
D-A136 809 A USER-ORIENTED MICROPROCESSOR SHELL COMMAND LANGUAGE I/2
INTERPRETER(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
D J RITRLDRTO ET AL. SEP 83

UNCLASSIFIED F/G 9/2 NLIIEEEEEEEEIE
EEEEIIEEEIIEEE
EIIEEEEEEEEIIE
IEEEEEEEEIIIIE
EIEEIIEEEEEEEE
EEEEEEEEEEIIIE
EIIIIEEEEEEEEE

L3-6-

1"0A Ig

A-11111L 5 11111J.

MICRCOP RESOUTIO TEST CHART
NAIOA SURO TADRS 13 3-

4 NAVAL POSTGRADUATE SCHOOL
Monterey, California

."

4.JANi

319842

THESIS H

A USER-ORIENTED MICROPROCESSOR SHELL3COMMAND LANGUAGE INTERPRETER

.byLU

Dennis J. Ritaldato

and

David J. Smania

September 1983

Phesis Advisor: Ronald Modes

Approved for public release; distribution unlimited

8-*., 84 '<'si ; ,

SE1CM101I, CLASSIFICATIONg OP THIS PAGE (She. Data Eotmeed)_______________

DMIANTAION AGEREAD INSTRUCTIONS

REOR DOCUMETAOiO PAGEI BEFORE COMPLETING FORM
2. GEPOR ACCESSIO NO. 3. RECIIPIENT'S CATALOG NUMBER

4. TTLE e~d ubulI~jS. TYPE OF REPORT a PERIOD COVERED

A User-Oriented Microprocessor Shell Master's Thesis
Command Language Interpreter September, 1983

6. PERFORMING ORG. REPORT NUMIER

7. A1@Re11a) 6. CONTRACT OR1 GRANT NUMBER(@)

Dennis J. Ritaldato and
David J. Smania

9. P41RPORMING 6OAmizITIOm NAME11 AND AOREUS 10. PROGRAM ELEMENT. PROJECT, TASK

Naval Postgraduate School AE&OKNTUuR

Monterey, California 93943

I I- CONTROLLING OPPICE HMNE AND ADDRES 12. REPORT DATE

Naval Postgraduate School September, 1983
*Monterey, California 93943 13. NUMBER OFPAGES

1_______________________ 116
14. 10 ITORING AGE1NCY NAM9 4, AODDRKS11(Di Eitrme fres Ceu.*vIilng Office) IS. SECURITY CLASS. (of this report) -

UNCLASSIFIED

Se0. OECL ASSI PIC ATIONi DOWN GRADING
SCHEDULE

Approved for public release; distribution unlimited

Accession For

IT. OISSNIBUTIOw STATEMEIINT (of the sbeet e"tgedIn Steboo 20, it O free a fiperf) NTIS GPA&I
IYTIC TA13
Unannounced El

II. SUPPLIVEM1TARY NOTIES
6. Distribu r

Availlbility cs

Dist Spcilr

IS. Key 110611S (C40101111100 o uoceve aide of OWee~ Iu dentify3 b wek nuaee)DitSp il
Command Language, Shell, Interpreter, User-friendly e

20. ASISTRACV (Cantam am toowe. Weld it neseom asd Isieilp by block rMbet)

The design of a microprocessor command language, RSCL, is discusse.
RSCL provides the capability of building variable shell environ-
ments on a standard microprocessor system. These environments pres.
ent a menu driven, screen oriented user interface as opposed to th(
line oriented interface of current operating systems.
The RSCL is a straightforward, easily understandable and complete
cnguter programminglngae Designed according to specific comn-

man aae guidelines, it allows the user to make maximum
Lutility of his skills. .~>~(Continued)

DO0 1473 901"01100 O1 NOV039 IS OISSOLECTE
S/N 0102- LF. 014- 6601 1 SE9CURITY CLASSIFICATION OP1 THIS PAGE (Sh. 0.1. 6.1er.,

-47

.. r - - -. U R77 7 - iT.* -* *c n~9i X r~ ~ * *

S (cjIIITY CLASSIFICATION OF THIS PAGOL("w mawu 0.. Ese...d.

ABSTRACT (Continued) Block # 20

A prototype implementation and sample program runs are included.
These illustrate the design features and serve as a test platform
for future research.

"

it

i%.

'U
,%

DD]orin 1473
S/ 1 0 D014-6601 2 SCUOIY CL.AUICATON OF T141S PAG0t(VSt 00a- S,,*i.

p].

Approved for public release; distribution unlimited.

& User-Oriented

ictoprocessor Shell Command Language Interpreter

by

Dennis J. Ritaldato
B.S.E.E. Villanova University 1974
B.S.E.E. Drexel University 1981

and

David 3. Sonia
Lieutenant Commander, United States Navy

B.S. Veber tate Colleqe 1972
M.A. Pepperdine Univars Ity 1979

Submitted in partial fulfillment of the
requirements for the degree of

RLSTER OF SCIENCE IN COMPUTER SCIENCE

from the

NATAL POSTGRADUATE SCHOOL
September 1993

Authors: _ t-< j Yt ,

a.-
- "7 ..

Approved by:
Thesis Advisor

Second Reader

Chairman, Department of Computer Science

Dean of info Policy Sciences

3
:.,

'a' - - d -]" d i
-

- " " '' "" " " " " " " " " "s "
'

ABSTRACT

The design of a microprocessor command language, RSCL,
is discussed. RSCL provides ths capability of building

variable shell environments on a standard microprocessor

system. These envircnments present a menu driven, screen

oriented user interface as opposed to the line oriented

interface of current operating systems.

The RSCL is a straightforward, easily understandable and

complete computer programming language. Designed according

to specific command language guidelines, it allows the user
to make maximum utility of his skills.

a prototype implementation and sample program runs are

included. These illustrate the design features and serve as

a test platform for future research.

Ue~
P S

4

*~_ . * * . _1 _11C~ . -

ACKNO ULEDGIENS

The authors wish to thank the following people. LCDR Ron
Modes, our advisor, for supplying the necessary guidance and

support to see us through the difficult times. Prof Dan

Davis, our second reader, for his insight into future trends
in user friendly systems. Mr. Al Wong for his assistance in

debugging our IC' interpreter. Finally, and most impor-

tantly, to Dur wives, Dawn and Royan, and our children
Dennis and Annie and Stacy, Suzanne, Shelly and Scott for

-i supporting the successful completion of our work.

5

°"-1 ,, ' " .,-" % " %- '% % %'% .' ,--"'-' '"" -' " ." "

I- - a. - - . . - . - a

A

#1

TI IDINARKS

CP/K is a registered trademark of Digital Research.

Display Banager is a trademark of Digital Research.

* ii

4*

*1
A

gD
4

.4~i

.5'.

5'.

a.,

A

* A.

6

49
5~I

S. * * ~ - * a a a * ~ a4.*~a5*'~aaS * a .. a -. -a . . S. *

* *'*~ , * * R~ ~ *. . .* * *.. -. - a

TABLE OF CONTENTS

I. INTRODUCT ION 10
A. BACKGROUND 10
B. PURPOSE o ee. e*. 13
Ce SCOPE a. e e.* . 13

II. COMMAND LANGUAGE ISSUES 14

A. DESIGN ISSUES 14

1. COMMUNICATION STYLES 14

2. DESIGN GUIDELINES 15

3. USER PROGRAMMING LEVELS 16

4. DISPLAY FORMATS 17

III. R&S COMMAND LANGUAGE FEATURES 19

A. RSC L CON MANDS 19

lo BUILT IN FEATURES o 19

2. LANGUAGE LIMITATIONS 20

3. LANGUAGE COMMANDS 20

IV. SYSTEM DESIGN 24

A. DESIGN ASSUMPTIONS 24

B. DESIGN CRITERIA 24

C. DESIGN DECISIONS 26

V. IMPLEMENTTION 29

A. DATA ORGANIZATION 29

B. PROGRAM ORGANIZATION 29

C. RUNTIME ERROR CHECKING 30

VI. SYSTEM OPERATION 31

VII. CCNCLUSIONS AND RECOMENDATIONS 32

7

., ., , ,.,., . ,. . ,, ,, .' .,. ... -. . .'.--. . : :,. .'/ - ..--

A. GOALS . 32
B. PROBLEM AREAS 32

C. FUTURE WORK 33

APPENDIX A: COMMAND LANGUAGE GRAMMAR 3 4

APPENDIX B: R&S COMMAND LANGUAGE USER'S MANUAL 37

A. INTROIDUCTION o . . o . 37

B. LEXICAL CONVENTIONS o 37

1. TOKEN DESCRIPTIONS 37

C. DECLARATICNS 0
Do SYNTAX o o 40
E. PROGRAM STRUCTURE 40

1. The LET Statement 42

2. The GET Statement 45

3. The PUT Statement 48
4. The IF Statement 50

5. The LOOP Statement52

6. The CASE Statement 54

7. The CREATE Statement 56

8. The DISPLAY Statement 56

F, GENERAL ERROR HANDLING 57

APPENDIX C: PROGRAM SOURCE CODE LISTING 59

LIST OF REFERENCES o o o * 113

BIBLICGRAPHY 114

INITIAL DISTRIBUTION LIST 116

* 8
.4

LIST OF FIGURES

1.1 ANSI OSCL Study Recommendations 11

1.2 Dutch JCL Committee's Basic Job Functions . . . 12

2.1 Four User Programming Levels 16

B.1 Sample Command Language Program 41

B.2 Example of Two Line Formatting Techniques . . . 41

B.3 SAMPLE LET STATEMENTS 45

B.4 SAMPLE GET STATEMENTS 46

B.5 SAMPLE PUT STATEMENTS 49

B.6 SAMPLE IF STATEMENT 52

B.7 SAMPLE LOOP STATEMENT 53

. 5.8 SAMPLE CASE STATEMENT 55

6,o

4.

A. BACKGIOUn

In the early days of computing it was simply man against the

primitive operations of the computer. There was no need for

any Command language because programming was done bit by bit
without complex interfacing. Computer systems consisted of
many tubes, a few cable connections, and possibly a periph-
eral device to display the results (output). The programmers

of the early days were considered Jack of all trades. They

designed the rudimentary programs, entered them bit by bit
by re-arranging the cable configurations and should problems
arise they were the only trained maintenance technicians.

This idyllic situation did not persist for long.

Advances in computer technology especially in regards to
resources available made it imperitive that the user. be

given some access mechanism to these resources. The first
system to provide such a means was the IBN 360. The system

required precise instructions to execute the system func-
tions. Unfortunately, these instructions were not self

generated like today's systems but required external media
intervention. This external media was in the form of punch
cards each containing a precise coded instruction which was
then feed into the system along with the program card deck.
The system designers either misconceived the effect of these
cards on programmers or miscalculated their abilities to
achieve an automated system. The result was catastrophic.

The first of the Command languages was a piece meal language

conceived in part as an after thought to a poor system

design. The IBM language called a J3L (Job Control Language)
did just that, it controlled the program execution by the

$ 10em
-a * .. o* . . ~ - .-

%7 7

insertion of instruction cards throughout the program to

manage the system's resources. The language was ambiguous,

inconsistant, machine dependent and designed with little

concern for the user. The impact of the IBM JCL language

spawned numerous reserch efforts several of which are

outlined.

During the late 1960's and early 1970's several organi-

zations established working groups to study the JCL and OSCL

(Operaing System Control Language) interface problem. The

first organization to study the problem was the American

Standards Institute Committee on Programming Languges (ANSI)

in June of 1967 [Ref. 1]. They conducted extensive surveys

of nine existing 0/S systems and their control languages.

Their findings concluded with a list of five recommendations

,!:I .. .I

I 1. The need for a standard OSCL exists and its
attainment is possible

2. Several features now present in 0/S should
not be included in the standard

3. Noi~e of the existing OSCL's surveyed are
s uitable as candidates f9r a standard lanquage

4 There sh uld only be a single standard OSCL
5 Piecemeal st andardization should be avoided

Figure 1.1 ANSI OSCL Study Recommendations.

for a design proposal, figure 1.1

The Dutch established committees in September of 1971
and conducted numerous meetings under the auspicies of the

Netherlands Zentre for Informatics. They focused on the

basic functioas of job control as related to data processing

and job control inputs. The committee developed a list of

basic job control functions, Figure 1.2, is a synopsis of

their classification of related O/S funcions.

1A1

1. Allocation (of resources) I
2. Condit nal Selection (of part of a job)
3. _xecutlon (of a computer program)
4. Declaration (of job attributes)

Figure 1.2 Dutch JCL Committee's Basic Job Functions.

In late 1972 the CODASYL (Conference on Data System

Languages) organization conducted follow on studies to the

ANSI research. They determined that the ANSI committee had

only addressed the feasability aspect of a standardized

language and so set out to design a standard OSCL language.

Three working goals were established to guide the research:

investigate the functional requirements for communications

between the user, the functional program and the hardware;

determine the functions necessary to define a standard OSCL

language and what prcblems such a language would have on an

O/S; develop linguistic elements which posses these func-

tions and define a machine-independent OSCL.

Since these early studies Other organizations i.e. US

Federal Information Processing Standards (FIPS) , IEEE, ACM,

British Ccmputer Society, US Department of Defense (DOD),

etc. both governmant and privately sponsored have contrib-

uted to the research and development of several prototype

OSCL languages.

The problem of standardizing Command Languages has

perpetuated itself over the years. To date only a few

languages (systems) merit any consideration as possible

solutions.

12

.1*,", " a

,e, : :4:. i .:?. :. .?L:...:,,:.;? .:.?......:, : I'.:--'L: .i .:..::,?. ..--:. '-..-':.-..-...;.- - .-.- ,-..-;. " .-. . '- -

B. PURPOSE

The purpose of this project was to design a system which

will enable the user to easily define a screen oriented

environment (shell) for interfacing to microprocessor based

computer systems.

The shell provides an abstract view of the computer

system to the user. Through it command access can be
controlled and a standard JCL can be created which will
operate on multiple computers and operating systems. In
this way, any computer system can be tailored to perform
exactly as desired fcr each command. In addition, the same
commands can be made to execute in exactly the same manner

regardless of the resident operating system. This can have
substantial cost saving effects in locations where multiple
computers are used. Personnel will not have to be trained

for each system since all systems will operate with the same

JCL.

C. SCOPE

Chapter two discusses the issues involved in the design of a

command language. Guidelines for the design are also

presented. The features of the command language are

described in Chapter three. Chapter four discusses the

factors which were involved in the design. The assumptions

made, the criteria established and the decisions based on

them are listed. k prototype implementation is described in

Chapter five. Tie operation of the system from the point of
view of a user creating a shell environment with the command

language is discussed in Chapter six. Our conclusions and

recommendations including the results of the prototype

implementation are presented in Chapter seven. Appendices

A, B and C include the RSCL grammar, a User's Manual for the

RSCL and a CLI program source code listing of the prototype
implementation, respectively.

13

p'" \'" ' " -'", " ' "" " " , ' ' ' "" l""' ', - - ' - ' . ." " ' .-. '' . . .,.,i.''. .-" i.. .. ."', , " "- .",. "..,.,. .

47 .! , - , . .' -,

.~II -. bBU k-.-k~ " *4 - 41

P.

I DESIGN ISSUES

Four design issues ccnfront the designers of any interactive

Command language [Ref. 2]. First, how many modes of opera-
tion should the user be forced to learn. Second, the selec-

tion sequence of ccmmands should be consistant and not
change with varying machine implementation schemes. Third,
an abort mechanism must be provided to the user to terminate

a command sequence without losing the current scope or envi-
ronment. Finally, a clear and concise error message system

must be provided to quickly resolve syntactic and semantic
problems. These design issues are not all inclusive and

further issues will be brought forward as the need arises.

1. flRjTQJ jTYLE.

Many CL (command language) communication styles are avail-

able today. Direct keyboard entry, using pre-defined

commands, allows the user to directly control the machine

operations, but requires the user to learn a new, possibly

criptic, language for each OS/machine used. Another method
uses keyboard response dialogue to screen prompts. This

method is easier to use, but requires modification of the

prompts whenever a change in functions is made. Function

keys are a third method for users to communicate with the
system. They are very fast and simple to use. The drawback
with this method is some machines do not provide a function

key option or an easy means to redefine the existing key
functions. The last communication style to be mentioned is
the screen menu format. This style is seen as the way of

the future. Commands and data are displayed on the screen

*4414
%4,

' 10-.

in menu form. The user references the command/data by posi-

tioning the cursor at the desired fiald or by marking the

position with a light pen. Data changed on the screen are

correspondingly changed in the data base. Criptic one-line

commands to the O.S. are no longer required.

Some systems (Xerox Smalltalk) provide a controlled

pointer (mouse) to indicate which function is to be invoked.

The &pple Lisa system uses the position of the cursor to

highlight a chosen function. In either case the system is

screen oriented providing the user with a simple control

mechanism without the need to learn another language.

2. . DE SIGN UPBIE

Several scholars have suggested gidelines for developing

command languages. Rather then repeat their offerings we
have consolidated our perceptions of the primary guidelines.

. The system must be consistant. It must present
Y,. the same environment to the usar regardless of

the basic system it is operating on.

The systes must provide the user with a command

sequence which is easy to use and learn, especially

the most frequently used commands.

. The system must be portable. ather machines must

be able to adapt to it with minimal modification.

" The system must provide a suitable error handling

process, both in presenting error messages and in

saving environments.

. The system should be user interactive and provide
the user with the option of selecting the level of

prompt help he desires. Screen oriented displays

are very helpful in selecting operations, but

require complex interface buffering.

15

4.

'"Control structures should be affluent enough to
allow the user total control of the programming

environment.

3. __ I L VEL_
Different levels of user motivation and programming experi-

ence must be considered when designing a multi-purpose

Command Language system. Figure 2.1 shows a rough categor-

ization of potential users into four general programming

levels.

1. The Toy.Store Programmer
A2. The Novice Pro rammer

3. The Cuegpter Club Programmer
4. The Paid Prog rammer

ral Figure 2.1 Four User Programming Levels.

The first level is the "toy store" programmer. He does not
really want to write an application program, but just wants

.- to know enough language tools to run a simple game program.

In general, he is in total awe of computers and makes
minimal use of their actual processing capabilites.

Progressing to the second level, the first addres-
"-: ~sable command language level, we have the user who may have

attended a programming course and who is now challenged to
"< write a few simple application programs. The user at this

level is enthusiastic and eager to try out his new skills.
A friendly command language will motivate him to the next

level. A poorly designed command language will be frus-

trating and quite possibly curtail future computer queries.

The third level is characterized by a quantum jump
in user motivation, and usually programming skills. These

16

i 4

d;w'"%J ? " " ,* ,-., ;o' ,/'-.,. f , - - .*. 4:: -, : :, z,-. ,/, . ?:'., -?' - -J - :'.. ,. ;..-x -.

users really want to know how the internal system works and

are willing to expend energy and their own time to learn

varying systei hardware and software configurations.
The final level is a grouping of two user factions

into one entity. They are colloguially termed the learned

computer scholars and the commercial programmers. They may

perceive issues frcm different perspectives, yet their
motives and knowledge of computer linguistics are compat-

ible. Bcth require the full system resource capabilities at

their immediate disposal in order to perform to their full

potential.

Realistically, the majority of today's users and

those who are of ccncern to a command language designer,
fall within the final two catagories. However, care should
be taken so as not to preclude use by someone at the second
level.

It is easily understood why Command Languages are so

universally divergent. Designing a command language to

satisfy the dynamic needs of the fourth- level users while

still maintaining the simplicity for the novice users is not

a trivial task.

Another issue which is receiving a great deal of attention

as the state-of-the-art is the display format. Whether to

display data as individual line oriented character strings

or as a menu driven system. The traditional theme, driven

by the hardware limitations of the past, is TTY (teletyp-

writter) format. i.e. Presenting a line at a time. The

user responds in a similiar manner by entering data in line

oriented fashion. Innovations in hardware have enabled
designers to break from tradition and display whole screen

":Z4 prompts instantaneously.

17

The impact of these innovations has been seen is
such systems is the Xerox Smalltalk and the Apple Lisa. i.

s. Incorporating the traditional command language line
editing commands into onscreen menu controls. The respose

from critics to these nontraditonat systems has been over-
whelmingly positive.

The real significance of these systems is their
prime objective. They strive to provide the user with a
friendly interface devoid of complex, ambiguous and incon-

sistant ccmmand language structures. To the "real" program-

mers these systems appear as a threat to their mythical man
over machine syndrome. Many feel that programming is an art
and a science and that these systems take away their

creativity by restricting how they can address the computer.
They prefer to deal direct rather than through the

middleman. In reality, a friendlier interface places no
such restrictions. It simply makes it more understandable

so that more users can address the computer direcly. Until
we overcome the system friendliness problem only those in

the "real" programmers category will be willing and able to
fully utilize the computer.

These systems still have some drawbacks such as
overall cost and high memory requirements. Yet, given the

history of the microprocessor, hardware designers will over-
come the obstacles and make these features available to the

average user.

The command languages of tomorrow will employ the
ease of onscreen ccntrol with the user friendliness of
multi-screen display.

:' . ,.. .,.,.. -

Izz.nEE. EIES JGg~. .- --E

A. RSCL COMMANDS

The BSCL commands were chosen based on the guidelines

outlined in chapter two. Simplicity of use, coupled with

conciseness in definition and execution were paramount in
*" choosing the RSCL commands.

Research and practical experience indicates that many
command languages are either to baroque or to simple for
their intended purpose. While the RSCL does not encompass

all possible programming language capabilities, it does
fulfill the minimum requirements of a complete language.

And, it does establish a user friendly framework, a design

goal stated in chapter one.
Standard command naming conventions i.e. if-then-else,

put, case etc. were adopted whenever possible. The syntax

structure does not deviate from established norms, while the
semantics of the comman d language avoids ambiguity.
Exception proc-essing and type conversion is not performed

nor is it implied in any of the commands. If the system

does not know what you intended, it tells you via an error

message. If data types do not match across an assignment
operation, the assignment is not permitted.

1. I2LLZ jP_ ZRTU

Several features have been built into the RSCL which

simplify both the language itself and the programs written

in the language.

. Dynamic data typing (offsets declaration requirements).

. Both interactive and file processing capabilities.

. Automatic file opening and closing operations performed

19

re

' ,: - " ' ;;.''*.*. .*,"-.*, .,.>. - .a.-.."". 4 - ;. : ." -. '. ".-.-...":. '- .- -,".- -. - -- . -
• '; i "' ' e " - " "- " ' "; "' "' '"-- '.."..-.. .-. ,.".".. .

a -_ ..,,

on both the PUT and the GET commands.

SFcrmat free statement entry.

0 Statements may be entered in either upper or lower case.

2- LANGUgjqL1=1oS

The language, as designed, has the following limitations:

. Arrays and data structures are not defined.

. Only decimal integers may be represented.

0 Floating point arithmetic is not supported.

0 Unary operators are not supported.

. Exponentiation is not supported.

In the prototype implementation the following addi-

tional contraints were placed on the system:

o Loop statements may not be nested.

0 Only one string variable may exist at any time.

3. J"GU&!J ;OHB S S

The ten RSCL commands were chosen as the minimum number

required to facilitate the requirements of a screen oriented

command language.
The following is a brief description of each

command. For a detailed description see the R&S Command

Language User's manual, Appendix B.
a. LET command

The LET command serves as the assignment statement. The

variable on the left hand side (LHS) of the "4=, receives a

value frcm the right hand side (RHS). The RHS can be either

an expression, an integer, a string, or another variable
(containing a value of the same data type). If the RHS is a

legal arithemetic expression, its value is computed and the

20

*** **.ao ,***"** . " " - ." ' . ,' ,.'.. ,. ' ' ' ' .'' .'" -" ' " ." . .- " -. ,' ,-. , ," -"

result is assigned to the variable on the LHS. Otherwise,

". the value of the RHS is directly assigned to the variable on

the LHS.

b. The PUT command

The PUT coumnd consists of three parts; the device, an

optional line skip parameter and the data list. It outputs

newlines and the items specified in the data list to the

named device.
Valid devices are: "LST", the system line

printer; "CET", the user's console screen and <FN> the name
of a disk file. The device name may be followed by the word

"skip" (performed only once per-command). Each occurrance

causes a newline character to be output. The data list

contains any combination of variables and strings (a string

consists of any characters contained within double quote

symbols " "). The value of the variable and the actual

character string, minus the quote marks, will be output.

c. The GET Command

The GET ccmmand reads data from either the user's console or

from files stored on the user's disk. The device name

("CRT", <PN>) preceeds the receivin; variables and indicates

which medium the user wishes to access for his data.

d. IF command

The IF command is used to logically select whether or not to

execute a particular set of statements. It has three compo-

nents; a logical expression, a THEN set of statements and an
optional ELSE set of statements. The value of the logical
expression is computed. If the expression result is true,
(value not equal 0), the THEN group of statements is

executed. Otherwise, the ELSE group of statements is
executed. If no ELSE group is included execution continues

after the end of the IF statement.

21

eI

e. The CASE Command

The CASE command provides for the execution of one or more

statements contained within at least one sub-case. The

sub case is entered if it's corresponding case label matches

the value of the CASE statement parameter (variable or
integer). If no sub-case label matches the label of the
case value, the OTHERWISE set of statements is executed.

f. The LOOP command

The LOOP command consists of two parts; the loop iteration

parameter and the body of statements. All of the statements

included within the body of the loop are repeated a number

of times equal to the value of the loop iteration parameter.

If this value is less then or equal to 0, no statements are

executed.

g. The CORIENT Command

The CCANENT command performs no actual processing. Its

purpose is to allow the user to document his program and to

structure it in a logically understandable form. A comment

begins with a ";" and, as all other RSCL statements, it

terminates with a ";". Everything contained within these

two semicolon3 is ignored.

h. The LOCATE Command

The LOCATE Command is used to determine the current location

of the curscr. It returns the row and column number.

i. The POSITION Command

The POSITION Command is used to place the cursor at a

particular point (row and column position) on the screen.

22

,, ,o,;.';' * ,. .., ' % "./ -,;..'..- ."..' .'. .. , .. .-,.. . "-..-.....-.- -... . .-

j. The CREATE Command

The CREATE Command is used to generate a screen template.

It consists of two parts; the template identifier and from 1

to 24 line definitions.

The template identifier is a variable name used

to differentiate one template from another.]he line defi-

nitions specify up to 80 fields per line and their associ-

ated attributes.

k. The DISPLAY Command

The DISPLAY Command causes a screen template and its associ-

ated data to be output to the usarls console screen. It

consists of two parts; the template identifier and an

optional set of parameters.

The template identifier is a variable name

supplied by the CREATE command when it generated the temp-

late. The parameters include a line number, a field number
and text. The line and field numbers specify exactly where

on the template the text has changed. These parameters are

returned by the display manager whenever the data in a

particular field has changed.

23

S

A. DESIGN ASSUMPTIONS

Four major design assumptions were made early in the design

phase. First, the integrated system is intended to operate

on either 8 or 16 bit microcomputers.

Second, the interfaces between the host operating

system, the command language and the Display Manager are all

transparent to the user. The use of abstract interfaces

between these three modules enables the system to be readily

transportable to various microcomputers and operating

systems.

Third, memory utilization was not considered a prime

concern. The current trends in the state of the art towards
larger, cheaper memories lead us to believe that the differ-

ence of cne or two thousand bytes out of possibly one mega-

byte of storage is insignificant.
Fourth, processing speed was considered important,

although not paramount in the design. Since the system is

to be in coatinuous operation serving as the interface

between the user and the imbedded operating system, some

overhead is acceptable in exchange for the added capabili-

ties. This overhead should occur luring the user's "think"

time rather than during actual processing.

B. DESIGN CRITERIA

several criteria were considered during the design phase.

Clarity, sisplicity, portability, maintenance and upward

compatibility were all key factors in designing the system.

The ultimate goal was to design a system that incorporated

the features outlined in Chapter two in a clear and concise

24

i ,. , , ., -. .- ,% . - .- . - .'-- -- " "- , ,' ".". - "-- ." , ' - " " - . "%

manner without overburdening the user. The limited number

of language commands is a direct attempt to damonstrate that
a command language can be simple and can function clearly
without an excessive number of nebulous commands. The

sample programs listed in the users manual demonstrate the

clarity of command usage.

The use of a high level system programming language,
"C", serves to grant the desired portability. "C" compilers

are available on many micro, mini and mainframe systems.

Cross-compilers should be available for those systems which

do not have a "C" compiler.

The VAX computer was used for development of the proto-

type system. Its processing capabilities and myriad of

supporting functions along with its multiprogramming oper-

ating system and the availablity of a competent support

staff made it more suitable for development than a single

user micro system. The use of any features unique to the

VAX is purely accidental. To assure program portability,
only standard "C" programming features were used.

Extensions and system dependant features must be avoided in

any implementation.
Program maintenance is supported by the use of a higher

order programming language, functional decompostion,
abstract interfaces and structured programming techniques.

The utility of these factors was directly observed during
the debug and test phases of the prototype implementation.

In addition, the use of a higher order language, the
simplicity of the language design and the avoidance of

nonstatndard features ensures soma degree of upward system
compatibility.

25

NO

M-N/

C. DESIGN DECISIONS

Three major design decisions were faced during the develop-

ment of the command language. First, which language should

be used to implement the system. second, certain grammar,

structure and ifplementation conventions had to be adopted

in order to ensure system integrity. Third, the interfaces

between the operating system, the Command Language module

and the Display manager module was uncertain.

"C" was chosen to implement the system because of Its

inherant system design features. It was originally designed

as a system development tool. As such, it was felt to be

the most suitable language for our purposes.

In designing the RSCL grammar, standard conventions for

representing the lexical ordering and syntax of the language

were devised. These conventions were documented and are

included with the grammar itself in Appendix A. The use of

these standards was necessary in order to assure that we

both interpreted the grammar in a like way and that separate

modules, which were coded independently, would operate in a

like manner.

-Prior to initiating the actual coding phase, several

sessions were held te establish programming guidelines and

internodule interfaces. Global variables, data types, error

handling, system diagnostic and integration standards were

defined. Any changes or variations from these established

guidelines were discussed and agreed upon before being
incorporated into the respective functions. This practice

proved to be Invaluable daring the integration and test of

the prototype system. No significant interfacing problems

were encountered.

The last major design decision concerned interfacing the

command language interpreter (CLI) with the resident oper-

oating system and with the Display sanager program. Neither

of these interfaces was built into the current system.

26

.4.,'
... 4 inherent system desig fetre•I wasoriinaly esine

Instead, abstract interfaces vere planned for each of

these. The operating system interface will be a function

call with a character string parameter. For example, to

change the name of a file, a rename function would exist.

This function would require two parameters; the old file

name and the new file name. The file names are expected to

be complete. Information such as the disk drive designator

should be included in the name whether or not the user

enters it. the rename function would then cause the oper-

ating system to change the name of the file in whatever ways

it feels is optimal. It is transparent and irrelevant to

the (CLI), whether a separate command to the operating

system is generated or the data is sent to the BIOS or the

disk file directory is changed. In this way, a change in

the underlying operating system will require a change in

only these interface functions. It makes no difference to

the majority of the system whether a file name is changed by

an "am" command as in VAX UNIX, an "ren" command as in CP/,
an '"r" command as in VMS, etc. The implementation of these

functions is cur.rently the topic of a separate thesis at the

Naval Postgraguate School.

The interface to the Display Manager module was not
implemented because it was planned to use a pre-existing

program. a commercial product, called "Display Manager" is
available from Digital Research. this program does all that

we needed in the RSCL system. It also is capable of inter-

facing directly with a program written in the "C" language.
Rather than devote time to development of a new program with

similar capability, it was decided to purchase and use the

Digital Research Display Manager. Our efforts were spent

defining the display data which were of concern. This
information is included in the language grammar within the

"create" command. The actual coaaands telling the Display

Manager what to display are included in the grammar within

27

.I.

the "display" command. Coding of these functions was post-

poned until the program could be purchased. At that tims

the actual interfacing parameters raquired can be determined

and the functions can be written.

-28

%4,,

... I
-4;'

4N

, c. ternallit tis- .

'. . DATA ORGAIZATIO N

The language data organization is broken up into two parts,
*local and global variables. Local variables are used within

eahfunction tohandle internal data transactions. Data

shared between two functions is passed globally. The global
variables are declared in a central file, "global.interp",
to maintain tight control over their assignment and use.
Using glcbal variables to transfer external data decreased
the system execution time, while making the functions
cleaner and easier to integrate. rhe design specifications

clearly define each global variable, its use and what func-
tions utilize it's values.

Comments are generously dispersed throughout each func-
tion to aid the user in understanding its purpose. A header
is appended to the beginning of ea:h function, listing the
other functions called and the global variables and
constants used within the function.

B. PROGRAN ORGANIZATION

Functional decomposition was used extensively throughout the

program. Three separate modules comprise the fully inte-

grated system. The O/S module is a set of functions which
defines the interface to the host's operating system. These
functions translate commands from the CLI to the native

language of the O/S. Those commands that are not native to
the host will be software emulated, if possible.

The language interpreter module has a dual function. It
interfaces with both the O/S and display modules. Programs

generated either interactively or by batch mode are

29

'7 7

processed through the language interpreter. Output from the

interpreter is a series of instructions to one f the other

two modules.

The last link in the triad is the display module. Like

the O/S module, it receives its lata from the interpreter

through the interface commands. The display module takes

data stored in a file and transposes it onto one of the

formats generated by the create command.u .

C. RUNSTIE ERROR CHECKING

a run time error handler is built into the system and is

activated when an invalid command sequence is encountered by

the interpreter. All error messages are contained in a
single error function. When an error is detected the error

handler is called and prints a diagnostic message and ampli-

fying information. Depending on the severity of the error
either the prgram is terminated or control is returned to

the calling function.

30

The RSCL is capable cf operating either in an interactive or

a batch mode. For batch mode operation, programs can be

written using any standard text eliting program. The file

containing the source code must be called "RSCL".

At execution time, the CLI datermines if a file exists

with the name "RSCL w . If one is found, it is assumed to

contain the source statements. The CLI then executes in a

batch mode taking its input from the source file.

Otherwise, the CLI reads its instructions from the user's

* console.
When operating in an interactive mode, the user must

still follow the complete format of the language structure.

That is, the program begins with the word "program", termi-

nates with the word "end." and each statement terminates

with a ;".

31

."

VIZ. QoNC oUsJJ Al_R U .O URRIU.21s

The command language design and a prototype implementation,

have been completed. This design is now reviewed to deter-
mine which of our original goals have been met or can be met

with further work and which, if any, were not found to be

feasible.

Ao GOALS

The goal of this work was to design a command language which

runs on microprocessor based computer systems. The purpose
of the language was to allow rapil definition of a screen

oriented user interface. The language was to be simple,
easy to use and readily understandable. Maintainability and

portability across different machines and operating systems
were prime concerns. Processing efficiency was considered,

but only secondarily to the other factors.

B. PROBLEI AREAS

The RSCL is complete and workable as designed. Known

problem areas which are stated as constraints in the
language are not inherent problems. They can be eliminated
during future enhancements. The only area which we see as a

potential problem to the system design is related to the

Display Manager interface. The design in this area was
purposefully made generic via the principles of abstract

interfaces and information hiding. However, if the func-
tions required by the CLI are not available, some redesign

may be necessary. Because of our research in the area

before creating the design, we do not feel this is a major

concern. The CLI module should be easily interfaced to the

other two major system modules when they become available.

32

.Wt-

C. FUTURE ORK

In order to create a complete and deliverable product

further work is required in four areas; the operating system
interface routines must be completed, enhancements must be

added to eliminate the constraiats discussed in Chapter

three, the three main system modules must be integrated,

studies should be performed to datarmine user needs and

reactions.

The operating system interfaza routines are already
being developed under a separate thesis effort at the Naval

Postgraduate School. Assuming that a copy of the Display

Manager Program is obtained from Digital Research and that a
"C" compiler is available for the NPS microprocessor system,

the system enhancements and module integration can be accom-

plished under another thesis. Concurently with the system

integration, research should be performed to determine

sample presentation formats. They could then be created in

the RSCL.

43

q.3.

a

Bj - o ~~~~~~~~~~~~~~~~~.. -,-. ,.. .- oo_-.. - ... o .. _

COMMAND LANGUAGE GRAMMAR

The convention used for describing the grammar of the

command language is described in table I.

TABLE I

Grammar Convention

< > Used as deliaiters for matasymbols
in the rammar. Anything contained
vithin these brackets is defined
later in the grammar.
Used as deliaiters surrounding
optional entries.

' ' Uqed as delimiters surrounding
literal expressions in the qrazmar.
Anything within these symbols must
appear exactly as shown.

I Used as a logical OR.

Interpreted as "Defined as".
() Used to group expressions.
* N Used to designate a repetitive gfoup.

Where "N" is the number of repetitions.

Using this convention the Command Language Grammar is

defined as follovs:

PROGRAM ::- 'PROGRA H <IDENTIFIER> (STATEMENTS> 'END.'

STATEMENTS ::= <LET STATEMENT> I <IF STATEMENT>
<PUT-STATEMENT>| <GET STATEMENT>
<LOOP STATEMENT> ! <CASE STATEMENT>
<CO MNT> t <DISPLAY> I CCREATE>) ''

<STATEMENTS>]

34

"- *I.- -,?' , ',..,""' : ,. ' - . """""''. '"""",.- T." - -,'""" '""""" -,"" .',. . . . - " " ". " - "

• o"-

LET-STATEMENT : = 'LET' <IDENTIFIER> $= (<EXPRESSION>
I <IDENTIFIER> I <NUMBEI> I <STRING>)

IF-STATEMENT ::m 'IF' <LOS EXP> 'THEN' <STATEMENTS>
-'ELSE' <STATEMENTS> J 'ENDIF'

PUT STATEMENT ::= 'PUT' <PUTDEVICE> ' 'SKIP'] <LIST>

.:" PUT-DEVICE ::= 'CRT' I 'LST' I <FNkME>

. LIST ::= (<IDENTIFIER> I <STRING>) (<LIST>]

GET-STATEMENT ::= 'GET' <GETDEVICE> <IDLIST>

GET DEVICE 'CRT' I <FNAME>

IDLIST :: <IDENTIFIER> [<IDLIST>]
FNAME ::= <CHARACTER> ':'] <IDENTIFIER>

('.' <IDENTIFIER> J
LOOP STATEMENr "': 'LOOP' (<IDENTIFIER> i <NUMBER>)

<STATEMENTS> 'ENDLOOP,

CASE STATEMENT ::= 'CASE' <IDENTIFIER> ':, <CASE NUN>
$OTHERWISE:' <ST&TEMENTS> 'ENDCASE'

CASE-NUN ::= 4 <NcJBER> [<IDENTIFIER>) ':' <STATEMENTS>

* COMMENT ::1 ;1 <ANYTHING>

IDENTIFIER ::= <CHARACTER> (<SUBID>]

SUBID ::, , ,] (<CHARACTER> I <DIGIT>) [<SUBID>]

*'-" EXPRESSION ::= I (I <TERM> C <ARITH OPR> <SUB EXP>] ')'

SUB EXP :- <TERM> C <ARITHOPR> <SUB EXP>]

TERM ::--<EXPRESSION> I <IDENrIFIER> I <NUMBER>

LOG EXP ::I (I <LOGTERM> C <LOGOPA> <SUBLOG>] '),

SUB LOG ::, <LOG TERM> (<LOG OPR> (<SUB LG>K. -l <LG_EXP>)

LOG TERM -<LOGEP> I <IDENTIFIER> I <NUMBER>

SPACES ::I ' ' I ' <S PACES>

o NUMBER ::= <DIGIT> I <DIGIT> <NUMBER>

CHARACTER I 'A' I OB' 'C @Do 'E' IF IF'
101I i ' I 'L' G , I '
0' IV :Po tR' ' I at 'bo
Ice @o e t off :go o il

Bi ko IllO oMI o t oo opt
Sql or@ Isf t o l u Ivt lIWttI lyt tzt

DIGIT I '3 I '' I '5' I '6' 07'

ARITHOPR ::, '4' I '-' I '*' I ''
LGOPR :: 'EQ' I 'LT I 'GT' I 'NE' I 'LE' I 'GE'

35

WOGUNC :z'AND' I'OR' O NOT' I'CON'

STRING : '"<ANYTHING>''

ANYTHING :: (<DIGIT> <CHARACTER> <ARITH OPR>
I<OTHERS> r <ANY THING3

OTHERS)?:~

DISPLAY :: 'DISPLAY@ <IDENTIFIER> [<PARAMS>]

PARANS V: ~ F<LINE> ' (<FIELD>] ,

LINE ::NUMBER

FIELD N: NUIfBER

TEXT -ANYTHING

LOCATE ::'LOCATE' <ROW> <COL>

POSITION :a'POSIT' <ROW> <COL>

RO W :aNUMBER

COL ::NUMBER

CREATE $: CREATE' <IDENTIFIER> <DEF_.LINE>**24 OENDO

DEF..LINE : 'DEF LINE' <NUMBER> -1K<NUJMBER> II
(<DEF .FIELD>** 8 0 I CAK 'ENDLINE'

DEFFIELD : DEFFIZLD' <IDENTIFIER> <ATTRIBUTES>
'

ATTRIBUTES :: 'C<LENGTrH>]', [IAU> I I
C<ACCESS>] < BAC KGROUNb]J.
[<TOREGROU N6s I[<VIDEO>1'y'
[<UNDERLINE>] , (INTENSITY]'
[<TYPE>])

LENGTH NOu NMBER

VALUE ::ANYTHING

ACCESS O: R/Of ('R/W'

FOREGROUND ::DIGIT

BACKGROUND : DIGIT

VIDEO :='NORMAL' I 'INVERSE'

UNDERLINE ::'ON' I 'OFF'

INTENSITY ::a 'BRIGHT' 'DIM'

TYPE :: ALPHANUM' I'NUMBER'I 'CHARl I'STRING'

36

.'4.

LEPENR1X I
R&S COMMAND LANGUAGE IUSERoS MANUAL

A. INTRODUCTION

The RSS Ccmmand Language (RSCL) is designed to create micro-

processor shell formats from within user designed software

programs. Programs written in the language will interface
with the display module to output data in the specified

screen format. Menus are utilizd to facilitate program
entry and apprise users of available formatting options. The

language uses an interpreter, written in "C", to execute the

programs.

B. LEXICAL CONVENTIONS

There are seven types of tokens: identifiers, integers,

strings, arithmetic operators, logical operators, logical

functions and others. In general blanks, tabs, comments and

newlines are ignored except as they serve to separate

tokens. At least one of these characters is required to

separate otherwise adjacent identifiers. The language does

not incorporate any reserved words in the grammar. Each of

the RSCL statements is considered a keyword when used at the

beginning of n command sequence, however, since keywords are

not treated as reserved words they are allowed to be

assigned as identifiers latter in a command line. The semi-

colon acts as a statement terminator.

Each word is scanned for inclusion in one of the seven iden-
tified token types. The tokens are then processed one at a

time through the CLI. The following subsections describe

the token formats in detail.

37

-,..

'V 2- ,., ,- , , % , - . , . , -" ,

a. ID EN TIFI ERS

Identifiers may consist of alphanumeric characters and the

underscore symbol. The first character must be alphabetic.

It is optionally followed by characters, underscores or

digits. Upper or lower case alphabetic characters are
allowed but are not distinguished. The standard convention

of not allowing an identifier to terminate with an under-

score applies. Identifiers have a maximum length of ter

characters and their value can be one of three types: char-

acter, string or integer.

BV? format:

IDENTIPIER ::- <CHARACTER> <SUBID>

SUB-ID ::= *' (<CHARACTER> < (DIGIT> < (SUB ID>

b. N N B ERS

Numbers are formed by concatinating one or more digits onto

a digit. Only digits are used to form numbers. Numbers are

not re-definable data types.

BIU format:

NUMBER ::- <DIGIT> I <DIGIT> <NUMBER>

DIGIT :: 1O' 1'211'3''4' I'5'I'6'I'7' I'8I1'9'

c. STRINGS

Strings are any ASCII print character(s) between double

quotation marks (" "). The language reads "this is a

string" as a single string.
DIP format:

STRING ::- '"'<ANYTHING>' "'

ANYTHING ::u (<DIGIT>I<CHARACTER>I

<ARITHOPR> <OTHERS> <ANYTHING>

38

-:.. -; .-. -. --.,- -..-...... -,. -:. , ..-. .'- .. .-.,.,.. -. -, .-.. -,., , ,.-..-,.,,...P -,,, -

d. ARITHMETIC OPERATORS

Standard arithmetic operators i.e. it, , "/" are

implemented within the language. Unary operations are not

currently supported by the language.

BE? format:
aRITHOPR := '' '' ' ' I/

e. L3GIC&L OPERATORS

Alphabetic type characters i.e. "EQ", "LT", "GT", ,NE"l

"GE", "LEI' ire used to perform logical operations. The

first three equate to equals, less then, and greater then

respectively. The last three equate to not equal, greater

then or equal, and less then or equal. All expressions are

required to be parenthesized i.e. (A GE B) or (4 LT 9).
BNF format:

LOG OPR ::= 'EQ'I' LT1| IGTJ I'NE'#'GE'I 'LE'

f. LOGICAL FUNCTIONS

Logical functions also use alphabetic type characters i.e.

"AND", "OR", "NOT", "CON" to perform their functions. The

"AND", function returns true if the two arguments bracketing

the "AND" are both true. The "OR" function returns true if

either of the bracketing arguments is true. The "NOT" func-

tion logically compleunts its operand. The "ZON", function

concatenates a string onto another string. Like the logical

operators, parentheses are required in logical expressions

i.e. ((Z GE r) AND (5 LT W)) where Z, T, M, and W are vari-

ables or expressions which evaluate to comparible data

types.
BNF format:

LOGFUNC ::- 'AND'I'OR'I'NOTI'CON'

39

g. OTHERS

The others token type is a collection of the remaining stan-

dard ASCII print character types i.e. "(", of,0 ,,,f %,

"*", etc. These characters represent their normal meaning

except where their meaning is negated i.e. "GT" replaces ">"

sign in the grammar convention.

BEF format:
O T H E RS : : = ' 1' ' (V lo)p 1 '1:1 ? 0# $ 1 11'l ' l # 1 11F, 11 1= 4

C. DECLARATIONS

The language does not provide for any variable pre-

declaration. New variables on the LHS or RHS, if reading in

data from the CRT (screen) or a file, will be assigned the

same data type as the recieved data automatically. Type
conversions are not performed in the language.

D. SYNTAX

The BNF (Backus Naur Form) syntax structure for the grammar

is provided ia Appendix A.

E. PROGRAN STRUCTURE

All programs written in the RSCL are comprised of three

parts; a header, statements to execute and a trailer.

Figure B.1 shows the format of a simple program.

This sample demonstrates the overall program structure. The
first line, "program sample" is the program header. Note,

that it does not include a semicolon. A semicolon is a

statement terminator (a semicolon is required at the end of

every statement). The complete statement is "program test

<executalble statements> end.;" .

40.

4

"4.'*" "" o -'' ' "..a.*. ""** 4\ .. .4 . -.. .-.. _ ' • - . . .• .'-'' ;- "

-~~7 7. 71 . ..

program sample
put crt skip "Enter a value for the loop count.";
let crt a; Ilooj a

. (a eq 2)
then

put crt "The value of a is " a;elseI
get testfile.dat b; b

enf; crt skip ~"When a - 2, b b;
endloop;

end.

Figure B. 1 Sample Command Language Program.

The second through twelfth lines are the executable state-

ments. They perform the actual processing. The trailer is
"end.;".

The indentation and structured appearance is optional.
' The CLI ignores blanks and carriage returns. The:efore,

multiple statements can be placed on a single line and a

single statemant can be split over several lines. Figure

B.2 shows two legal ways to write the same statements.

let a = (b+l); putcrta;

let
a- (b

;put crt

Figure 3.2 Example of Two Line Formatting Techniques.

$U.. 41
4.

I'

• -U,, :,, '/ / / . .. , . o, ,... . < -.. , .'-,.. -, . -. '.'. . . . -:.-., ,.......

& f-... ''*'....- i..
.

. .. '.-.. -. -. . ,,

While no one should write a program in the second

format, if the code needs to be packed, any format is accep-

table so long as variable names are not split between lines.
In that case they will be treated as two separate variables.

Now, knowing the general structure of an RSCL program,
each of the ten individual statements are discussed in the

following sections. Each statement's function and format,

* *:-the constraints on its use and the error messages which can

occur with their probable cause(s) are described.

1. The LET S1a:ement

The LET statement is used to perform arithmetic operations

and to assign values to variables. When performing arith-

metic, the expressicn on the RHS must be contained within

parenthesis. The value of that expression will then. be

" assigned to the variable on the LHS. If no arithmetic is

required, the RHS may contain either an integer, a string or

a variable. In that case, either the integer value, the
actual string or the value of the variable will be assigned

to the variable on the LHS.
If the variable on the LHS is not defined, it is

dynamically defined according to the type and value of the

RHS. If the variable(s) on the RHS are not defined, an

error message is printed. If both variables are defined,

their types are compared to ensure that the assignment is
correct.

a. Format

A LET statement must te in the form:

'let' <identifier> '3' (<expression> I <identitier>

I <number> I <string>)

Where the word "LET" is the keyword and must be the first

word in the statement. "LET" is followed by an identifier

which is treated as the LHS of the statement and will be the

42

recipient of the assignment. Next, the equals sign, "=", is

expected. This is used to separate the LHS from The RHS a.d

to show the direction of assignment. It should not be

confused with the standard relational operatcr "=" which

means equality. (In RSCL equality is represented by the

string "eq"). !he RHS may contain only one of either an

expression, an identifier, a number or a string. Upon

execution of the let statement, the value of the RHS is

assigned to the variable on the LHS.

The expression on the RIS may be a valid arith-

matic expression containing variables and the arithmetic

operators of "+", n-'I trai and "/". These operators hold

their standard meaning of addition, subtraction, multiplica-

tion and division. The precedence of operations may be

either implied or explicitly declared by the use of paren-

theses. The implied precedence is "*" equals "/" and " "

equals "-". While 11*1 and "/" are the higher precedence and

are always performed before "1+" or "-". Operations of equal

precedence are performed left to right. Figure B. 3 illus-

trates the LEr statement format.

b. Error Types

The error messages associated with the LET statement are:

'"V4 RESS&GE:
AN IDENTIFIER was expected, but ssss was found

at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "111" in the input line. Check the syntax ,of the

statement containing this line.

BESSAGE:

- was expected, but ssss was found at 1111.

43

w . q " v° " o" ."t" . o -* *.• -

EXPLANATION:

"ssss' is the token that was found prior to the

point "1111" in the input line. An =" was expected desig-

nating the direction of the value assignment in the let

statement.

MESSAGE:

AN ARITHMETIC EXPRESSION was expected, but ssss

was found at llll.

EXPLANATION:
"ssss" is the token that was found prior to the

point "iiii" in the input line. rhe RHS of the let state-

ment did not contain a valid arithmetic expression. most

likely a matching parenthesis was omitted.

MESSAGE:

AN ARITHMETIC OPERATOR was expected, but ssss

was found at 1111.

EXPLANATION:

'sss" is the token that was found prior to the

point "1111" in the input line. rhe RHS of the LET state-

aent did not contain a valid arithmetic operator between two

identifiers.

MESSAGE:

Undefined identifier, ssss at pppp in line: ii

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp" in the input line "1111". An identifier in the

RHS of the let statement did not have a value. All identi-

fiers must be set before they can be referenced.

MESSAGE:

Data type mismatch. A string type was expected

at pppp in liae: 1111

EXPLANATION:

The LHS of the LET statement was of type string

but the RHS was not.

744

M7.

let a 7;

Assigns the integer value 7 to the variable
"a". If "a" is undefined it will also dynamically
declare variable "a" type "I" for integer.

let a - b;

Assigns the value cf "b" to the variable "a".
If "9" does not have a value then an error is
called. If both "a" and "b" have values then
a type check is made. Otherwise, "a" is
dynamically assigned the data type of "b".
let a = (b + c) * 7);
Assigns to the variable "a" the resulting value of

the RHS expression. If "a" is an undefined variable
then it wilI dynamigally receive the same data
type as the expression result or if "a" is defined
t e LHS and RHS types are compared.

let a - "this is a test";

Assigns the string, "this is a test", to the
variable "a". If "a" is undefined then it will be
dynamically 4ssigned data type "S" in the symbol
t ble or variable "a" is comparel for data type"S" string.

Figure B.3 SAIPLE LET STATENEITS.

c. Usage Constraints

A maximum of 20 operations may be nested in the arithmetic

expression. The type checking is performed based on the
type of the right-most variable in the RHS.

2. §tL .Se _

The GET statement is used to read data into the program from

some external device and assign that data value to a program
variable.

a. Format

A GET statement must be in the form:

'get' <device> (list>

45

-. - - - ' 4 .

Where the word "GET" is the keyword and must be

the first word in the statement. "Get" is followed by a

device. This device may be either "CRT" for the user's

console or the name of a file. Anything which is nct "CRT"

is considered a file. The name of the file may optionally
be prefaced by a disk drive designator and/or suffixed by a

file type. The total file name follows the file naming

S.?:. conventions established for the CP/M operating system.

Following the device is a list of identifiers
which will receive the values as read from the input device.

If the identifiers are already defined, the data will be

read according to the defined type. otherwise, the identi-

fier's type will be set depending on the type of the data
'- which is real. Figure B.4 illustrates the GET statement

format.

get CRT a (b,c...);

Reads the next terminal input and assigns it to
the variable "a". If the variable "a" Is undefined
it will dynamically assi n the iaput's data type
to "a". Otherwise, it will perform a type checK
on "a". More then one input can be read from the
terminal duri a eget tatement.Type checking
is done on each r eiving variable.

get <FN> a (b,c...);

Ojens the designated data file <FN> and reads the
d ta in sequential order. The receiving variable(s)
are either dynamically assigned the input's data
type (undeclared) or a type check is performee.

Figure B.4 SIMPLE GET STATEREITS.

46

~~~~~~~~~~~~.,. .'-'....-.,...-'...... ........ '.'.. ..... ............ •



b. Error types

The error messages associated with the GET statement are:

HESSAGE:
DEVICE 'CRT' or a file name was expected, but

sss was found at 1111.
UXPLADATIOI:
E A "sss" is the token that was found prior to the

point "1111" in the input line. The word 'get' must be

followed by the name of the device from which to read the

data.

MESSAGE:

Filename -- (<FN> [.<FT>]) -- was expected, but

ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. A file name may be up to 8

characters loag and optionally prefaced by a drive desig-

nator (one character followed by a colon).
Filetype -- (<FN> [.<FT>]) -- was expected, but

ssss was found at 1111.
EXPLANATION:

"ssss" is the token that was found prior to the

point "1111" in the input line. & file type may be up to 3
characters long and must be prefaced by a period. A file

type only appears after a valid file name.

NESSAGE:
Unable to open file - check <F1> is capitalized

EXPLANATION:

The file designated in the GET statement does

not exist. Check the spelling of the file name. Be sure to
watch for discrepancies in capitalization.

47

•g. *. .



- - - - -- - - -

,ESSAGE:

*1*. Cannot read from the list device at pppp in

line: 1111

EXPLANATION:

"pppp" is the point in the input line "1111" at

which the error occurred. & device type of "LSr" is illegal

for the GET statement.

c. Usage Constraints

There are no usage constraints in the GET statement.

Ira. ~3. hki EgZ .

The PUT statement is used to ouput data from a program vari-

able to some external device.

a. Format

A PUT statement must be in the form:

'put' <device> ['skip' ] <list>

Where the word "PUT" is the keyword and must be the first

word in the statement. "PUT" is followed by a device. This

device may be either "CRT" for the user's console, "LST" for
the line printer or the name of a file. Anything which is

not "CRT" or "LST" is considered a file. The name of the

file may optionally be prefaced by a disk drive designator

and/or suffixed by a file type. The total file name follows

the file naming conventions established for the CP/M oper-
ating system.

The device is optionally followed by the word
'skip'. If included, this will cause a newline control code
to be transmitted to the output device. Note, the skip is
only done once per statement.

Next is a list of identifiers and/or character

strings. Figure B.5 illustrates the PUT statement format.

48

4.?01



put CRT a (b,c...);

Displays on the CRT (scrMen the value of the
variable "il. Multiple displays (b,c...) are allowed.

put CRT SKIP (ab...) ;

Skips a line prior to displaying the variable data.
The skip is performed only once prior to displaying
ing the variable(s) valuels).

put LST a (b,c...);

Toggles the printer oi (providing it is turned on)
and transfers the variable(s) vilue(s) to it.

put LST <PH>;

Toggles the printer on (providing it is turned on)
antransfers the data contained in the designatefile <FN>.

put <FM> a (b,c...)
Ojens the designated file <FN> &and stores the
v riablg (s value in the file. The file <FN> is
automatically closed upon statemant termination.

Figure 3.5 S&HPLE PUT STATEMEITS.

b. Ecror Types

The error messages associated with the PUT statement are:

ESSAGE:

DEVICE "CET" or "LST" or a file name was

expected, but ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the
point "1111" in the input line. The word 'put' must be

followed by the name of the device on which the data is to

be written.

NESSAGE:

Filename -- (<FN> [.<FT>]) -- was expected, but

ssss was found at 1111.

49

"-* , ,% ; ,% . ,,' -, -.% - 'V -...... . -,.- I , . .*-. - -.. . . . . . ,.:. ., . .



EXPLANATION:

-ssss" is the token that was found prior to the

point "iii" in the input line. A file name may be up to 8

characters long and optionally prefaced by a drive desig-

nator (one letter followed by a colon).

ESSAGE:

Filetype -- (<FN> (.<FT>]) -- was expected, but

ssss was found at 1111.

EIPLA ITION:

"ssss" is the token that was found prior to the

point "1111" in the input line. A file type may be up to 3

characters long and must be prefaced by a period. A file 9
type only appears after a valid file name.

MESSAGE:

Undefined identifier, ssss at pppp in line: 1111

4EXPLANATION:

"gsss" is the token that was found prior to the

point "pppp" in the input line "iii1". A value must be

defined for any variable before it can be output. Be sure

that all designated variables are set to some value before

they are referenced.

c. Usage Constraints

If the data is being put to a file, that file is opened in

appmnd mode. Therefore, if a new file is desired, the user

must ensure that any previous file with that name is erased

prior to executing the PUT statement.

The IF statement executes a set of statements based on theI logical value of the IF clause. If this value is true (not

0), the THEY group of statements is executed. If the IF

clause value is false (0), the ELSE group of statements is

executed. The ELSE group is optional. If it does not exist

I %1 50

44. .. 1



i- W- -- ir a-7-.-

and the IF clause value is false, the entire IF statement is

ignored.

a. Form at

An IF statement must be of the form:

'if' <logical expression> @then' <statements>

Where the word "F" is the keyworl and must be the first

word in the statement. "IF" is followed by a logical

expression. This expression must be contained within paren-

theses and may be any valid combination of logical operators

(eq, it, gt, te, le, ge), logical functions (and, or, not)

variables and numbers. Precedence of operations is deter-

mined solely on the bases of parenthetical grouping.

The logical expression must be followed by the

word "THEN" and the group of statements which will be
,%

executed if the logical expression is true. This group of

statements terminates either with the word "ELSE" or the

word "ENDIF".

If the logical expression is false, the THEN

group of statements is skipped and the ELSE group is

executed (if it exists). The IF statement terminates upon

detection of the word "ENDIF;". Figure B.6, illustrates the

IF statement format.

b. Error Types

The error messages associated with the IF statement are:
BlSSAI:

An IF statement must have a logical expression

at pppp in line: 1111

EXPLANATIO:
"pppp" is the point in the input line "11!" at

which a logical expression was expected. Check for matching

parentheses.

51



4;, _ __7 --. _o- '6--,1

if <logical expression> then
<statement s I

else
<statements>

endif;

The logical expression portion is tested first. If
true, the statements in the THEN portion (any RSCL
statement s are executed in order. The statements I
contained n the ELSE (optional) portion are I
executed only whep the I condition returns false.The IF statement is terminated by an ENDIF. I

.4

Figure B.6 SAMPLE IF STATEMENT.

MESSAGE:

THEN was expected but ssss was found at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp". The THEN clause is mandatory in an IF state-

ment. Be sure that all dasignated variables ire set before

they are referenced.

ESSAGE:

ENDIF was expected but ssss was found at 1111.
EXPLANATION:

' sss" is the token that was found pricr to the
point "pppp". An IF statement must terminate with the word
"ENDI?".

c. Usage Constraints

There are no usage constraints for an IF statement.

5- 11n L2i 31112UIe

The LOOP statement repeats a set of statements a specified
number of times. Any number of repetitions may be specified

via either a number constant or a variable entry.

52



a. Frm at

A LOOP statement must be in the form:

'loop' ( <identifier> I <number> ) <statemants> 'endloop;'

Where the word "LOOP" is the keyword and must be the first

word in the statement. "LOOP" is followed by either a

number or an identifier which gives the number of times the

loop is to be executed. The loop checks this value before

execution. If the loop value is <= 0, the statements in the

loop are skipped. Othe-wise, the inner statements are

repeated until the loop counter reaches 0. The loop counter

cannot be changed once the loop has begun executing. Even

if the identifer used for the loop counter is altered, the

loop will not be affected. Figure B.7 illustrates the LOOP

statement format.

loo a
& statemnts>endloop;

The va;iable "a" contains the number of
iterations that the statements containedwithin the loop will be executed. Any
combination of valid RSCL statements
is allowed.
loop 7Cstat ement s>
endloop;
The only diffeence in this stat ment is the loop

counter is in iteger form vice identifier form.
The loop execut on sequence is not altered.

Figure B.7 SAMPLE LOOP STATEBENT.

53

'

4f ' % ,* , ," • *. : "e .", - .' .'- . '' - . -' -. ', .. " ." . -." . -. •. .... . . .".'.•... .. .'.- .".-'.....,-

lk . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . .

*. 
b~.5 

S S 4 5 -



7*%. -- - .- -- *o*.- .* - - 77- i

b. Error Types

The error messages associated with the LOOP statement are:

KESSAGZ:
Undefined identifier, ssss at pppp in line: 11.1

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp" in the input line "1111". A value must be

defined for any variable before it can be used as a loop

counter. Be sure that all designated variables are set

before they are referenced.

* NESSAGE:

An integer or variable loop count was expected

but ssss was found at 1111

EXPLANATION:

'"ssss" is the token that was found prior to the

point "1111". A locp counter can only be an integer or an
identifier.

c. Usage Constraints

Nested loops cannot be used.

6. Thg C SE Satement

The CASE statement executes a set of statements based upon

the case variable. If one of the cases matches the value of

the case variable then that set of statements is executed.

If none match, then the OTHERWISE set of statements is

executed.

a. Format

The CASE statement must be in the form:

'case' <identifier> ':' case-num

'otherwise:' <statements> 'endcase'

54

V.-

.... , ' . 2 " " . . " ." ." . ' ." , .' . t',- , , , . ' ." , .' .. - . ' .. ' .. - . - - " .. ,. - .. - - - .



' i

Where the word "CASE" is the keyword and must be the fi-st

word in the statement. "Case" is followed by an identifier

and a colon. This is the case varitble. Each of the cases

that follow begin with either a number or an identifier

• -. followed by a colon. This value is compared with the value

of the case variable. If they are equal, then all the

statements in the case element (up to the next case number)

are executed. If no case number matches the case variable

" then the statements in the otherwise clause are executed.

The CASE statament is terminated with the word "ENDCASE" and

a semicolon. Figure B.8 illustrates the CASE statement

format.
.. 1

.1

case a:
I -b: <statements> .

c: <statements>
6: <statements> I
otherwise

endcase;
The case statement uses a variable or an inteqer
to indicate which case element will be invoked.
The "a" ;epresents the data type of the case
element index. If none of the case elements are
invoked then the otherwise case element is
executed. Any valid RSCL statement is allowed.

Figure B.8 SAMPLE CASE STATEBENT.

.4]

b. Error Types

The error messages associated with the CASE statement are:

BESS A GE:

Undefined identifier, ssss at pppp in line: 1111

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp" in the input line "1111". A value must be

55

--. 4

w



defined for any variable before it can be used as a ioop

counter. Be sure that all designated varialbes are set

before they are referenced.

HESSAGE:

-- :-- was expected but ssss was found at pppp.

EXPLANATION:

"ssss" is the token that was found prior to the

point "pppp". A case variable must be followed by a colon.

MESS AGE:

OTHERWISE was expected but ssss was found at

pppp.

EXPLANATION:

"ssssl is the token that was found prior to the

* point "pppp". A CASE statement must include an OTHERWISE

clause to handle the event when no labled case value was

matched.

c. Usage Constraints

There are no usage constraints for the case statements.

The create function was not coded because the interface

between the CLI and display modules is unknown. The create

module was designed to interface with a commercial product.

The product is still enroute to the school. When coded the

create module will assign attribute values to specified

fields. The resulting template is then utilized for data

display through the display module.

8. The DLUSLAX statimsa

The display function was intended to be an external commer-

cial product purchased from a local vendor. Unfortunately,

the supply system was uncooperative and the product never

arrived. As designed, display manager takes the output data

56

° 4,

"4,Z ''' .Z ,,Z ....-... ... ,., . ,£ 'J'-' ,." ."2 '''2. '' .2 ',, """"""" . "-". """ . . """" -. - . . - .



and transposes it onto the requested screen shell created in

.4 the create module.

P. GENERAL ERROR HANDLING

The system and syntax error handler messages are formatted

as follows:
(U* SYNTAX or SYSTER ERROR *S**,)

(ERROR MESSAGE(S))

"ESSAGE:

Symbol table exceeded.
EXPLANATION:

The maximum length of the symbol table was exceeded, too

many variables in the program.

MESSAGES:

Premature end of input encountered.

EXPLANATION:

The program ended without a proper terminator i.e. END.

Program could be in the middle of a command when the input

terminates.

MESSAGES:

Unrecognized character, ssss in line: 1111.

EXPLANATION:

"suss", a non ASCII type token, was encountered prior to

the point "1111" in the input line.

BESSAGES:

String length excceds (132) in line 1111

EXPLANATION:

The token prior to the point "1111" in the input line

exceeds the maximum sring length of (132).

MESSAGES:

PROGRAM was expected, but ssss was found at 1111.

* 57

S '" *.: : *~.-f-:&.



EXPLANATION:

Program's must start with the constant "PROGRAM"

followed by the program name.

IESSAGES:

AN IDENTIFIER was expected, but ssss was found at line
qJ'I 1111.

EIPLANATION:

This could have several meanings. LHS's of let state-

ments require an identifier (variable). Data file reads also

require a variable to receive transfered data.
MESSAGES:

END. was expected, but ssss was found at line 1111.

EXPLANATION:

An input following a statement must be either another

statement or an (END.).
-ESSAGES:

No legal Command Language statement was found. prior to(

the point 1111 in the input line.

EIPLANATIONS:

This error message is only invoked during the first

statement following the program name.
UESSAGES:

expected at ssss in line 1111.
EXPLANATION:

Semicolons terminate all statements. Check the statement

at the indicated line.

-.y-.

I

58



PPCGPAM SOURCE CCCE LISTING

/* R & S Command Lanauaqe
*

* Last uodate: 22 Sep 1993

" CONSTANT DEFINITIONS *

Idefjne debua 0
#define debugcase 0
#define debuolet 0
#define debucif o

*deftine debuqlet 0
#define debugloop 0
#define debuoout 0
*deftne debuostate 0
#define false 0
$define true 1
Odefine maxsym 25
*define devslz 15
8deflne l1nesiz 132
*define loop.lst.siz 10
*define stringsiz 132
*define symsiz to
Odeflne optorsiz 20
#deflne oprands1Z 40
*define EOFTLE 0 V

*define NELTNE to
$define id.token I
*deflne stritoken 2
*define Int.token 3

*define arit.op.token 4
*define loo.op.token 5

#define loq.tunc.tokn 6
#define other.token 7

S GLOBAL VARIABLE DEFINITIONS $

FILE *output* *Input, *source# Ploop.filey
char LOOP.FLE[2OJ, *loopotr; I1 file name for loop statements*/
char sav.devdevsiz]y /* device name for put & get
char put.dev~devs1z] /* device name for put statement*/
elar qet.dcv~devsz]; 1* device name for qet statement*/
char symtypei /* type of symbol I or C */
char symidfsymsiz], *idptr; /* actual symbol char strinr */
char strinocstrirgsizj, *sptrl I* character string *1
char token~symsiz], stptr; /* actual token char string *1
char linelinesiz], *tptr: / current inPut line '/
char loop.lst[loop.lst.siz]JlInesiz]l/$statements repeated in loop*/

59

" j ." '€'.."'" " . ,", ' ..." ' "'"' " "". , "' .-. , ',,,. .> '/ . .' .- . -. ""-.<" -'' .



-3 -0 - . - --. 7 a .7:-3 - .7 . . -

~. . nt loop~crit; /* loop statem~ent counter, Used *
/* by getlir. to re!re.t statemrt*/

tnt toiken..typei /* tyne of tokem~W
tnt Syrvval: /* value of symbol *

tnt 19umlsyHm /* num~ber ot symt~ols active W

tnt exp.result; /* result of arith exnressiols
tnt opr.valuei /* Precedence values of arith-.ov*/

struet / * sym'bol table S

char ±d~symsizl, *sidotr: 1 symbol niamre
Int valueD 1 symbol value S

char type; IS symtbol tvce (I or C) *
Isyn'boltn'aXSy'!, *symotr

a..'-6-



* This is the main routine for the Command Languaoe Intercreter.

* It calls "statements" to precess all other statements.
* If main completes successfully the interereter exits.
*

* Functions used: error(11/12/14/51), next, statements
* Global used: token, token.type
* Constants used: id.token
,

* Author: Dennis J. Ritaldato
* Last update: 22 Sep 1983

#include <stdio.1>
#include "qlobal.interp"
main C)
(

LOOP.FILECO] = "U;

strcVy(LOOP.F1LE, "LOCPZZZZ")1
looocnt a 0; I* 1nit loop counter */

numsym = 0 I* init symbol table Sl

source z faOen("RSCL""r"); /* open source file for s/
/* command lanquage program Sl

next0;
It ( strcmp(token,"PROGRAM " ) )

error (11)1
next()t

It C toKen.type 1 id.token )
error (12);

rextM);
It C I statements() )

error (51)1
if C strcmP(token,"END") )
error (14)1

next():It (token(O a . )

error C14)p
exitO

61

-W -7 ** * :* -. *



Statements checks the token to determine if it is a reserved word
* indicatinq the beginninq of a ccmmand languane statereet.

"- * It found the correscondino functlonis called to process t?%e
* statement, Then statement calls itself to look tor more statements

a and returns true,
• Functions used: case.statement, create, display, error(53),
Sif.statement, let.statement, loop.statement, next,

* put.statement qet.statement,
* Globals used: token
* Constants used: none

* Author: Dennis J. Ritaldato
S Last update: 19 See 1983

#Include <stdio.h>
$include "qlobal.interp"
statements ()

*if debuostate
prIntt("Entered statements wlth token of %s.O,token);
#endif

If C Istrcmp(token, "LET")
4nextO:
let.statement()l

else It ( lstrcep(token, RIF") )
4 next()p

If..statenmentol

else If C lstrcmpCtoken, "PUT") )
. next()u
out.statement();

)

else If C lstrempCtoken, "GET") )
( nextc)l
qetstatementC);

else It ( !strcmpCtoken, RLCCP") )
4 nextC):

loopstatement():

0else If ( IstrcpCtoken, "CASE") )
( nexto)p

case..statement();
I
else if C !strcmp(token, "1") )
4 nexto):

#If debug
PrInttc" COMMECNT toundO)D
Serdlf

while strcemp(tken, ";") )

62



* next 0;

* 4 else if C !strcmc'(tokefl, "DISPLAY"))
4 nexto~g
display();

else if ( !stren'p(token, "CREA'TE"))
4 nexto):

createo)i

* ~. else
* ~. return~false);

It C takenCO] !x *I*
* errer(53);

* -nextO): /* bypass 1*
statements 0;
return Ctrue)i

*463



The caner sansthe Input stream~ for toxens which are either:

inteoers -diqit:intecers
* strings - anything except;

l ogical ops - EQ I LT I GT I NE I LE I GE
a arlth ops - + I

logical tunes - AND I OR I NCT I CON
* others " any other ASCi character

a Functions used: errorC4)t qetlirei
a Globals used: line, lptrp log..ocro log1 .funco loop.ent, loop.list,

* ~loor.lstc.nt, lcc..lst.ptr,
* sptrp string, token, token.type, totr

* Constants used: arlth.op..toker, Id..token. Int.token, symsiz,
a log.op.tokent othertokent str..token,
a loo..tune..taken
a Author: Dennis Ritaldato
a Lost Update: 22 Sep 1983

hinIclude <ctve~h>

next 0)

Int I a 0r

tptr a token;
*tptr a NULL;
toker.type a 0;

if C (*lotr am NULL) 11 C*lptr am NEwLINE) ifedolne*
getlineo) / oet new line *

while C C*lptr 11 ) I (isascii(*lptr) )/*skip blanks 5

If CC*lptr 33NULL) 11 (*lptr 33NEwLINE) ) * if end of line 5
qetline~i 1* et new line 5

else
**lptrr

4 ~If C isalphaC*lptr) ) ,* Is token an identifier? *
* Cf for C I a 01 isalphaC*lptr)tI isdigit(*lptr) 11 (*lptr 'u..');

If C i++ < symaiz3
*tptr+4 a upperC lptr++ )

*tptr a NULL:
It C Iloq1.opr() 96 IloaqfuncC)

token1.type x id.tokenh
return:

else it C isdigitC*lptr) ) /* is token an integer? *
(while C isdlqit('3.ptr) )

stptr+. *lptr.+:

64



N

•tptr 3 NULL:
token.tyoe a Int.tokenl

* ,return;

switch (*lptr) (

case "0: /* is token a char strinq? *1
sptr a string;
token.type a str.token;
++lptr;
for (1=01 C*lptr !a 0"') *+lptr)
C if ( *lptr an NULL ) /* if end of line */

getlineC); /* cet new line */
If (1+* < stringsiz)

*sptr++ a *jltr;
else

error(5):

*+lptr: /* byPass second " */
$sptr a NULLI
return-

case +4: case /: /* is token an arithmetic op?*/
opt.value x 1;
token.tyce arith.op.token;
*tptr++ *$ptr++;
. totr a NULL;
return;

case '*0: case I1':
ant..value 2 2;
toen.tyoe a arith.op..toker;
*totr++ *Iotr +;
stptr a NULL;

return#
case *C': case *)': case 'V: case *]':/*is token another symbol?*/
case 'i's case 10: case Is': case '::
case "I's case 00'1 case 1#1: case '8':
case '' case "*': case 'go: case 0"':
case "'1 case *>' case ,Ii case '. :
case "not case 0?': case 'i: case \':
case 1.'1 case 14': case II':

token.tyoe a other.token;
*tptr + a *lptr+;
*tptr a NULL;
return;

default.
/*errorC4);*/

$if debuq
prlntf(*--Unrecoqnized char %c witr value %d found,O,*lptr,*Iptr);
sendie

*lptr+ tneut()! g

return;
/ .* end switch *t

; , , ' . . .: , : . . , . - . - -. . -. . ' .. .. . -.. -.." ..' .' .*. -. . . ' , . - ' ... ... -/ -: v -.. .. , -: .. , ' . / , '.. ' : \ . .



. I- ,-,, - S . & *L S, . - . . . ..5 . -. -. . . . . .. S S '- - .\ -. ,.* S. ," -. o .- 5. . .. 5 5' - .- / -" i -

) /* end next */

-S6

54*



-.-

1*
* Getline reads the next lire either from the input strear

if the loop counter,"loop.crt" Is 0 or from the loop statement
* list, Olooo.lst" if the loop counter is orpater thar 0. It

d decrements the loop counter each time a line is read.
s Fach line read, regardless of source Is placed into an array of
* characters called "line".
* If an ECFILE is encountered an error messaqe is printed out and
* the orogram terminates.
* Otherwise, the line Pointer Is reset to the beoinninq of the
* line ant the function returns.

* Functions used: error(3)
* Glebals used: line, lptr, loo.cnt, loop.list, loov.lst.crt,
• * looplst.ptr
* Constants used: arlth.o.token, id.token, int.token,
* log.func.toker

* Author: Dennis Ritaldato
* ast update: 22 Sep 1993

getline() /* begin getline *I

Int 1;

%1 or (iz0; I < 11nesiz;. I++) /* clear line butter *

lLnetl] x NULL:

* If cloon.cnt > 0) /* read from the loop list? *1

if C fqetsCline,linesizloc.file) : EOFILE )
4 fclose(looo.file);

if C--loop.cnt > 0 )
Slooo..flle a fopen (LOOP.FILE, "r");
tgets(line,linesiz,lco.tfle):

lptr a line;
returnh

else If C source 1z NULL )
Sif( fgetsClinellnesiz,source) aE LOFILE )/*read from tile RSCL*/

error(3);
#if debug
prlntfCm--Source line read.O);
0endIf

)

else
4 If C getsClire) : EOFILE ) /* read from the terminal */
error3);

*if debug
printt(--CRT line read.O)u

67



Sendif

sit debug
Printf(WmmThe now line is: %sO,line);

lptr a line;

-4- return:/* end getline *

4.. 2



* Upper converts a lower case ASCII character to upper case ASCII,
* Any characters which are not lower case ASCII are ignored.

* Author: Dennis J, Ritaldato
* Last update: 14 Sep t983
5/

upper(c)
char *Ci

If C ('a' < *c) && (C* <2 "ZO) / if lowercase */
*c a *c + *A* - 'a'; I* convert to uppercase*/

return(*c):

.*4

! 99

69

LI N N- -. , - , " .* . " • . . . . . . . . . . . . . . ...-



* Loq.opr examines the current taken to determine it it is a

* logical operator,
* If sop it sets the token.type appropriatelv.
S

* Author: Dennis J, Ritaldato
* Last update: 15 Sep 1983

loq.opro) /* begin loq.opr 5/

If C strlenttoken) !. 2)
return(talse);

tptr a token;
switc"(*totr) 4
case
If (*++tvtr in10 )

returnCfalse);
break;

case IN*:
If (*++tptr la ,Eo)

return(false);
breaki

case °G°i case L'I:
It C ('++tptr 1= "T) I& C*++tptr I E) )
return(false);

break;
defaults

return(false);
)

token.type a loq.or.token;
returnctrue);

/* end loq.opr 5/

70

a; " % , ' ( ' " " . % , , ." ' ' " -' . . . " ' ' . ° - " " , - . """"' ' -



* Log.fune examines the current taken to determine if it is a
*logical function operators

* It so# It sets the token.tyc@ appropriately.

* Author: Dennis J,. Ritaldato
-* Last update: 14 Sep 1993

log~funcC) /3 begin log.,fune *

It C ClstrcmpCtker"AND")) 11 (IstrcmpCtoken,"OR"))
11 (lstrcmp~tokenv"NCT")) 11 CUstrcmp~token,"CCN"))

f token.type a log.functoken;
return (true) 1

return~talse) I
) Is/ end loq.,func 3

47

1171



* This procedure adds a new symbol to the symbol table.

* Increments numsym
* creates a new symbol table entry with the values contained in

* syqid, symval and symtype
* return
* Author: Dennis J, Riteldeto
* Last update: 13 Sep 1983
*/.

*include <stdlo.h>
#include "Qlobal.interp"
addsym()
(

int 1;
If (numsym 3, maxsym)

error(2):
sywptr a &symboltnumsym++];
for (i8ol symidili8 'I ++1) (

symptr -> idti) a symid[i];
syI!tr -> value u symval;
symotr -> type x symtypel )

#1f debuq
printf(*ADDSYM entered. Numsym a %dO,numsym)5
#endlf

returnl

72

S = * - V -, -, , . . . . ... , .., ,. -.....-.. ,..- . - o. .. ..-. ..



4/,

F. 7

* This procedure assigns the value contained in symval to tte

* symbol indicated by symptr.
* Authors Dennis J. Ritaldato
* Last update: 13 Sep 1983

#include <stdio.h>
. tirclude wqlobal.interp"

setvalueo)(

symptr -> value u symvell
returni

)

Y'

9 73



/s

* LOOKUP searches the symbol table for a match on symid and
* SymbOlIido If fourdo
* set symptr, symvel and symtype from the contents of the
* symbol table, return true

* else

* symptre symval and symtype remain unchanged
Sreturns false

Authors Dennis J. Rtlildato
Last update: 13 Sep 1963

#Include <Stdio,h>
firclude "qlobal,nterp"
lockup()
4

*nt 1;
for (symptr a &symbol(O]; symptr <a (symbol + numsym); ++symptr)

for (C130 symptr->id~ti * syRId[i1] ++1)
It (Sypid[l] so 1 ) (

symval a sypotr->value;
symtype a symptr->type;
return (true):)

return (false);

74

1* V~or



./4

*This function. assignes values to variables. The LHS (left hand side)
* variable must be an identifier. The only exception is wher a string
* Is assiqned ther the LHS variable Is the global array strinq. RHS's
* can be either an expression, inteoer or a declared identifier *ilth
* a value of the identifiet stored in the symbol table. Expressions.
* of any length are accepted. Unary minus operations are not
* supported in this version.
*

* Functions used: addsym,error(12/18/55/57)p expression, lookup, next
a setvalue
a Globals used: exv.result, symid, symtype, symval, token, token.type
a Constants used: id.token, Irt.token

)a

A Author: David J. Smania
a Last Update 22 Sep 93

#include <stdIo.1> 1* Link standard I/C *1
#include Oglobal.interp* /* link all program constants a/

cf€ar operatortoptorsiz]; /* Ceclare let.statement variables */
char savetypel
.nt operand~oprandsiz]l
irt abpmn,marker,last.prec3

let.statement )
( /* Enterinq let statement 5/

char savetokencsymsiz]; /* Declare local variables a,
nt sav.valueaddflaq;

$If debug
printfC"LET.STATEPENT entered.O)i
tendif

/aaaaa~aaaaasaaaaEVALUATE LEFT HAND SIDE aaaaaaaaaaaaa

If (token.type 1= id.token) /* Check for Identifier a,

error (12)t /* Error token not identifier a/
return,)

else
strcpy~savetoken,token); /* Save token name 5/

next ):
If (strcmoCtoken,Ru4) an 0) /* Check for * token 5/

next Mp
else

(
errorCiaO) 1* Missing " operator a1
returni

7

J • • -. - * . . .- .. . .- ,. -. . -. . . . ... .. . .- .. .. , - .. -. . -. * - . . .. '



./**SS******************** RHS CHECK *************************$**/

* The expression function first determines if the RHS is an
* expressions if so, then it evaluates the expression and
' returns th* result to exp.result. Error checkino is Performed
* throuhqout the functions

if Cexoression 0) /* Check for 2nd arq = expression S1

sav.value a exp.resultl /* Cxp result saved SI
else

If (toke..tye an id.token)<{
strepyCsymid,ooken) /1* Load symld for lookup 5/

if (lookup 0)
4

savvalue a symval; 1* Save variable value *I
savetype a symtyre; /* Save variable type */

else

error (SS)i /* Variable not in symbol table 5/

next )1

else
if Ctoken..ty;e a= int.token)

savetype a e1
sav.value a atoiCtoken)i /* Save inteqer value 5/

next (O1

else
if Ctolcen.type ax str.token)4

symtype a '5';
next (01
strcpy(symid,savatoken);
If C1 lookup 0)

gymval a 0:
addsym (M:
return1

f (symtype am '30)
returni

error (57)1
return;

else

error(24)i / Not exp, strinq, id, mt
return#

b76



/s*;s*;s*;s*;**,****STRCPY CHECK *$****s*$*****/

strcpy(symidosavetoeen); /* Load symLd for lookup 5/

if ClonicuD ())
if (savetype ans symtype)

4

symval a sav.value;
setvalue Mx /* Assign values to symbol table varlables*/

else
error C57); /* Variable not in symbol table S/

else
4

symval a sav.valuel
sytype a savetype;
addsym O( /* Add a new variable to syMbol table*/

)

a-

a

U

1 7



******$*ee*;s*se*** EXPRESSICN FUNCTION ***********************i

* EXPPESSION determines if the token Is a valid arithmetic
• expression. An arithmetic expression is defined as a term
• optionally followed by a arithetic operator and a subexpression.
S A term Is either an expressior, an Identifier, a number or a: strino. A subexpresion Is a term optionally followed by an
* operator and a subexpression.
• If a valid expression is found# it's value is stored In the
* variable "exp.result" and true is returned. Ctherwise false is

returned.

* Functions used: error(22/50), lookup, next, pop, pushopratot,
* ousttidoperand? set.prec

Glebals used: exv.result, sy'id, sytyoe, symval, token, token.type
' Constants used: arith.op.token, id.token, Int.token

* Author: David J. Smania
L Last Update 22 Sep 83

,/

expression ()

n 30;
last.prec 3 0;

if ((stremp(token,"(") := 0)) /* Check for I(' lead of exp */

pushoprator 0; /, Push *(I on stack
next C01
If (token.type a= int..token) /* Cheek for integer RHS *1

savetype a "11;
-' else

If (taoken.type an id.token) /* Check for identifier RHS */

strcpy(symidtoken);
if (lookup C))
savetype * symtyoe;

else
savetype *'Ce;

/ €*5*,****** ****** LOOP THROUGH RHS ****************************

while (tokenCO] !2 010) /* Loop until ";1 is read */11'it Cstreme~taken,"(") am0)
pushoprator );

i! next0l;

79



else
it (strcmp(taken,")N) ::0) /* Enter pop routines J1

set..Pree 0
next 0

else
it (token..type arn id.toket,) /* Lookun identifiers *

strepy~sym~detoken):
it (! ookup~C)
error (55);

else
4
pushidoperand ;
nextC;

If (tokenatype an int..token) /C Push Integer tokens

synival a atoi~token);
Pushiritoperand )
next )

else
IC Check operator precedence *

4 if Ctoken.type an arith.op..token)
itf Ccheck.pr. 0)

pushoprator :
next 0:

else

pop M:
set.prec 0

error (21):

/C*C***C***C******END WHILE LOCP **C ****C$**;C;.

if (Coverator(O] '(Io) a& CoperatorC13 1))

exP..result a operand--ii;
symval aexp..result;
return (true):

79



* , -- . J . . *. 4 . * .. . o. -. . .. .. . .- . . . . o . . , o_ .... _ . .' . .

else
error (22)1

14~ )
else

return (false):

.s

*i1
a.

.4.s

-,- 4 . - :" T . ,,-, " - .': + .'. ' , t ,.



/**********;***PUSH INTEGER FUNCTION **$****;*s**,
/S

. This function pushes the Incotnio integer token onto the stack

operandrn].

Author: David J. Smania
L Lost Updata 25 September 83

C- 5/

Pushintoperand ()
4

operand[m] a ai(to(ken);
++ M;

)

/******************* PUSH IDENTIFIER FUNCTION **$**,***,*****S**/

* This function pushes the identifier value operands onto the
* stack operardm].

Author: David J. Smania
* Last Updata 24 September 83

Pushidoperand C)
4

operand[m] a symval;
++Mj

/********~s*~**PUSH OPERATOR FUNCTION *******s***s*

* This function pushes the Incoruing operator onto the stack
*operator (n]

Author: David J. Smania
Last Updata 23 Seotember 83

,/

'4, poushoprator C

operatorta] * tokenC0]:
)+l

.'



/***~~~ CHECK PRIORITY FUNCTION

*.* Check the incomina operator prececdence with the exlstlnq hlc~est

* precedence, last.Prec, value. Vcdify If jncommirq is qreater.

* Author: David J. Smaniat
* Last Update 23 September 83

9,

check.Pri ()(

If Copr.value ) last..prec),%

last.prec 2 opr.value;
marker = n*
return (true);

else
if (opr.value =3 last.prec)

returnCtrue);
else

, return (false);

4'.

92

I,

**4I I 4I "• •



S/****$***************$* POP FUNCTION **;s************s*$**,/

* Par the operators and overards off their respective stacks
* accordinq to the token read,

* Author: David J. Smala
* Last Update 23 Sectember 83

pop4

tnt i,done;

done x 01

if (strcmp(tokent")") 0 Q) /* PoP until i is found 5/

while (operator~n] I= PC*)

a = operand (m]l

b a operandtm);

check,,token ()

else

while (n )a marker) /* Pop until lower precedence SI

a a operandm];

b a operand(*]l
chechk.token ();

returni

83

W



I.,4

i /****$*************** SET PRECEDENCE *$*****s**els**ss;*s tls*/

* Set the precedence variable last.prec to the highest rrecedece
* operator in the stack overator~n].
* Author: David J. Smania

Last Update 23 September 93

set.prec C)

Int ldone;

done a
++hi
operator[n] : token[Q];
for (=O: ((i<n) && C!done) £& (operatorciL] in 0)1)); ++)
4
It C(operator] a= 1+0) 11 Coperatordl z= 0-0))
4

last.prec a 1;
done a truei
marker 1

)

else
last.prec a 0;)

return,

-) 1* PERFORM ARITHMETIC
1 Perform arithmetic operations based on operator~n] found, Store

* results In operand[m].

* Author: David J. Smania
* Last Update 23 September 83

check.token C)
4

If (ooerator~n] an 0+0)

ooerandcn1 a (a + b);
, ++m;

Mont
, )

else
If (operatortn] an 00,)

48

operand~mI ( b - a)i

p 94

. • . - - . - .. . . . . . . .

...- % , , . . . . , . . . , . . . , -., . ..s. A , . . . , ,



.4

else
if Coperatortnl r ''

operand(Ir) (b * j
4++M

;A

rn-n5



* This procedure receives data from either the screen (CRT) or a
* resident file. The function first checks for the user's reauested
* display device then responds te the user's data requests. Two
* types of data input requests are available to the user: from a
* tile on the user's disk; or a variable stored in the symble table.
* Global variable sav.dev stores the user's device reauest.

* Function used: next, error(20/56), device, id.list, addsym
* Globals used: sav.dev, get.dev, string, sptr, symtype, symval,

input
a Constants used: NULL, stringsiz

* Author: avid J, Smania
* Last Update 22 Sep 83

*Include <stdio.h> /* Link standard I/0 */
#irclude <ctype.h> /* Link integer check routine */

#include "global.interp" /* LinK all program canstants SI

* char savetype; /* Declare local variables '/
mt sav.vali

qet..statement C) /* Entering get statement *

int bad? /* Declare get variables 5/

sit debug
orintf(OGET.STATEMENT entered,03;
4endit

If (1 device()) /* Check tor device token 5/
{

error(20)i /* Invalid device type 5/

return;
* )

strcpy(et..dev,sav.dev)i / Save device name in get.dev*/
It CstrcnmpCQet.,dev,"CRT") ==O)
f while (id.list )) /* LooP until id.list is empty*/

Itf (savetype un S') /5 Check saved token type 5/

gets C string )i
else if (savetype == I')
(

scanf (" %d",&symval);
setvalue M):

)
else if (savetype : OCO)* 4

symval a qetchar);
setvalue M:

else /* Identifier is unknown 5/

961



gets(strin3)
sptr = string;

for (badufalse; (*iptr Is NULL) 66 C*sptr I=
&66 Ubad) I; ++sptr)*1If ( I isdiqit(*sptr)) /* Is input a digit

bad x true;
It (!bad)
Csyrntype a 111
symval a *toi(str~ng)r

else
4If (strlen(strinqj as 1)

4symtype a II
symval x tokenCO3;

else
symtype a 1

addsym()

next C); /* bypass input variable 5

) 1* end of wlhile loop

else
If cstrvmpC9et.d0V#LST*) zao)
(4 errorC56)t /$ Invalid device input
returntfalse) F

else
4 input a fopen~q~t.devs~t") /* Open tile to read only $

while Cid.1ist 0) ) * Loop until id..liSt is empty *

It C savetype an 13)
fiqets C strIngpstri"QsizolinPut

else If (savetype an 'I')
4 ficant (inpute" %dR8&syn'Val)1
setvalueO:

else If (savetype an C
setvalue()

else /* identifier is unknown C

tscant (input." Is"pstring)z
* aptr a string;

for (badsfalse: ( (*sPr Is NULL) && (*sptr Is1. 1

It ( I isdiqit(*sptr)) /* Is Input a digit? C

87



bad a truel
it (!bad)
4symtype 'II
symval *atai(strinq);

else
Cit (strlen(strinq) a3 1)

* 4sytitype a II
symval *tokcenCOJF

else
symtype a OSI

addsyMC)i

next 01u /* bypass input variable *
) /* end of while loop *

) IS/ end of tile processing 5

#if debuqt
prlnttC*At end of GET# token a%sOptcken)u
Sendif

return i
/* end get..statement '

S%.



/*********#*********IDEPLISI FUNCTION ********;sw**

* The id.list function checks if the input variable is already
* declared in the symbol table, If true, it saves the data tvpe for
* type checkinq, A data tyce of 'U' undefined is set otherwise.

* Function used: lookup
* Globals used: symtypep token
* Constants used: iditoken
*

* Author: David J, Smania
* Last update: 22 Sep,# 19S3

id..Jst C)
4

If (token.type In id.token)
return(false)t

strcpyCsymid,taken); I* Place token in symid for lookup check*/
If C lookup ))

savetype z symtyve; /* Save token type for latter corparison*/
else

savetype a *U'l

return (true);

/1ss************* END GETESTATEMENT **********************************

9,

.. , . . ,.. -... , . , . . . - .... ,. . - . .-. ........-...... .. .



I . . . .i . * - . * . .. * ,-. -, * - ,.*. .. .;. ,- - - -_ ; , *

* PUT.STATEMENT outputs to either the screen (CRT)
* or the printer CLST) data stored In a variable a
* string or a file, The function first checks for the
* appropriate display "device" then responds to the
* users data requests, Two types of data requests
* are available: a variable stored In the symbol table;
* or a string, Global variables put.dev, symval and
* savetype store the device name, the token value and
* t oken type respectively@

* Func:lons used: next, error(25), list, device,
* Globals used: outeut, put.dev, sav.dev, strinq,
*token, token.type
Constants used: none

Author: David J. Smania
Last Update 22 Sep 83

,/

#Include <stdIo.h> /* Standard I/C link 5/
*Include "qlobalinterp" /* Link all program canstants 9/

char savetypei /* Declare local variables 5/

nt sav.val

put.statement C) /* Entering put case statement 9/
* {

*if debug
printt("PUT.STATEMENT entered.0)l
fendit

it (1 device)) /* Check for device token 9/
4

errorC25)s /* Invalid device type 9/

returny
)

strcpyCut..devsav.dev); /* Save device name 5/
if (strcmp(put.deV,"CRT") zO)
( If C IstrcmpCtaken,"SKIPO) )/* Skip a line 9/

4 prIntt("O);
next () /9 bypass SKIP 5/

while (list )) /* Loop until list is terminated*/

$if debuqput
printt('--List returned true with token a %sO,token)i
Sendit

It (savetype ax "S3) /* Checks for token type 9/
puts(string);

else
If (savotype an 110)

printi(C'd ",sav.val)s

90



7711.

else

next ;rntf(/* end while list *
* :4 )/* end It CRT

else
it. Cstrcmp(PUt.devvNLST") z=O)

while (list M~

printf(Ntoqgling printerO);
next 0)i

else

/* Open file with 'a* attribute*/
output a topen(put.dev.0au)y

$it debuqput
PrintfC"Oveninq new file %sO,Put.dev)1
Oendif

If C !strcmIpCtoken"SK!P") )/* Skip a line in the tile *
4 printf("O);
next(); /* bypass SKIP 3

while (list / * Loop until list empty 3

If (savetype urn 03') /* Checks tot token type *
fputs~string~output) u

else
It Csavetype a= 110)

fprintt~outvutv"%d "osavmval);
else

fp~rintf(output*"%e Osav..val);
next M;

fclose(output): /* Close data file

Sit debuqput
aPrintf(*At end of putp token m %sOptoken);

Sendif
returns

91



Is
* The list function checks for the output token suPPlied hy
* the user. The corresconding token data values are stored
* approprtately for later comparison.

* Functions used: next, error(55), lookup
* Globals used: string, symid, symval, symtyoe, token
* Constants used: id.token, int.tokent str.toen

* kuthor: David J. Smania
* Last Update 22 Sep 83

5/

list )
(

it Ctoken.type == int.token)

sav.val atoi(token); /* Save token value */
savetype • "1; /* Save token type 5/

return (true);
)

If (token.type ax Id.token)

/* Place token in symid for lookup check */
strcpyCsymid,toker);

* If C lookup ))

1, Save token type for later comparrison */

savetype a syrtyce;
sav.val a symvali /* Save variable value 5,

return (true);
)
error (55); /* Unidentified variable */
return (false);

-c )
If Ctoken.type un str.token)4(

savetype a "S;
return (true);

)

return (felse); / Error no match
/* end list 5/

/****************END PUT.STATEMENT**********************************/

92

Z- .r



-_ 1 : 7-7-7- 7 7 . 1 7 7 7

* DEVICE determ'ines if the current token is a valid
* I/C device nam~e, A valid device Is defined as either
* "CRT" for the user's console# "LSTO for the line printer
* or a filename. The file name is structured according
* to the file nam'ing conventions of the CPM operating
* system,. Thtis, anamwe optionally creceeded by a one
* character disk drive designator with a colon and

** optionally followed by a veriod with a tNree character
* file type,

* If a valid device Is found, It is stored in the
* variable "sav.,dev" and true Is returned. Otherwise,
* false Is returned,

* functions used: next, orror(26/3O)
* Globals used: sav.,devp token# tokentype
* Constants used: id~token

* Author: David is Smania
** Last Update 22 Sep 93

#include <stdio~h>

$include 'qlobal~interp" 1* Link all program canstants 5

/*********************DEVICE FUNCTION**********************/

* device C

#If debug
printfC"DEVICE entered,0)l
Sendit

If (takefmtype In id..token)
return (false);
if(CstrcnpCtokenpCRT") an 0) 11 (strcmP~token,"LST") =z0))

#If debuoput
* ~Printf("--device a IsOptoken);

0endif
strcpyCsav..dev,token)l /* Save display type 5
next M ~ /* bypass CRT I LST 5
return (true);

strcpy(sav.devotoken)?
next opl /* bypass fnau'e I drive 5
if (stremp~toe.n,:) .20)

streat(sav..dev,token) i
next M) /* bypass :5
It (token..typo !a id.token)

return (false)?
strcstCsav.dev~token) p

93



next 0); /* bypass fname $

It Cstrcmp~token,"e") =no)

a treat( hav.,dev *toKen) I
next (); /* bypass **
If (tokentype Is idmtaICf)

return (talse)y
streat(sav.devetakl);
next 0; /* bypass ttype

return (true);

/*.e***s**se**;*ss*;*END DEVICE ************

49



/* IF STATEMENT executes a set of statements based on the
* logical value of the the IF-clause. It this value is
* true (not 0), the THEN-Qroup of statements is executed.
* It the IF-clause value is false (0), the ELSE-qroun of
* statements is executed.
S The ELSE-qroup Is optional. If it does not does not
* exist, the entire IF statement is skipped.~*

* Functions used: next, error(16/17/27/54), statements
• Globals used: token, token.type, symid, symval
* Constants usedt symsiz, loq.op.token, log.tunc.token

-. *

* uthor: Dennis J. Ritaldato
* Last update: 22 Sep 1983

#include <stdio.h>
4 Sirclude 09lobel.interp"

int loq.result a 0;
int term a 0;
Int sub = 0;

$if debuqtf
nt level a 0;

*il Sendif
If.statement ()

0 if debuo
printf((IU.STATEMENT entered.O);
0 endif
If C! log.expo)
4 errorC54):
returnr

#if debugif
printf(*--loq.result at level Id Is ld.O,levelloq.result);
tendif

If Clog.result)
A If C strcmpCtokem,"THENN) )

4 errorC6);
return;

I

#if debuqif
Printf("--THEN found.O);
#endif

next(); /* bypass THEN */
statementsC): I* execute then clause *I

/ skip else clause 5/

while ( strcmpCtokent"ENDIF") ) nexto;

else
/* skip then clause 'I

Swhile C stremp(token,"ELSE") ) nexto;
S Sit debuqIf

95



I D-RI36 809 A USER-ORIENTED MICROPROCESSOR SHELL COMMAND LANGUAGE 2/2
INTERPRETER(J) NAVAL POSTGRADUATE SCHOOL MONTEREY CA R

UNLSSFE D J RITALDATO ET AL. SEP 83 FG92 N

UNCLASIFIED /GE9DmEE~hhEEEEai



£ 1111 I.o o

L,,32

1~~ 4=012.

Sim

11111 111 1. 1111. .

MICROCOPY RESOLUTION TEST CHART
T NATIONAL BUREAU OF STANDARDS-I963-A

%1 :

,. °

*.5"..

"-,, . ,,- ," ." ; ",'-.'.,,-. '..', '. ': " ',''-',-.' .'"-. ,:;:- .:-;' " '-i:-;:;/:, ""-. -":'-. -::- '-: ")-:: %.- ,.-:-"..:.-::ii; .



orlntt("--ELSE fOund.O);
Oendit

nexto): /* bypass ELSE '
statementso; 1* execute else clause *

If ( stremp~toIken,"ENDIFN))
Cerror(l7);
returnj

nextou /* bypass ENDIF '
return;

) 1~* end if..staten'ent *

ire

, 

A4



* LOG.EXP determines if the current token is a loqical
* expression. A logical expression is defined as a
* logical term, optionally followed by both a loqIcal
a operator and a loqical subexpression. Th~e entire
* logical exoression must be enclosed In parentheses,
a If a loaical expression 1s feurd, it's Value is
a stored In the variable "loq.result" and true i.s
a returned. Otherwise, false Is returned.

*Author: Dennis J. Ritaldato
a Last update: 22 Sep 1993

loq..exp()

Int lhs a 0, rhs a OF
char operator Csyu'siz];F:

$If debuaif
Printf("Enter~d loa.expO)F
Sendif

nexto): /* bypass ""5

#If debuqif
PrIrtfCO---- Left paren found for level td, welevel,.)F I
PrintfC* New token Is %sotoken)i
lendif
If C 1 log.term())

return~false);
$If debuqif
printfC'----In log.exp, log.terM returned %d "Oterm);
printf(m with token %sO,toKer)i
Printf(O----mand tokentype of 1dOvtoker.type)F
Oendif

lhs *termi
Ift (toicen..type as log.eop..taken)

11 Ctoken..type an lafUre.token))
4 strepy~operator~taken)?
nexto: /* bypass operator 5

4 #if debuqit
printf(m --Logical expreession operator, %at found.Opoperator)F
* end if

If C I subinloqo)2
return~false) F

rhi 2 Suby
loq.result a computeClhstoperator~rhs);

#If debugif
printtC* ----Compute returned td,Otloq.result):
Cendif

if C !strcmp(tokenO")")
Cnext0? /5 bypass 0""5

97



#If debugif
priftf(-Right paren for level %d compound expression.O~level);
Printf(O-With next token of Is.O~token);

- endif
return(true)p

also /* matching right paren not found *
f errorC2,7);
return(false) g

else If C Istrcmp(tokeno*)"))
I log.result a lhs;

* nextol /* bypass ""*
return(true) x

else /* matching right paren not found ~
error (27)1

return~alse) * end log.exp,*

-go



* 3US.LCG determines If the curren~t token is a logical
* subexpression, A sub expression~ Is defined as a
* logical term#, optionally followed by a logical operator
* followed ty either a logical subexpression or a
* loqical expression.

*If a loqical subexpression Is found, It's value is
-* stared In the variable *sub" and true is returned,

$ Otherwise, false Is returned.
* '

sub..log()

tnt ihs a 0, rhs a 0;
char overator Csyrsiz] I

Sit deb'Jqif
sJ~ PrinttC"Entered sub.loqe0)i

SendIf
If C I logmtermo)
returnCtalse)r

lhs *termi
If C tolcen.type In log.op.taken)

&a Ctoken..type !a loq.func.token)3
4 sub a lhst

return~true)y

strepy(operatarttokel);
neztC): IC bypass operator *
If ( sub.logo))
4 rhs a subi

sub a computeClhspoperstorerhs);
#If debUqIf
prlntfCft----In Sub.dog, sub..log returned Sd.O,sub);
Sendif

return Ctrue)o

If C loq..eXP()
f rhs a log.result;

01f debugif
prIntfCQ ---- In submilog, loqgexp returned Id.Oprhs)l
#endif

41 sub a conoute~lhspoperatortrhs)i
return Ctrue);

return Cfalse)pr ) I' end sub.1og

p9



/* LOGUBTER!M determines It the current token Is a term
* In a logical expression. A terN Is defined as a
* logical expression, an Identifier or a number,
* If a term Is found, it's value is Placed in the
* global variable "termR and true is returned.
* Otherwise, false Is returned,

loq..termC)

Olt debuqif
-~ Printf(*Entered Log4 termO)i

Sendif
If C log~aIxP0

4 term a loq.result;
return Ctrue) g

If (token..typ. ex idtoken)
4 strepycsymid,token);

lookup() I
tervi a symvali
nextofi /* bypass identifier *
term = symval;

,~44.Olt debuqif
printfC--dentitier value Id was foUnd.O,termn),
tendit

return Ctrue) p

if (tolren.type an int..token)
4 term a atoiCtoken)s

net1 * bypass Integer *
Oit debugif
Printf(*---Integer value Id was found*O,term);
vendif

return(true) p

r e u n f a s ) * e n d l o q ~ t e r m

100



*COMPUTE performs the operation specified In the
*paramieter "op" and returns a value of true or false.

eowpute~lhs~opr'4s)
mnt lhs, rhs, *opg

Sif debugif
prlntt(*Entered conpute with %d %s %dO,lhs,cv.rhs);
#endlf
If C Istrecopp~"E0'))
4 If Clhs za rhs)

return(true);
return(talse);

If C Istremp~op"LTO))
4If Ciha < rhs)

returnCtrue)i
4' returntalse);

If C Istremp~opo"GTO)3
4 If Cihi ) rhs)

return(true)t
return~talso);

If C IstrempCope"NE"))
4 If Cliii Is rhs)

return Ctrue) p
return~talse);

If C JstrcmpCop*QLE")
Wi 4 If Cihs <z rhs)

return(true)?
return~falue)p

If C IstrcrpCove"GE")
4 If Ciho )on rhs)

returnCtrue) u
return~f also) p

If C 1strcupCop*AND'))
f if Cihs S rho)

return Ctrue) I
B' returnCtals*)p

If C Istremp~op,"OP")
4 If Cihs I rho)

4 returntr'ie)u
4 return(talse)p

It C Istrc.p(op.NCTO)3
return( 11ho )

101



it ptCoh ItC (O CC)s not yet inmpleffontedC)s
returnctese)1y

/* end comipute *

4

.102



* CASE.STATEMENT executes a set of statements based
* upon the case variable. It one of the cases matches
* the value of the case variable, that set of statements
: 1 executed. If none match, the otherwise set of
* statements Is executed.

* Functions used: lookup, next* caseonume
* error(23/31/32/33/55), statements

Globals used: token, token.typep symide symval
• Constants used: idotoken, into.tcken,

A Author: Dennis J. Ritaldato
• Last update: 22 Sep 1983

#Include <stdiO.h>
$include "alobal.interp"

nt casevalt
case.statement C)
4
$if debuq
printt(O CASE.STATEMENT entered.O);

.,: serdit

if Ctoken..type an id.token)
4 strcpy(symidtoken); /* get case variable 5/

If ( I lookup() ) /8 and save its value 8/
error(S5); /8 undefined variable 5/

returnt

casevel a symval;
)

else If Ctoken.type as int.token)
caseval a atoi(token);

else
4 errorC23); /* not integer or valable */
returnp

)
nextol /* bypass case variable 8/

if C strcmpCtoken,":")
4 error(31)y
returnj

9 )
nextC)u /* bypass : /
If C I casenum() )

4If C strempCtokent"OTHERWISE " )

f error(32)1
returni

nexto); /* bypass OTHERWISE
if C strcmp(tokene"$:)
4 error(31);
returns

103

le



"exto: /* bypass:$1.
statements 0:

It c stremp(tokene"ENDCASE"))
* ( *rrorC33);

* returni

"exto): /* bypass ENDCASE
* I /* end case4 .stateffent

1041



* CASE.NUM executes a set of statements based upon
* the case variable. If one of tte cases matches
* the value of the case variatle, that set of statements
* Is executed and true is returned.
* Otherwise, false is returned.

* Functions used: lookup, next, casemnum, error(55), statements
* Globals used: token, taken.type, sYMid, symval
* Constants used: id.token, lnt.token,

* Author: Dennis J. Ritaldato
* Last update: 22 Sep 1983

2'/
$include <stdio.h>
case.num()
I

nt found;
int saveval;

for (foundatalse; Cstrcmp(token,"OTHERWISE")!=O) & f found); )
(

#if debugcase
printfC*--Inside for loop.O);
lendif

It Ctoken.type == id.token) /* maybe an identifier */
4 strcpy(symld,token);

-it debuqcase
printfC*An identifier token, %so was found.O,token);
fendif

next(l /* bypass identifier
If ( Istrcmp(tokent":")
4 nexto; /* bypass :

If ( I lookup() )
4 errortS5);
return(false);

)

It (caseval an symval) /* check this case item C/
found a true; t* aoainst the case value 5/

)

else if (token.type ex int.token) /* maybe an inteqer *I
4 saveval a atoiCtoken);

$it debugease
print("--An integer case option of Id was found.O,saveval);
lendif

nexto)? /* bypass Integer 5/
If C stremp(tOken,":) 3
4 nexto)# /; bypass :

If (caseval an saveval) /* check this case Item */
found • true; / against the case value 8/

105



elSe I. MUSt not be the proper *
f while (strerpctoken,";") )/* ease so skip rest of line*/

rexto;
$it debugease
DrirlttC"-No valid case nun' was found.O)i
O endif

next() /* bypass :*

) /* end-for 5

*If debuacese
printt("--End of for loopO)u
Sendif

If C I found)
returncfalse)y

statements();
while C strcmpCtokenv"ENDCASE") ) /* skip remaining state 5

nexto0g /* in tne case
returnCtrue);

) ~/* end'mcase.mnum 5

10



.- I 1;- 1. . -

/* Loop repeats a set of statemrents a Specified num~ber
* of times. Any number of repetitions may be specified

* via either a number constant or variable entry.
V * Only one level of loopirg is implemented in this

* version, To implement multiple levels, chanqe the
$ loop.file variable name to an array. Thrn step

* through that array.

* Functions used: next, error(23/55), lookup

* Globals used: loor.cnt, symid, synval, loop..ile
* token, token.type, strinq, sotr
* Constants used: int.token, id.token, linesiz, NULL,

* LOCPEF!LE

Author: Dennis J. Ritaldato

• Last update: 22 See 1983

#include <stdio~h>
#include "global interp"
loon.statement )
f

nt save.cnt z 01

.v #if debug
printfCOLOOP.STATEENT entered.0);
#enditf

If (token.type 2z idtoken)
4 strcpyCsymid, token);

if C lookup() )
save.ent a symval;

V else
errorC55);)

else if C token.tyre =a int.token)
save.cnt a atoiCtoken);

else
i error(23)i

returni
)

nextM; /* bypass loop count variable C/

IV NOTE: *

/* Each line must terminate with a NEWLINE character.
!* Lin.len should always oint to ttis NEWLIME character.
/0 Except, whom adding a string, the NEwLXNE is added at the*/
/* end of each line and at the end ef the complete string. 'I

looo.file a fopen(LCOPrLE,"w")s
while C strcmp(token,"ENDLCCP") )

if C token.type !a str.token 3
4 fputs(token,looc.file); /* add identifier/number to file*/

107

:1.~ - . -Y-;



fcputs(0.loopfie);

else
4 touts("

fputscstrinq, loop~file);
fouts("

nextO;i /* bypass current token

loop..cnt a save.cnt;
teloseCloo~fle); /* close as write file

/* reopen for input 8

loop.file z foper'CLCCP.FILEv"r");

$if debucloo
PrintfC'--!n lop bypassing token %sO~token)y
sendif

fexto0I /* bypass the word "ENDLCOP" 8

Wi debugloop
PrintfC"--Leeving loop with token %sOptoken);
lend it

returni /8 end loop~statenment 8

*106



-, $include <Stdio.b>
VirelUde "global~interp"
create 0)

;rlntfC" CMATE entered.O);
while CtokenCO2 !a *lip)

nexto)

) 1* end create

oinclude <stdtooh>
#include "global.iftep"
disolay ()

ortntt(m DISPLAY enteredO)i
while (tokenC03 I #I)

nextC)l I
/* end disiply

10



* Error performs error processrqo Ueendinl on the Input
* parameter "type" a message is orirted at the user's console
* and the function either returns or terminates the vroqram.

* Author: Dennis J. Ritaldato & David J, Smania
* Last updates 22 Sep 1983
C,
tinclude <stdio.,>
0tnclude "global.interp"
error (type)

int type; /* ERROR TYPES ARE: */

if (type <= 10) /* 1-10 System errors j/
4 Printf ("**** SYSTEM ERROR )*** o);

switch(type)
c(ease it

exit();
case 2:

printf ("Symbol table exceeded.O);
exit(;

case 3:
printf ("Premature end of input encountered.O);
exitC);

case 4:
printf ("Unrecognized character, %c, in line:O,*lptr);
PrIntf ("sOline):
return;

case 5:
printf (*String length exceeds %d In line:Ostrinqsiz);
printf ("%sOlne);
exitO)

case 6:
printf("Unable to open file - check <FN> is capitalizedO);
exito;
return;

) /* endcase C/
) /$ endit 1-10 C-

else if (type <m 50) It 11-50 Reserved word 5/
f printf (U**** SYNTAX ERROR 0*** 0); /* syntax errors C/
switch(type)
4 case ii:

Pr~ntfCOPRCGRAM");
break;

case 121
printf("AN ICENTIFIER");
break;

case 14:
printf("END.");
break;

case 16:
DrIntf("THEN");

110

-t .' ' - . . . . - - . . , . . a . -•- -•

. ' " ,. € ,. '- -- - j, /"..,' . . ''. .'-. - - ... ,.- .- .".. .. ." .- '.,,.- ...- ,.. ....



break;
case 17:

Drintt("ENCIF);
break;

case to:

break;
case 20:
print("Device 'CRT# or a filename");

-~ break:
case 21:

Printf("CAN ARITHMATIC CPERATCR");
break;

case 22:
DrintfC"AN ARITHMETIC EXPRESSIaN");
break:

case 23:
printf(*An integer or variable loop count");
break;

case 24:
PrintfC(An Irteqer, Identifier, string or expression");
break;

case 25:
, DrintfC(Device 'CRT* or ILSTI or a filename");

break;
case 26:
Printf(Ofilename *- (<FN> C.<FT>]) -- ");
break:

case 27:
printf("m- -- "):
break;

case 30:
Drintfn"Filetype -- (<FN> C.(F*>]) --");
break;

case 3t:
Printt("-- : -- "):

break;
case 32:

Printg(nOTHERWISE");
break;

case 33:
printCENCASE");
break:

default:
printf C" s88 SYSTEM ERROR I I Id S888 ",type):
printf C" PLEASE NOTIFY EITHEP OENNIS J. RITALDATO (215) "3;
printf C"441-2107 CR DAVID J. SANIA (408) 646-8182. 0);
return:

) /5 endcase */
Printf C" was expected, but %s was tound at %s.0,tokenlptr);
while (tokentO3 is @;V) /* skip remainder of line 5/

next()l

111

....



returni
) !* erdif 11-30 */
else if (type <a 70)
S(switchCtype) / if 51-70 General syntax *1
I case 5: errors */

printf ("No legal Command Languaqe statement was found");
break:

case 53:
Printf C"; expected");
break;

case 54:
printfC"An IF statement rust have a logical expression")i
break;

case 55:
Printf("Undefined identifier, Is "vtoken)i
break;

case 56:
Printf("Carnot read from the list device");
breakt

case 57:
crintfC"Data type mismatch. A string type was expected");
break:

case so:
return;

case 591
return;

case 60:
return:

default:
printt (CO$$$S SYSTE14 ERRIO 6 1 - %d $$$8$ ",type)l
Printf CO PLEASE NOTIFY EITHER DENNIS J. RITALOATO (215) 0)1
printf C" 441-2107 CR DAVIC J, SMANIA. 0)1
return;

) I* endcase
printf CO at Is In line:112sO,lctr,line)i
while( strcmpCtokent";") ) rexto)/* skip rest of line */

t 1* endlf 51-70 5/
I/ end error 5/

.* t4

112

" w' ' '' - -' "-" - " . ".*'.r -.-.



S LIST Of R91PERECES

E. nsj W. P. H.. 2un ng.3amm. North-Holland
Pulsing CompiAyf 5

*.2. Newman, V. 8. and Sproul, R. F., lr.m 1.2
jntracjI QutsijjU Grohg CG raw -Hi 97

*11



BIBLIOGRAPHY

'4' - idmead, C jfr jg ,Practical Computing, Vol. 6,
No. 4. prl T

31~S~i.~ejjffShqjjt. Comuter Science Department,

Hen drixsuiEto 23 of a 'N2ih! Vos, Dr.
-' Dobb's 3oralVohTo TJR Utrl

T. _Qbo4 a~el2f1jda, Xerox falo Alto

sads * , p J jj ff ui&~1ppRa~L'1, Software

4* Kar Njiis h" JigrsiD FP 41Sigplan 0 o -e"77

sa~t i , Dii221- 21 AAA~Om1ute1 21I222 Prentice-Hall,

Ila e r R 3.N Fjp3Veh§l2fH~ N4.10vices pR te

Killer, L. A. and Thomas~ 3. C. Jr.

WAMAlhNf Rif I~Ylf~*5, September 1977

Norgan ~gT. P.. n&i1ie PhJqoIyUe C
ComU pulgurveys, TOP T3711I"G 1jNFqU'W8T41.2Ue
Kozelgoe K.r A I ~ M~n Haloac4ft3AjQ Mt93 L;Onuu tM'~ f 1iRAXCN voi2 ~rT5~qAt e

Newman,, V. N. and S roul, 1 nea~~.,
- Q.IR3= §Zjg, K Graw-Hf, iO inipe 2-1

leuhold, N.J., and Weller T.,~4 ~ 2
Gagiu4 Z1MIq Acta Into riatiA 4 W'A&1=2vM2

Pri tt C.J.; Kochinacki, S. and Yang, S., TIE

1982 Cne qmn

Proceedings of the IFIP Working Cnernce oncomn
Coany ae jgfla.4 1 49ASI North-Holland Publishi.ng

114



Sandwall E. emZ
bt 2 a ori"1134wa 419111fli 1§f4e~rcue

An N~atinal orshop, North folland, 198~
Shne±iezan, B. , *,j+2jlg p in Des I~ng

;4ju-u 11"I C, Ia T701 c T1

Skel! Q pj,1 cj ~drD.Db'

Jorn Vl , am

411ifq~tl,40 2f92j&q~dg~qa~j115TA



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense ?echnical Information Center 2
CameronS ati on
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postqraduate School
Monterey, Califcrnia 93943

3. Department Chairman Code 52
Department of Ccmpuder SCienca
Naval Post raduate School
Monterey, Zalifornia 93943

4. Naval Air Develcsent Center 2
Code 501
ATTN: Mr. Dennis J. Ritaldato
arminster, Pa. 18974

5. Naval Air Development Center 1
Code 501
arinster, Pa. 18974

6. LCDR David J. Smania, USN 2
21 Revere Rd. j
Monterey, Ca. 93940

7. LCDR Ronald modes, USN, Code 52MF 2
Department of Computer Science
Naval Post qraduate SChool
Monterey, Ca. 93943
ft U. Daniel Dtvis1
Department o0 Computer Science, Code 52
Naval Postqraduati SChool
Monterey, Ca. 93943

116

-, , , . _ "."... * * ,~'.'. .. . .' . . . . .- .. " . . ..""*" ' - .'.• ,.-' -, '." ,"".-'e".".-'. '--,. .- "-.'.,- ., '..',,..".' - '. . ".<.' '.4,';'.C
I* I - - : .4I l ~.4- - ,.- - . .



Jr..

IWI

AA

k44

95 ~ 3N

R. - r

I,. 4vv.,


