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Applied Cognitive Science

Applied Cognitive Science

One focus of modern cognitive science is the interaction

between people and complex systems, such as computer and

electronic systems. American society is becoming inundated with

more and more complex systems. The skills required to design,

operate, and fix these systems have become necessary ones for

anyone to function successfully in our society. Teaching people

to deal with these systems, and designing the systems so that

they are easy for people to use, are important goals for an

applied cognitive psychology. In this paper we present a

framework for understanding the research in the cognitive

sciences on human interaction with systems, and describe some of

the best research carried out in this area.

8a itjel Distinction&

Much of the recent research in cognitive science is

concerned with the relation between a person and a system,

particularly a computer system. At the most general level, there

can be two kinds of relations between a person and a system:

either one z aglAg the other, or somehow they interaet. With

regard to replacement, it is always a matter of a computer system

replacing people, and the area of research in cognitive science

that is concerned with this goes by the name of *expert systems'.

We shall have little to say about expert systems for our

fundamental concern is with the interaction of people and

system. (For a recent review of expert systems, see Feigenbaum

& McCorduck, 1983).

* I
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In considering how people interact with systems, four

domains of inquiry come to mind. Perhaps the most obvious

concerns what the person understands about the system. That is,

what is the person's representation or model of the system? This

question has led to a substantial amount of research under the

heading of "mental models". The second kind of question is the

reverse of the first, namely, What is the system's model of the

person? More precisely, What model of a likely user of a

computer system has been incorporated into the programs guiding

the system? The area of research dealing with this question is

referred to as Ouser modelsm. The remaining two kinds of

questions of interest are consequences of the OmodelO questions

just considered. Specifically, given a deficiency in either a

person's mental model of a system, or in the systems's user model

of a person, we can change either the person or the system.

Changing the person give rise to the third type of question-How

can we teach or instruct people to have more correct mental

models of the system? The associated area of research will be

called *explanation and instructionw. Changing the system gives

rise to the fourth kind of question--How can we alter the system

so that it incorporates a more correct user model of the person?

The associated area of research is *cognitive engineeringg.

The distinctions we have thus far drawn regarding persons

and systems are summarized in Table 1. The first distinction is

between t and S . Subordinate to AJAX ,

we have distinguished between mdtala and Whanga, i.e., research

-I I
.. .....______________________________________________
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on mental models and user models concerns the nature of models,

while work on explanation and instruction and on cognitive

engineering deals with how to change the models. Orthogonal to

the contrast between models and change, there is a distinction

regarding who is the focus, either the 2axim in research on

mental models and on explanation and instruction, or the nXI

in resaarch on user models and cognitive engineering.

While the structure in Table 1 hardly exhausts all the

distinctions that could be drawn, it suffices as a useful

starting point for a discussion of possible relations between a

person and a system.

In order to operate and repair complex systems such as

electronic and computer systems, it is necessary to have a mental

model of how the system behaves. These mental models give people

the power to jmuja how the system will behave if they perform

some action or if some component is not functioning properly.

There has recently been a large amount of research on this topic

in cognitive psychology and artificial intelligence, perhaps best

represented by the book on Mental Models edited by Gentner and

Stevens (1983). We will try to summarize here some of the key

ideas and approaches in that literature.

In a series of papers do Kleer and Brown (Brown, Burton, G

Zdybel, 1973; de Xleer, 1977, 1979; do Kleer & Brown, 1982, 1983)

have been exploring notions of Q s and
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Table 1

Some Critical Distinctions in Cognitive Science

Inter action lReplacement

Focus on Person Focus on System

m~odels ~Ment Models M;7l t Systems

change Explanation and Cognitive
Undestanding Engineeing

!I
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envisioning of how systems behave. The key idea in their

approach is that you can break down a complex system or device

(e.g., a door buzzer) into a set of component models (e.g.,

switches, coils, etc.). In order to construct a qualitative

simulation of the system you must know two things: (1) the

topology of connections between the various components (i.e.,

what is connected to what), and (2) the incremental input-output

functions of the various components (i.e., if a particular input

to a component goes up, what happens to the output).

de Kleer and Brown (1982, 1983) argue that component models

should consist only of statements about local inputs (e.g., the

current goes up) and local effects (e.g., the output voltage goes

down). That is, the model for a switch or coil in one circuit

should be the same as that in another circuit. The only thing

that varies from circuit to circuit is the particular

connections. By knowing the connections and the component

models, one can *envision' how the system will function. In

other words, one can construct a mental model of the system, that

can then be urun,u producing what we think of as seeing the

system run in our *mind's eye.'

for a mental model to be robust, do Iler and Brown (1982,

1983) argue that you need to keep out of the structural model of

the system all reference to the way the system functions (called

the no-function-in-structure principle). If you do not, then the

model is only good for understanding an intact system. If any

V

[
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component malfunctions or behaves differently in some way, you

have no chance of understanding the functioning of tht system.

To have a robust understanding you want to be able to replace the

intact component model with a faulted component model and

envision what happens. But it in very difficult to construct

mental models where the function of the system does not penetrate

the component models. Nevertheless the principle serves as an

important criterion for robust models.

Forbus (1982) has extended the de Kleer and Brown analysis

to construct a general language for describing processes in

qualitative terms that he calls *qualitative process theory.0

Qualitative process theory is meant to be a language for

describing any person's qualitative understanding of how a system

works. It has no specific physics built into it, only

assumptions about what are the crucial entities needed for

reasoning in a qualitative way about processes. Central to his

claims is that understanding the various processes that a system

carries out is the core of understanding the behavior of the

system.

The five parts to any process description in the theory are

shown in Table 2 describing fluid flow. The individuals (source,

destination, and path) are the entities involved in the process.

Pteconditions specify what topological connections must exist for

the process to occur: In this case the path must be aligned,

i.e., open and connected from the source to the destination. The

* 6
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Table 2

Qualitative Process Theory Representation
of Fluid Flow (from Forbus, 1983)

Process fluid-flow

Individuals:
s-a contained-fluid (source)
d-a contained fluid (destination)
path-a fluid-path(path s d)

Preconditions:
aligned (path)

Quantity conditions:
A[Pressure(s)] > A[Pressure(d)]

Relations:
Let flow-rate be a number.
flow-rate 0(A[Pressure(s)] - A[Pressure(d)])

Influences:
I + (Amount-of(d), flow-rate)
I - (Amount-of(s), flow-rate)

I
1'
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quantity conditions are quantitative relations that must hold for

the process to occur: In this case the pressure of the source

must be greater than the pressure of the destination. Relations

specify what must hold during the process: In this case the flow

rate is proportional (a ) to the difference in pressure betweenQ
the source and destination. The influences represent the outcome

of the process: In this case the amount of liquid at the

destination increases and the amount of liquid at the source

decreases, both as a function of flow rate. The key ideas in the

theory are that different views of processes like fluid flow can

be represented in these terms, and that the notation is adequate

to model human reasoning about all the different processes that

occur in physical systems.

Stevens and his colleagues (Stevens & Collins, 1980; Stevens

& Steinberg, 1981; Williams, Hollan, & Stevens, 1983) have

emphasized the different kinds of models people have of systems

and how models are refined in the course of learning. Some of

the distinctions Stevens and Steinberg (1981) make between

different models are:

1. St.uxjal =s. Ainam±.. Structural models are used to
describe a system in a time-invariant manner and
dynamic models to describe changes that occur in the
system over time.

2. Com nnltal YA. 26Vg9GA, . *GM* .I= Structural
models can be decomposed simply into components, or
more usefully into topological configurations where the
connections between components are preserved, or
geometric configurations where the spatial relations
between components are preserved.

I
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3. Reavioral Yvs. I jtzu =. Among dynamic
models, behavioral models describe a system or a
component simply in terms of its inputs and outputs
(i.e., *black box* models). Internal-structure models,
on the other hand, break the system down into the
interactions between various components.

4. &qgXjgA= Ia. Mocha.nitic. Internal-structure models
can either be aggregate or mechanistic. In aggregate
models the components behave in a uniform manner,
whereas in mechanistic models each component has a
unique behavior.

5. CAUsal ys. S. Internal-structure models can
either be causal or synchronous. Aggregate models are
inherently synchronous, but mechanistic models break
events into causal chains, or treat them as occurring
synchronously.

6. Action-fjlo VA. LTnfnrmnat -fjlg . Among causal models,
there are action-flow models where some kind of
substance or energy flows through the system, and there
are information-flow models, where information flows
through the system.

Young (1981, 1983) has compared two different kinds of

mental models that people have for electronic calculators. The

first kind of model he calls a surrogate model. His prototypical

example of a surrogate model is the one provided by

Hewlett-Packard for their reverse Polish notation calculator

shown in Figure 1. The model specifies four registers, X, Y, Z,

and T, as well as what happens to the numbers in each register

when a new number is entered, when a ,mary operation is

performed, or when a binary operation is performed. This

surrogate model allows one to simulate what will happen for any

combination of inputs, as with the incremental qualitative models

of de Kleer and Brown (de Kleer, 1979; de Kler & Brown, 1982,

- 1983).

4
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FIG, :. Stack regster model for tle RPN calculator.

Figure 1. Surrogate model for the RPN calculator (from Younge

1981).
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Young argues that this is not the kind of model people

normally use to understand calculators. Instead, he argues that

people's understanding of calculators is based on a magij

between the task, in this case doing arithmetic, and the actions

necessary to carry out the task. People know alot about

arithmetic, and the ease of learning and using most calculators

depends on how simple the mapping is between their knowledge of

arithmetic and the steps they must carry out with the calculator.

For algebraic calculators that let you put in parentheses and

give precedence of X and / over + and -, the mapping is

particularly straightforward. But for simpler calculators like

the four-function calculator he analyzed, the mapping can become

quite difficult. For example, to find the quotient for 6/(3+5),

it is necessary to type the input sequence 03+5/-6-0 which is

only obscurely related to the original algebraic expression. For

most uses of a calculator it is this taW-action m&nnjaa model

that is crucial, and which should be used to guide design.

Like Young, Gentner (1983; Gentner a Gentner, 1983) argues

that people understand new systems by analogy with systems they

already understand. She proposes a "structure-mapping* theory of

how people map their knowledge about one system (the base) onto a

new system (the target). The basic notion is that a structure

mapping consists of a 1 to 1 mapping of elements from a base

system onto elements of the target system. The mapping preserves

relationships between elements but leaves specific attributes of

the elements behind. Hence it is a mapping only of the
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structural relationships between elements rather than a complete

mapping of all the properties of elements in the two systems.

We can illustrate these ideas in terms of Gentner's analysis

of Bohr's classic analogy between the solar system (the base) and

the atom (the target) shown in Figure 2. In the analogy the sun

maps onto the nucleus of the atom and the planets map onto the

electrons. The properties to be mapped across are not the

specific attributes of the sun or planets, such as their color,

size, or temperature, but rather the relationships between

them: the nucleus is much more massive than the electrons, just

as the sun is much more massive than the planets; the electrons

revolve around the nucleus, just as the planets revolve around

the sun, etc. Of course, any analogy invites incorrect

inferences as well. For example, one might incorrectly infer

that the nucleus is hotter than the electrons, since the sun is

hotter than the planets, or that the electrons attract each

other, since the planets attract each other. Thus Gentner's

theory specifies how people understand new systems by analogy,

and how analogy can lead to systematic errors in understanding.

In summary, the research on mental models centers on how

people represent knowledge about systems and their individual

components. People often infer how a system will behave by

propagating the behavior of the individual elements for different

input conditions. Furthermore, people construct mental models of

new systems by analogy with their knowledge of other systems.

I
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Figure 2. Representations of knowledge about the solar system
and the hydrogen atom, showing partial identity in the3 relational structure between the two domains.
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i Aad tinderstandina

As society requires more and more interactions with

technical systems, there is a growing concern about how best to

teach people such systems. Recent work on this problem has been

much influenced by the research on mental models just reviewed,

and by related work on "schemas." We will consider two sample

trends in this recent work, one dealing with the use of analogies

to convey models of technical systems, and the other dealing with

the role of models or schemas in understanding instructions for

assembling and operating technical systems.

Educators have long suspected that analogies play a

substantial role in students' understanding of science and

technology. As mentioned in the previous section, people often

tend to try to construct a model of a novel technical domain by

analogy to some domain they already know about. Recently,

cognitive psychologists have tried to directly study this

learning-by-analogy process. Gentner and Gentner (1983), for

example, were interested in the consequences of using analogies

to teach the basics of electricity. They used two different

analogies-(l) current in a circuit is like water flowing through

pipes, and (2) current in a circuit is like a crowd of people

moving through a corridor--which should eventuate in two

different models of electricity. For the group of subjects

taught the *water-flowO analogy, current was mapped onto water, a

wire was mapped onto a pipe, a battery was mapped onto a pump,

.4
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and a resistor was mapped onto a constriction in a pipe. For the

group taught the *moving-crowd* analogy, current was mapped onto

people in the crowd, a wire was mapped onto a corridor, a battery

was mapped onto a loudspeaker "imploring the people to move

faster,* and a resistor was mapped onto a gate in a barrier.

Gentner and Gentner hypothesized that the moving-crowd analogy is

better than the water-flow analogy in providing a good model of

how resistors work. This is because in the moving-crowd analogy

a resistor is viewed as a gate (rather than as an obstruction),

which permits the inference that two resistors in parallel should

allow more current to flow than would one resistor.

To check this prediction, Gentner and Gentner gave all

subjects problems to solve after they had presumably mastered

their analogy. Each problem involved a complex circuit -- either

two batteries or two resistors connected in series or in

parallel. The subjects' task was to compare current and voltage

at several points in the circuit with that of a corresponding

point in a Osimple" circuit, i.e., a circuit with only one

battery and one circuit. As expected, subjects who had learned

the moving-crowds analogy gave more accurate answers about

circuits with parallel resistors than did subjects who learned

the water-flow analogy. Interestingly, on other kinds of

problems the groups taught different analogies did not differ in

performance. Hence, it is not a simple matter of one analogy

providing a better model of electricity than the other. Rather,

the different analogies induce somewhat different mental models

L .. .. .. . .. .. ..
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of electricity, and in some circumstances one model may be

superior to the other, while in other circumstances this ordering

of the models may reverse.

Turning now to the role of models in instructions, the basic

idea is that in order to operate or assemble a system, it is not

enough to follow specific instructions; one must also have a

model of how the system works, or will work once assembled. This

idea is illustrated by the work of Smith and Goodman (1982) on

understanding assembly instructions. They had people assemble a

simple electrical circuit that included as major components a

battery, an on-off switch, and a bulb. Some subjects were given

only the instructional steps, while others were given the steps

plus some explanatory material. The explanatory material

concerned either the structure of the circuit (e.g., each major

component of the circuit and how it can be decomposed into minor

components), or the function of the circuit (e.g., the flow of

electricity through conductors),

Both kinds of explanatory material offered schemas of the

circuit (though only the functional material may have offered a

true model), and both had widespread beneficial effects on

performance. An instructional step was read faster and executed

more accurately when it was preceded by explanatory material than

when it was not; in addition, the inclusion of explanatory

materials improved subjects' memories for the instructional steps

as well as their ability to troubleshoot a faulty version of the

iI
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circuit. It seems, then, that explanation fostered a schema of

the circuit, which in turn benefited reading, execution, memory,

and problem solving.

People have different interests and backgrounds. As

computer systems become more sophisticated, they will take these

differences in knowledge into account in the way they interact

with people. One thrust of research in the cognitive sciences

has been to develop more sophisticated models of users in

systems. To illustrate the notion of user models we will

describe three approaches to building such models that different

researchers have taken: (1) Rich's (1979) GRUNDY, which models

a user's interests in order to recommend books, (2) Collins,

Warnock, and Passafiume's (1975) model of a student's knowledge

about South American geography for the SCHOLAR computer-aided

instruction system, and (3) Burton & Brown's (1979) model of

student's strategies in playing the Plato arithmetic game, *How

the West Was Won.0 These are perhaps the three most

sophisticated user models developed to date, and they exemplify

the potential of this kind of development.

GRUNDY (Rich, 1979), which plays librarian, uses stereotypes

(or prototypes) to try to build a model of what kinds of books

are interesting to a person, in order to recommend new books to

them. The stereotypes in GRUNDY are schema-like (Minsky, 1975;

Rumelhart & Ortony, 1977) data structures representing, for
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example, the characteristics of a *sports person" or a Oreligious

person". The stereotype for "sports person" indicates they like

excitement, tolerate violence, and do not like romance. Book

descriptions are stored in terms of their appeal to different

types of people (e.g., sports person, religious person).

When a person first starts to use GRUNDY, he is asked for

descriptive words about himself (e.g., religious, likes sports),

from which the system constructs an initial model of the person.

This model consists of a set of characteristics (e.g., likes

excitement) and estimated strengths for the characteristics.

These are derived from the stereotypes it has stored that the

input descriptions triggered. For example, if the person says he

likes sports, this triggers the "sports person" stereotype, from

which GRUNDY concludes that the person probably does not like

books concerned with romance or education and probably does like

books concerned with excitement, violence, and suffering. Of

course these inferences may be incorrect, and GRUNDY may have to

revise them later.

GRUNDY then discusses specific books with the user. If the

person has read, but did not like, a particular book that GRUNDY

thought he would like, it revises its model of the person based

on what the person did not like about the book. If the person

has not read a particular book that GRUNDY thinks he would like,

it describes the book and asks whether the book sounds

interesting. If not, it tries to pin down what aspect of the

V
. . .. i I If S
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book does not appeal to the person in order to further refine its

model of the user. In this way GRUNDY slowly accumulates a

better model of the user, so that its book recommendations come

closer and closer to the person's interests.

Collins, Warnock, and Passafiume (1975) approached the

problem of user modeling in terms of how a computer tutor can

estimate what knowledge a student has or does not have. The

context of their work was the SCHOLAR CAI system, which tutored

students on South American geography. Unlike Rich, who simply

tried to build a user model in GRUNDY, Collins et al. studied how

human tutors model their students in order to simulate human

tutoring strategies in SCHOLAR. They found that human tutors

partially order each piece of information they know about a

topic, such as South America, in terms of how important it is (or

equivalently, how likely anyone is to know that piece of

information). Based on the student's answers to questions, the

tutor then can estimate what level of knowledge the student has

about the topic with respect to that partial ordering.

The tutor decides how to present new pieces of information

based on his estimate of the student's knowledge as shown in

Table 3 (from Collins et al., 1975). The tutor skips over the

most important information, because he assumes the student knows

it. The next most important information he asks about because

the student may or may not know it. Less important information

Jhe tells the student on the assumption the student does not know

I
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it, but can learn it. Still less important information is

skipped over, because the tutor assumes it is too much to learn.

The examples from Table 3 reflect the model of the student from

one actual teaching dialogue. Another more sophisticated student

was handled differently: The tutor skipped over more information

on the assumption that the student knew it, and each of the

categories of information in the table was shifted accordingly.

Collins et al. subsequently built a version of this strategy into

the SCHOLAR system.

Burton and Brown (1979) built another kind of student model

into the Plato arithmetic game called 0fow the West Was Won.'

The game board is shown in Figure 3. The object of the game is

to get to *Home" before the other player. Each player moves by

forming an arithmetic expression using three random numbers

generated by the spinners in the upper right hand corner. The

player can form any expression with the three numbers using plus,

minus, times, divide, and parentheses. There are also special

moves in the game: if you land on any town, you move forward

automatically to the next town; if you land on a shortcut (such

as 5 in Figure 3), you move forward to the end of the shortcut

(i.e., 13); if you land on your opponent, he moves back two

towns. In order to play the game successfully, the student has

to consider whether it is possible to make any of these special

moves given the three numbers. The major limitation on

performance in the original Plato game was that students often

locked onto a single strategy, such as multiplying the two

lt %
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Table 3

The Different Categories of Information that Determine
What Questions are Asked and What Information is Presented

Catg.oargest Lnrmati2n S tudent Dialgue

1. Information the tutor South America is a
regards as very im- continent.
portant which he
assumes the student South America is south
knows, and so does of North America.
not ask about.

2. Information the tutor The Andes are the major
regards as important, mountain range in
which he thinks the South America.
student may or may not
know, and therefore The Amazon is a large
asks about, river in South America.

3. Information the tutor The Parana is a large
regards as somewhat river in South
less important, which America.
he thinks the student
probably does not know, The highest mountain in
so he presents the the Andes is Aconcagua.
information to the
student.

4. Information the tutor The Paraguay River is
regards as still less a tributary of the
important and too much Parana River.
beyond the student's
level of sophistication Manaus is a port half-
to be worth presenting. way up the Amazon River.

i l- -- ------ :- -
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largest numbers and adding the third, so that they never

considered different possible moves.

In order to encourage students to play strategically and

thereby practice their arithmetic skills, Brown and Burton

developed a coach that builds a model of the individual student

by watching him play a series of games. The coach watches to see

if the player uses parentheses, subtraction, multiplication,

division, and the three special moves. It rank orders each

possible move in terms of how far ahead of your opponent it puts

you. If a student consistently does not use parentheses or fails

to land on a town when it would benefit him to do so, then the

coach infers that the student does not understand that strategy

very well. When a move occurs where using a particular strategy

like landing on a town would improve htS positic," substantially,

then the coach interrupts after the student has made his move.

It then points out how he could have done better by making an

alternative expression that would have landed him on a town. It

also gives him a chance to take his move over. The coach is

programmed not to interrupt too often so that it doesn't become a

nuisance. Of course, if the student is playing close to

optimally, he'll never be interrupted by the coach.

These three examples illustrate the power of user models in

computer systems. As we build more sophisticated machines that

are interacting on a day to day basis with people, we expect that

these kinds of user models will become commonplace.

I
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Cognii Engineering

In attempting to incorporate a better model of people into

computer systems, researchers have not only incorporated

knowledge about typical users (as in the above cases), but also

have sought principles that characterize human information-

processing capacities so that these principles could be

considered in the design of the system. The search for these

principles has made use of several different strategies, two of

which are illustrated in what follows.

One strategy in cognitive engineering involves analyzing the

errors that people make when interacting with a system, and then

accounting for these errors in terms of known psychological

principles of human information processing. Norman (e.g., 1981,

1982) has recently used this strategy, and a number of his

examples or cases are worth mentioning. One case is *mode*

errors, where people act as if the system were in one state when

in fact it is in another. Such errors are particularly prevalent

in systems that do not provide feedback about their current

state, which fits with the widely agreed upon information-

processing principle that people need extensive feedback in

monitoring complex processing.

As a second example, consider "capture" error, where a

capture error tends to occur '...when there is overlap in the

sequence required for the performance of two different actions,

especially when one is done considerably more frequently than the

ii
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other. In the course of attempting the infrequent one, the more

common act gets done instead.0 (Norman, 1982). Norman

illustrates with an example from a particular text editor, where

"w* means to write a file, Oq* quits the editor, and the combined

sequence lwq" writes then quits. The combined sequence is used

very frequently (people regularly use it to finish a day's

session), and consequently sometimes when people mean to type

just Ow" they type "wq" instead. The information-processing

principle that accounts for capture errors is well known:

frequent actions require less activation for their initiation

than do infrequent ones. The remedy for capture errors is to

minimize the overlap between the sequences for frequent and

infrequent actions.

As a third example of Norman's error analyses, consider the

case where a person performs an incorrect action because the

triggering conditions for the correct action are widely separated

in time. These errors are likely due to the limited capacity of

active memory, one of the best-known aspects of human information

processing. The remedy for such errors is to insure that the

Ospace" between the initial and final triggering conditions for

an action does not exceed the span of active memory.

As a last example of error analysis, consider the errors

that result from faulty learning of command names, where these

names are neither meaningful in themselves nor transparently

related to the functions they denote. Here, the relevant
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principle seems to be that information that cannot be related to

meaningful material is rapidly lost from long-term memory. The

remedy for this kind of error is to insure that the relation

between the name and the function is transparent, which will make

the name meaningful (see Black & Sebrechts, 1983, for an

extension of this line of research).

A second strategy in cognitive engineering involves an

in-depth analysis of a particular task, where the task is a

frequent instance of a person-system interaction. Thus, if one

is interested in how people interact with a text editor, one can

study this experimentally like any other psychological task.

Card, Moran, and Newell (1986; 1983) have done just this. In the

text-editing task they studied, a user sits before a computer

terminal, which has a keyboard for input and a CRT display for

output. In the computer is a file that contains a text, and the

user is to update this text file by looking at a printout of the

text file marked with modifications and effecting each of these

modifications. Card et al. provide a model of the text-editing

task that involves the user's goals and the operators available

to him to effect these goals.

As in other problem-solving situations, many of the goals

are hierarchically structured. The top-level goal might be to

edit the manuscript, while one level down the goal might be to

determine the next correction in the manuscript that has to be

done, while at the next level down the goal might be to locate

I , I

_____ l_____I__I___i__!__1__... ..__. .



Applied Cognitive Science

27

the exact line in the manuscript that contains the modification.

The operators are elementary motor or information-processing

acts, such as *get-the-next-pages or Overify-editO (i.e., check

that what actually happened is what was intended). Thus, the

operators satisfy the lower-level goals, and concurrent

satisfaction of a number of these lower-level goals constitutes a

condition that satisfies a higher-level goal (e.g., having

satisfied the goals of *locate the next correctiong and *replace

one letter with another,' one has satisfied the higher-level goal

of *make the next correction').

This kind of model can successfully predict various aspects

of performance, including the time needed to accomplish various

text-editing tasks. Such a model can also be used. to determine

what are the most difficult components, or bottlenecks, in text

editing. For example, Card et al. found that more time was

consumed by mental operations than by manual ones, suggesting

that practice at just the manual aspects of the task may not

offer the best means of improvement.

In another example of this in-depth-analysis strategy,

Rumelhart and Norman (1982) have provided a detailed account of

skilled typing, where a typewriter is a simple system that users

typically interact with. Their model rests heavily on the notion

of schemas. First, the perceptual system matches each word to a

word-schema. The word-schema then activates letter-schemas for

all its constituent letters. The schema for OveryO, for example,

4 .0
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activates the four letter schemas for "v", le", r, and wy

Each letter schema is in part a motor program, as it specifies

the target finger position in a keyboard coordinate system.

According to the model, the schemas corresponding to the letters

in a word can all be active at once. How, then, does t". person

come to type the letters in temporal sequence? Because each

letter schema inhibits the activation of all letter schemas that

follow it. Again, this kind of analysis can be used to explain

basic performance data (e.g. various kinds of errors), with a

particular emphasis on determining the major bottlenecks in

performing the task.

Our brief review has merely scratched the surface of

research in the cognitive sciences on how humans interact with

systems. Current work on mental models, for example, is

concerned not only with technological systems, but also with

different scientific systems (say, naive models of physics--see

some of the papers in Gentner & Stevens, 1983). And the

application of this work on mental models of science is likely to

have implications for how we instruct students in science

courses. Similarly, work on user models is expanding to new

domains (e.g., use of a computer system to design electronic

circuitry--see Card et al., 1983), and presumably this work will

further stimulate research in cognitive engineering. In short,

the applications of cognitive science are just beginning to

emerge.

.4!
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