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N

A =method for determining “he optimal or near-optimal
search path for +the wake of a moviny target when the search-
er’'s motion i3 constrained is presented. The problem uses a
Harkov mction model in 3discrete tims and space for +he
target and assumes that the searchar is cons“rained to move
only from the currently occupied =211 §j to a specifiad sot
of "neighbor cells", I(9). Pirst, a discussior of the
complexity of the problea is preseatad. Naxt, an extersion
of T.J. Stewart's constrained searchar algorithm is given.
Stevart's algd>rithm uses S.S. Brown's unconstrained searcher
algorithm to calcula*e bounds on the probabili+y ¢f non-
detection. An ox*ension of Brown's 2lgorithm to allow the
use of a wake detector is also givan, Several alternatives
to both algorithms are offered and compared. Pinally, some
further extensions to the algorithms are suggested.
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I. [NIBODUCTION

A. THE PROBLEN

The problem considered here is the szarch for the wake
of a moving target in discrete time and space. The tac-ge« is
assumed to move <¢through a finite numba2r c¢f c2lls according
to a known Markov process. The g2al is +*o maximize the
probability of detection by some specified *iae, *. The
searcher is assumed ¢5 be partially corstraired 3in his
motion through the search area, b2ing able to move, i:n one
time period, from one cell to a limited rumber of cells in
close proximity. The searcher is als> assumed t5> have an 'a
time period wake dJdetector.' The de*ector is capable of
detecting wakes left in a cell by ¢the target up tc n *+time
periods earliasr.

The approach ¢taken to solve th2 probleam was +o extend
tkta method of T.J. Stewars, (Raf. 1] and Ss.S. Brown,
(Ref. 2]. Stewart addressed searcher eaployment for *hrae
cases: vwhere the searcher's effort was infinitely divisible
among all cells, osnly partially divisible, or tctally indi-
visible. The thrze cases corresponl %> the situation where:
searcher affort could be divided among all the possible
cells during sach *ime periogd, s2archer effort could cover
some of <the cells during each time pericd, and searcher
effort could only cover sne cell luring each time period.
S*evart preseated algorithmas for finding op*imal or near-
optimal solutions for the first and <third cases and
suggested possible methols for solving ¢the secord case.
This thesis gensralizes the ¢third case to allow for wake
detaction: i.e., the <*target can be jetected at each “ime
period in each of several cells through which “he *arge+ has
previously passed in +the last n tia2 pariods.
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N
;?; A major difficulty of the algorithms of S+wart and Brown
A is that they are not guaranteed to produce the sp*imal solu-
¥4 #ion for reasons vwhich will be 3iscussed 1later. This
ii% failure to always find optimal solutions fcr “hs indivisable
"2 . effort case suggasts tha*t this problsm might be fundamen-
aly)

tally intractable.
o One of <*he recent advances in computer sciance 1is the
-2: idea of algorithmic complexi+ty and NP- Completenass,
f. NP-Completeress refers +¢o the dinharant intractablility or
__' difficulty of a problem. Genarally, NP-Completener
’j describes a set of problams which have bean shown tc
fﬁ: solvable by an efficient algorithm which is run on a nor
e deterministic Turing Machine. An sfficiernt algorcithm is o
vhich will solve a problem in an amount of time proportiona._

33 0 a polynomial function o5f the langth of <¢hs input necded
ot

‘ﬁ tc describe the probleam. Well-known NP-Comple*+e problems
bhes include traveling salesman probleas, the knapsack pr-oblen,
' anrd integer programming problaeas. In Appendix 1 a more
W complets discussion is presented 5f the complexity £ ¢he
A

% search problea forming tke basis €£for this *thesis, I+ is
\; suspected (but has not been proved) that this search problen
!  is no easier than NP-Complete problams and may be NP-Hard.
< If so, <then the investigation of hauristic or approximate
yi !

ﬁ; solution algorithes is warranted. Por further information
‘ﬁ. on NP-Completaness refer to [Ref. 3].
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II. THE ALGORITHAS USED

As mentioned earlier, <the algori*hms used %o sclve the
search prcblea were: 1) T.J. Stawart's Constrained Search
algoritha [Ref. 1], and 2) Browa's Uncons“rained Search
algoritha, TRef. 2]. The Constrained Search Algoritha
assumes the ssarcher is cons*rainzd in his motion during +he
search, i.e., the search2r can go from his curcen* cell to
some subset of all the other cells in %he griad. The uncon-
strained searcher algorithm put - 1> constraints on searcher
motion but does assume that the first + s2arch cells are
fixed and trias t> optimize the search by chocsing the cells
+to search from t+1 to T. Bven in “h2 unconstrained problem,
search is limited to one cell per time period.

A. STEWART'S ALGORITHH
1. Dpefipition of Symbals
"3 = set of all cells in the problea
jed = a particular cell

I() = mtrix of all cells 3in J that the searcher can
reach from cell j (different for 2ach § I

ji = the cell to searched at +im2 i
{J0,§14ccepJt} = a given search plan

K(t,jt) = matrix of all cells in J searchable at time +#1
from cell §¢ +hat have not yet b2en consider=2d4 in candi-
date search plans

p = probability of non-detectiosn for <*he current best

solution (search plan)

1"




T T ——

St(l) = the nxn search matrix for time pericd % wher:
cell i is the cell +o b3 search21

1] = a columan vector of 1's

2. Logic

The f>llowing algorithm was taken from [Ref. 1].

1. Set *=0, p=1; Szlact a cell to be searched, j0; se¢
K(0,30) =T (J0) .

2. Solve the substitute probl2a (iiscussed below) for
search over periods t+1, t+2,...,T, with the searcher
at Jt prior *o the search, and with searcher location
in the first period (i.e. t+1) restric+2i to K(%+,it).
Obtain thereby (21so discussad later) a lower bound ©
on +th2 optimal probability of non-detec*ion when
searchar paths are restrictel td> those passirng
through (30,5 1,....,9t}.

3. TIf P<P, goto step (6). Otharwise, i+ is now proved
that all continua+tisns of ¢he current path are non-
optimal, i.e. the arc from (t-1,3jt-1) *3 (%,3*) is
fathomed. goto step (4).

4. TIf t=0, *he algorithm *erminatas (211l paths from 950
are fathomed); the current bast solu“ion is cptimal.
If €50, goto step (5).

S. Delete the current jt from K(t-1,3Jt-1) and set +=t-1,
If X(t,jt) is now empty, <+h2 arc from (¢t-1,3*-1) %o
(t,3t) is implicitly also fathomed. Thus return to
step (U). Otherwise, return to> step (2).

6. Select the element of K(t,jt) appearing in +he solu-
“ion to the substitute problem and call this Jj-+1;
se* +t=te1, If KT, se* K(t,3%)=I(3*t) and return +o
step (2). If t=T, evaluata <+he probabili+y of non-
detection when <+th2 searcher path is (§0,31,...,iT}).
If this probabili+y is less than B, *hen replace P by
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this value and ins*all (30,3V4ee.,3T} as ¢*he curren+
best solution. Return to stap (5).
Essentially <¢the algoritha solves the par«ially

constrained problem (unconstrained after <ime £+¢1) at 2ach
level to ob*ain a lower bound on <*h2 probability c¢f non-
detection for any fully constrained ssarchers that have the
sape initial search (§0,...,3t+1}). The algorithm then %trav-
erses aach branch vhose lower bound is less than the current
best solution probability. When +=T, *he search is nrow fally
constrained; and , if its probability of non-destection B is
less than P, then it is 3 better seacch plan and is saved.
Whan no branches with probabili“iszs 1less than the current
bast plan are lef:t, the problem is =ompleted and “he current
best plan is s>ptimal.

Optimality is Juaranteel if +ha lower bounds
cbtained fro: +he application of Brown's algorithm are
indeed lower bounds. Unfortunately, 3uz %o the nature of *he
problea, (an 3integer programming problem) <*he resul“s of
Brown's algorithm are not necessarily lower bounds. A search
plan may exist whose ®lowar bound”, from Browa's algoritha
is higher +“han the current baest s>lution yet wvhose actual
probability of non-detection for a fully constrained solu-
tion is lower <+han the curremnt bast solution. Thus the
branch containing the op+imal s>lution may be pruned.
Tharefore, the solutiosn produced by Stewart's algorisha
using Brown's algorithm as a bouad will not nacessarily be
optimal. Nevertheless, thz solution a2igh* be close enough *o
the optimal for practical problams 2f interest.

3. Alterpatives

Stevart's algorithm is ess2ntially a depth-firs*
search through a tree of possible s>lutions. It uses Brown's
algoritha to bound the branches 1231 remove ¢*hose brancthes
vhich 4o no+ contain bet*er solu+ions “han the current one.

13
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The depth-first search strategy Jan2zates bounds a+ =2ach
leval of the tree and picks the b2st bound a+ tha+t level ¢o
continu2 the bounding procedure. In this way it reaches a
fully constrained search in T staps as it pragresses Acwn
through the tree, After reaching ths first constrained solu-
tion the algori“hm progra2sses bacxt up the tres chacking
other branches on the way up. Th2 algorithm stops when i+
has progressel all the way up to tha top of the tree and has
nd> bounds which are better then tha curren*t bes*t solu*ion.

Anothar approach is to use 2 bast-first strategy. In
this strategy, <*+he best of all th2 bounds currently calcu-
lated is checsen as the branch *o futher investigate. Afzer
the nev bounds are calculated for ths one step investiga-
tion, *he best bound is again chosen to investigate. As ths
bes+ bound is chosen it is chacked ¢t> see if it meets the
motion constraints. If <+he solution do2s meet <the
constrain+ts then the algorithm stops with the best solution.
Using the best-first strategy presantad by D.R. Smi*h in
(Ref. 8], Stavart's algorithm vas revised and is presented
below:

1. Set t=), P=1; sslect J0 to> be the 4initial search
cell, set K(0,90) =1 (40) .

2. Solve the substitute problams (discussed earlier) for
search over periods t+1,t+¢2,...,T , with searcher a+
jt prior +o the search, and with searchar location in
the first period (i.e. t+1) restricted to K(t,jt).
Store the lower bound on tha Sptimal probabili*y of
non-detection for each of the 2lements of K(t,jt) in
a priority gqueus based on tha 1lowver bounad. (i.e.
store the search (Jo,...,jt+1}, the length of the
constrained part of the search, tc=t+1, and the lower
beund for each alemant of K(t,ijt)).

3. Select froa the priority quaue <+he search with %he
smallest lower bound and s3t the currep: search tc¢
that chosen search. Set t=tc, set K(t, J+)=I(jt).

14
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4. Check the current search to s28 if it mests +*he move-
ment constrainss (i.e. chacsk for feoasibility). 1If
feasible, ¢then stop, <the current search is *he best
search. Otherwisa, goto step (2).

Essentially what the best-first search of <he tree
does 1is generate bounds for each branch below the <=o0*.
Then it picks the branch with *he best bound “0 ccntinue *he
investigation of the <*ree. After bounds are gererated for
each branch they are savad on a priority queue from which
the selection of <the best bound is made. A pricrity queue
(in the isplenentation, a priority heap) is used +to minimize
the time and storage requirem2nts nscessary ¢o store +he
bounds and find ¢the best bound. Than the algori<hm picks
*he branch with *he best bound to continue th2 investigation
of “he *ree., Once the best bound is £found, i+ is checked tc
seg if it conforms ¢o the movement constrain%s. If i+ dces
confora, the algoritha stcps, the s>ptimal solution has been
found. Othervisa, tha branches 2amana*ing €from “he branch
under investiyation are bounded ani th2 algcrithm repeats.

D.R. Saith, in [Ref. 4], acrgued that the best-first
search of wmiyst classes of raniom trees has a s+trictly
saaller expected time and space complexity. Therefore, it
vas decided to compare ths best-first and depth-first tree
ssarch algorithas for both use of computer *ime and opti-
mality of results. The best~first ssarch, howaver, is also
plagued by the possible non-optimality of Brown's alagoritham.

B. BROWN'S ALGORITHN

To generate a lowar bound on the cons*rained search
given that the search during +ime pariods 1,...,*t is fixed,
an algorithm presented by S.S. Brown in [Ref. 2] was used.

The target position distribution was generated usirg ar
initial probability density of target 1loca*ion Po and a

15
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Markovian motion model. Po, tha target initial distribu-
tion, is a vec*or with 1imension aqual ¢to5 the number of
cells in the spatial grid. Markovian aotion is described by
a +*ransiticn matrix T that contains the nprobability of
soving to cell § given that the target was in c2ll i. After
one time period, the new target location density is PoeT,
After two time periods it becomes Po>eT2, and 2fter n moves,
i+ becomes PreTn. To iaplement search in +*he model, a
search matrix st (i) for time perisl ¢ was usad in the form
of a diagonal matrix with the 4i+h diagonal element given by
the probability of a aisssd detection, and the other diag-
oral elements egual to unity. Therafore the vactor PoeS1(1)
contains the probabilities that tha target is in each of the
cells and remains undetected after a one time-unit search in
call 1, We rafer to this vector as "the defective tar-ge+
location mass at time perisd 1w, Pigurs 2.1 illustrates an
exaaple search vproblea. Pigure 2.2 illustrates a sample
calcula*ion of PoeS1(1). A four time-~unit search in cells
1, 2, 4, and 3 would yiz2ld a defective target location mass,
Pt (i) given by :

Pt (1) sPOeS1(1) eTeS2(2) eTeS3 (U4) eTeS4 (3) (2.1)

The final probability of non-detection pnd for the search is
given by:

Pnd=p+ (1) e1] = 0.612 (2.2)

16
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Sample 3riad

b voenvnvconte poe cvocacama

A

$ronnavceca o cvccvn=

I

- ey w W e o= oo ovcacaanaa

The target transi<ion matrix

40 .30 .30 .0
T= .38 40 .u .gg
3% <%0 :%8 :33

The target initial probability 3istributien
Po= (0.00 0.00 0.00 1.00)
The searcher aotion constraint aatrix
1 2 3 0 0
4

1 % 0 0
1 4 0 0
2 3 4 0 0
Nuaber oOf iells is 4
The probab

lity of non-detectisn is 0.500
The initial search cell is 1

An exampls Search Matrix fsr a search in cell 1
0.50 0.0 2.0 0.0

S1(1)= 0.0 1.00 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.00

Pigure 2.1 Example Search Probles.

1. Defipition of Symbals

S9Y = The search plan chosen aftar j iteraticns of Brown's

algorithnm

S§(t) = The cell to be searched in time pariocd t in the

search plan S3

Prd(Sj) = The final probability o5f non-d=2%ection associ-

ated with the search plan S9j

17
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1
.3 0. 0. 0. §
PoeS1(1) = (.00 .00 .00 1.00) e 9:3:%: 83: :
o 0. 0. 0. 1. { .
% = (.00 .00 .00 1.00)
~ i
3 :
39 Pigurs 2.2 Sample Calculation of PoeS1(1). q
< !
- 2. Legic
; 1. Given an initial guess So at a search plan, and givan ;
E a solution tolerance >0, s2t +=1, j=1, and St=So. a
2. Choose Sj(t) to minimize pni(Sj),(Sj(i) is fixed in
‘2 “his mininmization for ist.) The minimization is done
N by calsulating Pnil(Sj) for all possible choices of
X S§(+) and choosing the Sj(t) which has “he smallest
B Pna (s -
‘: 3. If t=T, goto step 4. O+herwise, increment t and goto
:ﬁ step 2.
2 4. If Prd(sj-1)-Pnd(sd)<e, stop. Pnd(Sj) is *he desired

bound. O<*herwise, incremen: j, set t=1, set S§=Si-1,
N and gotd> step 2.

Brown's algorithm is an itarative improvement algo-
rithm, wvhere at each time step « the <cell which minimizes
Pnd is chosen, given that *he rest >f the search before and
after t is unchanged. When the Pnd £o5r S is within e of ¢the
Pnd for S3-1, ¢the algorithm is <t2rainated and search Sj is
used.

AKX

A

Brownls algorithm in +the totally divisible case,
vhere at each time periodl ¢ the solution +o the sta-ionary
ssarch problam is found holding the searches for <“ime
periods before and after t £ixed, will converge to the
. optimal sclution as proved in [Ref. 2]. However, bacause

- U AN Y
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the dimplementation here only allows search in one cell
during each time period “he solution space beccomes discon-
tinuous and thus non-convax. Therefore, *he algori+hm is no+*
quaranrtced to converge o an optimal solution.

3. Altematives

Brown's algorithm can be considered *
local optimal solution given a stacting ss5lu
Therefore, the *otal s3lution space is part
Brown's algorithm into those s+artiny solutions which result
in +he optimal solution (the global optimum) and +hesse
star+ing solutions which result in non-op:imal solu+ions
(15cal but not global optimums.) Based on this parfitioﬁinq
idea several alternatives are availabla.

The firs: is to cho>ose a g553d s%ar+ing solu+«ion. 1If
thes optimal solution were used as +he star+<ing solu+ica,
Brown's algorithm would 2always arrive at the optimal solu-
+isn. However, th2 optimal solu+isn is no* known, otherwise
Brovn's algorithm would b2 unnecessary. Two approach2s were
used to guess a go0d starting sclution: 1) “he myopic solu-
+ion, So(t) is chosen *to give the most improvemen+ +*o
Prd(So); and 2) a random solution, 2 random number generasor
is used to generate random starting solutioms.

As mentioned in [Ref. 2], if a 2zero solu*ion is used
40 start Brown's algorithm then tha nmyopic solution will
result after the first iteration. Th2 myopic solution seems
like a reasonable choice to start +the algoritha,. On the
other hand, there might be soma negative correlation be<ween
+he optimal solution and +*he myopic solution, i.e. the
nyopic solu+ion nmay lie in anothar partion which does no*
l12ad to the optimal solu+ion. Therafore “he random s“ac-%ing
solution was also considsred as a a2ans to g2t arocund any
possible negative correlation. Since the random solution has
a finite probabili*y of choosing th2 op+imal soiution i+ nmay
have a better chance of starting in the righ*t partition.

..........
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ig\ Ano*har approach used was to restar« Brown's algo-
LY
rithm any time a change was mad2 t> “he curran* solu*ion,

x The revised algorithm is presented below:
ﬁ 1. Given an iInitial gJuess So at a search olan set +«=1,
R: j=1, and St=Sc.

2. Choose S1(t) +o minimize Pnd(Sj),(S1(i) is fixed in
this mnimization for i#¢.) The minimization is dona

k; by calculatiag Pnd(S1) for all possiblz2 choices of
NE S1(t) and choosing the S1(t) which has the smalles*
iy PRd (SN
::§j 3. If S1()#So(t) then set So(t)=S1(%) ard goto s*ep 1.

4. If +£=T, goto step 5. O=herwise, incr2ment <+« and go*»
step 2.
5. Stop. Pnd({s1) is the desirel bound.
This variation of Brown's algorithm +akes an ini+ia]l
“ sclution and starts at *the firs¢ tim3a period checking for
local optimality £5r *hat time perisd. If *he choice of cell

to be searcheld a= the currant “ime pariod is locally optimal
f: for tha*t time period then the algorithm goes on to “he next
j§ time period. dtherwise, th2 algoritha inserts ths new search

L c2ll and starts back at the first time periocd. When th=
algorithm goss all the way through <*he solution withou:

_;‘ changes it styps. This apprcach aay repartition *he solu-
b tion space increasing the size of the partition which leads
ﬁ: +0 *he optimal solution.

- Another apprcach which was ndot used is «£o run the
5% algorithm sevaral ¢times with diffarent star+*ing solu*ions
;EE So. Then the lower bound can be tak2n as the minimum of *he
] locally optimal solu+tions returned by zhe algorithm. Also,

+he lower bound can be estimatad by

1 ¥

4 0
S NN

est=(P95eP5-P32.52) / (P95+P5~-2eP32.5). (2.3)
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PS, P95 and P32.5 are *he S5TH, 95TH and 32.5TH p=rcen+tile
values. This estima*e isg based 9n the idea that, as the
number of independent solutions prdduced by 2 givan algo-
rtitha for a given problem ircreasa, the solua-ion wvaluas
converge to a Weibull distribution wh2re ¢h2 op+imal lower
bound is the location parameter., This approach was no+« used
because it r2quired running Brown's algori+hm ¢wo oT more
times to calcila*2 each boand and it was fel: *hat “he addi-
+ional computar time would not improv2 “ha bounding process
significantly.

A fimal approach which also was not Znvas+iga“ad, is
+0 locally optimize +*h2 choice of c2lls over 2, 3 or more
t:me periods in the Brown algorithm. This 2gain might
increase the size of +he partition which leads <o +h2
optimal solution.
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IIX. §AKE DETECTION

A. BACKGROUW

As nmentisned earlier, this tha2sis is an attemp* %o
ex-tend existing optimal search <thaory <¢echnigues +o +he
problem of wike de+ectiosn. Stawar+'s and Brown's algo-
rithes, 2as presented in the las:t chaptar, indicate one
method for sd>lving the constrainad ssarcher problem. Ths
next question is: "How 3dses one 2xtand =h> algorithms *o
handle the possibility of wake detactisn?®
Stevart's algoritha 3o0es no acztual calculation of the
probability of non-detectiosn, it uses Brown's algoritham for
the calcula+ion of bounis, Therafora Brown's algorithm is ‘
th2 ona “hat 19eds to be altared %5 allow for use of a wake
detector. To ex*end the algorithm we proceed as follows:

B. DEPFPINITION OF SYMNBOLS

Po = ini+jal %arget probability distribu+isn (i.e., +he
probability that +he “arget is in any cell i a%t +he start
of the problem.)

St(l) = an nxn matrix wvhich r2iuces the defective prob-
ability mass of the targe* by 1-p(d4) in c21l i searched
at time =, The defective probability mass of the other
cells remains anchanged.

T = a nxn Markov *ransition 1matrix which <con*ains +he
probability that a ¢arge+ in cell i at ¢ime period + will
transition to call § at time periosd te1t.

1] = a ax1 column vec+tdr of 1's,

22




C. LOGIC

What needs to be extanded is the amodel undzsr which %h=
no>n-detection probability is calculatad. As shown earl
this calculation for a non-wake datactor in a 4 +time un
search is

Pnd=PoeSteTeS2eTeS3eTeSlhe 1], (3.1)

It is now proposed <+o0 allow tha searcher *o carry an
‘n-time unit wake detector.' This Jetector has the capa-
bility of detacting wakes in *he c21ll being sea-ched which
vere made by the target up to n tiaa periods 2arlier. To
extend “he molel t5> handle f'n-tim2 unit wvake detectors' +wo
assumptions are made.

Pirst, it is assumed *hat each w2k2 search for each +«ime
period is independent of 2ll othaer searches. Por example,
vhean a searcher searchs cell 2 at time perisd 3 wi<¢h a 2
*ime uni+ wake detector hz is complating +*hr22 separate and
independent searches. Tha first is o>f cell 2 looking for the
wvake made by the target during tim2 p2riod 3, the second is
of cell 2 lodking for the wake made during “ime period 2,
and the third is of cell 2 1looking for the wakz2 made during
“ime period 1. Note the searchar has also completed a
search during time ©periods 2 looking for wakes made during
tize pericds 1 and 2, and a search during ¢ime parind 1
looking for wakes made during *ime p2riod 1. Tharefors, in a
3 time periol search with a *wo tims period detector +he
searcher has made a total 0of 6 injapendent searches in 3
cells, *he czlle he chos2 +0 search at+t “ime pecionds 1V, 2,
and 3.

Also note that the *arget is assumed no% t> have lef+ a
vake prior *o tha stazt of +he problem for 2ase of compu*ar

..........
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calcula+ion and formulation <¢f th? p-oblem. This does ne*
restrict the result.

The second assumption is that ve are trying “o calculate
the probability of non-detaction after the specified leng+h
of search is completed. We are ndt trying +o =valuate the
probability of non-detection at intermedizte points in %he

search.

Based on *hosa +two assuaptioans, the wake detection
ccncept can b2 considered a simul<aneous search of the cell
*he searcher is in now, <*he cell tha seearchsar will be in
nex* time perisd, <+h2 cell the seirchar will b= in +wo *ime
pericds from novw, e%tc., oSut *0 th: maximum number of time
periods the wake is de+sctable or +o5 the number of <+im

(]

-
]

periods remaining in the problem, waichever is smalle-. T
wvake search is modeled as if an equivalsnt search is
conduc+ed simultaneously with the real-+ime search, i.a.
searching for a wvake in c3ll § which is t time periods ol4d
is equivalent to ssarching in cel1 Jj, t time periaods
previous, simultaneously with *h2 other searches being
conducted ¢t time periods previous and waiting + +time periods
*o discover the results of the search.

As shcwn previously, the probabili+ of non-detection
for *he search withou*t waka2 detection can be calculated €from
the product >f a series o5f matricies as shown in equation
3.1. Por a search in th2 same <=211s but with a one “ime
unit wvake detactor, *he probability 5f non-de*2ction is

Pnd=PoeS1eS2eTeS2eS3eTeS3 eSUeTeSlUe1 ], (3.2)

The vector Po, as defined earliar, is *he probability
+ha* the *argat is in cell i at *h2 start 2f <+he problenm.
Tha vec-or PoeS1 is *he probability the targe« was in cell i

at ¢time period 1 and has not b2en de“ected by “he wake

24
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search conducted during time period 1 1looking €or a wake
lef+* in +time perio>d 1. The vector PoeS1eS2 is <“he prob-
ability +the +*arget was in cell i 2at time perisd 1 and has
not been de+o9cted by wake searches juring time periods 1 and
2 looking for wakes cr2atad iIn tiz2 period 1. The vec*or
PoeS1eS2eT is then *he probability “ha+t the «arget is in
csll i at <+ixe period 2 and has nd>t been detected by wake
searches locking for wakes created luring time period 1.

Follovirg +*he same 1line of resasoning, the vector
PoeS1eS2eTeS2eS3eTeS3eSU is the probability +ha* the +arge+
is in cell i at time period 3 and has no: been detac+ed by
wake searches looking for wakes created during time pericd 3
and prior. Of note is t+h2 idea that the searcher irn effect
conducts simultaneous searches of 2 cells during a given
+ime period but dces not receive tha rasults of the or2 tinme
unit wake search until the nex* +im2 pariod.

The wake 3etection problem is analagous =0 <he problenm
whare a homeowner thinks “here are aice in his house and he
vants t0 confirm his suspicions. Each room 52f the nouse has
two tape rec>rders: one which 1is available for replay of
vhat noises were recorded in *he pra2vious hour and the o+her
vhich is recording the current hour. The owner car cnly go
to adjacent rooms which have doors t> the currant rooa. He
spends one hour in the room of his choice listening for
mice. Once in a room he can listen for mice and at the same
time listen t> +the tape recording 5f the previous hour. The
probability of detectiny the mice 21 the *tape recorder or by
listening in 2 room is the same. The owner now must decida
how to search the house to maximiza his chances of finding
the mice.

The tape recordings of +he nois: in each room are esen-
tially independent and simultaneous s2arches of each room in
the house. The ovner can only det2rmine the results of the
search by tapa recorder if he enters the room and lis*ens to

25
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the tape recorder. If ths owner 3o52sn** lis*tan *o “he taps
recorder during “he hour the seconl racorder is *aping *he
room, the first recorder is rewourd and star*s *aping “hus
destroying tha results of that particular search.

The key assumptiorns, as stat23 earlier, are <*ha+ the
searches are independent and that the goal is +o minimize
the probability of non-de*action ovar a given ssarch length.
Therefore +ths matrix multiplication in equa*ion 3.2 is
valiad. Por a ¢two time uni+ detector, “he probability of

non-detaction is

Pnd=PoeSt1eS2eS3eTeS2eS53eSUeTeS3eSieTeSle1], (3.3)

The matrix multiplication zan be =2xtanded for a Tl capacity
vake detector where Tl is the “ime la*e a searcher can enter
a cell and still detect +the targat's wake. For the T1
capacity detector equa*tion 3.2 becoaes

Pnd=pPoeST1eTeST2eTeSTIeTeSThe, .. 05Tmaxe1 ] (3.4)
whare
ein(Tmx,isT1
STY = ( i )St(j) (3.5)
i=i
26
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X IV. BESULTS
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A. DESCRIPTION OF THE COMPUTER PROGRAN

S & A

T.%

The algorithms presented in th2 preceding chapters wers
iaplemented on tha 0.S. Naval Postyraduate School's IBM 3033
= computer system in Fortran H (axtanield). The program was
constructed of a main driver program which called various
) subroutines f>r input, calculation and output.
fi The operation of the program caa b2 brcksn down in*o +wo
j main functions: 1) generation of th2 problsm including +he

initial target distribution, the transition aatrix and ths
e searcher rovesant constraint matrix; and 2) solu*ion of the
generated problen.
ﬁi The generation of the problem us2d two me+*hods. Ir one
X method the problea generated was a deterministic one where
*he target's initial position was at the far corner awvay
from th2 searcher who started in c211 1. Tha targe+ <%ran-

S F L.
WO R

jj sition matrix was generated assumiag that the target h2gd 2
> £ixed probability of staying in th2 c211 it currently occu-
X pied and the remaining probability of movement was divided
; evenly among the c2lls which were aljacen+. Diagonal move-
fs a2nt was not allowed. Pigure 4.1 shows a example ini+ial

.: target distribution and <%arget transition ma*rix for the

b deterministic case. Tha ssarcher amdveament constraint matrix
- vas generated by allowing the searcher <o move only £rom +he
§ current cell to an adjacent cell.

b In the second method, <*ths prablem was randomly gener-
" ated. The *arget was randomly distributzd between all the
2 cells at the start. The targe*t +ransition ma<rix was gener-
: a*ed assuminy a fixed orobabili-y of remaining in <*he
1 curren* cell and then the remaininy probabili*y of movement
X _ 27




P>=(0.00 0.00 0.00 1.00)
40 .30
Q30 .uo
<30 .00
.00 .40
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:iﬁ Pigure 4.1 Example De+t2rministically Generated Probles.

vas randomly distributed among th2 adjacant cells. The
searcher movszment constraint mascix was d=stermined as

Po=( 0.23 0.34 0.19 0.24)
.40 .35 .25 .00
T = <17 40 .00 .43
43 .00 .40 .17
.00 .25 .35 .40

Pigure 4.2 Example Randomly Generated Probles.

before. Pigure 4.2 illustrates a1 typical random problenm.
Pigure 4.3 shows the program structure and subroutines used
to generate “he deterministic and random probleas. The
program raquires 6 inputs as defined below:

1. Size of the grid i.=2. 3x3, 4x4, atc.

2. Probability of detection »>of the <+<arget if <+he
searcher and target are in the same c2ll. Also used
as the probability of detection of the <*arget using
the wake detector.

3. Pixed probability of <+he target staying in +he cell
it curren+tly occupies. (i.e. Tii)

28
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¥haether the generated problam is to b2 determinadl
or ranioa.

Bpsiloen, used as a stoppia3y criteria for Brown's
algoritham.

The capability of +the wake iatsctor, (i.e. how nmany
time units late will the detactor detect a wake.)

@ the problem was ja2nerated it was then necessarcy to

find the cptimal solu+ion using th2 wvarious algorithas

men=ion
solutio
1.

2.

The
solutio
all pc
prograa
algorit

ed earlier. Seven algorithams were used “¢ find the
n:
Depth-First search using tha myopic solution +o start
Brown's algorithm.
Depth-First search using a randomly chosen soluzion
+0 star+ Brown's algoritha.
Depth-FPirst search using a random solu-ion to start
Brown's algorithm and usiny the modification which
restarted Brown's algoritha every time +he solution
was changed.
Bes*~-Pirst search using the ayopic solution +o star+
Brewn's algorithm, .
Best-First search using a randoaly chosen solution to
start Brown's algorithm.
Best-First search using a random sclution +¢c start
Brown's algorithm and usiny <the modification which
restarted Brown's algorithm every time <¢he solution
vas changed.
Total snumeration of all possible search solutions to
determine <the one with th2 1lowest probabili+y of
non~detec+ion.
only algori+hms guaranteel to produce the optimal
n was the total enumera*tion algorithm which genesrateqd
ssible feasible solutions. Pigure 4.4 shows ¢the
stzucture and subroutines nacessary to implement the
hmes anl problem soluticn pazt of +he prograam.
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The output ga2nerated by the program included:

1.

cpu seconds used by each algorithm

number 5f unconstrained solutions checked

2.

solutions checkad

number of constraired

3.

probability of detection of the targe:t af*er search

4.

search plan used

5.
FPigure 4.5 pr2sents an example program output.

" "w g
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Using the program described above, grid sizes of 4, 9,
16, and 25 =cells were investiga+2i. All seven algorizhms
were tested on deterministic probleas with Tmax=2,...,10 and
T1=0,1,2. While the problem sizes considered are no+ large
enough for r3al life problems it was felt “hat +“hey were
large enocughk to demonstrate the algorithms. The r~esults can
then be extrapolated to datermine axpected runaing +times for
r2al life problems. The goal was <> ansver two gquestiors:
1. How clise to the sptimal are the =solutions €rom the
branch-and-bound algorithms?
2. How do the running times of tha algorithms ccmpare;
+to each othsr, and to ths total enumeration algo-
rithm?

B. OPTINALITY OPF THE ALGORITHN OUIPUT

As mentionad sarlier, <the problsas undsr considera*ion
ranged from a 4 cell grid with Twmax=2 and T1=0 %0 a 25 cell
grid with Tmax=10 and Tl=2. The total number of possible
constrained s>lutions ranged from 3 t2 275905. Trable I shows
the number of non-optimal solutions and the maximum percern+
difference betwveer the optimal and non-optimal sslu+tions for
each of the algorithams. Sinc2 th2 problems were symme*ric
there vere several optimal sd>lutiens, so the
branch-and-bound solution could b2 an equivalent although
different solution from tha total samaration soslution. This
may have increased the probability 5f +the branch-and-bound
algorithes finding the optimal solution. PFurther investiqga-
+ion in%to larger random problems 121y yield mors non-op+timal
solutions and larger percent differances, howaver, fully 96%
cf Stewar+'s results, as rcaported ia1 [Ref. 1], were optinmal
vith <+*he non-optimal results being within .41% o0f <+he
optimal solution. Therefora, the rasults of +this run *+end +>
confirm Stewvar“'s resul*s concerning “he optimalis 0f *he
branch-and-bound algori“hm solutions.
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TABLE I
~ Non-Optimal Solutions
>
2 Algorithas
-7 377 5 6
Nusber ‘
of Non-op*timal 2 0 ) 2 0
g Solutions |
o Maximum percent .0u% 0% 0% .O0u% .21% 0%
Oy Error ‘
iy {
,‘\ j'
»:;-\.
e
ii C. RUN TINMNE COMPARISON OF THE ALGORITHAS
e Since all +he algorithms sesa *o be eable to find the
E; optimal or n2ar-optimal solution withou:t <00 much dJdiffi-
g; cul*y, it is now important o J2termine which algorithm
performs the fastest. While the %¢5tal enumera%+ion algerithm
:} vas used to provide a benchmark for the cptimality of +he
:3 solutions 14 can also serve as a banchmark for the run-+ime
e of the algorithas,
The runniag time of the to+al enumeration algorithm is a
%f function of the nuaber of possible fsasible solutions. The
E; nuaber of feasible solutions is bas2d on how many places the
e searcher can jJo from the cell he caurrently occupies. Frem
- each cell +he searcher <can transition to betweenr 3 and S
{3 . cells. If the searcher is in a corner cell hs can stay where
™ he is or transition to either of tha “wo cells which border
j: the cell he is in., 1If the searcher is in a side cell he can

stay wvhere he is or transition t5 any of the ¢three border
calls, IZ ta2 searcher is in an intarior cell he can again
stay where he is or <transition *5 any 5f “he four borderc
cells, Therefore the total number o5f feasible solu%tions is

Tmax
bounded below by the exporen+ial function 3 . Whe-e Tmax

P I O S
PO .t . -
- * - b
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is +*he 1length of <he search. The numb2r of feasible
sg%ggions is bounded above by ¢*ha2 exponential function
« Since the total enumeration algoritham looks cnly the
feasible solutions andrggiculates Pnd for each one “he algo-
ritha is therefore O (e ) or of a2xponential complexi+y.

The branch-and-bound algorithas ion't lend themselves to
such easy analysis., The wors* cas2 analysis would be whers
*he bounds ar2 so weak that all ths f2asible solations would
have +o be chacked, The average case aralysis is much more
Adifficult. Smith 3in (Ref. 8], arguel that the best-first
s*trategy had a smaller average cise complexity than +he
d2pth-first strategy. Since it is unclear whether ths <*rees
generated by the search problem fit into the class of random
treas covered by Smith's argument, fur“her complexity anal-~
ysis will not be attempteil.

Appendix B contains graphs of the run-¢ime for all seven
algori*hms for all the casss. Prom the graphs it is clear
that the best-first strategy 4did oatpesrform *he depth-firs*
s-rateqy esp2cially as the problam (as measured by the
rumber of possible feasible solutions) increased in diffi-
cul“y. This is supported by analyzing the number cf solu-
+isns checked by sach algorithnm. Table ITI shows the number
of solutions checked by each algoritha for the 25 cell grid
vith T1=2,

Prom “abls IT i+ appears that uan+il +ime period 6 the
algorithms looked a+ all the possible solutions. Since the
total enumeration algorithm didn*'%t 1look a%* any intermediate
solutions it wmas fastar. Aftar time p2riod 6 *he
branch-ard-bouind algorithms where able to use <*he pruning
feature to a great extent in removing unpromising branches.,
Table III shows the rurtimes need2d “o used in gererating
the solu+ions in +«able II. Based 51 “he numbar of solutions
calculated by each algorithm i+ appears *hat *he best-firs+
s-ra*egy is mor= efficient. 3inc2 the best-first strateqy
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TABLE IIX
Number of solutions for 25 Cell Grid, Tl=2
PARTIALLY CONSTRAINED SJOLUTIONS

(Brown's Algorithm Jutput)

Algorichm
Taax 1 2 3 4 5 6 7
2 0 0 0 d 0 0 0
3 3 3 3 3 3 3 0
4 14 14 14 14 14 14 0
S 57 57 57 g? 57 57 0
6 234 234 234 234 234 234 0
? 983 983 983 983 983 983 0
8 2116 2109 2402 1123 1123 1123 0
9 3;89 4215 2309 1573 1;93 1598 0
10 278 4066 4532 1375 1359 1383 0
Totals 10182 11591 10534 5362 5366 5395 0

CONSTRAI NED SOLUTIONS

Algorithm
Teax 1 2 3 4 5 6 7
2 3 3 3 3 3 3 3
3 19 1 11 11 11 11 11
4 43 43 43 43 43 43 43
] 177 177 177 177 177 177 177
6 749 749 749 7493 749 749 749
7 916 563 386 100 100 100 3235
8 1273 987 1439 J 0 0 14139
9 601 1552 723 160 160 160 62309
10 246 251 765 ) 0 0 275905
Tctals 4019 4336 8296 1243 1243 1243 356571

algorithas hal almost exactly *he same numb2r of solution
calculaticns whereas the'depth-fi:st strategy algorithms
wvera more divargent it <czuld be hypothesied *hat <+he best-
first strategy 1is more tolerant 5f the non-optimal bounds
produced by Brown's algorithm.

Table IV shows how the number 5f solutions varied for
all the cases where Tmax=10 fi.e. whare the naximum number
of possible f2asible solutions was 21>t=24d.)
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TABLE III
Algoritha Runtimes for 25 C21ll Grida, T1=2

Algocithm
Tmax 1 2 3 4 5 6 7
2 8.0 0.0 0.0 0.0 0.0 0.0 0.0
3 .2 0.2 0.1 0.2 0.2 9.1 2.0
4 1.2 1.2 0.9 1.2 1.2 0.8 0.1
S 5.8 6.6 4.5 5.7 6.4 4.6 0.3
6 26.5 27.8 21.5 26.2 27.3 22.2 1.8
7 112.3 118.3 92.6 105.9 113.5 87.8 9,3
8 331.4 342.6 3u4.4 240.9 253.3 278.9 48.2
9 821.4 868.2 794.5 531.8 547.5 T43.6 2u8.1
10 1253.4 1500.3 2252.4 843.0 845.0 144,11 1249.1
Totals 2552.2 2865.2 3510.9 1755.0 1794.4 2632.1 1556.9

runtime in cpu seconds

D et e D o, AR S e AT e DS it il s D sl D S gty D el et = 22 et . o}

Table V tabulates the running times requirsd %o generate
tke solu+ions for the cases where Taax=10. Prom the tables
i* can be seen *hat <*he best-first s:irategy dominated +he
depth-first stra+egy, mainly becauss it had to look a* fswer
solutions. Also it <can be seer that the restar+t algo-ithm
was not competitive when TI'max=10 for any of +he cases. This
reflects the fact that it mus* restart after every change in
+he current solution and as Tmax increases the number of
changes also increases. Therefore +the restart algorithm is
forced to restact significantly aore frequently and +hus
takes longer to arrive at the local bound. PFroa table IV i«
is seen *tha“ the axtra time <¢aken t> calculate *he bound diad
not reduce th2 nuaber of solutions which were inves<+igated.

I+ is apparen*t +hat +the Dbest-first st-atagy, using

i':'si
;Q either “he =ayopic or random starting solution, performed
iﬁ very well wvhear compared +> any of “he other algorithas. AsS
X .
expacted, *he =rTuntime €5r +he total 2numeration algori+hnm
A
[
N
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TABLE V
Algoritha Runtime for Tmax=10, All Cases

6rid T1 Algorithams
Size 1 2 3 4 5 6 7
0 4.3 4.4 3.7 4.1 3.9 3.6 10.4
u 1 J.4 0.4 0.7 Jo 0.4 0.6 10.7
2 d.? 0.4 1.1 0.9 0.6 0.8 10.9
0 17.9 16.1 18.8 10.4 8.0 17.6 150.8
9 1 4.7 10.6 19.7 8.8 6.9 15.0 152.1
2 1.3 8.2 25.3 10.9 9.0 17.1 153.5
0 120.8 92.1 191.8 113.1 101.0 212.7 672.9
16 1T 1.0 119.4 221.5 119.2 114.9 220.4 671.9
2 163.4 193.8 318.3 156.4 125.4 250.2 674.8
0 661.0 679.2 1028.6 S561.9 547.8 1094.6 1249.3
25 1 1124.4 1092.0 1277.3 709.8 698.9 1262.0 1244.5
2 1253.4 1500.3 2252.4 843.0 845.0 1494.1 1249.1
Totals 3549.3 3734.9 5359.2 2538.9 2461,8 4588.7 6250.9

runtime in cpu seconds

best-first restart algorithm, t2ndsl1 to be som2where between
+tha two extra2mes. Ir *he final case, whers Tpax=10 and
Ti=2, the total enumeration algoritha was still competitivae,
I+ is anticipated that as Tmax is increased beyond 10 the
¢otal enumeration algoritha will surpass all the other algo-
rithas in runtime requirei.

Based on this exampla, it app2ars that ¢the best-first
strategy vith either the myopic or randoa starting solution
is preferred. PFurther examples wmight indica%*2 a preference
betveen the myopic and random starting solutions.
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V. BXIENSIONS

A. PD AS A PFUNCTION OF WAKE AGE

The program as currently writtan, assumes tha* “he prob-
ability of detection of the wake is constant with *he age of
the wake. 1In reality, one would a2xpesct “he prohahili+y of
detection to decrease as “he wake age increased. This would
relatively simple o implament. What would bs needed would
be either a separate probability of 3detection as the waks
aged or a funcstional relationship bstween wake age and prob-
ability of d2%tection. The prograas would thzn have +o5 be
mcdified to use the appropriate probability for the various
search matricies, St (i).

B. COUNTER-DETECTION

Another aspect of interast is +*he iiea of counter-detec-ion
of the searchar by the target. It could be speculated *tha+
if *the +target detected the searcher when *th2y were both ir
*he same cell a* the same time, *he search would be blown
and therefore any target probability mass which detected *he
searcher cculd be removad from the problem. One wvay of
accomplishing this would be to have an added cell +o the
grid. The searcher would be unable to search this c211 and
the target once in <the added cell would =never +ransi*ior
out. Then *wd> search matricies would have t> be used. The
modified search matrix S¢' would includs a probabilisy of
counter-detaction and 2 transition of that target prob-
ability mass which counter-detect2d into +he extra cell.
The search wmatrix St £or the waks search would remain
unchanged. Pigare S.1 4illus*ratas the vprobiem 1inpu%,
ini+ial probability distribution, target =ransitior ma+*rix,
and example search matricies.
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:?} ]
: Sample 3rid .
; e-—-222B 220 4
y | ! ! )\
: A ?
: e S S T !
g | '
| o :
“2 $rmmrvcnna e brcmcccana l
! 1 |
2 ’ > l | X
_: bomcnwnana 1
ol The *arget transition matrix ]
5 .40 .30 .30 .0 .0 i
“-‘.I T’ .30 ouo .0 030 .0 u
.30 .0 .40 .30 .0 d
.') - .0 030 -30 ouo . A
¥ QO 0 .0 .0 1.0 ]
‘ The *arget initial probability iistribution
A The searcher moticn constraint aatrix
e 1 2 3 0
i 1 2 4 0 8
1 3 4 0 0
. 2 3 4 0 0
< 5 0 0 0 0
- The probability of non-datac+iosn is 0.500
» The grobabiiit; cf countar-detastisn 12 9.200
= Exampls Search Matricies for a search in cell 1
o Original wWake Sa3arch Matrix
o 0.50 0.0 0.0 0.0 0.0
AN 000 1000 0.0 0.0 0.0
L St(1) = 0.0 0.0 1.00 0.0 0.0
2y 0.0 0.0 0.0 1.00 0.0
0.0 0.0 0.0 0.0 1.00
25 Modified Real-Tims Search Ma*rix
- 0.50 0.0 0.0 0.0 0.20
-.’ o.o 1. 00 0.0 0-0 0.0
.- S1*(1) = 0.0 0.0 1.00 0.0 0.0
'{ 0.0 0. 0.0 1.00 000
o . 0.0 0.0 0.0 1.00
< Pnd for a 4 “ime unit Search with 3 2 time unit detector
o Pnd=PoeS1'eS2eS3eTeS2'eS3eSUeTeS3eSUeTeSUe1]
N
.\
e Pigure 5.1 Search Problem Modified for Counter-Detection.
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C. APPROXINATIONS TO THER JDPTINAL SOLUTION

FPor real life problems on the order of 25x225 grids and
larger with Tiax250 and T125, +he compu*er time ¢to reach 2
close approximation of ths optimal solu+tion may bte exces-
siva. Therefore, Stevart in (Ref. 1] suggested wusing the
first feasible solution that arosa from the depth first
search. The f£irst solutiosn could be viewed as 2 form orf ths
myopic search. The optimality characteris+ics of such a
solution have not been subject2d to wors*t cass or averags

case analysis.




vI. CONCLUSIONS

A. PROBLEN COMPLEXITY

Men-ion has been made of <th2 apparently fundamental
intractability of the discrete tima and space moving targe+
constrained searcher problem. Earlier it was conjectured
that <the problem is a+ least NP-Complete 2and possible
NP-Hard. Appandix A discussed the complaxity of the prcbhlem
and provides some justification for th2 conjacture.

If <the conjecture is true ¢than the iaplications a
clear. Convantional at*empts a+ trying to finrd '2fficient
algorithms are doomed to failurs, particularily i£f <he
problem is Np-Hard. <Thus heuristic algorithms are the mos+*
fruitful avenue for finding sptimal or near-optimal
solutions.

(3 ]
- D

B. CHOICE OF AN ALGORITHM

The nmyopic starting solution for Brown's algorithm
combined with the Dbest-first strategy produces “he bes*
results. This combination was consistently better than <*he
total enumeration algorithm and, 2as the problem became more
difficult, verformed better than the other five variaticams.

The solutions <to the constrainad searcher problem
(Stevart's algoritha output) wer2a coapared for both opti-
mality and runtime. Howsver, tha solutions t> <+ha uncon-
strained searcher (Brown's algorithm output) were not
compared except indirectly as the output affected Stewari's
algorithm. There a2y bs significant diff=srences in <*he
bounds providad by the differen* variations of Brown's algo-
tithm. It dil appear that the restar+ app-oach was signifi-
cantly slower as Tmax increased. This had a2 significan+
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effect on the performanca of Stawart's algorithm. As Tmax
increassd the rastart approach b23>am2 increasingly slowesr :
than the myopic or random apprcaches and the differance i
could not be explained by a chanjy2 in the number of solu-
+ions which had to be calculated. Thus even 2Zf +he op*i- .
mali+ty of <the bounds produced by tha restact aporcach was
improved over the other approaches, i+ was nvershadowed by
the increased time requir2d. It is zoajectured that *he sams
effact would sccur if *he estimatiosn z2chniquz wa2re used.

There are several altarnative ways *o approach “he solu-
tion of the constrained searchar problem. As =shown by
Stevart in ([Ref. 1], the idea of network flows could bhe
applied. Also, J.N. ©Eagls in [{Ref. §] proved tha*t a dynamic
programaing approach was guaranteed 4o proviia 2an optimal
solution for <the ncn-wake search constrained searcher
problen, Either of the above approaches may be ext2ndaple
to the wake search case.

C. WAKE SEARCH

Tha ex*ension of th: constrainad searchez p-eblem +o
deal with wakas rasted on two assuamptions: 1) <+he indepen-
dence of the searches anl 2) tha 3oal of 1ainimizing tha
probabili+y of non-de*ecticn for a fixed timz period search.
Tha first assumption may no* in fact be valid under all
conditions, To say tha*t :two search2s have iadapendent prob-
abilities of detecting a +arget whean the searches are
cons+rained to5 use the same search path migh: bz incorrect.

Por example, suppose that a+ time pericd i the targe+
soved from North to Sou+th in cell j. Also suppose “hat in
time period L{+¢2 the target movad from Bast %o Wes* in +he
sage cell 1. Now the searcher antars th2 c¢ell a+« <ime
pariod i+4 with a 5 time unit wake 3etector. If “he searcher

uses a search plan that searches from East *5 West in an
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exhaustive fashion he has several chances and thus a highsr
probability of detecting the <+iae period i wake <han <he
+ime i+2 wake. Conversly if the s2archer uses an exhaus=ive
search path froam North ¢to South he will have several chances
to detect the wvake from time period i+2, Therefosre i+ may be
an oversimplification to assume that the wake searches are

‘all independent of each other. The assumption 4id make ¢the

calculaticns possible and therefor2 even i€ *hs assumptions
stretches +he truth it will still yi2ld answers cf interest.
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ARRENDIX )
DISCUSSION OF THE CONPLEXITY OF THE SEARCH PROBLEM

In this appenrdix, I hope to 1lay the founda<ion for thz
detersination of the complaxi+ty of tha2 wake search problenm,
The problem will be approached in two ways:

1. Show 2a restricted version >f the constrained wake
search protlem is an element 5f NP.

2. Shovw that the unconstrained wvake search probleam is
func*tionally similar +to tha Knapsack Problam which
has been shown to be NP-Complatae,

As defined in [Ref. 3], a problsa is in NP if a tenta-
tive solu*tion can be writtan down 2and check2d4 in time poly-
nomial in th2 size of *he problea input. Th2 wake search
problea can be foraulated as follows:

INPOT: A finite set J=(§1,32,...,jn} of c=2lls which can
be searched, a probability PO=(pl,p2,...,.,pn}, 3<pist for all
i=1,N that th? targe+ will star® <h2 problem in esach cell, a
probability TiJ, 0<Tij<1 for all i=1,N, j=1,N that the
target will move froam cell i to cell j, a bound B20, and the
sets I(941) for each Ji, a subset >f J containing the cells
r2achable f£ron cell Ji in the next tim2 psrisd.

QUBESTION: 1Is there a ‘"search"® of *+he cells in J of
length T having a total probability of non-d2tection no more
than B such that each Jt+1 is an elament of I(j%)? The prob-
abili+y o* non-detection is

Ty 1o
_alta

1
oy

-
el

DODIVE - IR

Pnd=PoeST1eTeST2eTeST3eTe,.. .. eSTHaxe 1) (k. 1)
Given *he above problean iafinition, vhat non-

deterainistic algorithm will solve it in polynomial time? 2
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non-deterainis¢tic algorithm is on2 vhich <contains +wo
stages; a gusssing stage which siaply guesses an arbi4rary
ssartch 11,92,...,3JF and 2 polynomial time "chacker" which
ansvers the gquestion, "i%es <the arbitrary search have a
non-detection probability less <+han B?" It will suffice ¢o
show that <the "checker® will stop in polynoaial <+ime and
ansver the quastion, yes or ne. '

The "checker" merely calcula*es ths probability of non-
detection using ejuation A. 1 and compares +‘he rasul+ wi+h B,
The calculation entails (T-1)+(Tell)+1 matcix multiplica-
tions each of wvhich requires NxN multiplications. Thecefore,
the calcula+isn will require O(TeTleN2) <+ime +o complate.
The input to the problem has length O(N2+1log(T) +1log(T1l)) (N
el2ments of PO, N2 elements of Tij, at most N2 elemen*s of
I(ji), N elements of the guessed s2arch and +*hs values of T
and T1.) If T and T are restricted +o be less +han or
equal to some specified polynomial functicn of N, P(N), then
the input becomes O(P(N)eN2) anil the calculation tim
becomes O(P(N) 2eN2), both of which are polynomial in ¥N.
Therefore the "checker" will answer the question in polyno-
mial +ime based on the length of th2 input. Based on the
above, the wake search problem is in NP, If the restriction
on the size of T and Tl are remov3ai the problem may no:t be
in NP, i.e. the problem may be NP-Hard.

Once it has been shown that a given problem is in ¥pP, i+
is of interest to see if the problea belongs “*o the class of
problems callad NP-Ccaplet2. This class of problems is known
to be the set 5f the hardest problams in NP. It is conjec-
tured that ths wake search problem as describad above is no
easier than the NP-Complete probleas, however, a proof is
not available. Following is a partial jus<ification €for the
conjecture.

Proof that a problem is NP-Complete can be done by
shoving equivalence between the given problem and a problenm

4
D
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already shown *o be NP-Complete. As shown above, a
restricted version of the wake search probleam is in NP, Now
if it could be shown that +he wake search problem is no
easier than a problem which is NP-Complete <he proof would
be done. What will be done is to show that a relaxed version
of the wake search problam namely the wake s2arch problem
vhare the searchsr motion is unconstrained is functiorally
similar toc the knapsack problem whizh is NP-Complete.

The knapsack problem can be stated as follows:

GIVEN: Pinite set 0, for each u U a size s(u) Z+ 2rd a
value v(u) 2+, and positive intagers B and K.

QUESTION: Is +there a subsat U of 0 such +“ha+

pX s(u)<B and such that I v(w 2K?
uel’ acl?’
The unconstrained searcher problam can be stated as
follows:

GIVEN: a finite set JxTmax, a finite set T, a finite set
Po, for each 4t Jr a size s (ji)=1 and a value v(ji)=Pnd, and
a positive integer Tmax and a rational number K<1.

QUESTION: Is there a search J={ft,...,iTmax} a subse: of
JxTaax, such that each element 4i of J is an elemen+ of *he
disjoint subsa2t JI u%:g: the subsets JI form a partition of
JxTmax and such *that i£1 8 (Ji)=Tmax and such that egquation
A.1 SK?

While there appears ¢o be significant differences
betveen the wake search problem and the knapsack problenm,
there is enough similarity tha*t *hs conjecture that the wake
search prcblea is a+ least as hard as +the knapsack problem
is reasonably justified. Since th2 wake search problen as
compared ¢to the knapsack problam is the uncons“rained
version i+ also appears *hat the constrained wake search is
also at least as hard.

It has b2en shown <+hat a rastricted version of the
constrained wake search problem is in NP. I+ can be hypoth-
esized that if the rest*riztion (that T and Tl be polyncmial

48

............




\ functions of N) were removed the problem would not be in NP.
AN I+t has also been shown tha*t the uncons*rained wake sea
) problem is functionally similar to 2 problem which hags been
\ previously determined 4o be NP-Complete. Therefore, i< ssem
:? reasonable to conjecture that +h2 constrained wake seazch
¥ problea is at 1least NP-Comple*e and possibly NP-Hard. The
consequences of this conjecture ar2 tha*t +h2 problem is
fundamen+ally in“ractable and ther2 319 not exist 'efficiecne?
aljyorithms for solving *he problem. Thus any h2uristic algo-
rithes such as *hose pra2sented in +this thesis are appro-
priate methods for attemp4ing *9 find cptimal or
near-optimal solutions.
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ARPENDIX B
GRAPHICAL CONPARISON OF ALGORITHM RUNTIMES

This appendix contains graphs o5f the runtimes of <he
algorithas for tha following cases:
1. 4 cell grid, T1=0, and Tmax=1,1)

2. 4 cell grid, T1=1, and Tmax=1,10
3. 4 cell grid, T1=2, and Tmax=1,10
4. 9 cell grid, Ti=0, ard Tmax=1,1)
5. 9 cell grid, T1=1, and Tmax=1,10

6. 9 cell grid, T1=2, and Tmax=1,1)
7. 16 cell grid, T1=0, and Tmax=1,10
8. 16 cell grid, T1=1, and Tmax=1,10
9. 9) 16 =911 grid, T1=2, and Tmax=1,10
10. 25 cell gri3, T1=0, and Tmax=1,10
11. 25 cell grid, T1l=1, and Tmax=1,10
12. 25 cell grid, T1=2, and Tmax=1,10
Bach graph contains the runtimes faor each of th2 seven algo-
ri*has, with t+he followiny symbols rspresenting each algo-
Titha:
* =~ Depth-Pirst Stra*tegy, myopis star+ting solution
- Depth-Pirst Strategy, random stazting solution
- Depth-first Stratagy, restart algorithm
- Best-Pirst Strategy, myopic starting solution
Best-Pirs+ Strategy, random starting solution
- Best-Pirs*: Strategy, restart algorithm
- Total fnumeration

0O b <1 M + #
+
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