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Applied Cognitive Science

One focus of modern cognitive science is the interaction
between people and complex systems, such as computer and
electronic systems. American society is becoming inundated with
more and more complex systems., The skills required to design,
operate, and fix these systems have become necessary ones for
anyone to function successfully in our society. Teaching people
to deal with these systems, and designing the systems so that
they are easy for people to use, are important goals for an
applied cognitive psychology. In this paper we present a
framework for understanding the research in the cognitive
sciences on human interaction with systems, and describe some of
the best research carried out in this area.

Much of the recent research in cognitive science is
concerned with the relation between a person and a system,
pacrticularly a computer system, At the most general level, there
can be two kinds of relations between a person and a system:
either one replaces the other, or somehow they interacgt. wWith
regard to replacement, it is always a matter of a computer system
replacing people, and the area of research in cognitive acience
that is concerned with this goes by the name of “"expert systems”.
We shall have 1little to say about expert systems for our
fundamental concern is with the interaction of people and

systens, (For a recent review of expert systems, see Feigenbaum

& McCorduck, 1983).
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In considering how people interact with systems, four
domains of inquiry come to mind. Perhaps the most obvious
concerns what the person understands about the system. That is,
what is the person's representation or model of the system? This
question has led to a substantial amount of research under the
heading of "mental models®”. The second kind of question is the
reverse of the first, namely, What is the system's model of the
person? More precisely, What model of a 1likely user of a
computer system has been incorporated into the programs guiding
the system? The area of research dealing with this question is
referred to as "user models”. The remaining two kinds of
questions of interest are consequences of the "model” questions
just considered. sSpecifically, given a deficiency in either a
person's mental model of a system, or in the systems's user model
of a person, we can change either the person or the system.
Changing the person give rise to the third type of question--How
can we teach or instruct people to have more correct mental
models of the system? The associated area of research will be
called “"explanation and instruction®"., Changing the system gives
rise to the fourth kind of question--How can we alter the systenm
80 that it incorporates a more correct user model of the person?

The associated area of research is "cognitive engineering®.

The distinctions we have thus far drawn regarding persons
and systenms are summarized in Table 1. The first distinction is
between replacament and ipnteraction. Subordinate to jntezaction,
we have distinguished between nodals and changa, i.e., research

-
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on mental models and user models concerns the nature of models,
while work on explanation and instruction and on cognitive
engineering deals with how to change the models. Orthogonal to
the contrast between models and change, there is a distinction
regarding who is the £focus, either the person in research on
mental models and on explanation and instruction, or the gystem

in ressarch on user models and cognitive engineering.

While the structure in Table 1 bhardly exhausts all the
distinctions that c¢ouldé be drawn, it suffices as a useful
starting point for a discussion of possible relations between a

person and a systemn.

Mental Models

In order to operate and repair complex 'systems such as
electronic and computer systems, it is necessary to have a mental
model of how the system behaves., These mental models give people
the power to gimulate how the system will behave if they perform
some action or if some component is not functioning properly.
There has recently been a large amount of research on this topic
in cognitive psychology and artificial intelligence, perhaps best
represented by tpe book on Mental Models edited by Gentner and
Stevens (1983). We will try to summarize here some of the key

ideas and approaches in that literature.

In a series of papers de Kleer and Brown (Brown, Burton, &
Zdybel, 1973; de Kleer, 1977, 1979; de Kleer & Brown, 1982, 1983)
have been exploring notions of gualitative aimulation and

R )
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Table 1

Some Critical Distinctions in Cognitive Science

Interaction Replacement
Focus on Person Focus on System
Models Mental Models User Models Expert Systems
Change Explanation and Cognitive
Understanding Engineering

PUREIRN
G
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envigioning of how systems behave, The key idea in their
approach is that you can break down a complex system or device
(e.g., a door buzzer) into a set of component models (e.g.,
switches, coils, etc.). In order to construct a gqualitative
simulation of the system you must know two things: (1) the
topology of connections between the various components (i.e.,
what is connected to what), and (2) the incremental input-output
functicons éf the various components (i.e., if a particular input

to a component goes up, what happens to the output).

de [Rleer and Brown (1982, 1983) argue that component models
should consist only of statements about local inputs (e.g., the
current goes up) and local effects (e.g., the output voltage goes
down) . That is, the model for a switch or coil in one circuit
should be the same as that in another circuit. The only thing
that varies from circuit to circuit is the particular
connections. By knowing the connections and the component
models, one can “"envision®™ how the system will function. 1In
other words, one can construct a mental model of the system, that
can then be "run," producing what we think of as seeing the

system run in our "mind's eye."®

Por a mnmental model to be robust, de Kleer and Brown (1982,
1983) argue that you need to keep out of the structural model of
the system all reference to the way the system functions (called

the no-function-in-structure principle). 1If you do not, then the

model is only good for understanding an intact system. If any
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component malfunctions or behaves differently in some way, you
have no chance of understanding the functioning of the systen.
To have a robust understanding you want to be able to replace the
intact component model with a faulted component model and
envision what hapﬁens. But it is very difficult to construct
mental models where the function of the system does not penetrate
the component mncdels. Nevertheless the principle serves as an

important criterion for robust models.

Forbus (1982) has extended the de Kleer and Brown analysis
to construct a general language for describing processes in
gualitative terms that he calls "qualitative process theory."
Qualitative process theory is meant to be a language for
describing any person's qualitative understanding of how a systenm
works, It has no specific physics built into it, only
assumptions about what are the crucial entities needed for
reasoning in a qualitative way about processes. Central ¢to his
claims is that understanding the various processes that a system
carries out is the core of understanding the behavior of the

system.

The five parts to any process description in the theory are
shown in Table 2 describing fluid flow., The individuals (source,
destination, and path) are the entities involved in the process.
Preconditions specify what topological connections must exist for

the process to occur: In this case the path must be aligned,

i.e., open and connected from the scurce to the destination. The
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Table 2

Qualitative Process Theory Representation
of Fluid Flow (from Forbus, 1983)

Process fluid-flow

Individuals:
s=a contained-fluid (source)
d=a contained fluid (destinaticn)
path=a fluid-path(path s d)

Preconditions:
aligned(path)

Quantity conditions:
A[Pressure(s)] > A[Pressure(d)]

Relations:
Let flow-rate be a number.
flow-rate aQ(A[Pressu:e(s)] - A[Pressure(d)])

Influences:
I + (Amount-of (d), flow-rate)
I - (Amount-of(s), £low-rate)
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quantity conditions are gquantitative relations that nust hold for
the process to occur: In this case the pressure of the source
must be greater than the pressure of the destination. Relations
specify what must hold during the process: In this case the flow
rate is proportional (a ) to the difference in pressure between
the source and destination. The influences represent the outcome
of the process: In this case the amcunt of 1liquid at the
destination increases and the amount of liquid at the source
decreases, both as a function of flow rate. The key ideas in the
theory are that different views of processes like fluid flow can
be represented in these terms, and that the notation is adequate
to model human reasoning about all the different processes that

occur in physical systems.

Stevens and his colleagues (Stevens & Collins, 1988; Stevens
& Steinberg, 1981; williams, Bollan, & Stevens, 1983) have
emphasized the different kinds of models people have of systems
and how models are refined in the course of learning. Some of
the distinctions Stevens and Steinberg (198l) make between
different models arce:

1., Structural ys. Dypamic. Structural models are used to
describe a system in a time-invariant manner and
dynamic models to describe changes that occur in the
system over time.

2.

componential ¥s. ¥s. Geometriq. Structural
models can be decomposed simply into components, or
more usefully into topological configurations where the
connections between components are preserved, or
geometric configurations where the spatial relations
between components are preserved,

ol
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Behavioral vs. Interpal Structure. Among dynamic
models, behavioral models describe a system or a
component simply in terms of its inputs and outputs
(i.e., "black box" models). Internal-structure models,
on the other hand, break the system down into the
interactions between various components.

4. QJggregate ysS. Mechanistic. Internal-structure models
can either be aggregate or mechanistic. In aggregate
models the components behave in a uniform manner,
whereas in mechanistic models each component has a
unigue behavior.

5. Causal s. Synchronous. Internal-structure models can
either be causal or synchronous. Aggregate models are
inherently synchronous, but mechanistic models break

events into causal chains, or treat them as occurring
synchronously.

6. Aaction-flow ys. Information-flow. Among causal models,
there are action~flow models where some kind of
substance or energy flows through the system, and there
are information-flow models, where information £flows
through the system.

Young (1981, 1983) has compared two diffe:ent kinds of
mental models that people have for electronic calculators. The
first kind of model he calls a surrogate model. His prototypical
example of a surrogate model is the one provided by
Hewlett-Packard for their reverse Polish notation calculator
shown in Figure 1. The model specifies four registers, X, Y, 2,
and T, as well as what happens tc the numbers in each register
when a new number is entered, when 2a nnary operation is
performed, or when a binary operation is performed, This

surrogate model allows one to simulate what will happen for any

combination of inputs, as with the incremental qualitacive models

of de RKleer and Brown (de Kleer, 1979; de Kleer & Brown, 1982,
1983) .
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Young argues that this is not the kind of model people
normally use to understand calculators. Instead, he argues that
people's understanding of calculators is based on a mapping
between the task, in this case doing arithmetic, and the actions
necessary to carry out the task. People know alot about
arithmetic, and the ease of learning and using most calculators
depends on how simple the mapping is between their knowledge of
arithmetic and the steps they must carry out with the calculator.
For algebraic calculators that let you put in parentheses and
give precedence of X and / over + and -, the mapping is
particularly straightforward, But for simpler calculators 1like
the four-function calculator he analyzed, the mapping can become
quite difficult. FPor example, to find the guotient for 6/(3+5),
it is necessary to type the input sequence "3+5/=6=" which is
only obscurely related to the original algebraic expression. For
most uses of a calculator it is this fask-action mapping model

that is crucial, and which should be used to guide design.

Like Young, Gentner (1983; Gentner & Gentner, 1983) argues
that people understand new systems by analogy with- systems they
already understand. She proposes a "structure-mapping” theory of
how people map their knowledge about one system (the base) onto a
new system (the target). The basic notion is that a structure
mapping consists of a 1l toc 1 mapping of elements from a base
system onto elements of the target system. The mapping preserves

relationships between elements but leaves specific attributes of

the elements behind, Hence it is a mapping only of <the
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structural relationships between elements rather than a complete

mapping of all the properties of elements in the two systems.

We can illustrate these ideas in terms of Gentner's analysis
of Bohr's classic analogy between the solar system (the base) and
the atom (the target) shown in Figure 2. 1In the analogy the sun
maps onto the nucleus of the atom and the planets map onto the
electrons. The properties to be mapped across are not the
specific attributes of the sun or planets, such as their color,
size, or temperature, but rather the relationships between
them: the nucleus is much more massive than the electrons, just
as the sun is much more massive than the planets; the electrons
revolve around the nucleus, just as the planets revolve around
the sun, etc, Of course, any analogy 1invites incorrect
inferences as well. For example, one might incorrectly infer
that the nucleus is hotter than the electrons, since the sun is
hotter than the planets, or that the electrons attract each
other, since the planets attract each other. Thus Gentner's
theory specifies how people understand new systems by analogy,

and how analogy can lead to systematic errors in understanding.

In summary, the research on mental models centers on how
people represent Kknowledge about systems and thoi; individual
components. People often infer how a system will behave by
propagating the behavior of the individual elements for different

input conditions. Purthermore, people construct mental models of

nev systems by analogy with their knowledge of other systens.
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Pigure 2. Representations of knowledge about the solar system
and the hydrogen atom, showing partial identity in the
relational structure between the two domains.
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Explapation and Understanding

As society requires more and more interactions with
technicil systems, there is a growing concern about how best to
teach people such systems, Recent work on this problem has been
much influenced by the research on mental models just reviewed,
and by related work on "schemas." We will consider two sample
trends in this recent work, one dealing with the use of analcgies
to convey models of technical systems, and the other dealing with
the role of models or schemas in understanding instructions for

assembling and operating technical systems,

Educators have long suspected that analogies play a
substantial role in students' understanding of science and
technology. As mentioned in the previous section, people often
tend to try to construct a model of a novel technical domain by
analogy to some domain they already know about. Recently,
cognitive psychologists have tried to directly study this
learning-by-analcgy process. Gentner and Gentner (1983), for
example, were interested in the conseqguences of using analogies
to teach the basics of electricity. They used two different
analogies--(l) current in a circuit is like water flowing through
pipes, and (2) current in a circuit is like a crowd of people
moving through a corridor--which should eventuate in two
dittntint models of electricity. For the group of subjects

taught the "water-flow" analogy, current was mapped onto water, a

wire was mapped onto a pipe, a battery was nmapped onto a pump,
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and a resistor was mapped onto a constriction in a pipe. For the
group taught the "moving~-crowd" analogy, current was mapped onto
people in the crowd, a wire was mapped onto a corridor, a battery
was mapped onto a loudspeaker “imploring the people to move
faster,®™ and a resistor was mapped onto a gate in a barrier.
Gentner and Gentner hypothesized that the moving-crowd analogy is
better than the water-flow analogy in providing a good model ‘of
how resistors work. This is because in the moving-crowd analogy
a resistor is viewed as a gate (rather than as an obstruction),
which permits the inference that two resistors in parallel should

allow more current to flow than would one resistor.

To check this prediction, Gentner and Gentner gave all
subjects problems to solve after they had presumably mastered
their analogy. Each problem involved a complex circuit -- either
two batteries or two resistors connected in series or in
parallel. The subjectsa' task was to compare current and voltage
at several points in the circuit with that of a corresponding
point in a "simple" circuit, i.e., a circuit with only one
battery and one circuit. As expected, subjects who had learned
the moving-crowds analogy gave more accurate answers about
circuits with parallel resistors than did subjects who learned
the water-flow analogy. Interestingly, on other kinds of
problems the groups taught different analogies did not differ in
performance. Hence, it is not 2 simple matter of one analogy
providing a better model of electricity than the other. Rather,

the different analogies induce somewhat different mental models
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. of electricity, and in some circumstances one model may be
superior to the other, while in other circumstances this ordering

of the models may reverse.

Turning now to the role of models in instructions, the basic
idea is that in order to operate or assemble a system, it is not
encugh to £follcw specific instructions; one must alsc have a
mocéel of how the system works, or will work once assembled. This
idea is illustrated by the work of Smith and Gocdman (1982) on
understanding assembly instructions. They had people assemble a
simple electrical circuit that included as major components a
battery, an on-off switch, and a bulb. Some subjects were given
only the instructional steps, while others were given the steps
plus some explanatory material. The explanatory material
concerned either the structure of the circuit (e.g., each major
component of the circuit and how it can be decomposed into minor
components), or the function of the circuit (e.g., the £flow of

electricity through conductors).

Both kinds of explanatory material offered schemas of the
circuit (though only the functional material may have offered a
true model), and both had widespread beneficial effects on
performance. An instructional step was read faster and executed
more accurately when it was preceded by explanatory material than
when it was not; in addition, the inclusion of explanatory
materials improved subjects' memories for the instructional steps

as well as their ability to troubleshcot a faulty version of the 'l
)

]
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i circuit, It seems, then, that explanation fostered a schema of

the circuit, which in turn benefited reading, execution, memory,

and problem solving.

Ugez Models

People have different interests and backgrounds. As
computer systems become more sophisticated, they will take these
differences in knowledge into account in the way they interact
with people. One thrust of research in the cognitive sciences
has been to develop more sophisticated models of users in
systems, To illustrate the notion of user mcdels we will
describe three approaches to building such models that different
researchers have taken: (1) Rich's (1979) GRUNDY, which models
a user's interests in order to recommend books, (2) Collins,
Wwarnock, and Passafiume's (197S5) model of a student's knowledge
about South American geography for the SCHOLAR computer—aided
instruction system, and (3) Burton & Brown's (1979) model of
student's strategies in playing the Plato arithmetic game, "How
the West Was Wwon." These are perhaps the three most
sophisticated user models developed to date, and ;hey exemplify
the potential of this kind of development.

GRUNDY (Rich, 1979), which plays librarian, uses stereotypes

(or prototypes) to try to build a model of what kinds of books

are interesting to a person, in order to recommend new books to

' them. The stereotypes in GRUNDY are schema-like (Minsky, 197S:
Rumelhart & Ortony, 1977) data structures representing, for
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example, the characteristics of a "sports person" or a "religious
person”, The stereotype for "sports person" indicates they like
excitement, tolerate violence, and do not 1like romance. Book
descriptions are stored in terms of their appeal to different

types of people (e.g., sports person, religious person).

When a person first starts to use GRONDY, he is asked for
descriptive words about himself (e.g., religious, likes sports),
from which the system constructs an initial model of the person.
This model «consists of a set c¢f characteristics (e.g., likes
excitement) and estimated strengths for the characteristics.
These are derived from the stereotypes it has stored that the
input descriptions triggered. For example, if the person says he
likes sports, this triggers the "sports person" stereotype, from
which GRUONDY concludes that the person probably does not like
books concerned with romance or education and probably does like
books concerned with excitement, violence, and suffering. Of
course these inferences may be incorrect, and GRUNDY may have to

revise them later,

GRONDY then discusses specific books with the user. If the
person has read, but 4id not like, a particular book that GRUNDY
thought he would like, it revises its model of the person based
on what the person did not like about the book. If the person
has not read a particular book that GRUNDY thinks he would like,
it describes the book and asks whether the book sounds

interesting. If not, it tries to pin down what aspect of the
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book does not appeal to the person in order to further refine its
model of the user. In this way GRUNDY slowly accumulates a
better model of the user, so that its book recommendations come

closer and closer to the person's interests.

Collins, Warnock, and Pagsafiume (1975) approached the
problem of user modeling in terms of how a computer tutor can
estimate what Kknowledge a student has or does not have. The
context of their work was the SCHOLAR CAI system, which tutored
students on South American geography. 0Unlike Rich, who simply
tried to build a user model in GRUNDY, Collins et al. studied how
human tutors model their students in order to simulate human
tutoring strategies in SCEOLAR. They found that human tutors
partially order each piece of information they know about a
topic, such as South America, in terms of how important it is (or
equivalently, how likely anyone is to know that piece of
information). Based on the student's answers to gquestions, the
tutor then can estimate what level of knowledge the student has

about the topic with respect to that partial ordering.

The tutor decides how to present new pieces of information
based on his estimate of the student's knowledge as shown in
Table 3 (from Collins et al., 1975). The tutor skips over the
most important information, because he assumes the student knows
it. The next most important information he asks about because
the student may or may not know it. Less important information

he tells the student on the assumption the student does not know
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it, but can learn it, Still 1less important information is
skipped over, because the tutor assumes it is too much to learn.
The examples from Table 3 reflect the model of the student from
one actual teaching dialogue. Another more sophisticated student
was handled differently: The tutor skipped over more information
on the assumption that the student knew it, and each of the
categories of information in the table was shifted accordingly.
Collins et al. subsequently built a version of this strategy into

the SCBOLAR system.

Burton and Brown (1979) built another kind of student model
into the Plato arithmetic game called "How the West Was Won."
The game board is shown in Figure 3, The object of the game is
to get to "Home" before the other player. Each player moves by
forming an arithmetic expression using three random numbers
generated by the spinners in the upper right hand corner. The
player can form any expression with the three numbers using plus,
minus, times, divide, and parentheses, There are also special
moves in the game: if you land on any town, you move forward
automatically to the next town; if you land on a shortcut (such
as S in Pigure 3), you move forward to the end of the shortcut
(i.e., 13); if you land on your opponent, he moves back two
towns. In order to play the game successfully, the student has
to consider whether it is possible to make any of these special
noves given the three numbers, The major limitation on
performance in the original Plato game was that students often

locked onto a single strategy, such as multiplying the two

[}
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a Table 3

The Different Categories of Information that Determine
What Questions are Asked and What Information is Presented

, Examples from
Categories of Information A Student DRialogue

1. Information the tutor South America is a
regards as very im- continent.
portant which he
assumes the student South America is south
knows, and so does of North America.
not ask about.

2, Information the tutor The Andes are the major
regards as important, mountain range in
which he thinks the South America.
student may or may not
know, and therefore The Amazon is a large
asks about. river in South America.

3. Information the tutor The Parana is a large
regards as somewhat river in South
less important, which America.
he thinks the student
probably does not know, The highest mountain in
S0 he presents the the Andes is Aconcagua.
information to the
student,

4. Information the tutor The Paraguay River is
regards as still less a tributary of the
important and too much Parana River.
beyond the student’'s

level of sophistication
to be worth presenting.

Manaus is a port half-
way up the Amazon River,
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largest numbers and adding the third, so that they never

considered different possible moves,

In order to encourage students to play strategically and

thereby practice their arithmetic skills, Brown and Burton

developed a coach that builds a model of the individual student
by watching him play a series of games. The coach watches to see
if the player uses parentheses, subtraction, multiplication,
division, and the three special moves, It rank orders each
possible move in terms of how far ahead of your opponent it puts
you. If a student consistently does not use parentheses or fails
to land on a town when it would benefit him to do so, then the
coach infers that the student does not understand that strategy
very well., When a move occurs where using a particular strategy
like landing on a town would improve hi% positicq: substantially,
then the coach interrupts after the student has made his move,
It then points out how he could have done better by making an
alternative expression that would have landed him on a town. It
also gives him a chance to take his move over. The coach is
programmed not to interrupt too often so that it doesn't become a
nuisance. Of course, if the student is playing close ¢to

optimally, he'll never be interrupted by the coach.

These three examples illustrate the power of usar models in
. computer systems, As we build more sophisticated machines that

are interacting on a day to day basis with pecple, we expect that

these kinds of user models will become commonplace.
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Cognitive Engineering

In attempting to incorporate a better model of people into
computer systems, researchers have not only incorporated

knowledge about typical users (as in the above cases), but also

have sought principles that characterize human information-
processing capacities so that these principles could be
consicéered in the design of the system. The search for these
principles has made use of several different strategies, two of

which are illustrated in what follows.

One strategy in cognitive engineering involves analyzing the
errors that people make when interacting with a system, and then
accounting for these errors in terms of known psychological
principles of human information processing. Norman (e.g., 1981,

1982) has recently used this strategy, and a number of his

examples or cases are worth mentioning. One case is "mode"
errors, where people act as if the system Qere in one state when
in fact it is in another. Such errors are particularly prevalent
in systems that do not provide feedback about their current
state, which fits with the widely agreed upon information-
processing principle that people need extensive feedback in

monitoring complex processing.

As a second example, consider “capture® error, where a
capture error tends to occur "...when there 1is overlap in the
| sequence required for the performance of two different actions,

% especially when one is done considerably more frequently than the
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other. In the course of attempting the infrequent cne, the more
common act gets done instead.” (Norman, 1982). Norman
illustrates with an example from a particular text editor, where
"Ww" means to write a file, "gq" quits the editor, and the combined
sequence "wg" writes then quits., The combined sequence is wused
very frequently (people regularly use it to <finish a day's
session), and consequently sometimes when people mean to type
just "w" they type "wq" instead. The information-processing
principle that accounts for capture errors is well known:
frequent actions require 1less activation for their initiation
than do infrequent ones. The remedy for capture errors is ¢to
minimize the overlap between the sequences for frequent and

infrequent actions,

As a third example of Norman's error analyses, consider the
case where a person performs an incorrect action because the
triggering conditions for the correct action are widely separated
in time. These errors are likely due to the limited capacity of
active memory, one of the best-known aspects of human information
processing. The remedy for such errors is to insure that the
"space" between the initial and final triggering conditions €for

an action does not exceed the span of active memory.

AS a last example of error analysis, consider the errors
that result from faulty learning of command names, where these
names are neither meaningful in themselves nor transparently

related to the functions they denote. Here, the relevant
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principle seems to be that information that cannot be related to
meaningful material is rapidly lost from long-term memory. The
remedy for this kind of error is to insure that the relation

between the name and the function is transparent, which will make

the name meaningful (see Black & Sebrechts, 1983, for an

extension of this line of research).

A second strategy in cognitive engineering involves an
in-depth analysis of a particular task, where cthe task is a
frequent instance of a person-system interaction. Thus, if one
is interested in how people interact with a text editor, one can
study this experimentally 1like any other psychological task.
Card, Moran, and Newell (1580; 1983) have done just this. In the
text-editing task they studied, a user sits before a computer
terminal, which has a keyboard for input and a CRT display for
output., In the computer is a file that contains a text, and the
user is to update this text file by looking at a printout of the
text file marked with modifications and effecting each of these
modifications. Card et al. provide a model of the text-editing
task that involves the user's goals and the operators available

to him to effect these goals.

As in other problem-solving situations, many of the goals
are hierarchically structured. The top-level goal might be to
edit the manuscript, while one level down the goal might be to

| determine the next correction in the manuscript that has to be -

done, while at the next level down the goal might be to locate I

.
{
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the exact line in the manuscript that contains the modification.
The operators are elementary motor or information-processing
acts, such as "get-the-next-page” or "verify-edit” (i.e., check
that what actually happened is vhat was intended). Thus, the
operators satisty the lower~level goals, and concurrent
satisfaction of a2 number of these lower-level goals constitutes a
condition that satisfies a higher~level goal (e.g., having
satisfied the goals of "locate the next correction® and "replace
one letter with another,” one has satisfied the higher-level goal

of "make the next correction®).

This kind of model can successfully predict various aspects
of performance, including the time needed to accomplish various
text-editing tasks. Such a model can also be used. to determine
what are the most difficult components, or bottlenecks, in text
editing. For example, Card et al. found that more time was
consumed by mental operations than by manual ones, suggesting
that practice at just the manual aspects of the task may not

offer the best means of improvement,

In another example of this in-depth—-analysis strategy,
Rumelhart and Norman (1982) have provided a detailed account of
skilled ¢typing, where a typewriter is a simple system that users
typically interact with. Their model rests heavily on the notion
of schemas., Pirst, the perceptual system matches each word to a
word-schema. The word-schema then activates letter-schemas for

all its constituent letters. The schema for "very®, for example,
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activates the <four letter schemas for "v", "e", "r", and "y".
Each letter schema is in part a motor program, as it specifies
the target finger position in a keyboard coordinate system.
According to the model, the schemas corresponding to the letters
in a word can all be active at once. How, then, does tie person
come to type the letters in temporal sequence? Because each
letter schema inhibits the activation of all letter schemas that
follow it. Again, this kind of analysis can be used to explain
basic performance data (e.g. various kinds of errors), with a
particular emphasis on determining the major bottlenecks in
performing the task,
Concluding Comments
Our brief review has merely scratched the surface of
research in the cognitive sciences on how humans interact with
systems, Current work on mental models, £for example, is
concerned not only with technological systems, but also with
different scientific systems (say, naive models of physics--see
some of the papers in Gentner & Stevens, 1983). And the
application of this work on mental models of science is likely to
have implications for how we instruct students in science
courses, Similarly, work on user models is expanding to new
domains (e.g., use of a computer system to design electronic
circuitzy--see Card et al., 1983), and presumably this work will
further stimulate research in cognitive engineering. 1In short, .

the applications of cognitive science are just beginning to

emerge.
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