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ABSTRACT

his thesis addresses the problem of determining the
optimal number of spares for a multi-item inventory system
with a procurement budget constraint. Various inventory
models are considered with objective functions like time-
weighted units short, units short, essentiality-weighted
units short and pseudo-availability. Solution algorithms
are derived using the generalized Lagrange multiplier
approach and a marginal analysis approach.

Sample data and output results are provided and compari-
sons of the alternative models are given. Finally, a dis-
cussion and example is given. of the use of the models as
a means of estimating the budget required to attain a speci-

fied level of performance.
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I. INTRODUCTION

In today's world, while all systems are becoming more
and more sophisticated, the control and maintenance of
inventories of these systems is a problem common to all
enterprises and military services. In private and commer-
cial concerns the effective control of inventories can re-
sult in decreased costs, increased sales and profits and
consumer satisfaction. In the military proper management of
inventories may contribute to increased availability and
readiness, decreased inventory investment and system costs.

For each component of each weapon system two fundamental
questions must Le answered:

(1) When to replenish the inventory;

(2) How much to buy for the replenishment.
In order to answer these questions, many inventory models
have been developed in the past 30 years. See for example,
’ Hadley and Whitin [Ref. 1], Muckstadt [Ref. 2] and Eriksson
( [Ref. 3]. Most previous work solves a variety of cost
1 minimization problems considering expected values of steady

state variable costs associated with shortage cost, ordering

Such models may be appropriate for the commercial sector,

% ; cost and storage cost.

‘ but are not always appropriate in the military world.
l
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In the commercial sactor, the objective function of the
inventory model is to maximize profit or minimize the average
annual costs. Non-cost oriented objective functions frequently
are used in the military inventory systems. For example,
attempts are often made to maximize availability or £fill
rate, or minimize the number of backorders or expected time
weighted stockouts, or minimize the probability of a stock-
out with a budget constraint.

Obviously costs are important in every inventory model.
However, many real-world inventory problems are so compli-
cated, one cannot represent accurately the real situation.
Thus, some simplifications and approximations are used when
constructing a mathematical model of any real world system.

If this is not done, the results obtained by use of the model
can easily lead to operating rules which are worse than those
currently in use, worse than those which could be derived
from simple heuristic intuitive considerations.

Many of the inventory problems are viewed as single period
problems. For example, initial provisioning, allowance list
determination and the fly-away kit problem are single period
problems. These models are perhaps the simplest of the models
in which demand is treated as a stochastic variable.

Reasonable objective functions in these models are to
maximize performance subject to a constraint on the resources.
Typical measures of performance might be availability, time-
weighted units short, fill rate, the number of backorders,

and mean supply response time.




This thesis considers various single period models which
attempt to maximize performance subject to budget constraint.
Chapter II describes the general single period problem
and introduces the method used in this thesis of solving

those problems.

Chapters III and IV develop the time-weighted units short
model and the availability model, and explain the solution
procedure. Sample data runs for both models are provided.

Chapter V provides a comparison of models considered in
the thesis and discusses some of the properties of each
model, and Chapter VI discusses the use of models for purposes

of determining the budget regquired.

Chapter VII summarizes the results of the research and

concludes with some suggestions for additional research.




II. THE GENERAL PROBLEM

In this chapter, we consider the general single period
model as a process for transforming resources into new dis-
tributions of inventory positions over the line items in
the inventory.

The essential problems of control in a line item—-inventory
control system with multiple line items are:

(1) How much resources to commit at a point in time;
(2) How shall these resources be allocated to achieve
system objectives.

In a typical continuous review inventory system, we can
determine the optimal order quantity (Q) and reorder point
(r) for a given item by minimizing the average annual variable
costs. " But in applying this theory to the real wo-1ld inven-
tory systems which consist of multiple line items, it is
frequently the case that resulting minimum cos! solutions are
not feasible because of a budget limitation or some other
constraint. Thus, in a constrained multi-item inventory
system, the typical continuous-review policy is sometimes
inappropriate. 1In the following section we discuss several
objective functions to guide the line item inrentory control

system in determining how to allocate availabile procurement

funds at a particular replenishment epoch.




A. GENERAL FORM OF OBJECTIVES WITH CONSTRAINTS
1 Consider the case in which an administrator, responsible
for the replenishment decisions, determines replenishment of
stocks of various line items on a periodic basis. Suppose
that a fixed amount of procurement budget has been allocated
to the replenishment epoch at hand and that a target number j
of reorder actions has been established as a working con- é

straint for the allocation epoch. The administrator's task

is to transform the available resources into replenishment

orders for different items.

1. Measure of Effectiveness and Objective Function

Daeschner [Ref. 5] examined the constrained line-item
t allocation problems. He considered several possible objective

functions which can be adapted to the case where unsatisfied

demands are backordered and to the case where unsatisfied
demands are lost sales. Let i > 0 be the penalty (reward)
per unit for item j and let Dj be the demand for item j in a
! period. Let Xj be the inventory position for item j after
ordering in a period. Let Dj = dj' Then the number of sales

for item j in the period is given by

(-
wJ
[

The expected sales for item j is therefore
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X,
d. (D, =4,) + X. D. > X,
d,il 5 PPy 7¢ j P(Dy>Xy)
.

which is equivalent to

We assume that the inventory system seeks to minimize the
expected penalty incurred, or, equivalently, to maximize the
expected penalty avoided. Mathematically, the objective is

to maximize

N ©
Z(X) = .(E(D,) ~- =X, =4,
(X) jzl ™5 (E(Dy) d.=§.+1(d3 X)p(Dy =dy))
3773

Several interpretations and uses of the penalty coefficient
"j are possible. Four are illustrated in Table I below. Each
reflects a formulation of system objectives which has been
adopted or considered by the Navy Supply System. Daeschner
[Ref. 5] also considered "j as a linear combination of various
coefficients in his line item allocation model.

There are many other types of objective functions which

are currently used in the military. For example,

(1) Minimize units short in a given period

N oo
Z(X) = (d. ~X.) p(Dy =4d,)
- jzl d -£.+1 J .J P J
373
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TABLE 1
INTERPRETATIONS AND USES OF Nj

Penalty Coefficients Objective
"j = cj Maximize expected sales from
stock. '
Ty . l/uj Maximize the expected requi-

sitions filled (uj = averadgde
quantity of item j demanded
per requisition).

; "j =1 Maximize the expected number
3 of units issued from stock.
' my = LTy + TMNIS Maximize expected customer

- TMISS waiting time per unit avoided

i by issue from stock, where
) LTj is the lead time for item
j, TMNIS is the calendar time
anticipated to process a
request and TMISS is the time
to affect issue from stock of
a demand, available item.

(2) Minimize time-weighted units short

N
Z(X) = .Zl TWUS; (X;) - E;
JS

where:

— . e Bt .. e r— - o rme.

TWUS(xi) = time weighted units short

Ei = esgsentiality

14




(3) Maximize system availability

N
Z(X) = igl A;(X;)

where:

Ai = Availability for each item.

The objective functions (2) and (3) will be explained in
Chapters III and 1IV.

2. The Line-Item Allocation Model and Solution Procedure

In the previous sections, many kinds of objective
functions are introduced. If we define them correctly, those
objective functions can be solved by various techniques. It
is evident that an actual inventory system with limited re-
sources might be unable to carry out a prescribed ianventory
policy if either the amount of procurement funds available
or the number of replenishment actions exceed the available
resources. The problem is made more complicated by the fact
that the objective functions are "non-linear" and the require-
ment that the xj's must be integers. The problem is stated

mathematically as




P ]

8 = (s;,8;5,...,N): integers

c., = the unit price of item j

’

s. = the number of buys of item j

J

H(sj) = 1 if s. > 0
0 otherwise

B = the procurement budget limit at the realloca-
tion epoch

R = the maximum number of individual procurement
activities allowed in the present allocation.

To solve the problem (Al), the generalized Lagrange multiplier

{ (GLM) method of Everett [Ref. 4] can be used. Using this

method, the problem can be reexpressed as

N .
(A2) max L(S,A\) = 2(s) - Al((_z cy84) - B)

S J

1

N
- A, (( ] H(s;)) - R)
2 j=1 j

§ ¢ s and A;, A, > 0 with optimal solution S*(1).

2

Problem (A2) is the Lagrangian problem associated with (Al).

Using Everett's theorem, one can determine a bound on the

optimal solution, 2(s*) to be

Z2(s*) < 2(s*(M) - A;(B(X) =B) = A,(R(}) -R)




where

N

B(\) = .S*

() j£1 c;85 (V)
N

R(}) = ] H(SI(\))
=1 J

and s*()) is the optimal solution vector for a given pair
(Al,Az). In solving problem (A2), we can separate the N-
variable optimization problem into N one-variable problems.
Choosing trial values of Al and Az we maximize

(A3) Lj(sjll) = zj(sj) - Alcjsj - AZH(sj) .

When considering the integer nature of decision variables,
the optimal solutions for (A3) are determined by finding the
values s; such that
L,(s*+1,)\) - L.(s%,\) <0 d L.(s%,\) - L,(s%-1 > 0.
J(sJ 1,)) J(sJ,_) < an J(sJ._) J(sJ ')
Thus s; is the smallest value such that

ALj(sj.L) = Lj(sj+l,A) - Lj(sj,i) < 0

In order to get an optimal solution, Daeshner [Ref. 5] used

an interactive computer program, which evaluates the current

17
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optimal solutions with A, and Az. Each time, the user can
select a pair Al' Az and objective function type to be con-
sidered. Then the user is provided with output which indi-
cates the budget consumed, the number of stock replenishments
generated, the achieved objective function value and a maximum
attainable value for the objective function.

After examining the output, the user can modify the
input parameters and continue or terminate the run. Decreas-
ing the non-negative multiplier values tends to use more of
the corresponding resources, increasing the values used, less.
When the replenishment actions generated by a pair of values
(Al,Az) exactly consume the available resources, B and R,
the solution is optimal. Frequently exact equality may be
impossible because of integer nature of the problem. Thus
the solution obtained may not be optimal, but the difference

is not likely to be significant.

B. AUTOMATING SEARCH ON THE LAGRANGE MULTIPLIER

The interactive search method cannot guarantee an optimal
solution and it requires trial and error to get the approxi-
mate optimal solution. Consider the case in which there is
only a single constraint, with the same type of objective

functions. The mathematical program is then

max Z(s)
s
(B1) N
s.t. jzl c;s; < B

18




s = (sl,sz,...,sN) = integer number of buys

budget limit

c; = price of item i.

We can rewrite the above equation using a Lagrange multiplier,

as:
N
(1) L(s,8) = 2(s) ~8[ ] c.s, - B]
= - jm1 14
Then separate the equation.
N
(2) L(8S),8,s.00,8y) = jEI(Z(Si) - 6c;s.) + OB

Equation (2) can be maximized by maximizing each sub-
objective function. If Z(si) is differentiable with respect

to each S:v the optimal solution is obtained by

' dz(s.)
oL R
3s; T _d?.l_-eci' i=1,2,....N

Thus set %%— = 0 and get
i

dzi(si)
® = s —/%
1

N
where 0 is such that ] c,;s, = B. Everett [Ref. 4] shows
. ]81
that 6 can also be interpreted as a shadow price for the

objective function: i.e., 6 = 32/3B. Due to the integer

19
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nature of S v it is often impossible to get an exact optimal
solution. Difference egquations must be used because the
region in which the solution is desired consists of a set

of discrete points. Therefore, let

(3) ALi(sl'e) = Ll(sl'e) - Ll(sl-l,G)

"

zi(si) - ecisi - Zi(si-l) + eci(si-l)

= Azi(si) - ¢y
We know that Equation (3) is a concave function at the point
8 > 0. The optimal solution must satisfy AL (s;,6) > 0 and
ALi(si+1,e) < 0. Thus the optimal solutions are given by

finding the largest si's such that

AL;(s;,8) > 0

or equivalently

(4) Azi(si) - cie > 0 i=1,...,N.

The Lagrangian multiplier 6 can be found by the following

gearch algorithm.




STEP 1. Find an initial upper bound 9“. Let all s; be
assigned zero at the beginning and find the

change of objective function per unit dollar as

a result of increasing to one unit.
. _ AZl(l)
1l =N
] _ Azz(l)
2 ¢,
o _ AZn(l)
n Sy

where Azi(l) Zi(l) - Zi(O).

Because of decreasing marginal returns or ohjective function
values and because of the interpretation of 6, an upper bound

on 68 is given by: eu = max[@l,ez,...,en].

STEP 2. The initial eo will be

——

where eL = 0.

Find for each i, the largest s; so that

Azi(si) ,

and evaluate the objective function and the budget
required.
21




STEP 3. If the budget used is greater than the given

budget, let

(6_ + 9)

otherwise

Each time update the S vector, the objective
function values, the upper bound of the objective, and the

amount of budget consumed.

I STEP 4. Stopping rule.

Stop when the used budget is equal to the given
budget or the difference between the current upper
bound and the objective function value is less
than some limit (€). Otherwise go to step 2,

and continue until the above conditions are
satisfied.

A FORTRAN program for this algorithm is given in Appendix B.

C. MARGINAL ANALYSIS PROCESS
The theory of marginal analysis has been used in many
inventory models when resource constraints are active. 1In

an economic sense, Azi(si)/ci can be interpreted as the

marginal increase in the objective function per dollar spent

- rmenty. oo

22




achieved by adding one more unit of stock. It is reasonable
for an inventory controller who has a scarce resource such as
a procurement budget to buy an item which gives the maximum
benefit per dollar spent.

By using a simple computerized algorithm, the line item
allocation problem can be solved easily. The first step is
to set all s; = 0 and compute

Azl(sl+l) Azz(sz+l) Azn(sn+l)]

,w.‘ [ C ’ c2 g o600 gy c

i 1 n

If the maximum is taken on for item j, set sj = 1 and
deduct the unit price for unit j from the budget. The second
step is then to recompute Azj and then find

Azi(si) Azj(fj)

max{max{ },
i Ci 5

The next unit is assigned to the index j where the maximum

is taken on, etc. This is continued until adding an additional
unit exceeds the budget constraint. It should be noted, how-
ever, that the method described does not insure optimality
(Ref. 1]. Specifically the method may stop too soon. If the
item i selected from the marginal analysis has a Sy value
greater than the remaining budget, the procedure terminates
even though some other item j may have a cj value less than

the remaining budget. An obvious improvement in this area

could be the inclusion of a subroutine that would select




from the remaining items the best one from those having cj's
smaller than the remaining budget. A FORTRAN program for

performing this marginal analysis is provided in Appendix C.

D. SAMPLE DATA RUNS OF UNITS SHORT MODEL

A weapon system consists of 10 components. The system
manager wants ;to minimize the number of units short by supply-
ing spare parts to support the weapon system. Suppose that
the demand rate, lead time, price and essentiality code for

each item i are known. The objective function can be expressed

by
T
minimize Z(s) = (d.,-s.)p(D.=d.)E,
(c1) - i=l d,=s.,+1 * 1 111
i™%1
10
subject to ! sy5; < B
i=1
where:

Ei = essentiality code

B = Dbudget limit

AT, a
e (A.T.)
l 1
p(D;=d;) = @

The approximate solution of (Cl) can be obtained by the marginal
analysis method. Table II shows the computational results

for this system with known input data.




TABLE II
| THE RESULT OF UNITS SHORT MODEL ;
a No. Ai Lgad Price Essen. A}loca- Units
: Time ($) tion Short
1 1.0 1.0 10.2 1.0 5.0 0.0007
: 2 0.1 1.0 20.0 1.0 1.0 0.0048
3 3.0 1.0 100.0 1.0 2.0 1.2489
4 25.0 1.0 2.0 3.0 42.0 0.0013
5 1.0 1.0 5.0 1.0 5.0 0.0007
6 0.5 1.0 5.0 3.0 4.0 - 0.0002
7  10.0 1.0 1.0 1.0 21.0 0.0012
8 5.0 1.0 100.0 1.0 4.0 1.4368
, 9 1.0 1.0 50.0 1.0 . 3.0 0.0233
10 2.0 1.0 100.0 1.0 2.0 0.5413

Table II shows several properties of the units short
model. First of all, more than one unit short in a year

occurs in the high cost items (items 3 and 8). Second, low

demands and low price items are allocated enough. Items 2,

5 and 6 are allocated more than five times their mean demand.

Also this model tends to stock more of the high demands and
low price items.
Finally, the essentiality weights cause greater alloca-

tions to be provided to those items with high essentiality

g . M e . B -

than would be provided with equal weights.

25




Other results include:

3 Total objective value 3.26
% Shadow price 0.001899
E Budget limit $1170
' Budget left $0.0
o . A2(s;)E; 5
The shadow price is the last maximum value of —__E;—__‘ T
: ‘ It can be interpreted approximately as the amount of
decrease in the objective function achieved by adding one

more dollar.

—
f
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III. TIME WEIGHTED UNITS SHORT MODEL

A. DESCRIPTION OF MODEL

In the previous chapter we have discussed various objec-
tive functions and solution methods for the single period
inventory problem. 1In the miljitary services, many measures
of effectiveness have been used to indicate system performance.
Among these measures are fill rate, availability, mean supply
response time, the number of stockouts, and time-weighted
units short. 1In this chapter we consider a model which
minimizes time-weighted-units-short (TWUS).

Suppose that a weapon system consists of n components

and the objective is to allocate a given budget for spare

parts so as to minimize time-weighted-units short for the
entire system. Assume that
(1) procurement lead time and repair lead time are known
constants.
(2) demands for each installed unit have a known
distribution.
(3) the total amount of procurement budget available to
spend on all components is fixed.
(4) the objective is to minimize essentiality weighted
TWUS. Mathematically, the model can be written

as

27




n 1
min ] TWUS,(s,)E.-Tm
s i=1 i 7i’7i sLT
n
s.t. izl c;s; < B
where:
TWUSi(si) = time weighted units short when there
are s, units for item i
SLT = total sum of lead time demand
n
(izl A TS)
Ei = essentiality code for item i
B = budget limit in a given period
Ci = price of each item.

In the above problem, if the TWUS is properly defined, this
model will be solved easily by using the methods explained

in Chapter 1I1I.

B. POISSON DEMAND CASE
We shall now determine an exact expression for the
TWUSi(si) for the case in which demands are Poisson distributed.
Let the mean rate of demand be Ai units per year and the
lead time be a constant Ti' In addition to treating the
demand variable as being discrete, the number of buys s

also will be treated as a discrete variable. Thus if Di is

the lead time demand item j:




-A, T, S,
e 1 l(AiTi) i
= P(Si;)\iTi)
Let
p(s;) = prob(D;, >s.) = d.zs P(d,;A,T,) (2)
i7i

I1f there are s; units of stock for item i, Richards and
McMasters [Ref. 8] show that the expected time-weighted

units short in (O,Ti) is given by

Ti _ si(si+l)

+ p(sgia T.) (N T, -s,)} (3)

For those cases where the expected lead time demand is
large, the Poisson probabilities in (3) can be approximated

by a normal distribution with mean AiTi and variance

o? = A.T.. Let
i i’i

1 2
$(x) = —— exp(-x"/2)
/27

be the standard normal probability density function and let
- -}

¢(x) = [ ¢(u)du be the complementary cumulative distribution
x
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function for the standard normal. Then expression (3) can

be rewritten in terms of the normal probability function as

follows:
T. S.+1=-A_.T. 8.(s.+1)
- i i’i - 1 1
E[TWUSi(si)] = "'{“__.—)“i'ri 2si+—_>‘.T. |
1 1 1
1 57Ty
+ 5; ¢(-—3;———0(AiTi-si)} (4)

This expression should be used in those cases in which AiTi
is large. We have developed the expression for the expected
time-weighted units short in a period of length Ti when there
are s; units of stock for item i.

In the next section we write the expression for the total
essentiality-weighted time weighted units short over all items,
and we provide a solution procedure for allocating the given

budget optimally.

C. SOLUTION PROCEDURE

The mathematical program for the time-weighted-units short

problem is:

1 ¥ OET s; (5:+1)
(Cl) min Z(s) = gI7 i£1 {p(s +1) [\ T ~2s, *T—
+ p(si;)\iTl) (A].Ti-si)}
N
s.t. 121 cisl i B
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To solve this problem we can use the Lagrangian multiplier

technique. Let

N N
L(S;,S5r.0.,8.:0) = i£1 2,(s;) + e(B--i£l c;s;) (5)

Here Equation (5) is separable in the items, and minimization
of the total objective function is accomplished by minimizing
the individual functions Zi(si) subject to budget constraints.

Consider a single item i. Let

ALi(si) = Li(si-l) - L(si)
= z(s-l)-z(s)+6cs -ec (s -1)
= Azi(si) + eci (6)
where
Azi(si) = Ei[TWUSi(si-l) - TWUSi(si)] (7)

As shown earlier
TWUS(s-1) = Z{B(s) [AT-2(s- 1)+-S-Ls—ﬂ1+p(s-1 s AT) (AT-s+1) }

g2
= —{P(s) [A'r-zs+ﬁ—+2] + ;‘—p(s,)‘T) (AT-s8+1) }
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s(s+l)
AT

TWUS (s) %{F(su) [AT-2s+ + P(S;AT) (AT-3) }

s(s+1)

S 1-p(s:AT) (AT-25+21820)

= Z{B(s) AT-2s+

+ p(s;AT) (AT~s)}

so that

TWUS (s-1) - TWUS(s)

2 2
———%_‘inp(s;x'r) (s -i—T

2
= g-{‘p'(s) (2 + 8283

s
+ T + \T=-2s

sz+s
AT

+ - AT + sl}

= FBs) (2 - 251 + 32 pisidm)

= P(s)IT-3) + 3 p(siAT) (8)

Substitute Equations (7) and (8) into (6). Then

S. S.
= -—1-. =) . _L . !
+ 6c, (9)

The optimum solution s; is the largest s, such that

AL;(s;) > O
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or eguivalently,

E.(2,.(s,-1)-2.(s.) E, S,
i "i7i ithit 0 Ti RS TS
1
+ X: P(Si)] > =9

The basic algorithm for solving this problem was explained
in the previous chapter. A computer program for searching

for @8 is provided in Appendix B.

D. SAMPLE DATA RUNS

Consider a weapon system which consists of 10 components.
Suppose that the demand for each component is Poisson dis-
tributed with parameter Ai and the lead time is known constant
T,. Let the budget available for procurement be $19224.
Table III shows the optimal allocations provided by the TWUS
model.

The allocation given when the demand distribution is
approximated by the normal distribution is also provided
in Table III for comparison. (For comparability, the variance
for the normal distribution is taken to be the same as the
mean). Comparing the results, we observe that the normal
case buys more of the high demands low cost items. There is
a small difference in the allocation for items 8 and 9 which
are more expensive than the others. For demand rates less

than 10, the usefulness of the approximation is gquestionable.
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TABLE III
OPTIMAL ALLOCATION FOR TWUS MODEL
Item A, T, ¢; (8) E; Poisson Normal
1l 10 1 10 1 17 20
2 100 1 20 1 113 120
3 15 1 80 1 19 21
4 20 1 2 1 32 36
5 50 1l 5 1 65 71
6 80 1 30 1 90 96
7 20 1 1 1 35 37
8 15 1 200 1l 17 15
9 75 1 100 1 77 74
10 10 1 75 1 14 16

The resulting values of the objective function for the

optimal solutions are:

Poisson Case Normal Case
Z(s*) 0.00094 0.0015
Shadow price (6%*) 0.00015 0.00055
Budget limit $19224 $19224
Budget left 0 0

The objective function value for the Poisson demand case is
less than the normal demand case. The main reason for the

difference is due to items 8 and 9.

34




IV. PSEUDO AVAILABILITY MODEL

A. DESCRIPTION OF MODEL
In the previous chapter, the TWUS objective function was
introduced as a means foi allocating a limited budget.

Operational availability is a widely stated measure of the

operational readiness of military forces and weapon systems.

Thus, it is appropriate to consider stockage models with an

- e -

availability objective as a means of allocating limited
resources.

The most direct and meaningful measure of the influence
of peace time operating stocks on readiness is weapon
system (or end item) availability. We use the terms
availability, end-item availability, and weapon system
availability interchangeably to mean the probability
that an end item, such as a tank or an aircraft,
f selected at random, is not waiting for a component
to.be repaired or shipped to it. [Ref. 6]

Many authors have attempted to determine stockage levels for
components by maximizing equipment operational availability,
subject to a budget constraint. See, for example, Jee [Ref.

7]1. Usually, the availability for component i is defined by

e t—— = -

the ratio

MTBF.
A = ____L

i MTBF. + MTTR
i i

+ Msn'ri(si)

where:

. . e B

MTBFi = the Mean Time Between Failure of item i;
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MT'I‘Ri the Mean Time To Repair for item i;

d MSRfi(si) the Mean Supply Response Time for item i.

If the weapon system is assumed to consist of the n components
all arranged in series, then the system availability is the

product of the individual item availabilities. (This assump-

tion means that the system will fail if any of the components
fails.) With this assumption, the allocation problem, stated

in terms of system availability is:

n
(P1) max I A.(s.)
s i=1 * 1
n ]
| s.t. ] e¢;s; < B i=1,2,...,N
: i=1

e

where:

the availability of item i having s;
units in stock;

>
-

0
[

1

B = the budget limit;

C. = the price for each item i,

[ o

In the expression of Ai(si). the term MTBFi is the recipro-
cal of the failure rate i, MTTRi is assumed to be independent
of the decision variables and the available funds and MSRTi(si)

can be expressed in terms of TWUS(si) as

[ SR S R

1
MSRTi(si) = rx TWUSi(Si) .
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Thus, the main determination of availability from the point
of view of the supply system is MSRTi(si). Many techniques
for solving this model have been developed. In the next
section we represent an algorithm for solving the availa-

bility model by using the marginal analysis method.

B. SOLUTION PROCEDURE

The model (Pl) is not additive in the individual com-
ponent availabilities but is converted into an additive
function by transforming the objective function. Taking the
natural log of the objective function, the model can be ex-

pressed in the following way.

n
(P2) max I} an A (s;)
s i=1
)
s.t. c.,s, < B i=1,,2,...,N
i=1 * 1 7

Now the model (P2) is separable for all i and maximization
of (P2) yields the same solution as maximization of (Pl).
The marginal analysis method selects an item which gives at
each step the greatest increase in log(Ai(si)) per dollar
spent.

STEP 1. Start with zero units for all items.

STEP 2. Compute the increase in log availability per dollar
spent as a result of purchasing one additional

unit.
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MTBF
]
MTBF; +MTTR; +MSRT; (s;)

in Ai(si) = n|

STEP 3. Select that item i corresponding to the maximum

ratio.

. : ALn Al(sl)'Azn Az(sz) ALn An(sn)]
ey m———

all s; €1 €2 €n

STEP 4. Increase the number of units stocked for the item
selected at step 3 by one additional unit if the
unit price is less than the amount of budget

remaining.

STEP 5. Update the S vector, the MSRT(s) expression and
decrement the available budget. If the remaining
budget is greater than the cost of the cheapest

item, Go to Step 3. Otherwise, Stop.

In the following section, we will illustrate this procedure

with a sample system. The computer program is provided in

Appendix C.
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C. A NUMERIC EXAMPLE FOR THE MSRT MODEL AND THE AVAILABILITY

MODEL

In the expression for availability, the MTBF and MTTR

terms are not functions of the number of spare parts. There-

fore it is commonly believed that maximization of system
availability is equivalent to minimization of mean supply
response time. However, this is not the case, as shown
below.

Suppose a weapon system consists of three components and
the demands are Poisson distributed with parameters Al' Az
and A3, respectively. The lead time is a known constant and
the components have essentiality codes Ei' The unit price
and MTTR are known and the budget is limited to 20 dollars.

This information is summarized in Table IV.

TABLE IV

INPUT DATA FOR EXAMPLE

ITEM Ai ¢, MTTRi Ei Ti
1 1 5 0.0274 1 1.0
2 0.1 5 0.0027 3 1.0
3 10 1 0.0054 1 1.0

To solve MSRT minimization problems, we first determine

the MSRT's for all possible cases. These values are provided

in Table V.
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TABLE V

MSRT DATA FOR ALL FEASIBLE SOLUTIONS Si

MSRT(Si) ITEM 1 ITEM 2 ITEM 3
MSRT (0) 0.9482 0.9837 0.6

MSRT (1) 0.316l 0.1967 0.5

MSRT(2) 0.0708 0.02 0.4099
MSRT (3) 0.0132 0.00227 0.3298
MSRT (4) 0.0021 0.0002 0.2596
MSRT (5) 0.0003 0.1992
MSRT (6) 0.1485
MSRT(7) 0.1072
MSRT(8) 0.0746
MSRT(9) 0.0500
MSRT(10) - 0.0322
MSRT(11) - 0.0199

Using the solution procedure described in the previous chap-
ter we determine the optimal solution to be as shown in Table

VI.

40




TABLE VI

THE ALLOCATION OF SPARE PARTS FOR MSRT MODEL
ITEM 1 2 3
USED
ALLOCATION AZl(sl) Azg(sz) AZ3(s3) BUDGET ($)
(0,0,0) 0.12462 0.47216 0.1 0
(0,1,0) 0.12462 0.1040 0.1 5
(1,1,0) 0.04905 0.1040 0.1 10
(1,2,0) 0.0490G5 0.01265 0.1 15
(1,2,1) 0.04905 0.01265 0.09 16
(1,2,2) 0.04905 0.01265 0.08012 17
(1,2,3) 0.04905 0.01265 0.07022 18 ﬁ
(1,2,4) 0.04905 0.01265 0.06039 19 ‘!
(1,2,5) 0.04905 0.01265 0.0507 20

The optimal solution for MSRT model is (1,2,5). Repeating
the analysis for the availability objective function we
obtain the results provided in Table VII from the marginal

analysis procedure.

1
Eflzi(si+l) - zi(si)]

AZ. (8.)
i*®i i

1l
E;[ln Ai(si+l) - 2n Ai(si)]




TABLE VII

THE ALLOCATION OF SPARE PARTS FOR AVAILABILITY MODEL

ITEM 1l 2 3
USED
ALLOCATION 82, (s)) A2, (s,) 82 4(sy) BUDGET
n (0,0,0) 0.07712 0.1294 0.1529 0
ﬁ ‘ (0,0,1) 0.07712 0.1294 0.1611 1
(0,0,2) 0.07712 0.1294 0.1689 2
(0,0,3)  0.07712 0.1294 0.1759 3
(0,0,4) 0.07712 0.1294 0.1808 4
(0,0,5) 0.07712 0.1294 0.1821 5
(0,0,6) 0.07712 0.1294 0.1777 6
(0,0,7) 0.07712 0.1294 0.1660 7
: (0,0,8) 0.07712 0.1294 0.1469 8
(0,0,9) 0.07712 0.1294 0.1217 9
(0,1,9) 0.07712 0.0447 0.1217 14
(0,1,10) 0.07712 0.0447 0.0938 15
(0,1,11) 0.07712 0.0447 0.06702 16
| . :
l (0,1,15) 20

The optimal solution for the availability model is (0,1,15).
Comparing the results of the two models, we see that the
availability model allocates more units to the high demand

lower cost items than the MSRT model.

T . . N — . M.
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D. SAMPLE DATA RUNS

Suppose that a weapon system consists of 10 components
and the demand of each component is Poisson distributed with
parameter Ai’ and lead time Ti' mean time to repair MTTRi
are known constants. In order to maximize the availability
of spare parts with budget constraint, we can use the modi-
fied Availability model (P2) instead of (Pl). By using the
computer program in Appendix C, this problem can be solved.
Table VIII provides the allocations of spare parts in the

Availability model when the budget is 1170 dollars.

TABLE VIII

THE ALLOCATION OF SPARE PARTS FOR THE
AVAILABILITY MODEL

ITEM A, T, c, (%) Ei MTTRi ALLOCATION Ai(si)

i i i
1 1.0 1.0 10.0 1.0 0.0137 4.0 0.986
2 0.1 1.0 20.0 1.0 0.0274 2.0 0.997
3 3.0 1.0 100.0 1.0 0.0137 3.0 0.821
4 25.0 1.0 2.0 3.0 0.0822 37.0 0.327
S 1.0 1.0 5.0 1.0 0.0274 5.0 0.973
6 0.5 1.0 5.0 3.0 0.0027 4.0 0.999
7 10.0 1.0 1.0 1.0 0.0054 21.0 0.949
8 5.0 1.0 100.0 1.0 0.0411 3.0 0.538
9 1.0 1.0 50.0 1.0 0.0082 3.0 0.987

10 2.0 1.0 100.0 1.0 0.1370 2.0 0.697
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From the table, one can see that the availability of an
item is greatly influenced by the MTTR term (see item 4).
The availability for that item never exceeds 0.333 even if
: ' the MSRT is zero. We also observe that the availability
g model tends to stock the high demand low cost items.
:v‘ by:

Total cbejctive value 0.08999

The objective function for the optimal solution is given

Shadow price 0.000261

Budget limit $1170

Budget left $0.0

A comparison of the above results with the allocation given

in Table VIII shows that the total availability is relatively

low even though most of the items have high availabilities.

Also as mentioned above, when the MTTR data for an item is

large relative to the MTBF, a high availability cannot be

achieved.
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V. COMPARISON OF MODELS

A. ANALYSIS FOR SAME DATA

In this chapter, we continue to consider the allocation
of spare parts to maximize the system performance in the
different allocation models. 1In this thesis, we have looked
at three models: the units short model, the time-weighted
units short model, and the availability model. Since each
model attempts to reduce stockouts as much as possible the
allocations generated by the models are strongly correlated.
This is especially true for the availability model and the
MSRT model since availability is a function of MSRT. However,
we saw earlier that the allocations from the models are not
necessarily the same.

Assume that a weapon system consists of 10 items, thé
demands are Poisson distributed and MTTRi, C, Ti' Ei are
known constants and a budget constraint of the weapon system
is $1170. The optimal allocations for the three models are
shown in Table IX. As can be seen, the TWUS model is more
sensitive to the lead times than are the other two models
(see items 5, 6, and 7).

The units short model is more sensitive to the price of
the item than are the other two models. For item 9 the units
short model bought nothing, but the TWUS model and the availa-

bility model allocated 2 and 3 items respectively. All
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TABLE IX

THE ALLOCATIONS OF SPARE PARTS FOR THE
THREE DIFFERENT MODELS
Units
Item Ai cost Ess. Ti MTTR  Short TWUS Avail.
(yr) ($) (yr) (yr) Model Model  Model
1 1.0 10 1 1 0.0137 3 3 4
2 0.1 10 1 1 0.0137 2 1 2
3 15.0 3 1 1 0.0137 24 20 22
15.0 3 3 1 0.0274 26 23 24
5 3.0 10 1 0.5 0.0274 4 3 4
6 3.0 5 3 0.5 0.0274 6 4 6
7 10.0 50 1 0.2 0.0054 0 0 3
8 10.0 50 1 1 0.0411 8 7 2
9 2.0 50 1 1 0.0137 0 2 3
10 2.0 100 4 2 0.1370 5 5 5
three models are highly affected by the essentiality code.
This is illustrated by a comparison of items 9 and 10. Table

X presents the corresponding values of the three objective

functions.
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TABLE X

THE COMPARISON OF OBJECTIVE VALUES FOR THREE MODELS

OBJ

FN UNITS
MODEL SHORT TWUS AVAILABILITY
UNITS SHORT 0.1523 0.0458 0.0483
TWUS 0.1527 0.0353 0.0687
AVAILABILITY 0.1969 0.0275 0.0709

The above table was established by computing each objective
function for the allocations determined by the three differ-
ent procedures. Comparing the results of the three models,
the TWUS model seems to do the best job considering all three
objective functions. However, no general conclusions can be
drawn about the preference of the TWUS model for other
situations.

One needs to determine which objective function most
closely matches a servicers' feeling about how operational
readiness is affected by stockouts and delays in satisfying

stockouts.

B. DISCUSSION OF SIMILARITIES

In the budget allocation problem there are many factors
which affect the allocation such as demand, lead time, cost,
time to repair and essentiality. The three models share simi-

lar properties. First of all, as can be seen in the above
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example, all models tend to stock the cheap, high demand
items in favor of expensive low demands items. This is
because of the models attempts to get the biggest benefit
per dollar spent. Potential benefit per additional unit
increases with an items demand rate. Second, items having
high essentiality code are given preference, as is the in-
tent of essentiality assignment schemes. Essentiality
weighting is one way to counter the preference given the high
demand low cost item observed earlier. It is frequently the
case that the most critical items are low demand expensive
items. Without the essentiality weighting such items would

be neglected by the type of models examined in this thesis.
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VI. USE QOF THE MODELS FOR BUDGET DETERMINATION

A. EFFECTIVENESS VS. BUDGET

The models that we have discussed have attempted to opti=-
mize performance subject to a budget constraint. We have
assumed that the budget was given. There are many ways in
which budgets are determined. However, budgeting people and
inventory managers alike often express the desire to have a
methodology that they can use to determine the amount of
money that should be provided.

In most cases the amount is determined historically by

giving an amount equal to what has been provided in the past

for similar systems or perhaps by giving a little more or
less based on judgement or financial constraints. There is,
however, a strong interest brought about by Congressional
pressures to relate resources to readiness. Congress wants

to know "how much money is needed to support our weapon Ssys-

tems at a specified level of performance." In this chapter we
show how the models developed earlier in this thesis can be
used in just this manner.

Specifically, we show how the models that we have developed

can be modified easily to determine the minimum budget re-

quired to provide a specified level of logistics performance.

The models developed earlier can each be run for a range

of budget levels producing for each given budget an allocation




and a predicted overall level of performance. Figure 3 illus-
trates this for the case in which the performance measure is
pseudo-availability. As expected, the curve shows that
availability is a non-decreasing function of budget with
decreasing marginal returns. This can be done also for the
time-weighted units short model or any of the other models
discussed in this thesis. 1In all cases we would obtain a
similar display. Performance is a monotonic function of
budget with decreasing marginal returns.

Figure 4 displays a similar result for the case in which
the performance measure is MSRT. Each point on the curve
represents an optimal level of performance for a given budget.
For this example displayed, Figure 3, there is a little bene-
fit to be gained by increasing the budget above $2500. How-
ever there is a dramatic increase in effectiveness obtained
by increasing the budget from $1000 to $2000. This is pre-
cisely the sort of information needed to make intelligent
budgeting decisions. Of course some decision maker must
decide if the increase in effectiveness is worth the addi-
tional expenditure.

If a specific level of effectiveness is specified, one
can graphically determine the amount of budget required by
simply moving horizontally across the graph from the speci-
fied level of effectiveness until the curve is intersected

and then down to the budget axis.
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The next section determines analytically the minimum
amount budget required by solving a companion problem to

the problems discussed earlier in this thesis.

B. COMPANION PROBLEMS

In the previous chapters we have concentrated on the
optimization of system effectiveness with a budget constraint.
For many weapon systems such as air detection radars, missiles
and nuclear delivery systems, the system performance is so
important that the necessary budget will be provided to
attain whatever performance is deemed necesséry.

For such systems it is reasonable to restate the optimi-
zation problem to determine the minimum budget required to
satigsfy a specified level of performance. Consider, for
example, the availability optimization problem and the com-

panion problem:

n
(D1) min )] c.s,

n
s.t. n a, > L i=1,2,...,n

where L is the minimum performance level for a weapon system.

For the MSRT model case the corresponding problem is:

(D2) min I e;s;

n
s.t. 121 MSRT,(s;) < R i=1,2,...,n




where R is the maximum allowable cumulative supply response
ffj time for the weapon system.

Problems (Dl) and (D2) can be solved using the same
methods explained in Chapters III and IV. 1In the above
models the budget is determined so that the system require-

ment for availability or main supply response time can be

achieved.

For problem (D2) the total cost is minimized when

n
1 MSRT (s;) = R.
i=1
Sometimes a minimum allowable supply response time is
required for each item. In such a case multiple constraints

could be specified. This is illustrated below:

n
(D3) min izl s,
\ MSRTz(sz) < R2
g .
MSRTn(Sn) < Rn

———

where Ri is the maximum allowable supply response time,

i = l,Z....,N.
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To solve (D3), find the smallest s such that

MSRTl(Sl)

L
b

]
o

MSRTz(sz)

.
.
.

MSRTn(Sn) = R

This problem is solved easily using the same procedures
which we discussed.

So far we have discussed many different ways to apply
the theoretical models to practical use of models for budget
determination decisions. There is no unique method which
gives us an optimal result. So the user of these models
should choose one of possible methods so as to maximize the

system performance or minimize the total cost.
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VII. CONCLUSIONS

It is concluded that the various measures of effectiveness
can be used in the budget constrained multi-item inventory
system with stochastic demands. We have examined some of
the more reasonable measures like minimization of units short,
minimization of time-weighted units short and maximization
of system availability. We have also looked at models which
incorporate essentiality weights into each of the models.

In order to solve budget allocation stockage problems a
feasible, efficient method of effecting line item inventory
control is available using an adaptation of Everett's
Generalized Lagrangian Multiplier method. Further, the use of
a G.L.M, procedure provides valuable information for system
managers as to relative effectiveness of additional procure-
ment funds, versus additional transition processing capability.
The final value of Lagrangian multipliers can be interpreted
as the amount of improvement of the objective function per
unit dollar spent.

The models discussed in this thesis are all more likely
to stock cheap, high demand items than expensive, low demand
items. Such is the nature of budget constrained optimization
problems. If a system manager wishes to maintain enough
stock for an item having low demand, high cost, his only

alternative in our models is to assign a high essentiality
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code for the item. The essentiality code has the effect of
reducing the ratio C/E as opposed to C. In the solution
procedure for each model, the assigned essentiality code
directly affects the allocation for the item.

We have shown how the models can be used as a tool to
determine the amount of budget. A simple graphical procedure
allows a decision maker to determine the minimum budget re-
quired to search a specified level of performance. The opti-
mization model is run several times to generate a plot of
performance vs. budget. Each point of the curve represents
the effectiveness for the optimal allocation of a given budget.
A manager can, first, determine an appropriate system per-
formance level and read from the curve the budget required
to achieve the effectiveness.

Further analysis to improve these models may be possible.
For instance, it would be useful to have an automatic search
algorithm for the Lagrangian multipliers for a multiple
constrained problem. It may also be possible to relax the
assumptions for a constant lead time or a constant mean time
to repair. These single period inventory may expand to time-

dependent multi-item, multi-echelon, multi-indenture inventory

systems.




APPENDIX A

COMPUTER PROGRAM FOR INTERACTIVE SEARCH
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APPENDIX B

COMPUTER PROGRAM FOR AUTOMATING SEARCH
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APPENDIX C

COMPUTER PROGRAM FOR MARGINAL ANALYSIS
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