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Abstract
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two—-body problem of an earth—-orbiting solar sail undergoing

This paper addresses orbital perturbations in the

_A-.LQ

free coning motion in a circular orbit. The coning motion

controls both the magnitude and direction of the solar

v ;-l‘

radiation pressure force. The equations of motion are
sxpanded from the Lagrange planetary equations in their
acceleration component form and are solved assuming small i

changes in the orbital elements over the period of one

Jalal e o .

Qrbi t . \‘

\jResonances are observed between the mean motion of the

sail and its precession rate. The one-to-one resonance case

dialniocde A

is examined and numerical methods are employed to verify the

analytic results for the circular orbit case.
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33 ORBITAL MOTION OF A FREELY. CONING SOLAR SAIL
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3: I. Introduction and Problem Statement ‘
<o

Introduction

5

] .
ﬁ Spacecraft propelled by solar radiation pressure are

_ being considered for use in space exploration. Sucl

”$f vehicles require large areas of extremely light-weight,

s

;} highly reflective sails to convert the linear momentum o:

sunlight into thrust +for the spacecraft. While the

R

a%v’ e
e
Siaca.a & LA

acceleration of such a vehicle is quite small, it is

continuous, variable, controllable, and does not require the

o]

0 expulsion of mass overboard as with traditional momentum

A

sxchange techniques.
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Solar sailing vehicles can provide an adequate means of

o

transportation across the long distances typically found in

daslionthede RN,

space travel. The force applied to feasible sails is large

el ey
..
"

campared with space drag (Ref 8). While the accelerations of

By

bl S

such vehicles are small, the velocity built up over time is

substantial. A solar sailing vehicle which can achieve a 1

Aty

T.-.
»

velocity sufficient to escape the solar system is feasible

4
-
<

‘i or two (Ref 4). The solar sail has the additional advantage
= of simplicity of design when compared with other laow-thrust
- 3::' propulsion systems (Ref 8).

7
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'
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(Ref 4). Escape from Earth orbit is possible after a month
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In attempts to determine the best steering program for
solar sails, a variety of approaches have been ¢tried.
Garwin (Ref 4) began the investigations with a sail that
could be furled when sailing into the Sun’s rays, and
unfurled when sailing with the solar flux. This is similar
to a method proposed by Van der Ha and Modi (Ref 9) which
involved "on—-off switching". London (Ref &) sought the one
best constant angle for a given mission. & more advanced
method was introduced by Fimple (Ref 3) who determined a
steering program based on the time rate of change of energy
increase. All of these approaches have in common that if
the sail is rotated at all it is rotated with the angular
momentum vector coinciding with a body axis of symmetry,
i.e., spinning. Thias article represents a depcrture from

this traditional approach.

The question is, essentially, how to best control the

thrust of a solar sailing vehicle. Because of the inherent
flimsiness of light-weight sails, quick maneuvers are not
possible with solar sailing vehicles. Looked at another
way, if a method can be found which both provides adequate
performance and restricts the sail to smooth rotations, then
the necessary structural strength and weight of the sails
can be minimized. Adequate performance is defined in terms
of the spacecraft’s ability to increase the semimajor axis
of its orbit and to change the inclination of its orbit.
mission

Specific criteria

performance

depend on

......................
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requirements. Control of the coning motion would be
accomplished by contreol of the magnitude of the angular

momentum vector.

This work uses techniques pioneered in Capt Salvatore
Alfana’s thesis: "Low Thrust Orbit Transfer" (Ref 1). For
those not familiar with the work, the consideration of
orbital changes for very low thrust vehicles is broken into
two parts. The first part is a fast timescale problem in
which many orbital parameters can be considered constant
over one orbit, the perturbations being found and added at
the end of the orbit. The secaond part is a slow timescale
problem in which many perturbed orbits are linked to achieve
a transfer. What follows here is the derivation and
examination of +the equations for the fast timescale problem

for solar sails.

Problem Statement

The objective is to derive the perturbation equations
for an earth-orbiting solar sail which is undergoing a
coning motion. The sail is modeled as a flat, rigid, plate
which is undergoing the free coning motion of an
axisymmetric rigid body. During the course of one orbit,
the sail is considered to be torque free. The earth is
modeled as a point mass. Because of the low thrust of the

vehicle, only small changes in the orbit are possible.

.................

& Wy W g T T e W LW



e
}2{ Thus, the semimajor axis (a), inclination (i), eccentricity
SRR (@), argument of periapsis (W), and the longitude of the

N ascending mode () are considered constant over the orbit

and then updated.

The perturbation equations are to be examined
- analytically to determine what, if any, important resonances

e arise. A promising resonance case will be examined.
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II. Attitude Dynamics of a Freely Coning Solar Sail

The attitude motion of the sail is that of the freely
coning motion of an axisymmetric body. The body is a flat,
rigid, plate which exhibits perfectly specular reflection on
both sides. A review of the fundamentals of free coning

motion is appropriate.

Coning motion is the motion of a torgque free
axisymmetric rigid body in the case where the angular
velocity vector, & s is not colinear with the angular
momentum vector, I?I. The assumption that the body is torque
free implies that ﬁ is caoanstant in direction and magnitude.
It has been shown (Ref S5) that I':l is coplanar with (.3 and a
vector along the body’s axis of symmetry, 63 « Furthermore,
since the orientation of the angular momentum vector is
constant in inertial space, the plane which contains the
three vectors rotates about the angular momentum vector (Fig
1). We can designate the angle between l/-l\ and 33 as the
nutation angle, 9, which is constant. A second angle, s
is the angle between &/J\ and Gs « This plane rotates with a
constant angular velocity A. As the vector plane rotates,
describes a space cone around /l-\i. This cone remains fixed in
inertial space and a cone defined by 83 and o’} rolls without

slipping on the space cone. For a body with moments of

U 1
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inertia A, A’ and C’, where C’ is the moment of inertia

N
about bs’ the following relationship applies (Ref S):

tanf = /_L\:'tan74
=

(1)

For cases where C’ > A’, this implies that 7»)(9, as shown

in Figure 1.

Consider that ﬁ is colinear with an inertial reference
axis, Q, and that the f and 3 axes form a right-handed
orthogonal set with Q (Fig 2). Consider also a projection of
% onto the 2,3 plane. This projection will rotate about Q
and, therefore, about ﬁ at the constant precession rate 7

given by:
2 =Ca /(K-C) cosB (2)

where ( is the angular velocity of the baody about the QB
axis (Ref S). For 7V to be positive in the case where C* >
A’, o must be negative. Since A is just the spin of the
plate about its axis of symmetry, this presents no

difficulty.

The main points of interest are that the precession

rate, nutation angle, and the angular momentum vector are

all constant. These facts provide the basis for
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determination of the magnitude and direction of the thrust
N vector. From this general groundwork, specific equations

for the attitude motion of the solar sail can be found.

The solar sail is a flat plate, perfectly specularly
reflective on both sides and with moments of inertia A’, A?,
and C’, €’ is the major axis of inertia and lies
perpendicular to the plane of the sail. The body axes of

A A
the sail are designated gs’ b, and QI, where b and Qz

2 ]
are axes about which the moments of inertia are A’, and 63
is the axis about which the moment of inertia is C’. (See

Fig 3.)

The original orbit plane will be considered inertial.
The inertial axes will be designated ?, ;, and Q where Q is
normal to the orbit plane, 2 is in the orbit plane and in a
plane perpendicular to the ecliptic and containing the
Earth-Sun line, and f forms a right-handed orthogonal set as
in Fig 4. The angle between the first paint of Aries and the

~ Earth-Sun line is considered to be constant over one orbit.

: Both the magnitude and direction of the thrust are
A
functions of time. The magnitude in the -% direction is

simply:

.
[
¥
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Fig 3. Solar Sail Body Axes and Moments
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T= SHAS(ES-QY

where s is the solar constant, H is a sail parameter
dependent upon the reflectivity and transmissivity of the
sail, A is the area of the sail, A(Qo 8) is the projected
area of the sail on a plane perpendicular to the Sun’s rays,
and g is the unit conversion factor. The unit vector 3,

shown in Fig 5, gives ¢the direction of the Sun and is

defined by
A oA ., .0
s = cost L — sinik (4)

The definition of i used here and shown in Fig 4
implies that Ll is fixed at a negative one-half pi radians
from the ? axis. There is great simplification in this
choice, and 1little loss of generality for the current
prablem. The maximum change in inclination can still be

Seen.

Fad "~

The direction of the thrust is -I:v3 « assuming that b3

is on the sunward side of the sail. Since i, ?, ﬁ, s, A and
A are known and constant over one orbit it remains only to

A
find ps expressed in terms of functions of time.

A
Given that the angular momentum vector H has an

arbitrary orientation in inertial space, we can define a

- 12 -
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A A A A ~ A
coordinate system I, J, K such that K is along H, I isg

A A
perpendicular to H and lies in the i,f plane, and J forms a
right-handed orthogenal set. This permits the definition of
ﬁ by means of two angles of rotation 5 and ns as shown 1in

Figure 6 (Ref 10). Any vector in this f, 3, ﬁ frame can be

expressed in the g, f, Q inertial frame by the
transformation
L I
J' = R3 (-€)R|('q) J— (S)
k K
where
} o o) cosX Sinx O

R(x) [0 cosx sinx| Ryx) |-sinx cosx o

O -sinX cosx o) o | (&)
N N A A
The unit vector qs is defined in the I, J, K frame
A
shown in Fig 7. This leads to an expression for b3 in the

form:

I

b, = sinBcos(a(t-t )] + sin@sin(v(t—to))3'+ cosOK )




A
Fig 6. Orientation Angles for H
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The nutation angle 5 is a constant over one orbit. The
precession angle 7(t-t,) is obviously a function of time.
For simplicity, t, is set at zero and a phase angle, ¥, is
used to offset the starting point away from the /I\ axis when
desirable. As will be seen, phase angles are crucial
because a given coning motion can create different effects

depending on initial conditions.

Fal
To get thrust magnitude we need (b3- 8) which leads to
PaY
the necessity of expressing 83 in terms of the i, 3\, Q
reference. This 1is accomplished by transformation Eq S,

resulting in

) L s@cztc) - s@svtcnsy +cBsnsy s=sin
b. =
19 J Secvtsli +595vtc7c){ - cOsnc cacos (@
k sasvt_v[ +c9c7
which implies that
A A )
bs *S = c‘,cosﬁ/ﬁﬂ— c‘zsm(vtﬂ”) +c§3 152

where constants d| ’ dl, and d3 are defined by:

3‘ = sin 9cos§cosi

- 16 -
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Al = s'ch:osrlsinﬁcosL + sinésinrlsint

d,= cosBsinnsinfcesi - cosBcosnsini
(10)

It is convenient to define a set of axes with their
origin at the center of mass of the spacecraft and with axes
G, 0, and G in the orbit radial, tangential, and normal
directions, respectively. To get the direction of the
thrust, % must be expressed in the G, O, G reference

frame. This is accomplished by noting Figure 8 and writing

the transformation

u L I
V= R8N = RUFIRSEEIR ()

(11
\WY k
where f is the true anomaly and ¢ is a phase angle.
Transformation (11) results in
: U\l | Bevct - Bsvet+ Bt + Bicvst+ Gsvst+ 45
bV p={8 cvst + G svst - 8,5 + 8, cvet + Bysvct +4cf
Wi | G5V + 4
(12)

SESin, CSCOS, Z=¥t+¥, f=nt+g
where the constants‘%ﬂ through /% are defined by:

- 17 -
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Siﬂ@cosﬁ

R

sinecosqsin5

RN

cosfB sinrlsinlf

™

sinf sink

}m

/55 = sinf cosn (13

A, = Cosésinrlcoslg
S = sinBsinn

/58 = cosecosq

These results provide the accelerations in the radial,
tangential, and orbit normal directions. Remembering

Newton’s Second Law:

Fzma = a=F/m (14
then

(13)

- 19 -
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2 V=T/m= DI 3"5)( ,-V) (16)
>
W= T/m = D( Aa-g)z( \33\/:/) (17)
>

and let

D= SHAS /m (18)

‘Z be called the sail constant, where g is the unit conversion
', factor. The components of acceleration in the radial (U),
- tangential (V), and orbit normal (W) directions are now
i known, along with the magnitude of the thrust (T).

s

>

"

T

N .

n

\
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I1I1. The QOrbital Equations of Motion

The objective is to develop the orbital equations of

mation fraom the Lagrange planetary equations

acceleration component form. The Lagrangian equations are:

D
1=
]

LUesint  + 2V{i+ecost)

—d_t- n(1—e) n(1-e)%

de = \/\/co&(**rau)(l-':‘-"')v’~

dt na(i+ecost)

da = Wsin($+w) (1-e2)=

dt nali1+ecoss) sint

:%9 = ~Ucost (1 -e)* & V(I—e")”"(l-r ecos&)sin'uC
t

=Wsin{§+cw) coti (1-er)”

na(1+ ecos§)

de = UQ-e)"sind

dt

na

nae nae (1+ecost)

“'M I+ ecosf - |- e

nae

- 21 -

|+ ecos§

in their

(19)

(20)

(21)

(22)

(23)




I R S T s T s e s s s T s T Ty e T T =
]
i where U, V, and W are the spacecraft accelerations in the ]
'j:-f radial, tangential, and orbit normal directions and n is the 3
mean motion. The true anomaly is designated f and consists l
e of
._‘.\
.'\."
= §=nlt-t,) +4 (24)
- :
‘J'. 4
. where t, will be taken to be zero and ¢ is a phase angle
E;:l between the /1\ axis and the beginning of the orbit. ]
::-: . 4
e For circular orbits, «w is arbitrarily set to zero, and
l:jj the time derivative of the argument of periapsis is 1
-'.:::l undefined. This reduces the number of equations of motion
" RS
{ G to four. Simplifying for e equals zerc we get:
e BN L
2 ]
. cja = 2\/ (25)
" _' d‘t n L
..;. q
e )
. L
~. d
7 de =Usinf +2Vcost (26)
X dt na na
Jl
»
A
A .
> di = Weost 27)
B dt na
> -~
7 ek
o .
N
-
-I‘_.
P - 22 -
"
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Substituting Eqs 15-17 into Eqs 25-28 results in:

d.0 = Wsinf
dt na sint

(it ]

de = .J(G,-g)z(B,'G.)sing +2D(B,c§)1(5,'</)cos§

dt

di

dn
d+t

]

na

D(b,-3)(6,- W)cos

na

= D(B,-8)(6,- W) sint

na sint

- 23 -
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These are ¢the orbital eguations of motion for the
freely coning solar sail 1in the Lagrangian acceleration

component form.

To obtain the changes in orbital parameters, Eqs 29-32
are integrated with respect to time over one orbit, the

period being determined from

- Y2~ (33)
T Zﬂa/u

Perturbation Solutions

To obtain the general perturbation solution for the
orbit of a freely coning solar sail, Eqs 92 and 12 are
substituted into Eqs 29-32 which are integrated with respect
to time between the limits zero and |« Since these equations
contain both f and Vv which are functions of time, the
perturbations solutions are quite lengthy. For this reason
they have been placed in Appendix A. The reader is strongly
urged to examine them in some detail before proceeding. The
perturbation equations are given here in abbreviated form

for notational clarity:

dt (34)
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IV. Resonances

Inspection of the equations in Appendix A indicate the
presence of resonances. These appear as terms in the
denominators which could go to zero if the correct

relationship between 7/ and n existed. when a resonance

condition is met, the term in which the resonance occurs

(I P )

becomes large. This is the key to maximizing the small

:haqg-s in the orbital elements, which is our objective.

‘A'A'-'A;al:_s' ‘all

Several different resonances occur in the perturbation
solutions. In order to more easily select useful

resonances, all resonances have been displayed in Tables

e Ifii‘LA -~

I-IV. The resonances are given in the form:

Lalaias

v=XN (38)

where x is the resonance number given in the table. The
tables display the resonances in a grid which indicates N
which constants each resonance affects., For instance, the
one-to-one resonance enlarges the constants‘/ﬁ, /i,./ﬁ, and
s wach multiplied by the constant d;, in the Aa
equation. A negative sign beside a resonance number means
that this term tends to reduce the perturbation, assuming .
both phase angles (g &% ¥) are zero. Adjustment of the phase

angles can change the sign of a given term. Using these

[ "l."’
s
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(Constants)

(Constants)

TABLE 1
Resonance terms in a
2
.’chl ¢:l3 2d2. d.3 da
y-2 -1/2 1/2 -1
/91 1/2 172 1
,d;a -1 1 o]
/5,‘ 1/2 1/2 i
,<§ -1/2 1/2 -1
4 1 1 0
2 %
d, 2d| dz_ t:lz
e -1, -1/3 i, 1/3 -1, 1/3
4 1, 1/3 -1, 1/3 i, -1/3
/35 -1/2 1/2 1/2
A’ i, 1/3 1, 1/3 1, -1/3
/35 -1, -1/3 -1, 1/3 -1, 1/3
,5‘ 172 1/2 -1/2
- 27 -
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4
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TABLE I1I i
Resonance terms in e
(Constants) d 2d d d,

12 2
/, -2, —=2/3 2, 2/3 -2, 2/3
/ﬁj -1 1 1
ﬁ{ 2, 2/3 2, 2/3 2, -2/3
/’_ -2, -2/3 -2, 2/3 -2, 2/3
ﬂ‘ 1 1 -1 x
]
2 )
(Constants) 2t:ll cl3 2d, d, d3

@ // -1 1 -2
/52 1 1 2
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TABLE III '$
Resonance terms in 1
4
1 .
(Constants) d; 2d,d, d;
A, -1, -1/3 -1, 1/3 -1, 1/3
ﬁg 172 1/72 -1/2
1
{Constants) 2d, t:l3 2&:!,_:!3 t:l3 %
/3 1/2 1/2 -1
ﬁ 1 1 o] 5
] .
TABLE 1V
Resonance terms in
Z 2
(Constants) d, 2d‘ dl_ d,_
/3 1, 1/3 -1, 1/3 1, -1/3
ﬁ: 172 1/2 -1/72
2
(Constants) 2d. d a 2dz d3 da
A5, 1/2 1/2 1
- (o)
AN 1

-
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PP ON A WP VY

- 29 -




.........................................................

A
2%

jli'- tables, a useful resonance can be chosen.

- }:

{;
- One-to-One_Resenance Case

The perturbation solutions for the one-to-one resonance
1

;;;,'- case, integrated over one orbital period, are given here. \
o ‘
P |
2 34 2

o ANa=a DT{ cs/"f {(/51*-3/6.,)cos(¢ ¥) - 3/5,+ 5)5m(¢ }“)}

2 ’(JJ/Z{/@/S", sin(g-¥) + (ﬁs/ﬁ cos(g- V’)}*'Zdé {

, S cos(g-¥) - 4 sin(g- ¥)} +2d,d {/c%cos(gs-w +/565m(¢—’f)}
&M N(3,8+ 8)cosg-¥)- (8+38)sin(g-1} +
108, +8)cos(g-1) - ( 5+.8,) sinlg-w} ]

(39)

@ (a2DT/8) d* {/5 sinl2lg-¥)) + 4 (6 + cos(2(p- )}

J ¥ 244 { 8 cos(2(g-¥) + & sin(2(g-0)} * dz{/J_j, sin(2(g-¥)) |
+/66 - cosla(g- ¥)) } de {/51"'/34 cos "L(?’ 9) (/5'

3 Bs) sin(2(g-¥) +e/5., +24, 4,1 8,+8,)sinalg-») + (4

:;. +/55)cos(1(¢—3*)) 6/55 * 12(_«]3/5‘}

(40)

3

t r " .' .I 'l‘ O. l‘ .l‘
JaBCIURP e

i: Ai=(a2DT/2 {2d3/58{cl cos(g-¥) +d,sin(g- sc}- !
:C /57{[(3 /‘1 33 1)+ +d ]sm(yﬁ ¥) (c!,ch/Z.)c.os(gS—v)}} |

(41)
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A0 =(a2DT/asini) g {L{di)+ (&) +di]cos (g-0)
T
.'.:./ . .
- -'(cl,AZ/Z)sm(;zs—V)} "’2/58d3{c4‘sm(¢—)”)—dzcos(;zﬁ-?)}}

(42)

;;- The one-to-one resonance case has several interesting
ii properties. First, it the most +frequently encountered
:gﬂ resonance case in the Aa, A\i, and A{) equations. Since
?% the performance requirement is to have a large change in the
&Q semimajor axis and/or the inclination, the one-to-one
;ﬁf resonance case is preferred. Secondly, when the one—-to-one
( "ﬁ resonance is selected and the integration is taken over one
N
> orbital period, i.e.,
>
.-

3
S nT =2 (43)
o

. then virtually all terms not containing a one-to-one
:ﬁ: resonance disappear. The only exception is the last term in
”h the A e equation which, along with four other Ae terms
)
- which are one-to-one resonant, cannot be integrated to zero
y under any circumstances. These five terms are non-periodic
’ and can be eliminated only by proper selection of constant
e - angles. Non—periodic terms occur only in the DNe equation
S e
CalC 4
o4
e
'-'.V
..:.:

".(-q‘\.‘fi.'.'~n.c ~ . . Cp T
R N SRR W
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ff and are indicated by an asterisk in Table II.

Thirdly, the one-to-one resonance case is the only

integer resonance case in the Zﬁa, Z&i, and AQ equations.

'.. Il .‘l /l .

To integrate non-resonance terms to zero for the fractional

L 4, 8, 4 By & 4, Vgl RN

/. "l 'Il

resonances requires a period of more than one orbit. This
o0 limits the orbits for which the perturbation assumptions are
-l valid to smaller semimajor axes than for the one-to-one
;; resonance case. Conversely, if one orbit is taken as the
o upper limit of integration, none of the terms would be
eliminated and the sgsimplicity of the anmalytic method would

be destroyed.

- -T Other Resonances

The two—-to—-one resonance case changes e only. In the
event that the mission objective involveas changing the
eccentricity only, this would be the resonance of choice.
;ﬂ Because of the circular orbit assumptions, this case is not

investigated further here.

The one-half-to-one resonance case would be the
secondary choice for changing a and i, but 'it should be
= noted that the two-to-one resonance terms in /e do not
integrate to zero in this case. Thus, no advantage over the

one—to—one case is evident.

- The one-third-to—-one resonance case will eliminate the

- 32 -
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i, two-thirds—to-one resonance terms in \e and vise versa.
e Hawever, either choice results in no resonance terms in A i

orzﬁil, which contradicts the performance aobjectives.

'%’ Any integer resonance above two-to-one results in

; nearly all changes being equal to zero over one orbit. The
A five terms in /A @ which cannot be integrated to zero can be
;ﬁ set to zero by appropriate choice of orientation angles.
: These resonances, then, represent orbit-keeping strategies.
. Consequently, they are not of interest for present

purposes.

A consideration of specific cases 1is provided in the

next chapter.
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V. Results and Discussion

i Results

%

N For the single resonance case, many cases were tested,
s ranging from the trivialy simple to the arbitrarily
;1 complicated. These cases were tested by numerically
??j integrating Eqs 29-32 and comparing the results with the
:if analytic solutions, Eqs 39-42. The numerical integration was
fg? accomplished using a predictor—-corrector technique contained
;:i in a subroutine Haming, contained in Appendix B. The
sis Earth—-Canonical system of units was used and a value of D
i% was taken as 4.65 E-04. For the test cases, the semimajor
;iw > axis was taken to be five DUg.

{ P o

;:.‘; X Motion_in_the Ecliptic Plane.

- The most trivial cases are those in which the
ifi inclination is zero. This leaves the longitude of the
g& ascending node undefined, and the problem reduces to three
‘%J equations.

‘Ea Spinning. The simplest case is the one in which ﬁ
AE; is parallel to ﬁ, and the nutation angle is one-half pi
‘g; radians. This leads to the analytical expressions:

f‘

a5

7L

S

58

- 34 -




- 3/2 . ¥
-::: Ao. = - Q& DTSln(gﬁ-V) (44) :
NI 1
-“‘l
.- }
;. !
N Ne=Ai=0 (45) ;
o !
< ]
.n\ -
~ d
o Obviously, the maximum change in Aa is when l
SN
N\ 1
g-Y=-1m/2 (46)
S
A‘\‘. L
L 4
.’::' This is verified in Fig 9, where the line represents the -‘
nE
> change in A a over time and the "x" indicates the point )
predicted by Eq 44. )
| i
. A 4
H O Tumbling. Tumbling is simply spinning with H
.\ . A A 1
L~ parallel to _’,\ or i. The case of H parallel to /; is trivial, )
since the edge of the sail is sunward and no thrust is
produced. This case was numerically verified. For the
_:f: non-trivial case we have the analytic equations:
N
3 .
-2 Aa=-30% DTsm(;ﬁ-Yf) (47)
. Y
Ne =0 (48)

- A= —%‘/ZDTsin(wV) (49)

- - 35 -~
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The interesting result is that both Aa and Ai vary
with the sine of the phase angle difference. So for this
case, changing Aa implies changing Ai. This case was
ig numerically verified and the results are shown in Figs 10

where the line is the variation over time and "x" marks the

point predicted by Eqs 47-49.

Coning. The simple coning case has H directed at

the sun and a nutation angle of one-fourth pi radians. The

resulting analytical equations are:
Aa = w_/L;_i- 0.3/2D'Tcos(¢-¥f) - (50)
Ci‘ Ae =0 (51)
At = —{er a2DTsin(g-¥) (52)

These equations indicate two important results. First,
by selecting the phase angle difference to be in the fourth
i quadrant, both Aa and Ai can be positive. Second, and
: most important, by selection of the magnitude of the phase
angle difference, it is possible to trade off Na for Ai
and vice versa. Any combination of Aa and Ai within the
magnitudes given is possible. This includes, of course,

selecting only A a or only Ai. Two cases were verified
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numerically: the maximum Ai case and the maximum Zla case
e both showed excellent agreement between analytic and numeric

solutions. The results are contained in Figs 11.

Motion in the Inclined Plane.

~  Tesicn in Ihe lnclined -lans.
The next level of complexity is to consider cases 1in
. the inclined plane. This adds equations for the change in
longitude of the ascending node. Initially, an inclination
of thirty degrees was considered and the simple cases, with
;E some variations, were considered.
N
: Spinning. Two spinning cases were considered: case
3 one with ﬁ parallel to ﬁ and case two with ﬁ perpendicul ar
:3 G"'\ to g and ;. The analytical equations for case one are:
- Aa =-cosi aB/ZDTsin(ys—Y) (53)
- DAe=Ai=AL=0 (54)

As expected, case one showed substantial change in Aa
(.274E-02 DUg) and no other changes. These are the

analytical equations for case two:

S Aa = (3~/§ +2) aa/zDTcos(gs-)‘*)
NS 8 (S5)
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Ae =0 (56)
A = -%a'/z DT sin(g-») (57)
AL = %avz DT cos(g-¥) (58)

Case two featured a phase angle difference of negative
one-half pi radians and so showed significant change in Ai
(. 14E-03) and no other changes. This verifies the
importance of the phase difference in determining the

changes in the orbital parameters.

A A N
one with H parallel to 3 and case two with H parallel to i.

The analytical equations for case one are:

Da = QS/"DT 3cos(g-¥)-5sin(g-¥) (59)
8 4 :

Ne =0 (60)

Ai= _%a'/z DT sin (¢-¥) (61)
i




AQ = gg_v’“DT[Scos(gz-}‘)-w/é'sin(gﬂ—v)] (62)

Case one, with a phase angle difference of negative
one-half pi radians, showed significant changes in Aa
(.22BE-2 DUg), Ai (.137E-3) and AL (.1S8E-3). This
indicates a possibility that similar cases could be used to
provide a variety of changes in Zka, Ai and Zﬁfl, depending

on mission requirements. Case two analytical equations are:

Aa QZDTcos(gf ¥) (63)

16
Ne=0 (64)
Ai= —3Q2DTSIH(¢ ¥) (65)
32
AQ = 3a2DTcos (g-¥) (6&)
\6

Case two was tested with the same phase angle
difference as the previous cases, providing significant
change in Ai (.485E-4) only. This strategy provides the

option of changing i or a and {1, or combinations of all
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Coning. Four cases of coning were considered: two
each of case one (ﬁ parallel to s) and two each of case two
(ﬁ parallel to Q). In case one, phase angle differences
were changed to test the case for maximizing QAa and Ai,

and likewise for case two. The analytical equations for

case one are:

Aa =2 a*DTeos(p-¥) (67)

Ae=o0 (68)
Ai=+6 aVzDTsin (¢-—)0) (69)
Afl= ;»‘/3_6_ a2DTcos(g-¥) | (70)

The equations for case two are:

Ao = (8-/5 + l3wff) o?/lDTcos(gé—V) (71)
o4

- 45 -

Lt SN R

e s
. N

, e T U T
. e T e A e e T T e, RSN I RO - .
. A R . . PR N R Y

PRI O IALPLINLIA FRCTC S L W AV T TS VR A TR VRS TR TR AN S Ve Y =




8§ o 3
A

AR
AN

AN - U SRR

Ay ‘: .‘I "‘

RCEAE AR i 2 SN P A T g Rre g4

Ae = (2 + 1/3) a” DTsin(2(g-%) (72)
128

At = -15VZ a*DTsin(g-¥) (73)
128

A = I5wu£i 2D Teos(g-¥) (74)
6

Case two proved slightly superior for changing Ai,
(.121E-X vs ,[112E-3) with no other orbital parameters
changing. Case two also proved superior in the second phase
angle difference case, giving superior performance in Aa
(.217E-2 vs .b646E-3 DU.), and Afl (.242E~-3 vs .224E-3) with
no other orbital parameters changing. Note that maximizing
a involves maximizinglﬂ.. Trade-offs can be made between A a
and Ai. Agreement between numeric and analytic results was

excellent.

Arbitrary Cases.Three cases were tested in which
phase, orientation, inclination and nutation angles were
randomly determined. Agreement between numeric and analytic

results was excellent. One such case is displayed in Figs

12,
Nutation Angle.
The search for the optimum nutation angle was
A
accomplished on a case by case basis. The case of H

pointing at the sun, inclination equals zero, vyields an

- 44 -
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optimum nutation angle of approximately 35.2 degrees. The
change in Na as a function of 69 for this case is shown in
Fig 13. For the 30 degree inclined case with Q parallel to
2, the optimum nutation angle is 35.2 degrees for increasing
Aa but is 30.2 degrees for maximizing A). For the 30
degree inclined orbit with ﬁ parallel ¢to Q, the optimum
nutation angle is again 35.2 degrees for changing Aa and
40.2 degrees for maximizing Ai. These are surprising

results, to say the least.

A study of the variation of A a with a was done to find
at what point the perturbation assumptions became invalid.

The study indicated a maximum change in Aa of 0.25 DUg at

‘10 DU, for the spinning case. This will serve as an upper

bound on the usefulness of these equations.

Discussion.

The spinning case is preferred for missions where
changing the semimajor axis is the only requirement. Few,
if any, such missions exist. This implies that correct
inclination was achieved at insertion into orbit, which
implies that impulsive power sources were used. The cost of

such sources can be avoided by using the sails capability

- %51 -
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faor inclination changes.

The tumbling case is to be avoided unless mission
requirements call for the ratio of AasAi inherent in such

a strategy. This is unlikely.

The coning cases are the only ones which provide the
opportunity to trade off Aa for Ai. Any ratio of DasAi
desired can be produced by adjusting the difference in the
phase angles., Coning motion strategies thus compose a set

of strategies of considerable practical interest.

The 35.2 degree nutation angle results are suspect
until a more detailed study can be accomplished. It is
possible that for the differences in the cases studied that
the differences in the nutation angQles were small enocugh to

escape notice.

More questions have been raised than have been
answered. Besides the obvious point of investigating the
optimum nutation angle in more detail, a host of other

topics suggest themsel ves.

The many—-orbit cases needs investigation. This involves
establishing an inertial reference frame in the plane of the
ecliptic and updating many of the angles assumed constants

in this study. Complex missions can thus be analyzed.

........
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Including eccentricities not equal to zero will add
much to the generality of the results, but the valiant soul
who attempts this should be forwarned: the equations in
Alesinw ) and A(ecoscw ) will be approximately forty
hand-written pages each. This author made excursions in
pursuit of this grail when the complexity of it was still
cloakad in a sophomoric error. Note that this level of
effort only gains enough terms to make consideration of
eccentricities up to 0.01 possible. One might be well
advised to find a dependable numerical method for such

pursuits.

Other improvements would include adding the effects of
eclipse to the study. This would consist of developing an
algorithm which would give times of eclipse, integrating up
to the boundary and then coasting through the eclipse.
Another improvement would be considering sails which are

less than perfectly specular.

Lastly, there are infinitely many cases to be
investigated with the equations provided herein. Variation
of the orbital parameters with i or with the resonance
number would be a good jumping off spot for the curious.

A
Can a function be found which gives the best angle between H

and ﬁ? The possibilities are endless.

‘m

RS- PO

R <Y PR

PLRAVET - ¥ SOUCRRISIRIED - # SRRV P-4 SNCUCIARN

SNONSINOY - - SVNCHININT 20 + PN




a0
b s Sl e e

AL

kY

XD |

1

(]
»

» -
' -
o
-

o'-""‘l
22,9848

ZERELS

. . Y
' ﬂ)‘n) -).b“‘:_.‘n' .

(LA NTAENT AN

7.7

g
o

P4
AN Y

-

sd
>
'

)
B
a8 e

Appendix A

General Perturbation Solutions

For simplicity of notation, the following two functions

are defined:

C(a,b) = cos((an+buT+ag +b¥)- cos(ag-b¥) (A1)
an+b¥

S(a,b) = sin((an+bv)T+a¢+b}*)—sin(a¢-b‘f’) (A2)
an+ b¥

where a and b are constants here.

Since these functions typically occur in pairs such as
Cla,b), Cla,~b) it can easily be seen that the resonance

condition is simply:

n (A3)

ol

where a’/b is the resonance number, designated "x" in the

text.

The general perturbation solutions follow:
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:’ *'l'*” Aa=2a%D[df(/_§| [3C(1,|) +CO,-1) +C(|,3)+c(n,—3)]

:, +/§61[S(|,-3)- 5(1,3) + s(,-1) =5, N +,<233 L cli,0)+ k(c(,2)+
v c(1,-2))] +,_é_3,[ 35(1,-1) + 5(1,1) +5(1,3) +5(1,-3)] +,§5[c(a,-n) -

3* cCy, 1) +c(y,-3) —c(‘,s)] +/_24‘,[5(|, o) + '/Z(S(I,-Z)*S(I,Z))])
f:ﬁ —ZA,J,_(—/%Q.[S(:,—B) -5(1,3)+501,-1) - S (4, N +/§1 [-c( L1)-¢ (1)
xc(y, 3)+c(|-3)]—/63[5(|-z)-5(| )]+ g lel-0-c0)
+Cl,-3)-c (3] L5 (-0 50,0 -50,-3)- 50,20 + 4,

f [c(,-2) -, 2)])4—2&& /5(_C(I o) + Ya(c(,2)+c (1,-2))]
:: @ %31[5(;,—1) s(1,2)] +/Z33[C(l,l +C(1,-1)] +,%3.,[5(n,o)+/z(5(|, -2)
‘% +5(1,2))] +/3_35[C(1,—z)—c(s,2)] +,§4[S(|,—x) + 5(1,1)])‘2&243
N (—/ﬁES(l-z) -503,2)] +,é,“ L-c(,o) + %lcG)+c(,-2))] -

:; L5010 -50,0] +/o’.,[c(| 2)-C (1, z)]+,65fs(n 0) - %(
: 5(1,-2) + S(1,2))] +A[c(| ) - C(u)]) d, (/3,[ c(,)-cl,)
& +C(1,3)+c(y,- 3)]*'/551[3(8(1,-!)-5(1,!)) -5(;,-3)+ 5(1,3)] -
[-C(lo)+‘/z(c(|2)+c(|-z) +/‘)'.,[S(l‘l)+5(\')-5(l-3)
:" -S(l 3)] +é5f3 cCi-1)-c,0) +c(,3)-c(,-3)]+ /3‘[5(\0)-
i< % (s (1,-2)+5(,,2))] ) cl(ﬁfc(n%c(l ))]+,4;[S(\ -1) =
Py R
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5(,1)] +8,C(1,0) +/Z_3A,[S(l,-l) +s(, 1] +,I65[c(|,-n)— c(i,)]
+/3‘S(1,o))] (A4)

Ae = a‘"D[ clf(é;[3(€(l,l)+ Clz-1)) + C(2,35+C(1,—3)]
+{_§1[s<1,-3)- 5(2,3)+ S(2,-1)-5(2,1)] + éa[c(z,o) A
c(2,2) +c(2,-2))] +/§..[95(o,;) +35(0,3) + a(3{s(z-1) +
5(2,N} + 5(2,-3) + 5(2,3))] +€5[-3(C_(o,3) «clon) +'/z(
-c(2,3)+c(2-3) - Clz,1) + C(z,—U)J +/qﬁé[3(T+s(o,1))
+5(2,0) + 2 (5(2:2) +5(2,z))]) —ZA,JZ(-/‘_% [S(z,-s)- S(2,3)
5(2,-1) - 5(2,1)] p%[C(z,—s) +C(2,3)-cl2,)-c(2,-1)]
—/%93[5(2,-2) -5(2,2)] o [-3(c(o,3) + clo) + ul-clz,3) +
C(2,-3)-C (2N +Cl21)] +/§35[3(S(o,1)— 5(0,3)) + Ya(5(z,-))
+5(2,1) - 5(2,-3) - 5(2,3)] +€;[—5c(o,z) + nlc (z,-z)—c(z,z))])
+dz(—/€.[c(2,—3) +C(23)-c(z1)- c(z-1)] +/:“%[3( 5(2-1) -
S(2,1)) - 5(2,-3) * 5(2,3)] +/§3[-C(1,o) + 2l c(2,2)+c(2,-2)]
+/§q [3(500,1)- 5(0,3) + Ya(5(2,-1) +S(2,1)- S(z,—a)-s(z,s)ﬂ

+8.0-9C(0,1) +3C(0,3) + alal-cl2,))+cl2 -0} +C(2,3)-
/s
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C2,-30] +8,L3(T-S(0,)+ 5(2,0) - al s(2-2) + sz, 2))
L{
+ZA‘J,(/_§,[C(2,0)+ nlc(z2) +clz,-2))] +/34§;[S(2,-2)-S(2,2)]
+/d3[C(1-I)+C(1 1] +/é.,[3 T+S(0,2)) + 5(2,0)+ % 5(2,-2)
*S(.2]+85[-3¢(02) +4lc(2-2)- calrglaston +
% (5(a,- |)+S(1,»))]) 24,4 (/,[S 2,-2)-5(2,2)] +/§ [-clz,0)
+hlc(z,2)+c(2-2)] /%[5(1, N-5(2, ]+/%S’L,[-3C(o,z)+
A(c(2:2)-c(2,2)] %95[3(1 S(0,2)) + 5(2,0) - Ya(S(2,2) +
5(2,2)] 2, [-3c (o) + (a1 -C(z,l))])%i(,é, Lc(z-n+
l.‘
Clz,) +/§L[s(z,-|)—5(z,|)] +8,c(2,0 +/_§,[3sco,n+ V2. (S(25)
+5(2,1)] * Gs [-3C(o0,) + lc(z -1 -c(2n)] +/§3‘[3T+S(2,o)])]
(AS)
Ai= asz[ (/57[ CO,N+c(-N-Cl1,3)+c(i- 3]+/ﬁs[
~CN-CO,-N+C(1,3) +c()-3)] ) 24A</3[S(| 1)+5(1,1)-
5(1,-3) - S(I3]+,é3[c(|—z c(uz )+23<J (ﬁ,[cu -c(,2))
[SI -1) +5{ H)]) 24d,d (/6.,[5(10 /z(s(u-z) s(, 2))]
+/_68[C l,-1)- 11]) +d (/3,[3 (cO-n-cn)+c(,3)-
c{i,- 3]7_248[5 L,0) - /z(s(‘,—z)+s(|,z ) 33 </_§:37[C(|, 1=
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N c(,n) + B 5(|,O)> (Aé)

AQ = a®Desci [ cl,l(/%[ S(1,-3)-5(1,3) +5(1,-1-5(1, NE

/%[ch,o) +lc(,2) +c(t,-z))]>—ZA,JZ(,g.,[-c(n,:)—
cl-1)+C(,3) +C(i-3)] +/68[—c(;o + Yolcl1,2) —c:u-z))])
+d (/4[3(5(\ 1)-50,1))-5(1,-3) + 5 13]*'/58[ c(y,0)
+A(c(|1) c(a-z))]) + 2d,d (/57[5(1 2)-50,2)] /68[
(i) +c(- l)) 2d A(,d.,[c(:o )+ Yalcli2) + c(,-2))]
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Haming

St med tas gmiealnget)

faming is an ordinary diferential equation integrator.

x is the Independent vartable, in our case: time.

y 1s the state vector.

f is the right hand sides of the differential equations
to be integrated. f is explicity defined in a user-written
subrouytine called rhs.

errest is an error estimate.

n is the number of ordinary differential aquations.

h is the step size,

Avddium .,

P

nam muszt de in the calling proagaran and i rhz,

Thne First array paramztar of y »nlt § in Aam s whae

number of ODEs.
The Flrst call on Haming is with =0 s iy asy initial
ratuaes,ns-tor ODEzL o0 i A T 3 Aol n s
0 T e B I LRI S0 BT = ST ISR I SIS DE S Sal ST

2aF 1A '

AOGo000noO0O000co0n00NN0N0N

common JhamS w22 A AT L arr st i3 o,
DAS RIS BRI IR B
. iTinkt) 199,193,200
e 18 o = x
A hth = h/2.%
. 2all rhsil)
- do 40 1 = 2,4

-\
’d % o= x + hh
v w

37

44

bbbttt

Loa

1-i}) + hh*fi1,1-1)

DO O

oy
[a R

1-1) + h*fli,1)

Auadhendncdun RN A

59

Q- O
SO L ~0

poyy
=

H + JL*F(1,4
IFL absi{hh-y{i.3)
isw = @

g yii1.4) = hh
g continue
X = XO

hs(1)

) 148,140,159
jaw + 1

) 50.2890,2%!
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if} .pressure force. The equations of motion are expanded from the Lagrange planetary
'u; equations in their acceleration form znd are solved assuming small changes in the
j?f orbital elements over the period of one orbit.
N Resonances are observed between the mean motion of the sail and its
3: precession rate. The one-to-one resonance case is examined and numerical methods
N are employed to verify the analytic results for the circular orbit case.
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