| UNCLÄSSIFIED 02 DEC 83 N00014-80-K-0969 F/G 11/6          |     |
|-----------------------------------------------------------|-----|
|                                                           |     |
|                                                           |     |
| والمدر كمر المدر المدر المدر المدر المدر كم المدر المتراق |     |
|                                                           | END |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |





Final Report Technical Report No. 8 Contract No.: US NAVY-N-00014-80-K-0969

ROLE OF A1<sub>2</sub>0<sub>3</sub> IN SINTERING OF SUBMICRON YTTRIA-STABILIZED ZrO<sub>2</sub> POWDERS

A136798





## DEPARTMENT OF CERAMIC ENGINEERING

UNIVERSITY OF ILLINOIS

URBANA, ILLINOIS

This document has been approved for public release and sale; its distribution is unlimited.

# 83 12 21 012

Final Report Technical Report No. 8 Contract No.: US NAVY-N-00014-80-K-0969

A STATE A

.1

ROLE OF A1<sub>2</sub>0<sub>3</sub> IN SINTERING OF SUBMICRON YTTRIA-STABILIZED ZrO<sub>2</sub> POWDERS

Ъy

R. C. Buchanan and D. M. Wilson

December 1983



A

Department of Ceramic Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801

This research was supported by the Office of Naval Research Department of the Navy Contract No. US NAVY-N-00014-80-K-0969

Reproduction in whole or in part is permitted for any purpose of the United States Government

> This dominant has been approved for public release and sale; its distribution is unlimited.

| REPORT DOCUMENTATIO                                                                                                                                                                                                                                                                                                                                                                                                                                            | DN PAGE                                                                                                                           | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. GOVT ACCESSION                                                                                                                 | N NO. 3. RECIPIENT'S CATALOG NUMBER                                                                                     |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H131,7                                                                                                                            | 19X                                                                                                                     |  |
| TITLE (and Subtilie)<br>Role of Al <sub>2</sub> O <sub>3</sub> in Sintering of Submicron<br>Yttria-Stabilized ZrO <sub>2</sub> Powders                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | 5. TYPE OF REPORT & PERIOD COVERED<br>Interium Research Report<br>Oct. 1980-Sept. 30, 83                                |  |
| ۷.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   | 6. PERFORMING ORG. REPORT NUMBER                                                                                        |  |
| AUTHOR(.)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·····                                                                                                                             | B. CONTRACT OF GRANT NUMBER(+)                                                                                          |  |
| R. C. Buchanan and D. M. Wilson                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | US NAVY-N-00014-80-K-0969                                                                                               |  |
| PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   | 10. PROGRAM ELEMENT, PROJECT, TASK                                                                                      |  |
| University of Illinois at Urbana-Champaign                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   | ONR-Metallurgy Code 471                                                                                                 |  |
| 105 S. Goodwin, Urbana, IL 6180                                                                                                                                                                                                                                                                                                                                                                                                                                | )1                                                                                                                                |                                                                                                                         |  |
| CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   | 12. REPORT DATE                                                                                                         |  |
| Office of Naval Research, Metal                                                                                                                                                                                                                                                                                                                                                                                                                                | llurgy                                                                                                                            | December 2, 1983                                                                                                        |  |
| 800 N. Quincy Ave., Ariington,                                                                                                                                                                                                                                                                                                                                                                                                                                 | VA 2221/                                                                                                                          | 13. NUMBER OF FAGES                                                                                                     |  |
| . MONITORING AGENCY NAME & ADDRESS(II dif                                                                                                                                                                                                                                                                                                                                                                                                                      | ferent from Controlling Off                                                                                                       | ice) 15. SECURITY CLASS. (of this report)                                                                               |  |
| same as control office                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | Unclassified                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | 15. DECLASSIFICATION/DOWNGRADING                                                                                        |  |
| 5. DISTRIBUTION STATEMENT (of this Report)<br>widespread; required numbers of<br>individuals and organization on<br>by Metallurgy and Ceramic Progr<br>DISTRIBUTION STATEMENT (of the obstract ent                                                                                                                                                                                                                                                             | copies to defe<br>approved distr<br>amONR                                                                                         | nse documentation center;<br>ibution list furnished                                                                     |  |
| 5. DISTRIBUTION STATEMENT (of this Report)<br>widespread; required numbers of<br>individuals and organization on<br>by Metallurgy and Ceramic Progr<br>7. DISTRIBUTION STATEMENT (of the obstract ent<br>same                                                                                                                                                                                                                                                  | E copies to defe<br>1 approved distr<br>camONR                                                                                    | nse documentation center;<br>ibution list furnished                                                                     |  |
| <ul> <li>DISTRIBUTION STATEMENT (of this Report)</li> <li>widespread; required numbers of<br/>individuals and organization on<br/>by Metallurgy and Ceramic Progr</li> <li>DISTRIBUTION STATEMENT (of the obstract ent<br/>same</li> <li>SUPPLEMENTARY NOTES</li> </ul>                                                                                                                                                                                        | E copies to defe<br>1 approved distr<br>camONR                                                                                    | schedule<br>nse documentation center;<br>ibution list furnished<br>ant from Report)                                     |  |
| 5. DISTRIBUTION STATEMENT (of this Report)<br>widespread; required numbers of<br>individuals and organization on<br>by Metallurgy and Ceramic Progr<br>7. DISTRIBUTION STATEMENT (of the obstract ent<br>same<br>b. SUPPLEMENTARY NOTES<br>none                                                                                                                                                                                                                | E copies to defen<br>approved distr<br>amONR                                                                                      | schedule<br>nse documentation center;<br>ibution list furnished<br>ant from Report)                                     |  |
| S. DISTRIBUTION STATEMENT (of this Report) widespread; required numbers of individuals and organization on by Metallurgy and Ceramic Progr  D. DISTRIBUTION STATEMENT (of the obstract ent Same  D. SUPPLEMENTARY NOTES none  D. KEY WORDS (Continue on reverse aide if necessed)                                                                                                                                                                              | E copies to defen<br>approved distr<br>amONR<br>Fored in Block 20, if differ<br>Fored in Block 20, if differ                      | schedule<br>nse documentation center;<br>ibution list furnished<br>ent from Report)                                     |  |
| <ul> <li>DISTRIBUTION STATEMENT (of this Report)</li> <li>widespread; required numbers of<br/>individuals and organization on<br/>by Metallurgy and Ceramic Progr</li> <li>DISTRIBUTION STATEMENT (of the obstract entr<br/>same</li> <li>SUPPLEMENTARY NOTES</li> <li>NONE</li> <li>KEY WORDS (Continue on reverse elde if necesses</li> <li>YSZ, zirconia, densification, t</li> </ul>                                                                       | E copies to defe<br>approved distr<br>ramONR<br>Fored in Block 20, if differ<br>ry and identify by block and<br>rranslucency, li  | scwedule<br>nse documentation center;<br>ibution list furnished<br>ant from Report)                                     |  |
| S. DISTRIBUTION STATEMENT (of this Report) widespread; required numbers of individuals and organization on by Metallurgy and Ceramic Progr  D. DISTRIBUTION STATEMENT (of the obstract ent Same  D. SUPPLEMENTARY NOTES none  C. KEY WORDS (Continue on reverse aide if necessar YSZ, zirconia, densification, t  C. ABSTRACT (Continue on reverse aide if necessar)                                                                                           | E copies to defe<br>approved distr<br>ramONR<br>Fored in Block 20, if differ<br>ary and identify by block no<br>rranslucency, li  | scwedule<br>nse documentation center;<br>ibution list furnished<br>ent from Report)<br>(umber)<br>quid phase sintering  |  |
| S. DISTRIBUTION STATEMENT (of this Report) widespread; required numbers of individuals and organization on by Metallurgy and Ceramic Progr DISTRIBUTION STATEMENT (of the obstract ent Same Same Supplementary notes none N. KEY WORDS (Continue on reverse elde if necesse YSZ, zirconia, densification, t ABSTRACT (Continue on reverse elde if necesse)                                                                                                     | E copies to defe<br>h approved distr<br>ramONR<br>Fored in Block 20, 11 differ<br>wy and identify by block no<br>rranslucency, li | scwedule<br>nse documentation center;<br>ibution list furnished<br>ant from Report)<br>(unber)<br>.quid phase sintering |  |
| <ul> <li>DISTRIBUTION STATEMENT (of this Report)</li> <li>widespread; required numbers of<br/>individuals and organization on<br/>by Metallurgy and Ceramic Progr</li> <li>DISTRIBUTION STATEMENT (of the obstract entr<br/>same</li> <li>SUPPLEMENTARY NOTES</li> <li>NONE</li> <li>KEY WORDS (Continue on reverse elde if necessar<br/>YSZ, zirconia, densification, t</li> <li>ABSTRACT (Continue on reverse elde if necessar<br/>see other side</li> </ul> | E copies to defe<br>approved distr<br>ramONR<br>Fored in Block 20, if differ<br>Fy and identify by block nu<br>translucency, li   | scwedule<br>nse documentation center;<br>ibution list furnished<br>ent from Report)<br>(umber)<br>quid phase sintering  |  |
| <ul> <li>DISTRIBUTION STATEMENT (of this Report)</li> <li>widespread; required numbers of<br/>individuals and organization on<br/>by Metallurgy and Ceramic Progr</li> <li>DISTRIBUTION STATEMENT (of the obstract entr<br/>same</li> <li>SUPPLEMENTARY NOTES</li> <li>NONE</li> <li>KEY WORDS (Continue on reverse elde if necessar<br/>YSZ, zirconia, densification, t</li> <li>ABSTRACT (Continue on reverse elde if necessar<br/>see other side</li> </ul> | E copies to defe<br>h approved distr<br>ramONR<br>wr and identify by block nu<br>translucency, li<br>ry and identify by block nu  | schebule<br>nse documentation center;<br>ibution list furnished<br>ant from Report)<br>(unber)<br>(quid phase sintering |  |
| S. DISTRIBUTION STATEMENT (of this Report) widespread; required numbers of individuals and organization on by Metallurgy and Ceramic Progr  D. DISTRIBUTION STATEMENT (of the obstract ent Same  D. SUPPLEMENTARY NOTES none  D. KEY WORDS (Continue on reverse elde if necesse YSZ, zirconia, densification, t  D. ABSTRACT (Continue on reverse elde if necesse see other side                                                                               | E copies to defe<br>approved distr<br>ramONR<br>mod in Block 20, if differ<br>any and identify by block nu<br>translucency, li    | scwedule<br>nse documentation center;<br>ibution list furnished<br>ant from Report)<br>(quid phase sintering<br>(mbber) |  |
| S. DISTRIBUTION STATEMENT (of this Report) widespread; required numbers of individuals and organization on by Metallurgy and Ceramic Progr DISTRIBUTION STATEMENT (of the obstract ent Same Same Supplementary notes none N. KEY WORDS (Continue on reverse elde if necesse YSZ, zirconia, densification, t See other side                                                                                                                                     | E copies to defe<br>approved distr<br>ramONR<br>Fored in Block 20, 11 differ<br>wy and identify by block mu<br>translucency, li   | schebule<br>nse documentation center;<br>ibution list furnished<br>ant from Report)<br>(quid phase sintering            |  |
| <ul> <li>DISTRIBUTION STATEMENT (of this Report)</li> <li>widespread; required numbers of<br/>individuals and organization on<br/>by Metallurgy and Ceramic Progr</li> <li>DISTRIBUTION STATEMENT (of the obstract ent<br/>same</li> <li>SUPPLEMENTARY NOTES</li> <li>NONE</li> <li>KEY WORDS (Continue on reverse elde if necessar<br/>YSZ, zirconia, densification, t</li> <li>ABSTRACT (Continue on reverse elde if necessar<br/>see other side</li> </ul>  | E copies to defe<br>approved distr<br>ramONR<br>Fored in Block 20, if differ<br>ary and identify by block and<br>translucency, li | schebule<br>nse documentation center;<br>ibution list furnished<br>ent from Report)<br>(umber)<br>quid phase sintering  |  |

Y TA

and an analysis and a second and an and an and

ADDE INERTIFIC ICRONATE INCORPORT INCORPORT SUCCESS

#### ABSTRACT

The use of  $Al_2O_3$  (up to  $\sim 2volx$ ) as a sintering aid to promote rapid densification of precipitated yttria (8.0 wt.%) stabilized Zirconia (YSZ) powders in the range 1100°-1350°C, was investigated. The  $Al_2O_3$  was added as hydrated (Al(OH)<sub>3</sub> and dispersed by milling in a 60 : 40 alcohol : water solution, followed by pressing at 205 MPa. Significantly increased densification was obtained with  $Al_2O_3$ , even below 1200°C, and optimum densification (>99.0% Th.D.) occurred at 1350°C/1 hr. with 0.325 wt.%  $Al_2O_3$ . Sintered samples exhibited enhanced electrical conductivity and larger grain size (0.3 - 0.5 µm). TEMmicrostructural observations and densification kinetic data indicated a liquid phase assisted sintering mechanism. Solid state doping of the  $ZrO_2$  by Al was inferred from the electrical conductivity data.

### Role of Al<sub>2</sub>O<sub>3</sub> in Sintering of Submicron Yttria-Stabilized ZrO<sub>2</sub> Powders

by

R. C. Buchanan and D. M. Wilson Department of Ceramic Engineering University of Illinois at Urbana-Champaign Illinois, 61801

#### ABSTRACT

The use of  $Al_2^{-0.5}$  (up to ~3.5 wt%) as a sintering aid to promote rapid densification of precipitated yttria (8.0 wt. %) stabilized Zirconia (YSZ) powders in the range  $1100^{\circ}-1350^{\circ}$ C, was investigated. The  $Al_2^{\prime}0_3^{\prime}$  was added as hydrated  $Al(OH)_3^{\prime}$  and dispersed by milling in a 60 : 40 alcohol : water solution, followed by pressing at 205 MPa. Significantly increased densification was obtained with  $Al_2^{\prime}0_3^{\prime}$ , even below  $1200^{\circ}$ C, and optimum densification (>99.0% Th.D.) occurred at  $1350^{\circ}$ C/1 hr. with 0.325 wt%  $Al_2^{\prime}0_3^{\prime}$ . These samples exhibited enhanced electrical conductivity and larger grain size (0.3 - 0.5 pm). TEM microstructural observations and densification kinetic data indicated a liquid phase assisted sintering mechanism. Solid state doping of the Zr0'\_2 by Al was inferred from the electrical conductivity data.

2 ....

Accession For NTIS GREEL DTIC TAG 21 Cares jor

#### INTRODUCTION

The beneficial effect of  $Al_2O_3$  on the sintering of stabilized zirconia has been noted by several investigators<sup>1,2</sup>. However, the mechanism for the observed densification increases has yet to be adequately explained. An additive such as  $Al_2O_3$  can be accomodated in a host material in one of three distinct ways: as a solid solution dopant, as a grain boundary segregant or as a discrete second phase. Combinations of these mechanisms, as determined by the thermodynamics and kinetics of the system, are also possible.

With many additive systems, densification is affected by the formation of an intergranular liquid phase. This contributes to particle rearrangement through grain boundary sliding, assists in the dissolution of particleparticle contacts and in some cases provides a pathway for rapid mass transport during sintering. Significant enhancement in the desnification behavior of ceramic systems have been observed with liquid contents  $\leq 1.0$ vol $\chi^{3,4}$  and capillary forces are largest for small liquid contents.<sup>5</sup> The effectiveness of the intergranular phase is strongly dependent on its composition as liquid phase kinetics can be determined by the solution of the solid particles in the melt phase. The presence of an intergranular phase in the fired body can, however, be determinental to such properties as high temperature strength<sup>6</sup> and electrical conductivity<sup>7,8</sup>, both of critical importance for electrolyte applications.

ALA P. DAGAN. TACADAR PRODUCE PARAMA AND AND AND AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AD

Other additives may enhance sintering without the formation of an intergranular liquid phase. Dopants soluble in the host lattice can enhance densification by increasing the defect concentration of the diffusing species. Thus, Harmer et al,<sup>9</sup> attributed increased sintering of high purity  $Al_2O_3$  (Al<sup>3+</sup> lattice diffusion controlled) doped with Ti<sup>4+</sup> to an increase in the aluminum vacancy concentration. Conversely,  $Mg^{2+}$  additions promoted sintering by the formation of  $Al^{3+}$  interstitials.

Densification enhancement for segregated dopants can be attributed to such effects as decreased grain boundary to surface energy ratios<sup>10</sup> or to reduced grain boundary mobility due to the presence of discrete solid second phases, pores or segregated solutes. In those systems with a preference for grain boundary diffusion, sintering may also be affected by changes in the amount and nature of the boundary impurities. Segregated impurities have been shown to significantly reduce grain boundary electrical conductivity in  $YSZ^{11,12,8}$ , possibly due to trapping<sup>7</sup> or to occupation of interstitial sites<sup>50</sup>. Parallel effects may also exist for cationic diffusion.

In stabilized zirconias, the stabilizing oxide may be enriched on the grain boundary due to its affinity for a liquid phase<sup>14</sup> or for a segregated additive. This is particularly likely in calcia-stabilized zirconia (CSZ) due to the high affinity of Ca for most grain boundary impurities. Thus, the distribution of an additive may be partially determined by existing impurities and solutes as well as by sintering temperature.

Alumina, although only 0.1 mol % soluble in YSZ at  $1300^{\circ}C^{13}$ , can be dissolved up to 1-2 mol% at  $1700^{\circ}C^{12}$ . Bernard<sup>13</sup> reported low grain boundary conductivities in samples cooled slowly to room temperature but conductivities equivalent to bulk values after rapid quenching.

Radford et al<sup>2</sup> (YSZ and CSZ), Mallinckrodt<sup>3</sup> (CSZ) and Takagi<sup>16</sup> (CSZ) all have attributed enhanced sintering with  $Al_2O_3$  to a liquid phase formed by the dopant, the stabilizing oxide and existing impurities such as MgO, SiO<sub>2</sub>, and CaO. Assuming a sufficient impurity level, this is a plausible

interpretation, since numerous eutectics could be formed with the abovementioned oxides below 1500°C and alumina has been found to be concentrated on the grain boundaries of CSZ along with associated Ca, Mg and Si impurities.<sup>8,16</sup>. Sintering temperatures investigated by the three investigators were in the range 1480°C to 1800°C.

A STATES

CARACTER STATES

STATES PROVIDE STATES CONTRACT STATES

Radford noted a densification enhancement in  $CSZ + Al_2O_3$  both for nuclear grade (99.7% pure) and lower purity (~97%) technical grade samples. Mallinckrodt noted a density decrease in  $Al_2O_3$  doped samples for the highest firing temperatures (1800°C). Although all zirconia sintering additives such as  $Al_2O_3$ ,  $Fe_2O_3$ ,  $TiO_2$  and  $SiO_2$  decreased conductivity,  $1^{7,2}$  Radford reported that the decrease with  $Al_2O_3$  additions was relatively small, especially for the lower purity samples. Takagi noted substantial grain growth with  $Al_2O_3$ additions and Radford a decrease in grain size. This difference suggests that the effect of the  $Al_2O_3$  on densification is dependent on sample purity and preparation as well as on firing conditions.

Liquid phase sintering was first refuted as a possible sintering mechanism by Bernard<sup>13</sup>. The beneficial effect of  $Al_2O_3$  additions was found to be strong as low as  $1100^{\circ}$ C, well below temperatures where the liquid phase would normally be expected. Microstructural examination indicated that  $Al_2O_3$ was present mainly as second phase inclusions and the grain boundaries were free of liquid. AC Impedance spectroscopy indicated a dimunition of intergranular resistance with  $Al_2O_3$  additions, and a net increase in conductivity was reported. This was attributed to increased grain size, which reduced the high resistivity grain boundary area. The  $Al_2O_3$  additive level could be varied between 0.44 and 1.70 mol% without affecting electrical or densification behavior. Butler et al<sup>14</sup> supported these conclusions and proposed that the  $Al_2O_3$  particles acted as scavengers for intergranular

 $SiO_2$ . As the grain boundaries moved past the (assumed stationary)  $Al_2O_3$ inclusions, intergranular  $SiO_2$  diffused rapidly to the  $Al_2O_3$  particles due to the greater thermodynamic stability of mullite  $(3Al_2O_3 \cdot 2SiO_2)$  compared to zircon  $(ZrO_2 \cdot SiO_2)$ , forming silica-rich cusps on the  $Al_2O_3$  inclusions. Densification was attributed to grain boundary pinning by the  $Al_2O_3$ inclusions. An increase in conductivity could be assumed due to the removal of amorphous second phases from the grain boundary. The presence of  $Al_2O_3$  in YSZ as discrete inclusions was also reported by Rao et al.<sup>19</sup> Silica was present at triple points and in < 20 nm thick films on grain boundaries, which were depleted in yttrium.

ASAMANY | SAMANASA

and a contraction resolvered before the contraction

The presence of a continuous, segregated grain boundary phase was also reported by Verkerk et al. in a study of the electrical behavior of YSZ. Impurities such as Ca, Ti and sintering aids such as  $Fe_2O_3$  and  $Al_2O_3$ , which were considered to be enriched on the grain boundaries, reduced boundary conductivity significantly.<sup>20</sup>

Early studies on the kinetics of sintering of > 1  $\mu$ m zirconia showed shrinkage time exponents to be near 0.50, which would indicate bulk diffusion control.<sup>21,22</sup> Creep data has supported this conclusion<sup>23</sup>. Nevertheless, Rhodes and Carter, while observing bulk diffusion control during sintering, found boundary diffusivities to be up to 10<sup>5</sup> times as high as bulk values<sup>22</sup>. Shrinkage exponents near 0.3 in a low temperature study using Cr<sub>2</sub>0<sub>3</sub>-stabilized powders indicated the dominance of grain boundary diffusion<sup>24</sup>. Young et al. also report grain boundary diffusion control in Zyttrite (~100A particle size YSZ)<sup>25</sup>, while Wirth noted grain boundary control in submicron CSZ.<sup>26</sup> Changes in sintering pathway from lattice to grain boundary control as grain size decreases has been observed in both MgO and Al<sub>2</sub>0<sub>3</sub>.<sup>27</sup> A grain boundary sintering mechanism in submicron YSZ would suggest considerable sensitivity to

segregated impurity ions and to amorphous or second phases.

1257 A

In stabilized zirconias with large oxygen vacancy concentration, the cation diffusion would be rate controlling. Usually, cation vacancies are assumed, although zirconium interstitials have been identified, though only under high (1800°C) temperature conditions.<sup>28</sup> As pointed out by Brook,<sup>29</sup> compressive creep data<sup>30</sup> indicated a significant maximum creep rate in CSZ at 15 mol% CaO. This is very close to the point at which full stabilization is achieved, conductivity is at a maximum, and the free oxygen vacancy concentration is greatest. A diffusion rate maximum for zirconium under these conditions would be more consistent with zirconium interstitial control than with vacancy control.

Based on the above, the object of this investigation was to examine, mechanistically, the role of  $Al_2O_3$  as a sintering aid for submicron stabilized  $ZrO_2$  (YSZ) powders with a view to achieving lower densification temperatures and times, as well as improved optical and mechanical properties.

#### EXPERIMENTAL

The powder used in this study was commercially available submicron yttria (8.0 wt%; ~9.1 mol %  $YO_{1.5}$ ) stabilized zirconia (YSZ). Typical lot analysis and physical properties for the powders used are given in Table 1.

a superior and

1 XIANULA

S. S. S. S. S. S. S.

ANALAN.

Residual chlorine, shown by Scott and Reed<sup>31</sup> to inhibit densification, was removed by washing in distilled water. Dilute suspensions (1.0 vol %) were subjected to ultrasonic vibrations for 15 minutes, followed by centrifuging and decanting of the liquid. Chemical analysis, carried out by atomic absorption technique and by Hg titration for Cl, indicated a reduction in Cl content from 0.80 wt% to  $\leq$  0.04 wt%. Alumina, obtained from fine grained aluminum hydroxide (Al(OH)<sub>3</sub> · 3H<sub>2</sub>O), 99.9% pure, was added as a sintering aid. The additive level of Al<sub>2</sub>O<sub>3</sub> was varied from 0-3.24 wt% (3.92 mol%).

The as-received powders were ball milled for 12 hours with  $ZrO_2$  balls in polyethylene jars to reduce agglomeration. Fig. 1 shows the considerable reduction in agglomerate size distribution from ~10-15 µm for the asrecieved to ~0.3-0.5 µm for the milled powder. Fig. 1B also shows, from the enhanced fine structure, crystallite sizes in the range 0.02-0.03 µm. The milled suspensions, with 1.0 wt% carbowax 4000 and 1.0 wt% PVA added as binders, were spray dried\* and pellets of 1.6 cm diameter and ~0.15 cm thickness were pressed uniaxially at 220MPa. Figs. 1C and 1D show the spray dried and pressed morphologies. Firing was carried out on Pt foil on  $ZrO_2$ setters in a MoSi<sub>2</sub> furnace in the range  $1100^\circ$ -1350°C from 1 min. to 24hr.

\* Buchi Laboratory Spray Dryer, Brinkman Instruments, New Jersey

Typical Lot Analysis for Yttria Stabilized Zirconia (YSZ) Powders\*

|                               |      |                     | ····· |  |
|-------------------------------|------|---------------------|-------|--|
| Constituent                   | wt%  | Constituent         | wt%   |  |
| Zr0 <sub>2</sub>              | ~90  | NiO                 | 0.03  |  |
| <sup>¥</sup> 2 <sup>0</sup> 3 | 8.0  | Fe 2 <sup>0</sup> 3 | 0.01  |  |
| <sup>H</sup> f <sup>0</sup> 2 | 1.6  | sio <sub>2</sub>    | 0.10  |  |
| A1203                         | 0.04 | TIO2                | 0.06  |  |
| CaO                           | 0.30 | Na <sub>2</sub> 0   | 0.20  |  |
| BaO                           | 0.03 | к <sub>2</sub> о    | 0.02  |  |
| MgO                           | 0.01 | Cl                  | ~1.0  |  |
|                               |      |                     |       |  |

### Composition (wt.%)

#### **Physical Properties**

Crystalline PhasecubicCrystalline Size0.02-0.03 μmSurface area (BET)50 m²/g

\*Zircar Corp., Florida, New York, 10921

A CONTRACTOR OF A CONTRACT OF A CONTRACT



(a)

(b)

8



(c)

(d)

FIGURE 1. SEM Photomicrographs of YSZ Powders: a) As-Received b) Milled 14h c) Spray Dried d) Pressed at 230 MPa Sintered densities were determined by the Archimedes technique. The theoretical density of YSZ (8.0 wt%) was calculated to be  $6.022 \text{ g/cm}^3$  using the lattice parameter data of Tuohig.<sup>32</sup> Calculated densities using a series mixing formula decreased progressively with added Al<sub>2</sub>0<sub>3</sub>, the value for 0.65 wt% alumina being 6.00 g/cm<sup>3</sup>.

Microstructures were analyzed by SEM , TEM and EDAX microanalysis techniques. Grain sizes were determined from SEM photomicrographs of polished and thermally etched sections, using the line intersection technique of Mendelsohn.<sup>33</sup> TEM samples were prepared using a ball cratering device\*\* followed by < 10 hr ion milling, thereby assuring a minimal of milling artifacts. DC electrical resistivity was measured using a Hewlett-Packard 4260A Universal bridge. Specimens were polished plane parallel and provided with Pt paste electrodes, which were fired at 800°C in air. Measurements were made, in air ambient, up to 900°C.

\*\* VSZ Ball Cratering Instrument, The Technology Shop, Inc., Sudbury, Mass.

#### **RESULTS AND DISCUSSION**

Figure 2 shows the effect of  $Al_2O_3$  additions (0-3.25 wt%) on the fired densities of precipitated YSZ powders at 1200°C and 1300°C for 1 hr. Densification at 1200°C was significantly enhanced by  $Al_2O_3$  additions  $\leq 0.65$ wt%, with a similar effect noted at 1300°C where higher overall densities were achieved. Above 0.65 wt%  $Al_2O_3$  additive content, a relative decrease in densification, more pronounced at 1300°C, was observed. This suggested the optimum  $Al_2O_3$  additive content to YSZ to be in the range 0.3-0.65 wt%.

Fig. 3 compares, for even shorter soak times (0.5 hr), the relative densities achieved for YSZ and YSZ + 0.325 wt%  $Al_2O_3$  samples at sintering temperatures between 1100° and 1350°C. The difference in density between the two samples is seen to increase as the sintering temperature was increased. However, both samples achieved > 90% theoretical density at 1350°C/0.5 hr. Fig. 4, compares the shrinkage behavior (log  $\Delta L/Lo$ ) as a function of time for the two samples in Fig. 3. The shrinkage data shown corresponded to relative density values in the range 65-92%. Shrinkage for the  $Al_2O_3$  doped sample was higher than for the YSZ sample, in line with the higher densification rate, but the parallel shrinkage curves indicated a similar densification mechanism.

The nonlinearity of the sintering curves in Fig. 3 would indicate liquid phase densification with different amounts of liquid present. Likewise, the two slopes for the shrinkage curves coupled with the rapid densification rate would classically be interpreted as evidence for liquid phase sintering. Particle rearrangement would be predominant in the inital stages followed by a solution precipitation mechanism at longer sintering times. This behavior is evident from Fig. 5 which shows the changes in density with sintering time for the YSZ and  $Al_2O_3$  doped samples sintered at 1200°C and 1275°C. For short soak



FIGURE 2. Plot of fired density for YSZ powder at 1200°C and 1300°C/l hr., showing sintering enhancement with  $Al_2O_3$  additions (wt%).



and minute minimum and and a sub-

222222231 22222230

FIGURE 3. Density vs. Sintering temperature for YSZ showing sintering enhancement with temperature for Al<sub>2</sub>0<sub>3</sub> additions.









times (~0.5 hr) these density differences were much greater at 1275°C than at 1200°C, in line with the data presented in Fig. 3. In contrast, after a 10 hr. soak, the YSZ sample had achieved near equivalent density to the  $A1_20_3$  doped sample at 1275°C, but substantially lower density at 1200°C.

These data suggest that at  $1200^{\circ}$ C, insufficient liquid was present in either sample to cause significant rearrangement, at least in the YSZ sample, and that subsequent densification could primarily be attributed to solution precipitation and grain boundary sliding. The higher densification rate for the  $Al_2O_3$  doped sample must, therefore, reflect the presence of a more reactive and perhaps lower viscosity intergranular phase with incorporation of  $Al_2O_3$ . Conversely, with the higher expected liquid phase content at  $1275^{\circ}$ C, significant initial densification occurred and subsequent densification mechanisms became relatively less important, at least for the  $Al_2O_3$  doped samples.

Fired density data are give in Table 2 for YSZ with different concentrations of  $Al_2O_3$  additive at sintering temperatures of 1200°, 1275° and 1350°C, and for soak times of 0.5, 4.0 and 24.0 hr. The trends in the data are as illustrated in Figures 2 and 5, that is, densities generally increased with sintering temperature and soak time for all samples. The slightly lower ultimate density achieved by the samples containing 0.325 wt%  $Al_2O_3$  (99.3% relative density compared to 99.7% for the undoped YSZ) at 1350°C was attributed to  $Al_2O_3$  inclusions present in the sample. However, equivalent densities could generally be achieved at lower temperatures and for shorter soak times with  $Al_2O_3$  doping.

SYN TAXA

Fig. 6 shows SEM photomicrographs of polished and thermally etched sections for the samples in Table 2 which were fired at  $1275^{\circ}C/4$  hr. Fig. 6A shows the YSZ sample, with Figures 6B, 6C and 6D representing Al<sub>2</sub>O<sub>3</sub> additive





contents of 0.325, 0.65 and 1.30 wt%, respectively. No second phases were evident from the photomicrographs presented except for few intergranular pores present in the YSZ sample. The YSZ sample also showed evidence of stacking faults in the grains, indicative of lattice strain in the sample. Stacking faults were not very evident in the YSZ samples which were doped with  $Al_20_3$ . This would be consistent with the existence of a liquid phase and the dissolution of Al in the ZrO<sub>2</sub> lattice. Indications of exaggerated grain growth were also present for the 1.3 wt% sample especially at higher sintering temperatures.

Fig. 6 shows an increase in the fired grain sizes as  $Al_{2}O_{3}$  was added. Average grain sizes determined were approximately 0.36, 0.40, 0.38, and 0.37  $\mu$  m for samples A, B, C, and D. These differences may be only marginally significant, but measurements were made on several samples. In any event, this change roughly parallels the sintering behavior (Fig. 2) and measured densities shown in Table 2, where the optimum effect on densification occurred at an  $Al_{2}O_{3}$  additive content of 0.325 wt%. This concentration (0.325 wt%, 0.392 mol%) should nominally represent the solubility for  $Al_{2}O_{3}$  in the YSZ structure. However, some  $Al_{2}O_{3}$  was present as discrete particles and also dissolved in the intergranular phase. In addition, the presence of some  $Al_{2}O_{3}$  interstitially in the YSZ structure might also be expected. The true  $Al_{2}O_{3}$  solubility, therefore, might well be closer to that reported by Bernard (0.1 mol%).<sup>13</sup>

As indicated,  $Al_2O_3$  inclusions could be found in the  $Al_2O_3$  doped samples.These were manifested as darker areas, which EDAX analysis showed to be Al rich. Closer examination revealed these to be apparently undissolved  $Al_2O_3$  grains or inclusions which were considerably larger than the matrix YSZ grains. These inclusions were occasionally associated with porosity, and a

perturbation of the microstructure surrounding the inclusion was also observed. The presence of Si could not definitely be identified in the perturbed region from EDAX analysis, although its presence would be expected from the work of Butler and Drennan.<sup>18</sup>. The frequency of these inclusions increased with added  $Al_2O_3$  content above 0.325 wt%, but a few observations were made even in the undoped YSZ sample, which would indicate the presence of existing  $Al_2O_3$  impurities.

Figure 7 shows a plot of grain size versus soak time for the YSZ and YSZ + 0.325 wt%  $Al_2O_3$  samples. The grain size results were obtained from samples sintered 1275°C for soak times up to 24 hrs. Density data for these samples are included in Table 2. As indicated previously, the  $Al_2O_3$  additive samples showed larger grain sizes under all conditions of equivalent densities. However, only moderate grain growth was observed between 93-99% relative density. Significant increases occurred only as near complete densification was achieved, and this was accompanied by exaggerated grain growth for the higher  $Al_2O_3$  doped samples. This circumstance would locate the residual porosity mainly on the grain boundaries and at grain intersections, where they would be eliminated during the final grain coarsening phase. For samples showing exaggerated grain growth, lower final densities were also achieved but this would be associated with trapped intergrannular porosity, since no pore phase was detected within the grains of the sintered samples.

Fig. 8 shows TEM photomicrographs of grain intersections for the YSZ and YSZ +  $3.25 \text{ wt%} \text{Al}_2\text{O}_3$  samples at 290Kx magnification. Figures 8A and 8B represent bright field images of the respective samples. Fig. 8A (YSZ) shows clearly the existence of a liquid (X-ray amorphous) phase at the triple points and along the grain boundaries. The thin, relatively flat grain boundaries suggested a low concentration of a wetting liquid at the sintering temperature



AND COURSE SUBSIDIES SUBSIDIES SUBSIDIES CONTRACT DOCUMENTS CONTRACTOR RECEIPTER CONTRACTOR RECEIPTER

etched YSZ samples sintered at  $1275^{\circ}C/4$  hrs. A) YSZ, B) YSZ + 0.325 wt% A1 $_{2}^{0}$ , and C) YSZ + 1.3 wt. A1 $_{2}^{0}$ .

1111111111111

والملعا المكالك وكرك وكالمكالم المالية والمعالية والمحالية والمحالية

Sintered densities of YSZ and YSZ +  $A1_20_3$  samples for different soak temperatures and times.

Table 2

| Samples                             | Soak Time | Sintered I    | Densities (%  | Theoretical)* |  |
|-------------------------------------|-----------|---------------|---------------|---------------|--|
|                                     | (hrs)     | <u>1200°C</u> | <u>1275°C</u> | <u>1350°C</u> |  |
| ¥SZ                                 | 0.5       | 80.5          | 88.0          | 93.1          |  |
| $(6.02 \text{ g/cm}^3) \star \star$ | 4.0       | 89.2          | 96.3          | <b>99.</b> 0  |  |
|                                     | 24.0      | 94.0          | 99.2          | 99.7          |  |
|                                     |           |               |               |               |  |
| YSZ + 0.325 wt%                     | 0.5       | 81.1          | 94.1          | 98.3          |  |
| A1203                               | 4.0       | <b>97</b> .0  | <b>98</b> •5  | 99.3          |  |
| (6.01 g/cm <sup>3</sup> )**         | 24.0      | 99.5          | 99.3          | 99.3          |  |
|                                     |           |               |               |               |  |
| YSZ + 0.65 wt%                      | 0.5       | 83.8          | 96.5          | 98.2          |  |
| A1203                               | 4.0       | 96.9          | 98.8          | <b>99.</b> 0  |  |
| (5.99 g/cm <sup>3</sup> )**         | 24.0      | <b>99</b> .0  | <b>99.</b> 0  | 99.1          |  |
|                                     |           |               |               |               |  |
| ¥SZ + 1.30 wt%                      | 0.5       | 80.7          | 96.0          | 97.3          |  |
| A1203                               | 4.0       | 95.8          | 97.8          | 97.6          |  |
| (5.96 g/cm <sup>3</sup> )*          | 24.0      | 98.2          | 98.0          | 98.3          |  |

1.2.5

Accuracy: + 0.1% Calculated Theoretical Densities

(1350°C). In contrast, grain boundaries for the  $Al_2O_3$  additive samples were more rounded (Fig. 8B) and were also wider as shown in Fig. 8C (dark field image), indicative of a higher liquid phase content. Fig. 8B also showed the existence of an inclusion adjacent to the grain boundary but the boundaries otherwise appeared free of discrete second phases or inclusions.

Within the grains of the sintered samples, second phases were also not observed, although some tetragonal inclusions might have been expected considering the low yttria content of the YSZ powder (4.5 mol%). X-ray diffraction studies on the powder and fired samples likewise did not indicate the presence of a tetragonal phase, but this is normally difficult to distinguish from the cubic phase.<sup>34</sup> Only the cubic YSZ phase was identified in the samples studied and no crystalline intergranular phases were found.

EDAX sprectra were obtained from the TEM samples. These were taken in the grain centers and at the triple points for the YSZ sample. These data are presented in Table 3, and show only Al and Si as significant impurities. The Si and Al average concentration in the YSZ grains were higher than the chemical analysis in Table 1 would indicate. This may reflect possible (Si) contamination during TEM sample preparation and also likely errors in the EDAX analysis. Noteworthy points from the data in Table 3 are: a) The Al and Si enrichment of the triple point regions; b) the higher overall Al concentration within grains and in intergranular regions for the  $Al_2O_3$  doped samples; and c) the significant increase in Y concentration in the triple point regions. The concentration of Al and Si at the triple points, is consistent with the formation of a liquid boundary phase which aids in sintering. Moderate alumina enrichment of this phase would likely cause increased fluidity and enhanced sintering. Higher concentrations of yttria at the boundary phase might be expected to destabilize the YSZ structure but, as indicated, this was







ė

FIGURE 8. SEM photomicrograph of polished and thermally etched YSZ + 1.3 wt%  $Al_2O_3$  sample showing. A)  $Al_2O_3$  inclusion and D) EDAX spectra showing A1 and Zr peaks.

### Table 3

### Elemental analysis of YSZ and YSZ + 0.325 wt% $Al_2O_3$ samples by EDAX technique.

| Sample*                                     | Avg. Conc.                                    | (wt %)                           | Location                 |
|---------------------------------------------|-----------------------------------------------|----------------------------------|--------------------------|
| YSZ<br>YSZ + A1 <sub>2</sub> 0 <sub>3</sub> | <u>A1</u> <u>S1</u><br>0.28 0.99<br>0.56 0.97 | Y Zr<br>7.42 91.09<br>7.69 89.51 | Gr. Center<br>Gr. Center |
| ysz<br>ysz + Al <sub>2</sub> 0 <sub>3</sub> | 0.36 4.56<br>0.65 4.43                        | 9.77 84.86<br>10.30 86.22        | Triple Pt.<br>Triple Pt. |

\*Sint. Temp: YSZ - 1350°C/4h; YSZ + Al<sub>2</sub>0<sub>3</sub> - 1350°C/1h.

•

not observed. The existence of a Y, Si, Al and Ca rich boundary phase was noted also by Moghadam et al. for a similar YSZ powder.<sup>34</sup>

Fig. 9 shows a plot of electrical conductivity versus reciprocal absolute temperature for the YSZ and  $Al_2O_3$  doped samples. The conductivity shows a significant increase with  $Al_2O_3$  additions, though the activation energy (0.97eV) remained unchanged. A conductivity maximum at 0.325 wt% was observed, a trend similar to that noted previously for the grain size and densification behavior.

From the TEM and sintering kinetic data presented, the existence of an intergranular phase in the samples studied would seem to be well established. Densification in the submicron YSZ powders, with or without  $Al_2O_3$  doping can, therefore, be attributed primarily to liquid phase assisted sintering, as discussed. The liquid would be formed from impurities present in the YSZ powders, which have been shown to be concentrated in the intergranular regions. It should be noted, moreover, that the impurities constitute ~0.8 wt% of the YSZ powder and were comprised primarily of such glass forming oxides as  $SiO_2$ ,  $Na_2O$ ,  $K_2O$ , MgO, CaO, BaO, and  $Al_2O_3$ . If converted into a glassy phase, this would constitute ~1.5% of the sample volume, an amount of liquid sufficient to show significant effects of liquid phase sintering.

The primary role of the added  $Al_2O_3$  as a densification aid appears to be an enhancement in the amount and reactivity of the liquid phase at equivalent temperatures, which causes an increase in the densification rate. Within the glassy phase that might be formed from the impurity oxides present, perhaps 10-20 wt%  $Al_2O_3$  could be dissolved, with beneficial effects on the fludity and reactivity of the melt phase.<sup>36</sup> On this basis, less than 0.3 wt% of the  $Al_2O_3$ would be present in the intergranular or boundary phase. Higher  $Al_2O_3$ 

177777771 (ANXXXXX



Fig. 9 DC conductivity vs. temperature for YSZ and Al<sub>2</sub>O<sub>3</sub> doped samples at optimum densities.

contents would lead to a more viscous and, therefore, a less reactive melt phase. A maximum in the reactivity of the intergranular liquid as its  $Al_2O_3$ content was varied would also explain the observed maximum in densifiction kinetics at the optimal (0.325 wt%)  $Al_2O_3$  additive level. As fired grain sizes are known to be enhanced by the presence of a reactive liquid phase,<sup>35</sup> the observed similarities between grain growth behavior and densification kinetics with varying  $Al_2O_3$  additions become evident.

The role attributed to  $Al_2O_3$  in the above discussion as a densification aid for submicron YSZ powders, is in general agreement with work reported by Radford and Bratton<sup>2</sup> Mallinckrodt<sup>3</sup> and Takagi<sup>16</sup>. The authors attribute increased densification with  $Al_2O_3$  additions to YSZ and CSZ powders to formation of an intergranular liquid phase with existing impurities, particularly SiO<sub>2</sub>. The  $Al_2O_3$  was reported to be present mostly in the grain boundary phase. Radford and Bratton noted an apparent grain growth inhibition with added  $Al_2O_3$  at 1480°C but Takagi reported a substantial increase in grain size at higher temperatures.

In contrast to the above, Bernard,<sup>13</sup> Butler and Drennan<sup>18</sup> and Rao<sup>19</sup> all reported the presence of  $Al_2O_3$  as discrete inclusions in zirconia. Enhanced densification was observed with the added  $Al_2O_3$ , but the effect of the  $Al_2O_3$ was considered by Butler and Drennan to be the scavenging of intergranular SiO<sub>2</sub> by  $Al_2O_3$  inclusions with subsequent grain boundary pinning. The present study has identified  $Al_2O_3$  inclusions in the YSZ samples but their effect on densification, at least at low concentrations, was minor.

Increased electrical conductivity was noted for YSZ samples with a low concentration (< 0.65 wt%) of added  $Al_2O_3$ . Bernard and Verkerk et al<sup>7</sup> noted this increase and attributed it to increased grain size and consequent reduction in the more resistive grain boundary area. As grain size and

conductivity behavior both reached a maximum at the 0.325 wt% additive level, this mechanism undoubtedly accounts for part of the observed increase. However, some contribution to the conduction process from the defect substitution of  $Al^{3+}$  into the YSZ lattice might also be expected.

As pointed out by Wilhelm and Howarth<sup>37</sup> in connection with the incorporation of  $Fe_2O_3$  into YSZ, the trivalent cation can be accomodated into the lattice both interstitially and by direct substitution for  $Zr^{4+}$  as follows:

$$A1_{2}0_{3} + 3V_{0}^{\bullet\bullet} \longrightarrow 2A1_{i}^{\bullet\bullet\bullet} + 30_{0}$$
(1)

$$2Al_{1} \longrightarrow 2Al_{Zr} + V_{0}^{\bullet \bullet} \qquad (2)$$

Reaction (1) represents the incorporation of alumina whereby the  $Al^{3+}$  ions would be accomodated interstitially with the suppression of existing oxygen vacancies. The cation defects would not contribute in any signifcant way to the conduction process, but cation mobilites would be affected. This mechanism may explain the ready dissolution of  $Al_2O_3$  into the glassy phase. The decrease in the oxygen vancancy concentration would lower the conductivity, however, depending on the magnitude of the effect.

Reaction (2) indicates substitution of  $Al^{3+}$  ions on  $Zr^{4+}$  sites with the expected formation of oxygen vacancies. These vacancies would contribute to the conductivity, although with the initial substitution of  $Y^{3+}$  into the  $ZrO_2$  lattice, significant oxygen vacancies would already exist.

The magnitude of these substitution effects with  $Al^{3+}$  is not known, but considering the size disparity between the  $Al^{3+}$  (r = 0.53A) and  $Zr^{4+}$  (r = 0.84A) ions, and the fact that the conductivity does increase, lattice

substitution of the Al would seem to be the dominant effect.

and a support and the second the second and the second sec

#### CONCLUSIONS

- 1. Sintering studies carried out on submicron YSZ powders with  $Al_20_3$ additives showed a signifcant enhancement in densification rate above 1150°C. Grain sizes, which were slightly increased by the  $Al_20_3$ additions, were in the range 3.5-4.0 µm.
- 2. Densification and grain growth decreased relatively at  $Al_2^{0}O_3$  additive levels > 0.6 wt%.
- 3. Near-complete densification (> 99% relative density) was achieved at  $1350^{\circ}$ C in one and four hours for the 0.325 wt%  $Al_2O_3$  additive and undoped YSZ, respectively. Microstructural observations and time-temperature sintering kinetics indicated that densification occurred by a liquid phase mechanism, with enhanced densification in  $Al_2O_3$  additive samples resulting from an increased Al melt content.
- 4. Conductivity was increased 1.5 times by 0.325 wt%  $Al_2O_3$  additions due partly to increased grain growth. Relative decreases in both grain growth and conductivity occurred at higher  $Al_2O_3$  additive levels due to a decrease in boundary diffusion kinetics.

#### ACKNOWLEDGMENTS

The assistance of D. S. Phillips of the Materials Reseach Laboratory and Department of Metallurgy in carrying out the TEM studies is gratefully acknowledged. This work was supported by the Office of Naval Research under contract no. N-000014-80-K-0969 and in part by the National Science Fondation under MRL grant DMR-80-20250.

#### REFERENCES

- 1. H. Yanagida, M. Takata and M. Nagai, "Fabrication of Transluscent ZrO<sub>2</sub> Film by a Modified Doctor Blade Method," <u>J. Am. Ceram. Soc.</u>, 65(2) C-34-C35 (1981).
- K. C. Radford and R. J. Bratton, "Zirconia Electrolyte Cells," J. Mater. Sci., 14 (1) 59-65 (1979).

- D. v. Mallinckrodt, P. Reynan and C. Zografou, "The Effect of Impurities on Sintering and Stabilization of ZrO<sub>2</sub> (CaO)," <u>Interceram 2</u> (2) 126-29 (1982).
- 4. G. K. Layden and M. C. McQuarrie, "Effect of Minor Additions on Sintering of MgO," J. Am. Ceram. Soc., 42 (2) 89-92 (1959).
- W. J. Huppman, "Sintering in the Presence of Liquid Phase," pp. 359-378 in <u>Mater. Sci. Res., Vol. 10.</u> Edited by G. C. Kuczynski. Plenum Press, N.Y. and London, 1975.
- 6. R. C. Garvie, pp. 117-66 in High Temperature Oxides, Part II. Edited by
  A. M. Alper. Academic Press, New York and London, 1970.
- 7. M. J. Verkerk, B. J. Middelhuis and A. J. Burggraaf, "Effect of Grain Boundaries on the Conductivity of High-Purity Zr0<sub>2</sub>-Y<sub>2</sub>0<sub>3</sub> Ceramics," <u>Sol.</u> <u>State Ionics, 6</u> (2) 159-170, (1982).
- N. M. Beekmans and L. Heyne, "Correlation Between Impedance Microstructure and Composition of Calcia-Stabilized Zirconia," <u>Electrochim. Acta. 21</u> (4) 303-310 (1976).
- M. Harmer, E. W. Roberts and R. J. Brook, "Rapid Sintering of Pure and Doped α-Al<sub>2</sub>O<sub>3</sub>," <u>Trans. Brit. Ceram. Soc. 78</u> (1) 22-25 (1979).
- 10. S. Prochazka and R. M. Scanlan, "Effect of Boron and Carbon on Sintering of SiC," J. Am. Ceram. Soc., <u>58</u> (1-2) 72 (1975).

- 11. S. H. Chu and M. A. Seitz, "The Electrical Behavior of Polycrystalline ZrO<sub>2</sub>-CaO," J. Sol. State Chem. 23(3-4) 297-314 (1978).
- 12. J. E. Bauerle, "Study of Solid Electrolyte Polarization by a Complex Admittance Method," J. Phys. Chem. Solids, 30(12) 2657-2670 (1969).
- H. Bernard, Microstructure et Conductivite de l' Zirone Stabilisee
   Frittee. Ph.D. Thesis, Institut National Polytechnique de Grenoble, 1980.
- 14. R. C. Buchanan and A. Sircar, "Densification of Calcia-Stabilized Zironia with Borates," J. Am. Ceram. Soc. 66 (2) C20-C21 (1983).
- 15. M. J. Bannister, "Development of The SIRO<sub>2</sub> Oxygen Sensor: Sub-Solidus Phase Equilibria in the System ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-Y<sub>2</sub>O<sub>3</sub>," <u>J. Aust. Ceram. Soc.</u>, <u>18(1)</u> 6-9 (1982).
- 16. H. Takagi, S. Kuwabara, H. Matsumoto, "Effects of Alumina on Sintering of Zirconia Stabilized with Calcia," <u>Sprechsaal 107</u> (13) 584-88 (1974).
- 17. K. C. Radford and R. J. Bratton, "Zirconia Electrolyte Cells; 2, Electrical Properties," J. Mater. Sci., 14(1) 66-69 (1979).

- 18. E. P. Butler and J. Drennan, "Microstructural Analysis of Sintered High-Conductivity Zirconia with Al<sub>2</sub>O<sub>3</sub> Additions," <u>J. Am. Ceram. Soc.</u>, <u>65</u> (<u>10</u>) 474-78 (1982).
- 19. B. V. Narasimha Rao and T. P. Schreiber, "Scanning Transmission Electron Microscope Analysis of Solute Partitioning in a Partially Stabilized Zirconia," J. Am. Ceram. Soc., 65(3) C44-C45 (1982).
- 20. M. J. Verkerk, A. J. A. Winnubst and A. J. Burggraaf, "Effect of Impurities on Sintering and Conductivity of Yttria-Stabilized Zirconia," J. Mater. Sci., 17(12) 3113-3122 (1982).
- 21. P. J. Jorgenson, "Diffusion Controlled Sintering in Oxides," pp. 401-422 in Sintering and Related Phenomena. Edited by G. C. Kuczynski, N. A. Hooton and C. F. Gibbon, Gordon and Breech, N.Y., 1967.

- 22. W. H. Rhodes and R. E. Carter, "Cationic Self Diffusion in Calcia Stabilized Zirconia," J. Am. Ceram. Soc., 49(5) 244-49 (1966).
- 23. M. S. Selzer and P. K. Talty, "High-Temperature Creep of Y<sub>2</sub>0<sub>3</sub>-Stabilized Zr0<sub>2</sub>," J. Am. Ceram. Soc., <u>58(3-4)</u> 124-130 (1975).
- 24. M. Heughebaert-Therasse, "Contribution a L'etude de L'evolution et du Frittage de la Zircone Stabilisee par Differents Oxydes, a des Tempertures Inferieures a 1300°C," Ann. Chim., 2(4) 229-43 (1977).
- 25. W. S. Young and I. B. Cutler, "Initial Sintering with Constant Rates of Heating," J. Am. Ceram. Soc., <u>53</u> (12) 659-63 (1970).
- 26. D. Wirth, Jr., Sintering Kinetics of Ultrfine Calcia Stablized Zirconia, Ph.D. Thesis, Univ. of Illinois, 1967.
- 27. R. L. Coble and R. M. Cannon, "Current Paradigms in Powder Processing," pp. 151-70 in <u>Mat. Sci. Res., Vol. II</u> Edited by H. Palmour III, R. F. Davis and T. M. Hare. Plenum Press, N.Y. 1977.
- 28. A. M. Diness and R. Roy, "Experimental Confirmation of Major Change of Defect Type with Temperature and Composition in Ionic Solids," <u>Sol. State</u> <u>Comm.</u>, 3(6) 123-25 (1965).
- 29. R. J. Brook, "Preparation and Electrical Behavior of Zirconia Ceramics,"
   pp. 272-285 in Advances in Ceramics, Vol. 3 Edited by A. H. Heuer and L.
   W. Hobbs. The American Ceramic Society, Columbus, OH, 1981.
- 30. R. G. St. Jacques and R. Angers, "The Effect of CaO-Concentration on the Creep of CaO-Stabilized ZrO<sub>2</sub>," <u>Trans. Brit. Ceram. Soc.</u>, <u>72</u> (6) 285-289 (1973).

31. C. E. Scott and J. S. Reed, "Effect of Laundering and Milling on the Sintering Behavior of Stabilized ZrO<sub>2</sub> Powders," <u>J. Am. Ceram. Soc.</u>, <u>58(6)</u> 587-90 (1979).

- 32. W. D. Tuohig and T. Y. Tien, "Subsolidus Phase Equilibria in the System Zr0<sub>2</sub>-Y<sub>2</sub>0<sub>3</sub>-Al<sub>2</sub>0<sub>3</sub>," <u>J. Am. Ceram. Soc.</u>, <u>63(9-10)</u> 595-96 (1980).
- 33. M. I. Mendelsohn, "Average Grain Size in Polycrystalline Ceramics," J. Am. Ceram. Soc., 52(8) 443-46 (1969).
- 34. F. K. Moghadam, T. Yamashita and D. A. Stevenson, "Characterization of Yttria-Stabilized Zirconia Oxygen Solid Electrolytes," pp.364-379 in Advances in Ceramics, Vol. 3. Edited by A. H. Heuer and L. W. Hobbs. The American Ceramic Society, Columbus, OH, 1981.
- 35. W. D. Kingery, "Plausible Concepts Necessary and Sufficient for Interpretation of Ceramic Grain-Boundary Phenomena: II, Solute Segregation, Grain Boundary Diffusion, and General Discussion," J. Am. Ceram. Soc., 57(2) 74-83 (1973).
- 36. B. Locsei, Molten Silicates and their Properties, Chapters 3, 4, 5 and
  6. Chemical Publ. Co., N.Y. 1970.

37. R. V. Wilhelm, Jr. and D. S. Howarth, "Iron Oxide-Doped Yttria-Stabilized Zirconia Ceramic: Iron Solubility and Electrical Conductivity," <u>Am. Ceram.</u> <u>Soc. Bull., 58(2)</u> 228-32 (1979).

Summary of Work Accomplished Under Contract No. US NAVY-N-00014-80-K-0969

#### 1. Reports

Report issued under this contract include the following:

- a. R. C. Buchanan and S. Pope, "Optical and Electical Properties of Yttria Stabilized Zirconia (YSZ) Crystals," (ONR Report ≤5), University of Illinois, Urbana, IL (September 1981).
- b. R. C. Buchanan and J. Boy, "Effect of Coprecipitation Parameters on Powder Characteristics and On Densification of PZT Ceramics," (ONR Report ≤6), University of Illinois, Urbana, IL (September 1982).
- c. R. C. Buchanan and D. N. Wilson, "Densification of Precipitated Yttria Stabilized Zirconia (YSZ) to Achieve Translucent Properties." (ONR Report ≤7), University of Illinois, Urbana, IL (November 1982).

#### . Papers

15446665 20202099 26657752

- a. R. C. Buchanan and S. Pope, "Optical and Electical Properties of Yttria Stabilized Zirconia (YSZ) Crystals," Accepted, J. of Am. Ceram. Soc., 1982.
- b. R. C. Buchanan and J. Boy, "Effect of Coprecipitation Parameters on Powder Characteristics and On Densification of PZT Ceramics," submitted to J. of Am. Ceram. Soc., 1982.
- c. A. F. Grandin de l'Eprevier and R. C. Buchanan, "Preparation and Properties of Ca<sub>2</sub>V<sub>2</sub>O<sub>7</sub> Single Crystals," <u>J. Electrochem. Soc.</u>, <u>129</u>, (11) 2562-65 (1982).
- d. R. C. Buchanan, H. D. DeFord, and R. W. Doser, "Effects of Vanadate Phase on Sintering and Properties of Monoclinic ZrO<sub>2</sub>," Advances in Ceramics, Vol. II, [Grain Boundary Phenomena in Electronic Ceramics] American Ceramic Society (1982).
- e. A. Sircar and R. C. Buchanan, "Densification of CaO-stabilized ZrO<sub>2</sub> with Borate Additives," <u>J. Am. Ceram. Soc</u>. <u>66</u> (2) 20-21 (1983).
- f. G. Wolter and R. C. Buchanan, "Properties of Hot Pressed ZrV<sub>2</sub>0<sub>7</sub>," J. Electrochem. Soc. 130 (9) 1905-10 (1983).

g. R. Sta in R. C. Buchanan & D. M. Wilson, "Role of  $Al_20_3$  in Sintering of Yttria Stabilized ZrO<sub>2</sub> Powders," Conf. on MgO/Al<sub>2</sub>0<sub>3</sub>, MIT, June, 1983 (Adv. in Ceramics).



FILMED



DIEC