D-A136 8a@9

UNCLASSIFIED

A USER-ORIENTED MICROPROCESSOR SHELL COMMAND LANGURGE
INTERPRETER(U) NAYAL POSTGRADUATE SCHOOL MONTEREY CA
D J RITALDATO ET RL. SEP 83

F/G 972

h

. . L%
5! _ ARG

.
.
.
)
B
'
P
i\
. S
B
i "
. ot
g '
o e
.
.
.
X [4
f S
o
v
* (]
.
4
. iy
' - L)
' _

T ot S il

EEE
; . ddaq

; , B EFFEPIPN

16

et

|

1.4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-n —
\
!)
; O. — W)
. — — N
.

i — — ————
) _— =

_ e =
4
4
'] -

S .
- NS . -

rJ
1)
\d
£
F4
£
¢

el

v IACROVCOR Rrsese P o K AT 4 A, R : &
. EREE YRBAY LA XAy SOTRED. h0REO2|

A SR i NGl e e A A AL "t WA R R "SR R St Sl Sl e A e M B s S T PR A ACIAT 3 A R S S e N AR R b o

¥
- !

| =)
NAVAL POSTGRADUATE SCHOOL

i Monterey, California

DRRRIE

A AR
MR

41-A136809

THESIS Y H

Pt E;: A USER-ORIENTED MICROPROCESSOR SHELL
‘? o COMMAND LANGUAGE INTERPRETER
! D
% wd by
)
-J - -
‘ C:: Dennis J. Ritaldato
‘ﬂj PX-) and
; E David J. Smania

= September 1983

Thesis Advisor: Ronald Modes

) Approved for public release; distribution unlimited

- o« - LA 2 -
" ',-4:‘;.“" . .\

...
..............

N NN S
L.i. n_.‘:..f P WA AL AT P, B ATV L T T AR T N O SO P VL T i SR WL WAL A R At Wk W ST AT

N N e N T T AT A I T e g T L
A VA A P W I AT N A ‘;cheggL;*c:;';‘;‘;“;';‘:‘;;;‘;:;;;';C:;;;ggg‘aigﬁrt-

P PR IR R S T Tt S bt v et i M MR MEGIL o (A S O R T A A S S S ey |

SECUMTY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
T, REPSRY NURBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER |
p-A 13 é|fo
& TITLE (and Subeitlie) 5. TYPE OF REPORT & PERIOD COVERED
A User-Oriented Microprocessor Shell Master's Thesis
Command Language Interpreter September, 1983
6. PERFORMING ORG. REPORT NUMBER
- 7. AUTRON(a) 5. CONTRACT OR GRANT NUMBER()]
Dennis J. Ritaldato and
David J. Smania ﬂ
[
S P ERPORMING ORGANIZATION NANE AND ADORES - -
CRPFOAMING ORGANIZATION NAME AND ADDRESS 10 ::ggn.»‘oc&:asr;.&zo‘: :ess*r, TASK

Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE
Naval Postgraduate School September, 1983
Monterey, California 93943 1. miulagn OF PAGES
TE RSNIYOMNS ASUNEY NAME & ADORESH(IT Giiferent frem Controliing Office) | 15. SECURITY CLASS (ol thie report)
UNCLASSIFIED

18a. DECLASSIFICATION/ OOWNGRADING
SCHEDULE

6. GISTMBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

Accession For

‘ NTIS GRAx] |
O
]

17. DISTRIBUTION STATEMENT (of the abatract entored in Bleek 20, If different irom Report) DTIC TAR
Unannounced
Justification.

A

_Q;;pribu.‘.iav/
Availability cfies

e S ——
10. SUPPLEMENTARY NOTES

Avall andjer
Dist Special

[19. KEY WOROS (Centinue on oide If oy and identify by biock number)
Command Language, Shell, Interpreter, User-friendly /al’

&ls 20. ABSTRACT (Cantinue en reveree side ! Yy and idontify by block ber)
The design of a microprocessor command language, RSCL, is discussed.
RSCL provides the capability of building variable shell environ-
ments on a standard microprocessor system. These environments pres
ent a menu driven, screen oriented user interface as opposed to th
line oriented interface of current operating systems.
g The RSCL is a straightforward, easily understandable and complete
computer programming language. Designed according to specific com-
man langgaﬁe guidelines, it allows the user to make maximum

utilitz 0 is skills. ->- ' (Continued)
DD .5y 1473 eoimon or ' wov 6813 cesoLETE
$/M 0102- LK 014- 6601 1 SECURITY CLASSIPICATION OF THIS PAGE (When Dara Entecec:
I SR N N A A R A G R T R N

S Eh OO it P Wi iy A d s & LA N L W And L L R NG A e e, A S AR S A St R G O AR

SecuUMTY CLASSIFICATION OF THIS PAQE/Whaen Deta Entored.

ABSTRACT (Continued) Block # 20

BA prototype implementation and sample program runs are included.
These illustrate the design features and serve as a test platform
for future research. i

N

SR
'y .“

BOrU S

L

A

- -
o~

-
-

XX oty
i

."-

e

ﬁ.I..

3

0%.‘62'-014-6601 2 gCURITY CLASSIFICATION OF THIS PAGE(When Dete Sntered)

DD A Form_ 1473
AR

(e I

y‘ e - - »
p o
&
'i& Approved for public release; distribution unlimitad.
-.v
2
R A_User-orientad

Bicroprocessor Shell Command Language Interpreter
by

T . Dennis J. Ritaldato
B.S.E.E. Villanova University 1974
M.S.B.E. Drexel University 1981

and

David J. Smania
Lieutenant Commander, Unitad State
B.S. Weber State Colle e 1972
M.A. Pepperdine Univarsity 197

s Navy
9

b

2024,

Subsitted in partial fulfillment of the

“ﬁ‘ requirements for the degree of
‘35 MASTER OF SCIENCE IN COMPUTER SCIENCE
{? froa the

fs NAVAL POSTGRADUATE SCHOOL

ot @ September 19393

e Authors: (\ 652/; //_Aﬂ_/,f—

bg Approved by 45;7552::;457/ ,/1:::?fé:;

i Thesis Advisor

Q_:ar_v.x.».'«J«M

“."
(2 Second Reader

L Yo R fordiror

iy Chairman, Department of Computer Science

&’ .

52y T K. T. MIZ“;{L./_CK
e Dean of Info Policy Sciences
Y

ﬂ
~: 3
fﬁ
\.
£a3
¥ "
N2
PN ‘u AR »‘ e J-‘., .J' Re '{ AL AT Y '.: ..; SR MO CR

- .
<t e® v, .
P N

ABSTRACT

The design of a microprocessor command language, RSCL,
is discussed. RSCL provides tha capability of building
variable shell environments on a standard wmicroprocessor
systen. These envircnments present a menu driven, screen
oriented user interface as opposed to the line oriented
interface of current operating systaas.

The RSCL is a straightforward, easily understandable and
complete computer pregramming languags. Designed according
to specific comaand language guidelines, it allows the user
to make maximua utility of his skills.

A prototype implementation and sample program runs are
included. These illustrate the design features and serve as
a test platform for future research.

Ll e W N e v A
- W oL WL . -y LA S B LN) ‘. . DR R T AL T P R T T AW -

A S AN A N A A IR AR A LS LAl

ACKNO WLEDGHENTS

The authors wish to thank the following people. LCDR Ron
Modes, our advisor, for supplying the necessary guidance angd
support to sse us through the difficul+ times. Prof Dan
;: Davis, our second reader, for his insight into future trends
in user friendly systems. Mr. Al Wong for his assistance in

:?j debugging our *C' interprater. Pinally, aad most iampor-
7 tantly, to o>ur wives, Dawn and Royan, and our children
R Dennis and Annie and Stacy, Suzanne, Shelly and Scot+t for
%s supporting the successful completion of our work.

=

Y

x:’1

Ny
SO

I

AL
'?'l ?A

) ALK Ay
s

LA
s A

i

.\,)

'?@)ﬁf

TR ADEMARKS

N

V8

‘ CP/M is a registered trademark of Digital Research.
Display Manager is a tradeamark of Digital Research.

gringt

s

¥

)
o

AL
e

'
N
J

.

Lok iy 5 e e o
YR, KA

y '

§.
'Yy

»«-‘

' TABLE OF CONTENTS
§

§) I. INTRODUCTION « ¢ « « « o« « « &

, A. BACKGROUND v« « « « o o o «
) Be PURPOSE & o o « o o o o »
".':. C. S@PE e e e e o ™ e ® o o
II. COMMAND LANGUAGE ISSUES . . .
N A. DESIGN ISSUBS « < o « o
?4 1. COMMUNICATION STYLES .
> 2. DESIGN GUIDELINES . .
' 3. USER PROGRAMMING LEVELS
- 4., DISPLAY FORMATS . . .
\ III. RES COMMAND LANGUAGE FEATURES
A. Rsc L coa u ‘NDS [] [] ® [] L] []
: 1. BOUILT IN FEATURES . .
2. LANGUAGE LIMITATIONS .
: 3. LANGUAGE COMMANDS . .
Iv. SYSTEM DESIGN .« o o o o o o o
8 A. CBESIGN ASSUMPTIONS . « . .
o
) B. DESIGN CRITERIA . o« « . .
Ry C. DESIGN DECISIONS
" v. INPLEMENTATION « « ¢« « o o o &
; A. DATA ORGANIZATION
e B. PROGRAM ORGANIZATION . . .
N C. RUNTIME ERROR CHECKING . .
:, vI. SYSTEM OPERATION « « « o« o o .
ﬁ VII. CCNCLUSIONS AND RECOMMENDATIONS
.Y
. .
A"
S
> 7
4
A

PR R
o .~

10
10
13
13

14
14
14
15
16
17

19
19
19
20
20

24
24
24
26

29
29
29
30

n

32

........

[V USSR - § W SR LY]

[N SN o8 % NN

AI GOlLS [) ® o - - .] [) L] L] L] L]] [} L] . [} [- . 32
Be PROBLEM AREAS .« ¢ o v « o a o o o o o o o o« o« 32
c. PUTURE HORK ® L 4 Ll L) * Ll . * L] L] * L] L] L L] - - 33

A l
. APPENDIX A: COMMAND LANGUAGE GRAMMAR . + « « « + o« « o o 34 5
:‘ g APPENDIX B: RES COMMAND LANGUAGE USER'S MANUAL 37 3
‘ A. INTRODOCTION v « o « o « o o o o o o« o o o o o 37
N B. LEXICAL CONVENTIONS . o « o « o o o « o o o o 37 :
i? 1. TOKEN DESCRIPTIONS « « « « o o « « « « o o 37 E
N C. DECLABATICNS « o« « « o = o « o o o o o o o « « 40
De SYNTAX ¢ « o o « o o« o o s o o s o o o o o « « 40
N E. PROGRAM STRUCTURE . ¢« o ¢ « o « o o o o« o « « 40 ;
:5 1. The LET StatemeNnt =« « « o o « o o « o « « 82 i
R 2. The GET Statement . . . ¢ « ¢« « ¢ &« & o« o U5]
. 3. The PUT Statement . « o « o « s « o« « « o U8
% 4. The IF Statement . « « « o o « o« o« o« « o « 50
ﬂ 5. The LOOP Statement « . « « « « « s o« « o o 52
6. The CASE Statement . « « ¢ « o « « o o « « 54

) 7. The CREATE StateREONL . « « « ¢« ¢« o« « o« « « 56
8. The DISPLAY statenent [] [] [] [] L] * L] [] [] [] 56
F. GENERAL ERROR HANDLING « ¢ « « o « « o o « « « 57

W“’q‘"

APPENDIX C: PROGRAM SOURCE CODE LISTING . « ¢« « « « « « 59

LIST OF REFPERENCES .« ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o « o o 13

E R,

BIBLICGRAFHY =« ¢ ¢ « o o o o o o o o o o « o « o o« o o« 114

INITIAL DISTRIBUTION LIST ¢« « o ¢ o o o o « o o s o« « « 116

ORI | Sy

¥

'y
-”
“
>
Cd
Ll
o
-

“n

.'_..*

e e ~ s w e o Cetm -
AR LAY $.‘- o X'\'. _"‘n ‘.-‘.‘-"‘u._ o

¥ R

-‘. L) ‘u'_ .

..t W
CRE TS

LSRR P R P
h\. w '(.n L \‘ _q'.- LY

S
Lt

LIST OF FIGURES

]
4
-
!
4
:
j

) 1.1 ANSI OSCL Study Recommendations . « ¢ ¢ « « « « 11
1.2 Dutch JCL Committee's Basic Job Functions . . . 12
2.1 FPour User Programaing Levals . « « ¢« ¢ « « = « « 16
B. 1 Sample Coamamand Language ProgTam .« « « o o « o o« 41
B.2 Exanple of Two Line Formatting Technigues . . . 41
B.3 SAMPLE LET STATEMENTS . o o« ¢ 2 o o« o o o o o o« 45
B.4 SAMPLE GET STATEMENTS . ¢ ¢ ¢« o o o o o « « o o U6
B.S SAMPLE POUT STATEMENTS . . ¢ « o o « o« o o o o o 49
B.6 SAMPLE IP STATEMENT . & o ¢ ¢ o ¢ o o o o o o o 92
B.?7 SAMPLE LOOP STATEMENT . ¢« ¢ « « ¢ o s o« o o« « o« 53
B.8 SAMPLE CASE STATEMENT . . ¢« ¢ « « o o o« o s« o o 55

Y S

......................

I. INIRODUCIION

A. BACKGROUM®

In the early days of computing it was simply man against the
primitive operations of the computer. There was no need for
any Command language because prograaming was done bit by bi+

A WY AVIY

without complex interfacing. Computer systems consisted of
many tubes, a few cable connections, and possibly a periph-
4 eral device t> display the results (output). The programmers
; of the early days were considered jack of all trades. They
o designed the rudimentary programs, entered them bit by bit
' by re-arranging the cable configurations and should probleas
Xy arise they were the only trained maintenance techniciaums.
‘§ This 1idyllic situation did not persist for long.
"1 Advances in computer technology especially in regards to
. resources available made it imperitive that the user . be
¥ given some access mechanism to these resources. The first
: system to provide such a means was tha IBM 360, The systenm
e required precise instructions to execute the system func-
’ tions. Unfortunately, t hese instructions were not self
%ﬁ generatad like today's systems but required external media
N intervention. This external media was in the form of punech
N cards each containing a precise c¢53ad instruction which was
— then feed int> the system along with the program card dack.
EE The system designers either misconcaivad the effect of these
.ﬂﬁ cards on programmers or miscalculated <+their abilities to
4 achieve an automated system. The result was catastrophic.
B The first of the Coamand languages was a piece meal language
kf conceived in part as an after thought to a poor systenm
N design. The IBM language called a JCL (Job Control Language)
: did just thae, it controlled the program execution by the

A
3 10

LS Y
i

a
-

-

St oL,

G

L4

) inserticn of instruction <cards throughout the program +to

3 nanage the system's resources. The language was ambiguous, j
i inconsistant, machine dspendent and designed with 1little ;
% concern for the user. The impact of the IBM JCL language 3
- spavrned numerous reserch efforts saveral of which are j
- outlined.]

During the late 1960's and early 1970's several organi-

N zations established working groups to study the JCL and OSCL

f (Operaing System Control Language) interface problem. The

! first organization to study the problem was the American

. Standards Institute Committee on Programming Languges (ANSI)

3 in June of 19%7 ([Ref. 1]. They conducted extensive surveys

: of nine existing 0/S systems and their control languages.

™~ Their findings concluded with a list of five recommendationms

-

A 1. The need for a standard OSCL axists and its

L attainpent is possible) :

. 2. Several features now present in 0/S should

i not be included in the standard

& 3. None of the existing OSCL's surveyed are

o suitable as candidates for a standard lanquage

. 4. There should only be a single stapdard OSCL

R 5. Plecemeal standardization Should be avoided
2 Pigure 1.1 ANSI 0SCL Study Recoamendations.
- for a design proposal, figure 1.1

: The Dutch established committ22as in September of 1971
- and conducted numerous meetings under the auspicies of the
) Netherlands <CTentre for Informatics. They focused on the
i basic functioas of job control as related to data processing
and job ccentrol inputs. The committee developed a list of
. basic job control functions, Pigure 1.2, is a synopsis of
S their classification of related 0/S funcions.

o 11

posr)
A4S

.A',J Js.' - I‘r.'

gy

| 2R

DR

y d .
¥ . b 2 A e,

24,082

1. Allocation (of_resources)

2. Conditjonal Selection (of part of a job)
3. Execution (of a computer_grogram)

4. Declaration (of job attributas)

Pigure 1.2 Dutch JCL Committee's Basic Job Punctions.

In la*e 1972 +the CODASYL (Conference on Data System
languages) organization conducted follow on studies to the
ANSI research. They determined that the ANSI committee had
only addressed the feasability aspect of a standardized
language and so set out to design a standard 0SCL language.
Three working goals were establishad to guide the research:
investigate the <functional requiraments for communications
between the user, the functional program and the hardware;
determine the functions necessary to dafine é standard OSsCL
language and what prcblems such a 1language would have on an
0/S; develop linguistic elements which posses these func-
tions and define a machine-independent OSCL.

Since these early studies Othar organizations i.e. US
Federal Information Processing Standards (FPIPS), IEEE, ACH,
British Ccmputer Society, US Department of Defense (DOD),
etc. both governmant and privately sponsored have contrib-
uted to the research and development of several prototype
OSCL languages.

The problem of standardizing Command Languages has
perpetuated itself over the years. To date only a few
languages (systems) merit any consideration as rpossible
solutions.

12

............

Y

P PSPy

a s

...... st
IV A vl

..........

B. PUBPOSE

The purpose of this project was t> design a system which
will enable the user to easily define a screen oriented
environment (shell) for interfacing to amicroprocessor based
computer systsms.

The shell provides an abstract view of the computer
system to the user. Through it command access can be
controlled and a standard JCL can be <created which will
operate on multiple computers and oparating systems. In
this way, any computer system can be tailored <to perform
exactly as desired fcr each commani. In addition, the same
commands can be nmade to execute in exactly +the same marner
regardless of the resident operatinjy systenm. This can have
substantial c>st saving effects in locations where mul“iple
computers are used. Personnel will not have to be trained
for each system since all systems will operate with the sanme
JCL.

C. SCOPE '

Chapter two discussas the issues involved in the design of a
command language. Guidelines for the design are also
presented. The features of thaz command 1language are
described in Chapter three. Chapter four discusses the
factors which vere involved in the design. The assumptions
made, ¢the criteria westablished and the decisions based on
then are listed. A prototype implamentation is described in

c% e
s or et
s & 2 A

“RE

E%S Chapter five. 1The operation of *he system from the point of
ﬁ; view of a user creating a shell environment with the command
NN language is discussed in Chapter six. Our conclusions and
o reconnendations including +he rasults of <the prototype
gj implementation are presented in Chapter seven. Appendices
5& A, B and C include the RSCL grammar, a User's Manual for <che

)

- ™
2 X
e Y

RSCL and a CLI program source code listing of the prototype
implementation, respectively.

(3
PO

13

LT e I
YR
a a2 a

a8’
l.‘
P

..... . "o I . .
.- N R N e e e e e SN,

W R . .
. G T T I S e A s “ L TR et .
S 3 T T R L R R L N I S S

»

5

,
.&'. .

2,]
Jsl 42

~
LY
~
Al
N
~

-.l .'0'.‘.‘.

II. GCORNAND LANGUAGE ISSUES

A. DBESIGHN ISSUES

Pour design issues ccnfront the designers of any interactive
Coamand language [Ref. 2]. First, hov many modes of opera-
tion should the user be forced to learn. Second, the selec-
¢ion sequence of ccmmands should be consistant and not
change with varying machine implema2ntation schemes. Thizd,
an abort mechanism must be provided to the user to terminate
a command sequence without losing the current scope or envi-
ronment. Finally, a clear and concise error message systenm
must be proviled to quickly resolva syntactic and semantic
problems. Thase design issues are not all inclusive and
further issues will be brought forward as the need arises.

1. CCHMUNICATION STYLES

Many CL (command language) communication styles are avail-
able today. Direct keyboard entry, using pre-defined
commands, allows the user to diractly control the machine
operations, but requires the user to learn a new, possibly
criptic, language for each OS/machine used. Another method
uses keyboard response dialogue %o screen prompts. This
method is easier ¢to use, but requires modification of the
proapts whenever a change in functions is made. FPunction
keys are a third method for users to communicate with the
systea. They are very fast and simple to use. The drawback
vith this method is some machines do not provide a function
key option or an easy means to redefine the existing key
functions. The last communication style to be mentioned is
the scr2en meau format, This style is seen as the way of
“he future. Commands and data ars displayed oo *the screen

14

P .. - .
LAY - . L PR
e e e ST LI . P S
. T N .- N LR
» P F R Y P R R A AR

. « R
- - .. s t. S Te “ . - ‘ s
PN R I R R T T T A P P T L AU

COEALACAGALAIA N SN A S S R R AR A A R R (P |

in menu form. The user references the command/data by posi-
tioning the <cursor at the desired £fi3ld or by wmarking <the
position with a light pen. Data <changed on the scre2n are
correspondingly changed in the data base. Criptic one-line
commands to the 0.S. are no longer raquired.

Some systeas (Xerox Smalltalk) provide a controlled
pointer (mouse) to indicata which function is to be invoked.
The Apple Lisa system uses the position of the curscr to
highlight a chosen function. In 2ither case the systam is
screen oriented providing the user with a simple control
mechanisa without the need to leara another language.

2. DESIGN GUIDELINES

Several scholars have suggested guidelines for developing
coamand languages. Rather then repeat their offerings we
have consolidated our perceptions 3f the primary guidelines.
« The systea must be consistant. It must present
the same environment to th2 usa2r regardless of
the basic system it is operating on.

« The systea must provide the usar with a coammand
sequence which is easy to use and learn, especially
the most frequently used commands.

. The system must be portable. Jther machines must
be able to adapt to it with minimal modification.

. The systea must provide a suitable error handling
process, both in presenting error messages and in
saving environments.

. The system should be user interactive and provide
the user with the option of selecting the level of
prompt help he desires. Screen oriented displays
are very helpful in selecting operations, but
require complex interface buffaring.

......
...................

B Asan aue aven aney]

SR

A

pr. . Control structures should be affluent emough to

;tEE allow the user total control of the programming

o \':_‘

’ envircnment.

r; 3. USER PROGRAMMING LEVELS

e

‘53 Different levels of user motivation and programming experi-

ence must be considered when d2signing a wmulti-purpose

Command Language systenm. Pigure 2.1 shows a rough categor- i

ization c¢f potential users into four general prograsming |
:5; levels.

NN

NN

o 1. The Toy Store Programmer

PON 2. The Novice Progranmer

g 3. The Computer Club Programnmer

i 4. The Pa Progranmer

o

4 c“:::

.-\::_

;:: Pigure 2.1 Pour User Prograaming Levels.

\ L]

'Q: The first level is the "toy store® programamer. He does not

2 really vant to write an application program, but just wants
. ™

N to know enough language tools to run a simple game program.
~p In general, he is in total awe of computers and makes
gﬂ minimal use of their actual processing capabilites.

iﬁ% Progressing to the second level, the first addres-

o sable command language level, we have the user who may have
: attended a praogramming course and who is now challenged to
:;: write a few simple application programs. The user at this

)

jﬁ: lavel is enthusiastic and eager to try out his new skills.

oo A friendly command language vill motivate him to the next
- level. A poorly designed coamand language will be frus-
A

ﬁ; tratinc and quite possibly curtail future computer queries.

The third level is characterized by a quantum jump
in user motivation. and usually programming skills. These

16

&

I, I PN AR Pt P AL IS . T .
Qo e P o e Y e T AT L N N TN LN T NN S ST N :1
T - g - - - S

..

users really vant to know how the internal system works and
are willing to expend energy and their own time to learn
varying systea hardware and software configurations.

The final level is a grouping of ¢two user facticas
into one entity. They are «colloguially termed the learned
computer scholars and the commercial programaers. They may
perceive issues frcm different parspectives, yet their
aotives and knowledge of computer linguistics are compat-
ible. Bcth require the full system resource capabilities at
thair immediate dispecsal in crder to perform to their full
potential.

Realistically, the majority of today's users and
those who are of ccncern to a command language designer,
fall within the final two catagoriss. However, care should
be taken so as not to preclude us2 by soamaeon2 at the second
level.

It is easily understood why Command Languages are so
universally divergent. Designing a coamand language to
satisfy the dynamic needs of the fourth level users while
still maintaining the simplicity for the novice users is no:
a trivial task.

4. DISPIAY EFORMAIS

Another issue which is receiving a grsat deal of attention
as the state-of-the-art is the display forma<. Whether to
display data as individual line oriented character strings
or as a menu driven systea. The traditional theme, driven
by the hardvare 1limitations of the past, is TTY (teletyp-
writter) <format. i.e. Presenting a line at a time. The
user responds in a similiar manner by entering data in line
oriented fashion. Innovations in hardware have enabled
designers to break from tradition and display whole screen
prompts instantaneously.

17

DAL AN AR R

t

g .l‘-'l .Mﬁ ..

Py

PN A

> | B
P4 ‘ LWL A A

v

“
~
‘
-
4
(Y

The impact of these innovations has been seen |is
such systeas as the Xerox Smalltalk and the Apple Lisa. i,
3. Inccrporating +the traditional command language 1line
editing commands into onscreen menu controls. The resposs
froma critics to these nontraditonal systems has been over-
vhelmingly positive.

The real significance of thase systems is their
prime objective,. They strive to provide the user with a
friendly interface devoid of complsax, ambiguous and incon-
sistant ccamand language structures. To the "real" program-
mers these systems aprear as a thr2at to their mythical man
over machine syndrome. Many feel that programming is an art
and a science and that these systams take awvay their
creativity by restricting how they can address the computer.
They prefer to deal direct rather than through the
middleman. In reality, a friendlier interface places no
such restrictionms. It simply mak2s it more understandable
so that more users can address the computer direcly. On+il
ve overcome the system friendliness problem only those in
the "real" programsers category will be willing and able to
fully utilize the computer.

These systens still have some drawbacks such as
overall cost and high memory raquiremencs. Yet, given the
history of the microgrocessor, hardwar2 designers will over-
come the obstacles and make these features available to the
average user.

The command langquages of tomorrow will eamploy the
ease of onscreen ccntrol with the user friendliness of
sulti-screen display.

18

et el A A MBI 4 ks A _KE L

c
;
!
1

III. RSS CONMAND LANGUAGE PEAZURES

A. BRBRSCL COHMMANDS

The RSCL coamands were chosen based on <the guidelines
outlined in chapter +two. Simplicity of use, coupled with
conciseness in definition and exacution were paramoun*t in
choosing the RSCL coammands.

Research and practical experience indicates that nmany
command languages are either +to barogue or to siample for
their intended purpose. While the RSCL does not encompass
all possible prograsaing languags capabilitises, it does
fulfill the ainimum requirements o5f a complete 1language.
And, it does establish a user frisndly framework, a design
goal stated in chapter one. i

Standard coamand naming conventions i.e. if-then-else, :

. pat, case etc. were adopted whenevar possible. The syntax
structure does not deviate from established norms, while the
semantics of the command language avoids anbiguity.
Exception processing and type conversion is not perforamed
nor is it implied in any of the commands. If the systenm
does not know vhat you intended, it tells you via an error
message. If data types do not match across an assignment
operation, the assignment is not parmitted.

1. BUILT IN ERAIURES

Several features have been built into the RSCL which
siaplify both the 1language itself and the programs written)
in the languags.

. Dynamic data typing (of £fsets daclaration raquirements).

- s a s m om

. Both interactive and file processing capabilities.

. Automatic file opening and closing operations performed

19

on both the PUT and the GET commands.
. Pcrmat free statesent entry.

. Statements may be entered in eithar upper or lower case,

2. LANGUAGE LINITATIONS

Tha language, as designed, has the followiag limitations:
. Arrays and data structures are not defined.

. Only decimal integers may be represented.
. Ploating point arithmetic is not supported.
« Unary operators are not supporta2d.

Exponentiation is not supported.
In the prototype implementation <the following addi-
tional contraints were placed on the system:
. Loop statements smay not be nesta2d.

. Only one string variable may exist at any time.

3. LANGUAGE COMMANDS

The <ten RSCL commands were chosen as the minimum number
required to facilitate the requiremants of a screen oriented
coamand language.

The following is a briaf description of each
command. For a detailed description see the R&S Command
Languages User's Manual, Appendix B.

a. LET coamand

. Y
< ‘c! l.',l:-

va’al

The LET command serves as the assignment stateaernt. The
variable on the left hand side (LHS) of the "=, receives a
value frcm “he right hand side (RHS) . The RHS can be either
an expression, an integer, a string, or another variable
(containing a value of the same data type). If the RHS is a

[y

»
$

4,
‘

(YA
NN

legal arithemetic expression, its value is computed and the

......

result is assigned to the variablsz on the LHS. O%hervise,
the value of the RHS is directly assigned to the variable on
the LHS.

b. The PUT coamand

The PUT command consists of <threa parts; <the devics, an
optional line skip parameter and the data list. I+ ou*puts
newlines and the items specified in the data list <+o the
named device.

Valid devices are: "LST®, th2 system 1line
printer; "CRI'", the user's consola screen and <FN> the name
of a disk file. The device name may ba followed by the word
"skip" (performed only once per-command). Each occurrance
causes a newline character to be output. The data lis*
contains any coabination of variables and strings (a string
consists of any characters containsed within double gquote
syabols *), The value of the variable and the actual
character string; minus the quote marks, will be output.

c. The GET Command

The GET ccnmand reads data from either the user's console or

from files stored on the usert's disk. The device name
("CRT", <FN>) preceeds the receiviny variables and indicates F
wvhich medium the user wishes to access for his data.

d. IF comaand

The IF command is used to logically select whether or not %o F
exacute a particular set of statements. It has three ccmpo-
nents; a logical expression, a THEN set of statsments and an

optional ELSE set of statements. The value of the logical
expression is computed. If the 2xprassion result is <%rue, H
{(value not 2qual 0), the THEN group of statements is
executed. Othervise, the ELSE group of statements is
axecuted. If no BELSE group is includa2d execution continues
after the end of the IP statement. H

21

e. The CASE Command

s

.
a 4

Tha CASE command provides for the 2xacution of one or more

Vi 4,

statements oontained within at least one sub_case. The
sub_case is entered if it's corresponding case label matches
the value of the CASE statement parameter (variable oz
integer). If 1o sub_case label matches the label of the
case value, the OTHERWISE set of statements is executed.

.
JRI > S X 8

S | SRR SRR SPLPLILTP RN o GBI

-

f. The LOOP command

- > >
AP R R R

The LOOP command consists of two parts; the loop iteration
parameter and the body of statements. All of the statements
included within the body of the loop are repeated a number
of “imes equal to the valua of the loop iteration parameter.
If this value is less then or equal to 0, no statements are

. 7T LS,

executed.

g. The COMMENT Command

YA

The CCMMENT comamand perforams no actual processing. Its
purpose is to allov the user +o document his program and <o

v
.
*x ‘-A~‘L-‘_. ALY

ﬁ structure it in a logically understandable fora. A comment

ﬁ begins with a ";" and, as all othear RSCL stateaments, it

. terminates with a ";n, Everythiny contained within these

» tvo semicolons is ignored.

f h. The LOCATE Command

y

y The LOCATE Command is used to determine the current location

N of the curscr. It returns the row and column number.]
S .

o i. The POSITION Coammand g
- .
3 The POSITION Command is used to place the cursor at a a
¥ particular point (rowv and column position) on the screer. _

*.:]
.': .1
- ~:
:-

N

N

\

A IR I TR S e ® %, " p e s A e e
Tt W T " o < * ‘.'-'\’ ('if‘w.-‘-' (SRS 'v-,'-- N e -

j. The CREATE Command

The CREATE Command is used to generate a screen template.
It consists of two parts; the templata idsntifier and from 1
to 24 line definitions.

The template identifier is a variable name used
to differentiate one template from another. The line gdefi-
nitions specify up +to 80 fields per line and their associ-
ated attributes.

k. The DISPLAY Command

Tha DISPLAY Command causes a screen template and its associ~
ated data to be output to tha us2r's console screen. I+
consists of two parts; the template identifier and an
optional set of parasmeters.

The template identifisr is a wvariable nane
supplied by the CREATE coamand when it generated the temp-
late. The parameters include a line nuamber, a2 field number
and text. The line and field numb3rs specify exactly where
on the template the text has changed. These parameters are
returned by the display wmanager whenever +h: data in a
particular field has changed.

- _..- “l\ MU

~~~~~~

S N R S N
PR ) S

« .
VAL A YN




IV. SYISTEN DESIGN

A. DESIGN ASSUNPTIONS

Pour major design assuaptions wers amade early in the design
phase., Pirst, the integrated systsm is intended to operate
on either 8 or 16 bit microcomputers.

Second, the interfaces between <the host operating
system, the command language and th2 Display Manager are all
transparent t> the user. The usa of abstract interfaces
between these three modules enables tha system to be readily
s*ransportable to various microcomputers and operating
systess,

Third, m=memory utilization was not considered a prime
concern., The current trends in the state of the art towards
larger, cheaper aemories lead us to believe that the differ-
ance of cne or two thousand bytes out of possiply one mega-
byte of storage is insignificant.

Fourth, processing speed was considered important,
although not parasount in the design. Since the system is
to be in coatinuous operation serving as the interface
betveen the user and the imbedded operating system, some
overhead is acceptable ir exchange for the added capabili-
ties. This overhead should occur luring the user's "think"
time rather than during actual processing.

B. DESIGN CRITERIA

Several criteria were considered during the design phase.
Clarity, simplicity, portability, maintenance and upward
compatibility vere all key factors in designing the systen.
The ultimate goal was to design a system that incorporated
the features c>utlined in Chapter twd> in a clear and concise

24




O'\ \c [ )
‘e
AP

e
%

v

{LL'-‘.

o JS7
K550

1

| 'v"‘._s

4

AR -
'y

P A

w . IS "4.
wwass Sl

s
3
3¢
ANRAIAS

manner without overburdening the user. The limited number
of language commands is a direct attempt to demonstrate that
a coamand language can be siample and can function clearly
without an excessive number of nsbulous commands. The
samaple programs listed in the users manual demonsirate the
clarity of command usage.

The use 25f a high level system programming language,
nCcw, serves to grant the desired portability. "C" compilers
are available on many micro, mini and mainframe systeams.
Cross-compilers should be available for those systems which
do not have a "C" coampiler.

The VAX computer was used for development of the proto-
+type systea. Its processing capabilities and myriad of
supporting functions along with its wmultiprogramming ope:c-
ating system and the availablity of a competent support
staff made it more suitable for development than a single
user micro systens. The use of any f2atures unique to the
VAX is purely accidental. To assure program portability,

only standard wC" prograaming features were used.

Extensions and system depeandant features nmust be avoided in
any isplementation.

Program maintenance is supportad by the use of a higher
order programsaing 1language, functional decompostion,
abstract interfaces and structureld programming techniques.
The utility of these factors was directly observed during
the debug and test phases of the prototype implementation.

In additi>n, the use of a higher order language, the
simplicity of the language design and the avoidance of
nonstatndard features eonsures som2 degree of upward systenm
compatibility.

25

RSO R S

oL AT
't hh et e aate T e e N N




................................

C. DESIGN DECISIONS

Three major dasign decisions were faced during the develop-
ment of the command language. First, which language should
be used to implement the systeu. Second, certain grammar,
structure and implementation conventions had to> be adopted
in order to ensure system integrity. Third, the interfaces
tetveen the operating system, thz2 Coamand Language module
and the Display Manager module was uncertain.

"C" was chosen to implement th2s system because of its
inherant system design features. It was originally designed
as a system development tool. As such, it was felt to be
the most sujtable languags for our purposes.

In designing the RSCL grammar, standard conventions for
representing the lexical ordering and syntax of the language
vere devised. These conventions were documented and are
included with the grammar itself in Appendix A. The use of
these standards was necessary in ordar to assure <hat wve
toth interpreted the grammar in a liks way and that separate
modules, which were coded independently, would operate in a
like manner.

Prior to initiating the actual coding phase, several
sessions were held tc establish programming guidelines and
intermodule interfaces. Global variables, data types, error
handling, system diagnostic and integration standards were
defined. Any changes or variations from these established
guidelines were discussed and agreaed upon before being
incorporated into the respective functioas. This practice
proved to be invaluable during tha integration and test of
the prototype system. No significant interfacing problems
vere encocuntered.

The last major design decision concerned interfacing the
command language interpreter (CLI) with the resident oper-
ating system and with the Display Manager program. Neither
of these interfaces was built into the current system.

26




T
........
----------------

“ Instead, abstract interfaces were planned for each of

these. The operating system intarface will be a furnction
call with a character string parameter. For example, ¢to
change the name of a file, a renams function would exist.
This function would reguire two parameters; the o0ld file
name and the new file name. The file names are a2xpected to
be complete. Information such as the disk drive desigrator
should be included in the name whather or not the user
enters it. The rename function would then cause the oper-
ating system to change the name of the file in whatever wvays
it feels is optimal. It is transparsnt and irrelevant %o
t+he (CLI), whether a ssparate coamamand ¢> the operating
system is generated or the data is sent to the BIOS or the
disk file dirsctory is changed. In this way, a change in
the underlying operating system will require a change in
only these interface functioas. It makes no difference to
the majority of the system whether a2 file name is changed by
an "mv" command as in VAX UNIX, an "ren" command as in CP/N,
an "r" command as in VMS, etc. Th2 implementation of these
functions is currently the topic of a separate thesis at the
Naval Postgrajuate School.

The interface to the Display Manager mddule was not
implemented because it was planned to use a pre-existing
progras. A coamercial product, called "Display Manager" is
available from Digital Research. This program does all that
ve needed in the RSCL systen. It also is capable of inter-
facing directly with a program written in the "C" language.
Rather than devote time to developmant of a new program with
similar capability, it was decided <to purchase and use the
Digital Research Display Manager. our efforts were spent
defining the display data which were of concern. This
information is included in the lanjuage grammar within <*he
“create" command, The actual comamands telling the Display
Manager what to display are included in <+he grammar within

27

PR L T R Y . P S PR . T

. "'.“ Y . . . - . . - - - - . - - - - - . * "-'-
hokoibind & wtalolabka' o m's " 8°4a 3° 5°2 " @°28 %0 " 2" B o "o v e e Te e e Me Ta T T ta L S0 N T N e -'-".'-{




the "display" commangd. Coding of these func*ions was post-
poned until the program could be purchased. At that <time
the actual interfacing parameters raquired can be determined
and the functions can be written.

28

‘!
-
h
{
;
'.'.
{
{
R




L5 A e e A A e e A R R s A A
\(

{

N,
3

'A-
e
2
S
i V. IMPLEMENTATION
NN
gy
- A. DATA ORGANIZATION
The language data organization is broken up into two parts,

" local and global variables. Local variables are used within
% each function to handle internal 3ata transactions. Data

'f shared betveen two functions is passed globally. The global
variables are declared in a central file, ‘"global.interp®,

,Sj to maintain tight control over their assignment and use.
% Using glcbal variables to transfer external data decreased
i the system executicn time, while making the functionms
,: cleaner and easier to integrate. The design specifications
2§ clearly define each global variabla, its use and what func-
o tions utilize it's values.
;? Comments are generously dispersad throughout each func-
- tion to aid the user in understanding its purpose. A header
:C is appended to the beginning of each function, 1listing the
i ' other functions called and <the global variables and
‘ﬂ constants used within the function.
~§§ B. PROGRAN ORGANIZATION
ey
% Functional decomposition was used a2xtensively throughout the
- progranm. Three separate modules comprise the fully inte-
i grated system. The O/S module is a set of functions which
35 defines the interface to the host's operating system. These
:f functions translate commands from the CLI to the native
- language of the 0O/S. Those commands that are not native to
- the host will be software emulated, if possible.
j:} _ The language in*terpreter modulsz has a dual function. It
:3 interfaces with both the 0/S and display modules. Programs
- generated either interactively or by batch mode are
£
S




)
»

LA A S
'\ l.‘ .

g S

Q

o

A % &
Sa gy

........................

processaed through the language interpreter. Output from <he
interpreter is a series of instructions to ons 9f the other
two modules.

The last link in the triad is the display module. Like
the 0/S aodule, it receives its data from the interpreter
through the interface commands. The display module takes
data stored in a file and transposes it on*o one of the
formats generated by the create command.

C. RUNTIME ERROR CHECKING

A run time error handler is built into the system and is
activated when an invalid command s2quence is =sncountered by
the interpretar. All error messages are contained in a
single error function. When an error is detected the error
handler is called and prints a diagnostic message and ampli-
fying information. Depending on the severity of the error
either the praogram is terminated or control is returned to
¢he calling function.

30

........




-

. . :‘(1\-‘ _‘- :.-

IR o R '
\'.“ .\ .\ }.‘\ -" 2

Xz

LA e S S AT G W AR A pe il A e e o* 4 2SN N ) gog al SRS S it Juy LT

VI. SISIEN ORERATJION

The RSCL is capable cf operating either in an interactive or
a batch mode. Por batch mode operation, programs can be
vritten using any standard text editing progranm. The file
containing tha source code must be called "RSCL".

At execution time, <the CLI datermines if a file exists
with the name "RSCL". If one is found, it 4is assumed to
contain the source statements. The CLI then executes in a
batch mode taking its dinput froma the source file.
Otherwise, the CLI reads its instructions from the user's
console.

When operating in an interactive mode, the user mus*:
still follow the complete format of the language structure.
That is, the program begins with the word "prograam", termi-
nates with the word "end." and each statement terminates

with a w9,

31

......




‘(lil'ai'(r(.}'- b e I R e R I i e A AT St o o oS L AP AT T T L AR S O A A FTRTETETR M
-

h ]

W

VII. CONGLUSIORS AND RECOMMENDATIONS

g:"-..‘, ] The command language design and a prototype implementation,
& have been completed. This design is now reviewed to deter-
x mine which of our original goals have been met or can be met
ﬁi with further work and which, if any, were not found to be
ii feasiblae.
- A. GOALS
i;f The goal of this work was to design a command language which
ﬁ% runs on microprocessor based computar systeams. The purpose
of the language was to allow rapil definition of a screen
ﬁj oriented user interface. The language was to be simple,
,EZ easy to use and readily understandable. Maintainability and
‘ii portability across different machines and operating systems
. vere prime concerns. Processing afficiency was considered,
.ng\ but only secondarily to the other factors.
X :
:: B. PROBLEN AREAS
- The RSCL is complete and workable as designed. Known
ES problea areas which are stated as constraints in <+he
ha) language are not inherent problems. They can be eliminated
during future enhancements. The only area which we see as a
;: potential problea to the system design is related to the
‘iz Display Manager interface. The dasign in this area was
ES purposefully made generic via the principles of abstract
— interfaces and information hiding. However, if the func-
F tions required by the CLI are not available, some redesign
‘SE may be necessary. Because of our research in the area
before creating the design, we do not feel this is a major
) concern. The CLI module should ba sasily interfaced %o the
1f other two majd>r systeam modules when they become available.
;: 32




- At P——
IRCAAN A SN A M A ) IR SR AN i i s Ao i o Aot At fet A it Sl SLAC 4B i e |
RN - - N e

C. FUTURE WORK

In order to create a complete and deliverable product
further work is required in four ar2as; the operating syszem
interface routines must be <completed, enhancements must be
added to eliminate the constraints discussed in Chapter
three, the three main system modules must be integrated,
studies should be performed to 3a2tarmine user needs and
reactions.

The operating system interfacs routines are alceady
being developed under a s2parate thesis <effort at the Nawval
Postgraduate School. Assuming that a copy of the Display
Manager Program is obtained from Digital Research and that a
ncw conpiler is available for the NPS microprocessor system,
the system enhancements and module integration can be accom-
plished under another thesis. Concurently with the systenm
integration, research should be performed to deteramine
sample presentation formats. They could then be created in
the RSCL.

33

B N - '.‘.'-'.]
L T T A NP B AL R R R YRS T
P L P B Y e - ® o LA w e s Y " At a



ARRENDIX A
COMMAND LANGUAGE SRANHAR

The convention used for describing the grammar of
command language is described in table I.

TABLE I
Grammar Convention

SIHDOL HEANING

<> Used as delimiters for m2tasymbols
in the grannar. Anything contained
within these brackets is " defined
later in the granmmar.

(] Used as_delimiters surroanding
ocptional entries.

've Used as delimiters surrounding
literal expressions in the grammar.
Anything within these symbols must
appear exactly as shown.

| Used as a logical OR.

HEE Interpreted as "Defined as".
() Used to grcup expressicns.
%N Used to designate a repetitive group.

Where "N" is”the number of repegltlons.

Using this convention the Command Language Grammar is

defined as follovwus:
PROGRAM ::= 'PROGRAM®* <IDENTIFIER> <KSTATEMENTS>» 'END.'
STATEMENTS ::= <LET STATEMENT> <IF STATEMENT>

SPUT-STATEMENT> | <GET STATEMENT>
<LOOP_STATEMENT> | <CASE_STATEMENT>
SCOMMENT> | <DISPLAY> | TCREATE> ) '
( <STATEMENTS> ]




..........................

LET_STATEMENT ::= 'LET' DENTIPIER) t=1 < XPRESS
} <IDENTIFIER> <NUMBEE> <STRIN

IF_STATEMENT ::= 'IF*' <LOG_EXP> 'THEN' <STATEMENTS>
[*ELSE'* <STATEMENTS> ] ' ENDIF'

PUT_STATEMENT ::= 'PUT' <PUT_DEVICE> [ 'SKIP' ] <LIST>
PUT_DEVICE t:= OCRT' | 'LST' | <FNAME>

LIST ::= ( <IDENTIFIER> { <STRING> ) ([<LIST>]
GET_STATEMENT ::= 'GET' <GET_DEVICE> <ID_LIST>
GET_DEVICE t:= ICRT' | <FNAME>

ID_LIST :3= <IDENTIFIER> [ <ID_LIST> ]

FNAME 1e= E <CHARACTER> ]. <IDENTIFIER>

FY)
*.' <IDENTIFIER> ]
LOOP_STATEMENT ::= ‘'LOOP' <IDENTIPIER i <NUMBER> )
<STATEMENTS> 'ENDLOOP'
CASE_STATEMENT ::= 'CASE' <IDENTIPIER> ':' <CASE_NUM>
"OTHERWISE:' <STATEMENTS> 'ENDCASE'
CASE_NUNM i= <NUMBER> <IDENTIFIER>) ':' <STATEMENTS>
[ KCASE_NUM>
COMMENT s3= '3 SANYTHING>
IDENTIFIER ::= <CHARACTER> (<SUB_ID>]
. SUB_ID s2= ['_*] (KCHARACTER> | <DIGIT>) [<SUB_ID>]
EXPRESSION ::= ' (* <TERM> [ <ARITH_OPR>» <SUB_EXP> ] *)°'
SUB_EXP ::= <TERM> [ <ARITH_OPR> <SUB_EXP> ]
TERM :3= <EXPRESSION> | <IDENTIFIER> | <NUMBER>
LOG_EXP t3= ' (Y <LOG_TERH> [ <LO5_OPR> <SUB_LOG> ] ')
SUB_LGG ::= <LOG_TERM> { <LOG_OPR> ( <SUB_LOG>
| <LOG_EXP> ]
LOG_TERN ::= <LOG_EXP> { <IDENTIFIER> | <NUMBER>
SPACES se= ¢ v | v v KSPACES>
- NUMBER 2= <DIGIT> | <DIGIT> <NUMBER>
2 CHARACTER 3= ®A' | *B! | 'C' { D' | 'E' | 'P* | ¢gG¢
O * g 1T g 1K ', 0 M tN?
M 100 tpt Ly 1R } 15 1T 1y
AR tye 'y c?v tye tZ ! UPL the
f;' 't eqe tat £ 1g* the ti
e N it (B 'tpt e tot 'pt
u .q' tpe gt tet gt gt gt
.':' L4 .Y' tz?
Eﬁf DIGIT z:= '0f | 141 | 131 1 "3 1 tr | 05t ¢ v6r | 070
e ARITH_OPR z:= "4 | <t | v&e | 10
'i, LOG_OPR ::= 'BQ' | 'LT*' { 'GT' ( 'NE' { 'LE' ( 'GE*
el
b:::;'
SR 35

..’o )
-~ l.‘

T

o
.I\ !
.

-




;v'.'<v\‘ PR dast B avat Jong et Sl ot u maii il g e Snen St it e J At i e S ks 1 - . 1
. . . R - - K L e e

LOG_PUNC ::3= 'AND* | 'OR* | 'NOT' | ‘CON'
STRING ::= ''' <ANYTHING> *'''

ANYTHING ::= ( <DIGIT> ’ <CHARACTER> A <ARITH_OPR>
<OTRERS> [ < NYTHINGS ]
OTHERS  z:= *'* | (' | 1)°
.t T Qe 171 tge TR @ #
l 180 ‘ ' =0 ‘ 'g e ‘ 11 ‘ ' 1 < 1 1>
U ', A}
DISPLAY ::= 'DISPLAY! <IDENTIPIER> [(PARAHS)]
PARAMS se= v (v [ <L <FIELD>
¢ [(T xr>] { ( 1!
LINE :2= NUMBER
FIELD ::= NUMBER
TEXT s:= ANYTHING
LOCATE ::= ¢*LOCATE' <ROW> <COL>
POSITION :(:= 'POSIT! <ROW> <COL>
ROV ss= NUMBER
COL ::= NUMBER

CREATE ss= 'CREATE' <IDENTIFIER> <DEF_ LINE>**24 ‘END'

DEF_LINE ::= 'DEF LINE' <NUMBER> L -t SNUMBER> E
( <DEF_FIELD>**80 | BLANK' ) YENDLINE® *;°
]

. DEP_FIELD ::= 'pEF_PIELD CIDENTIFIER> <ATTRIBUTES> ';

ATTRIBUTES ::= ' (* [ SLENGIH> ' <VALUE>3
<BACKG uub>]
N
]

[}
<ACCESS>] !,
<FOREGRO Di] (' [SVIDEQ
<UNDERL INE>1 ', [ INTENST 1>j ',

N
E
STYPE> ] V)

LENGTH :2= NUMBER

VALUE ::= ANYTHING

ACCESS 2= *R/0¢ | 'R/W!

FOREGROUND ::= DIGIT

BACKGROUND ::= DIGIT

VIDEO ss= 'NORMAL' | ‘'INVERSE'

UNDERLINE ::= 'ON' | ‘OFF'

INTENSITY s:= 'BRIGHT' | ‘DIA'

TYPE c:= *ALPHANUM' | ' NUMBER' | YCHAR' | 'STRING!

]
W

E}
)
“d

PP

2
)

g
«
.
-
[} L)
-
)
.
.
5

) _'-'
Las,
V.
v
N
»

s
»

L4
)
ﬁ
e
o
" . ’ .
}..'
.
-
I..‘. .
oy
I" K
» -
l.', -

i

36

L)

Y

AP N A S N N N S L -.ul-.‘.‘_‘"“v“"—‘-‘L‘.‘--‘..—'v._

NPT D S PN




ARPENDIX B
R&S COMMAND LANGUAGE USER'S MANUAL

A. INTRODUCTION

The RES Ccmmand Language (RSCL) is designed to create micro-
processor shell formats from within user designed software
prograas. Programs written in <+th2 language will intsrface
wvith the display module to output data in the specified
screen format. Menus are utiliz2d to facilitate pregram
entry and arprise users of available formatting options. The
language uses an interpreter, writt2n in "C", to execute the
prograas.

B LEXICAL CONVENTICHNS

There are seven types of tokens: identifiers, integers,
strings, arithaetic operators, 1logical operators, 1logical
functions and others. In general blanks, tabs, comments and
nevlines are ignored except as they serve to separate
tokens. At least one of these characters is required to
separate otherwise adjacent identifiers. The language does
not incorporate any reserved words in the grammar. Each of
the RSCL statements is considered a keyword when used at the
beginning of a command sequence, however, since keywords are
not treated as reserved words they are allowed to be
assigned as identifiers latter in a command line. The semi-
colon acts as a statement terminator.

1. IOKEN DESCRIPTIIONS

Bach word is scanned for inclusion in one of the seven idexn-
tified token types. The tokens are then procsssed one at a
time through ¢the CLI. The follovwing subsections describe
the token formats in detail.

37




a. IDENTIFIERS

Identifiers may consist of alphanumeric characters and the
underscore syabol. The first charactar must be alphabetic.
It is optionally followed by <characters, underscores or

s A ¥ _a_

digits. Upper or lower case alphabetic characters are
alloved tut are not distinguished. The standard converntion
of not allowing an identifier ¢o terminate with an under-
score applies. Identifiers have a maximua length of ten
characters and their value can be one of three types: char-

Alsi B 4

acter, string or integer.
BEF format:
IDENTIFIER ::= {CHARACTER> <SUB_ID>
SUB_ID :s= *_' ( <CMARACTER> | <DIGIT> ) <SUB_ID>

b. NIMBERS

Numbers are formed by concatinating one or mors digits onto
a digit. Only digits are used to form numbers. Numbers are
not re-definable data types.
BEP format:

NUMBER ::= <DIGIT> | <DIGIT> <NUMBER>

DIGIT ::= loc||2c||3c|lac|05'||6o'v7|loeo||gc

C. STRINGS

Strings are any ASCII print character(s) between double
quotation marks (" ". The lanjuage reads "this is a
string™ as a single string.
BEF format:
STRING ::= *"* ANYTHING>* "™
ANYTHING ::= ( <DIGIT>|<CHARACTER>|
<ARITH_OPR>{ <OTHERS> <ANYTHING>

v

2o Rl

s’

LR DR _I% L A 2
R Vi

N NS

SN

had
L]
-

38

-
l. !

Ry - Vs




NN d. ARITHMETIC OPERATORS

Standard arithmetic operators i.e. '"e#, M-n = uwxn_ H/H are
implemented within +he language. Unary operations are not
currently supported by the languagas.
BNP format:

ARITH_OPR 2:= 'e'|0=t|tx0 |0 /1

e. LIGICAL OPERATORS

Alphabetic type characters i.e. wWEQ™, WwLTwW, M“GT", WNEW,
“GE", ¥“LE" are used to perform logical operations. The
first three equate to equals, less then, and greater then
respectively. The last three equate to not equal, greater
then or equal, and less then or =qual. All expressions are
required to be parenthesized i.e. (8 GE 3) or (4 LT 9).

BEF format:

LOG_OPR ::= 'EQ'|'LT*|'GT*|*NE*'|'GE*|*LE"

f. I10GICAL FUNCTIONS

Logical functions also use alphabetic type <characters i.e.
WAND®, "OR", "“NOTY", "CON" to perform their £functiens. The
"AND", function returns true if the two arguments bracketing
the "AND"™ are both true. The "OR" function returns true if
either of the bracketing arguments is true. The *“NOT" func~
tion logically complemnts its operand. The "ZON" function
concatenates 12 string onto another string. Like the logical
operators, parentheses are required in logical expressions
i.e. ((Z GET) AND (M LT W)) wherz 2, T, M, and W are vari-
ables or expressions which evaluate to comparible dJdata

types.
BNEPF format:
LOG_FUNC ::= °'AND'|'OR'{| *NOT'| *CON"




e A o T T R T T, e, rre —— MR M B ion S 0t oy
- . R . . e LT .. RC LI I
0

s
g. OTHEBRS

The others token type is a collection of the remaining stan- ,
g dard ASCII print character types i.e. " (", ®)w, wgn_ agu, |

N

%i "g", etc. These characters repr2sant their normal meaning ;
js except where their meaning is negated i.e. "GT* replaces ">" i
b0 sign in the grammar conveantion. y
~ BN? format: {
= OTHERS s:= """ 0 (P ) 4 L Qe t20 '8 | | 1'@r | #2 (5| *=!

.\ AE LN R AN N R R NPT N RN N I

C. DECLARATIONS

o , The language does not provide €£for any variable pre-
declaration. New variables on the LHS or RHS, if reading in
data from the CRT (screen) or a files, will be assigned the
same data type as the rscieved data automatically. Type
< conversions are not performed in th2 language.

- D. SYNTAX

Q _ The BNP (Backus Naur Form) syntax structure for the grammar
~ is provided ia Appendix A.

[ 4
VN S S VAT TRSUR/NANRAE T URUVORE R NN T W T

N E. PROGBAN STRUCTURE

L -

. All programs written in the RSCL are coamprised of three
o parts; a header, statements to =2xecute and a trailer.
- Figure B.1 shows the format of a simple progran.

,‘ Iy

< This sample deamonstrates the overall program structure. The
n €irst line, "program sample" is tha program header. Note,
- that it does not include a semicolon. A semicolon is a
a statement terminator (a semicolon is required at the and of
"i% every statement). The complete statament is "program test
;1‘ . <executalle statements> end.;".
[
:.

<

- 40
3%

'~
o

" ’

«;._:;\(_.-‘\. . :_ -




program sample

put crt skip "Enter a value for the loop count.";
iet crt a;

oop a
1E ( a eq 2)
then .

put crt "The value of a is " a;

se
get testfile.dat b;

ggt crt skip "When a = 2, b = " p
endif;

endloop;
end.

-e

Pigure B. 1 Sample Command Language Prograa.

The second through twelfth lines are the executable state-
ments. They perform the actual processing. The trailer is
"end.;".

The indentation and structured appearance is optional.
The CLI ignores blanks and carriage returns. Therefore,
multiple statements can be placed on a single line and a
single statemant can be split over several 1lines. Pigure
B.2 shows two legal ways to write the same statements.

sSapple of combined lines.
let a = (bt1); put crt a;

sSample of line splitting.

Pigure B.2 BExample of Two Line Formatting Techniques.

.
.




While no one should write a program in the s=2cond
format, if the code needs to be packed, any format is accep-
table so long as variable names are not split between lines.
In that case they will be treated as two separate variables.

Now, knowing the general structure of an RSCL progranm,
each of the ten individual statements are discussed in the
following sections. Each statement's function and format,
the constraints on its use and th2 error messages which can
occur with their probable cause(s) are describesd.

1. The LET Statement

The LET statement 1is used to perform arithmetic operatioms
and to assign values to variables. When performing arith-
metic, the expressicn on the RHS must be contained within
parenthesis, The value of that expression will then. be
assigned to the variable on the LHS. If no arithmetic is
required, the RHS may contain either an integer, a string or
a variable. In that case, either the integer value, the
actual string or the value of <the variable will be assigned
0 the variable on the LHS.

If the variable on the LHS is not defined, it is
dynamically defined according to the type and value of the
RHS. If the variable(s) on the RHS are not defined, an
error message is printed. If both variables are defined,
their types are compared to ensurz that the assignment is
correct.

a. Format

A LET statement must ke in the form:
'let! <identifier> '=! ( <expression> | <identifier>
| <number> | <string> )
Where the word "LET" is the keyworl and must be the first
vord in the statement. “LET" 1is followed by an identifier
vhich is treated as the LHS of the statement and will be the

42

g



.......................................

recipient of the assignment. Next, the aguals sign, "=", is
expected. This is used to separat2 th2 LHS from the RHS and
t0 show the direction of assignment. It should not be

confused with the standard relational operatcr "=" which
means equality. ( In RSCL equality is represented by the
string "eg"). The RHS may contain only one of either an

2xpression, an identifiesr, a number or a striag. Upon

‘A ALASREE S S . _a_ A . & % wumm s

execution of the let statement, the value of the RHS is

.,

assigned to the variable on the LHS.

The expression on the RHS may be a valid arith-
matic expression containing variables and the arithmetic
operators of "en, n.n_ Nx® apg w/e, These operators hold

P

their standard meaning of addition, subtraction, multiplica-
tion and division. The precsdence of operations may be
either implied or explicitly declared by the use of paren-
+theses. The implied precedence is "*" equals "/ and '"+"
equals "-"., While "% apnd "/" are the higher precedence and
are alvays performed before "+" or "-", Operations of equal
precedence are performed left to —right. Pigure B.3 illus-

trates the LET statement format. k
b. Error Types

The error messages associated with the LET statement are: ﬁ

BESSAGE: ]
AN IDENTIFIER was expected, but ssss was found

at 1111.

EXPLANATION:

"ssss" is the token that was found prior to the
point "1111" 4in the input 1line. Check the syatax ,of the
statement containing this line.

HESSAGE:

= wvas expected, but ssss was found at 1111.



TSR AL Sari st st bl A A S S fhent M st At Il it s § DR I AR AP S e e St o) i Site et e S g GuiC il el S Al fd

EXPLANATION:

"ssss" is the token that was found prior <o tha
point "1111% in the input line. An "=" yas expected desig-
nating the direction of the valu2 assignment in the let
statement,

MESSAGE:

AN ARITHMETIC EXPRESSION was expected, but ssss
was found at 1l1l1l1.

EXPLABNATION:

"gsss" is the token that was found prior to the
point "1111" in the input line. The RHS of the let s+tate-
ment did not contain a valid arithmstic expression. Most
likely a matching parenthesis was omitted.

BESSAGE:

AN ARITHMETIC OPERATOR was eaxpected, but ssss
was found at 1111l.

BXPLANATION:

"gsgss" is the token that was found prior to tha
point "1111" in the input line. Tha RHS of the LET state-
aent did not contain a valid arithmetic operator between two
identifiers.

BESSAGB:

Undefined identifier, ssss at pppp in line: 1111
EXPLANATION:

"ssss" is the token that was found prior to the
point "pppp" in the input line "11lll". An identifier in the
RES of the let statement 3id not have a value. All identi-
fiers must be set before they can be referenced.

BESSAGE:

Data type misma tch. A string type was expected
at pppp in line: 1111
EXPLABATION:

The LHS ¢f the LET statement was of type string
but the RHS was not.

4y




let a = 7;

Assigns the integer value 7 %o the variable,
wan,"If "a" is uhdefined it will also dynamically
declare variable “a" type "I" for integer.

let a = b;

Assigns _the value cf "b" to the variable "a".
If "p" does not have a value than an error is
called. If both "™a" and "b" have values then
a type check is made. Otherwise, "a" is
dynamically assigned the data type of "bw,

let a = ((b ¢+ ¢c) *7);

Assigns to the variable "a" the rasulting value of
the RHS expression, If "a" is an undefined variable
then it will dynamigally receive the same Jata,
type as the expression L esult or if "a" is defined
the LHS and RHS types are compara24.

let a = "this is a test";

Assigns the string, "this is a test", to the
variable ™", I a" is undefined then it will be
d;nanzcall assigned data type "S" in the sgmbol
tdkle or variablé "“a" is ccmpar2l for data type
nsS" string.

Pigure B.3 SABPLE LET STATENENTS.

c. Usage Constraints

A maximum of 20 operations may be nested in the arithmetic
expression. The ¢tyre checking is performed based on the
type of the right-most variable in the RHS.

2. 1Ibe GET Statement

The GET statement is used to read data into tha program from
some external device and assign that data value to a program
variable.

a. Poraat

A GET statement must be in the fora:
tget' <device> <list>

45

el

bt bl e e

5
1
,‘1



L g 2

*y "' 4 4 4

AL SNt g

- *_ ". l‘.

Where the word "GET" is <the keywcrd and must be
the first word in the statement. nGet" is followed oy 2
device. This device may be eithar "“CRT" for the user's
console or the name of a file. Anything which is nct "“CRIT"
is considered a file. The name of the file may optionally
be prefaced by a disk drive designator and/or suffixed by a
file type. The total file name follows the file naming
conventions established for the CP/M operating systenm.

Pollowing the device is a list of identifiers
wvhich will receive the values as r2ad from the input dsvice.
If the identifiers are already defined, +he data will be
read acccrding to the defined type. Otherwise, the identi-
fier's type will be set depending on the type of the data
which is real., PFigure B.4 illustrates the GET statement
format.

get CRT a (b,Ce..);

Reads the next terminal input and assigns it to
the variable "an", If the variablz '"a" is undefined
it will d¥nanlca11y assxgn the input's data tyge
to "a", Otherwise, it will perform a tgpe chec

on "a", More then one input can be read from the
terminal durigg a get statement, Type checking

is done on ea refeiving variable.

get <FN> a (b,Ce..);

Ogens the designated data file <PN> and reads the
data in seguential order. The receiving variable(s)
are either dgnanically 31 gsigned the input's data
type (undeclared) or a type <hack 1s performed.

Pigure B.4 SAMPLE GET STATENENTS.

46




OIEAE A GRS M A NN N SR S AN NN A e S AL M S IO A AR Rto i A A et SR A b A A SO N A A

-

o b. Error Types

The error messages associated with the GET statement are:

BESSAGE: b
DEVICE *CRT' or a file name was expected, bu¢

ssss vas found at 1111.

BXPLABATION:

"s3ss* is the token that was found prior to the
point *1111" in the 4input line. The word 'get' amust be
folloved by the name of the device from which to read the
data.

HESSAGE:

> 4%

Filenane -- (<PN> [.<PT>]) -- was expected, but
ssss wvas found at 1l1l1l.
EXPLABATION:

"sgsss" is the token that was found prior to <+he
point *1111" in the input line. A file name may bs up to 8
characters long and optionally prefaced by a drive desig-

. nator (one character followed by a colon).

Filetype -- (<KPN> [.<FT>]) -~ vas expected, but
ssss was found at 1111.
EXPLABATION:

"ssss® is the token that was found prior to the
point "1111" in the input line. A file type may be up to 3
characters long and sust be prefacad by a period. A file
type only appears after a valid fila nanme.
BESSAGE:

.
.
«
«
«
'_1
d
%
-
o
i
«
1
-
L
-
-~

Unable to open file - check <FN> is capitalized
EXPLABATION:

The file designated in the GET statement does
not exist. Check the spelling of the file name. Be sure to
vatch for discrepancies in capitalization.

y 47




BESSAGE:

Cannot read from ¢the list device at+t pppp in
line: 1111
EXPLANATION:

"pppp" is the point in the input line "11l1" a+
vhich the error occurred. A devics type of "LSI" is illegal
for the GET statement.

C. Usage Constraints

There are no usage constraints in the GET statement.

3. ZIhe RUT Statesment

The PUT statement is used to ouput data from a program vari-
able to some axternal device.

a. PFormat

A PUT statement must be in the fora:
'put! <device> ['skip* ] <list>

Where the word "PUT" is the keyword and must be the first
vord in the statement. "PUTY is fsllowed by a device. This
device may be either "CRT"®" for the user's console, "LST" for
the line printer or the name of a file. Anything which is
not “CRT" or "LST" is considered a file. The name of the
file may optionally be prefaced by a disk drive designator
and/or suffixed by a file type. Tha total file name follows
the file naming conventions established for the CP/M oper-
ating systen.

The device is optionally followed by the word
'‘skip'. If included, this will cause a newline control code
to be transsitted to the output device. Note, the skip is
only done once per statement.

Next is a list of identifiers and/or character
strings. Pigure B.S illustrates tha PUT stateaent format.




R RTINS IENL R
.

“

put CRT a (b,Ce..):

Disgla S on the CR{ {scr en) the value of the
variable "a". Multiple displays (b,c...) are allowed.

put CRT SKIP (a,b...):

Skips a ljne ior to displaying tha variable_ data.

fhepskip ig pggforned onlp ogcegprior to displaying
ng the variable(s) value%s).

put LST a (b,cC...):

Toggles the printer on (frovidini it is turned on)
and "transfers the variable(s) value(s) to it.

put LST <FN>;
Toggles the printer on (providing it is turned oné
ag transfers the data contained in the designate
file <FN>.
put <FN> a (b,C...):
ggens the designated file <FN> and stores_the

c

riablq(gl valye in the file. The file <FPN> is
automatically closed upon statemant termination.

Figure B.5 SANPLE PUT STATEMENTS.

b. Ecror Types

The error messages associated with the PUT statement are:
HESSAGE:

DEVICE "“CRT" or "LST" or a file name was
expected, but ssss was found at 1l1l1ll.

EXPLABATION:

“gsss"® is the token that was found prior to the
point *1111" 4in the input 1line. Tha word *'put' must be
folloved by the name of the devica2 on which the data is to
be written.

HESSAGE:

Pilename -- (KPN> [.<FT>]) ~-- was expected, but
ssss was found at 1111,

S Sl w RO RS ENGS F F D P S AmmmE 2

T W




ARG L LA el Sl i Rt AAEre g, SALEAE o ot 20R RN AN e B e o Do Dt SO TR RACAA AR AR A S A At ) S T Do Tacie IRCER I S

ooy

Sy

rll

W

B
#2194

RN
AP T

EAA

A

Y
v
M)
¥

&
S

XXX

Fars

:
L'

)

EXPLANATION:

wssss" is the token that was found pricr to the
point "1111" in the input line. A file name may be up to 8
characters long and optionally pr2faced by a drive desig-
nator (one letter followed by a colon).
BESSAGE:

Filetype =-- (<FN> [.<FT>]) =-- wvas expected, Dbut
ssss wvas found at 1l1l1ll.

EXPLAMATION:

ugsss" is the token tﬁat was found prior to the
point "1111" in the input line. A file type may be up to 3
characters long and must be prefaced by a period. A file
type only appears after a valid fils nanme.
BMESSAGE:

tndefined identifier, ssss at pppp in line: 1111
EXPLANATION:

ngsss" is the token that was found prior tc the
point "pppp" in the input line ™l1l1l®, A value must be
defined for aay variable before it can be output. Be sure
that all designated variables are sst to some value before
they are referenced.

c. Usage Constraints

If the data is being put to a file, that file is opened in
append mode. Therefore, if a newv file is desired, the user
amust ensure that any previous file with that name is erased
prior to executing the PUT statement.

4. The IP Statsment

The IF statement executes a set of statements based on the
logical value of the IF clause. If this value is true (not
0), the THEN grdup of statements is executed. If the IF
clause value is false (0), the ELSE group of statements is
sxecuted. The ELSE group is optional. If it does not exist

50

AR B a ks s aaalEE R T T s



L R R L I N N L AT S A R S P DL ARCE oA i

and the IF clause value is false, the entire IF statement is
ignored.

a. Format

An IPF statement must ke of the foram:
'if' <logical expression> 'thent' <statements>

- Where the word "IP" is the keywordl and must be the first
word in the statement. "IP" is followed by a 1logical
expressicn. This expression must b2 contained within paren-

[T N R I ¥ UG o ol S SR _ P

theses and may be any valid combination of logical operators
(eq, 1t, gt, ne, le, ge), logical functions (and, or, not)
variables and numbers. Pr ecedence of operations is deter-
mined solely on the bases of parenthetical grouping.

The logical expression must be followed by the
word "YTHEN" and the groap of statements which will be
executed if the logical expression 1is true. This group of
statements terminates either with +the word "“ELSE"™ or the
word "ENDIPY,

. If the 1lcgical expression is false, the THEN

]

group of statements is skipped and the ELSE roup is
axecuted (if i+ exists). The IF statemeant terminates upon
detection of the word "ENDIF;". Pigure B.6, illustrates the
IF statement format.

b. Ecror Types

The error messages associated with the IF statement are:

y HESSAGE:

k{ An IF statement must have a logical expression
(= at pppp ir line: 1111

2 EXPLANATION:

"oppp" is the point in the input line "1111" a*
vhich a logical expression was expected. Check for matching
parentheses.




A S At et Mt i ey i o M RO A A A A SO A SR AL LA AR M R M M M AR R

4

|
i
]

' % %%

if <logical eggression> then

<{statement
else
<{statements>
' endif;
The 1ogical expression portion is tested first. If
3 true, the statements in the THEN portion (any RSCL
statepent are executed in ordar. The statements
. contained in *he ELSE (optional) portion ares

executed only vhen the IP condition returns false.
The IP stateiment is terminated by an ENDIP.

Pigure B.6 SAHNPLE IF STATEMENT.

o BESSAGE:

,% THEN was expected but ssss was found a+ 1llll.

: EXPLANATION:

n "ssss"® is the token that was found prior to the
? point “pppp". The THEN clause is mandatory in an IF state-

ment. Be sure that all dasignatel variables are set before

7.t

they are referenced.
HESSAGE:

ENDIP was expected but ssss was found at 11l1l.
EXPLANATION:

"ssss" is the token that was found pricr %o the
point "pppp". An IF statament must terminate with the word

T e

“,

j WENDIP®N,

-,

% c. Usage Constraints

- There are no usage constraints for an IF statement.

-

- 5. ZIbhe IDQP Statement

-~ The LOOP statement repeats a set of statements a specified
) aumber of times. Any number of repetitions may be specified
‘

b2 via either a number constant or a variable antry.

) ]

W]

52

1 AN




Y
ey,

e (Y ,
. '~.E)_¢-a »

*FPS
e
R T I |

AR

Ay

-,

(NN

£ 15

LA

h )
o~ &P

I

2
]

v _ ¥
(2%

ok

a. Format

A LOOP statement must be in the form:

'loop?! ( <identifier> | <number> ) <statem2nts> 'endloop;'’
Where the word "LOOP" is the keywdord and must be the firs«
word in the statement. "LoOP"* 1is followed by either a
number or an identifier which gives <the number of times the
loop is to be executed. The 1loop checks this value before
execution., If the loop value is <= 0, the statements in the
loop are skipped, Otherwise, the inner statements are
repeated until the loop counter reaches 0. The loop counter
cannot be changed once the 1loop has begun exescuting. Even
if the identifer used for the 1loop counter is altered, the
loop will not be affected. Figur2 B.7 illus+trates the LOOP
statement format.

loog a
statements>
endloop;

The variable "a® contains the number of ‘
iterations that the statements contained
v:th%n the loop vill be executed. Any
combination of valid RSCL statements

is allowed.

locg 7
statsments>
endloop;

The only difference in this statement is the loop
counter is in gteger form vice identifier form.
The loop execution sequence is not altered.

Pigure B.7 SA BPLE LOOP STATEMENT.

53

.......................
....................
o . -

P ] o B . - P P
o o, e, T N e e U SRS DT SRR TN PN SO
M - M e n® DI I e tat L -t s tets e .

....................

. . ™.
! - o
- -



5 SR NN
R Sl

»
L

C
et e %o~

4 'aza;wr*‘|39,..
. a:.‘\ .'. :-:"‘o. > KR o

LA

PO

b. Ecror Types

The error messages associated with the LOOP statament are:
HESSAGE:

Undefined identifier, ssss a+ pppp in line: 1111
EXPLANATION:

"ssss" is the token that was found prior <o the
point "pppp" in the input line "111l". A value must be
defined for any variable before it can be used as a loop
counter. Be sure that all designated variables are set
before they are referenced.

MESSAGE:
An integer or variable loop coun*t was expected

but ssss was found at 1111
EXPLANATION:

"ssgs" is the token that was found prior to the
point "1l1l1l1lw, A locp counter can 9nly be an integer or an
identifier.

c. Usage Constraints

Nested loops cannot be used.

6. Ihe CASE Statement

The CASE stat2ment executes a set of statements based upon
the case variable. 1If one of the cases matches the value of
the case variable <then that set of statements is executed.
If none match, then the OTHERWISE set of statements is
executed.

a. Pormat

The CASE statement must be in the form:

‘case' <identifier> ':' case_num
totherwise:' <statements> 'endcase!

54




Where the word "CASE" is the keyword and must be *“he fi:cs<

word in the statement. "Case" is followed by an identifier .
and a colon. This is the case variable. Bach of the cases ;
that follow begin with either a number or an identifier -
follovwed by a colon. This value is compared with the value -
of the case variable. If they are egqual, +then all <the f
statements in the case element (up to the next case number) ;
are executed. If no case aumber matches the case variable .
then the statements in the otherwise clauss are executed. -
The CASE statament is terminated with the word "ENDCASE" and ;
a semicolon. Pigure B.8 illustrates the CASE s+atement i
format. ﬁ
=

case a: H

: <statements> =

: <stateaments> *d

6: <statements> -
otherwise .
endcase; R

The case statement uses a variable or an lnteger
to lndlcate vhich case 2lement will be invoke
The "a" resents the data type of the case
elenent 1n ex. none of the Case elements are
invoked then he otherwise case element is
executed. Any valid RSCL statem=ant is allowed.

Pigure B.8 SAMPLE CASE STATEMENT.

b. Ecror Types

The error messages associated with the CASE statement are:
HESSAGE:

Undefined identifier, ssss at pppp ia line: 1111
EXPLABATION:

"3s8s" is the token that was found prior to the
point "pppp" 4in the input line "11l1ll". A ~value must be

l.,'
7' .
b‘.
C.
.

.
L.
-

.
.
.
&

V) ;
EJ ..
Lj .
H 55 .
g R
o .J
. iy
e -1
l'. «
.\‘h YL A o . - T NI TP TS S S R ] AT e TR - : -~ . X v
B Y b e e e T N SN T T T A S L s ]




. s
RAS

RS, . .

a4 /. .'

s

.. ' Ny
ﬁ.h.a ..
p.s.l -

Lt
e e

-------

defined for any variable before it can be used as a loop
counter, Be sure that all designated varialbes are set
before they are referenced.

NESSAGB:

-- : =- was expected but ssss was found at pppp.
EXPLANATION: )

"ssss" is the token that was found prior to the
point "pppp". A case variable must be followed by a colon.
MESSAGE:

OTHERWISE was expected but ssss was found at
PPPP.

EXPLABATION:

"ssss" is the token that was found prior to the
point “pppp". A CASE statement must include an OTHERWISE
clause to handle the event when no labled case value vas
matched.

c. Usage Constraints

There are no usage constraints for the case statements.

7. The CREATE Statement

The «create function was not coded because the interface
between the CLI and display modules is unknown. The create
module was designed to intarface with a commercial producr.
The product is still enroute to the school. When coded the
create module will assign attribute values to specified
fields. The resulting template is then utilized for data
display through the display module.

8. 1Ihe DISPLAY Statemgpt

The display func+tion was intended to be an external commer-
cial product purchased from a local vendor. Unfortunately,
the supply system was uncooperative and the product never
arrived. As designed, display manayer takes the output data

56

..........................

................



and transposes it ontc the requesteld screen shell created in
the create module.

P. GENERAL ERBOR HANDLING

The system and syntax error handler messages are forma%tted
as follows:
("s*ss SYNTAX or SYSTEH ERROR ¢s3s&n)
(ERROR MESSAGE(S))

HESSAGE:

Syabol table exceeded.
EXPLABATION:

The maximua length of the symbol table was exceeded, too
many variables in the program.
BESSAGBS:

Premature end of input encountared.
EXPLANATION:

The program ended without a proper terminator i.e. END.
Program could be in the middle of a command when the input
terainates.

HESSAGES:

Unrecognized character, ssss in line: 1l1ll1l.
EXPLANATION:

"gsss", a non ASCII type token, was encountered prior to
the point "1111" in the input line.
BESSAGES:

String leagth excceds (132) in line 1111
BEXPLABATION:

The token prior to the point "111l1l" in the dinput line
exceeds the maximum sring length of (132).

BESSAGES:
PROGRAM was expected, but ssss was found at 11lll.

57

Y
------------------------

o

..........
..........................




............

o EXPLANATION:

o Program's must start with the constant "“PROGRAM®
) followed by the program name.
N0 BESSAGES:
liﬁ AN IDENTIFIER was expected, but ssss was found at line
8 1111.

7 EXPLANATION:
igg This could have several meanings. LHS'!s of 1let state-
‘iﬂ ments require an identifier (variable). Data file reads also
}ii require a variable to receive transfarsd data.

MESSAGES:

5?& END. vas expected, but ssss was found at line 11l1l.
EZE EXPLANATION:
%;ﬁ An input following a statement must be either anocther
~ statesent or an (END.).
-:§ BESSAGES:
; ; No legal Comaand Language statement was found. priecr to
L) the point 1111 in the input 1line.

- EXPLANATIONS:
E' ' This error message is only invoked during the first
%; ' statement following the program naama.
» NESSAGES:

o expected at ssss in line 1111.
oY EXPLABATION:

;f Semicolons terminate all statemsnts. Check the statement
2& at the indicated line.

N
A
2
A
o

.
N

e 58

e
'}Q

Q) |




- {. .,\_."&(;'.'- .

[

I ks

LPLIPL DY

4

Y )
oMLY e
. LI DAL RN

r"

. W

0‘. -
-

ARBENLIX C

PRCGRAM SQURCE CCCE LISTING

/7% R & S Command Lanauagqge

E

* Last update:

22 Sep 1983

EEREBRRERRAEREASAREREREEFRAEEF XSRS EEEERXBEERSRENRX RS
CONSTANT DEFINITIONS

x

t ¥4

tdetine
#detine
sdefine
sdefine
tdetine
sdetine
tdefine
sdefine
sdefine
tdetine
sdefine
$detine
tdetine
sdefine
fdefine
#define
tdetine
#define
tdetfine
sdetine
sdefine
sdefine
sdefine
sdetine
tdefine
#define
tdetine

debug
debugceas
debuaget
debucit
debuglet
debugloo
debuaput
debyasta
false
true
maxsym
devsiz
linesiz
loop.lst
stringsi
symgiz
optorsiz
oprandsi
EQFILE
NEWLINE
id.token
str.toke
int.toke
ari{th.op
10G.00at

e

te

OO0 O00DD0O00O0

25
15
132
-312 10
zZ 132
10
20
Z 40
o @
°0
1
n 2
n 3
=token 4
oken S

logatunc.token 6

other,to

ken 7

3

/FBEESXBXERREERERERAEARERETEBEERAER AR AR REIBXXEXBRTESERARERER TR R AR
GLOBAL VARIABLE CEFINITIONS *

|

*/
FILE
char
char
char
char
char
char
char
char
char
char

soutput,
LCOP.FILE(20],
sav.devidevsgiz);
pUt.devidevsiz):
get . dev(devsiz):
symtype?
symida{symsiz],
strina(lstrirqsiz],
token(symsiz],
line(linesiz],
loovalstiloop.lst.siz]l{1linesiz)j/sstatements receated {n loop*/

s{input, *source,
*loopptr;

sidptr;
*sptry
xtptr:
slptr?

s9

/%
/%
/7%
/%
/%
/%
/%
/7%
/%

xlooPafiley

£ile name for loop statementsx*/
device name for put & get x/
device namre for put statementx/
device name for get statements/
type of symbol I or C */
actual symbol char strina %/
character string x/
actual token char string x/
current {nout line L ¥4

""" LTS

S o o

PLA

|

AN - § SRR

LIPS  } SIS ILILINY | WROTRRRI WM | UL

TN AR TS ¢;:fr‘r;¢ja::::

L K S S e S ot T DA SIS S DI

- , u

™ )



-
80 int loopacnt:
SR
S
N int token.types
o int symval:
int numsym;
I~ int exp.result;
= int opr.value;
‘,-\
o) struct {
‘ char 1d(symsiz], *sidptr;
int value;
R char type:
e } symbollmaxsym), ssymptr
N
X
/ {
&
NS

o b 4
LAY

N,
&

-

P atd
. A

o

x|

K57
nﬂ"

|

N
34

00K,

B

Ry

W

. e o N R
Ay, \‘ ‘\-‘(\' N

i - - e - - T -
N RS NS

/%
/%
/%
/%
/%
/%
/%

/%
/%
/%
/7%

60

used */
by getlire to receat statemnpt¥/

loop statement counter,

type of token %/
value of symbol x/
nuymber of symtols active x/
result of arith expressions =/

precedence values of arith.op*/

syrbol table */
symbol nare x/
symbol value x/
symbol tyce (I or C) */
O R AT AR ORI Ny




DAY
%
-‘:'4 / ¥
‘:1 % This {s the main routine for the Comrmand Languaqge Intercreter,
Ve s It calls "staterments" to prccess all other statements,
. * If rain completes successfully the intercreter exits.
v ]
i * Functions used: error(11/12/14/51), next, statements
k@ * Global used: token, token.type
e & Constants used: id.token
2 %

* Author: Dennis J. Ritaldato
T * Last update: 22 Sep 19813

z/
sinclude <stdio, n>

b

'-' % ':‘ '-".

o #include "global,interp"”
e main ()
{

5 LOOP.FILE(O] = *";

- strepy(LOOPLFILE,"LOCPZZ22%);

S lo00.cnt = 0; /7% init loop counter ¥/
o pursym 3 03 /% init symcol table %/
Wy source = foren("RSCL","r"); /% cpen source file for *x/
, /% command language proaram %/
» next();

oy 1¢ ( strcmp(token,"PROGRAM") )
o error (11);
;ya next()?

' it ( token.type != i{d.token )
. error (12);
N rext():

*x 1f ¢ ! statements() )

3% error (S1);

o it ( strcmp(token,END") )

. ' error (14)

- next():
o 1f (token(0] (= *,°)
N error (14)
A exit():

N )
N
2P

=

]

0y

AN
YA
AN
¥

; 61

-

p oo
AT AN G



/%
% Statements checks the token te determine {f it {s a reserved word
* indicatina the beginrning of a ccmrand language staterent,

* IT¢ found the corresconding functionis called to rrocess tre

* gtatement, Then statement calls {tself to look f~r more statements
* and returns true,

* Functions used: case.statement, create, display, error(513),

x ifostatement, let.statement, locp.staterent, next,
% put.staterent get.statement,

¥ Globals uysed: tcken

% Constants used: none

b

* Author: Dennis J. Ritaldatoe

* Last update: 19 Ser 1983

%/

#include <stdio.h>
sinclude “global,interp”
statements ()
{
#1{f debuqstate
printf("Entered staterents with token of %s,0,token);
sendit
i€ ( istremp(token, “LET") )
{ next():
let statement()?
}
else if ( lstremp(token, “IF") )
{ next();
it.statement():
)
else {f ( lstremp(token, "PUT") )
{ next():;
put.statement();
)
else it ( !stremp(token, “GET") )
{ next():
get.statement();
}
else if ( !stremp(token, "LOCP®) )
{ next():;
loop.statement():
)
else 1f (¢ lstremp(token, "CASE") )
{ next();
case.statement()?
}
else {f ( !‘stremp(token, ":;") )
{ next();
#i{f debug
printé("™ COMMENT found,0):
terdit
while ( stremp(token, ":;") )

62




Ry

4 {ll:.

7R

| XX,

ax
v

ol Y
L%
[t

0

-
azala

)

' C d:"' l;.c":'v ‘I? 4

RSV LA Ay

next():

}
else {¢# ( !strere(token, "CISPLAY") )
{ next();
display():
}
else {¢ ( !strcmp(token, "CREATE") )
{ next():
create();
}
else
return(false);
it ( token(0) != *:° )
error(S3):;
next(): /% bypass x/
statements():
return (true);

63




- LA e A P N S AT AT AT E TR L Wy . .‘-_‘......,-,,.,‘_“___\‘\‘> 1 Died LA \_ M ot i .' ‘.v—:-—v_—-'.vv' -~

« P e v e

The scanner scans the input strear for tokensS which are either:
identifiers alphatalghanum | o g
integers digiti:inteqgers -
strings anything except ; ]
logical ops EQ | LT | GT | NE | LE | GE
arith ops ¥ ) e} + |/
logical funcs AND | CR | NCT | CQON
others any other ASCII character

*ataTaa

At Wttt T

Functions used: error(4), qgetlire
Gloktals used: line, lptr, legacer, log.func, loor.cnt, looralist,
looralst.cnt, lecc.lstaptr,
spgtr, string, tcken, token.type, totr
Constants used: arith.op.token, idotoken, int_token, symsiz,
log.0Pt0ken, other.,token, str.token,
legafuncatoken
Author: Dennis Ritaldate
Last update: 22 Sep 19813
./
stinclude <ctype.h>
sirclude <stdio.h>
tinclude "“global,interp”

ﬁ:”” g =ik,

U2 B IR BE BE B OBE NE B SR BE K BE BE BE AR BR R J
| NIPONIT WY SOy~ § \

AN

o next ()
3 {
3 int { = 03
£
. tptr s token;
by stptr = NULL;
; token.type = 03
. /% 1f end of line x/
N 1¢ ( (*lptr az NULL) 1| (*lptr sz NEWLINE) )~
getline(): /% qet new line L ¥4
while ( C(*lptr == * °) || (!isascii(*lptr) ) )/% skip blanks x/
¥ 1f ( (*lptr s= NULL) || (*lptr == NEWLINE) ) /% 1f end of line =/
by qetline(); /% get new line */
% else
. +¢+lptey
)
. 1f ( {salpha(*lptr) ) /% 18 token an identifier? x/
- { for ( § = 0y {salpha(*lptr)i! isdigit(*lptr) (| (*lptr == °."); )
» 12 ¢ 1++ < symsiz )
. stptr+s = upper( 1lptre++ );
2 *tptr = NULL}
1t ( !log.opr() && !llog.func() )
; token.type = {d.token;
b returns
5‘; )
3 else 1if ¢ isdigit(*lptr) ) /* {s token an integer? =/

{ while ¢ isdigit(=*lptr) )
SLPLr++ B B1lptreey

64

1Z% %54 4%

- e

o Val R LT R U Y, Tew N T e e e e e . et e T Tt A e e -
WS RNAY M ST ERRE O S Y R 2 T " R TRy SN

KRS



[}
E)
»
L3
L
13
s
¢
.
K
.
R
.
.
;
.
1
.
.
.
.
.
.
.
[
.
- o

J stptr = NULL;
> token.tyce = int_.token?
-y return;
)
N switeh (*lptr) (
b case °*"°: /% {s token a char string? */
‘ sptr = string;
P token.type = str.token;
X +4+lptrs .
for (1303 (xlptr != ""’); +¢lptr)
{ 1£ ( *lptr == NULL ) /7% 1f end of line ¥/
getline(); /% get new line x/
it (i++ < stringsiz)
*sptre+ = ¥lptr;
else
error(S):

LA )

(AR { TSI FPRTTIREN ISRy

P ity <

)
++lptr; /% bycass second " ¥/
*gptr = NULL} '
returns
case ‘+°: case ‘=" /% {s token an arithmetic op?*/
obr.value = 13
token.tyve 3 arith.op.token;
TPLT++ a slptre+?
¥totr 2 NULL}
return;
case ‘*°: case */°:
. err_value a 2;
token.tyoe 2 arith.ofr.toker; -
ftotr+4 = Blptres; j
) stptr = NULL? -
return?
case “(°: case “)’: case “[°: case *)‘’:;/%is token another symbol?#%/
case “{’: case ’)’: case ’":": case *;°’;: X
case “!°: case "Q@’: case ‘1°: case ‘’s’:
case °%°s case °~’°: case ’L°: case °*"’": >
case °<’: casgse *>’: case ’,°: case *,”: a
case “s’s case °?%: case ‘|°: case °\’: f

- case “.°t case °*’: case ‘“°“:

: token.typve = gther.token;

* SLPLre+ 3 R1lptree; .
stptr = NULL? N
returng -

defauylts R

- /%error(4);ss/ L

#i{# debug

: printé("=elUnrecognized char 3¢ with value 3d tound,0,*lptr,*lptr);

A sendit :

5 t1ptres} o

! next()? -

' return;

}) /% end switch %/

.

g

B A AT A

A S 2

h S

r
»
. 65 -
-+
>




end next ¥/

/%

IR 4

Y

-

LN

~ g
Ll

>

« e

'

A

-




)
o /% .
N * Getline reads the next lire either from the input strear :
'$ 2 {f the loop counter,"loop.crt” is O or from the loop statement .
. % list, "looc.lst" if the loop counter i{s areater thar 0, It .
* decrements the loop counter each time a line is read. {
W * Fach line read, regardless of source is placed into an array of )
4 * characters called "line", .
3 * If an ECFILE {s encountered an error messaqe is printed out and N
-Q % the orogram terminrates, .
* Otherwise, the line pointer is reset to the beainning of the p
" * line and the function returns, !
:\' ¥ .
» * Functions used: error(3) I
X * Glectals used: line, lptr, locp.cnt, loor.list, loor.lst.cnt, .
o b loopalstaptr K
* Constants used: arith.oo.token, ld.token, int.token,
. ¥ loeg.func.token
) *
‘a * Author: Dennis Ritaldato
) * Last update: 22 Sep 1983
5 %/
f getline() /% begin getline x/
xy {
- int {:
s
é: tor (1=03 { < linesiz; i++) /% clear line buffer x/
-~ 1ine{i] = NULL?
s : tf (loopacnt > 0) /% read from the loop list? %/
3 . 12 ( fqets(line,linesiz,locp.file) == EGFILE )
p { fclose(loor.file);
3? i¢ (~=locp.cnt > 0 )
{ looo.file = fopen (LOOP.FILE, "r");
o fgets(line,linesiz,leoccafile)?
e }
3 )
o lptr = line;
o return;
}
X else {f ( source != NULL )
4 { 1£( fgets(linre,linesiz,source) a= EOFILE )/*read from f£ile RSCL*/
! error(3):;
j #if debug
\ printf("==Source line read,0);
fendit
3, ‘ }
N else -
~ { 12 ( gets(lire) == EOFILE ) /% read from the terminal x/
& error(3):
2 tif debug
- printf("==CRT line read.0):
! .
‘Q
¥ 67
x
>
. ¢
"'
&j, '\' W I Ay ‘-s N )y $$‘ "‘:F"--}"}'a \’ ‘-i.*-;_:.' N N e A e S T e e N




AN An'a a a

sendit
}
si{f debug :
printf("=eThe new line is: %s0,1ine);
sendi¢
lptr = line;
return;
) /% end getline X/

PO RE

.
«

P e S TP PR T R N P N A .
A N A S A R SR R



A SR rad Syt - Gl S TS e AU L A s 4 SIS ML N A A it S

Upper converts a lower case ASCII character to upper case ASCII,
Any characters which are not lcwer case ASCII are ignored,

WA >

“ % 8 48

Author: Dennis J, Ritaldatoe

& Last update: 14 Sep 1981

L ¥4
j ‘ upper(c)

char *¢?

{
. 1f ( (°a’ <=3 %¢) && (¥c <=z "z°) ) /% 1f lowercase %/
’j $Cc = X¥C ¢+ *A° - ‘a’; /% coenvert to uppercases/
§ return(*c):
% }

a_ s W e
L 17

%

‘ .r"v

69

L R R
e e



A,

.-.;:‘b"v“:-' e,
(4

LUos 4

v =
s

L)

:A? 4

R

KL | 7

LM T R,

* % % N nnE

logical operator,
If so, {t sets the token,tyre acpropriatelv,

Author: Dennis J, Ritaldato
Last update: 15 Sep 1983
x/

legaopr() /% pbegin loq.opr

{

it ( strlen(token) !=3 2)
return(false);
tptr = token:
switeh(stntr) {
case °E’;
it (%*++tptr = “°Q°)
return(false);
break;
case °N’:
i1t (*+e+tptr i3 °E°)
return(false);
break;
case °G’: case °‘L’:
12 ( (S+etptr !2 °T’°) && (%++tptr != °E’) )
return(false);
break;
defavlt:
) return(false);
tokena.tyoe 2 loq.or.token;

return{true);
/% end log.00r

70

b A stn boun

S e D et et

Log.oPr examines the current tcken to determine {f {t {s a

*/

*/

A




catl TR ORI a4 SN LR L N R/ o P SR AR A R R NS, Lt s e T Bt s . =

/%

% LogafUne examines the current token to determine {f it i{s a
s logical tunction operator,

¢ It 80, it sets the token,tyre appropriately,

x

s Author: Dennis J, Ritaldato

* Last update: 14 Sep 1981

L ¥4

log.func() /% begin log.func

{

1¢ ¢ (istremp(token,"AND")) (| (!strcmp(token,"OR"))
Il Cistremp(token,"NOT")) ) (!strcmp(token,”"CCN")) )
{ token.tyre =2 log.func.token;
return(true);
}
return(false);

/% end log.func

*/

%/




%
k1

y

»

W
3&'

' &

iy

AP

Ly

icwa

" e
2y

PN
L

e s Walw T (S 2 4 190 SR L RN L R Pt Aok otk R Aa oMM Sl A A Sl An Gl S S

T™his procedure adds a new syrktol to the symbeol table,
Increments numsym
creates a new symhol tatle entry with the values contained in
sverid, symval and symtype
return
Authors Dennis J, Ritaldateoe
Last update: 13 Ser 1983
%/
#include <¢stdio. >
tirclude "global.interp"
:ddsyn()
int 1:
i¢ (numsym > maxsym)
error(2):
syrptr 3 &Sympollnumsyme+);
for (1=03 symid(ili=s® °p ++1) {
symptr > ${dti) = symid(il;
symptr => valye = symval;
symptr <> tyge = symtype; )}
8$if debug
printf£("ADDSYM entered. Numsym = {d0,numsym);
fendit
, return?

L 3K 2K 2R 2& BN B R

72




AT R St Ao s S e e far e S e e i S e a4 MU, e - vt Al s S Sl A Bl e

------------

q a1 A R St ReC T S s ettt T S el i S it oot N iL B N SR AN A A

N

>

p !

| by -

£ /+

A s This procedure assigns the value contained in symval to tre

H s gymbol {ndicated ty symptr, g
* Auther: Dennis J. Ritaldato -

5 s Last update: 13 Sep 1983 '

\ 3/ ‘

% #include <stdio.h> -

- si{rclude "global.interp” :

2 setvalue() i
( -

3 symptr => value s symval; !

3 ) return;

:
q
K|
R
1
X

.




..........

/%
$ LOOKUP searches the symbol table for a match on symid and
% syrbol,id, If found,

L] set symptr, symval and symtype from the contents of the
¥ symbol table, return true

* else

* symptr, symval and symtype rerain unchanged

L returns false

s Auther: Dennis J, Rtisldato

* Last updates: 13 Sepr 1983

s/

sinclude <stdio,.h>

sirclude "global.interp"

lackup()

{

int 43
for (symptr = &symbol(0); symptr <= (Symbol ¢+ numsym); ++symptr)
tor (1=03; symptre>id({i) =s syridl(il; ++1)
1¢ (symid(i1} == * °) (

symval = symptre>value;

symtype = gymptred>type;

return (true); )
return (false);




b
«

} A v

-

L7

I e,
f P22 Yl

L A R
AN A A

¥

Lot N
Caa ol

-

MUY

/%
*This function assignes values t¢ variaples, The LHS (left hand side)

%

variable must be an identifier, The onlvy exception is wher a string

¥ {s assiqned ther the LHS variatle {s the glotal array string, RHS’s

% can be either an exgression, {nteqer or a declared icentifier with
% a value of the identifie; stored in the symbol tatle, Expressions,
* of any length are accepted, Unary rinus orerations are not

* supported in tnhis version,

*

% Functions used: addsym,error((12/168/55/%7), expression, lookup, next

s setvalue

* Globals used: exp.result, symid, symtype, symval, token, token,tyre

¥ Coanstants used: ld.token, int_token

s

® Authort: David J, Srania

* Last Update 22 Ser 81

%/
finclude <stdio.h> /% Link standard 1/C */
#include "global.interp” /% link all program constants x/

char operatorf{optorsizl: /% Ceclare let_statement variables x/

ehar savetype:

int operand(oprandsizl;

irt a,b,m,n,marker,last.prec:

let.statement ()

{ /% Entering let statement x/
char savetoken(symsiz]) /% Declare local variables x/
int sav.value,addflaqg:

$1f debug
Printf("LET.STATEMENT entered,0);
fandis

/SSSEESRERREREE2828% EVALUATE LEFT HAND SIDE S¥XSSSSX4SEERRSXEEXIREEER/

if (token.type != id.token) /¥ Check for identitier %/
{
errot (12); /% Error token not identi{fier %/
return;
)
else
strcpy(savetoken, token); /% Save token name x/
next ()
{¢ (strcmp(token,®=®) == 0) /%* Check for = token s/
next ()
else
{
error(is8); /% Missing “=° operator s/
return;
}
78

......
MUSICIL LR

I
1
|
1
,




| XA
‘el P ’h.

»
AN

Y,
F N |

AR
TN

..‘_

)

AL
Bt R

-
N

L
I\I PS

A%

4.7

>

Pl A0

l;l at"‘ in _‘a

a
Vg

i

/RSB REREFE AR SX XL XXR RHS CHECK ¥EFSRRRAFEAABELENEXEREXEETXEX
/%
* The expression function first determines if the RHS is an
* expressior, If so, then it evalustes the expression and
* retyurns the result to exp.result, FError checking {s performe
* throuhgqout the function,
s/

it (excression ()) /% Cheek for 2nd arq = express
sava,value = exp.result; /% Exp result saved
else
if (token.type za id. token)
{
strepy(symid, token)) /% Load symid for lookup
1¢ (lookup ())
{
sav.vValue = gsymval; /% Save variabole value

savetype 3 symtyre; /% Save variaple type
}
else

21117

d

ion %/
x/

x/

%/
x/

error (55): /% Variable not in symbol table x/

next ()
}
else
it (token.type == int_.token)
{

savetype = °1%;
sav.value = atoi(token); /% Save integer valuye
next ()?

else
i¢ (token.type =z gtr_ token)

symtyoe = °S’;
next ()
strepy(symid,savetoken):
12 (! loekup ())
{
symval = 0
addsym ())
return;
}
it (symtype =z °S°’)
return}
error (%7):
return:
)
else
{
error(24); /% Nat exp, string, id, int
returns .
)

76

--------

%/

*/

""""" N S W




/¥R RSRRRXRBREBRRIER RN EX STRCPY CHECK SEESEBXAEXEXXXFEIRFXXAXRAERENES/

strepy(symid,savetoken); /% Load symid for lookup x/
it (loakuo ())
it (savetype 3z symtype)

{
symval = sav,value; .
setvalue ()3 /7% AsSsign values to Symbol table variabless®/
}
else
error (57);: /7% Variaple not i{n symtcol tatle %/
else

{

symval = sav.value;}

syrtype = savetyre;

addsym () /% Add a new variable to symbol tablex/
}

77

‘
‘
)
.
{
|
1
|
{
!
I




L G R T R A SN .
;'\-’:5':‘-"."\-'.'.'_'-'.‘\'..\'-‘-':‘-':“-':'-“:'-': S - AN .. PR e T e NN e

/S EBAREERESESR LR REES EXPRESSICN FUNCTION FEFSBISXRREEEEREREXEXSEERS )
/%
EXPRESSION determines {f the tcker {s a valid arithretic
expression, An arithmetic expression {s defined as a terr
optionally followed by a arithretic operatar and a sugaxpression,
A term {s either an expressior, an identifier, a nurber or a
strina., A subexpresion (s a term optionally follcwed py an
operator and a sybexpression,

It a valld expression is found, {t’s value s stored in the
variable “exp.result®” and true {s retyrned, Ctherwise false 1is
retyurned,

Functions used: error(22/50), lookup, next, cop, cushopratot,
pusthidoperand, set.prec

Globals used: exp.result, syrid, symtyve, symval, token, token,type

Constants used: arith.op.token, id.token, {nt.token

Author: David J, Srmania
Last Update 22 Sep 81

AR BE B B BE BE BE SR JR BE B BE BE BN JR AR B 4

expression ()

{
m= 0
n=0;
last.prec = 0y
i# ((stremp(token,™(") == 0)) /% Check for “(’ lead of exp %/
{
pushopratoer () /% Push “(’ on stack »/
next ()3
i1¢ (token.type == int,token) /% Check for integer RHS x/
savetype = °I’;
else
: it (token,type =3 {d.token) /% Check tor identifier RHS s/
Vg {

strepy(symid,token)s

Var i£ (lookup ())

wiar savetype = symtype;

&\} else i

¥ Tl [ 4

S ) savetype = ‘C%y

ii? /ERRNRESXRE AL ERS92X LOOP THROUGH RHS ZXXXRXRXERARAEARBXEXRXRKXRRRRA/
while (token(0] != *;°) /% Loop until “’;’ {s read %/

{
if (stremp(token,™(") sz 0)
{
pushoprator ()
next():

78

""""""""""""
--------------




AT AP0

~a

- P I

o

R PRy

Pl " Sl ¢

i N

L N WX

) o

} AR AAN A

. ,
KA

A lals

17
~ON

- > ML PR S i o e R o e et e

At L AL Sl St 2ol 2ot g’ g S 2o AT A A i M i S BN W RV St A A A

}
else
if (strcmp(token,®)") == @) /% Enter pop routines x/
{
pop ():
set.prec ()
next ();
)
else
1¢ (token,type 2z id_token) /% Lookup i{dentifiers x/

<

strepy(symid,token);

i (! leokup ())
error (55):

else
{
pushidorerand ():
next ();
)
}
else
it (token,type == int_token) /% Push integer tokens x/
{
symval = atoi(token):;
pushintoperand ():
next ()
)
else

/% Check operator precedence x/
{f (token,type == arith.or.token)
1t (check.pri (¢))
{

pushoprator ();
next ():

else
{
pop ()
set.prec ()3
)
else
error (21):
)

/ERSRBRREERISRL242%E END WHILE LOCP FRESXBSRRXRSATIRRSRRASSKRERER/
it ((operator(0] = °(°) £& (operator(il] = *)°))
{
exp.resylt = operand(eem):;

symval = exp.result:
return (true);

79

L TYTw

P

’ 0

beca st e s®i,,




L It
& v 0
I Y}

s

LIRS, |

Py

Ty O
oa

gy

A LI

i3

g

T

2

g

-
-

e "a

N

3

else
error (22):
}
else
return (false):

80

ST AT TR AT

N e )
":1. P XU %

\ }L



.'1‘.--'--- PO A ATl =) A Y AT Nt - St it Siia= A etk R i iy i PRCRAC ISR AL pilehh An/ s et it B " Ao AN Lot o A~ PACRAI AE DA S I A
3 p
N -
‘f /REERERXEXXXRRBX88% PUSH INTEGER FUNCTION #5552 SREERXRRSNKENEEREKRRE ) 3
B /* :
b * This function pushes the {ncomming integer token onto the stack K

® orerand(nrl. i

¥ Author: David J. Smania
* Last Updata 25 Septemper 83
%/

pushintoperand () i
B { i
-‘ .l
ps operand(m]l = atoi(token); i
T ++m; P
§ /EBERFXAXBEXESRENESX8E PUSH IDENTIFIER FUNCTION FXESXSESESXBARERRRR/
/%
X * This funetion pushes the identifier value orerands onto the
A * gtack operanrd(m],
% ]
* Author: David J, Smania
~ * Last Updata 24 September 83 .
~ %/
" pushidoperand ()
~ {
A operand(m] = symval;
Q *emy
i )
/ERBRERAIXSENEI288S PUSH OPERATOR FUNCTION *EXRXBERKARZEEXEXRRSEERNY)

/%
* This function pushes the incomming operator onte the stack
* gperatorin),

s

* Author: David J, Srmania

- * Last Updata 23 Seotember 63

" s/

4
g pushoprator ()

: { |
- operatori{a] = tokentl);
s +on}

& )

H
E
N 81

q_".-'c‘qq!-vrd‘d'--,
N e R A NN NN



U S A M s S AR ACASASACAG ARG A ARSI A

%y
£ ¥ T

7 A

n! i
N
tf JesssRnkRERsausnsss CHECK PRIORITY FUNCTION SEEEEERREEBEEREEEAREX XN/
~4 /%
4
;t. . % Check the incomina ocerator prececdence with the existing hiqghest
o * precedence, last_rrec, value. vedify {f incomming is greater.
x
X * Author: David J. Smaniatl
>t % Last Update 23 Sertember 83
2 ./
= checkapri ()
‘ {
e\ 1f (opr.value > last.prec)
79 {
o last.prec = opr.value;
marker = n;
return (true):
X3 )
':} else
" 1f Copr.value =z last.rrec)
W return(true);
’ else J
55 return (false);
> % )
.
g~ |
A
o

82

-y,

N
ot




S

[]
L oy W

TS
ALALAAY

P

o rave s A
YOI AN

pr—xy O & g
T N Wy  WaWiya W o Rafu e T nla® wNa

At m VAT T T L

/ESERREBEAXSRERRRENEX SRS POP FUNCTICON SSEFBEXSXEREARBEXEXEAEXEXERXIRS/

/%

% Por the operators and ocerands off thelr respective stacks

® according to the token read,

s Agthor: David J. Smania
% Last Update 23 Sevtember 83
%/

po? Q)
int {,done;

done = 03
--n’

it (stremp(token,™)") =2 Q)

while (operatorin] = “(*)
{
-.m’
a = operandiml;
aaMm?
b = operand(m);
check, ,token ()}
}
else
while (n >= marker)
{
wam?
a = operandiml:
sam)
b = operand(m];
check.token ();
)
returns
)

/% Pop until “(° is found =/

/% Pop until lower precedence */




...............

2@ /ERAEBRBEEREENEXEIIEAIX SET PRECEDENCE #$¥NESSBSRRSSRAEBEENREEBAESER/
-’s,?' /%
f: ¥ Set the precedence variable last.rrec to the highest rrecedence
. * orerator in the stack operatorinl.,
: * Author: navid J, Srania
o] * Last Update 23 Sectember 83
N *
Wt
e set_prec ()
{
26 int {,done;
:‘)
o done = 0;
O ++n?
S operatorin] s token([0):;
for (130 ((i<=n) && (!done) && (operator(i) != °)*)); {++)
{
v
13 1f C(operator({] == “+°) || (cperator(i] ==z *=*))
-\' ‘
&Y last.prec = 1)
t done = truey
_ marker = {;
™ }
s else
% last.prec = 0;
£ )
2 return;
- - "}
‘ﬁj /REBEBEELEIEINXRAIFX2E FERFORM ARITHMETIC SESEXXRANXNXXKKEKREEERRRER/
2 7%
g * Perform arithmetic operations tased on operator(nl] found. Store
- * results {n operandi(m]},
x
» * Author: David J, Smania
j * Last Update 23 Septerper 83
T
)
- check.token ()
. (
ﬁk it (operatorin) == °+°)
S {
» operandir] 3 (a + b);
o *emy
—— Ll
; )
-5 else
- 1t (operatorin) ==z ‘*«’)
'~ {
A operand(r] = (b - a);
+ome
ol eons
;:
N3 84

5%

" -l‘.‘...'.l.\

e e e T T N e T e e L e e N e - +a "'\_". ".\“ ‘\ Tt <, TN
O A U I T A S SR AP R ] e e e R ~ .
TSN TP P W T VA VR P U L O ST Sy G, S e e e et A 1'.1;'{.‘.‘4\.:

oz




Tt "'.‘.""-'-‘;V."‘;—“.."‘V-Y'. FOEFE T AV ERFLY W T T fond —
BN SR TN B R O A S p i Nt it i b B v Sk SRS d B a s S A Ao 20 oy

}
else
it (operatorin] s= “%7)
{
operand(r) = (a * )
L X LN
--n;
}
else
1f¢ (operatorin] =3 */°*)
{
cperand(m) = (b / a);
*m3
--n}
)
return;

}

/ERSBSREREREEENRNRBAEE END LETLSTATEMENT FSSXEBRBRRREERXXAXXXBERFRRES/

e am AT ™ e T T g e T
: - IO TR PR PL K P ) S PR -"'_01




.................................

) /%
:ﬁ * This procedure receives data from efther the screen (CRT) or a
~7 * resident file, The function first checks for the user’s recuested
- % display device then resconds tec the user’s data requests, Two
iy * tvpes of data input requests are avaijlable to the user: from a
B * file on the user’s disk; or a8 variacle stored {r the symbcle table,
¢§ * Global variable sav.dev stores the yser’s device reauest,
X s
o * Function used: next, error(20/56), device, 1d_list, addsyn
4 * Gleobkals uysed: sav,.dev, get_dev, string, sptr, symtyre, syrval,

input

-? & Constants used: NULL, stringsiz
g *
2 * Author: David J, Smania
- * Last Update 22 Ser 83
- y
-, #include <stdio.h> /% Link standard 1/0 */
. #irclude <ctype.h> /% Link integer check routine */
%) "#include “global.interp" /% Link all program canstants */
Lc char savetype; /* Declare local variatles %/
- int sav.val;
;? qet.statement () /% Entering qet statement %/
\" (
'Q int bad; /% Declare get variables x/
#tif debug .
N Printf("CET.STATEMENT entered,0);
) sendi¢
NG 1f (! device()) /% Check tor device token x/
- {
. error(20); /% Invalid device type x/
return;
- )
-Q strepy(qet.dev,sav, dev)? /% Save device name {n get.dev*/
- i1t (stremp(get.dev,"CRT") ==0)
N { while ({d.list () ) /% Loop until id.list is empty*/
N {
‘ 1f# (savetype 3= ’S’) /% Check saved token type x/
: gets ( string )
‘ﬁ else {f (savetype == “1’)
> {
%: scanft (" 8d",&symval);
.- setvalue ()
= }
e else if (savetvpe == ‘°C’)
:" {
o symval 3 getchar();
b setvalue ():
e, )
- else /% Identifier {s unknown %/
a
3 86
A
‘3

3

P s m A A e se——

e e o



‘55‘ ra . alaTav s uikvaXe ¥ p L atal ¥ VN, (e T ™, 2P it Yl A Pl i it bl i gt SO R el Bt e Rt i o/t
A g
& *
‘. .
% g y
3 gets(string); :
sptr = string; ‘
¥ for (badafalse; ( (*sptr != NULL) && (*sptr i= “ °) ,
}i &6 (!bad) )7 ++sptr) ]
A 1# ¢ ! isdiqit(*sptr)) /% 1Is input a digit x/ ]
i bad =z true; )
' 1¢ (!bad)
y { symtype = °1°;
?§ symval = atoi(string):
l! ) 4
¥ else
3 { 1f (strien(string) == 1)
{ symtype 3 °C*’;
‘} symval = token{0]: d
4 ) P
>§ else
ﬂ symtype = °S’;
he }
;ddsym():
3 next (); /% pypass input variatle %/
Py } /% end of while loop %/
t }
N else
. i1f (stremp(get.dev,"LST") =30)
b4 { error(56); /% Invalid device input x/
g . return(talse);
¥ - )
i’ else
. { input = fopen(get.dev,"r"); /% Cpen file to read only %/ J
while (id.11ist () ) /% Loop until {d.list is empty %/ !
{

1¢ ( savetype == ‘S°)
fgets ( string,stringsiz,input );
else {f (savetype == °1°)
- { tscant (input,®™ %4d",&synrval);
, setvalue()?

else {f (savetype 3a ‘C’)
{ gscant (ineut," Sc",&symval)y
setvalue()?

“_“,._Q,“,,
RS ar e RETAERS
il il e

- }
else /% identifier i{s unknown %/
{

fscang (input,"” Ss",string)s

sptr = string;

for (badsfalse; ( (®sptr != NULL) && (*sptr l= ° °)
&6 (lbad) ) ++sptr)
12 ¢ ! isdigit(*sptr)) /% 1s input a digit? %/

1

[

)

87

AP T T Yt IR ¥

.)}. ;u,

1
e T AL Cu M Y A A S AT P "'.-\_-" v N j
ATARRI VAN ‘ 27 M IS DRI AT, S AR L S TON _‘.'A.‘.\':'.':b'_\':



bad = truey
ig (ltad)
{ symtype = *1°;
syrmval = atol(string)?;

3 )
T else
ey { it (strlen(string) == 1)
o) { symtype = °C’;

symval = token(0];
}
else

symtype = °S’;

addsym();

)
N next () /% bypass input variable %/

i } /% end of while loop %/
] } /% end of file processing x/
X7 $1f debugget

printf("At end of GET, token = %s30,tcken);

sendif

o returns
° } /% end get_statement */

LMo
el

"ﬁ.;& {‘fm \ ’;
e M, X, -

So4E

o

gy g
2 AR

by

Lo

pg

2y

A
P xS

R e
A

& » 89

""."""'.
BT ETARET T T N TN




LAAA
Ty

Wt

; "’ .'.- "0 lz:’-'.f'.

o
g

fro

»

.Yl

b
X

APCAA s ’ RN,
A LAAA

/EABBIBRBRRRBEFASENEXI333 [D_LIST FUNCTION SERBBBEEEREEEESARSKRERRRRE/

/%

L BE BK BN BN BE NN B NY B J

*/

The {d_list function checks if the input variable {s already
declared in the symtol table, If true, it saves the data type for
type checking, A data tyve of U’ yndefined {s set otherwise,

Function used: lookup
Globals used: symtype, token
Constants used: id.token

Author: David J, Smania
Last update: 22 Sep,, 1983

1d.11s8t ()

{

}

1f (token.type !s= i{d.token)
return(false);

strepy(symid,token); /% Place token i{n symid for lookup Checks/
it ( lookup ())

savetype = symtype; /% Save token type for latter corparison*/
else

savetype = ‘U’
return (true);

/38R8REXRSR5X82% END GETLSTATEMENT $XXSSXXERRESENREAREXRSREBAERERRER/

89




Xy,
i AR
L Y3

i N T .‘!
a.g. in- :...Q.

ATl e
et B &

P

G

St

-
Sk,
.

B

PG
< el

Cucth

V%Y
l';
A.
> :

]
* PUTLSTATEMENT outputs to either the screen (CRT)
% or the printer (LST) data stored {n a variable a
% gstring or a file, The function first checks for the
* appropriate disclay "device" then responds to the
® ysers data requests, Two tvres cf data requests
% are available: a variable stored in the symbol table:
% or a string, Glokal variables put.dey, symval and
* savetype store the device name, the token value and
* token type respectively,
s
* Func:ions used: next, error(25), list, device,
* Globals used: outrut, put.dev, sav.dev, string,
* token, token.type
* Constants used: none
]
* Author: David J. Srmania
% Last Update 22 Ser 83
*/
sinclude <stdio . h> /% Standard /0 link %/
tinclude "globsl,.interp" /% Link al]l program canstants ¥/
char savetype; /% Declare local variables &/
int sav.val;
put.statement () /%* Entering put case statement ¥/
{
$i¢ debug
printe("PUT.STATEMENT entered.0);
sendit
i¢ (! device()) /7% Check for device token */
{
error(2%): /% Invalid device type x/
retuyn;
}
strepy(out.dev,sav.dev); /% Save device nane 2/
12 (stremp(put.dey,"CRT") a=()
{ 1¢ ¢ lstremp(token,"”SKIP") )/% Skip a line x/
{ printe(*0);
next(): /% bypass SKIP ®/
)
while (1ist ()) /% Leop until list (s terminatedx/
{

#1i¢ debuoput
printe(“eelist returned true with token = $s0,token):;
fendif
1t (savetype az °S°) /% Checks for token type x/
puts(string);
else
1¢ (savetype sz °1°)
printf("sd ",sav.val)?’

s

----- [ R R R TTY
N T N I A I A T S e e ]




A
e

oA else

€ printf("sc ",sav.val)?;

1 next ()

I } /% end while list s/
8 } /% end 1f CRT s/
28 else
33 1¢ (stremp(put.dev,”"LST") =30)

" while (list ())
oy {
. printt("toqgoling printero0);
o next ();
N )
2N else
o {
i /% Qpen file with ‘a’ attributex/
o output 3 fopen(put.dev,”a”);
) $if debugput
» printf("Cpening new file $s0,put.dev)’
ﬁ% fendis
o if ( !strcrp(token,"SKIP®) )/* Skip a line in the file %/
o { printe("0);
4 ) next()s /% pypass SKIP *®/
:i "hile (list () /% Loop until list empty */
""J
fod 1f (savetype == °8°) /% Checks for token type %/
fputs(string,output);
™ else
o if (savetype 32 “I°)
Ry . gprinteoutput,"sd “,sav.val);
ﬁ else
o gprintgCoutput,”sc ",sav.val);
next ();

55 }
'ﬁﬁ fclose(output)s /% Close data file */
N )
eyl #1¢ debugput
o print£("At end of put, token = 3%s0,token):;

fendit

return)
}
91

........... T T R R S R N W
. J Sop * v * * ﬁ;ﬂ';:';’:;";";.'..s(\‘.. < "\ ‘t\.":\':\.f&: ROy




W
i’ /¥R XERRXERXRERRNREXRLIST FUNCTIONSSXSESERRRERXARARESXRERNE )/
‘) /%
:4 * The 1ist functioen checks for the ocutpyt token supplied by
¥ the user, The corresronding token data valuyes are stored
" * aopropriately for later corparisen,
g »
-2 * Functions used: next, error(SS), lookup
X - ® Globals uysed: string, symid, symval, symtype, token
h9 * Constants used: id.token, int_tcken, str.token
x
iy $ Author: David J, Smania
Sy * Last Update 22 Ser 83
) */
14
¥ 118t ()
{
-£ 1f (token,type =3 int_.token)
{
B
,3 sav,.val = atoi(token); /% Save token value */
By savetype = “I°; /% Save token tygpe */
e return (true):
}
AR i¢ (token,type z= id.token)
.;c (
g /% Place token in symid for lookup check */
Xy, strepy(symid,token);
b 12 ( lookup ())
. {
i /% Save token type for later comparrison */
N savetype = symtype;
;' sav,val s gymval; /% Save variable value %,
return (true);
}
. error (8%); /% Unidentified variable x/
: return (false);
. )
) if (token.type == str_token)
-.j {
- savetype = ’S’}
' return (true);
o¢ )
j} return (false): /% Error no match %/
s } /% end list */
b /8328232 RERRRSEREND PUT.STATEMENTSSXSR SRR RESRRAERERNERENABERERRER K/
n

92




%
3

}
'
-
i

.

O
WML LES L

RS

»
B % 5

.,
.
<8

DEVICE determines if the current token is a valid
1/C device name, A vallid device {s defined as either
"CRT" for the user’s console, "LST" for the line printer
or a filenare, The file nrare {s structured according
to the fi{le naring conventiong c¢f the CPM ogperating
system, That is, a name cptionally creceeded by a one
character disk drive designater with a colon and
ortionally followed by a8 pericd with a three character
f¢ile type,

If a valid device is found, it is stored in the
variable "sav.dev" and true is returned, Otherwise,
£a3lse is returned,

Functions used: next, error(26/30)
Globals used: sav.dev, token, tockena.type
constants used: i{d.token

Author; David J, Smania
Last Update 22 Ser 83

L2 R BE BE BN B BE AR SR K K R R IR R BE BN B 2R J

*/

sinclude <stdio . h>
#include "global,interp” /% Link all program canstants %/

/ESRERERRER XXX X RS REXRCEVICE FUNCTIONS XS ERSXEERAERERXARNTSXE/

device ()

{
$1¢ debug
printf("PEVICE entered,0);
sendit

if (token,type !=3 id.*“oken)

return (false);

1¢ ((stremp(token,"CRT") == 0) |} (stremp(token,"LST") =2=20))

{
#i{¢ debugput
printf("=«device s 3s50,token);

fendig
strcpy(sav.dey,token)) /% Save display type %/
next () /% bypass CRT | LST %/
return (true);
}
strepy(savadev,token);
next () /% bypass fname | drive =n/
1f (stremp(token,®™:®) ==20)
{
strcat(sav.dev,token)?
next ()7 /% bypass ! %/

{¢ (token.type != id.token)
return (false);
strcat(sav._dev,token);

93




,next ()? /% bypass fname x/
{2 (stremp(token,®,") ==0)
{

i
-

strcat(sav.dev,token);
next () /% pbypass , x/
{¢t (token.type != {d.token)
return (false))
strcat(sav.dev,token);
next () /% pypass ftype L ¥4

D S M,

}
return (true);

ca.A R A LN AS,

)

/ESRBARERERESERSXNRARSALEE END CEVICE FSXBESREEXREXRAXATRRTER/

P

94




s

‘%aﬁi—

AR SR M iae e A i UL G IL I NSO SR R M A A A A R A AR AR AR R A A T a T el

IF STATEMENT executes a set cof statements based on the
logical value of the the IF-~clause, If this value {s
true (not 0), the THEN=qQroup of statements {s executed,
It the IFeclause value is false (0), the ELSE=qroyp of
staterents is execyted,

The ELSEe~qrour {s ortional, 1If it does not does not
exist, the entire IF statement is skipvped,

Functions used: next, error(16/17/27/54), statements
Globals used: token, token.tyre, symid, symval
Constants used: symsiz, leg.op.token, log.func.token

Auther: Dennis J, Ritaldato
Last update: 22 Ser 1983

L 3K 3R B BE R SR SR B BR BE K R AR

L ¥
sinclude <stdio ., b
$irclude “global.interp"
int log.result = 0;
int term = 0}
int sub = 0:
91 debuqgtt
int level = 0;
sendlit
it.staterent ()
{
# {2 debuqg
printf("IF.STATEMENT entered,0)?
$ endif
12 (! log.exp() )
{ error(54):; .
return;
}

${f debugit
printf("==log.result at level 84 s %d.0,level,log.result);
fendit
it (log.result)
{ 1£ ( stremp(token,"THEN") )
{ error(i6);
, return?
#i{f debuqgit
printf("==THEN found,0);

sendit
next(); /% bypass THEN ®/
statements(); /% execyte then clause »/
/% skip else clause %/
while ( stremp(token,"ENDIF") ) next():
)
else

/% skip then clause x/
{ while ¢ stremp(token,"ELSE") ) next();
8if debugit

9s




Z - a
AD-A136 589 A USER-ORIENTED MICROPROCESSOR SHELL COMMAND LANGUAGE 272 .
INTERPRETER(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CR A
., D J RITALDATO ET AL. SEP 83
UNCLASSIFIED F/G 972 NL




.

LS R R IR, W, )

. o wa

RGN

ST T e By

W NN

B LW Y

E

Ol o~ o
=

18

K EEE

K EEFEPTIT:

=

1.6

1.4

I

=y

RIS

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

e

i

-

AT

sk

Bl AP A

t

Crrs > PR




erintf("=«ELSE tound.0);

tendi¢
next(): /% tyrass ELSE s/

Lot statements(); /% execute else clause %/
Bl }
by 1¢ ( stremp(token,"ENDIF") )
A { error(17);
g -_3- return;

}
AN next(): /% tycass ENDIF s/
;52 return;
SN ) /% end {f.statement %/
§;§2

7
S
.,
»

o
s tele s fr

PR
2 a

‘D

)‘.
3

i, 96




Y g
) K
4!
ny |
] ‘
] K
) -
N /% -
] * LOG.EXP determines if the current token is a logical :
% expression, A logical expressicn is defined as a “
. * loaical term, optionally followed by both a logical i
/ % gperator and a loalcal sutexpressicn, The entire N
) 3 loqical exoression rust be enclecsed in parentheses, B
% * It a logical expressior is fcurd, {t’s value is N
N % stored in the variable "log.resuvult” and true {s 1
* returned, Otherwise, false is returned, p
A * |
i ® Author: Dennis J, Ritaldatoe -
3 * Last update: 22 Sep 1983 y
W */ -
bd log.exp()
A (

g
i

int 1hs = 0, rhs = 0;
char otveratorisymsizl:

81t debuagis
erintf("Entered loa.exp,.0):
fendit
1¢ (strcemp(token,™(™) )
return(faise);
next()? /% bypass "(" %/

A4

; )

) 8i¢ debuoit :

Y printf("e==eLeft paren found for level %d, ",level++); y
printe(" New token {s %s0,token);

~ tendit

o 1t ( ! logaterm() )

o retuyrn(false);

o #if debugit

4 printf("e=eeln log.exg, log.term returned %d ",term);

printe(® with token %s,0,token);
printe("===<and token.tyre of $d4,0,token_type};
Sendit
1hs = terms
1¢ ( (token.type 3= l0g.0P-tcken)
11 (token.tyre =z loqQ.func.token) )
{ strepy(operator,token))
next(); /% tycass operator »/
81¢ debuqgif
printt("==anlogical expreession cperator, %s, found,0,operator);
sendis
1¢ ¢ ! subaleg() )
return(false);
rhs = sub}
log.result = compute(lhs,cperater,rhs);
#1¢ debugit
printt("eeeaCompute returned %d,0,l09.result);
fendit
1¢ (¢ !strcmp(token,”™)") )
{ next(); /% bypass ")" x/

- o g
* ' e Wi

‘AL

|“‘ ;LA

' | Y e

97

§ o

4




#1f debugis
printf("==Right paren for level %d compound expression.0,level):
erintf("=«With next token of %s.0,tcken);
stendit
return(true);
}
else /% matching right paren not found */
{ error(27);
return(false); _
)} ]
}
else {f ( !strcmp(token,")") ) 1

{ log.result = 1lhs;
next(): /% bypass ") ®/
return(true);

)

else /7% matehing right parenp not found %/
error(27);

return(false);

) /% end logeexp */
98




':i
3

3 /%

. $ SUB.LCG determines if the current token is a logical
* subexpression, A sub expressior is defined as a

- * logical terr, ontionally followed by a logical operator

* folloved by either a logical subexpression or a
% loqical expression.
* I a logica)l svbexpresgsion is found, it’s value {s
& stored in the variakle "sub® and trye is returned,
* Otherwise, false is returned,

e, s/

% sub.109()

2 ¢

L int 1hs = 0, rhs 3 0}

E char operator(symsiz);

&) $1f debugift

j printfé("Entered sub.10Q.0);

& sendits

5 1¢ ¢ ! loga.term() )

return(false):;
lhs = term;
3, 1f ¢ (token.type = log.0DP.tCKken)

&8 (tokena.type !=3 log.func.token) )
; { sub = ins;

return(true)?

)
- strepy(operator,token);
o next(): /% typass operator
w i1f ( sub.log() )
M { rhs = sub;
% sub = compute(lhs,operator,rhs);
e #{¢ debugit
printg¢("e=eeln syb.l0g, sub.log returned %d,0,sub)?

; sendit

i return (true))
- }
12 ( logaexp() )
{ rhs = log.resulty
#1f debugis
printg¢("eeeeln sud.l0g, log.exp returned %4.0,rhs);
fendig
sub = corpute(lhs,operator,rhs);
feturn (true)s
)
return (false))
) /% end subalog

g 99

NG

TN . y

"
WL QALY W AN




/% LOGLTERM determines if the current token i{s a term
* {n a logical expression, A terr s defined as a
% logical expression, an identifier or a nunmber,
% If a term is found, {t’s value {s vlaced in the
* qlohal variable "term” and true {s recurned,
% OQtherwise, false {s returned,
s/
log.term()
{

$if debugit
printf("Entered Log.term,0)s
sendis
{t ( logaexp() )
{ term = log.result;
return(true);
)

if (token,type == id.token)
{ strepy(symid,token);
lookup()?
term = gymvalp
next()? /% pypass identifier
term = symvaly
$i¢ debugit
printt("es=eeldentifier value $d wasgs found.0,term);
sendit¢
retyurn(true);
)
1t (token.type == int_token)
{ term = atoi(token):
next()s /% bypass integer
#if debugit
printf(“eeesInteger value %4 was found,0,term);
sendit
return(true):;
)
return(false);
) /% end log.term

100

*/

%/

%/




/%
% COMPUTE performs the operation specified in the
% parameter “"op" and returns a value of true or false,

. L ¥
>{‘ compute(lhs,op,rhs)
'f int 1hs, rhs, *or}
(.
Sg ’ #i¢ debugit
printe("Entered corpute with $d s %d.0,1hs,op,rhs);
" sendi¢
:3 1¢ ¢ istremoCop,"EQO") )
2N { 1# (lhs == rhs)
f;g return(true);
Ko, %) return(false);
)
o it ( lstrermp(op,”LT") )
% { 1 (lhs < rhs)
TN return(true);
g) return(talse);
I }
' it ( !stremp(op,"GI™) )
ALY { 1£ (lhs > rhs)
B4 return(true)?
=8 return(talse);
3 }
N1 1¢ ( lstremp(op,”"NE") )
. { 1¢ (lhs != rhs)
S retyrn(true);
';; return(talse);
Ca }
(I 1¢ ( istremp(op,"LE") )
b, By { {¢ (lhs <= rhs)
return(true)?
b return(false);
x }
&3% it ( istremp(op,"GE") )
. { {2 (lhs >= rhs)
g return(true);
return(false);
p }
4 1¢ ¢ istremp(op,"AND"®) )
el { 1¢ C(1hs & rhs)
a3 return(trye)?
p return(talse);
}
it ( !stremp(op,”"CR") )
{ 12 (ihs | rhs)
; . return(true)?
3 return(false);
S )
. i¢ ¢ lstremp(op,"NCTI™) )
s return( !1lhs )
g
l‘\. 101
—
o




W0

")
K>
-

[
Ly

..q..:.:"‘

»

«
4

-y
’~{J 4’
35

L
[/

k) a’:; ™ s
Ps
e

¥ o

¢ l

S A f
2.0 a4 &{

.
(]

' )

R IR I T I T SRR SRS SR SC R Il LRI SO S S
LG G S g D R N R T

S AR R AR A s R N W) e St A T Y a Va C W ¥ (VW aRaTa® e %",

12 ( lstremp(op,"CCMN") )
{ puts("CON is not yet implerentedC);
return(talse);

}
/% end compute

102

.

.~

%/

L




l_qf@@?@

LR

-4 AA

..,-

>

R .02

AL v Wy
AAI DA

¥,

f"

L 3R 3K JE 2R BR BK B JE 3R X R IR

CASE.STATEMENT executes a set of statements based

upon the case varliarle,

It one of the cases matches

the value of the case varilable, that set ¢¢ staterents

{8 executed,
staterents is executed,

If none match, the otherwise set of

Functions used: lookup, naxt, case.num,

error(23/731/32/33/5%85),

statements

Glohals used: token, token.type, symid, symval

Constants used: i{d.token, int_tcken,

Author: Dennis J. Ritaldato
Last update: 22 Sep 1983
/

#include <stdio. N>
$include *"global.interp"

int caseval;

caseastatement ()

#if debug

printe(" CASE.STATEMENT entered.0):

serdis

it (token.type a= {d_token)

{ strepy(symid,token); /% get case variatle %/
i ( ! leokup() ) /% and save its value %/
{ error(ss); /% undetined variable */

return?
)
caseval = symval;
}
else 1f (token,type as int_.token)
caseval = atoi(token)s

else

{ error(23); /%
retyrn)

)

next()? /%

1¢ ( stremp(token,™s®) )
{ error(it);
return?
)
next()s /%
i¢ ( | case.num() )
{ 12 ¢ stremp(token,"OTHERWISE®) )
{ error(32);
returny
)
next()s /%
i€ ( stremp(token,™t™) )
{ error(3t);
returns

103

not integer or vaiable %/

bypass case variabhle ¥/

bypass ¢ x/

bypass QTHERWISE x/

---------
.....



el
4

» A
5 Q
P ) :E
next():? /% pypass ! %/ y
5 statements():; 4
)
AN i1¢ ( stremp(token,"ENDCASE") ) !
i { error(33); ]
2 return; y
“l - ) 'i
2 next()? /% pypass ENDCASE %/ Y
. } /% end case_statement x/ ﬂ
~ -
X 1
X k
k
i
3
%
o
N
: “
i
,b ~
E
v 104
]
"
A




P

D

R

-,
-,

......

/%

¥ CASE_NUM executes a set of staterents based upon

* the case variadble, If one 0f the cases matches

% the value of the case variatle, that set of statements
* {s executed and true {s returned,

¥ Qtherwise, false {s returned,

]

* Functions used: lookup, next, case.num, error(55), staterments
®* Globals used: token, token.type, symid, symval

* Constants used!: {d. token, {nt_,token,

]

* Authors Dennis J, Ritaldato

* Last update: 22 Sep 1983

z/

sinclude <stdio.m>
case.num()
{

int found:

int saveval;

for (foundx=false; (strcmp(token,"OTHERWISE")!=0) & (! found); )
{
#$i{f debugcase
print¢("~=Inside for loop,.0):
tendit
1¢ (token,type == {d.token) /% maybe an identifier %/
{ streopy(symid,token);
#if debugcase
printf(®"An {dentifier token, %8, was found,0,token):

fendit .
next()s /% bypass identifier x/
i¢ ( lstremp(token,®™:") )

{ next(); /% bypass %/

i1 ¢ ! loeokup() )
{ error(s%);
return(false);

)
if (caseval == symval) /% cheeck this case {tem »/
found = truye; /% against the case value */
)
)
else {f (token.type == int_.token) /= maybe an integer %/

{ saveval = atoi(token)?
$i¢t debugcase
printf("=«An integer case option of %d was found,0,saveval):;
tendis

next()s /% bypass inteqer x/
1¢ ( !strcmp(token,™:®) )
{ next(): /% bypass ¢ x/
if (caseval =2 saveval) /% check this case {tem %/
found = true; /7% aqainst the case value 2/
)
108

RN \-~"P7’;.‘."$

s ; - K -‘ v h ‘..'_-'_.".-‘ ‘_- T K S N I ‘u‘.. -;<'¢




a1 K3 LA e A B 4 i S A A S < Sy e - ey e R T B B S e il "R e i s i le St M- S AR Rt B 4 he A B

)
else /% must not be the proper »*/
{ wnhile (stremp(token,®;") ) /% case sO0 skip rest of linex/
‘@‘ * next()?
Sy $if debuqgcase
35 printf("==No valid case num was found.0);
: /. sendit
N next()s /% bypass */
)
W ) /% end=for x/
' ‘l;
2K #1¢ debuqcase
4 Printf("==End of for 100p.0)’
;o2 tendit
.. L
| 1¢ ( ! gound )
bt return(talse);
23 statements();
™~ while ( strcmp(token,"ENDCASE") ) /% skip remaining stat: */
25 next(): /% in tne case x/
e return(true);
) /% endecase.num */
g@ﬁ
NN .
N
e
,jﬁ
.:
N
N
:\'.-.
!
b3 w1
L%,
“!—
M
L'y
g 106
Rahsc oy 1 T T a0 N SRR T VA s YA AT TN AT T, T T T

e e

Lae € WY, o



K
I.‘
>
-~

‘. /% Loop repeats a set of statements a specified number

" * of times, Any number of repetitions may be specified
' % via either a number constant ¢r variable entry,

“ ¥ Only ore level of loopirg {s irplemented in this

- * version, To implerent rultiple levels, change the

&i % looPe.file variable name te an array. Then step
Y * through that array,
Lyod s

* Functions used: next, error(23/55), lookup

. * Glcbals used: loor.cnt, symid, syrval, loop.flile

" * token, token_tyge, string, sotr

Vo % Constants used: int_token, id_tcken, linesiz, NULL,

o * LOCPLFILE

Loag *

* Author: Dennis J. Ritaldato

- % Last update: 22 Sep 1983

1 */
. finclude <stdio.h>

el sinclude "global.interp"
e locp.statement ()

T {
o int save.cnt = 03
p3 #1f debug
o printf("LOOP.STATEMENT entered,0);

o sendif

- it (token.type 3= id.token)

el { strepy(symid, token):
o 12 ¢ lookup() )

NI save.cnt = symval;

SR else

N error(Ss):

}

A% else {f ( token.tyre == int_tcken)
N save.cnt = atoi(token);
o else
Y { error(23):
‘ return;
b }
o
) next()? /% bypass loop count variable $/
Lo

i
w /® NOTE x/
— /% Eaeh line must terminate with a NEWLINE character, x/
AGH /8% Lin,len should always point te this MNEWLINE characrer. ®/
N /¢ Except, when adding a string, the NEWLINE is added at thex/
. /% end of each line and at the end cf the complete string. */
A

> 100P.file = fopen(LCOP.FILE,"w");
- ‘ while ( stremp(token,"ENDLCCE") )
o A { 1t ( token.tvpe !z str.token )

Ay { fputs(token,loop.file); /% add identifier/number to file%/
3

RS 107

L R R I A e P R e ..
O R R T A L PO




fputs(”0,loor.file);
}
else
{ gouts("
gputs(string,loopatile);
fouts("
)
next(); /% bypass current token
}
loop.cnt = save.cnt’
fclose(loopatfile); /% close as write file
/% reopen for input
lo0p-file = foper(LCOP.FILE,"r");

8if debugloop
print¢é("==In loop, bypassing tcken %s0,token);
sendit
next()s /% bypass the word "ENDLCOP"
s1t debugloop
printf("==Leaving loop with token 3sC,token);
sendit
return?
) /% end loobP.statement

108

x/

»/
s/

*/

*/




} %4 e S L A LA S SR A LA A A A A e A A AR M A Iy A A A SN JE R I ML RRS e St s S8 A0 S & AT S RS

y .

3 :

g K

) 2

:: sinclude <¢stdio.h :

- #irclude "global,.interp” -

‘ create () M

: { i

- grinte(" CREATE entered,0); By

- while (tokenl0) !z “°1°) N

; - next()}s -
3

) /% end create %/ q

< J

. ..'
o

2 sinclude <stdio,h> X

) sinclude "qlobal.interc"

. disolay ()

8] L

2 peintf#(” DISPLAY entered,0);

. while (token{0] s *:°)

next();

" ) , /% end dislray

)

._‘

Ly

L~

2l

2

g

,-

LA A

At

109

ML

sy

\ (4 q\q..-',_r “ue -fﬁf

R T T AR L LG SN @ G N Py IO A A A N Ay
- ‘ TS AT AP P 5, Py % PP VS WG A VAR A




’l’l‘v . !‘ .

S .,

"‘“ Py T 1
PPN N Y

v

LY ¥

',’c';l"".

4

| w0 Y05

R, 0.0 2. 08 A9

L
 J

error (type)

{

Error performs error processinrqg, UCepending on the {nput
parameter "tyre"” a message is printed at the user’s console i
and the function either returns or terminates the nrogram,

® % % % %%

Author: Dennis J, Ritaldato & David J, Smania
Last update: 22 Sep 1981

»*

%/
include <stdio . h>
include "global,.interg"

int type; /* ERROR TYPES ARE:! %/

it (type <= 10) /% 1=10 §System errors %/
{ printf ("xx3xx SYSTEM ERRQR #*%x% (0);:
switch(type)
{ case 13
exit():
case 2
printt ("Symbel table exceeded,0):
exit();:
case 3@
printf ("Premature end 0f input encountered,0):;
exit();:
case 4:
printf ("unrecognized character, %¢, in line:0,*lptr):;
printt ("ss0,line );
return;
case 5¢
printf ("string length exceeds %d in line:0,stringsiz);
printf ("3s0,line):
exit()
case 6
printé("Unable to open file = check <FN> {s capitalizedl);
exit();
return?
} /% endcase 5/
) /% endif 1=10 x®/
else if (type <= 50) /% if 11=-50 Reserved word ®/
{ printg ("*%%s SYNTAX ERROR *#*%% 0); /* syntax errors x/
switch(type)
{ case 11!
printf("PROGRAM");
break?
case 12¢
printe( AN ICENTIFIER");
break;
case 14
printf("END,.")?
break;
case 16
Printf("THEN");

5
q
.
L]
y
i
ﬂ
)
)
A

110

..........
B .




WA MAS L D B R A DL BN L S el b Al Bl b a0 g L AR L AR JAt s i e B At A D U At B R e S -t S DO RL R M At S DA TY XTI ™
-

................

break;

case 17

. Printf("ENCIF");

break;

case {8
printf("s");
break;

case 20
printf("Device °CRT’ or a tilename");
break;

case 21
printf("AN ARITHMATIC CPERATCR");
break;

case 22:
printf(*AN ARITHMETIC EXPRESSION")}
break;

case 23
printf("An integer or variable loop count"):
break;

case 24:
printé("An integer, identifier, string or expression");
break;

case 2%:
printf("Cevice °CRT’ or °LST’ or a filename");
break;

case 26

* printe("Filename «e (CFND> [, <FTI>]) == "),

break:

case 27
printf( ees ) «a®);
break:

case 30
printf("Filetype «= (<FN> [,<FTI>]) ewn);
break?

case 3t:
printg(e= 3 ==®);
break;

case 32
printf("OTHERWISE");
break;

case 33:
print¢("ENCCASE")?
break;

detault:
printt (" $8888 SYSTEM ERROR # 1 « 34 33888 ",type)
printg (" PLEASE NOTIFY EIXITHER DENNIS J. RITALDATO (215) ")
orintg ("441=-2107 CR DAVID J. SMANIA (408) 646-8182, 0);

returny
} /% endcase */
printe (" was exrected, but %s was found at %s,0,token,letr):
while (token{0) != °;°*) /% ski{p remainder of line */

next()?




. T "D . . Tl Wk IR T PN I S e e ST v — v
LRI TR T W i R L S TN RARE GO AT A AT A A A i RaAS gt B A § ¢ MR SN Paie Sucbie Bh e WLl At of ol ek Wi Gied 2 e on oo o

return}

} /% erdif 11-30 s/
else {f (type <= 70)
{ switch(type) /% 1f S1«70 General syntax s/

{ case S /% errors s/
printg ("No legal Command Languaqge statement was found”");
break:

case S53:
printg ("; expected");
break;
case 54:
printg("An 1IF statement rust have a logical exrressicn”");
bBreak:
case 55
printf("Undefined identifier, $s ",token);
break;
case S6:
printé("Carnot read from the list device");
break:
case 57
printg("Data type mismateh, A string type was expected"):
break:
case 58
return;
case 59
return?
* case 60
retuyrn?
default: .
printt ("$888s SYSTEM ERROR # | « %d 88888 ",type);
printf ("™ PLEASE NOTIFY EITHER DENNIS J. RITALDATO (215) "):
printf (" 4412107 CR DAVIC J. SMANIA, 0);

~n return;

a2 } /% endcase */

hﬁb printe (" at %s in line:112s0,lctr,line);

Eés while ( strcmp(token,®?") ) rext()s/* skip rest of line */
. )} /% endig 5170 %/

! ) /% end error s/

4,

Y aT ¥

IO

oAy

- "
‘A"... [}

-
»
-




1.

2.

LIST OF REPERENCES

E Ve P. H. North-Holland
ngigshing Company, Sg’g‘m Languagss, ollan

ey, 192 conputan o Eotly yBsranohi1) DE4RFhRISE Of

113




e N N e W T L N L N S A (T T R T T (" T T " v " " T L STl A Sl A S N

BIBLIOGRAPHY

Bidmead, C i 1 Practical Co ting, Vol. 6
¥o. 4, fpril 5§§§; Series 1. actica aputing ° ’

Ellis Je \ Shell computar Science De tment
® ﬁniversiﬁi, Uealigvﬁﬁgltﬁ 66520 par !
Hendri J. _E. a North* or.
Dg%b'sxﬁournal. Gol§#al§ hglngiﬁir SoLL 103,
Irby .§ Be§;steznsson. : uorggﬁé Eéé;g::mggfog ﬁa{gs%E

Rese

;%jf”'gﬁigg.gs.ﬁ;éggfisgggiiéé% Seafifieaniet. 0 e 0ot

gggggfée ana'zx§zf§§nc§?93§i?!3% P%?gggggoes%ggsgg Software

Eiégi:a Hoticééz vgi?!*éf 33% 15%35%%§b§§ $98§2nd Languagdes,

giﬁgi&n uoiés. 70§g2$§i£§§§ §9£§%§%§§b3§2¥98gyll Yersion &,
;tin. J., Dasian of Man-Computer Dialogues, Prentice-Hall,

Eg%;iilgigggiﬁu $§%p§§¥§59§§§;3§§'ﬂggl ges §§5=3 spuze:

uiller, L. Themas

0,50 T RtI, i U ARRTLERE 4
con g%ingSnrvays. voll §§21*§i 1g§§if8%94;811 the Usez AcH
WETIE) sodges. DoMERRCERBRIE, BRESHERSS. 12 oAicqpstays

levlan. W, 3§hi§§? g ggg%;agil' §7§:L121212§ of Interactive

za::zia' pEadiiadd s 880 tito Tase RUEIEAGHG 0N 202 Broving of

Prictgg C.J.; Mochinacki, Ss. and Yang, s.,

§s§8510t§9§ac;%§§1;$§¥ 5311*5

Ptococdinqs 2f tho IPIP Working Conference_ on Command

lLanguages North-Holland Publishi
ColPlan ‘-stSQQQi hduages. o o ublishing

.........
o

___________________

..........




.....................................

Relles, N. _and Price, L. s terfa £or Onlige
Assisfince; redRC §587°r t-+ A Use Intexface lip

§§°€“nsaf§as Ipadieq Radgsue U3aadspsnt i the Capcusel

niﬁ%ﬁatzonal ﬁorkshop, North ﬁolland, 1983

Ja3etadtlia’ sBices THMRR.PAEIOPE, ErRiagRie 13 Dgniqiy

SEIEit ok, HESOM, HibiGRRdE (Jager LU, om. vovers
2018

Reshiteaidon 94 Emovina of ¢

mand Prograsms, ACTA,




1.

2.

3.

4.

5.

6.

7.

INITIAL DI STRIBUTION LIST

Defense Technical Information Cenfer
Caneronrita on ]
Alexandria, Virginia 22314

Librar;, Code 0142
Naval ostgraduate School
donterey, Califcrnia 93943

Department Chairman, Code, 52
Department of Ccamputer sGCianca
Naval Postgraguate School
Monterey, California 93943

Naval Air Develcpment Center
Code 501 )

ATTN: Mr. Dennis J. Ritaldato
Warainster, Pa. 18974

gaggl Air Development Center
)
Warainster, Pa. 18974

5 DR David J. Smania, USN
Revere RA.
Monterey, Ca. 93940

LCDR Ronald Nodes, USN, Code 52MF
Department of Computer Science
Naval Postgraduate_SChool
Monterey, Ca. 943

gﬁ'aggggg% g%vis de S
C ter Sci , C 2

Naval Post radng%%ué%hdgfmce ode

Monterey, Ca. 943

116

EAE TR N o W A
O 'v'\._\ .

Nc. Copies

. A A T A e P AL L NI I W R
A, B A SRR U R R AR AN

‘A ERE

b
>




R Ty S hny

T

M
R 3. -1:““‘
e L PN

RN,
“ﬂ,‘_)" e




