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ABSTRACT

his thesis addresses the problem of determining the

optimal number of spares for a multi-item inventory system

with a procurement budget constraint. Various inventory

models are considered with objective functions like time-

weighted units short, units short, essentiality-weighted

units short and pseudo-availability. Solution algorithms

are derived using the generalized Lagrange multiplier

approach and a marginal analysis approach.

Sample data and output results are provided and compari-

sons of the alternative models are given. Finally, a dis-

cussion and example is given. of the use of the models as

a means of estimating the budget required to attain a speci-

fied level of performance.
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I. INTRODUCTION

In today's world, while all systems are becoming more

and more sophisticated, the control and maintenance of

inventories of these systems is a problem common to all

enterprises and military services. In private and commer-

cial concerns the effective control of inventories can re-

sult in decreased costs, increased sales and profits and

consumer satisfaction. In the military proper management of

inventories may contribute to increased availability and

readiness, decreased inventory investment and system costs.

For each component of each weapon system two fundamental

questions must be answered:

(1) When to replenish the inventory;

(2) How much to buy for the replenishment.

In order to answer these questions, many inventory models

have been developed in the past 30 years. See for example,

Hadley and Whitin [Ref. 1], Muckstadt [Ref. 2] and Eriksson

[Ref. 3]. Most previous work solves a variety of cost

minimization problems considering expected values of steady

state variable costs associated with shortage cost, ordering

cost and storage cost.

Such models may be appropriate for the commercial sector,

but are not always appropriate in the military world.

8



In the commercial sector, the objective function of the

inventory model is to maximize profit or minimize the average

annual costs. Non-cost oriented objective functions frequently

are used in the military inventory systems. For example,

attempts are often made to maximize availability or fill

rate, or minimize the number of backorders or expected time

weighted stockouts, or minimize the probability of a stock-

out with a budget constraint.

Obviously costs are important in every inventory model.

However, many real-world inventory problems are so compli-

cated, one cannot represent accurately the real situation.

Thus, some simplifications and approximations are used when

constructing a mathematical model of any real world system.

If this is not done, the results obtained by use of the model

can easily lead to operating rules which are worse than those

currently in use, worse than those which could be derived

from simple heuristic intuitive considerations.

Many of the inventory problems are viewed as single period

problems. For example, initial provisioning, allowance list

determination and the fly-away kit problem are single period

problems. These models are perhaps the simplest of the models

in which demand is treated as a stochastic variable.

Reasonable objective functions in these models are to

maximize performance subject to a constraint on the resources.

Typical measures of performance might be availability, time-

weighted units short, fill rate, the number of backorders,

and mean supply response time.

9



This thesis considers various single period models which

attempt to maximize performance subject to budget constraint.

Chapter II describes the general single period problem

and introduces the method used in this thesis of solving

those problems.

Chapters III and IV develop the time-weighted units short

model and the availability model, and explain the solution

procedure. Sample data runs for both models are provided.

Chapter V provides a comparison of models considered in

the thesis and discusses some of the properties of each

model, and Chapter VI discusses the use of models for purposes

of determining the budget required.

Chapter VII summarizes the results of the research and

concludes with some suggestions for additional research.

i
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II. THE GENERAL PROBLEM

In this chapter, we consider the general single period

model as a process for transforming resources into new dis-

tributions of inventory positions over the line items in

the inventory.

The essential problems of control in a line item-inventory

control system with multiple line items are:

(1) How much resources to commit at a point in time;

(2) How shall these resources be allocated to achieve

system objectives.

In a typical continuous review inventory system, we can

determine the optimal order quantity (Q) and reorder point

(r) for a given item by minimizing the average annual variable

costs. 'But in applying this theory to the real wo-ld inven-

tory systems which consist of multiple line items, it is

frequently the case that resulting minimum cosZ- solutions are

not feasible because of a budget limitation or some other

constraint. Thus, in a constrained multi-item inventory

system, the typical continuous-review policy is sometimes

inappropriate. In the following section we discuss several

objective functions to guide the line item irrentory control

system in determining how to allocate availabile procurement

funds at a particular replenishment epoch.

11
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A. GENERAL FORM OF OBJECTIVES WITH CONSTRAINTS

Consider the case in which an administrator, responsible

for the replenishment decisions, determines replenishment of

stocks of various line items on a periodic basis. Suppose

that a fixed amount of procurement budget has been allocated

to the replenishment epoch at hand and that a target number

of reorder actions has been established as a working con-

straint for the allocation epoch. The administrator's task

is to transform the available resources into replenishment

orders for different items.

1.' Measure of Effectiveness and Objective Function

Daeschner [Ref. 5] examined the constrained line-item

allocation problems. He considered several possible objective

functions which can be adapted to the case where unsatisfied

demands are backordered and to the case where unsatisfied

demands are lost sales. Let f. > 0 be the penalty (reward)]

per unit for item j and let Dj be the demand for item j in a

period. Let X. be the inventory position for item j after

ordering in a period. Let D. = d.. Then the number of salesJ J

for item j in the period is given by

d. if d. < X.1J -- )

Xj if d > X

The expected sales for item j is therefore

12
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J.
dt1dj p (Dj =dj) + X. p (Dj > Xj)

which is equivalent to

E(Dj) - (d. -Xj)p(Dj =d)
d.=X.+l I

I I

We assume that the inventory system seeks to minimize the

expected penalty incurred, or, equivalently, to maximize the

expected penalty avoided. Mathematically, the objective is

to maximize

N
Z(X) = 7 ij(E(Dj) - I (dj -Xj)p(Dj =d.))

j=l j dji =Xji+l

Several interpretations and uses of the penalty coefficient

Y. are possible. Four are illustrated in Table I below. Each)

reflects a formulation of system objectives which has been

adopted or considered by the Navy Supply System. Daeschner

[Ref. 5] also considered n7. as a linear combination of various

coefficients in his line item allocation model.

There are many other types of objective functions which

are currently used in the military. For example,

(1) Minimize units khort in a given period

N G
Z(X) - [ (d.-X.) p(D. -d)j-1 dj Xj+l

13



TABLE I

INTERPRETATIONS AND USES OF n.
)

Penalty Coefficients Objective

it = c. Maximize expected sales from

stock.

it = l/Pi Maximize the expected requi-

sitions filled (P = averageJ

quantity of item j demanded

per requisition).

t. = 1 Maximize the expected number)
of units issued from stock.

7. = LT. + TMNIS Maximize expected customerJ J
- TMISS waiting time per unit avoided

by issue from stock, where

LT. is the lead time for itemJ
j, TMNIS is the calendar time

anticipated to process a

request and TMISS is the time

to affect issue from stock of

a demand, available item.

(2) Minimize time-weighted units short

Z(X = Nzcx W I Twus i (xi)  E -i

where:

TWUS(Xi) = time weighted units short
1

E - essentiality

14
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(3) Maximize system availability

N
Z(X) = n A (X.)

i=1 
1

where:

A. - Availability for each item.

The objective functions (2) and (3) will be explained in

Chapters III and IV.

2. The Line-Item Allocation Model and Solution Procedure

In the previous sections, many kinds of objective

functions are introduced. If we define them correctly, those

objective functions can be solved by various techniques. It

is evident that an actual inventory system with limited re-

sources might be unable to carry out a prescribed inventory

policy if either the amount of procurement funds available

or the number of replenishment actions exceed the available

resources. The problem is made more complicated by the fact

4 that the objective functions are "non-linear" and the require-

ment that the X.'s must be integers. The problem is stated

4 mathematically as

max Z(s)

(Al) s.t. c.s. < Bj-l 3 1 -

N
L H(sj) < R
j-i

15
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a - (sts,2 ,...,N): integers

c. = the unit price of item jJ

s. = the number of buys of item j)

H(s.) = 1 if s. > 0

= 0 otherwise

B = the procurement budget limit at the realloca-
tion epoch

R - the maximum number of individual procurement
activities allowed in the present allocation.

To solve the problem (Al), the generalized Lagrange multiplier

(GLM) method of Everett [Ref. 41 can be used. Using this

method, the problem can be reexpressed as

N
(A2) max L(S,X) = Z(s) - j(( c.S) -B)

5 - -- j=l 3

N
- H(s_) -R)

S e s and Xl' X 2 > 0 with optimal solution S*(A).

Problem (A2) is the Lagrangian problem associated with (Al).

Using Everett's theorem, one can determine a bound on the

optimal solution, Z(s*) to be

Z(s*) < Z(s*(X)) - Xl(B(X) -B) - X2 (R(X) -R)

.16
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where

N
B (X c.S!.(X)

j=l

N
R(X) = XH(S!(X))

jl

and s*(X) is the optimal solution vector for a given pair

(Af' 2).In solving problem (M2), we can separate the N-

variable optimization problem into N one-variable problems.

Choosing trial values of X 1 and A2we maximize

WA) L.i(s.,) = z.(s~ i X- ~

When considering the integer nature of decision variables,

the optimal solutions for WA) are determined by finding the

values s. such that

L.(st+l,X) - L.(s*,X) < 0 and L.(s*,X) - L (s*-l,x) > 0.

Thus s. is the smallest value such that

AL (sj,A) -L.(s.+l,A) - Lj(s.,A) < 0

In order to get an optimal solution, Daeshner [Ref. 5] used

an interactive computer program, which evaluates the current

17



optimal solutions with A1 and A2 " Each time, the user can

select a pair A' A2 and objective function type to be con-

sidered. Then the user is provided with output which indi-

cates the budget consumed, the number of stock replenishments

generated, the achieved objective function value and a maximum

attainable value for the objective function.

After examining the output, the user can modify the

input parameters and continue or terminate the run. Decreas-

ing the non-negative multiplier values tends to use more of

the corresponding resources, increasing the values used, less.

When the replenishment actions generated by a pair of values

(A1,A2) exactly consume the available resources, B and R,

the solution is optimal. Frequently exact equality may be

impossible because of integer nature of the problem. Thus

the solution obtained may not be optimal, but the difference

is not likely to be significant.

B. AUTOMATING SEARCH ON THE LAGRANGE MULTIPLIER

The interactive search method cannot guarantee an optimal

solution and it requires trial and error to get the approxi-

mate optimal solution. Consider the case in which there is

only a single constraint, with the same type of objective

functions. The mathematical program is then

max Z(s)

(Bl) 
N

s.t. j csi < B

18



S - (s1 82 ,  = integer number of buys

B = budget limit

ci  - price of item i.

We can rewrite the above equation using a Lagrange multiplier,

as:

N
(1) L(s,8) = Z(S) - [ cis i - B]

j=1

Then separate the equation.

N
(2) L(SlS2,...,s N )  I (Z(s i )  ecis i ) + 8B

j=l

Equation (2) can be maximized by maximizing each sub-

objective function. If Z(si ) is differentiable with respect

to each si , the optimal solution is obtained by

aL . dZ (s i )

s i = 1

aL
Thus set Ts= 0 and get

dZi (s£

= dsi  /

N
where 8 is such that z cis = B. Everett [Ref. 4] shows

that e can also be interpreted as a shadow price for the

objective function: i.e., e = 3Z/3B. Due to the integer

19



nature of si' it is often impossible to get an exact optimal

solution. Difference equations must be used because the

region in which the solution is desired consists of a set

of discrete points. Therefore, let

(3) ALi(si,e) = Li(si,8) - Li(si-l,e)

= Zi(s i) - ci si - Zi(si-i) + eci(si-l)

= Zi (si) -Ci

We know that Equation (3) is a concave function at the point

s > 0. The optimal solution must satisfy ALi(si,8) > 0 and

AL (si+l,6) < 0. Thus the optimal solutions are given by

finding the largest si's such that

ALi(sie) > 0

or equivalently

(4) AZi(s) - Cie > 0 i = I,...,N.

The Lagrangian multiplier e can be found by the following

search algorithm.

20
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STEP 1. Find an initial upper bound eu . Let all si be

assigned zero at the beginning and find the

change of objective function per unit dollar as

a result of increasing to one unit.

AZ1 (1)
B 1 c1

AZ2 (1)
e2 c220

en -AZn (1)

cN

where AZi(1)= Zi(1) - Zi(O).

Because of decreasing marginal returns or objective function

values and because of the interpretation of 6e an upper bound

on e is given by: eu = max[e,e 2 ,..., n ].

STEP 2. The initial 6 will be

e =eL + eu
02

where 8L = 0.
Find for each i, the largest si so that

I
AZ i(asi)

eC i  -- 0

ii
and evaluate the objective function and the budget

required.

21
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STEP 3. If the budget used is greater than the given

budget, let

( 0 + 8u)

81 = 2

otherwise

eo + eL81 - 2

Each time update the S vector, the objective

function values, the upper bound of the objective, and the

amount of budget consumed.

STEP 4. Stopping rule.

Stop when the used budget is equal to the given

budget or the difference between the current upper

bound and the objective function value is less

than some limit (E). Otherwise go to step 2,

and continue until the above conditions are

satisfied.

A FORTRAN program for this algorithm is given in Appendix B.

C. MARGINAL ANALYSIS PROCESS

The theory of marginal analysis has been used in many

inventory models when resource constraints are active. In

an economic sense, AZi(si)/ci can be interpreted as the

marginal increase in the objective function per dollar spent

22



achieved by adding one more unit of stock. It is reasonable

for an inventory controller who has a scarce resource such as

a procurement budget to buy an item which gives the maximum

benefit per dollar spent.

By using a simple computerized algorithm, the line item

allocation problem can be solved easily. The first step is

to set all si = 0 and compute

AZ1 (s1+1) AZ2 (s2+1) AZn(Sn+1)
max , ,..
i l 2 cn

If the maximum is taken on for item j, set s. = 1 and

deduct the unit price for unit j from the budget. The second

step is then to recompute AZ. and then findJ

AZ.(s.) AZ.(s.)
max{maxf .1 1

i#j CiC

The next unit is assigned to the index j where the maximum

is taken on, etc. This is continued until adding an additional

unit exceeds the budget constraint. It should be noted, how-

ever, that the method described does not insure optimality

[Ref. 11. Specifically the method may stop too soon. If the

item i selected from the marginal analysis has a ci value

greater than the remaining budget, the procedure terminates

even though some other item j may have a cj value less than

the remaining budget. An obvious improvement in this area

could be the inclusion of a subroutine that would select

23
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from the remaining items the best one from those having c. s

smaller than the remaining budget. A FORTRAN program for

performing this marginal analysis is provided in Appendix C.

D. SAMPLE DATA RUNS OF UNITS SHORT MODEL

A weapon system consists of 10 components. The system

manager wants to minimize the number of units short by supply-

ing spare parts to support the weapon system. Suppose that

the demand rate, lead time, price and essentiality code for

each item i are known. The objective function can be expressed

by

10 C
minimize Z(s) = I (di-si)p(Di=di )Ei

(Cl) i=1 di=si+l1

10
subject to sic i  L B

il

where:

Ei = essentiality code

B - budget limit

- .T. d.
e (A T)

P(Di=di) =(d i )

The approximate solution of (Cl) can be obtained by the marginal

analysis method. Table II shows the computational results

for this system with known input data.

24
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TABLE II

THE RESULT OF UNITS SHORT MODEL

No. A Lead Price Essen. Alloca- Units
Time ($) tion Short

1 1.0 1.0 10.2 1.0 5.0 0.0007

2 0.1 1.0 20.0 1.0 1.0 0.0048

3 3.0 1.0 100.0 1.0 2.0 1.2489

4 25.0 1.0 2.0 3.0 42.0 0.0013

5 1.0 1.0 5.0 1.0 5.0 0.0007

6 0.5 1.0 5.0 3.0 4.0 0.0002

7 10.0 1.0 1.0 1.0 21.0 0.0012

8 5.0 1.0 100.0 1.0 4.0 1.4368

9 1.0 1.0 50.0 1.0 3.0 0.0233

10 2.0 1.0 100.0 1.0 2.0 0.5413

Table II shows several properties of the units short

model. First of all, more than one unit short in a year

occurs in the high cost items (items 3 and 8). Second, low

demands and low price items are allocated enough. Items 2,

5 and 6 are allocated more than five times their mean demand.

Also this model tends to stock more of the high demands and

low price items.

Finally, the essentiality weights cause greater alloca-

tions to be provided to those items with high essentiality

than would be provided with equal weights.

25



Other results include:

Total objective value 3.26

Shadow price 0.001899

Budget limit $1170

Budget left $0.0

AZ(s )E.
The shadow price is the last maximum value of - 1

C.
1

It can be interpreted approximately as the amount of

decrease in the objective function achieved by adding one

more dollar.

26
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III. TIME WEIGHTED UNITS SHORT MODEL

A. DESCRIPTION OF MODEL

In the previous chapter we have discussed various objec-

tive functions and solution methods for the single period

inventory problem. In the military services, many measures

of effectiveness have been used to indicate system performance.

Among these measures are fill rate, availability, mean supply

response time, the number of stockouts, and time-weighted

units short. In this chapter we consider a model which

minimizes time-weighted-units-short (TWUS).

Suppose that a weapon system consists of n components

and the objective is to allocate a given budget for spare

parts so as to minimize time-weighted-units short for the

entire system. Assume that

(1) procurement lead time and repair lead time are known

constants.

(2) demands for each installed unit have a known

distribution.

(3) the total amount of procurement budget available to

spend on all components is fixed.

(4) the objective is to minimize essentiality weighted

TWUS. Mathematically, the model can be written

as

27
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n 1
min TWUSi (si)Ei-STsil

n
s.t. 1 c~s. < B

where:

TWUSi(si) = time weighted units short when thereare s. units for item i
1

SLT = total sum of lead time demand
n
i A

Ei  = essentiality code for item i

B = budget limit in a given period

Ci  = price of each item.

In the above problem, if the TWUS is properly defined, this

model will be solved easily by using the methods explained

in Chapter II.

B. POISSON DEMAND CASE

We shall now determine an exact expression for the

TWUSi(si) for the case in which demands are Poisson distributed.

Let the mean rate of demand be A. units per year and the

lead time be a constant Ti. In addition to treating the

demand variable as being discrete, the number of buys si

also will be treated as a discrete variable. Thus if D. is

the lead time demand item j:

28



-A .T. s.
e Ai (iTi)P(Di=s i ) = (s.i (1)

= p(si;X iT i )

Let

P(s i ) = prob(Di >s.) = P(di;XiTi ) (2)
1 11 d.=s.

1 1

If there are si units of stock for item i, Richards and

McMasters [Ref. 8] show that the expected time-weighted
units short in (0,T i ) is given by

T. s i (si+l)
E[TWUSi(si H = +{P(si+l)[XiTi-2si + X.T

1 1

+ p(s.;AITi ) (AiTi-s) } (3)

For those cases where the expected lead time demand is

large, the Poisson probabilities in (3) can be approximated

by a normal distribution with mean AiTi and variance

uia = AiT.. Let
1. 1

(X) 1 exp(-x 2/2)

be the standard normal probability density function and let

*(x) = f *(u)du be the complementary cumulative distribution
x
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function for the standard normal. Then expression (3) can

be rewritten in terms of the normal probability function as

follows:

T. si+l-X.Ti) s.(si+l)

E[TWS.(s] H '{p [iX.T.-2s + XiTi i ] 2- ii(i i

si-AiT i1 ( 1~ ')(XiTs)} (4)
+ .--. 11 1

This expression should be used in those cases in which XiTi

is large. We have developed the expression for the expected

time-weighted units short in a period of length Ti when there

are s. units of stock for item i.

In the next section we write the expression for the total

essentiality-weighted time weighted units short over all items,

and we provide a solution procedure for allocating the given

budget optimally.

C. SOLUTION PROCEDURE

The mathematical program for the time-weighted-units short

problem is:

N E.T s (si+1)
(Cl) min Z(s) = S{P(si+l) [XiTi2si +SLT X~ T1

+ P(Si;AiJi ) ( ii-si) }

N
s.t. cis i  < B

i=l11-
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To solve this problem we can use the Lagrangian multiplier

technique. Let

N N
L(sls 2 ,...,sn;e) = Zi(s i ) + 6(B- cis i ) (5)i=1 i=l

Here Equation (5) is separable in the items, and minimization

of the total objective function is accomplished by minimizing

the individual functions Zi(si) subject to budget constraints.

Consider a single item i. Let

AL (s i ) = Li(si-l) - L(si)

- Zi(si-1) - Zi(s i ) +ecis i - eci(si-1 )

SAZ i(s i ) + eci  (6)

where

AZi(s i ) = Ei[TWUSi(si-1) - TWUSi(si)] (7)

As shown earlier

TWUS(s-) T S(S-l) ]+p(s-1;XT)(T-s+)}

-- {([AT-2(s-)+ AT s

T{:(XT !x2+ 21 + ) p(s;XT) (XT-s+l)
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TWUS(s) T F{P(s+1) [XT-2s+s(s+l) p(s;AT)(XT-s)}

XT +

T- )F2 T ]-p(s;XT) (XT-2s+ sT l)

+ p(s;XT) (XT-s)}

so that

TWUS(s-1) - TWUS(s)

T 2 s 2- s s2
{F(s) [2 + XT +p(s;XT)s- T- + 3 + XT-2s

XT+s

= [(S)[2 -s + 3 (s;T)]

P(s) [T -- ) + y p(s;AT) (8)

Substitute Equations (7) and (8) into (6). Then

AL (s) E (.T -- P(s.;A.T.)+-p(Si;A.Ti4]s. si

+ ec i  (9)

The optimum solution s! is the largest s. such that

ALi(s i ) > 0
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or equivalently,

E (Z (si-l)-Z (s) E. s.
1 1 1 1 1 1 -UT. 1

ci = i i  .)~ i;IiT i )

S.

+ - p(s) > -e

The basic algorithm for solving this problem was explained

in the previous chapter. A computer program for searching

for 8 is provided in Appendix B.

D. SAMPLE DATA RUNS

Consider a weapon system which consists of 10 components.

Suppose that the demand for each component is Poisson dis-

tributed with parameter Xi and the lead time is known constant

T. Let the budget available for procurement be $19224.

Table III shows the optimal allocations provided by the TWUS

model.

The allocation given when the demand distribution is

approximated by the normal distribution is also provided

in Table III for comparison. (For comparability, the variance

for the normal distribution is taken to be the same as the

mean). Comparing the results, we observe that the normal

case buys more of the high demands low cost items. There is

a small difference in the allocation for items 8 and 9 which

are more expensive than the others. For demand rates less

than 10, the usefulness of the approximation is questionable.
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TABLE III

OPTIMAL ALLOCATION FOR TWUS MODEL

Item A. T. ci ($) E. Poisson Normal
1 1 1

1 10 1 10 1 17 20

2 100 1 20 1 113 120

3 15 1 80 1 19 21

4 20 1 2 1 32 36

5 50 1 5 1 65 71

6 80 1 30 1 90 96

7 20 1 1 1 35 37

8 15 1 200 1 17 15

9 75 1 100 1 77 74

10 10 1 75 1 14 16

The resulting values of the objective function for the

optimal solutions are:

Poisson Case Normal Case

Z(s*) 0.00094 0.0015

Shadow price (6*) 0.00015 0.00055

Budget limit $19224 $19224

Budget left 0 0

The objective function value for the Poisson demand case is

less than the normal demand case. The main reason for the

difference is due to items 8 and 9.
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IV. PSEUDO AVAILABILITY MODEL

A. DESCRIPTION OF MODEL

In the previous chapter, the TWUS objective function was

introduced as a means for allocating a limited budget.

Operational availability is a widely stated measure of the

operational readiness of military forces and weapon systems.

Thus, it is appropriate to consider stockage models with an

availability objective as a means of allocating limited

resources.

The most direct and meaningful measure of the influence
of peace time operating stocks on readiness is weapon
system (or end item) availability. We use the terms
availability, end-item availability, and weapon system
availability interchangeably to mean the probability
that an end ite, such as a tank or an aircraft,
selected at random, is not waiting for a component
to.be repaired or shipped to it. [Ref. 6]

Many authors have attempted to determine stockage levels for

components by maximizing equipment operational availability,

subject to a budget constraint. See, for example, Jee [Ref.

7]. Usually, the availability for component i is defined by

the ratio

MTBF
iAi MTBFi +MTTR i + MSRTi(si)

where:

MTBF. = the Mean Time Between Failure of item i;
1
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MTTRi = the Mean Time To Repair for item i;

MSRZi (si) = the Mean Supply Response Time for item i.

If the weapon system is assumed to consist of the n components

all arranged in series, then the system availability is the

product of the individual item availabilities. (This assump-

tion means that the system will fail if any of the components

fails.) With this assumption, the allocation problem, stated

in terms of system availability is:

n(P1) max II A.(s.)s i=l

n
s.t. C C.s. < B i = 1,2,...,Ni=l ii-

where:

A.(s.) = the availability of item i having s.
units in stock; 1

B = the budget limit;

Ci  = the price for each item i,
I1

In the expression of Ai(s i), the term MTBFi is the recipro-

cal of the failure rate i, MTTR i is assumed to be independent

of the decision variables and the available funds and MSRTi(si )

can be expressed in terms of TWUS(si ) as

!1
MSRTi(s) -TWU(s)

i 11
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Thus, the main determination of availability from the point

of view of the supply system is MSRTi(si). Many techniques

for solving this model have been developed. In the next

section we represent an algorithm for solving the availa-

bility model by using the marginal analysis method.

B. SOLUTION PROCEDURE

The model (PI) is not additive in the individual com-

ponent availabilities but is converted into an additive

function by transforming the objective function. Taking the

natural log of the objective function, the model can be ex-

pressed in the following way.

n
(P2) max in A. (s i )

s i=l

n
s.t. [ cis. < B i = 1,2,...i=l1

Now the model (P2) is separable for all i and maximization

of (P2) yields the same solution as maximization of (P1).

The marginal analysis method selects an item which gives at

each step the greatest increase in log(Ai(si)) per dollar

spent.

STEP 1. Start with zero units for all items.

STEP 2. Compute the increase in log availability per dollar

spent as a result of purchasing one additional

unit.
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In Ais(s)
=.--[in A.(s -n Ai(si)]I i i

where i -1,2...,N

MTBF.

1 1 £n[MTBF i +MTTRi +MSRTi(si

STEP 3. Select that item i corresponding to the maximum

ratio.

A2n Al(s 1 ) Ain A2 (s 2 ) An A (s
max [ , - ... ,

all s C1 c 2 Cn

STEP 4. Increase the number of units stocked for the item

selected at step 3 by one additional unit if the

unit price is less than the amount of budget

remaining.

STEP 5. Update the S vector, the MSRT(s) expression and

decrement the available budget. If the remaining

*budget is greater than the cost of the cheapest

item, Go to Step 3. Otherwise, Stop.

In the following section, we will illustrate this procedure

with a sample system. The computer program is provided in

Appendix C.
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C. A NUMERIC EXAMPLE FOR THE MSRT MODEL AND THE AVAILABILITY

MODEL

In the expression for availability, the MTBF and MTTR

terms are not functions of the number of spare parts. There-

fore it is comnnly believed that maximization of system

availability is equivalent to minimization of mean supply

response time. However, this is not the case, as shown

below.

Suppose a weapon system consists of three components and

the demands are Poisson distributed with parameters A, X 2

and A3, respectively. The lead time is a known constant and

the components have essentiality codes Ei. The unit price

and MTTR are known and the budget is limited to 20 dollars.

This information is summarized in Table IV.

TABLE IV

INPUT DATA FOR EXAMPLE

ITEM X. c. MTTR. E. T
1 1 1 1 1

1 1 5 0.0274 1 1.0

2 0.1 5 0.0027 3 1.0

3 10 1 0.0054 1 1.0

To solve MSRT minimization problems, we first determine

the MSRT's for all possible cases. These values are provided

in Table V.
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TABLE V

MSRT DATA FOR ALL FEASIBLE SOLUTIONS S.1

MSRT(si) ITEM 1 ITEM 2 ITEM 3

iMSRT(0) 0.9482 0.9837 0.6
MSRT(i) 0.3161 0.1967 0.5

MSRT(2) 0.0708 0.02 0.4099

MSRT(3) 0.0132 0.00227 0.3298

MSRT(4) 0.0021 0.0002 0.2596

MSRT(5) 0.0003 0.1992

MSRT(6) 0.1485

MSRT(7) 0.1072

MSRT(8) 0.0746

MSRT(9) 0.0500

MSRT(10) • 0.0322

MSRT(1i) 0.0199

Using the solution procedure described in the previous chap-

ter we determine the optimal solution to be as shown in Table

VI.
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TABLE VI

THE ALLOCATION OF SPARE PARTS FOR MSRT MODEL

ITEM 1 2 3
USED

ALLOCATION AZl(S I) AZ2 (s 2 ) AZ3 (s 3 ) BUDGET ($)

(0,0,0) 0.12462 0.47216 0.1 0

(0,1,0) 0.12462 0.1040 0.1 5

(1,1,0) 0.04905 0.1040 0.1 10

(1,2,0) 0.04905 0.01265 0.1 15

(1,2,1) 0.04905 0.01265 0.09 16

(1,2,2) 0.04905 0.01265 0.08012 17

(1,2,3) 0.04905 0.01265 0.07022 18

(1,2,4) 0.04905 0.01265 0.06039 19

(1,2,5) 0.04905 0.01265 0.0507 20

The optimal solution for MSRT model is (1,2,5). Repeating

the analysis for the availability objective function we

obtain the results provided in Table VII from the marginal

analysis procedure.

c "1
AZi(s i ) = -(1Zilsi+1) - Zi(s i )]

1.in Ai(si+1) - In Ai(si)]
1
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TABLE VII

THE ALLOCATION OF SPARE PARTS FOR AVAILABILITY MODEL

ITEM 1 2 3
USED

ALLOCATION AZ (s1) AZ2 (s 2 ) AZ3 (s 3 ) BUDGET

(0,0,0) 0.07712 0.1294 0.1529 0

(0,0,1) 0.07712 0.1294 0.1611 1

(0,0,2) 0.07712 0.1294 0.1689 2

(0,0,3) 0.07712 0.1294 0.1759 3

(0,0,4) 0.07712 0.1294 0.1808 4

(0,0,5) 0.07712 0.1294 0.1821 5

(0,0,6) 0.07712 0.1294 0.1777 6

(0,0,7) 0.07712 0.1294 0.1660 7

(0,0,8) 0.07712 0.1294 0.1469 8

(0,0,9) 0.07712 0.1294 0.1217 9

(0,1,9) 0.07712 0.0447 0.1217 14

(0,1,10) 0.07712 0.0447 0.0938 15

(0,1,11) 0.07712 0.0447 0.06702 16

(0,1,15) 20

The optimal solution for the availability model is (0,1,15).

Comparing the results of the two models, we see that the

availability model allocates more units to the high demand

lower cost items than the MSRT model.
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D. SAMPLE DATA RUNS

Suppose that a weapon system consists of 10 components

and the demand of each component is Poisson distributed with

parameter Ai, and lead time Ti, mean time to repair MTTRi

are known constants. In order to maximize the availability

of spare parts with budget constraint, we can use the modi-

fied Availability model (P2) instead of (P1). By using the

computer program in Appendix C, this problem can be solved.

Table VIII provides the allocations of spare parts in the

Availability model when the budget is 1170 dollars.

TABLE VIII

THE ALLOCATION OF SPARE PARTS FOR THE
AVAILABILITY MODEL

ITEM A. T. ci ($) Ei  MTTRi  ALLOCATION Ai (s.)

1 1.0 1.0 10.0 1.0 0.0137 4.0 0.986

2 0.1 1.0 20.0 1.0 0.0274 2.0 0.997

3 3.0 1.0 100.0 1.0 0.0137 3.0 0.821

4 25.0 1.0 2.0 3.0 0.0822 37.0 0.327

5 1.0 1.0 5.0 1.0 0.0274 5.0 0.973

6 0.5 1.0 5.0 3.0 0.0027 4.0 0.999

7 10.0 1.0 1.0 1.0 0.0054 21.0 0.949

* 8 5.0 1.0 100.0 1.0 0.0411 3.0 0.538

9 1.0 1.0 50.0 1.0 0.0082 3.0 0.987

10 2.0 1.0 100.0 1.0 0.1370 2.0 0.697
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From the table, one can see that the availability of an

item is greatly influenced by the MTTR term (see item 4).

The availability for that item never exceeds 0.333 even if

the MSRT is zero. We also observe that the availability

model tends to stock the high demand low cost items.

The objective function for the optimal solution is given

by:

Total obejctive value 0.08999

Shadow price 0.000261

Budget limit $1170

Budget left $0.0

A comparison of the above results with the allocation given

in Table VIII shows that the total availability is relatively

low even though most of the items have high availabilities.

Also as mentioned above, when the MTTR data for an item is

large relative to the MTBF, a high availability cannot be

achieved.
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UV. COMPARISON OF MODELS

A. ANALYSIS FOR SAME DATA

In this chapter, we continue to consider the allocation

of spare parts to maximize the system performance in the

different allocation models. In this thesis, we have looked

at three models: the units short model, the time-weighted

units short model, and the availability model. Since each

model attempts to reduce stockouts as much as possible the

allocations generated by the models are strongly correlated.

This is especially true for the availability model and the

MSRT model since availability is a function of MSRT. However,

we saw earlier that the allocations from the models are not

necessarily the same.

Assume that a weapon system consists of 10 items, the

demands are Poisson distributed and MTTRVi ci, Ti, Ei are

known constants and a budget constraint of the weapon system

is $1170. The optimal allocations for the three models are

shown in Table IX. As can be seen, the TWUS model is more

sensitive to the lead times than are the other two models

(see items 5, 6, and 7).

The units short model is more sensitive to the price of

the item than are the other two models. For item 9 the units

short model bought nothing, but the TWUS model and the availa-

bility model allocated 2 and 3 items respectively. All
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TABLE IX

THE ALLOCATIONS OF SPARE PARTS FOR THE
THREE DIFFERENT MODELS

Units
Item I. cost Ess. T. MTTR Short TWUS Avail.1 1

(yr) M (yr) (yr) Model Model Model

1 1.0 10 1 1 0.0137 3 3 4

2 0.1 10 1 1 0.0137 2 1 2

3 15.0 3 1 1 0.0137 24 20 22

4 15.0 3 3 1 0.0274 26 23 24

5 3.0 10 1 0.5 0.0274 4 3 4

6 3.0 5 3 0.5 0.0274 6 4 6

7 10.0 50 1 0.2 0.0054 0 0 3

8 10.0 50 1 1 0.0411 8 7 2

9 2.0 50 1 1 0.0137 0 2 3

10 2.0 100 4 2 0.1370 5 5 5

three models are highly affected by the essentiality code.

4 This is illustrated by a comparison of items 9 and 10. Table

X presents the corresponding values of the three objective

functions.
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TABLE X

THE COMPARISON OF OBJECTIVE VALUES FOR THREE MODELS

OBJ
FN UNITS

MODEL SHORT TWUS AVAILABILITY

UNITS SHORT 0.1523 0.0458 0.0483

TWUS 0.1527 0.0353 0.0687

AVAILABILITY 0.1969 0.0775 0.0709

The above table was established by computing each objective

function for the allocations determined by the three differ-

ent procedures. Comparing the results of the three models,

the TWUS model seems to do the best job considering all three

objective functions. However, no general conclusions can be

drawn about the preference of the TWUS model for other

situations.

One needs to determine which objective function most

closely matches a servicers' feeling about how operational

readiness is affected by stockouts and delays in satisfying

stOckouts.

B. DISCUSSION OF SIMILARITIES

In the budget allocation problem there are many factors

which affect the allocation such as demand, lead time, cost,

time to repair and essentiality. The three models share simi-

lar properties. First of all, as can be seen in the above
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example, all models tend to stock the cheap, high demand

items in favor of expensive low demands items. This is

because of the models attempts to get the biggest benefit

per dollar spent. Potential benefit per additional unit

increases with an items demand rate. Second, items having

high essentiality code are given preference, as is the in-

tent of essentiality assignment schemes. Essentiality

weighting is one way to counter the preference given the high

demand low cost item observed earlier. It is frequently the

case that the most critical items are low demand expensive

items. Without the essentiality weighting such items would

be neglected by the type of models examined in this thesis.

i
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VI. USE OF THE MODELS FOR BUDGET DETERMINATION

A. EFFECTIVENESS VS. BUDGET

The models that we have discussed have attempted to opti-

mize performance subject to a budget constraint. We have

assumed that the budget was given. There are many ways in

which budgets are determined. However, budgeting people and

inventory managers alike often express the desire to have a

methodology that they can use to determine the amount of

money that should be provided.

In most cases the amount is determined historically by

giving an amount equal to what has been provided in the past

for similar systems or perhaps by giving a little more or

less based on judgement or financial constraints. There is,

however, a strong interest brought about by Congressional

pressures to relate resources to readiness. Congress wants

to know "how much money is needed to support our weapon sys-

tems at a specified level of performance." In this chapter we

show how the models developed earlier in this thesis can be

used in just this manner.

Specifically, we show how the models that we have developed

can be modified easily to determine the minimum budget re-

quired to provide a specified level of logistics performance.

The models developed earlier can each be run for a range

of budget levels producing for each given budget an allocation
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and a predicted overall level of performance. Figure 3 illus-

trates this for the case in which the performance measure is

pseudo-availability. As expected, the curve shows that

availability is a non-decreasing function of budget with

decreasing marginal returns. This can be done also for the

time-weighted units short model or any of the other models

discussed in this thesis. In all cases we would obtain a

similar display. Performance is a monotonic function of

budget with decreasing marginal returns.

Figure 4 displays a similar result for the case in which

the performance measure is MSRT. Each point on the curve

represents an optimal level of performance for a given budget.

For this example displayed, Figure 3, there is a little bene-

fit to be gained by increasing the budget above $2500. How-

ever there is a dramatic increase in effectiveness obtained

by increasing the budget from $1000 to $2000. This is pre-

cisely the sort of information needed to make intelligent

budgeting decisions. Of course some decision maker must

decide if the increase in effectiveness is worth the addi-

tional expenditure.

If a specific level of effectiveness is specified, one

can graphically determine the amount of budget required by

simply moving horizontally across the graph from the speci-

fied level of effectiveness until the curve is intersected

and then down to the budget axis.
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The next section determines analytically the minimum

amount budget required by solving a companion problem to

the problems discussed earlier in this thesis.

B. COMPANION PROBLEMS

In the previous chapters we have concentrated on the

optimization of system effectiveness with a budget constraint.

For many weapon systems such as air detection radars, missiles

and nuclear delivery systems, the system performance is so

important that the necessary budget will be provided to

attain whatever performance is deemed necessary.

For such systems it is reasonable to restate the optimi-

zation problem to determine the minimum budget required to

satisfy a specified level of performance. Consider, for

example, the availability optimization problem and the com-

panion problem:

n

(Dl) min c.s.i=l •

n
s.t. 1 Ai > L i =

i=l

where L is the minimum performance level for a weapon system.

For the MSRT model case the corresponding problem is:

(D2) min cis i

n
s.t. Z MSRTi(si) < R i =1,2,...,n

i=l 5
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where R is the maximum allowable cumulative supply response

time for the weapon system.

Problems (Dl) and (D2) can be solved using the same

methods explained in Chapters III and IV. In the above

models the budget is determined so that the system require-

ment for availability or main supply response time can be

achieved.

For problem (D2) the total cost is minimized when

n

[ MSRTi (s i ) = R
i=l

Sometimes a minimum allowable supply response time is

required for each item. In such a case multiple constraints

could be specified. This is illustrated below:

n
(D3) min cisi

i=l

MSRT1 (sI) < R1

MSRT2 (s 2 ) < R

MSRTn (s) < Rn

where R. is the maximum allowable supply response time,

i = 1,2,... ,N.
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To solve (D3), find the smallest si such that

MSRT1 (s) =R

MSRT2 (s 2 ) = R2

MSRTn (s) = Rn

This problem is solved easily using the same procedures

which we discussed.

So far we have discussed many different ways to apply

the theoretical models to practical use of models for budget

determination decisions. There is no unique method which

gives us an optimal result. So the user of these models

should choose one of possible methods so as to maximize the

system performance or minimize the total cost.
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VII. CONCLUSIONS

it is concluded that the various measures of effectiveness

can be used in the budget constrained multi-item inventory

system with stochastic demands. We have examined some of

the more reasonable measures like minimization of units short,

minimization of time-weighted units short and maximization

of system availability. We have also looked at models which

incorporate essentiality weights into each of the models.

In order to solve budget allocation stockage problems a

feasible, efficient method of effecting line item inventory

control is available using an adaptation of Everett's

Generalized Lagrangian Multiplier method. Further, the use of

a G.L.M. procedure provides valuable information for system

managers as to relative effectiveness of additional procure-

ment funds, versus additional transition processing capability.

The final value of Lagrangian multipliers can be interpreted

as the amount of improvement of the objective function per

unit dollar spent.

The models discussed in this thesis are all more likely

to stock cheap, high demand items than expensive, low demand

items. Such is the nature of budget constrained optimization

problems. If a system manager wishes to maintain enough

stock for an item having low demand, high cost, his only

alternative in our models is to assign a high essentiality
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code for the item. The essentiality code has the effect of

reducing the ratio C/E as opposed to C. In the solution

procedure for each model, the assigned essentiality code

directly affects the allocation for the item.

We have shown how the models can be used as a tool to

determine the amount of budget. A simple graphical procedure

allows a decision maker to determine the minimum budget re-

quired to search a specified level of performance. The opti-

mization model is run several times to generate a plot of

performance vs. budget. Each point of the curve represents

the effectiveness for the optimal allocation of a given budget.

A manager can, first, determine an appropriate system per-

formance level and read from the curve the budget required

to achieve the effectiveness.

Further analysis to improve these models may be possible.

For instance, it would be Useful to have an automatic search

algorithm for the Lagrangian multipliers for a multiple

constrained problem. It may also be possible to relax the

assumptions for a constant lead time or a constant mean time

to repair. These single period inventory may expand to time-

dependent multi-item, multi-echelon, multi-indenture inventory

systems.

*5I
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APPENDIX A

COMPUTER PROGRAM FOR INTERACTIVE SEARCH.
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I APPENDIXB

COMPUTER PROGRAM FOR AUTOMATING SEARCH
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APPENDIX C

COMPUTER PROGRAM FOR MARGINAL ANALYSIS
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