi to the sitaation where:
searcher effort could be divided among all the possible

cells during each time period, searcher effort could cover

some of the cells during each time period, and searcher

effort could only cover one cell luring each time period.

Stewart presented algorithms for finding optimal or near-

optimal solutions for the first and third cases and
suggested possible ethols for solving the second case.
This thesis generalizes the third case to allow for wake

detection; i.e., the target can be detecte4 at each time
period in each of several cells through which the target has
previously passed in the last n tie. periods.

9

W* a S7 - L- 9 V S _7 0. .1

"4. L major difficulty of the algorithms of Stwat and Brown
is that they are not guaranteed to produce the optimal solu-

tion for reasons which will be liscussed later. This

failure to always find optimal solutions for the indivisable
effort case suggests that this problem might be fundamen-
tally intractable.

One of +he recent advances in computer science is the

idea of algorithmic complexity and NP- Completeness.
NP-Completeress refers to the inherent intractab1ility or

difficulty of a problem. Gearally, NP-Complet~ne.

describes a set of problems which have been shown tc

solvable by am efficient algorithm which is run on a nor
deterministic Turing achine. An afficient algorithm is o

which will solve a problem in an amount of time proportiona_
to a polynomial function of the length of the input needed
to describe the problem. Well-known NP-Complete problems

include traveling salesman problems, the knapsack problem,
antd integer programming problems. In Appendix 1 a more

complete discussion is presented of the complexity of the
search problem forming the basis for this thpsis. It is

suspected (but has not been proved) that this search problem
is no easier than NP-Complete problems and may be NP-Hard.

If so, then the investigation of heuristic or approxlmatp

solution algorithms is warranted. For further information
on VP-Cospleteness refer to [Ref. 3].

10

> ...!a.- a C ** a-

;,.

4. I!I. MI3WLLOflTHlI 92

As mentioned earlier, the algorithms used to sclvc the

search prcblez were: 1) 1.J. Stewart's Constrained Search

algorithm [Ref. 1], and 2) Brown's Unconstrained Search

algorithm, ?Ref. 2]. the Constrained Search Alaorithm

assumes the searcher is constrained in his motion during the

search, i.e., the searcher can go from his current cell to

some subset of all the other cells in the grid. The uncon-

strained searcher algorithm put no constraints on searcher

otion but does assume that the first t search cells are

fixed and tries to optimize the search by choosing the cells

to search from t+1 to T. Even in the unconstrained problem,

search is limited to one cell per time period.

I STIVART'S ALGORITHM

J - set of all cells in the problem

JcJ * a particular cell

I(1) matrix of all cells in J that the searcher can

reach from call j (different for each I J)

ji = the cell to searched at time i

(JOjl,...,Jt) a a given search plan

K(t,1Jt) - matrix of all cells in J searchable at time t+1

from cell jt that have not yet been considered in candi-
date search plans

- probability of non-detection for the current best

solution (search plan)

11

St(!) = the nin sear-h matrix for time pericd t whers

cell i is the cell to be searchal

1] - a column vector of l's

2. L

The following algorithm was taken from [Ref. 1].

1. Set t=O, I; Salect a call to be searched, jO; set

K (0 i) (JO)

2. Solve the substitute probl.9 (liscussed below) for

search over periods t+1, t+2#...,T, with the searcher

at jt prior to the search, and with searcher location

in the first period (i.e. t+11 restricted to K(t,jt).

Obtain thereby (also discussed later) a lower bound 5

on the optimal probability of non-detection when

searcher paths are restri-tel to those passing

through (jOjl,...,jt).

3. If , gpto step (6). Otherwise, it is now proved

that all continuations of the current path are non-

optimal, i.e. the arc from (t-l,jt-1) to (t,jt) is

fathomed. goto step (4).

4. If t-0, the algorithm terminates (all paths from 10

are fathomed); the current best solution is optimal.

If t>O, goto step (5).

5. Delete the current jt from K(t-l,jt-1) and set t=t-1.

If K(t,jt) is nov empty, the arc from (t-1,jt-1) to

(t,jt) is implicitly also fathomed. Thus return to
step (4).oOtherwise, return to step (2).

6. Select the element of K(t,jt) appearing in the solu-

tion to the substitute problem and call this jt+1;

set tt 1. If t<T, set K(t,jt)sI(jt) and return to
step (2). If t-T, evaluate the probability of non-

detection when the searcher path is {J0,j1,...,JT).

If this probability is less than , then replace ^ by

12

this value and install (JO, j...,JT) as the current

best solution. Return to st:.p (5).

Essentially the algorithm solves thp part .y

constrained problem (unconstrained after time t+1) at each
level to obtain a lower bound on the probability of non-
detection for any fully constrained searchers that have the
same initial search (j,...,jt+1). rhe algorithm then trav-

erses each branch whose lower bouni is less than the current

best solution probability. When t-T, the search is now fully
constrained; and , if its probability of non-detection P is
less than ', then it is a better search plan and is saved.

When no branches with prbabilities less than the current

~'1 best plan are left, the problem is completed and the current
best plan is optimal.

Optimality is guaranteel if the lower bounds

obtained from the application of Brown's algorithm are

indeed lower bounds. Unfortunately, dus to the nature of the
problem, (an integer programming problem) the results of

Brown's algorithm are not necessarily lower bounds. k search
plan may exist whose "lower bound", from Brown's algorithm

is higher than the current best solution yet whose actual

probability of non-detection for a fully constrained solu-

tion is lower than the current best solution. Thus the

branch containing the optimal solution may be pruned.

Therefore, the solution produced by Stewart's algorithm
using Brown's algorithm as a bound will not necessarily be

optimal. Nevertheless, the solution might be close enough to
the optimal for practical problems of interest.

3. t

Stewart's algorithm is essentially a depth-first

search through a tree of possible solutions. It uses Brown's
algorithm to bound the branches ial remove those branches

which do not contain better solutions than the current one.

13

'A..6....

The depth-first search strategy gae.:ates bounds at each
level of the tree and picks the best bound at that level to
continue the bounding procedure. In this way it reaches a

. fully constrained search in T steps as it proqresses !own
through the tree. Ifter reaching the first constrained solu-

tion the algorithm progresses ba3t up the tree checking
other branches on the way up. The algorithm stops when it

.2 has progressel all the way up to the top of the tree and has
no bounds which are better then the current best solution.

Another approach is to use a best-first strategy. In

*t this strategy, the best of all the bounds currently calcu-
lated is chosen as the branch to father investigate. After
the new bounds are calculated for the one step investiga-
tion, the best bound is again chosen to investigate. As the
best bound is chosen it is checked to see if it meets the
motion constraints. If the solution does meet the
constraints then the algorithm stops with the best solution.
Using the best-first strategy presented by D.R. Smith in
(Ref. 41, Stewart's algorithm was revised and is pre-sented
below:

1. Set t-O, pa,1; select 10 to be the initial search

cell, set K(0,JO)-1(JO).
2. Solve the substitute problem3 (discussed earlier) for

search over periods t+1,t.2,...,T , with searcher a:

tJ prior to the search, and with searcher location in
the first period (i.e. t+1) restricted to K(t,jt).
Store the lower bound on the optimal probability of
non-detection for each of the elements of K(t,jt) in
a priority queue based on the lower bound. (i.e.

store the search fJo,...,Jt+!), the length of the

constrained part of the search, tc=t+1, and the lower
bound for each element of K(t,Jt)).

3. Select from the priority queue the search with the
smallest lower bound and set the current search tc
that chosen search. Set t-tc, set K(t,jt)=I(jt).

14

1. Check the current search to see if it meets the move-

ment constraints (i.e. check for feasibility). If

feasible, then stop, the current search is the best

search. Otherwise, goto step (2).

Essentially what the best-first search of the tree
does is generate bounds for each branch below the _-oot.
Then it picks the branch with the best bound to ccntinue the

investigation of the tree. After bounds are gererated for
each branch they are saved on a priority queue from which

the selection of the best bound is made. A priority queue

(in the isplenentation, a priority heap) is used to minimize
the time and storage requirements necessary to st.ore the

bounds and find the best bound. Zhen the algorithm picks
the branch with the best bound to continue ths investigation

of the tree. Once the best bound is found, it is checked to
see if it conforms to the movement constraints. If it dces

conform, the algorithm stcps, the 3ptimal solution has been

found. Otherwise, the branches emanating from the branch

under investigation are bounded ani the algorithm repeats.

D.P. Smith, in [Ref.], argued that the best-first
search of most classes of ranlom trees has a strictly

smaller expected time and space complexity. Therefore, it
was decided to compare the best-first and depth-first tree

search algorithms for both use of computer time and opti-

mality of results. The best-first search, however, is also

plagued by the possible non-optimality of Brown's alaorithm.

B. BROWN'S ALGORITUK

To generate a lover bound on the constrained search

given that the search during time periods 1,...,t is fixed,
an algorithm presented by S.S. Brown in [Ref. 2] was used.

The target position distribution was generated using an
initial probability density of target location Po and a

15

Karkovian motion model. Po, the target initial distrtbu-

tion, is a vector with limensioa equal to the number of
cells in the spatial grid. Markovian motion is described by

a transition matrix T that contains the probability of

moving to cell j given that the target was in call i. After
one time period, the new target location density is PoT.

After two time periods it becomes Poe! 2 , and after n moves,

it becomes PoeTn. To implement search in the model, a

search matrix St(i) for time periol t was used in the form

of a diagonal matrix with the ith diagonal element given by

the probability of a missed detection, and the other diag-

onal elements equal to unity. Therefore the vector Po-S1(1)

contains the probabilities that the target is in each of the

cells and remains undetected after a one time-unit search in

cell 1. We refer to this vector as "the defective target

location mass at time period 1". Figure 2.1 illustrates an

example search problem. Figure 2.2 illustrates a sample

calculation of Po*S1(1). A four time-unit search in cells
1, 2, 4, and 3 would yield a defective target location mass,

Pt(i) given by :

Pt(i)=Po.S(1) *?rS2(2).ToS3(4)*-*S4(3) (2.1)

The final probability of non-detection pnd for the search is

given by:

Pnd-Pt (!) -] a 0.612 (2.2)

16

L, " , - . .".• ,.,.,- ,, ",-, '-..,-.-. ,., .,.,, ," . ' . " -

f. V7 .

Jr."r

Sample arid

1112
+ --

3) 4

The target transition matrix

.40 .30 o .0
T= .30 .40 :80 .30

.30 :30 :48 :30
The target initial probability listribution

;, PO- (0.00 0.00 0.00 1.00)
; The searcher nmotion constraint maltrix

1 2 3 0 0
1 4 0 0
1 3 0 0
2 3 4I 0 0

Number df calls is 4
The probabilit7 of non-detectin is 0.500
The initial search cell is 1

An example Search Natrix for a search in cell 1

0.50 0.0 0.0 0.0
S1(1)= 0.0 1.00 0.0 0.0

0.0 0.0 1.00 0.0
0.0 0.0 0.0 1.00

Figure 2.1 Example Search Problem.

SJ - The search plan chosen aftar j iteratins of Brown's

algorithm

Sj(t) - The cell to be searched in time period t in the

search plan Sj

Pnd(Sj) = The final probability of non-datection associ-

ated with the search plan S1

17

,~~~~~~~~~~~~~~~~~~~~~.'i ._.._.'.....'-,-...""..... "....... . .".. ."..................

.5 0.0.0D.

Po 0SI1(I) =100 .00 .00 1. 0 01 3. 1. D.0. 0. 0.0.

= (.00 .00 .00 1.00)
'4 _ I

Figure 2.2 Sample Calculation of PoWS1(1).

2. "o1

I . Given an initial guess So at a search plan, and given

a solution tolerance 9>0, set t=1, Jl, and SI=So.

2. Choose Si(t) to minimize pn(Sj),(Sj(i) is fixed in
I this minimization for i~t.) the minimization is done

by calzulating PnI(Sj) for all possible choices of

Sj(t) and choosing the Sj(t} which has the smallest

Pnd (SI).

3. If t-T, goto step 4. Otherwise, increment t and goto

step 2.

4. If Pr.d(Sj-1)-Pnd(SI| <e, stop. Pnd(SJ) is 'he desired

bound. Otherwise, increment J, set t-l, set SJ=S-1,

4,. and qoto steop 2.

Brownts algorithm is an i*.rative improvement algo-

rithm, where at each time step t the cell which minimizes

Pnd is chosen, given that the rest of the search before and

after t is unchanged. When the Pnd for Sj is within e of the
Pnd for SJ-I, the algorithm is te.eninated and search SJ is
used.

Brownjs algorithm in the totally divisible case,

where at each time period t the solution to the stationary

search problem is found holding the searches for time

periods before and after t fixed, will converge to the

optimal solution as.proved in [Ref. 2]. However, beicause

18

*" *,.. " . <. *.. 'V V .K*,, "

[* .7

the implementation here only allows search in one cell
during each time period the solution space becomes discon-
tinuous and thus non-convex. Therefore, the algorithm is not

guaranteed to converge to an optimal solution.

3. Altera .iv2s

Brown's algorithm can be considered to find the

local optimal solution ;iven a starting solutior, So.

Therefore, the total solution space is partitioned by

Brown's algorithm into those starting solutions which result
in the optimal solution (the global optimum) and thcs .

starting solutions which result in non-optimal solutions
(local but not global optimums.) Based on this partitioning
idea several alternatives are available.

The first is to choose a good starting solution. If
the optimal solution were used as the starting solulicn,

Brown's algorithm would always arrive at the optimal solu-
tion. However, the optimal solution is not known, otherwise
Brown's algorithm would be unnecessary. Two approachas were
used to guess a good starting solution: 1) the myopic solu-

tion, So(t) is chosen to give the most improvement to
Pnd(So); and 2) a random solution, a rindom number generator
is used to generate random starting solutions.

As mentioned in [Ref. 2], if a zero solution is used
to start Brown's algorithm then the myopic solution will

result after the first iteration. rhe myopic solution seems
like a reasonable choice to start the algorithm. On the

other hand, there might be some negative correlation between
the optimal solution and the myopic solution, i.e. the
myopic solution may lie in another partion which does not

lead to the optimal solution. Therefore the random starting
solution was also considered as a means to get around any

possible negative correlation. Since the random solution has
a finite probability of choosing th.3 optimal solution it may

have a better chance of starting in the right partition.

19

Another approach used was to restart Brown's algo-

rithm any time a change was made to the current solution.

The revised algorithm is presented below:

1. Given an initial guess So at a search elan set t=1,

Jul, and Sl-So.

2. Choose. S1(t) to minimize Pnd(SI),(S1(i) is fixel in

this minimization for it.) rho minimization is done

by calculating Pnd(S) for all possible choices of

Si(t) and choosing the Si(ti which has the smallest

Pnd (S1I .
3. If Si Ie) uSo (t) then set So (th =S (t) and goto st ep 1.

4. If t=T,. goto step 5. Otherwise, increment - and goti

step 2.

5. Stop. Pnd(S1) is the desirel bound.

This variation of Brown's algorithm takes an initial

a.
- solution and starts at the first time period checking for

local optimality for that time periO. If the choice of cell

to be searched a-: the current time pariod is locally optimal

for that time period then the algorithm goes on to the next

time period. otherwise, the algorithm inserts the nqw search

cell and starts back at the first time period. When the

algorithm goes all the way through the solution without

changes it stops. This approach may repartition the solu-

tion space inzreasing the size of the partition which leads
to the optimal solution.

Another apprcach which was not used is to run the

algorithm several times with different starting solutions

So. Then the lower bound Can be taken as the minimum of the

locally optimal solutions returned by the algorithm. Also,

the lower bound can be estimated by

est=(P95eP5-P32.52) / (P95+P5-2oP32.5). (2.3)

20

'a.' > , ' ' " , - -: ;v- '" " " " " " ', ,.: -' '.'.. . ..,--, ,.'., -. -. ".- .- '. , -.. -. -

% , .b J : m - 7 ,, ., . . ° ° . .77 7" , . 7 7 7 - 7 7 . T

PS, P95 an4 P32.5 are the 5TH, 95TR and 32.5TH p~rcsn4-i! :

values. This estimate is based)a the idea that, as the
number of inlependent solutions pc,)duc-ed by a ail_ go-
riths for a gi v n problem increase, the solu-io.- values
converge to a Weibull distributioa whe.re the : primal lower
bound is the location parameter. This approach was not used
because it required running Brown's algorithm two or more

time tocalc~a9 each boand and it was felt tha thad-

tional computer time would not improv-3 the bouneling process

significantly.
A f 4 i 1 approach which also was not inves'igat-al, is

to locally optimize the choice of ae!is over 2, 3 or more
• timne periods in the Brown algorithm. This agai-n might
i! increase the size of the partition which leads to the.

.. optimal solution.

21

44.

P-- .W-a .__ .7 .- -

I. BICKGlOUND

As mentioned earlier, this thesis is an attempt to
extend existing optimal search theory techniqnes to the
problem of wake detection. Stewart's and Brown's algo-

rithms, as presented in the last chapter, indicate one
method for solving the constrained searcher problem. The
next question is: "How does one extend the algorithms to

handle the possibility of wake detection?"
Stewart's algorithm loes no aztual calculation of the

probability of non-detection, it uses Brown's algorithm for
the calculation of bounds. Therefore Brown's algorithm is
the one that aeeds to be altered to allow for use of a wake

detector. To extend the algorithm we proceed as follows:

B. DEFINITION OF SYMBOLS

Po - initial tarqet probability listribution (i.e., the

probability that the target is in any cell i at the start

of the problem.)

St(i) * an nxn matrix which reduces the defective prob-

ability mass of the target by 1-P(d) in call i searched

at time t. The defective probibillty mass of the other
e, cells remains unchanged.

T - a nxn Markov transition matrix which contains the

probability that a target in cell i at time period t will

transition to cell j at time period t+1.

1] - a nxl column vector of 11s.

22

VV

'-2

C. LOGIC

What needs to be extended is the mode. under which the

non-detection probability is calculated. As shown earlisr,

this calculation for a non-vake detector in a 4 time unit

search is

Pnd=PoeS1*T9S2*T*S3eTeS'4e1]. (3.1)

It is nov proposed to allow the searcher to carry an

In-time unit wake detector.' This letector has the capa-

bility of detecting wakes in the call being searched which
were made by the target up to n time periods earlier. To
extend the motel to handle on-time unit vake detectors' two

assumptions are made.
First, it is assumed that each wake search for each time

period is independent of all other s3earches. For example,

when a searcher searchs cell 2 at time perioD 3 with a 2

time unit wake detector he is completing three separate an

N independent searches. The first is of cell 2 looking for the
wake made by the target during time period 3, the second is
of cell 2 looking for the wake male during time period 2,

. and the third is of cell 2 looking for the wake made during
time period 1. Note the searcher has also completed a

search during time periods 2 looking for wakes made during
time periods 1 and 2, and a search during time p1riod 1
looking for wakes made during time period 1. Therefore, in a

3 time period search with a two time periDd detector thq

searcher has made a total of 6 iftependent searches in 3

cells, the calls he chose to search at time peiods 1, 2,

'4 and 3.

Also note that the target is assumed not to have lft a

wake prior to the start of the problem for ease of ccmputer

23

jo 7k> 7 %77

calculation and formulation of the problem. This does not

restrict the result.

The second assumption is that we are trying to calculate

the probability of non-detection after the specified 1nrg~h

of search is completed. We are not tryincy 4o evaluate the

probability of non-detection at iatermediate points in the

search.

Based on those two assumptions, the wake detection

concept can be considered a simultaneous search of the cell

the searcher is in now, the cell the se&rcher will be in

next time period, the cell the searcher will be in two time

periods from now, etc., out to the maximum number of timq

periods the wake is detectable or to the number of tims

periods remaining in the problem, w.aichever is smaller. The

wake search is modeled as if an equivalent search is

conducted simultaneously with the real-time search, i.e.

searching for a wake in cell I whizh is t time periods old

is equivalent to searching in cell j , t time periods

previous, simultaneously with the other searches being

conducted t time periods previous and waiting t time periods

to discover the results of the searzh.

Is shown previously, the probability of not-detection
for the search without wake detection can be calculated from

the product of a series of matricies as shown in equation

3.1. For a search in the same =91ls but with P one ti.m-

unit wake detector, the probability of non-detc tion is

Pnd=PooS1,S2eToS2eS3eTeS3oSIoToS4*1]. (3.2)

The vector Po, as defined earlier, is the probability

that the target is in cell i at the start of the problem.

The vector Po-Si is the probability the target was in cell i

at time period I and has not been detected by the wake

24

i. a... 4t -. '.--. .\ -........ .."."• "", ',,'.-.. .. . '.....I

search conducted during time period 1 looking for a wake

left in time period 1. rhe vector Po-S1*S2 is the prob-

ability the target was in cell i at time perioi 1 and has

not been detected by wake searches luring time periods 1 and

2 looking for wakes created in tize period 1. The vector

PoeS1eS2eT is then the probability that the target is in

- cell i at tize period 2 and has not been detected by wake

searches locking for wakes created luring time period 1.

Following the same line of reasoning, the vector

PoeS1eS2eTeS2eS3eTeS3eS4 is the probability that the target

is in cell i at time period 3 and has not been detected by

wake searches looking for wakes created during time period 3

and prior. Of note is the idea that the searcher in effect

conducts simultaneous searches of 2 cells during a giver

time period but does not receive the results of the one -time

unit wake search until the next time period.

The wake letection problem is analagous to the problem

where a homeowner thinks there are mice in his house and he

wants to confirm his suspicions. Each room of the house has

two tape recorders: one which is available for replay of

what noises were recorded in the previous hour and the other
which is recording the current hour. The owner can only go

to adjacent rooms which have doors to the current room. He

spends one hour in the room of his choice listening for

mice. Once in a room he can listen for mice and at the same

time listen to the tape recording of the previous hour. The

probability of detecting the mice on the tape recorder or by

listening in a room is the same. rhe owner now must decide

how to search the house to maximize his chances of finding

the mice.

The tape recordings of the noise in each room are esen-
tially independent and simultaneous searches of each room in

the house. The owner can only determine the results of the

search by tape recorder if he enters the room and listens to

25

- -.

P -- - |

the tape recorder. If the owner loesn't listen to the tape

recorder during the hour the seconi recorder is taping the

room, the first recorder is rewound and starts taping thus

destroying the results of that particular search.

The key a3sumPtions, as statel earlier, are that thp

searches are independent and that the goal is to minimize

the probability of non-letection ovar a given search length.

Therefore the matrix multiplication in equttion 3.2 is

valid. For a two time unit detector, tha probability of

non-detection is

Pnd-Po.Sl.S2•S3oTS2$S3-S4oTS3S"4ToS41]. (3.3)

The matrix multiplication can be extended fo: a Tl capacity

wake detector where Ti is the time late a searcher can enter

a cell and still detect the tar;et's wake. For the Tl

capacity detector equation 3.2 becomes
9.
9"

Pnd-PooSTo1TeS-M*T*TeTT ST*. oS!max-1]. (3.4)

whre

min(Tmaxi rl)
Tr- I I St (:) (3.)

,26
,:

,9.9

! 26

- °..

.:

-I

A. DESCRIPTION OF TIB COMPUTER PRO3RA8

The algorithms presented in the preceding chapters were

implemented on the U.S. Naval Postgraduate School's IBM 3033
computer system in Fortran H (extaed) . The program was

constructed of a main driver program which called various

subroutines for input, calculation and output.

The operation of the program caa be broken down into two

main functions: 1) generation of the problem including the
initial target distribution, the transition matrix and the

searcher sovetent constraint matrix; and 2) solution of the
generated problem.

The generation of the problem used two methods. In one
method the problem generated was a deterministic one where
the target's initial position was at the far corner away

from the searcher who started in call 1. The target tran-

sition matrix was generated assumisg that the target had a
fixed probability of staying in the cell it currently occu-

pied and the remaining probability of movement was divided
evenly among the cells which were aijacent. Diagonal move-
ment was not allowed. Figure .1 shows a example initial

target distribution and target transition matrix for the
deterministic case. The searcher movement constraint matrix

was generated by allowing the searcher to move only from thi

current cell to an adjacent cell.
In the se.-ond method, the problem was randomly gener-

ated. The target was randomly distributed between all the

cells at the start. The target transition ma-rix was gener-

ated assumin7 a fixed probability of remaining in the
current cell and then the remaining probability of movement

27

*

Po=(0.00 0.00 0.30 1.00)

.40 .30 .30 .30 I

.30 .40 .00 .30

.30 .00 .40 .30

.00 .40 .30 .140

Figure 4.1 Example Deterninistizally Generated Problem.

was randomly distributed among the adjacent cells. The

searcher movement constraint matrix was determined as

Po-(0.23 0.34 0.19 0.24)

.40 .35 .25 .00
T = .17 .40 .00 .43I

.43 .00 .40 .17

.00 .25 .35 .40

Figure 4.2 Example Randomly Generated Problem.

before. Figure 4.2 illustrates a typical random problem.

. a.Figure 4.3 shows the program structure and subroutines used

to generate the deterministic and random problems. The

program requires 6 inputs as defined below:

1. Size of the grid i.e. 33, 4 K, etc.

2. Probability of detection of the target if the

searcher and target are in the same cell. Also used

as the probability of detection of the target using

the wake detector.

3. Fixed probability :f the target staying in the cell

it currently occupies. (i.e. rii)

I.....28

S.

MA I
I I

SotI

Ioag II*t IM oup

I I

Suru .n I I

MA IN N

M I III

I

41.
II

Fiur t. Pld~roble e eton Suro ti e.

291

Figurs . Problem eneratio Subotns

29 n~to

,/..,-,% w...- .i,,-. ;.4.,;.,>4.-:.- ; ,......-,....-, .. ,... .. .-. ,,

- - - - . , . - ,, , .- a *P a ,

4. Whether the generated problem is to be termi'i
or raniom.

S. Epsilon, used as a stoppiag criteria for Brown's
algorithm.

6. The capability of the wake detector, (i.e. how many

time units late will the detector detect a wake.)
Once the problem was generated it was then necessary to

find the optimal solution using ths various algorithms

mentioned earlier. Seven algorithms were used to find the
solut ion:

1. Depth-First search using the myopic solution to start

Brown's algorithm.
2. Depth-First search using a randomly chosen solution

to start Brown's algorithm.

3. Depth-First search using a random solution to start
Brown's algorithm and using the modification which

restarted Brown's algorithm every time the solution
was changed.

4. Best-First search using the myopic solution to start
Brown's algorithm.

5. Best-First search using a randomly chosen solution to
start Brown's algorithm.

6. Best-First search using a random solution to start
Brown's algorithm and using the modification which

restarted Brown's algorithm every time the solution
was changed.

7. Total enumeration of all possible search solutions to
determine the one with the lowest probability of

non-detection.
The only algorithm guaranteel to produce the optimal

solution was the total enumeration algorithm which generated
all possible feasible solutions. Figure 4.4 shows the

program structure and subroutines necessary to implement the
algorithms and problem solution part of the Dr3gram.

30

fi

* .I

5ip

or"_ antUS resu l fort c trafne

Serc

ERE)

I ~ ~ ~ ~ ~ tr Fiur * rgra Coutol SI rut s
W1" r.5,Alselr

for. 31el l

AW~

Ow-r "Wp..fr eco

pT warf S as** * * T . ep - -. --x

a~~~utocto 4er~
sui "" P.'. p .,... *..... *** .. .on~*

The output generated by the program included:

1. cpu seconds used by each algorithm

2. number of unconstrained solutions checkel

3. number of constrained solutions checked

4. probability of detection of the target fter search

5. search plan used

Figure 4.5 presents an example program output.

-I

THE TARGET TRANSITION MATRIX
.40 .30 .30 .0
.30 .40 .0 .30.3 .0.4 .3
THE TARGET INITIAL PROBABILITY DISTRIBUTION
0.0 0.0 0.0 1.0

THE SEARCHER MOTION CONSTRAINT MATRIX
1 2 3 0 0
1 2 4 0 0
1 3 4 0 0
2 3 4 0 0

NUMBER OF CELLS IS 4
THE PROBABILITY OF NON-DETECTI13 IS 0.500
THE INITIAL SEARCH CELL IS 0

THE ALGORITHMS USED ARE:
I - DEPTH FIRST STRATEGY, 3YOPI: INITIAL SEARCH
2 - DEPTH FIRST STRATEGY, RANDOM INITIAL SEARCH
3 - DEPTH FIRST STRATEGY, RESTART AFTER EACH CHANGE
4 - BEST FIRST STRATEGY, MYOPIC INITIAL SEARCH
5 - BEST FIRST STRATEGY, RANDOM INITIAL SEARCH
6 - BEST FIRST STRATEGY, RESTART AFTER EACH CFANGE
7 - TOTAL ENUMERATION

SEARCH PLANS FOR TMAX= 4 AND TL- 0

aLG TIME #UNC #CON P(D) SEARCH PLAN

2 3:16 38:398 0 1
3 0.02 6 3 0.3900 1 2 4 4
L4 0.02 3 0 0.3900 12 4 4
5 3:82 3 0 0.3900 1 2 '4 LI
7 0.01 0 27 0.3900 1 2 4 4

Figure 1.5 Example Program Output.

32

. ".

%'

wereUsing the program desc-ribed above, grid sizes of 4, 9,

16, and 25 =ells were investigats-. All seven alqor-'hms

were tested on deterministic problems With Tmax=2,...,10 and

Tl0,l,2. While the problem sizes considered are not large

enough for real life problems it was felt that they were

large enough to demonstrate the algorithms. The results can

then be extrapolated to determine axpec.ted running times for

. real life problems. The goal was to answer two questions:

" 1. How close to the optimal are the solutions from the

branch-and-bound algorithms?

2. How do the running times of the algorithms compare;

to each other, and to the total enumeration algo-

rithm?

B. OPTINALIT! OF THE ALGORITHR OUrPUT

As mentioned earlier, the problems under consid.ration

ranged from a 4 cell grid with Tmax=2 and T1=0 to a 25 cell

grid with Tmax=10 and Tl=2. The total number of possible

constrained solutions ranged from 3 to 275905. Table I shows
the number of non-optimal solutions and the maximum percent

difference between the optimal and mon-optimal solutions for

each of the algorithms. Since the problems were symmetric

there were several optimal solutions, so the

branch-and-bound solution could be an equivalent although

different solution from the total snmeration solution. This
may have increased the probability of the branch-and-bound

algorithms finding the optimal solution. Further investiga-
tion into larger random problems xay yield more non-optimal

solutions and larger percent differences, however, fully 96%

of Stewart's results, as -ported ia (Ref. 1], were optimal

with the non-optimal results being within .41% of the

optimal solution. Therefore, the results of this run tend to

confirm Stewart's results concerning the optimality of the

branch-and-bound algorthm solutions.

33

f ------- aI-

TABLE I

son-Optimal Solutions

Algorithms
1 2 3 4 5 6

Number
of Ion-optimal 2 0 3 2 1 0

Maximum percent .04% 0% 3% .043 .1 0%

Error

C. RUN TINE COHPARISON OF THE ALGORITHNS

Since all the algorithms sees to be able to find tho

optimal or near-optimal solution without too much diffi-

culty, it is now important to d.termine which algorithm

performs the fastest. ghile the total enumeration algorithm

was used to provide a benchmark fzr the optimali1ty of the

solutions it -an also serve as a benchmark for the run-time

of the algorithms.

The running time of the total enumeration algorithm is a

function of the number of possible feasible solutions. The

number of feasible solutions is based on how many places the

searcher can go from the cell he currently occupies. From

each cell the searcher can transition to between 3 and 1
cells. If the searcher is in a corner cell he can stay where

he is or transition to either of the two cells which border
the cell he is in. If the searcher is in a side cell ho can

stay where he is or transition to any of the three border

cells. If tie searcher is in an interior cell he can again

stay where he is or transition to any of the four border

cells. Therefore the total number of feasible solutions is
Tmax

bounded below by the exponential function 3 , where Tmax

34

:' ' ; € " ''. ' --. '-4;,'?.- "? .-.---.-.-. ".--. -'... ./ . * -- .-. - .;. .. .,-< ...-. .. ,-.. . ,

is the length of the search. The number of feasibl.

solutions is bounded above by the exponential functionTmax
5 . Since the total enumeration algorithm looks only th.?

feasible solutions and calculates Pnd for each one the algo-
Tmax

rithe is therefore O(e) or of exponential complexity.

The branch-and-bound algorithms don't lend themselves to

such easy analysis. The worst case analysis would be where

the bounds are so weak that all the feasible solutions would

have to be checked. The average case analysis is much more

difficult. Smith in [Ref. 4], argued that the best-first

strategy had a smaller average case complexity than the

depth-first strategy. since it is unclear whether the trees

generated by the search problem fit into the class of random

trees covered by Smith's argument, further complexity anal-

ysis will not be attempted.

Appendix 8 contains graphs of the run-time for all seven

algorithms for all the cases. From the graphs it is clear

that the best-first strategy did oitperform the depth-firs'

strategy especially as the proble.m (as measured by thi

number of possible feasible solutions) increased in diffi-

culty. This is supported by analyzing the number cf solu-

tions checked by each algorithm. rable II shows the number

of solutions checked by each algorithm for the 25 cell grid

with TI=2.

From table II it appears that until time period 6 tho

algorithms looked at all the possible solutions. Since the

total enumeration algorithm didn't look at any intermediate

solutions it was faster. After time plriod 6 the

branch-and-bound algorithms where able to use the pruning

feature to a great extent in removing unpromising branches.

Table III shows the runtimes needed to used in generating

the solutions in table II. Based 3a the numbs. of solutions

calculated by each algorithm it appears that the best-first

strategy is more efficient. Since the best-first strateq

35.t

*.. * .. r" r rr,

7%_V_ W-e -w 7777._-1

T ABLE II I
lumber of solutions for 25 Cell Grid, T1f2

PARTIALLY CONSTRAINED SOLUTIONS
(Brown's Algorithm Output)

Tnax 1 2 3 Al;56ithm 7

2 0 0 0 0 a I
3 3 3 3 3 3 3 0 I1 14 14 14 14 114 14 14 0

557 57 57 57 57 57 0
62314 2314 2341 234 234 23(40
7983 983 983 983 983 983 0
82116 2109 21402 1123 1123 1123 0

9 331 4215 2309 1573 15~93 1598 0
10 1 8 4066 4532 1315 1359 1383 0

Totals 10182 11591 10534 5362 5366 5395 0

CONSTRAINED SOLEJIONS

Algorithm
Tzax 1 2 3 14 5 6 7 1

2 3 3 3 3 3 3 3

14 43 43 43 3 143 (43 1t3 43
5 177 177177 177177 1771771
6 7149 7149 7149 7(49 7149 7E&49 7149

7916 563 386 100 100 100 3235
8 1273 987 1439 a 0 1 14139

I 9 601 1552 723 160 160 160 62309
I 10 2146 251 765 3 0 0 275905

Totals 14019 4336 4296 12(43 12143 1243 356571
r%

algorithms hal almost exactly the same number of solution

calculaticns whereas the depth-first strategy algorithms

wre more divergent it c,:ald be hypothesied that the best-

first strategy is more tolerant of the non-optimal bounds

produce" by Bownes algorithm.

Table IV shows how the number of solutions varied for

all the cases where Tax10 (ie. whaere t-he maximum number

of possible feasible solutions was !iotqd.)

36

TA BLE III

algorithm Runtimes for 25 C-ll Grid, Ti=2

T:a: 1 2 3 Algorithm 6Ta1 23 It 5 6 7

20 0.0 0.0 0.0 0.0 0.0 0.0
33.2 0.2 0.1 0.2 0.2 0.1 0.0
4 1.2 1.2 0.9 1.2 1.2 0.8 0.,
5 5.8 6.6 4.5 5.7 6.4 4.6 0.3
6 26.5 27.8 21.5 26.2 27.3 22.2 1.8 !
7 112.3 118.3 92.6 105.0 113.5 87.8 9.3
8 331.4 342.6 344.4 240.9 253.3 278.9 48.2
9 821.4 868.2 794.5 531.8 547.5 743.6 248.1 i
10 1253.4 1500.3 2252.4 843.0 845.0 11494.1 1249.1

Totals 2552.2 2865.2 3510.9 1755.0 1794.4 2632.1 1556.9 1

runtize in cpu seconds

Table V tabulates the running time required to gpnerate

the solutions for the cases where rzax=10. From the tables

it can be seen that the best-first strategy dominated the

depth-first strategy,, mainly because it had to look at fewer

solutions. Also it can be seen that the restart algorithm

was not competitive when rmax=10 for any of the cases. This

reflects the fact that it must restart after every change in

the current solution and as Tmax in-reases the number of

changes also increases. rherefore the restart algorithm is

forced to resta-t significantly more frequently and thus

takes longer to arrive at the local bound. From table IV it

is seen that the extra time taken to calculate the bound did

not reduce the number of solutions which were investigated.

It is apparent that the best-first stratgy, using

either the myopic or random starting solution, performed

very well whea compared to any of the other algorithms. As

expected, the runtime for the total enumeration algorithm

37

I .- - ,.¢ .'.4 -,.'>q ' '' , -, --• ..- -.-"-"-° "-"- ..- .'"- .-.-"- ., " .- .- .•' •-

TABLE IV

Number of Solutions for Tuei-lO, All Cases

PARTIALLY CONSTRAINED SOLUTIONS
(Brown's Algoriths Output)

Gfid T1 1 2 3 Al orithms 5 6

0 978 1092 1011 912 894 885 0
4 1 24 24 36 27 27 24 01

2 39 2(4 51 51 33 33 01

0 628 547 279 296 223 2750
9 1 247 218 213 121 81 810 0i

2 270 163 306 186 151 1410

0 1413 1002 1029 740 718 723 0
i6 2 910 419 419 332 409 4OO 0

2 347 891 380 320 339 373 0

0 4843 3481 4013 1343 1343 1343 0J22 278 406 4532 1261375 12959 133

Totals 15857 15665 13535 6988 6860 6973 0
-% I

TOTALLY CONSTRAINED SOLUTIONS |
Ti Algorithms 6

Siz 1 2 4 5 67

0 198 390 375 189 195 195 19683
4 1 3 3 6 3 3 3 196831

2 3 3 6 3 3 3 196831

0 31 27 10 0 0 0 1287151
9 1 14 32 23 0 0 0 1287151

2 63 5 53 45 54 8.1 128715
N0 272 183 210 0 0 0 2301751

16 1 121 19 19 0 0 0 230175
2 63 130 90 0 0 0 230175
0 1365 it79 801 0 0 0 2'?5 90 5

25 1 1046 1240 10 0 0 0 275905
2 246 251 765 0 0 0 275905I!Totals 3425 2762 2368 2110 255 282 1963434

WIN

increased rapidly, and it appears, exponentially. The other

alogori t hes, all the lepth-fi=3t algorithms and the

38

N6 2 6 0 9 3 7

* i. A.. .7% %.~C '.. '~C ~ 2. '. ,. ..--. *-*...~ *'- * N.. *-~ *.- * - .* -.!

TABLE V

1lgorithm Runtime for Tmax=1O, All Cases J,I *'

Glid Ti Algorithms
3 (4 5 6

0 4.3 4.4 3.7 4.1 3.9 3.6 10.4 I
1 0.4 0.4 0.7 3.4 0.4 0.6 10.7
2 3.7 0.4 1.1 0.9 0.6 0.8 10.9

0 17.9 16.1 18.8 10.11 8.0 17.6 150.8 1
9 1 14.7 10.6 19.7 8.8 6.9 15.0 152. 1

2 1.3 8.2 25.3 10.9 9.0 17.1 153.5
0 120.8 92.1 191.8 113.1 101.0 212.7 672.9

16 1 174.0 119.4 221.5 119.2 114.9 220.4 671.9
2 163.4 193.8 318.3 156.4 125.4 250.2 674.8 I
0 661.0 679.2 1028.6 561.9 5147.8 1094.6 12149.3 I

25 1 1124. 4 1092.0 1277.3 709.8 698.9 1262.0 1244.5
2 1253.4 1500.3 2252.4 843.0 845.0 1494.1 1249.1 i

Totals 3549.3 3734.9 5359.2 2538.9 2461,8 4588.7 6250.9

runtime in cpu seconds

best-first restart algorithm, tend91 to be somewhere between

the two extremes. In the final case, where Tmax=10 and

TI-2, the total enumeration algorithm was still competitive.

It is anticipated that as Trax is increased beyond 10 the

total enumeration algorithm will surpass all the other algo-

rithms in runtime requirel.

Based on this example, it appears that the best-first

strategy with either the myopic or random starting solution
is preferred. Further examples might indicate a preference
between the myopic and random starting solutions.

39

IF. 1XT g..!Mff

A. PD AS A FUNCTION OF WAKE AGE

The program as currently written, assumes that thR prob-

ability of detection of the wake is constant with the age of

the wake. In reality, one would .xpect the probability of

detection to decrease as the wake age increased. This would

relatively simple to implement. What would be needed would

be either a separate probability of detection as the wake

aged or a functional relationship between wake age and prob-
ability of detection. The progria would then have to be
modified to u.e the appropriate probability for the various
search atricies, st(i).

B. COUNTER-DETECTION

Another aspect o! interest is the ilea of counter-detection

of the searcher by the target. It could be speculated that

if the target detected the searcher when they were both in
the same cell at the same time, the search would be blown

and therefore any target probability mass which detected the

searcher could be removed from the problem. One way of

accomplishing this would be to have in added cell to the

grid. The searcher would be unable to search this cell and

the target once in the added cell would never transitior

out. Then two search matricies would have to be used. The

modified search matrix St' would include a probability of
counter-detection and a transition of that target prob-

ability mass which counter-detected into the extra cell.

The search matrix St for the wake search would remain

unchanged. Figure 5.1 illustrates the problem input,
initial probability distribution, target t-ransitior. tatrix,

and example search matricies.

'I. '40

• , .

Sample 3rid
I + I

.,- i3) 41
--- - -------- - -

" I 5

The target transition matrix

.40 .30 .30 .0 .0
T- .30 .A0 .0 .30 .0

.30 .0 .10 30 .0
.0 .30 .30 :40 .0
.0 .0 .0 .0 1.0

The target initial probability listribution

PO- 0.00 0.00 0.00 1.00 0.00

The searcher motion constraint 2atrix
1 2 3 0 0
1 2 3 0 0
1 3 4 0 0
2 3 '4 0 0

5 0 0 0 0

Tte probabl 4ty of non-detectlon js 0.500
T e probab IIty cf counter-detaction is 0.200

Example Search Matricies for a search i. cell 1

Original Wake Search Matrix

0.50 0.0 0.0 0.0 0.0
0.0 1.00 0.0 0.0 0.0

S1(11 = 0.0 0.0 1.00 0.0 0.0
0.0 0.0 0.0 1.00 0.0
0.0 0.0 0.0 0.0 1.00

.::Modified Real-Time Search mat.rix
%'..0.50 0.0 0.0 0.0 0.20
.. 0.0 1.00 3.0 0.0 0.0

.- SlO (1)- 0.0 0.0 1.00 0.0 0.0
-' 0.0 0.0 0.0 1.00 0.0

0.0 0.0 0.0 0.0 1.00

Pnd for a 4I time unit Search with a 2 time unit detector
PndPooSl'S2oS3-TS2'eS3.S4-T.S3'-S4. TS4'4 I]

Figure 5.1 Search Problem Modifiel for Counter-Detection.

'41•..

.4. " , ' t ' ' '" ; ' ' ' ' ,4. . , . . , ,
'

" ''7" .e". , , . ' .' ,. ' ,. "'

C. APPRO!IMIMONS TO THE OPTI&L S3LUrIOI

For real life problems on the 3rder of 25:25 grids and

larger with Tzax _50 and Tl_5, the computer time to =sach a

close approximation of the optimal solution zay be exces-

sive. Therefore, Stewart in [Ref. 1] suggested using the

first feasible solution that aros3 from the depth first

search. The first solution could be viewed as a form of the
myopic search. The optimality chiracteristics of such a

solution have not been subjected to worst case or average

case analysis.

a-

,.4

i . : , r . T-: ;-- -- I - -- - - :

v1. QOC_. 122_

1. PROBLEM COMPLEKITY

mention has been made of the apparently fundamental

intractability of the discrete time and space moving target

constrained searcher problem. Earlier it was conjectured

that the problem is at least 4P-Complete and possible

NP-Hard. Appmndix A discussed the complexity of the problem

and provides some Justification for the conjecture.

If the conjecture is true then the implications are

clear. Conventional attempts at trying to find 'efficient'

algorithms are doomed to failure, particularily if the

problem is NP-Hard. Thus heuristic algorithms are the most

fruitful avenue for finding optimal or near-optimal

solutions.

B. CHOICE OF AN ALGORITHM

The myopic starting solution for Brown's algorithm

combined with the best-first strite;y produces the best

results. This combination was consistently better than the

total enumeration algorithm and, as the problem became more

difficult, performed better than the other five variations.

The solutions to the constrained searcher problem

(Stewart's algorithm output) were compared for both opti-
ality and runtime. However, the solutions to the uncon-

strained searcher (Brown's algorithm output) were not

compared except indirectly as the output affected Stewart's
algorithm. There may be significant diferences in the
bounds provided by the different variations of Brown's algo-

rithm. It dil appear that the restart approach was signifi-
cantly slower as Tmax increased. This had a significant

43

I

effect on the performance of Stewart's algorithm. As Tmax

increased the restart approach be-ame increasinaly slwer

than the myopic or random approa-hes and the differenc e
could not be explained by a change in the number of solu-

tions which had to be calculated. Thus even if the opti-

mality of the bounds produced by the restart approach was

improved over the other approaches, it was overshadowed by

the increased time required. It is -onjectured that the same

- effect would occur if the estimation -echnique were used.

There are several alternative ways to approach the solu-

tion of the constrained searcher problem. As shown by

Stewart in [Ref. 1], the idea of network flows could be

applied. Also, J.H. Eagle in (Ref. 6] proved that a dynamic

programming approach was guaranteed to provide an optimal

. solution for the ncn-wake search constrained searcher

problem. Either of the above approaches may be extendaole

to the wake search case.
"C.

C. VAKE SEARCH

The extension of the constrained searcher problem to

deal with wakes rested on two assumptions: 1) the indepen-

dence of the searches and 2) the goal of minimizing the
probability of non-detection for a fixed time period search.

The first assumption may not in fact be valid under all

conditions. To say that two searches have independent prob-
abilities of detecting a target when the searches are
constrained to use the same search path might ba, incorrect.

For example, suppose that at time period i the target

moved from North to South in cell j. Also suppose that in
time period 1+2 the target moved from East to West in the

same cell J. Now the searcher enters the cell at time

period i+4 with a 5 time unit wake detector. If the searcher

uses a search plan that searches from East to West in an

.44

.%%

.U
-. . ","% , "% . '. . ".*.-%-% -. %C C, % " . . - .,

exhaustive fashion he has several chances and thus a higher

probability of detecting the tie period i wake than tha

time 12 wake. Conversly if the searcher uses an exhaustive

search path from North to South he will have several chances
to detect t1 e wake from time periol i+2. Therefore it may be

an oversimplification to assume that the wake searches are

. 'all independent of each other. The assumption did make the

calculaticns possible and therefora even if 'he assumptions
stretches the truth it will still yield answers cf in-terest.

D. ICKNOVLEDGNN HTS

The basic idea underlying this thesis, that of investi-

*~i gating applications of optimal search theory 'echniques to

wake search, was suggested to me by Dr. Steven MacGruder

at the Applied Physics Laboratory of Johns Hopkins

University. He was interested in stading the exploitability

of wakes in general and had been using heuristic techniques

to determine ceasonable search strategies. After a 6 week

experience tour working under Dr. .acGruder I returned to

the Naval Postgraduate School wher r worked closely with

Professor EagLe in completing this thesis.

45

*1. 4 ,' .'." ,.... ' . " ., .- .' . o ' -. ' ' -. " ," -" -. ", -... ". ,-,- .. ' -,," .. ' - ' . " . " - " . - - -

- - - U- W**-Z -7%

DISCUSSION OF THE CORPLEXITY Or THE SEARCH PROBLEM

In this appendix, I hope to lay the foundation for the

determination of the complexity of the wake s.arch problem.

The problem will be approached in two ways:

1. Show & restricted version of the constrained wake

search problem is in element of NP.

2. Show that the unconstraihed wake search problem is

-functionally similar to the Knapsack Problem which

has been shown to be NP-Complete.

As defined in [Ref. 3]v a problem is in NP if a tenta-

tive solution can be written down and checked in time poly-

nomial in the size of the problem input. The wake search

problem can be formulated as follows:

" INPUT: A finite set Jz(jl,J2,...,Jn) of cells which can

be searched, a probability P0=(pl,p2,...,pn), 3_pi<_ for all
!=1,N that the target will start the problem in each cell, a

probability Tij, O-TiJ_1 for all i=1,N, J=1,N that the

target will move from cell i to cell J, a bound 8_0, and the

sets I(ji) for each ji, a subset of J containing the cells

reachable frot cell ji in the next time period.

QUESTION: Is there a "search" of the cells in J of

length T having a total probability of non-datection no more

than B such that each jt+1 is an element of I (jt)? The prob-

ability o non-detection is

Pn d-Po •ST--- T S-TI eST3 or ... oSTmtx • 1] (A.•1)

Given the above problem lefinition, what non-

deterministic algorithm will solve it in polynomial time? A

46

. non-deterministic algorithm is 3as which contains two
stages; a guessing stage which sisply guesses in arbitrary

search jl,j2,...,Jr and a polynomial time "checker" which

answers the question, "13es the irbitrary search have a

non-detection probability less thaa B?" It will suffice to

.* show that the "checker" will stop in polynomial time and

answer the question, yes or no.

The "checker" merely calculates the probability of non-

detection using equation A. 1 and compares the result with B.

The calculation entails (T-1).(Torl.)+1 matrix multiplica-

tions each of which requires NxN multiplications. Therefore,

the calculation will require O(TOTIONz) timq to complt.

The input to the problem has length O(N2+log(T4log(Tl)) (9

elements of PO, Nx elements of T-i, at most N2 elements of

1(Ji), N elements of the guessed searzh and the values of T
and TI.) If T and T1 are restricted to be less than or

equal to some specified polynomial function of ., P (N), then

the input becomes O(P (N) eN' ani the calculation time

becomes O(P(NJ 2 N), both 6f which are polynomial in N.

Therefore the "dhecker" will answer the question in polyno-

mial time based on the length of the input. Based on the

above, the wake search problem is in NP. If the restriction
on the size of T and Ti are removel the problem may not be

in NP, i.e. the problem may be NP-lard.
Once it has been shown that a given problem is in .4P, it

is of interest to see if the problem belongs to the class of

problems called NP-Complete. This =lass of problems is known

to be the set of the hardest problems in NP. It is conjec-

tured that the wake search problem as described above is no

easier than the NP-Complete problems, however, a proof is

not available. Following is a partial Justification for the

conjecture.

Proof that a problem is NP-CDmplete can be done by

showing equivalence between the given problem and a problem

47

already shown to be NP-Complete. As shown above, a

restricted version of the wake search problem is in NP. Now

if it could be shown that the wake search problem is no

easier than a problem which is NP-Complete the proof would

be done. What will be done is to show that a relaxed version

of the wake search problem namely the wake 39arch problem

where the searcher motion is unconstrained is functiorally

similar to the knapsack problem which is NP-Complete.

The knapsack problem can be stated as follows:

GIVEN: Finite set U, for each a U a size s(u) Z+ and a

value v(u) Z+, and positive integers B and K.

QUESTION: Is there a subset U' of a such that
Z s(u)!SB and such that v(ui_ K?

uer o tae3

The unconstrained searcher problem can be stated as

follows:
GIVEN: a finite set JxTmax, a finite set T, a finite set

Po, for each jt J? a size 9 (Ji)=1 and a value v(Ji)=Pnd, ani

a positive integer Tmax and a rational number K51.

QUESTION: Is there a search J=(jl,...,JTmax) a subset, of
JxTmax, such that each element Ji of J is an element of the
disjoint subset JI where the subsets 3I form a partition of

Tmax
JxTmax and such that Z s(ji)=Tmax and such that equation
k.1 -K?

While there appears to be significant differenc.s
f between the wake search problem and the knapsack problem,

there is enough similarity that the conjecture that the wake
search prcblem is at least as hard as the knapsack problem

is reasonably justified. Since the wake search problem as
compared to the knapsack problem is the unconstrained
version it also appears that the constrained wake search is

also at least as hard.
It has been shown that a rastricted version of the

constrained wake search problem is in RP. It can be hypoth-
esized that if the restriction (that r and rl be polynomial

448

V functions of N) were removed the problem would not be in NP.

It has also been shown that the anconstrained wake search

problem is functionally similar to a problem which has been

previously determined to be NP-Complete. Therefore, it seems

reasonable to conjecture that the :onstrained wake search

problem is at least NP-Complete and possib!y NP-Hard. The

consequences of this conjecture are that *hs problem is

fundamentally intractable and there Ao not exist 'efficient'
algorithms for solving the problem. Thus any heuristic algo-

rithms such is those presented in this thesis are appro-

priate methods for attempting to find optimal or

near-optimal solutions.

V.,

4,.

4S9

A",-. 1. "_,.. ''. %_. 'l_. ,,=l ,Ji<.,- ,.%I-,<,. -.-- , - . - . -

- . . - .. . o --. - .- * •. .-.- - . -

GRAPHICAL COMPARISON OF ALGORITHM RUNTIMES

This appendix contains graphs of the runtimes of the

algorithms for the following cases:

1. 4 cell grid, T1=0, and Tmax=1,13

2. 4 cell grid, Tl=1, and Tmax=1,10

3. f4 cell grid, T1=2, and Tmax=1,10

4. 9 cell grid, TI=0, and Tmaxa1,13

5. 9 cell grid, Tl=1, and Tmax=1,10

6. 9 cell grid, Tl=2, and Tmax=1,13

7. 16 cell grid, Ti0, and Tsaxa1,10

8. 16 cell grid, TII, and Tmax=1,10

9. 9) 16 :911 grid, T1-2, and 1r'ax=1,10
10. 25 cell grid, T1-0, and TNax-1,10

11. 25 cell grid, TI-1, and Tmax=1,10

12. 25 cell grid, Tl=2, and Tmax-1,10

Each graph contains the runtimes for each of the seven algo-

ri'hms, with the following symbols representing each algo-

rithm:

- Depth-First Strategy, myopi: starting solution

* - Depth-First Strategy, random starting solution

+ - Depth-First Strategy, restart algorithm

x - Best-irst Strategy, myopic starting solution

V - Best-First Strategy, random starting solution

A A - Best-First Strategy, restart algorithm

o - Total Enumeration

50

50

q - e % %V ~ ~ -~* ~ .'.-~ *. -. '. ~ ~ *a *:--2.->:.~-~:

0
I-

N I
I I

I I
N

I
I

(DI
I

* &

* I I

-~ I I

'N* V.

I
(%4 I

II
N

I I I I I I I I I
OL q 9 0

JIAJIiNfld _______-~

F~gure 3.1 4 Cell Gr±d. ~ and T.az1,1O.

'p.

51

...

- *****\ ~ ~%.-.% .~%'.N. ~ ..-.-. * . -

-. -.

5,.'..

* I --* . I
'5' ~ 0 I

.5

A.

I I

I II
I I

I WV

I-IA I
V
S.

* I
5- 5.S I'5.*5,

it.,

it~
*~5"

I I I

OL 8 9

(SQNO33SfldO)3~WLNfld
1

Figure 8.2 ii Cell Gride Tial, ~nd Tuax=11O.

it 52

".5 .*.**.***.**,t** -. *5* A *****.' . . .*...*. ,A * *' .*..-....'.. ***.**4**

S.4

1~ -I
ot 9 I

(SI03 ndI3in
Fiur 8. 4 alGiIzadTa-,0
I 53

S.S-7

'4.4

09 0$ 0

"SON33S dO) AU~n
"w ea 9Cl rdT-O ndTa-,0

45.

~4~4 4. ~ *

.4p
4

A
.4.

CI
4 a

I u-I
I 'I

-w4 1 1
I I

.4

4,. 1 I

.~*9. I
* h

- . I I
I II

- I 6A~
.4. 1 j

4~4 I I
4 (
4.. 1
j I

44 I

4%

4' 1

O~L 08 0* 0

(saNo3Jsnd 3) 3 P~INfl~j

Figure 3.5 9 Ccli Grids Tl=1, and Tmaxzl,1O.

55

- ,.-4-.-..''4-.4

a-'

*4~~

J.

I I
* . I

.5 I t
5I~ I I

I I N
I
I I

I I
I I

-C

I

a-.I

I

P.

0* ~

-. 4

V..

I I 1 I

0~L 09

(scNoa3s fld3) 3~NIiNfld

Figure B.6 9 Cell. Grid, TI.u2, aud ?uazal,1O.

4

* 56
.14

I

*%~~ ~ *' -

<1

V0

009 00, ooz
(S(I003sndO 3V4i~I

B.7 1 olard lg ndT&uvO

I 57

I I '&

S7-!

.I

i 11

1 "0

I -

I1

I I I"II]

_____(SaINooJS nd)3VNIINfld __j

Figure 8.6a 16 Cell Grid, Tl*1, and Tuat-1,1O.

58

.......................% .'.~'.. V~'....................

S. **4~bt*.~~*~ ..t....N.~..

% .0

I0

-%C 4

00 001 Io
0(S.N03 ndO 3Ain

Fiur B.9 1 alGiTwradTaI,0

'OLO

r..*- -

9.-

, I
* I

II

i
C4

0Ow o 008 007 0

(SGNO3S ndo) 3M±Nn8

Figure 8.10 25 Coll Grid, 21=0, and Tsax=llO.

60

S.

-- S

'S.
5- I

..
I

.5-..

a I
I

xi
5.~~

I
* I I

44~5V.

-'.5-.

* ..~
I

4. II

e~I
I

,,4 i

0O~L 009 00~

- (SQNO3JS n~) 3r~IiiNfld ______

Figure 8.11 25 cell Grid. rIal, ~nd y.ax=1,1O.

#54

61
i

~ V V.V .5.5. - - ~ %~.5**g..%' ' '.' ~-. ... V.
5

- -,.--: ~
S S .~%;...;.-. I ~ *. ~

262

LIEST 0F REFERENCES

1. T. J. Stew art, 1se arch for c Mo0v in T ar g et When
Searchipr MotiOn IS Constra."ae3 " Co0 Der - OU Ijq2Ul,Vo.. 6, p. !29i4,Tt-- U

2. Scott S. Brown, "Optimal search for a Moving Target in
Discrete S pace an dTime," Opea1tions Regairch, Vol.
28, p. 127 51286, 1980.

3. Michael R Garey and David S. Johnson, ;musa ar
I - t ra ctltb lv + guile to th___sdr --

4 A. Douglas R. Smith, d rm ll and the An&Xsis of

MUD ~ ,oirpr ,iv5

* *5. Bruce Golden and Edward Vasil Jr., A ;Urve Fi~tti

0~ ~ af-+ go h~WenteSac

DJN Xagle7 -A3!Ist

63

INITIAL DISTRIBUTIDE LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Librlry Code 0142 2
Naval ost.ra dua'-e School
Monterey, California 93943

3. Prof James N Eaile, Code 55Er-
gaval Post radua.4* School
.onterey, California 93943

4. Prof. ;ordon 1. BradleylCoa 52Bz
Naval Postgradua Sqchzol
Monterey, California 93943

5. Dr° Stven F. .acur 1The Johns 9o Ins -uOn lersity
Applieo Physics Laborato-y
Laurel, Maryland 20707

6. COCbAN? ER t
Su mar ne Development Squad.a relve
U.S. Naval Submarine Base
Groton, Connecticut 06340

7. Lt u Do las P. Guthe, Jr., USN
46 Laur ~1Dr-Ye
Oakdale, Connecticut 06370

64

44 N ' h ;2'" :' ;"":,; "''')"-"' ' ' '''-': '' . ""-.-:".:'.'-' "."---. -. ": '- - .- '.'

ii-'I
"

' . '. . .'", . . . " " " - " " " ' . " " " " " • "

4. . .. • •- . ,. .

.1:0 1

i4r

kl

--4-

ej
Il

'V4

