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ABSTRACT

A review of discrete pursuer-evader games and known
solutions is presented. A method is given for obtaining a
finite memory, near-optimal evader strategy for the three-
step game, which greatly reduces data storage requirements

from previous near-optimal strategies. Additionally near-

optimal evader strategies for the four-step game are

Eu discussed.
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I. INTRODUCTION

The discrete time step pursuer-evader game was first
described by Rufus Isaacs of the Rand Corporation in the
early 1950's in an attempt to lcok at the problem of

attacking a moving target who is maneuvering so as to

confound the prediction of his future position. The general

problem, as described by Isaacs is as follows:

A battleship in midocean is aware of an enemy bomber's
presence, but the plane is too high for precise
detection. The ship is interested only in not being
hit; it has no offensive means. The plane has one bomb
and we suppose--to avoid extraneous factors--tahat the
bomber's aim is excellent. The battleship knows this,
but knows nothing about when or where the bomb will be
dropped until after detonation. It is to maneuver so
as to minimize the hit probability. . . There is a time
lag T between the bomber's last sighting of the ship and
detonation. Thus the bomber must aim at an anticipated
position of the ship . . . As simple as this problem
sounds circumstantially, it is difficult technically.
To gain a foothold, we simplified it further. We made
the ocean one-dimensional and discrete. That is, we
supposed the battleship tc be located on one of a long
row of points and at each unit of time he hops to one
adjoining one, enjoying the sole choice of a right or
left jump. The time lag was to be an integral number n
of time units, or--the same thing--of jumps. This is
tantamount to saying that the bomber knows all positions
of the battleship which precede his present one by n
jumps or more Ref.[1]. '

The solution to the single time step game, (i.e. n=1) is

trivial but the complexity increases greatly as the time lag
or number of time steps increases. Isaacs, upon formulating

the game, proposed pursuer and evader strategies to the two-

step game, however the proof of the optimality of these

A g
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strategies is highly complex. The complexity of the multiple
step games arises from the fact that the evader doesn't know
when the pursuer will attack; if he did it would be an easy
matter for the evader to distribute himself uniformly over
the n+1 possible positions at the time of detonation, and
limit the pursuer to a kill probability of 1/(n+1).
Without knowing the time of attack the evader must attempt
to make his position uniform at every time step and this is
not possible.
The three-step pursuer-evader game is yet unsolved,
however near-optimal strategies for both the pursuer and
evader have been described. The best existing evader
strategy, developed by Joseph Bram Ref.[2], involves the
evader maintaining an infinite memory of probabilities
corresponding to the probability of turning given the evader
has not turned for the last k moves. This thesis will
investigate alternative finite evader strategies to attempt
to lower the existing upper bound on the three-step game
value while drastically reducing memory requirements and

additionally look briefly at possible evader strategies in

the four-step game.




.................................................

II. XNOWN SOLUTIQONS AND STRATEGIES FCR PURSUEF-EVADER GAMES

A, STRUCTURE

For uniformity, the convention and structure described
below will be used hereafter in the description of all
discrete n-step pursuer-evader games. The pursuer 1is the
maximizing player who by selection of time of fire and aim
point tries to maximize the probability of killing the
evader (a kill is achieved when the pursuer fires at the
position the evader subsequently occupies n time steps
later). The evader is the minimizing player, who by selec-
tion of maneuvers along the discrete linear state space,

attempts to minimize the probability of being killed. The

.J-J

evader's maneuvers can be described as a sequence of lefts

<
e
»
"

T and rights (L and R) with each n-bit sequence of L's and
?'-‘
R's corresponding to one of the n+1 final positions
N
o

achievable in n steps from an arbitrary starting position as

F r.
737

X

shown in Figure 2.1. The above-described mapping of n-bit

[ %)
.
'IJ

Y
by ;J

left-right sequences to final position is symmetric under

Y
2
2"

interchange of L's and ®'s (i.e. LLR corresponds to a sym-

LN o ¢

l‘l.l
a'a

metric position to RRL in the three-step case). Due to this

x

symmetry it is equivalent to describe the evader's maneuvers

e 1%

.
Ny as a sequence of straights and turns (S and T which provides
N

> an equivalent mapping in Figure 2.2. A turn signifies the

evader moves in the opposite direction %o his previous move
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LLLL LLLR LLRR LRRL LRRR R R

LLRL LRLR RLRL RLRR
LRLL RLLR RRLL RRLR
RLLL RRRL

Figure 2.1 Possible Evader Positions in n Steps.

TSSS TSST TSTS TTST TTSS SS8SS
TSTT TTTT STTT STTS
TTTS STST SSTS SSTT
STSS SSST

Figure 2.2 Possible Evader Positions in terms of
Straights and Turns.
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and a straight signifies he continues in the same direzfion

P
-

as his previous move. Any n-bit sequence of lefts and rignts
can be translated into an equivalent (n-1) bit sequence of
straights and turns (i.e. LRRL becomes TST). Note that in

general there may be several possible sequences of turns and

straights which lead to the same final position (for n=3,

T

[07]

T, TTT, and STS all result in the evader occupying the

position one step to the left of his original position).

B., ONE-STEP GAME

The single step pursuer-evader game has a simple
solution. ™With only one time step elapsing between the
pursuer's time of fire and weapon detonation the evader can
always distribute himself uniformly over the itwo positions
achievable in one step shown in Figure 2.3. The evader on
each step can continue straight with provability (1-p) or
turn with probability p. Since the intelligent pursuer will
limit his shot to one of the two feasible positions of the
evader when he fires (position 1 or 2 of Figure 2.3), the
game can be represented graphically as shown in Figure 2.4.
The minimax solu*ion occurs when p=0.5. The corresponding

value of the game is 0.5. The optimal evader s*tra“egy is to

fire at position 1 or 2 with equal probability.

C. TUO-STEP GAME

The “wo-s*ep pursuer-evader zame 1s not nearly as simple

in i%s solu*ion as *he one-step game. The soclution was

11
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found by starting with *he hypothesis that the evader's

N

maneuver will depend only on ! .- previous maneuver anc none
earlier; thus the probta®»ility of continuing in the sane
direc“ion as *he las* move is denoted by (1-p), wi*h p teing
“he probabvility of moving in the opposite direction "o *he
previous move. The attainable positions for the evader and
the corresponding probabilities under the above hypothesis
are shown in Figure 2.5. The pursuer can be expected to
select the position (1, 2 or 3) with the highest associated
probability. The evader will select p so as to minimize

this maximum probability. The optimal value of p is then

found by solving:

min [MAX {p-p%, D, (1-p)2}]
p
s.t. 0<p<1.0

Graphically the solution is shown in Figure 2.6. The
resulting solution is found by solving the quadratic p=(1-p)?
which has a root at p=(3-/5)/2 = 0.38197 . . . ; this value
is also the probability that the evader is in position 2 or

3 of Figure 2.5 and thus the value of the game. The proof
that this evader strategy is optimal and that (3-v/3)/2 is

the value of the game is complex. Three different proofs are
given by Dubins Ref.[3], Isaacs Ref.[4] and Ferguson
Ref.[5)]. The pursuer strategies in the multi-step games

are characterized by the non-existence of an optimal

strategy; the pursuer can always increase his expected

13
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Figure 2.5 Achievable Evader Positions in Two-Step Game.
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Figure 2.6  Graphical Solution to the Two-Step Game.
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kill probability by waiting a few more time periods but hre
cannot wait indefinitely to fire or his payoff is zero.

This contradiction leads to strategies for the pursuer which
have payoffs arbitrarily close to, but not equal to, the
value of the game. Ferguson developed such a pursuer
strategy which confirmed that (3-/5)/2 = 0.38197 . . . was

the value of the two-step game.

D. THREE-STEP GAME
As stated earlier the three-step pursuer-evader game is
yet unsolved. The value of the three-step game has been

bounded to:
0.28423 < v < 0.28903

by Bram., This section will investigate previous near-
optimal evader strategies for the three-step game and the
resulting upper bounds upon the game wvalue.

1. Markov Fypothesis Strategy

The Markov Hypothesis for the n-step pursuer-evader
game is stated as follows: +the probability that the evader
will go left or right (or, straight or turn) is dependent on
the previous n-1 moves but not on any moves further in the
past than the n-1st. This form or evader strategy makes

intuitive sense since it does not seem likely that an

optimal evader stratezy will depen< upon information which
the pursuer already k¥nows at the time of fire. The known

optimal strategies for the one and two-step games acdhere to

15
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<X
'33 the Markov Hypothesis. In the one-step game the ortinmal

;& evader turns or continues straight with equal probhability,
‘ié therefore independent of all previous moves. (i.e. P(3) =
éﬁ P(T) = P(L) = P(R)). In the two-step game the optinal
i?; evader uses a strategy where the probability of turning (or
;ij ~ continuing straight) aepends only upon his previous nove

:%; : (i.e. P(S) = P(L|L) = P(R|R) = 0.61803 and P(T) = P(L|R) =
N P(R|L) = 0.38197).

:ﬁ The Markov Hypothesis will now be applied to the
E; three-step game. Since the evader will condition his next
Ii? move upon his previous two moves, his strategy can be

‘Ei descrihed by a 2x2 transition matrix as shown in Figure 2.7.
Gg The state of the evader a* any time is S or T since this
)fv state is a function of the evader's last two moves (i.e. LL
i;j or RR+S). In %this transition matrix:

v .

313;3 q, = P(Next state is S | Last state was S)

y q. = P(Next state is S | Last state was T).
2 :
A L .

-n The four achievable positions for the evader in the three-
= step game and the associated maneuver sequences are shown in
g%é Figure 2.8. Let the variable W represent the final position

of the evader three steps after the time of fire; from
Figure 2.8 it can be seen We(1,2,3,4). Let the variable
STATE represent the state (S or T) that the evader occupies

at the time of fire. The probability that the evader

occupies any final position is a function of q1 and q2 when
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Figure 2.7

TSS

Figure 2.8

NEXT MOVE
S T

S q»] 1"q1

Markov Hypothesis Transition Matrix for
Three-Step Game.

TST TTS S8S
TTT STT
STS SST

Achievable Evader Positions in Three-Step Game.
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conditioned upon his initial state. For example, given
STATE=S, to arrive at W=1, the sequence of transitions under-

gone must be:
S toT toS to S
The probability of this occurrence can be written:
P(W=1|STATE=8)=(1-q,)q5q,
The remaining seven conditional probabilities are:

P(W=2| STATE=8)=(1-q4)q,(1-q4)+(1-q4) (1-q5)*+q,(1-q4)q,
P(W=3|STATE=8)=(1-q4) (1-q5)q5+q,(1-q,) (1-q,)+q,2(1-q,)
P(¥W=4]| STATE=S)=q,’
P(W=1| STATE=T)=(1-q,)q,q,
P(=2| STATE=T)=(1-g,)q,(1-q4)+(1-q,) *+q,(1-q ) a,.

- - - - 2 - - -
P(W=3| STATE=T)=(1-q,)*q,+a,(1-q4) (1-g,) +a,a,(1-q,)
P(W=4|STATE=T)=q,q,>

At any time the pursuer may choose to fire, he knows
which of the two states (S or T) that the evader is in by
observing his last two moves. The optimal values of q, and
a5 under this strategy are found by solving the following

non-linear problem:

min [ MAX {P(w=j|STATE=i)}]
Q1q2 i’j j=1,2.3,4
1=8,T

18

. - 7. - . T Y- L PO
""" R R R '_A,:._J-i

:




TN AT TV IR TR TR T T R T T T Ty

..........

......................

TS 3 DR

The solution, due to Ferguson, is q = 0.63397. . ., o, =

0.73205, with a corresponding game value of 0.29423, the

resulting matrix of conditional probabilities is shown in
Table I. Ferguson states when presenting this evader
strategy, that it is not known to be optimal and in fact he

conjectures that no evader strategy of finite dependence is

optimal for the evader. The strategy of Bram presented in

!
H
=
_
-
g

the next section will show that indeed an evader strategy of
infinite dependence does result in a tighter bound on the
game value.

2. Infinite Dependence Strategy

As mentioned in Chapter I, the best existing evader
strategy for the three-step game was described by Joseph
Bram, This strategy can be described as an infinite sequence
of the conditional probabilities that the evader will con-
tinue straight given the state S of his previous moves. If
the previous move by the evader was a turn, the evader is in
state S=1, while if the previous k-1 moves have been straight
the evader is in state S=k. (Note that the state space of S
is infinite). We will denote a turn by T and a straight by
S as before. At each time step the evader continues straight

or turns with a probability dependent upon his state S. Let:

P = P(Straight|S=k).

If the evader is in state k at some time n, at time n+3 the

evader can be in one of four positions described by W

...........................

'''''
.....................
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TABLE I
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P(W=ﬁISTATE) for Three-Step Markov Hypothesis Strategy

N

)

= P(s|s)

by
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0.63397 E

P(S|T) = 0.73205

0
N
"

= 1 2 3 4
STATE
S .16987 «29423 .28109 .25480
T 12435 .28719 «29423 .29423
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previously. There are eight possible 3-bit sequences of £'s

and T's which correspond to the four possible terminal

positions as shown in Figure 2.8. The probabilities associa-

ted with each position W given k¥ are as follows:

P(W=1]8=k)=(1-p, )p,yp,
P(W=2]8=k)=(1-p, )p, (1-p,)+(1-p, ) (1-p,) %+p, (1-D, ;) p,
P(¥=3|8=k)=(1-p, ) (1-p;)p4+P, (1-py 1) (1-py ) ¥y Py 1 (1-py o)
P(W=4]8=k)=py P\ 4 1Pyc42

If the evader fires at time n, at position W, when S=k, his

expected payoff will be:
P(W=¥|S=k)

The upper bound on the value of the game played with this

strategy is:

MAX  MAX {P(W=W|S=k)}
k W

The evader of course will attempt to select his infinite
array of Pk's so as to minimize the above bound which is the
maximum payoff that the pursuer can achieve. The best set

of P, 's found by Bram is delineated in Table II, while the

k
resulting P(W=W|S=k) is shown in Table III. The upper

bound on the game value under this specific set of Pk’s is
the maximum value found in Table III or 0.28903. In this

strategy the decision to turn or continue straight has a

21
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TABLE II

A Safe Set of pk's for the Evader

o

Py

.69290
.62467
.66775
.65137
66241
.65859
.66135
.66047
66116
.66096
66114
.66109
66114
66113
66114

e A A PN TIONNE-WN
N W2 O

TABLE III
P(W=W|S=k) using gkfs of Table II

-4 W= 1 2 3 4

s k

Fl 1 .13292 .28903 .28903 .28903

Lo 2 .16246 .27682 .28903 .27170

B "3 .14381 .27905 .28903 .28818

e 4 .15090 27591 .28903 28417

e 5 14612 .27634 .28903 .28852

S 6 .14778 .27552 .28903 .28768
7 .14658 .27560 .28903 .28880

2 8 .14696 27539 .28903 .28863

5% 9 . 14666 " .27539 .28903 .28892

2% 10 14675 .27534 .28903 .28889

o 11 14667 2753} .28903 .28896

: 12 . 14669 .27532 .28903 .28896

13 14667 .27532 .289C3 .28898

L’t‘ - L] * L] L] L]
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,ﬁ' dependence upon the previous moves. That dependence may .
= extend infinitely far back; thus the evader is required to i
S? maintain the infinite array of Pk's to execute this near- E
1 optimal strategy. S
. 3. Sub-Markov Strategy

Eé The strategy presented here is due to Bouchoux
'Es Ref.[é] and is characterized by a strategy where the evader's

] sequence of moves is not Markovian in itself but one in
Eé which that sequence is generated by a substructure which is
;f Markovian, hence the description Sub-Markov. This form of

i strategy is suggested by its use in providing optimal

'ﬁ strategies in emission-prediction games described by
F% Blackwell Ref.[7] and Matula Ref.[8]. The pursuer-evader

; game, while similar to emission-prediction games, is compli-
;é . cated by the fact that there are several distinct sequences
 § ' of moves which lead to the possible terminal positions.

- Since the pursuer (predictor) must fire at one of those ter-
;i minal points and not at a specific sequence of moves, the

%} game is more complex. Bouchoux describes a strategy based -
:: upon three states, A, B and C, through which the evader i
?f transitions in a Markovian manner. When in state A the i
Sj evader always turns, while in states B and C he always goes :
:: straight. After each move, straight or turn, the evader

‘5 transitions between states according to a 3x3 transition

5 matrix and is ready for.his next move., This strategy is |
i; finite in the memory required by the evader and Bouchoux

3

j 23

s |

L T B D T T, S S T S D T T Tt R R Ry




£ | AR

A

4

A

- A

SASSNS

P tatats s

NN

Lo A

N
* 4

PR g

obtained a bound on the game value of 0.28922 by optimizing

upon the transition matrix.
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11 ITI., EXTEJDED MARKOV STRATEGY

L

",

Sé A, MOTIVATION AND DESCRIPTION

. The evader strategy to be investigated will be called

Ei Extended Markov because it is an extension of the finite

;g dependence of the Markov Hypothesis strategy. The depen-
b dence will be finite but will extend beyond the previous n-1

i steps. In the Markov Hypothesis strategy, for the three-

?g step game, discussed in II.D.1., the best strategy for the

;ﬁ evader resulted in an upper bound on the game value of

'é 0.29423., If the dependence is restricted to only the pre- E
jﬁ vious move instead of the previous two moves the best ?
[ ‘ strategy results in an upper bound of 0.29630 (Note: this i
Eé is equivalent to adding the constraint q4=q, to the non- é
'E? linear problem described in II.D.1. with a solution at ;
- q4=3,=2/3). Since Bram's strategy showed that the Markov

;S Hypothesis was not optimal for the three-step game, it seems

55 that a Markovian strategy where the dependence is finite but

'. extends beyond the last n-1 moves might result in a tighter

if bound on the game value than previously obtained. This is f
i: the class of strategies to be called Extended Markov. These i
., strategies for the three-step game, Markovian in nature, i
?g will arise from a dependence upon the last three or more 1
'Ef moves and will be called the n-dependent strategies where n !
?: represents the level of dependence. In this context, the

: 25
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§§ Markov Hypothesis stirategy for the three-step game is the
'§$ two-dependent strategy.

i

Eg B. GENERAL N-DEPENDENT STRATEGY

'§§ In the n-dependent strategy the evader will determine

" . his next move based upon his previous n moves. The evader
ﬂg can be thought of as controlling 2" variables, each being
5; the probability of going (say) right given the previous n

. j steps have been in a certain sequence. We will utilize the
st left-right symmetry of the problem by considering only paths
%? where the last move is to the (say) right, resulting in only
:j 2n-1 variables, each representing the probability of going
Eé (say) straight given the last n steps have produced a

’éa certain n-1 bit sequence of straights and turns. The general
ﬂ.. n-dependent strategy can be described by a Markov chain

éé having 271 states corresponding to the 27T girferent

o,

n-1 bit sequences of straights and turns which are possible

..
W
.

based on the last n moves (i.e. conditioning upon the last

E§ n moves is equivalent to conditioning on the last n-1

3; straights or turns). From each of the 2n-1 states there is
: a fixed probability that the evader will maneuver to one of

;é the four final positions W in the next three steps. A 2n-1

f{; X 2n-1 transition matrix will be used to describe the condi-

.;. tional probability of turning or continuing straight given

i; the current state ((n-1)-bit sequence). Since the state

52 . describes the previous n moves in terms of straights and

tv' turns only two possible transitions exist from each of the

ﬂf 26
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states. The first n-2 bits of the state transitioned to are
determined by the last n-2 bits of the state transitioned
from; the last bit will be S or T depending upon the new

move. Due to this structure the transition matrix will be

1, 2n-1)

completely defined by 271 Jariables (called q; 1
which represent the probability of continuing straight given
the current state. The other transition probability for
that state will obviously be (1—qi). Using a transition

matrix so constructed, the conditional probability of

P A

ending in one of the four final positions (W=1,2,3 or 4) can 3
be found. 1In order to arrive in position 1, for example, the
sequence of states transitioned must result in the termina-
ting three-bit sequence, TSS, as can be seen from Figure 2.8.
Thus P(W=&|STATE) is a function of the variables s (i=1,
2%-") and the best n-dependent strategy is solved by the

following non-linear program:

min | MAX P (W= |STATE) |
q,  W,STATE

s.t. 02q;<1.0 i=1,2

For general n, it is seen that the above program involves

n-1 states)

minimizing the maximum of 2n+1 (4 positions x 2
non-linear functions of up to 2n-1 variables. No analytic
solution has been found and in later sections near-optimal

solutions will be found by non-linear search technigues.

27
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- C. THREE-DEPENDENT STRATEGY

& The first extension of the Markov Hypothesis strategy is

{

o the three-dependent strategy described by four states (SS, ST,

= TS, TT) and a 4x4 transition matrix shown in Figure 3.1 *
where: .

1

.? qq = P(next move is straight | State is SS) ]

N .

X or equivalently;

3 qq = P(next state is S5 | last state was SS)

The sixteen conditional probabilities of terminating in one
of the four positions W, given the evader starts from one of
the four states are listed in Table IV. The best solution
found using the three-dependent strategy gives an upper

bound on the game value of 0.2896/ when:

[-- qq = 0.66163 a3 = 0.62489
o a, = 0.70054 q, = 0.70054
I
o The matrix of conditional probabilities evaluated at this
-
point are in Table V. This solution was found by utilizing
f an improved feasible direction search which was started from
f a known "good" solution. For the three-dependent strategy a
= good starting point is found by applying the known two-
dependent (Markov Hypothesis) solution to the three-
5 dependent structure. If one applies the restriction q1=q3

and 9579, to the three-dependent strategy, it is equivalent

Dy

42 2
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NEXT STATE
Ss ST TS TT
- T
sSs a, 1-q, 0 0
LAST ST 0 0 qs 1-q,
STATE TS a3 1-qg 0 0
TT 0 0 q 1-q
A : L

Figure 3.1 4xt Transition Matrix for 3-Dependent
Strategy.
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TABLE IV

‘aals

P(W=W|STATE) for 3-Dependent Strategy

Notation: pl = 1-ql i=1,2,3,4

P(W=1]88) = pyq,93
P(W=2|88) = pjaypy + PyP,P, *+ 4404,
P(W=3|8S) = pypyq; + ayP4Py * 243¢P4
P(W=4]88) = q,q4q4

P(W=1]ST) = pyq,45

i P(W=2]|ST) = pyq,py + PoP,P, * A5P3dp
: P(W=3|ST) = pyp,q, + QP3Pp * 45d3P,
: P(W=4|ST) = q,q5q,

% P(W=1]TS) = p3a,4,

’

P(W=2|TS) = p3q,P3 + P3PyP, + A3Pqqp
P(W=3[T8) = pypyq, * q3P4Py * 4341Py
P(W=4]T8) = Q39494

P(W=1|TT) =

P,3,93
P,q,P3
P(W=3|TT) = p,p,q, *+ q,P3Pp * q,43P;
P(W=4]TT) = q,q394

.: P(W:ZITT) = p4p4p4 + q4P3¢l2




N TABLE V
'.::: Good Evader Strategy in 3-Dependent Case
-.‘.:
= aq = P(S]|SS) = 0.66163
o a, = P(S[ST) = 0.70054
a3 = P(S|TS) = 0.62489
q = P(S|TT) = 0.70054
i R P(w=ﬁ|STATE)
V. W= 1 2 3 A
o STATE
, SS .14812 .27609 .28615 .28964
.- ST .13109 .28964 .28964 .28964
. TS 16421 .28033 .28191 .27355
- TT .13109 .2896/ .28964 .28964
= TABLE VI
w_ Good Evader Strategy in 4-Dependent Case
( qq = P(S]sss) = 0.65931 95 = P(S|TSS) = 0.66543
N g, = P(S5|88T) = 0.69579 qz = P(S|TST) = 0.69579
- q3 = P(S|STS) = 0.62474 an = P(S|TTS) = 0.62474
) q; = P(S|STT) = 0.69579 qg = P(S|TTT) = 0.69579
& P(W=W|STATE)
e W= 1 2 3 4
ot
e STATE
- Sss . 14809 .276177 .2885/ .28659
SST .1322} .28925 .28925 .28925
o STS .16312 .27814 .28465 .27409
o STT .13224 .28925 .28925 .28925
- TSS < 14543 .27606 .28925 .28925
TST .13224 .28925 .28925 .28925
= TTS .16312 2781} .28465 .27409
i TTT .1322} .28925 .28925 .28925
n;:}.
3
g
o
o 31




to the strategy discussed in II.D.1. with an upper bound
of 0.29423 when:

Ay = a3 = 0.63397 q, = = 0,73205

4

Analogously any near-optimal solution to the n-dependent
strategy will provide a '"good" initial solution to the
(n+1)-dependent strategy. While the solution given above
for the three-dependent strategy is not known to be optimal,
but rather a local minimum c¢f the problem described in
ITI.B., it does represent a significant improvement over the
two-dependent strategy (0.29423) and is close in value to
the infinite strategy of Bram (0.28903). Appendix A pre-
sents an analysis of the above three-dependent solution and
shows that the proposed solution does satisfy.first-order
Kuhn-Tucker conditions (necessary but not sufficient) for a
global minimum. It is interesting to note that in the

proposed solution q2=q4 or:
P(S|ST) = P(S|TT).

Additionally in order for the pursuer to receive his maximum
achievable payoff he must refrain from attacking when the

state is TS or be limited to a payoff of 0.28191.

D. FOUR AND FIVE-DEPENDENT STRATEGIZS
The treatment of the four-dependent and five-dependent
strategies is equivalent to the previously described three-

dependent strategy with the expansion of the state space and

32
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number of variables involved to eight .and sixteen
respectively. Good solutions to the four and five-dependent
strategies were found, as in the three-dependent case, by
starting at a known near-optimal set of values for the qi's
and conducting an improving feasible direction search until
a local minimum was found. The best solutions thus found to
the four and five-dependent strategies and the resulting
conditional probability matricies are shown in Tables VI and

VII.

E. CHARACTERISTICS OF THREE, FOUR AND FIVE-DEPENDENT

STRATEGIES

The solutions found for the three, four and five-
dependent strategies, outlined in Tables V, VI and VII show
several revealing characteristics. In each case the condi-
tional probability of continuing straight given the n-1 bit
state is not dependent upon all of the information contained
in that n-1 bit sequence. The probabilities are dependent
only upon the number of time steps elapsed since the last
turn maneuver and not upon any turn-straight information
further in the past than that last turn. For example,
letting t denote the number of time steps since the last

turn, then in the five-dependent solution:

9279,79679g7910791 2791479167 P(SIE=1)
P(S|t=2)

qB=Q7=Q11=Q15

d5=0q3 P(S]t=3)
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TABLE VII

Good Evader Strategy in 5-Dependent Case

qq = P(S]|SSSS) = 0.66120 a9 = P(S|TSSS)
q, = P(S|SSST) = 0.69385 a7 = P(S|TSST)
Q3 = P(S|sSTS) = 0.62470 qqq = P(S{TSTS)
q; = P(S|SSTT) = 0.69385 Qqp = P(S|TSTT)
. qz = P(S|STSS) = 0.66698 q,3 = P(S{TTSS)
Qg = P(S|STST) = 0.69385 ] ° P(S|TTST)
qq = P(S{STTS) = 0.62470 qq5 = P(S|TTTS)
qg = P(S|STTT) = 0.69385 Aqg = P(S|TTTT)
P(W=W|STATE)
= 1 2 3
STATE
38888 . 14685 .27541 .28867
SSST .13270 .28910 .28910
SSTS .16267 .28569 .28910
SSTT .13270 .28910 .28910
STSS < 14435 .27975 .28910
STST .13270 .28910 .28910
STTS .16267 .28569 .28910
STTT .13270 .28910 .28910
TSSS .15156 27670 .28742
TSST .13270 .28910 .28910
TSTS .16267 .28569 .28910
TSTT .13270 .28910 .28910
TTSS < 14435 .27975 .28910
TTST .13270 .28910 .28910
TTTS .16267 .28569 .28910
TTTT .13270 .28910 .28910
N
4 34
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0.65034
0.69385
0.62470
0.69385
0.66698
0.69385
0.62470
0.69385

.28907
.28910
.27097
.28910
.28680
.28910
.27097
.28910
28432
.28910
.27097
.28910
.28680
.28910
.27097
.28910




-----------------------

9
Q4 = P(S|t>4)

i
y
y
b
y
|
)

It is hypothesized that this characteristic holds for the ,
optimal form of any n-dependent strategy. If this is so it
can be seen that the n-dependent strategy is a finite (trun-
cated) version of the Bram strategy presented in II.D.2. and
as the level of dependence n is increased without bound the
bound of 0.28903 of Bram is expected to hold.

Bach of the investigated strategies is also characterized
by having some states in which the evader must refrain from
firing, else he forfeits his ability to maximize his payoff.
As the level of dependence increases however, the penalty to
the pursuer who fires when the evader is in one of these
states diminishes. Table III shows that under Bram's
strategy there is no time at which the pursuer cannot

achieve his maximum payoff given he always fires at position

W=3.




IV. FOUR-STEP GANE

The four-step pursuer-evader game has been the subject

‘ of little interest due to the unsolved nature of the three-
:ﬁ step game. UWe shall briefly look at the four-step game and
:§a discover that the apparent characteristic structure of the

) three-step extended Markov strategies does not extend to the
S% four-step game. Given a four-step time delay between the
i? attacker's time of fire and subsequent detonation, the evader
.? may achieve five different positions through the sixteen
%% different four-bit sequences of turns and straights as shown
%5 in Figure 4.1. The Markov Hypothesis strategy solution to
{; the four-step game is due to Washburn Ref.[9]. In the four-
%g step game the Markov Hypothesis has dependence extending to
ﬁ; the last three moves, the best strategy under this hypothesis

i bounds the value of the game to 0.23740 or below, the g
;E values and resulting conditional probability matrix is shown
;$3 in Table VIII. The first extended Markov strategy of the

. four-step game, the only one investigated, is the four-

:; ' dependent strategy; in this strategy dependenee reaches back

Eg to the last four moves. The best solution found using the
ji four-dependent strategy is shown in Table IX and provides an
EE upper bound of 0.23734. While this is an improvement over
gf the Markov Hypothesis solution of ‘‘asiburn, the improvement
{a is very slight. Additionally, no underlying characteristic
o
R 36
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such as discussed in III.E. for the three-step extznded

F" Markov strategies is apparent from the three and four-

depend=nt stretegies invsctigated for the four-step game.
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Figure 4.1 Achievable Evader Positions in Four-Step Game.
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TABLE VIII

Markov-Hypothesis Strategy for Four-Step Game

q, = 0.69681 qy = 0.70169
a) = 0.69681 a; = 0.69675
P (W=W |STATE)
% 0= 1 2 3 4 5
- STATE
o ss .10330 18677 .23739 .23678 .23575
!!. ST .10329 .18511 .23709 .23710 .23740
o TS .10163 .18615 .23740 .23740 .23740
2 T .10331 .18512 .23709 .23710 .23738
TABLE IX
Three-Dependent Strategy to Four-Step Game
q, = 0.69724 Qs = 0.69728
ay = 0.69727 a] = 0.69727
a% = 0.70466 a5 = 0.70469
az = 0.69654 ag = 0.69724
P (W=W|STATE)
= 1 2 3 4 5
STATE
SSS .10306 . 18769 .23624 .23668 .23634
SST .10294 .18508 .23733 .23731 .23733
STS .10053 .18828 .23654 .23733 .23732
STT .10329 .18518 .23731 .23712 .23709
ﬁf TSS 10457 .18826 .23622 .23612 .23482
R TST .10294 .18508 .23733 .23731 .23733
R TTS .10052 .18827 .23654 .23733 .23733
D] TTT .10306 .18509 .23731 .23721 .23733
95
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V. CONCLUSIONS AND REMARKS

The three-step pursuer-evader game remains unsolved.
The investigation of the extended Markovian strategies has
been shown to result in improved evader strategies over the
Markov Hypothesis but is not known to provide a better
strategy than the infinite memory strategy of Bram; in fact
it is hypothesized that the n-dependent extended Markov
strategy to the three-step game represents a finite approxi-
mation to the strategy of Bram. In this respect the results
are not entirely disappointing in that they provide a finite
strategy which appears to converge rather rapidly to a
strategy equivalent to Bram's infinite memory strategy. The
five-dependent strategy to the three-step game relies upon

five distinet variables:
d4 45 q3 q5 q9

which provide an upper bound 0.28910 which is reasonably
close to the bound of 0.28903 provided by Bram's infinite
strategy. The near-optimal extended Markov strategies

presented in Tables V, VI, and VIII represent local minima to

While these can be seen to represent improvements from the

Markov Hypothesis strategy they may not be the globally

i
|
\
1
|
J
|
{
the non-linear programming problem discussed in III.B.
{
{
f
\
minimum strategies within the extended Markov structure. As ‘

|
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2% the level of dependence in the extended Markov strategies

?‘ increases the mathematical complexity increases dispropor- .

ff tionately; only the apparent characteristic of thes: ex:ended g

;EEi Markov strategies, discussed in III.E. makes them remotely .
.3 attrac*tive. 5
) . It still remains to be answered why the three-step game !

‘55 is apparently non-Markovian in its op*timal evader sirategy .
o while *he one and two-step games are Markovian. The evader

:; strategy proposed by this thesis as well as the strategy

Eg described by Bouchoux represent abstractions from the strict

% Markov Hypothesis solution and although both strategies

ﬁ represent a lowering of the pursuer's maximum payoff,

>§ neither is as tight as the infinite strategy of Bram which is

{? strictly non-Markovian in nature. While improved finite

EZ strategies may be possible by further abstraction from a

3 strictly Markovian strategy, it has been conjectured that no

. finite strategy is optimal for the evader. This is known to

ﬁ be true for the pursuer since he must observe the evader for

§ an ever-increasing length of time if he wishes to achieve

- optimality (with the exception of the one-step game where

.ﬂ both sides have finite optimal strategies). Bouchoux

f suggests that a generalization of his sub-Markov strategy,

X\

involving three distinct Markov states each with some fixed
probability of generating a straight or a turn, might provide
a tighter bound on the game value due to its further

abstraction from a Markov behavior. However, the mathematical
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‘if complexity of locating optimal or near-optimal strategies :
‘;f within this framework is considerable. )
}ﬁ The four-step game appears even more difficult. The !
f;; Markov Hypothesis solution is shown to be a sub-optimal ;
o strategy, being dominated by the three-dependent extended E
.ﬁ ' Markov strategy of Table IX. The strategies found to the !
S four-step game in Tables VIII and IX appear to preclude an j
z extension of Bram's infinite strategy to the four-step game. a
ai The apparent dissimilarity between the known near-optimal 4

evader strategies from the two to three to four-step games is

o 4,
e

- perplexing.
The discrete evasion game upon a two or three dimensional
9 surface is another area which holds promise for future

research. The work of Ferguson solves the two-step game for

$ a special class of graphs he calls restricted n-graphs;
b \‘
aﬁ however the two-step game upon more general two-dimensional
‘ surfaces, as well as the three-step game, are unsolved.
N The discrete pursuer-evader game, as described by Isaacs
P
N in 1954, was generated as a simplification of a much more
.,
- complex problem. The continuing mystery surrounding all but
- the simplest of these "simplified" games provides a wealth
i' of opportunity and motivation for future research.
5}
X
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APPENDIX A
INVESTIGATION OF THE THREE-STEP EXTENDED MARKOV STRATEGY

In III.B., the general n-dependent extended Markov
strategy was presented. The best solution found for the
case n=3 is given in Table V. As stated earlier, this solu-
tion is not known to be optimal but can be shown to satisfy
the first-order Kuhn-Tucker conditions (necessary but not
sufficient) for a global minimum.

For the three-dependent case the problem may be stated

as follows:

min ['MAX {P(W=W|STATE)} ]
a W,STATE
s.t. 0.02q,<1.0 1=1,2,3,4

There are sixteen separate functions (see Table IV), from
which the maximum will be selected by the pursuer's choice
of W and STATE (i.e. by his selection of aim point and time

of fire), the evader must select the qi's so as to minimize

this maximum payoff. Let f1. f2, o o o f16 represent the

sixteen functions described in Table IV, then the problem

tﬁ becomes:

8 |

i min [MAX (f1, f2, . . . [ f16)]
» A

i q;  W,STATE

o s.t. 0.0<q,<1.0 1=1,2,3,4

r. .
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o Introducing a dummy variable 950 the above non-linear

program may be equivalently written:

P D
» - SN
.- Lt
[ .

min s g
- < i=1- .j
s.t. fj a5 = 0.0 j=1-16 :
. . - 1,0 < . i=1-
y qy < 0.0 i=1-4 !
é, Qs - > 0.0 1=1-4 i
R The structure of this problem allows some additional
B conditions to be placed upon the optimal solution;
- 0.0 < q; < 1.0 i=1,2,3,4.
&? Close inspection of the functions, fj' show that if:
N
., q; = 0.0 or
p; = 1.0-q; = 0.0
2
~ then at least one of the fj's will have a value of 0.0. If
any fj=0.0 then the remaining three fj's associated with the
i same initial state must sum to 1.0, since for any initial
v state:
'-n
vy P(W=1,2,3 or 4|STATE) = 1.0
2
.
s The minimum of the maximum of three non-negative numbers
\
- which sum to 1.0 must be at least 1/3, which is greater than
- the known upper bound on the value of the game. Therefore:
%,
. .4 0.0 < qi < 1.0 i=1-4
2
<
L
v A
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3? Based upon the above characteristic of the problem the
s
i constraints;
- 1.0 £ 0.0 1=1-
Q3 .0 > 0, 1 4
will not be binding at the optimal solution and may be
dropped without consequence, resulting in:
min 95
s.t. fj - 95 < 0.0 j=1-16
qi Z_ 0.0 i=1-5
The first-order Kuhn-Tucker conditions for the above problem
IEZ require that, at an optimal point, there exist a set of A's
.t such that:
2L 5 0.0 8L 5 0.0
o U j
L . 3L |
q; 2 0.0 A; 0.0
i=1-5 j o= 1-16
where:
-— i
L = - Af, - .
(q;X) Q5 'E-}‘J(f,] q5)
iﬂ These conditions may be further modified:
..1
LSRR |
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In the proposed near-optimal solution in Table V, seven

of the sixteen inequality constraints are binding; that is:

f4 = fé = f7 = f8 = f14 = f15 = f16 = qg = 0.2896/

the remaining nine constraints are slack, it follows that:

x1=A2=X3=A5=A = A =A11:A12:A13=O.O

The proposed solution must therefore satisfy the following

conditions:

L < 9.0 i=1,5 X. < 0.0 i = 4,6,7,8,14,15,16
qi =

with the substitution of the values,

q, = 0.66163 q, = 0.70054 q, = 0.62489 = 0.70054

LA
the five constraints (%% = 0,0), become a set of five

i
linear equations in seven unknowns (AA. Aé, A7. As, A1A' A15.

116). Any solution to this set of equations which also

satisfies the condition:

s s

Al £k o -




X ;
!
Ay £ 0.0 $24,6,7,8,14,15,16
'_ will satisfy the modified Kuhn-Tucker conditions. Using l
%’ linear programing methods, such a set of A's was found, .
%E thereby verifying the satisfaction of the Kuhn-Tucker condi- i
\; . tions at the proposed three-dependent strategy of Table V. i
E; The near-optimal solutions to the four and five-dependent ;
Eg strategies (Tables VI and VII) could be analyzed in a

similar manner.
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