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Abstract

This paper addresses orbital perturbations in the

two-body problem of an earth-orbiting solar sail undergoing

free coning motion in a circular orbit. The coning motion

controls both the magnitude and direction of the solar

radiation pressure force. The equations of motion are

expanded from the Lagrange planetary equations in their

acceleration component form and are solved assuming small

changes in the orbital elements over the period of one

orbit.,,

S Resonances are observed between the mean motion of the

sail and its precession rate. The one-to-one resonance case

is examined and numerical methods are employed to verify the

analytic results for the circular orbit case.
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ORBITAL MOTION OF A FREELY. CONING SOLAR SAIL
*1

I. Introduction and Problem Statement

Introduction

Spacecraft propelled by solar radiation pressure are

being considered for use in space exploration. Sucl

vehicles require large areas of extremely light-weight,

highly reflective sails to convert the linear momentum oi

sunlight into thrust for the spacecraft. While the

acceleration of such a vehicle is quite small, it is

continuous, variable, controllable, and does not require the

expulsion of mass overboard as with traditional momentum

exchange techniques.

Solar sailing vehicles can provide an adequate means of

transportation across the long distances typically found in

space travel. The force applied to feasible sails is large

compared with space drag (Ref 8). While the accelerations of

such vehicles are small, the velocity built up over time is

substantial. A solar sailing vehicle which can achieve a

velocity sufficient to escape the solar system is feasible

(Ref 4). Escape from Earth orbit is possible after a month

or two (Ref 4). The solar sail has the additional advantage

of simplicity of design when compared with other low-thrust

propulsion systems (Ref 8).



In attempts to determine the best steering program for

solar sails, a variety of approaches have been tried.

Garwin (Ref 4) began the investigations with a sail that

could be furled when sailing into the Sun's rays, and

unfurled when sailing with the solar flux. This is similar

to a method proposed by Van der Ha and Modi (Ref 9) which

involved "on-off switching". London (Ref 6) sought the one

best constant angle for a given mission. A more advanced

method was introduced by Fimple (Ref 3) who determined a

steering program based on the time rate of change of energy

increase. All of these approaches have in common that if

the sail is rotated at all it is rotated with the angular

momentum vector coinciding with a body axis of symmetry,

Ii.e., spinning. This article represents a deprrture from

this traditional approach.

The question is, essentially, how to best control the

thrust of a solar sailing vehicle. Because of the inherent

flimsiness of light-weight sails, quick maneuvers are not

possible with solar sailing vehicles. Looked at another

" .* way, if a method can be found which both provides adeauate

"° performance and restricts the sail to smooth rotations, then

the necessary structural strength and weight of the sails

can be minimized. Adequate performance is defined in terms

of the spacecraft's ability to increase the semimajor axis

of its orbit and to change the inclination of its orbit.

Specific performance criteria depend on mission

--
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requirements. Control of the coning motion would be

accomplished by control of the magnitude of the angular

momentum vector.

This work uses techniques pioneered in Capt Salvatore

Alfano's thesis: "Low Thrust Orbit Transfer" (Re+ 1). For

those not familiar with the work, the consideration of

orbital changes for very low thrust vehicles is broken into

two parts. The first part is a fast timescale problem in

which many orbital parameters can be considered constant

over one orbit, the perturbations being found and added at

the end of the orbit. The second part is a slow timescale

problem in which many perturbed orbits are linked to achieve

a transfer. What follows here is the derivation and

( examination of the equations for the fast timescale problem

for solar sails.

Problem Statement

The objective is to derive the perturbation equations

for an earth-orbiting solar sail which is undergoing a

coning motion. The sail is modeled as a flat, rigid, plate

• which is undergoing the free coning motion of an

axisymmetric rigid body. During the course of one orbit,

the sail is considered to be torque free. The earth is

modeled as a point mass. Because of the low thrust of the

vehicle, only small changes in the orbit are possible.



.-R, V v

Thus, the semimajor axis (a), inclination (i), eccentricity

(in), argument of periapsis ((0), and the longitude of the

ascending mode (fl.) are considered constant over the orbit

and then updated.

The perturbation equations are to be examined

* analytically to determine what, if any, important resonances

arise. A promising resonance case will be examined.

-4-



II. Attitude Dynamics of a Freely Coning Solar Sail

Fundamentals of ConingMotion

The attitude motion of the sail is that of the freely

coning motion of an axisymmetric body. The body is a flat,

rigid, plate which exhibits perfectly specular reflection on

both sides. A review of the fundamentals of free coning

motion is appropriate.

Coning motion is the motion of a torque free

axisymmetric rigid body in the case where the angular
A

velocity vector0 c , is not colinear with the angular

momentum vector, H. The assumption that the body is torque

free implies that H is constant in direction and magnitude.

A A
It has been shown (Ref 5) that H is coplanar with t and a

A
vector along the body's axis of symmetry, b . Furthermore,

since the orientation of the angular momentum vector is

constant in inertial space, the plane which contains the

three vectors rotates about the angular momentum vector (Fig

A A
1). We can designate the angle between H and b as the

3

nutation angle, 9, which is constant. A second angle,
A

is the angle between 61 and b•3 This plane rotates with a

constant angular velocity A. As the vector plane rotates,
A

describes a space cone around H. This cone remains fixed in

A A
inertial space and a cone defined by b and w rolls without

slipping on the space cone. For a body with moments of

-5-
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inertia A', A' and C', where C' is the moment of inertia

about b3 , the following relationship applies (Ref 5):

tan& = Atanr
C" C)

For cases where CO > A', this implies that 7 > 9, as shown

in Figure 1.

A
Consider that H is colinear with an inertial reference

A A

axis, K, and that the I and J axes form a right-handed

A

orthogonal set with K (Fig 2). Consider also a projection of

AA AA

b onto the I,J plane. This projection will rotate about K

A

and, therefore, about H at the constant precession rate V

given by:

- C/A -C') cos& (2)

A

where OC is the angular velocity of the body about the b3

axis (Ref 5). For - to be positive in the case where C' >

A', oC must be negative. Since ( is just the spin of the

plate about its axis of symmetry, this presents no

difficulty.

The main points of interest are that the precession

rate, nutation angle, and the angular momentum vector are

all constant. These facts provide the basis for

-7-
S-. I.* - *.o 4. .
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determination of the magnitude and direction of the thrust

vector. From this general groundwork, specific equations

for the attitude motion of the solar sail can be found.

Attitude Motion of the Sail

The solar sail is a flat plate, perfectly specularly

reflective on both sides and with moments of inertia A', A',

and C'. C' is the major axis of inertia and lies

perpendicular to the plane of the sail. The body axes of

A A A A A
the sail are designated b 9 b.9 and b, , where b and bz

A

are axes about which the moments of inertia are A', and b

is the axis about which the moment of inertia is C'. (See

Fig 3.)

The original orbit plane will be considered inertial.

A A A A
The inertial axes will be designated i, j, and k where k is

A
normal to the orbit plane, i is in the orbit plane and in a

plane. perpendicular to the ecliptic and containing the

Earth-Sun line, and J forms a right-handed orthogonal set as

in Fig 4. The angle between the first point of Aries and the

Earth-Sun line is considered to be constant over one orbit.

Both the magnitude and direction of the thrust are
A

functions of time. The magnitude in the -b direction is

simply:

-9-
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Fig 3. Solar Sail Body Axes and Moments of Inertia
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where s is the solar constant, is a sail parameter

dependent upon the reflectivity and transmissivity of the

AA
sail, A is the area of the sail, A(b e s) is the projected

area of the sail on a plane perpendicular to the Sun's rays,
A

and g is the unit conversion factor. The unit vector s,

shown in Fig 59 gives the direction of the Sun and is

defined by

S = COSL L - sini k (4)

The definition of i used here and shown in Fig 4

implies that Jfl is fixed at a negative one-half pi radians

A
from the i axis. There is great simplification in this

choice, and little loss of generality for the current

problem. The maximum change in inclination can still be

Nseen.

The direction of the thrust is -b , assuming that b
33

is on the sunward side of the sail. Since i, i, k, s, K and

A are known and constant over one orbit it remains only to

A
find b3  expressed in terms of functions of time.

A
Given that the angular momentum vector H has an

- arbitrary orientation in inertial space, we can define a

- 12 -
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coordinate system I, J, K such that K is along H, I is

perpendicular to H and lies in the ij plane, and J forms a

Sright-handed orthogonal set. This permits the definition of

H by means of two angles of rotation and 7, as shown in
A A A

Figure 6 (Ref 10). Any vector in this I, ,J K frame can be

A A A
.. expressed in the i , k inertial frame by the

transformation

U.-

p.HI

3(- = (5)

-' where

ox sinx o
R, 60[ cosx Rinx x) -sinx coax

o -sinx cosx 0 0 (6)

°'

The unit vector b3  is defined in the I, J, K frame

shown in Fig 7. This leads to an expression for b3  in the

WI form:

A' A

6-sinecos(v(t-t ))I + sinGsin6(t-t))&+ CoseOK (7)

'.

*; > , ',"... .. .-,,, .: . .. .: .. -' .'..:...-. V -- .i .- - ' .-V -U-v .:-_ . ''' - -. ' -' . •-- - . . -. •. - . . ."
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The nutation angle ( is a constant over one orbit. The

precession angle V(t-t.) is obviously a function of time.

For simplicity, to  is set at zero and a phase angle, Y, is
A

used to offset the starting point away from the I axis when

desirable. As will be seen, phase angles are crucial

because a given coning motion can create different effects

depending on initial conditions.

To get thrust magnitude we need (b, * ) which leads to

A A A
the necessity of expressing b in terms of the i, j, k

'3
reference. This is accomplished by transformation Eq 5,

resulting in

LSeCvtC-j +cS~C7 5 ,,, 5rS0C/tsq + CstcqcJ -1csrC Cacos (8)

which implies that

SA6s 3- 5 c os(7't +ye) - ~s in (-v+Y) + (s 9)

where constants d, , d Z and d3  are defined by:

c1l sin cGos cosZ

6- 1-
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It is convenient to define a set of axes with their

origin at the center of mass of the spacecraft and with axes
j AA

Up V, and W in the orbit radial, tangential, and normal

directions,' respectively. To get the direction of the
A A A A

thrust, b must be expressed in the U, V, W reference
3

*-frame. This is accomplished by noting Figure 8 and writing

the transformation

W4. {1I} = f

where f is the true anomaly and is a phase angle.

Transformation (11) results in

CvCf -A SVC +A/dC +,dCV5 + 13S;/f+/4sf
b3 VCV5s +1A2,V.Sf -A 5 -t4CV-cf +/45 5VCf- ,4C4

sasin, c~cos, 'Et+',~ nt+o 12

wh:ii th osat through are defined by:

-17-
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,.. = sinecosqsin

43 = cosOsinrsin;

/4: sin~sin

A5 = sinO cos. (13)

A~cos~snrtqcos

/87 S irl6 si rr

/8- cosecosq

These results provide the accelerations in the radial,

tangential, and orbit normal directions. Remembering

Newton's Second Law:

F=ma c = F/m (14)

then

U -T/m D (b3. )
9(15)

- 19 -
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V= .*, b,** r ,V(6

W T/m D(63.~ 2 ' 3 \/ (17)

and l et

D h / (19)

be called the sail constant, where g is the unit conversion

factor. The components of acceleration in the radial (U),

tangential MV, and orbit normal (W) directions are now

known, along with the magnitude of the thrust MT.

-20-
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III. The Orbital Equations of Motion

The objective is to develop the orbital equations of

motion from the Lagrange planetary equations in their

\ -' acceleration component form. The Lagrangian equations are:

L sin-. + ZV(I eCo5-) (19)at n i_ '17 - n "z)'

_ _"_ _ _ _ _ _(20)

.W ( )(21)

n( I+ eco ) sinL

Au, -UCos (- + V(z -e'"(+ e C 05S srz
.t.nce na.e(6 + e cos4)

-WS'n( CU) cot(1-e)'Il (22)

n0( I e Cos)

+ e)ecos - Iea

n ae- L I+ ecos (23)

21-
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where U, V, and W are the spacecraft accelerations in the

radial, tangential, and orbit normal directions and n is the

mean motion. The true anomaly is designated 4 and consists

of

= n(t-t) -p (24)

where t. will be taken to be zero and is a phase angle

A

between the i axis and the beginning of the orbit.

For circular orbits, w is arbitrarily set to zero, and

the time derivative of the argument of periapsis is

undefined. This reduces the number of equations of motion

to four. Simplifying for e equals zero we get:

JC 2V (25)

(it n

de =Usin - 2Vcos (26)

dt n a na

c. Wcos (27)
dt na

.-. .: .

-22-
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*-_- = Wsinf
8 t naosinL

(28)

Substituting Eqs 15-17 into Eqs 25-28 results in:

Ait n (29)

-:12 dtn a.

(30)

ilt na

(31)

dt na sini.
(32)

- 23 -
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These are the orbital equations of motion for the

freely coning solar sail in the Lagrangian acceleration

component form.

To obtain the changes in orbital parameters Eqs 29-32

are integrated with respect to time over one orbit, the

period being determined from

2-/T '/

Perturbation Solutions

- To obtain the general perturbation solution for the

orbit of a freely coning solar sail, Eqs 9 and 12 are

substituted into Eqs 29-32 which are integrated with respect

* to time between the limits zero and T. Since these equations

contain both f and -V which are functions of time, the

perturbations solutions are quite lengthy. For this reason

they have been placed in Appendix A. The reader is strongly

urged to examine them in some detail before proceeding. The

perturbation equations are given here in abbreviated form

for notational clarity:

IT

Ao,= A dt (34)S t

-24-
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IV. Resonances

Inspection of the equations in Appendix A indicate the

presence of resonances. These appear as terms in the

denominators which could go to zero if the correct

relationship between -V and n existed. When a resonance

condition is met, the term in which the resonance occurs

becomes large. This is the key to maximizing the small

changes in the orbital elements, which is our objective.

Several different resonances occur in the perturbation

solutions. In order to more easily select useful

resonances, all resonances have been displayed in Tables

I-IV. The resonances are given in the form:

Xn (38)

where x is the resonance number given in the table. The

tables display the resonances in a grid which indicates

which constants each resonance affects. For instance, the

one-to-one resonance enlarges the constants A' , L s / and

A' each multiplied by the constant d3, in the Lna

equation. A negative sign beside a resonance number means

that this term tends to reduce the perturbation, assuming

both phase angles (0 & )V) are zero. Adjustment of the phase

angles can change the sign of a given term. Using these

a26

- 26 -

"' " a" -" * " -. ,' '** : : :' "..a.. S. * :. :- i : ,%-* i; :: '': ": -::". : - : ,-



TABLE I

' Resonance terms in a

(Constants) 2d d3  2d d

A -1/2 1/2 -1

~ 49 1/2 1/2 1
-a

-1 1 0 aI

A 1/2 1/2 1

" -1/2 1/2 -1

i 4 1 1 0 :

(Constants) 2d, d."

O." A 1, 13 -1, 1/3 1, -1/3 .

.4 -1/2 1/2 1/2

6 1/2 1/2 -1/2

64m

27

I

-27-
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TABLE I I

Resonance terms in a

(Constants) dl 2dl d% dz

," -2, -2/3 2, 2/3 -2, 2/3

*"-,,.z9 2  2, 2/3 -2, 2/3 2, -2/3

All 2, 2/3 2p 2/3 2, -2/3

,,,6'. -2, -2/3 -2, 2/3 -2, 2/3

(Constants) 2d, d3  2d d3  d

.: /1 -1 1 -2

?4A 1  1 2

/ 1 $ 1 2

-1 $-2

3 2 2 0$
P-2

-282
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TABLE III

Resonance terms in i

(Constants) d 2dI d± c

1 -1, -1/3 -1, 1/3 -1, 1/3

/ 1/2 1/2 -1/2

(Constants) 2d d3  2d d d3

1/2 1/2 -1

z/ 1 1 0

TABLE IV

Resonance terms in

(Constants) d 2d, d, d

//7 1, 1/3 -1, 1/3 1, -1/3

•g/ 1/2 1/2 -1/2

(Constants) 2d d3  2d d3  d
32-3 3

137 1/2 1/2 1

/, 1 -1 0

9 ,2
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tables, a useful resonance can be chosen.

One-to-One Resonance Case

The perturbation solutions for the one-to-one resonance

case, integrated over one orbital period, are given here.

A a a?/ DTf (c8/LtMI + ,/&qcos4-Y) - (3+~)n(Y)

(Jz/2)z(zd,) sin(0-Y-) + (/8sAId) Cos~kL +2JJ

• :(OS.o( -,g3,) Sin-i,) + 3A-dA,) on / *5 1 r (0

(39)

(a= D/) J'f/9 sIn( +,9(6 + cos(Z(-4))}+2a d{A cos (0-1')) +1,96in((0-Y-)1 Jz~ In(-)
+ .' s . in4,hY 9

/65 (;L ( -+ 6/41J + AdI ,83f ,( s (A{1n (Z iY,))+
+.. . cos 1,+

(40)

:,:: AL -- (oDT/z)2d 3/ {J, cos (0--V') + -sin O-Y)-

/7{(J" /1) (3 JIMLf+ 81] sin(O-Y') + (J 1 JZ/2z)coS(0-Y'0i

a... (41)
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-(ai D T/ZsInL){.,4{ [ JI.) + ( 3 J)/+ ]( 3 t

-AJZ/) 51n (0--) +21,,J i 0Y JcsO?
(42)

The one-to-on. resonance case has several interesting

properties. First,, it the most frequently encountered

resonance case in the A a, Ai, and Afl. equations. Since

the performance requirement is to have a large change in the

semimajor axis and/or the inclination, the one-to-one

resonance case is preferred. Secondly, when the one-to-one

COON resonance is selected and the integration is taken over one

orbital period, i.e.,

nT= ZTV (43)

then virtually all terms not containing a one-to-one

resonance disappear. The only exception is the last term in

the A e equation which, along with four other As terms

which are one-to-one resonant, cannot be integrated to zero

under any circumstances. These five terms are non-periodic

* . and can be eliminated only by proper selection of constant

angles. Non-periodic terms occur only in the A.e equation

-31-



and are indicated by an asterisk in Table II.

Thirdly, the one-to-one resonance case is the only

integer resonance case in the /a, Li, and i equations.

To integrate non-resonance terms to zero for the fractional

resonances requires a period of more than one orbit. This

limits the orbits for which the perturbation assumptions are

valid to smaller semimajor axes than for the one-to-one

resonance case. Conversely, if one orbit is taken as the

upper limit of integration, none of the terms would be

eliminated and the simplicity of the analytic method would

be destroyed.

Other Resonances

The two-to-one resonance case changes e only. In the

event that the mission objective involves changing the

eccentricity only, this would be the resonance of choice.

Because of the circular orbit assumptions, this case is not

investigated further here.

The one-half-to-one resonance case would be the

secondary choice for changing a and i, but it should be

noted that the two-to-one resonance terms in Ae do not

integrate to zero in this case. Thus, no advantage over the

one-to-one case is evident.

-- The one-third-to-one resonance case will eliminate the

-32-



two-thirds-to-one resonance terms in Ae and vise versa.

However, either choice results in no resonance terms in A i

or ,Ad, which contradicts the performance objectives.

Any integer resonance above two-to-one results in

nearly all changes being equal to zero over one orbit. The

five terms in A a which cannot be integrated to zero can be

set to zero by appropriate choice of orientation angles.

These resonances, then, represent orbit-keeping strategies.

Consequently they are not of interest for present

purposes.

-- 'A consideration of specific cases is provided in the

next chapter.

-33
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V. Results and Discussion

Resul ts

For the single resonance case, many cases were tested,

ranging from the trivialy simple to the arbitrarily

complicated. These cases were tested by numerically

integrating Eqs 29-32 and comparing the results with the

analytic solutions, Eqs 39-42. The numerical integration was

accomplished using a predictor-corrector technique contained

in a subroutine Haming, contained in Appendix B. The

Earth-Canonical system of units was used and a value of D

was taken as 4.65 E-06. For the test cases, the semimajor

axis was taken to be five DUE.

Motion in the Eclitic Plane.

The most trivial cases are those in which the

inclination is zero. This leaves the longitude of the

.. ascending node undefined, and the problem reduces to three

equations.

Sinnin!. The simplest case is the one in which H

is parallel to k, and the nutation angle is one-half pi

radians. This leads to the analytical expressions:

.4
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Aa=-ck DTsin(¢-y) (44)

Ae :Ai:o (45)

Obviously, the maximum change in Aa is when

This is verified in Fig 9, where the line represents the

change in 6 a over time and the "x" indicates the point

predicted by Eq 44.

A
Tumbling. Tumbling is simply spinning with H

A A A A
parallel to . or i. The case of H parallel to i is trivial,

since the edge of the sail is sunward and no thrust is

produced. This case was numerically verified. For the

non-trivial case we have the analytic equationst

io -3 ol3/DTsin(€-'0 (47)

Ae. : (48)

- 35 -
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The interesting result is that both Aa and A i vary

with the sine of the phase angle difference. So for this

case, changing Aa implies changing A i. This case was

numerically verified and the results are shown in Figs 10

where the line is the variation over time and "x" marks the

point predicted by Eqs 47-49.

Coning. The simple coning case has H directed at

the sun and a nutation angle of one-fourth pi radians. The

resulting analytical equations are:

.i-: Ao -~ a 2DTcos(O_ ) (50)

e=o 0(51)

s--ii a'DTsin(#-Ys) (52)

These equations indicate two important results. First,

by selecting the phase angle difference to be in the fourth

quadrant, both Aa and A i can be positive. Second, and

most important, by selection of the magnitude of the phase

angle difference, it is possible to trade off fa for nAi

and vice versa. Any combination of LAa and L i within the

magnitudes given is possible. This includes, of course,

selecting only L a or only Ai. Two cases were verified

- 37 -
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numerically: the maximum Ai case and the maximum z a case

both showed excellent agreement between analytic and numeric

solutions. The results are contained in Figs 11.

Motion in the Inclined Plane.

The next level of complexity is to consider cases in

the inclined plane. This adds equations for the change in

longitude of the ascending node. Initially, an inclination

of thirty degrees was considered and the simple cases, with

some variations, were considered.

-Sinning. Two spinning cases were considered: case

A A A

one with H parallel to k and case two with H perpendicular

to s and J. The analytical equations for case one are:

ao =-Cos a D?/ZD (0-r (53

L e = L =/AX2 0 (54)

As expected, case one showed substantial change in 6a

. C.274E-02 DU,) and no other changes. These are the

analytical equations for case two:

= (3-+2 +3l/ Tcos(o-Y-)

- 40 -
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i ,... - 7

(56)

16
-:.

SAf2 3a"2DTcos(5-Y -) (58)8

Case two featured a phase angle difference of negative

one-half pi radians and so showed significant change in !ni

(.14E-03) and no other changes. This verifies the

importance of the phase difference in determining the

-0 changes in the orbital parameters.

Tublinag. Two tumbling cases were considered: case

one with H parallel to j and case two with H parallel to i.

The analytical equations for case one are:

A o (60)

..6 DT sin (61)

161
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AX. = a'*DT[Ycos(-) - -V3 sin (C-w)J (62)
Nl'

.

Case one, with a phase angle difference of negative

one-half pi radians, showed significant changes in /2ia

(.226E-2 DUO), Ai (.137E-3) and Ani (.15SE-3). This

indicates a possibility that similar cases could be used to

provide a variety of changes in A a, ZAi and AnI, depending

on mission requirements. Case two analytical equations are:

n, a=,CL(63)

LAe = (64)

./i. -a3atDT sin (-Y') (65)

Afl 3&1 DTcos(~Y)(616

Case two was tested with the same phase angle

difference as the previous cases, providing significant

change in A i C.695E-4) only. This strategy provides the

option of changing i or a andn , or combinations of all

- 44 -



three.

Coning. Four cases of coning were considered: two

(A A
each of case one (H parallel to s) and two each of case two

A A
(H parallel to i). In case one, phase angle differences

were changed to test the case for maximizing !na and 8 i,

and likewise for case two. The analytical equations for

case one are:

S 3/2DT ~)(7

LAe o (88)

Zf- - GfLa.VDTcos(p(-)-) (70)

The equations for case two are:n

L__+13_____ 2-D~o (71)

-45-



+ --d) GL T5n(

:':::'.. Ae= (2 -¢ )'DTin(- /),

A5r I5-r " DTcos(0-,) (74)
64

Case two proved slightly superior for changing Li,

(.121E-3 vs .112E-3) with no other orbital parameters

changing. Case two also proved superior in the second phase

angle difference case, giving superior performance in Aa

(.217E-2 vs .646E-3 DU.), and A&1 (.242E-3 vs .224E-3) with

no other orbital parameters changing. Note that maximizing

a involves maximizingX . Trade-offs can be made between A a

and Ai. Agreement between numeric and analytic results was

excellent.

Arbitrary Cases.Three cases were tested in which

phase, orientation, inclination and nutation angles were

randomly determined. Agreement between numeric and analytic

results was excellent. One such case is displayed in Figs

12.

Nutation Angle.

The search for the optimum nutation angle was

A
* accomplished on a case by case basis. The case of H

pointing at the sun, inclination equals zero, yields an

- 46 -
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optimum nutation angle of approximately 35.2 degrees. The

change in na as a function of 6 for this case is shown in

Fig 13. For the 30 degree inclined case with H parallel to

A
i, the optimum nutation angle is 35.2 degrees for increasing

* - a but is 40.2 degrees for maximizing 6,1. For the 30

A A
degree inclined orbit with H parallel to s, the optimum

nutation angle is again 35.2 degrees for changing Aa and

40.2 degrees for maximizing Ai. These are surprising

results, to say the least.

Limits of Validity.

A study of the variation of L a with a was done to find

at what point the perturbation assumptions became invalid.

The study indicated a maximum change in A a of 0.25 DU, at

-10 DU 0  for the spinning case. This will serve as an upper

bound on the usefulness of these equations.

Discussion.

Conclusions.

The spinning case is preferred for missions where

changing the semimajor axis is the only requirement. Few,

if any, such missions exist. This implies that correct

inclination was achieved at insertion into orbit, which

implies that impulsive power sources were used. The cost of

such sources can be avoided by using the sails capability

- 51 -
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for inclination changes.

The tumbling case is to be avoided unless mission

requirements call for the ratio of L a//8i inherent in such

a strategy. This is unlikely.

The coning cases are the only ones which provide the

opportunity to trade off /2 a for L i. Any ratio of Aa/ iI

desired can be produced by adjusting the difference in the

phase angles. Coning motion strategies thus compose a set

of strategies of considerable practical interest.

The 35.2 degree nutation angle results are suspect

until a more detailed study can be accomplished. It is

possible that for the differences in the cases studied that

the differences in the nutation angles were small enough to

escape notice.

Directions for Further Study

More questions have been raised than have been

answered. Besides the obvious point of investigating the

optimum nutation angle in more detail, a host of other

topics suggest themselves.

The many-orbit case needs investigation. This involves

establishing an inertial reference frame in the plane of the

ecliptic and updating many of the angles assumed constants

in this study. Complex missions can thus be analyzed.

- 53 -

.x . . . -0-



Including eccentricities not equal to zero will add

much to the generality of the results but the valiant soul

who attempts this should be forwarned: the equations in

(esinco ) and A (ecosc ) will be approximately forty

hand-written pages each. This author made excursions in

pursuit of this grail when the complexity of it was still

cloaked in a sophomoric error. Note that this level of

effort only gains enough terms to make consideration of

eccentricities up to 0.01 possible. One might be well

advised to find a dependable numerical method for such

pursuits.

Other improvements would include adding the effects of

.J eclipse to the study. This would consist of developing an

algorithm which would give times of eclipse, integrating up

to the boundary and then coasting through the eclipse.

Another improvement would be considering sails which are

less than perfectly specular.

Lastly there are infinitely many cases to be

investigated with the equations provided herein. Variation

of the orbital parameters with i or with the resonance

number would be a good jumping off spot for the curious.

A
Can a function be found which gives the best angle between H

and A? The possibilities are endless.
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Appendix A

General Perturbation Solutions

For simplicity of notationg the following two functions

are defined:

C(..b) =cos((ln+b ) T+a+b + )-co(cLO-b)) (Al)

an +b

S(a,b) = sin((an+b)T+o,+bY)-sin(a.L-b-f) (A2)

an + b

where a and b are constants here.

Since these functions typically occur in pairs such as

C(ab), C(a.-b) it can easily be seen that the resonance

condition is simply:

7= a .n (A3)
b

where a/b is the resonance number, designated "x" in the

text.

The general perturbation solutions follow:

.VV
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3)A[~i- 5(1,3) S (1,-1) - 5(1, J')+4 CA 1(,J 0) YZ( c(,Z)+

-,z)6 0s +z -SOIz)-.A3I) + -6 Ec( 0

+C(l 1) + C(03I) 3)11J) O,0 Y 5

+c~,-3-c l -)5) 3) ~5 5 11- .. 1i) -s(1,-0] - I3)

+,(5)3)+ C (i:[)33 4AI (I, ci-)] +, [ SGijo) -+ i1

+ c 0 -3)- , )] y 1 -C +(o) + 5 ((IZ3) +c5(1,3)]-

5C( i-z) + (,2)) +,zatdcI,-i-Cci,D) + ciZ(-(, Ec.-ci-

56(I Z) - (,-) ,4 J3(S ' 5s) -(1.,) + (5~) 1-2.

+ 5(1,))]+6 (VZ Cj2c2)] +, 5s' ,I) 0sG,) -s03)

~45E3(C) 1,-i) 1)]i,

0.s,-z ~ z) + c1b,-(A 1[c-050t r 4(Ij )] + 5s(1,-) -

43 E- *:0 +IZ( I )+C( ,2 )
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- rr . - .7
E (I+ (1, 0] - - , -1)]

a .. I... 
. ..

' .-. 5(,11)] +j30C(10O) d/CS1)-,- s ] +*,I[c(,-,)- c(, 1?]

r 1 S(1,o))] (As)

c (z,z) + c (2,-2))] l [ (0,1) + 3 (q, ) + (,-)

c x 3.,) + SCz), - C U, + ( S (,
-c;Zz -3) c(z-3) -- C(2-,)1) -C(2,)))

- 1

+5(2,0) +/IC 2-2)j)_(,3

5' ,4L(2.,-Z)-5 (2,201 +, E- 3(C (o~,3) + C (oi) + Yt (z, -3)+
68

c'.K )Z])- 1,1 C 2,il+ s 3(5(. 1 0-) 2

+ s(C, - (2,-3) - S(.3'] + 5c(oz) + (2(c (z-C(z)- 1cz,2))])

'a S.U . ) 3 4- 5(2,) +,6 -c( ) + C (2, 2)( + ,) )'SS

.+, [3( S(o,,i)S- s(o,3))+ '/(5 (,-) -'s5z, 3- (z,-)- s(;Z-3))]

:-o.,,. 4 [- C (o,5 + 3 C (o,a) U,( -3) (;,) ;,- +c( -

5..57
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(,z~ 3.lo

+2dIc5 (Ac (z, ) + /2(c ()Z) + c (;7-))l+ ~ ,-)s,

A1)(+,-C)z,J 01 E[3(T+ 5 (o~) + 5 (Z,o0)+ Y2-(5(2,-2)

+ .5 I2) j + 5 - C (0,z1) + A (c (:z,-Z) - cC,Z))1 + [I35(o, 0) +

+ x( ) )+ C (z.,-2))] -,' [z- 1) - S (2,0 gi) 3C' [3(o, 2) +i
V(c(.) -c ('z,2)] -j5 3(Tr-.5(o, z)) 4e- 5s(Lo) - IA 5 (2.,-z) +

C (2.,)] 3c4[ (0,-i) +S(2. ,- A c I) [c~ ()- ) +

Vz) 01++A[3Co)+Y(C2,I C 2,)] 3T+(2.,o)1)l

(A 5)

-C(,)c( I-) + c( 3) + cC131)- 5AJ(,7 s',i s(1,

(1) 3 ) 3 -AcI ,Z2) C 1;~ 2 ,J I-)- 1 -

+,46~~ 5c( 1)-(1,1) Zclc 3 ( C (,-) -z(C ,-0) (, ))

8.

~~, ~ ~ ~ /1 cES-) + j(t,o0) - A (( Oj-2-)+ 5 (1,Z))J)4-c1 (,6 cqI -

be - 58 -



c 1 l+ '/(c(0)) (Al-)]-4~(6[cIl 6)

c~i,-i C(1J3) +C ()-3)] +176,1-c(i,o)+ Yz(c(i~)c

+ YZ (cI 2,) C(1)-2))]) + 2zA cj / 4 7 (d,2-5izl-,~

(A7)
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Appendix B

Hami nq

c Haming is an ordinary diferential equation integrator.
c x is the Independent variable, In our case: time.
c y is the state vector.
c f Is the right hand sides of the differential equations
c to be Integrated. f is explicity defined In a user-written
c subroutine called rhs.
c errest is an error estimate.
c n Is the number oF ordinary differential equation=.
c h is the step siz.
c
c
C mut be in thi , callin,g proir;nm nd in rhi.
c The fir3t array rciiter o- ', y n v .n i: i
,c umbr o ODEs.

h c.li on i; % ; . i.o .iii ." N ,;- .7- i_,C ,l C-S n .~ r f .tii D a' I

c
r, ;1iU0 . '.5, a , 4 r r i; t 3 n

'. t n'.,!, Z

hh h!2..',r

call rhs 1)
do 4Z 1 = 2.4
x, = x + i h

3do 231 1, n
2)0 y( ,I) = :ii,1-i) + hh*f. ,l-l)

m ,call rhs(l)
:: = X + 'n h
do 3 1 = 1. n

3Z 1,1) = (i.1-1) + h'f( i.1)
4J call rhs(l)

j =w -= I
5 lsw = 1

do 12.9 1 = 1,n
hh = .i.,) + h( .*f(i,1+19. f(i.: -. "efi.3

i - f(i,4) I / 24.
if( ab,(( hh - y(!,2711(F( .. 2)*h ),1c. to! ) .go Lo 7.1
isw = Z

70 y(I,2) = hh
vh = y(i.1) + h'( f( I " 4..'34Z ,3) + ' ., )):. .
If( nbs( hh-y( 3),(21 .3)''37 .U. tol ' 'o Lc- .
iaw = 0

9Z y(i,3) = hh
h = = y(i.1) 1 hif 3..vf i.1) + 9..7* f 1.2: 1 + ... , '

I + 3.4*f( ,4 I 3..9
% If' abs(!hh-y( i.4))/F( f.'H)).lL. tol ;o L, o2

13W= 0
119 y(i.4) = hh
122 continue

X >X0
do 130 1 2,4
x x + h

130 call rhs(l)
40faw) 14,0.140, 150

14' jaw - jsw + 1
i1(jsw) S .280,2 ,Y

150 x = xo
l3w = I
jaw =

60
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do 1I G = i In
"416Z errest(i) = 0.0

nxt =I
go to 280

19Z jzw = 2
n:<t = lcabs(nxt)

4 npl = rnod(rxt.4) + 1
Co to ( 2i!3. 13;J). Isw
210ao o (7.J27Z,27.',222J).nxt

22ZY Isw = 2
23Zr nii2 = mcd'npl,4) + I

n-o -m.*Jnini.4) + 1

1nm

1n.p

250~~~ '(I.K = ' ,n. ) 97 !334* '01t33IG2 e rr 2nt(I
*o to '2.j.27Z),j~w

25Z call rhs(np1l)
2170 rxt = mpl
43.9 returni

'- 4
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