
NAVAL POSTGRADUATE SCHOOL
Monterey, California

CID

CA J JAN318

THESIS " A

NEAR-OPTIMAL FINITE SOLUTIONS TO THE
THREE AND FOUR STEP DISCRETE EVASION GAMES

by

Scott W. Goodson

. September, 1983

_.J

LL. Thesis Advisor: James N. Eagle

Approved for public release; distribution unlimited.

4. %I -

l_

84 01 1 300+
NK-- , . ..



Unclassified
S9CUR1?Y CLAMIFICAION OF THIS PAGE (ftr Doe ZntoeodO _______________

PAGE READ INSTRUCTIONSREPORTDOCUMENTATION PAEBEFORE COMPLETING FORM
1. REPORT NUM8ER {OVT ACCESSONNO. 3. RECIPIENT'S CATALOG NUMBER

____ ___ ____ __6 ___ Ht

4. TITLE (and Slablitfe) S. TYPE OF REPORT & PERIOD COVERED

Near-optimal Finite Solutions to the Master's Thesis
Three and Four Step Discrete Evasion September, 1983

-' Games 6. PERFORMING ORG. REPORT NUMsER

7. AUTNO() S. CONTRACT OR GRANT NUMSERI8J

Scott W. Goodson

9. 0901060166 OGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASKC
AREA & WORKC UNIT NUMNERS

Naval Postgraduate School
Monterey, California 93940

It- CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School September, 1983
Monterey, California 93940 13. NUMIUER OFPAGES

14L WONITORING AGENCV NAME A AOORESSI diff erImn Conroing Office) 15. SECURITY CLASS. (of this e port)

13a. DECLASSIFICATIONi DOWNGRADING
SCHEDULE

IS. STIOUiaYON STATEMENT (of afte Ropeer)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abtac mened in Stock 20. it different from Report)

IS. SUPPLEMENTARY NOTES

it. KEY WORD$ (Coiwe a nU m ees side it noesimiy, n if ded idslf by black nsinbet)

Game Theory, Evasion Games.

20. ASSRACT (Coehoss.d m teee side I neessary ond Idmentty by block nombeir)

--Areview of discrete pursuer-evader games and known solutions i
presented. A method is given for obtaining a finite memory,
near-optimal evader strategy for the three-step game, which
greatly reduces data storage requirements from previous near-
optimal strategies. Additionally near-optimal evader srtge
for the four-step game are discussed.

D14 00 1= Un tITION OF INOV 65 IS OSOLETSnlssfe

S/N 102 L.. 04. 601SECURITY CLASSIFICATION Of THIS PACE (Whena Date Enteeo



I i
Approved for public release; distribution unlimited.

Near-optimal Finite Solutions to the Three and
Four Step Discrete Evasion Games

by

Scott W. Goodson
Lieutenant, United States Navy

B.S., United States Naval Academy, 1976

Submitted in partial fulfillment of the
requirements for the degree of -- 11

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL ..

September, 1983 I PCE
" ~IN:SPECTED /" ," "

2

%4

Author:

Approved by:
r.__/ Thesis Advisor i

Second Reader

Chairma , Departm t of0 Operations Research

Dean of Info rw Policy Sciec"

2
............................. - *..****.*..'.~ ~ * -. . . . .-



FW~~~ ~ ~ W-171 -7- L7-_

ABSTRACT

A review of discrete pursuer-evader games and known

solutions is presented. A method is given for obtaining a

finite memory, near-optimal evader strategy for the three-

step game, which greatly reduces data storage requirements

from previous near-optimal strategies. Additionally near-

optimal evader strategies for the four-step game are

discussed.
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I. INTRODUCTION

The discrete time step pursuer-evader game was first

described by Rufus Isaacs of the Rand Corporation in the

early 1950's in an attempt to look at the problem of

attacking a moving target who is maneuvering so as to

confound the prediction of his future position. The general

problem, as described by Isaacs is as follows:

A battleship in midocean is aware of an enemy bomber's
presence, but the plane is too high for precise
detection. The ship is interested only in not being
hit; it has no offensive means. The plane has one bomb
and we suppose--to avoid extraneous factors--that the
bomber's aim is excellent. The battleship knows this,
but knows nothing about when or where the bomb will be
dropped until after detonation. It is to maneuver so
as to minimize the hit probability. . . There is a time
lag T between the bomber's last sighting of the ship and
detonation. Thus the bomber must aim at an anticipated
position of the ship . . . As simple as this problem
sounds circumstantially, it is difficult technically.
To gain a foothold, we simplified it further. We made
the ocean one-dimensional and discrete. That is, we
supposed the battleship to be located on one of a long
row of points and at each unit of time he hops to one
adjoining one, enjoying the sole choice of a right or
left jump. The time lag was to be an integral number n
of time units, or--the same thing--of jumps. This is
tantamount to saying that the bomber knows all positions
of the battleship which precede his present one by n
jumps or more Ref.C1]

The solution to the single time step game, (i.e. n=1) is

trivial but the complexity increases greatly as the time lag

or number of time steps increases. Isaacs, upon formulating

the game, proposed pursuer and evader strategies to the two-

step game, however the proof of the optimality of these

47 "



.7

strategies is highly complex. The complexity of the multiple

step games arises from the fact that the evader doesn't know

when the pursuer will attack; if he did it would be an easy

* matter for the evader to distribute himself uniformly over

the n+1 possible positions at the time of detonation, and

limit the pursuer to a kill probability of 1/(n+1).

Without knowing the time of attack the evader must attempt

to make his position uniform at every time step and this is

not possible.

The three-step pursuer-evader game is yet unsolved,

however near-optimal strategies for both the pursuer and

evader have been described. The best existing evader

strategy, developed by Joseph Bram Ref.[2], involves the

evader maintaining an infinite memory of probabilities

corresponding to the probability of turning given the evader

has not turned for the last k moves. This thesis will

investigate alternative finite evader strategies to attempt

to lower the existing upper bound on the three-step game

value while drastically reducing memory requirements and

additionally look briefly at possible evader strategies in

the four-step game.

8
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II. KNOWN SOLUTIONS AND STRATEGIES FOR PURSUEF-EVADER GAMES

A. STRUCTURE

For uniformity, the convention and structure described

below will be used hereafter in the description of all

discrete n-step pursuer-evader games. The pursuer is the

maximizing player who by selection of time of fire and aim

point tries to maximize the probability of killing the

evader (a kill is achieved when the pursuer fires at the

position the evader subsequently occupies n time steps

later). The evader is the minimizing player, who by selec-V

tion of maneuvers along the discrete linear state space,

attempts to minimize the probability of being killed. The

evader's maneuvers can be described as a sequence of lefts

and rights (L and R) with each n-bit sequence of L's and

R's corresponding to one of the n+1 final positions

achievable in n steps from an arbitrary starting position as

shown in Figure 2.1. The above-described mapping of n-bit

left-right sequences to final position is symmetric under

interchange of L's and R's (i.e. LLR corresponds to a sym-

metric position to RRL in the three-step case). Due to this

symmetry it is equivalent to describe the evader's maneuvers

as a sequence of straights and turns (S and T which provides

an equivalent mapping in Figure 2.2. A turn signifies the

evader moves in the opposite direction to his previous move

- • " " ' -" '° 4 
°
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LLLLLLR LRRRL RLRR RR

LLRL LRLR RLRL RLRR
LRLL RLLR RRLL RRLR
RLLL RRRL

Figure 2.1 Possible Evader Positions in n Steps.

T" S

TSSS TSST TSTS TTST TTSS SSSS
TSTT TTTT STTT STTS
TTTS STST SSTS SSTT
STSS SSST

Figure 2.2 Possible Evader Positions in terms of
Straights and Turns.
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and a straight signifies he continues in the same direction

as his previous move. Any n-bit sequence of lefts and riht2

can be translated into an equivalent (n-i) bit sequence of

straights and turns (i.e. LRRL becomes TST). Note that in

general there may be several possible sequences of turns and

straights which lead to the same final position (for n=3,

TST, TTT, and STS all result in the evader occupying the

position one step to the left of his original position).

B. ONE-STEP GAME

The single step pursuer-evader game has a simple

solution. With only one time step elapsing between the

pursuer's time of fire and weapon detonation the evader can

always distribute himself uniformly over thr two positions

achievable in one step shown in Figure 2.3. The evader on

each step can continue straight with probability (1-p) or

turn with probability p. Since the intelligent pursuer will

limit his shot to one of the two feasible positions of the

evader when he fires (position 1 or 2 of Figure 2.3), the

game can be represented graphically as shown in Figure 2.4.

The minimax solution occurs when p=0.5. The corresponding

value of the game is 0.5. The optimal evader stra-:egy is to

fire at position 1 or 2 with equal probability.

(C. TO-STEP GAME

The two-step pursuer-evader game is not nearly as simple

in its solution as the one-step game. The solution was

11
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found by starting with the hypothesis that the evader's

maneuver will depend only on I--- previous maneuver anC none

earlier; thus the probability of continuing in the same

direction as the last move is c enoted by (1-p), with p 'eing

'he probability of moving in the opposite direction ':o the

previous move. The attainable positions for the evader and

the corresponding probabilities under the above hypothesis

are shown in Figure 2.5. The pursuer can be expected to

select the position (1, 2 or 3) with the highest associated

probability. The evader will select p so as to minimize

this maximum probability. The optimal value of p is then

found by solving:

min MAX (p-p2  p, (1ip)2}]

*0 p

s.t. O<p<1.0

Graphically the solution is shown in Figure 2.6. The

resulting solution is found by solving the quadratic p=(1-p)2

which has a root at p=(3-/3)/2 = 0.38197 . . . ; this value

is also the probability that the evader is in position 2 or

3 of Figure 2.5 and thus the value of the game. The proof

that this evader strategy is optimal and that (3-v5)/2 is

the value of the game is complex. Three different proofs are

given by Dubins Ref.[3] , Isaacs Ref.[4] and Ferguson

Ref.[5]. The pursuer strategies in the multi-step games

are characterized by the non-existence of an optimal

strategy; the pursuer can always increase his expected

13
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p(1-p) p +(1-p)p (1-p) 2

Figure 2.5 Achievable Evader Positions in Two-Step Game.
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Figure 2.6 Graphical Solution to the Two-Step Game.
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kill probability by waiting a few more time periods but he

cannot wait indefinitely to fire or his payoff is zero.

This contradiction leads to strategies for the pursuer which

have payoffs arbitrarily close to, but not equal to, the

value of the game. Ferguson developed such a pursuer

strategy which confirmed that (3-v5)/2 = 0.38197 . . . was

-' the value of the two-step game.

D. THREE-STEP GAME

As stated earlier the three-step pursuer-evader game is

yet unsolved. The value of the three-step game has been

bounded to:

0.28423 < v < 0.28903

by Bram. This section will investigate previous near-

optimal evader strategies for the three-step game and the

resulting upper bounds upon the game value.

1. Markov Hypothesis Strategy

The Markov Hypothesis for the n-step pursuer-evader

game is stated as follows: the probability that the evader

will go left or right (or, straight or turn) is dependent on

the previous n-1 moves but not on any moves further in the

past than the n-lst. This form or evader strategy makes

intuitive sense since it does not seem likely that an

optimal evader strategy will depend_. upon information which

the pursuer already knows at the time of fire. The known

optimal strategies for the one and two-step games adhere to

15



- 7W

the Markov Hypothesis. In the one-step game the ot4 a!

evader turns or continues straight with equal probability,

therefore independent of all previous moves. (i.e. ?(z) =

P(T) = P(L) = P(R)). In the two-step game the optimal

evader uses a strategy where the probability of turning (or

continuing straight) depends only upon his previous move

(i.e. P(S) = P(LIL) =  P(RIR) = 0.61803 and P(T) = P(LJR) =

-i P(RIL) = 0.38197).

The Markov Hypothesis will now be applied to the

three-step game. Since the evader will condition his next

move upon his previous two moves, his strategy can be

described by a 2x2 transition matrix as shown in Figure 2.7.

The state of the evader a' any time is S or T since this

state is a function of the evader's last two moves (i.e. LL

or RR+S). In his transition matrix:

q P(Next state is S Last state was S)

q= P(Next state is S I Last state was T).q2

The four achievable positions for the evader in the three-

step game and the associated maneuver sequences are shown in

Figure 2.8. Let the variable W represent the final position

of the evader three steps after the time of fire; from

Figure 2.8 it can be seen WE(1,2,3,4). Let the variable

STATE represent the state (S or T) that the evader occupies

at the time of fire. The probability that the evader

occupies any final position is a function of q and a 2when

16
-qi,.
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NEXT MOVE
S T

LAST Sq,1 j
MOVE Tq21-2

Figure 2.7 Markov Hypothesis Transition Matrix for
Three-Step Game.
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conditioned upon his initial state. For example, given

STATE=S, to arrive at W=1, the sequence of transitions under-

gone must be:

S to T to S to S

The probability of this occurrence can be written:

P(W,=1ISTATE=S)=(1-qj )q 2 ql

The remaining seven conditional probabilities are:

P(W=2 STATE=S)=(1-ql)q 2 -q 1)+(1-q 1)(1-q9 2 +q 1 (1-q 1 )q

P(W=41 STATE=S)=q1 3

P(W=I STATE=T)=(1-q2)q2 q1

P(W=2jSTATE=T)=(1-q 2 )q 2 (1-ql)+(1-q 2 )J+q 2 (1-ql)q 2.

P(W=31STATE=T)=(1-q 2 )
2q2 +q2 (1-ql)(1-q 2 )+q2 q1 (1-ql)

P(W=4 STATE=T)=q 2 q 1 2

At any time the pursuer may choose to fire, he knows

which of the two states (S or T) that the evader is in by

observing his last two moves. The optimal values of ql and

q2 under this strategy are found by solving the following

non-linear problem:

min [MAX {P(w=j ISTATE=i)}]

qlq 2  ij j=1,2,3,4

.4

• . --.-i=S*,T .



-. The solution, due to Ferguson, is q= 0.63397. " * 2 =

- 0.73205. . with a corresponding game value of 0.29423, the

- resulting matrix of conditional probabilities is shown in

Table I. Ferguson states when presenting this evader

strategy, that it is not known to be optimal and in fact he

conjectures that no evader strategy of finite dependence is

optimal for the evader. The strategy of Bram presented in

the next section will show that indeed an evader strategy of

* infinite dependence does result in a tighter bound on the

game value.

2. Infinite Dependence Strategy

As mentioned in Chapter I, the best existing evader

strategy for the three-step game was described by Joseph

Bram. This strategy can be described as an infinite sequence

of the conditional probabilities that the evader will con-

tinue straight given the state S of his previous moves. If

the previous move by the evader was a turn, the evader is in

state S=1, while if the previous k-1 moves have been straight

the evader is in state S=k. (Note that the state space of S

is infinite). We will denote a turn by T and a straight by

S as before. At each time step the evader continues straight

or turns with a probability dependent upon his state S. Let:

= P(StraightjS=k).

If the evader is in state k at some time n, at time n+3 the

evader can be in one of four positions described by W

41
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TABLE I

P(W=WISTATE) for Three-SteD Markov Hypothesis Strateg

ql = F(SIS) = 0.63397

= P(SIT) = 0.73205

W= 1 2 3 4

STATE

S .16987 .29423 .28109 .25480

T .12435 .28719 .29423 .29423

20
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.1 previously. There are eight possible 3-bit sequences of S's

and T's which correspond to the four possible terminal

positions as shown in Figure 2.8. The probabilities associa-

ted with each position W given k are as follows:

P(W=1 S=k)=(1-pk)plp 2

P. (W=21S=k)=(1 -Pk)Pl(1-P2)+(1-Pk)(1-Pl)'+Pk(1-Pk+1)P1

'iP(7'=31S=k) =(1-p k ) ( 1 - p 1 ) p 1 + p k ( 1 - p k + l ) ( 1 - P 1 ) + pDk p k + 1 ( 1 - p k + 2
)

P(W=4 S=k)=pkPk+lPk+2

If the evader fires at time n, at position W, when S=k, his

expected payoff will be:

P (W='d S=k)

The upper bound on the value of the game played with this

strategy is:

MAX MAX {P(W=WIS=k)}

k W

The evader of course will attempt to select his infinite

array of Pk so as to minimize the above bound which is the

maximum payoff that the pursuer can achieve. The best set

of PkIs found by Bram is delineated in Table II, while the
kA

resulting P(W=WIS=k) is shown in Table III. The upper

bound on the game value under this specific set of Pk's is

the maximum value found in Table III or 0.28903. In this

strategy the decision to turn or continue straight has a

21



TABLE II

A Safe Set of 's for the Evader

k k Pk

1 .69290
2 .62467
3 .66775
4 .65137
5 .66241
6 .65859
7 .66135
8 .66047
9 .66116
10 .66096
11 .66114
12 .66109
13 .66114
14 .66113
15 .66114

TABLE III

P(W=WIS=k) using Pk'S of Table II

W1 1 2 3 4

k

1 .13292 .28903 .28903 .28903
2 .16246 .27682 .28903 .27170
3 .14381 .27905 .28903 .28818
4 .15090 .27591 .28903 .28417
5 .14612 .27634 .28903 .28852
6 .14778 .27552 .28903 .28768
7 .14658 .27560 .28903 .28880
8 .14696 .27539 .28903 .28863
9 .14666 .27539 .28903 .28892
10 .14675 .27534 .28903 .28889
11 .14667 .27534 .28903 .28896
12 .14669 .27532 .28903 .28896
13 .14667 .27532 .28903 .28898

22
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dependence upon the previous moves. That dependence may

extend infinitely far back; thus the evader is required to

maintain the infinite array of Pk's to execute this near-

optimal strategy.

3. Sub-Markov Strategy

The strategy presented here is due to Bouchoux

Ref.[6] and is characterized by a strategy where the evader's

sequence of moves is not Markovian in itself but one in

which that sequence is generated by a substructure which is

Markovian, hence the description Sub-Markov. This form of

strategy is suggested by its use in providing optimal

strategies in emission-prediction games described by

Blackwell Ref.[7] and Matula Ref.[83. The pursuer-evader

game, while similar to emission-prediction games, is compli-

cated by the fact that there are several distinct sequences

of moves which lead to the possible terminal positions.

Since the pursuer (predictor) must fire at one of those ter-

minal points and not at a specific sequence of moves, the

game is more complex. Bouchoux describes a strategy based

upon three states, A, B and C, through which the evader

transitions in a Markovian manner. When in state A the

evader always turns, while in states B and C he always goes

straight. After each move, straight or turn, the evader

transitions between states according to a 3x3 transition

matrix and is ready for.his next move. This strategy is

finite in the memory required by the evader and Bouchoux

23
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obtained a bound on the game value of 0.28922 by o~tLnizing

upon the transition matrix.
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III. EXTENDED MARKOV STRATEGY

A. MOTIVATION AND DESCRIPTION

The evader strategy to be investigated will be called

Extended Markov because it is an extension of the finite

dependence of the Markov Hypothesis strategy. The depen-

dence will be finite but will extend beyond the previous n-1

steps. In the Markov Hypothesis strategy, for the three-

step game, discussed in II.D.1., the best strategy for the

evader resulted in an upper bound on the game value of

0.29423. If the dependence is restricted to only the pre-

vious move instead of the previous two moves the best

strategy results in an upper bound of 0.29630 (Note: this

is equivalent to adding the constraint q1 =q2 to the non-

linear problem described in II.D.1. with a solution at

q1 =q2 =2/3). Since Bram's strategy showed that the Markov

Hypothesis was not optimal for the three-step game, it seems

that a Markovian strategy where the dependence is finite but

extends beyond the last n-1 moves might result in a tighter

bound on the game value than previously obtained. This is

the class of strategies to be called Extended Markov. These

strategies for the three-step game, Markovian in nature,

will arise from a dependence upon the last three or more

moves and will be called the n-dependent strategies where n

represents the level of dependence. In this context, the

25
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Markov Hypothesis strategy for the three-step game is the

two-dependent strategy.

B. GENERAL N-DEPENDENT STRATEGY

In the n-dependent strategy the evader will determine

his next move based upon his previous n moves. The evader
%'

n
can be thought of as controlling 2 variables, each being

the probability of going (say) right given the previous n

steps have been in a certain sequence. We will utilize the

left-right symmetry of the problem by considering only paths

where the last move is to the (say) right, resulting in only

2n - 1 variables, each representing the probability of going

(say) straight given the last n steps have produced a

certain n-1 bit sequence of straights and turns. The general

*n-dependent strategy can be described by a Markov chain

-n-i
having 2n  states corresponding to the 2n  different

n-1 bit sequences of straights and turns which are possible

based on the last n moves (i.e. conditioning upon the last

n moves is equivalent to conditioning on the last n-1

straights or turns). From each of the 2n - 1 states there is

a fixed probability that the evader will maneuver to one of

the four final positions W in the next three steps. A 2 n1

x 2 n1 transition matrix will be used to describe the condi-

tional probability of turning or continuing straight given

the current state ((n-i)-bit sequence). Since the state

describes the previous n moves in terms of straights and

turns only two possible transitions exist from each of the
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states. The first n-2 bits of the state transitioned to are

determined by the last n-2 bits of the state transitioned

from; the last bit will be S or T depending upon the new

move. Due to this structure the transition matrix will be

n-1 n-1
completely defined by 2 variables (called qi i=1, 2

*. which represent the probability of continuing straight given

the current state. The other transition probability for

that state will obviously be (1-qi). Using a transition

matrix so constructed, the conditional probability of

ending in one of the four final positions (W=1,2,3 or 4) can

be found. In order to arrive in position 1, for example, the

sequence of states transitioned must result in the termina-

ting three-bit sequence, TSS, as can be seen from Figure 2.8.

Thus P(W=WjSTATE) is a function of the variables qi (i=',

2)n - 1 and the best n-dependent strategy is solved by the

following non-linear program:

min [MAX P(W=WISTATE)]

qi W,STATE

s.t. O<q.<l.0 i=1,2

For general n, it is seen that the above program involves

minimizing the maximum of 2n+1 ( positions x 2 states)

n-1
non-linear functions of up to 2 variables. No analytic

solution has been found and in later sections near-optimal

solutions will be found by non-linear search techniques.
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C. THREE-DEPENDENT STRATEGY

The first extension of the Markov Hypothesis strategy is

the three-dependent strategy described by four states (SS, ST,

TS, TT) and a 4x4 transition matrix shown in Figure 3.1

where:

q= P(next move is straight I State is SS)

or equivalently;

q? = P(next state is SS I last state was SS)

The sixteen conditional probabilities of terminating in one

of the four positions W, given the evader starts from one of

the four states are listed in Table IV. The best solution

found using the three-dependent strategy gives an upper

bound on the game value of 0.28964 when:

ql = 0.66163 q3 = 0.62489

q2 
= 0.70054 q4 = 0.70054

The matrix of conditional probabilities evaluated at this

point are in Table V. This solution was found by utilizing

an improved feasible direction search which was started from

a known "oood" solution. For the three-dependent strategy a

good starting point is found by applying the known two-

dependent (Markov Hypothesis) solution to the three-

dependent structure. If one applies the restriction ql=q

and q2 =q4 to the three-dependent strategy, it is equivalent
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NEXT STATE

55 ST TS TT

55 q 1 -ql 0 0

LAST ST 0 0 q -q2
2 2

STATE T S q 1-q3  0 0

TT 0 0 q1 -q4

A4Figure 3.1 4x4 Transition Matrix for 3-TDependent
Strategy.
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TABLE IV

P(W=WISTATE) for 3-Dependent Strategy -

Notation: pi -q i=1,2,3, 4

P(W=ifSS) = plq 2q 3

P(W=21SS) = plq 2P3 + PlP 2p4 + qlplq 2

P(W=3ISS) =ppq 4 + q, PlP 2 + qlqlp1

P(W=41SS) = qlqlql

P(W=1IST) = P2q 4q 3
P(W=21ST) =pq~p + D+ q2p3q 2

P(W=31ST) =P 2p4 q4 + q2p3P2 + q2q 3pl

P(W=4IST) = q 2q q,

P(W=1 ITS) = P3 q2q 3

P(W=21TS) = p3 q2 p3 + P3P2p4 + q 3 p lq2
P(W=3ITS) = p3P2 q + q~pp + q qlpl

P(W=4jTS) = q qlql

P(W=1 ITT) = P4 q 4q3

*P(W=2ITT) = p4 q4P3 + p4,p4p4~ + q 4P3q 2

P(W=31TT) = p4p4 q4 + q 4 p3P2 + q 4q 3pl

P(W=4ITT) = q 4q 3q,
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TABLE V

Good Evader Strategy in 3-Dependent Case

"q = P(S SS) = 0.66163
q2 = P(S ST) = 0.70054

= P(S TS) = 0.6248-9
3= P(S TT) = 0.70054

A

P(W=WISTATE)
W= 1 2 3 4

STATE

SS .14812 .27609 .28615 .28964
ST .13109 .28964 .28964 .28964
TS .16421 .28033 .28191 .27355
TT .13109 .28964 .28964 .28964

TABLE VI

Good Evader Strategy in 4-Dependent Case

q2 = P(S SST) = 0.69579 = P(S TST) = 0.69579

q2 = P(S STS) = 0.62474 = P(S TTS) = 0.62474
= P(S STT) = 0.69579 q= P(S TTT) = 0.69579

4 ~A 8

P(W=WISTATE)
A

W= 2 3 4

STATE

SSS .14809 .27677 .28854 .28659
SST .13224 .28925 .28925 .28925
STS .16312 .27814 .28465 .27409
STT .13224 .28925 .28925 .28925
TSS .14543 .27606 .28925 .28925
TST .13224 .28925 .28925 .28925
TTS .16312 .27814 .28465 .27409
TTT .13224 .28925 .28925 .28925
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to the strategy discussed in II.D.1. with an upper bound

of 0.29423 when: P

ql , q= 0.63397 q2 = q 0.73205

Analogously any near-optimal solution to the n-dependent

strategy will provide a "good" initial solution to the

(n+l)-dependent strategy. While the solution given above

for the three-dependent strategy is not known to be optimal,

but rather a local minimum of the problem described in

III.B., it does represent a significant improvement over the

two-dependent strategy (0.29423) and is close in value to

the infinite strategy of Bram (0.28903). Appendix A pre-

sents an analysis of the above three-dependent solution and

shows that the proposed solution does satisfy first-order

* Kuhn-Tucker conditions (necessary but not sufficient) for a

global minimum. It is interesting to note that in the

proposed solution q2 =q4 or:

P(SIST) = P(SITT).

Additionally in order for the pursuer to receive his maximum

achievable payoff he must refrain from attacking when the

state is TS or be limited to a payoff of 0.28191.

D. FOUR AND FIVE-DEPENDENT STRATEGIES

The treatment of the four-dependent and five-dependent

*strategies is equivalent to the previously described three-

dependent strategy with the expansion of the state space and
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number of variables involved to. eight .and sixteen

respectively. Good solutions to the four and five-dependent

strategies were found, as in the three-dependent case, by

starting at a known near-optimal set of values for the qiIs

and conducting an improving feasible direction search until

a local minimum was found. The best solutions thus found to

the four and five-dependent strategies and the resulting

conditional probability matricies are shown in Tables VI and

VII.

E. CHARACTERISTICS OF THREE, FOUR AND FIVE-DEPENDENT

STRATEGIES

The solutions found for the three, four and five-

dependent strategies, outlined in Tables V, VI and VII show

several revealing characteristics. In each case the condi-

tional probability of continuing straight given the n-1 bit

state is not dependent upon all of the information contained

in that n-1 bit sequence. The probabilities are dependent

only upon the number of time steps elapsed since the last

turn maneuver and not upon any turn-straight information

further in the past than that last turn. For example,

letting t denote the number of time steps since the last

turn, then in the five-dependent solution:

q 2 =q 4 =q 6 =q 8 =q 1 0 =q 1 2 =q, 4 =q 1 6 = P(Sit=1)

q 3 =q 7 =ql 1 =q 1 5  P(Slt=2)

q5 =q1 3  = P(Slt=3)
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TABLE VII

Good Evader Strateav in 5-Dependent Case

:q = P(S SSSS) = 0.66120 q P(S TSSS) = 0.65034
q = P(S SSST) = 0.69385q 10 = P(S TSST) = 0.69385
q = P(S SSTS) = 0.62470 qli = P(S TSTS) = 0.62470
q = P(S SSTT) = 0.69385 q = P(S TSTT) = 0.69385
q4 = P(S STSS) = 0.66698 q13  P(S TTSS) = 0.66698

Sq = p(s STST) = 0.69385 q14= P(S TTST) = 0.69385
q = P(S STTS) = 0.62470 q15 = P(S TTTS) = 0.62470
q= P(S STTT) = 0.69385 q P(S TTTT) = 0.69385

P(W=WISTATE)

-. 1 2 3 4
STATE

SSSS .14685 .27541 .28867 .28907
SSST .13270 .28910 .28910 .28910
SSTS .16267 .28569 .28910 .27097
SSTT .13270 .28910 .28910 .28910

- STSS .14435 .27975 .28910 .28680
STST .13270 .28910 .28910 .28910
STTS .16267 .28569 .28910 .27097
STTT .13270 .28910 .28910 .28910
TSSS .15156 .27670 .28742 .28432
TSST .13270 .28910 .28910 .28910
TSTS .16267 .28569 .28910 .27097
TSTT .13270 .28910 .28910 .28910
TTSS .14435 .27975 .28910 .28680
TTST .13270 .28910 .28910 .28910
TTTS .16267 .28569 .28910 .27097
TTTT .13270 .28910 .28910 .28910
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q9 = P(S t=4)

q, = P(Slt>4)

It is hypothesized that this characteristic holds for theI

optimal form of any n-dependent strategy. If this is so it

can be seen that the n-dependent strategy is a finite (trun-

cated) version of the Bram strategy presented in II.D.2. and

as the level of dependence n is increased without bound the

bound of 0.28903 of Bram is expected to hold.

Each of the investigated strategies is also characterized

by having some states in which the evader must refrain from

firing, else he forfeits his ability to maximize his payoff.

As the level of dependence increases however, the penalty to

the pursuer who fires when the evader is in one of these

states diminishes. Table III shows that under Bram's

strategy there is no time at which the pursuer cannot

achieve his maximum payoff given he always fires at position

W=3.
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IV. FOUR-STEP GAME

The four-step pursuer-evader game has been the subject

of little interest due to the unsolved nature of the three-

step game. We shall briefly look at the four-step game and

discover that the apparent characteristic structure of the

three-step extended Markov strategies does not extend to the

four-step game. Given a four-step time delay between the

attacker's time of fire and subsequent detonation, the evader

may achieve five different positions through the sixteen

different four-bit sequences of turns and straights as shown

in Figure 4.1. The Markov Hypothesis strategy solution to

the four-step game is due to Washburn Ref.91. In the four-

step game the Markov Hypothesis has dependence extending to

the last three moves, the best strategy under this hypothesis

bounds the value of the game to 0.23740 or below, the q

values and resulting conditional probability matrix is shown

in Table VIII. The first extended Markov strategy of the

four-step game, the only one investigated, is the four-

dependent strategy; in this strategy dependence reaches back

to the last four moves. The best solution found using the

four-dependent strategy is shown in Table IX and provides an

upper bound of 0.23734. While this is an improvement over

the Markov Hypothesis solution of >asiburn, the improvement

is very slight. Additionally, no underlying characteristic
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such as discussed in III.E. for the three-step extended

Markov strategies is apparent from the three and four-

depend-int strategies inv=estigated for the four-step game.

p3J

., 4
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244.

1 2•

TSSS TSST TSTS TTST TTSS SSSS
TSTT TTTT STTT STTS
TTTS STST SSTS SSTT
STSS SSST

Figure 4.1 Achievable Evader Positions in Four-Step Game.
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TABLE VIII

Markov-Hypothesis Strategy for Four-Step Game

*-q 1 = 0.69681 q 0.70169
q 2 = 0.69681 = 0.69675

P(W=W ISTATE)

W 1 2 3 4 5
STATE

SS .10330 .18677 .23739 .23678 .23575

ST .10329 .18511 .23709 .23710 .23740

TS .10163 .18615 .23740 .23740 .23740

TT .10331 .18512 .23709 .23710 .23738

TABLE IX

Three-Dependent Strategy to Four-Step Game

q, = 0.69724 = 0.69728
q = 0.69727 = 0.69727
q"2 = 0.70466 q 0.70469

= 0.69654 q8  0 .69724
A

P(W=WI STATE)

1W= 2 3 4 5

STATE

SSS .10306 .18769 .23624 .23668 .23634

SST .10294 .18508 .23733 .23731 .23733

STS .10053 .18828 .23654 .23733 .23732

STT .10329 .18518 .23731 .23712 .23709

TSS .10457 .18826 .23622 .23612 .23482

TST .10294 .18508 .23733 .23731 .23733

TTS .10052 .18827 .23654 .23733 .23733

TTT .10306 .18509 .23731 .23721 .23733
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V. CONCLUSIONS AND REMARKS

The three-step pursuer-evader game remains unsolved.

The investigation of the extended Markovian strategies has

been shown to result in improved evader strategies over the

Markov Hypothesis but is not known to provide a better

strategy than the infinite memory strategy of Bram; in fact

it is hypothesized that the n-dependent extended Markov

strategy to the three-step game represents a finite approxi-

mation to the strategy of Bram. In this respect the results

are not entirely disappointing in that they provide a finite

strategy which appears to converge rather rapidly to a

strategy equivalent to Bram's infinite memory strategy. The

five-dependent strategy to the three-step game relies upon

five distinct variables:

q q 2 q3 q5  q9

which provide an upper bound 0.28910 which is reasonably

close to the bound of 0.28903 provided by Bram's infinite

strategy. The near-optimal extended Markov strategies

presented in Tables V, VI, and VIII represent local minima to

the non-linear programming problem discussed in III.B.

While these can be seen to represent improvements from the

Markov Hypothesis strategy they may not be the globally

minimum strategies within the extended Markov structure. As
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the level of dependence in the extended Markov strategies

increases the mathematical complexity increases dispropor-

tionately; only the apparent characteristic of thes ex-ended

* Markov strategies, discussed in III.E. makes them remotely

attractive.

It still remains to be answered why the three-step game

is apparently non-Markovian in its optimal evader strategy

while 'he one and two-step games are Markovian. The evader

strategy proposed by this thesis as well as the strategy

described by Bouchoux represent abstractions from the strict

Markov Hypothesis solution and although both strategies

represent a lowering of the pursuer's maximum payoff,

neither is as tight as the infinite strategy of Bram which is

strictly non-Markovian in nature. While improved finite

strategies may be possible by further abstraction from a

strictly Markovian strategy, it has been conjectured that no

finite strategy is optimal for the evader. This is known to

be true for the pursuer since he must observe the evader for

an ever-increasing length of time if he wishes to achieve

optimality (with the exception of the one-step game where

both sides have finite optimal strategies). Bouchoux

suggests that a generalization of hi:s sub-Markov strategy,

involving three distinct Markov states each with some fixed

probability of generating a straight or a turn, might provide

a tighter bound on the game value due to its further

abstraction from a Markov behavior. However, the mathematical
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complexity of locating optimal or near-optimal strategies

within this framework is considerable.

The four-step game appears even more difficult. The

Markov Hypothesis solution is shown to be a sub-optimal

strategy, being dominated by the three-dependent extended

Markov strategy of Table IX. The strategies found to the

four-step game in Tables VIII and IX appear to preclude an

extension of Bram's infinite strategy to the four-step game.

The apparent dissimilarity between the known near-optimal

evader strategies from the two to three to four-step games is

perplexing.

The discrete evasion game upon a two or three dimensional

surface is another area which holds promise for future

research. The work of Ferguson solves the two-step game for

a special class of graphs he calls restricted n-graphs;

however the two-step game upon more general two-dimensional

surfaces, as well as the three-step game, are unsolved.

The discrete pursuer-evader game, as described by Isaacs

in 1954, was generated as a simplification of a much more

complex problem. The continuing mystery surrounding all but

the simplest of these "simplified" games provides a wealth

of opportunity and motivation for future research.
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APPENDIX A

INVESTIGATION OF THE THREE-STEP EXTENDED MARKOV STRATEGY

In III.B., the general n-dependent extended Markov

strategy was presented. The best solution found for the

case n=3 is given in Table V. As stated earlier, this solu-

tion is not known to be optimal but can be shown to satisfy

the first-order Kuhn-Tucker conditions (necessary but not

sufficient) for a global minimum.

For the three-dependent case the problem may be stated

as follows:

min [MAX {P(W=WISTATE)}]

qi W,STATE

s.t. 0.0<q.<1.0 i=1,2,3,4

There are sixteen separate functions (see Table IV), from

which the maximum will be selected by the pursuer's choice
A

of W and STATE (i.e. by his selection of aim point and time

of fire), the evader must select the qi's so as to minimize

this maximum payoff. Let f1'. f2, " " " , f16 represent the

sixteen functions described in Table IV, then the problem

becomes:

[in MAX (f1' f2 "' f16)]
A

qi WSTATE

s.t. O.O<q < 1.0 i=1,2,3,4
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Introducing a dummy variable q5, the above non-linear

program may be equivalently written:

min q5

s.t. f - q5  < 0.0 j=1-16

qi - 1.0 < 0.0 i=1-4

q > 0.0 1=1-4

The structure of this problem allows some additional

conditions to be placed upon the optimal solution;

0.0 < qi < 1.0 i=1,2,3,4.

Close inspection of the functions, fj, show that if:

qi = 0.0 or

Pi = 1.0-qi = 0.0

then at least one of the f.'s will have a value of 0.0. If

any f.=0.0 then the remaining three fLs associated with the

same initial state must sum to 1.0, since for any initial

state:

P(W=1,2,3 or 41STATE) = 1.0

The minimum of the maximum of three non-negative numbers

which sum to 1.0 must be at least 1/3, which is greater than

the known upper bound on the value of the game. Therefore:

0.0 < qi < 1.0 i=1-4

.. 4.4."
44!

Z.|



Based upon the above characteristic of the problem the

constraints;

qi - 1.0 < 0.0 i=1-4

will not be binding at the optimal solution and may be

dropped without consequence, resulting in:

min q 5

s.t. - q5 < 0.0 j=1-16

qi > 0.0 i=1-5

The first-order Kuhn-Tucker conditions for the above problem

' require that, at an optimal point, there exist a set of X's

such that:

3L > 0.0 2L > 0.0
aqi-  -0

qi -- 0.0 X. !Laqi  j aA .

qi> 0.0 X < 0.0

i - 1-5 j 1-16

where:

.4b

= q5 - ',Xj(fj - q)

These conditions may be further modified:
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3-L 0.0

3qi

3L 0.0

q,> 0.0

i = 1-5

In the proposed near-optimal solution in Table V. seven

of the sixteen inequality constraints are binding; that is:

4= f6 = 7 = f14 = 15 = 16 0.28964

the remaining nine constraints are slack, it follows that:
XI =  X 2 X 3 = X 5 = X 9 = 'I0 = X11 =  X12 = X 13 = 0.0

The proposed solution must therefore satisfy the following

conditions:

3L
q = 0.0 i = 1,5 X < 0.0 j = 4,6,7,8,14,15,16

with the substitution of the values,

ql = 0.66163 q2 = 0.70054 q3 = 0.62439 q4 = 0.70054

the five constraints (2L = 0.0), become a set of five

linear equations in seven unknowns (X4, X6, X7 , 8v X 14' X 15'

X16 ). Any solution to this set of equations which also

satisfies the condition:

46
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X. < 0.0 j=4,6,7,8.14,15,16

will satisfy the modified Kuhn-Tucker conditions. Using

linear programing methods, such a set of X's was found,

thereby verifying the satisfaction of the Kuhn-Tucker condi-

Stions at the proposed three-dependent strategy of Table V.

The near-optimal solutions to the four and five-dependent

strategies (Tables VI and VII) could be analyzed in a

similar manner.
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