
7 AD- 536 776 BENCHM ARKING THE SELECTION
AND PROJECTION

OPERATIONSi/AND ORDERING CAPABILITIES OF RELATIONAL DATABASE
MACHINES(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UNCLASSIFIED R A BOGDANOIJICZ SEP 83 F/G 912 NU hEEEEE~iEEhEEEEEEEhEEEEEEEEEshE
EEEEEEEEEEEEEEm
EhmhmhohEEEmhE

S I I I ,-L. .Y.!.,J,- . .. ka - x ..

tS

-!

mall.

11111 ~oi 11E 38~

Am L3 -2. 1I.0

IIIw L3 II

1"25

L IROOP REOjTINjES4CAT
kATM WRU STADUDS1%3-

z I? z

4bNAVAL POSTGRADUATE SCHOOL
0 Monterey, California

DTIC
..- ECTE

- JAN13 14

THESIS yH

BENCHMARKING THE SELECTION AND PROJECTION
OPERATIONS, AND ORDERING CAPABILITIES

OF RELATIONAL DATABASE MACHINES

by

Robert A. Bogdanowicz

>- September 1983Q-

Thesis Advisor: David K. Hsiao
L,

Approved for public release; distribution unlimited

84 01 & 100
-- *~ Jq '-*. s* 7

. -. A S. a- - ---,,.. . -. . *

ECUFIVY CLAIPICATION OP TNS PAGE iwm Dbi ESw._
PAGE READ INSTRUCTIONS

ROPR DOUENTATIO PAGEBEFORE COMPLETING FORM

11. IPNK Nn n 2. G VT ACC92SION NO. RECIPIENT'S CATALOG NUMmIER

1-3 G776~__________
4. TITLf (OuSW61de) S. TYPE OF REPOR & PERIOD COVEREO

Benchmarking the Selection and Projection Master's Thesis
Operations, and Ordering Capabilities of Se tember 1983
Relational Database Machines 6. PERFORMING ORO. REPORT NUMBER

7. AVTNOWM) I. CONTRACTOR GRANT NUME9R(s)

Robert A. Bogdanowicz

9- 11R12OniUIONG 41AN, 1IZAION N AM AND AVOREUS 10. PROGRAM IELaMNTr. PpajcT. TASK
Naval Postgraduate School AREA& WORK UNIT NUM@ERS

Monterey, California 93940

It. CONIOl.aG OFFIC NAME AND ADOMo S 12. REPORT DATE

Naval Postgraduate School September 1983
Monterey, California 93940 I.- NUMERf OF PAGES

66
I*. Mlii1 NING A IGCY %AMC 6 AOO M 4I(00 d 8i10a11r 0-iW*1041 O111.) iS. SECURITY CLASS. (of this report)

UNCLASSIFIED
Ut.. OCL ASSIfICATIONOOWNGRAOING

SCHEDULE

'14. 0IGTWOUTIM STATEMENT We XO Np'e)

Approved for public release; distribution unlimited Accession or
TiS GRA&

DTIC TAB
Unannounced

17. 0*SUSUU" IATEMENT (*I aft~ oomd to 21e 21. it dftme &*a Rqw) JuStrlcat on.-

By
Distributi n/

1L SPMENAw NONEOS -&T2 tyC
JAvail v, n, o rDist ISpC ial

le. Key 15 ON meme aids of ane"er Md 1~#rg &F M.h numbe)

benchmarking, relational database machines, database machines

ft AGlorC? atname"Nm wi 814M 6?h'ekI 6aThis thesis describes th(
performance-measurement experiments designed for a number of back-
end, relational database machine configurations. An in-depth study
of the tests and results of the two relational operations, namely,
selection and projection, on a specific configuration is presented
In addition, tests are made on the ordering capabilities and per-
formance of the machine configuration. The goal of the work is to
lead to a development for a machine-independent methodology for
benchmarking the selection and projection operations and on order-

0 a 14W3 EwtION or I ov so is ossoLTEt
S I/N O@ * i.P. @14- 6601 I mSECUONTY CLASSIFICATION Of THIS PAGE (ften Db. SInteeo

4~~~ ~ V V ." 4"~~.f- a,.-

Approved !or public ralea-e; distribution unlimIt .

Beachma:kinq the Selection and Projection Operations,
and ordering Capabilities of Relational Database Bachines

by

Rcbert A. Bogdanowicz
1i ut9nant., Ynited S taUas Navy

B.S., Illinois Insttute of Technology, 1977

Submitted in partial fulfillment of the
requirements for the d-gree of

EASTER OF SCIENCE IN COXPUT-R SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1983

Author: 4
Approved by:- I'~4ia.Lkf-tsC

The.sis A.-vi sor

Second R.?ade

Chairman, Departmasnt of Computer Scinc .

- Dean of in-o n and Policy Sciances

2 produced From

bt.......
10

IBSTRACT

This thesis dc-scribes the performnc-ameasurem-int c-

meuts dosigned for a number of backend, rel-ational iaabass
machins confiquritions. In in-depth study of -!hz -qs-. and

results ct the two relational operations, namesly, s c1 sc- -4,3
at.d projectioa, on a spectf-Lc configuzatlon is prc-s-zr'e1.
in addition,tasts are made on ths o:9ierg capabIlimlas and

parforvance of the machine confiquzaticn. The goal of -h,?
work is tc lead to a development for a machine-iJndependent

methodology for benchma~king the selection and projection
operaticns and on ordering ct pa b-4 14t J.6 of databass
machings.

3

.~ %

TABLE OF CONTENTS

I " IIRODUCTION 8
A. BDCHMARKING DATABASE JIACHINES 8

1. a Definition 8

2. Database Eachine B.ncharks 9

3. Objectives a 10

B. THE BENCHMARKING ENVIRO3MENT 11

1. The Rcst 12

2. The Best Interface 12

3. Machine Configurations 13

C. THE BENCHMARKED MACHINE 1(

1. Modular Design

2. Tschnclogy and Functionality of Modules . 15

II. TB DATABASE 18

A. THER USE OF SYNTHETIC DATA 18

B. GWERATIO3 OF THE SYNTHESIZED DATA 19

III. TH QUE2 LAIGOUAGE 23

A. SYNTAX AID SEMANTICS 24

B. TEST QUERIES 25

1. Timing Considarations 26

2. Objectives 27

TV. PERFORMANCE EVALUATION OF THE SELECTION OPERATION 28

A. DEINIITION OF A SELECTION 28

B. SELECTIONS IN THE QUERY LANGUAGE 28

C. AN EVIROUNENT FOR THE NEASUREMENTS 29

D. SELECTION MEASUREMENTS 30

1. The Percentage of Selection 30

2. Effects of Clustare1 and Non-Clustered

Indicies 33

',

3. Effects of Data Compression on Selqclion

Queries 35
4. Effects of Ordaring and Randomizing thc

Database Entries 39

E. CONCLUSIONS L2

V. PERFORMANCE EVALUATION OF PROJECTION OPERATION . . 45

A. DEFINITION OF A PROJECTION 45

B. PROJECTIONS IN THE QUERY LANGUAGE 45

C. AN ENVIRONMENT FOR THE ME.SUREMENTS 46

D. PROJECTION MEASUREMENTS 47

1. P.rcgntage of Projections on Non-Key

A ttributes o . . o o o 47
2. Comparison of the Equivalent Qur4es Cn

Selection 52

E. CONCLUSIONS 59

I. CCNCLUDING REMARKS. 61

A. OVERALL OBSERVATIONS OF THE MACHINE

PEBFORACZ 61
B. DATABASE AND MACHINE LIMITATIONS 62

C. RECOMHENDATIONS FOR FUTURE SENCHMARKING

EFFORTS 63

LIST OF BEFERENCES 65

INITIAL DISTRIBUTION LIST 66

5

C ~ ~ *.*s ~ m V. ~ .A

-. W _J -J -p 14 .6 7 J J -;p

LIST OF FIGURES

1.1 The RDH-1100 Relational Database Computer . . . 16

2.1 Turle Templates 21

4.1 Simple Selects with no Indicis 31

4.2 5%-Selects with Non-Clustered Index on P5 and
P10 0 0 0 a 00O . 0 • 32

4.3 Ordered Retrieves with Indicies on KEY 34

4.4 Retrieves with and without Indicies 36

4.5 Speed Improvement using Non-Clustored Index on

PS and P10 37

4.6 Effects of Data Compression 38

4.7 Effects of Crdering on the Response Time 40

4.8 A Comparison of Host's and Backend's Ordering
Capability . 41..

4.9 Effects of Ordering on Ordersd and Random

Relations 43
5.1 251 Projections on 5% Selections 48

5.2 25% Projecticns on 101 Selections 49

5.3 50! Projecticns on 5% Selections 50

5.4 75% Projections on 5% Selections 51

5.5 Effects of Differing Projection Percantaqes for
200-byte Tuples. 53

5.6 Effects of Diffsring Projectin Percertagss for
1000-byte Tuples 0 . . .0. 54

5.7 Comparison of Projection and Selecticn for
100-byte Tuples 55

5.8 Comparison of Projection and Selection for
200-byte Tuples 56

5.9 Comparison Cf Projection and Selection for
1000-byte Tuples 57

5.10 Coo.arison c! Projection and Selecticn for
2000-byte Tuples 58

6

ACKNO WLEDGEREHT

The exp4riments described in this thesis are the rasults
of the cccrdinated efforts of many individuals. Foremaost of
these individuals is certainly Hs. Paula S-raws = of The
Ohio State University and the Naval Postgraduate School.
fs. Strawser's diligence, dedication, and guidance have

proven invaluable in both the research prior tc ar~d subse-
quent preparation of this the-sis.

Likewise, ss. Loris leczko and her s-aff at -:ha Data

Processing Service Center West at PCint Mugu, California,

have provided much assistance, and they have proven flexible
enough tc accomoeate our sometiaes inflexible r auiremen-ts.
Gratitude is also expressed to Mr. 8en Torres and his staff

at the Ccmputer 3perations Center at Paint Mugu.

Finally, to Commander Tom Pigoski of the Naval Security
Group Command is offered a special thanks fo- his ccntinued
support in providing the necessary assistancs both to ke.p

this project going and to enable the results of this
research to be presented at the International Workshop on
Database achines in Munich, September, 1983.

7

. BENCHMARIING DATABASE MACHINES

Benchmarks have long been a means for making effec-.ive

compariscns of differing hardware configurations and hard-

ware architectur es. As -early as 1970 instruct.ion mix9s we9r-

formed and tested over varying configurations to providea

mans cf comparison between installations. Thq early works
includqd th" Gibson (Ref. 1]v ani Flynn [Ref. 2], mxz!s

which consisted of machine instructions o.darad by ir_St-uc-
tion class. The Gibscn mix was based on da.ta collc.--ted f~rm

IBM 7090 installations, while the Flynn mix usd p-ograms
run at Ie Syst m/360 installations. There has been some
work Aone with similar approaches at the language. level,

predominantly the work of Knuth [Ref. 3], who us.d a mix of

Fortran statements to obtain his benchmark parameters. A12.
these approaches iniclved the running of some standardized
mix of instructions, either machine instructicns or instruc-
tions in some high-level language. They used the

experisqntal results from thse runs to conduct an ana-ysis
of the ccmputer syst.m performance.

1. j 2A ii

Benchmarkina is a term used throughout the indust_=y
in a myriad of differing contexts. In each case 'he ulti-
mats goal is to make an independent measure or rs.levsnt
comparison of machine capabilities. These comparisons or
measures could be anything from the throughput to the speed
of calculations by a certain internal compenint, but in the
final analysis mca. seasurs or evaluation of perfcrmanc, Is
desired.

8

* , c~S *~*~ ~ S~by' ~ %

There are nary different ways of evaluating mach'i

performance. many manufacturers provide the capabili-.y of
attaching monitoring systems o *hei_- equipment. Thrsr. may
te either hardware monitors, which physically sense .hz
action occuring in the system and keep s-atiatical records,
or they may be software monitors which att.mp t tc perform
the same function with software hooks that ke-sD track of the
system operation and give the operator a statistical
analysis of the machine action and performancs. Softwa-e

monitcrs have the disadvantage of using a good d-.al ol 4.h-
system time Just for their own operation. Though ha-dwa-e

monitors do not suffer from this disadvantage, they -e. uir
the wiring of the acnitor system into the hardware. The

biggest disadvantage to these types of m=asurements,
however, is the inability tc make comparisons ',n diffe.ring

machine configurations and between differen' manufactur.rs.
Benchmarks attempt to solve this problem by forming some
standardized testing methodology that is easily transpor-
table from one machine to another machia!. Nos
importantly, the measurements made must be ralevznt regard-

less of the machines benchmarked and give an accurati means
cf comparison between these machines.

Therefore, banchmarks are defined to be certain sets

of instructions that will test all the capabilities of a
machine and yield some generic set of lata that will give an
accurate measure of that machine in its tested configura-
tion. his data will then give the observar specific
guidelines for making relevent and general coDparisons with

similar machinei and configurations.

Vith the advent of special-purpose database machines

and tackend database machines, a new field of applica-.ion
for benchmarks exists. Previ, usly, benchmark routines have

9

been used exclusively for the testing and performancs .valu-

ation of large general-purpose mainframes. With thi proli-
f-ration of backend procqssors to unload sp.cialized tasks
from the mainframe, these benchmarks hav- been in.f..ctiv.,
because the computer system's capabili-:iLs of pezformIng zhs
specialized tasks are not benchmarked. Our primary concern
is with the benchmarking of specialized backenis known as

database machines. In this context we mean a sosciallzed

processor externally linked to a mainframe, with its cwr

special-purpcse hardware and software for da-abas _ manage-

sent. Eackend refers to this externally-linked and

specially-built machine.

3. C.±.leive.

At present the backend database machine is in its

infancy in the ccmmercial marketplace. Nev,rths less, th?

database system is extensively utilized iz various fcrms and

for different tasks, exclusively in some softwar- config r:-

tion operating on a large general-purpose machine. In crder

to prcvide effective database functions the softwar- o"idsn

.atabase system consumes a great deal of the mainframa's

resources which severly limits the usefuin-ss of ths

mainframe for other functions.

Tbis has started a trend towards the backand data-
base machine, one that can reduce the time -he host sp.nds
in searching and updating data in response to user qusrt-s.

This greatly increases the ultimate usefulness of ths host,
since these backend database machines are only a small frac-
tion of the total system cost. The database machirss now on
the market have been implemented using microprocessor tsch-
nology rather than fully-specialized hardware, thsreby
keeping their costs Sown. As the mark.t exDanis and more

progress is made in VLSI technology, ws can exnect tc sse
more specialized hardware at even lowe cost.

10

Cur objective here is to develop scm basic - -ing

procedures tc benchmark relational database machinrs. This

thesis also gives account of test results performed on a

specific hackend database machi-_e, the RDM-1100, an'! -s

various configurations. It isz limited to thn res.ul - s of

test queries in the operations of selection and p:cjsction

and crdering capabilities. in addition *c this th'esis,

there are three other theses, [Rsfs. ,5,6], which describe
in detail the test procedures and r.sults of loin opera-
tions, the generation of the databases usai in th-.

experimants, and the other test prcedures and results. The

ultimate goal of the entire project is tc d3velop and iden-

tify some sets of queri.s that can be used in avaiua-in

database machine performance.

B. THE BENCHERKING ENVIRONMENT

Our pz: mary emphasis is to evaluate the per fcrmarnce of

the system/machine under typical operating conditions. In
* this sense a standardized workload model must be dev-lvp~d.

This includes the use of typical user queries (transactions)

in additicn to the design of a database. In te-ms of tha

database, we divelcped a paramaterized database cenramc -

that wll generate our databases with attribut-s according
-z to a suecified format and with values from we.l-dpfined

domains according to specific distributions. Ws chose -his

approach so that we could predict or intsrprct accura'ly

the results of any given query. More details are giv.n on
the ccntext and design of the database in Chaprer II.

Query streams are developed to test the full range of

possible user operations. All queries are in forms of

selecticn, projection, or join operations as may be mad- by

a typical user. The actual query syntax and selc-icn of

query streams is discussed further in Chapt_ III.

11

. o 4-

In addition, the environment available to us for :hs

test runs is very restricted. Thera are no hardware or

software probes available at the time of testing, r.o: any

statistical informaticn on the backend machire. Cur only

recourse is to use a built-in retrieve function "hat will

giv . a readout of th ditabas ma chine clo-ck.

Unfortunately, the clock has a low resolution, 1/60 of a
second. A system call is executed to retrisve the time

before and after each test query, thereby p-oviding a crudr-

yet consistent time measure.

1 1. The Host

T The actual testing is dcne using a UNIVAC 1100/42

host system. The system is located at the Pacific Missile

Test Center, Point Mugu, California. The basic database

machine used is the EDM-1100, which is a Bri-pton-Lee IDM-500

modified to run as a tackend to UNIVAC 1100 compulers by the

Axperif Ccrp. of Chatsworth, California.

The testing is done using run-stream queri .s in an

interactive environmnt. These queries are run either on

site at Pt. Mugu, or from a remote terminal set up at the

Naval Postgraduate School, Monterey. We prefer tc run the

test qupries in a stand-alone, single-user mode in order to

minimize the effects of workload variability of the host

machne. In the event that the queries are not run stand-

alone, the number of coincidental users is v.ry low and

little or no difference is observed in the measurement from

one run tc another.

2. .1e j jjS e

The interface between Univac and the RDM is via a

word channel; the BEM is treated as an I/O device by the

UNITAC mainframe. The standari IDM device iS cipable of

communicating over an RS-232 serial interface or an IEEE-488

12

"- ".. % .%~ "' """"- %.;.,;-" -. ,,- ." ? - "

parallel interface. The communication board of -he IDI a--

P-.. Hugu has been modified to be compatible wiJ.h the J-.vac

system. It supports hyte/wo:d channel i.nterface with a 200K

byte/seccnd capacity.

The driver routines on the Univac host- handle hs

parsing of the user queries, and t-anslate them into 'he IDM

internal fo:mt. The host also handles the comm'In-cation

protocol with thq backend machine. The backend, in addi-:ion

to performing the necessary handshakes, will pe:ferm the.

raquired error checks and cause the host to nransm: :n

the event that an error is detected.

3. gachinq Qf~gurations

T IDM-500 system comes with different amcunts of

internal cache memory, and has an optional accelerator
A board. The accelerator is a high-spe-d processor dssigned

to perform certain common relational functions in or er to
increase the overall system performance. Ths machine canr be

configured to hold 1-6 megabytes of information. We hav,.

run tests on the following configurations:

Vp (1) 1/2-megabyte cache without acce!-ra-_-;

(2) 2-megabyte cache with accaleratc-;

((3) 2-segabyte cache without acce-:tor.

The first cf these configurations is no longer marketed.

The standard package contains 1-megabyte of cachs mmory and

no accelerator. In addition, the machine us.d in our 'est

is linked exclusively to the Univac 1100, and is squipFei

with only one disk controller, with access to twc

600-segabyta disks.

13

C. THE PENCHNARKED MCBINE

Ve chcse to :estrict our work to the ID.-500, r z la-

tional database machine. This type of machine. is relatively

new on the database market. Although i- is no' clear that

it will be the predominant database machine achitectu-e,

the latest literature and current trends appear to indicate

that it may play an important role, at least in the sh)rt

irun.

The relational model is intuitively easikr to us and

understand than other database models, and it appe.ars that

it will significantly contribute to lwer softwars. dev=.lop-

ment costs. Nevertheless, fully-implementsd scftwara

relational database management systems have severe p.rfor-

ance pxcblems. Tte high cost of performing re.lational
operations, mosat strikingly ths join and prcjection

operations, underlies the problem.

with the great interest in the relational da-abase

models and the advances in technology that permit the us- of

special-purpose processors and backend systems tc perform

the majority of work, we feel that the relational database

machine will play an important role in the database manage-

ment market. The Britton-Lee IDM-500 is one of the first
machines to take advantage of this technology and incorpo-

rate It into a relaticnal database system which can be used

as a tackend to a variety of mainframes.

1. nscdur Pu.Li
The Britton-Lee IDM-500 is a backsnd rplatior.al

database machine that can be linked to one or more host

computers. Amperif Corp. markets this system under an CEM

agreement as the RDR-1100. Essentially, the system is a

Bri-tcn-Lee IDN-500 with Amperif providing the host and

backend interface software to communicate with the Univac

1"4

1100 and a host-int erface module. Figure 1.1 depicts thc

architecture of the Eritton-Lee machine. From new cn w

will use IDM-500 and EDI-1100 interchangeably.

The backend is a modular, expandable,

mictcprccessor-based system organized around a central high

speed bus. Each module Is functionally o-riented.

2. 1 h_ U"I Fd jonalitv of o4ules

The RD-1100 is made up of six basic modules organ-

ized cn a central high speed bus- (see Figure 1.1 again)
The mcdules perform the following functions:

a. The datatase processor

The database processor, a Z8000-based micropro-

cessor, supervises and manages all system resources. This

processor executes mcst of the software in the system.

b. The database accelerator

The database acceleratcr (an optional processor)

is a high-speed processor with an instruction set specifi-

cally designed to perform and optimize certain functions.

It is activated by the database processor as appropriate.

The accelerator has a three-stage pipeline which executes

instructions at up tc 10 MIPS. This processor can initiate
disk activity and process data at disk transfer rates. The

accelerator and the RDM software are so configured that the

sajority of database work is performed by the accelerator

under the direction of the database processor.

c. The main memory

The RDM main memory, or cache mgmory, is

composed of 64k-bit dynamic RAN chips. The RDM car be
configured with from 1-megabytq -o 6-megabytes of memory.

This memcry is utilized for RDN system code, disk buffitring,
indices, and user commands.

15

G77

0
0

Q S"

(a 0
a (A IlE~eU
0 Wk a.

m 0

x 0

3) IF4

-- 4 ..

0 4)

-T-.

161-

3 137.- 7- 7.772 7 77-7.-

do The internal bus

The entire system uses a common inztrnal us

system for iter-processor communication and data transf.r.

e. The disk/tape in-erfaces

The system can be configured wi~h up -:c 4 disk

contrcller modulis. Each controller ca. mana;e frcm ons tc

folr disk drives. The disk ccn-roller moves data be-w-ien
external disks and tbcz RDN main mtmerv. The lisk ccn-cller

is designed to work with the accelera:or whtch can p-ccsss
data a- disk transfer rates. An Cp-.ional Iare cont:ol

module supports up to eight tape drives, which can be used

for direct disk-to-tape backup, data loading, and RDM

software Icading.

f. The host interface

The .-DR and the hcse (s) communicans via ".hs host
interface module. This module accepts commands frcm ce_ or
more hosts, pe-forms error checking, causcs -ha hos-. tc
retransmit if an error is detected, and informs the database
processor that it is moving a command into the cache. Each
host intgrface module can handls up to eight hosts. f-2n. c,

with ths full 8 interface modules, a maximum of 64 hosts car
t. accemodated by the RDn. The srandard i..cerface mcdule
supports both RS-2.2 ssrial inte-facq or in IEEE-488
parallel interface.

17

In our benchmark measures on the RDS-1100, it is ±mpor-
tant to model the queries or transactions tc be processed,
and ,c mcdel the database. The performance of any database
system depends not only on the characteristics of thz. data-

base system, but also on the size and s-ructurs of -he

database. Considering this two-dimensional prcblem, we wan±
to build databases where the values for sach a-.tributs may

be selected from well-defined dmains. In addition, we feel
that thase values should have specified and well-fcrmed

distributions to aid in the prediction of the response se*

for any given query.

Ve have built a parau'terized rela-ioi qen.ratc-, a
software system to generate relations for synr.hetic data-

bases. These synthetic databases ar% -hen used by aur qgary
stream tc simulate the activity of actual users on thq

syt-m. Several of these databases ars built, varying the

tuple widths as well as the number of tupl-s per relation.
Ve then attempt to distribut_ the databases on the disks to
force specific actions on the processor, such as cin opera-
tions between relaticns on the same or seperate disks. Tn
this manner we seek to find any significant differenci due

to the distribution and lccation of the data on disks.

A. TNU US2 OF SINTUETIC DATA

As with any system model, it is important that thp
synthetic data adequately represent the essential character-

istics cf real databases. By utilizing tha synthetic
database, we can represent a subset of the ra!-vo-.ld data-

base and save time and space for not accommclat.i'g the full

18

V *.0~V . - -*~' . .

set cf the real-world database. Hovever, the crq-.za-ion
is general .nough to provide an emulation of the =e l wc_-id.
The synthetic databases we have designed includ -he asic

data types that would exist in a real-world da-aase:

integer, character, and so on. For attribute values we have_

incorporated both sequential and random orders, as well as
groupings acording to specific discrete distributions.
These are more fully described in the next s-cticn. Using
this format we can not only accurately predict the outcome,

i.e. amounts of data returned by a query, but we can also
easily reproduce the databases cn other systems for further
tests.

B. GUVERITION OP THE SYNTHISIZED D&TA

When designing the database, our first concern is with

the physical sizes that should be used. The relaticns must

be large enough to test the full capacity of the system,

and meaningful -nough to include various attributes. .or
example, we choose tuple widths of 100, 200, 1000, and 2000
bytes with the maxiuum tuple width being limited at 2000
bytes and the disk access being performed in 2k blocks.

Our second consideration is how largs the relations

should be, i.e., how many tuples per rela-ion. Again, in
crder to test the system for both large and small relations,
we decide o:: relations with 500, 1000, 2500, 5000, or 10000

tuples. Th.se are arbitrary decisions. The relaticn sizes
are multiples of the smallest number in order to facilitats
compariscus of the test results.

Our nqxt consideratior is the actual design and building
of the data gneraticn tool. We envision a great many data-

bases with differing configurations. Thus, an interactive
interface tc a ceneraticn program appears to bs the most

e.fective approach. Using the locally available IBM 3033

19

%"'+ " " , ' + " '%*-*"*,*'*" *..'*"+ -'''+2: "":' ' '++ •" ,"," "...*.-"-- '... - -- "-" " -" -. " " '.-."+ +,,,, ,+ . ,. , , , , ,, ,,,,,, , +,., ,+ + + +:. ,. + ,.++ . - ,+. . .. +.++. +.+ , .+.+. ..+. ++ ,.. .,*, .. .+

VH/CAS installation and PASCAL/VS as the languaqe, an ir.-.er-

active system is built. For more infcrmatlor cn the design,
proqramming, and operation of this tool, please see

[301. 6].
Using the interactive system, tha user is allowed to

define the format ef a relation in response to sytem

prompts, on an attribute-by-attribute basis. The tuple

width and relation size are lefined. The user is then

alloyed to 'add' attributes to the tuples one after anc-her
until he reaches the desired limit.

The user can choose from several methods of attribute
value generation. Integer values can be sequential or
random within a specified domain. Uniqueness of the randon
integer can be assured. The integer can be either one, two,

cr four bytes. Character-strings can also ba chosen, either
ccmpressed or uncomprissed, in a ccllating sequence or in
some randcm order. Character string values can also be

selected from enumerated domains either randomly or-
according to a specific discrete distribution. In our

protctype the discrete distributions are limited to multi-
ples Cf 5%. The user is also given the opportunity to set
the naming convention for each relation and its attributes.
The prototype is designed and irplemented with a limited set
of alternatives. It is however nodular for aldig alterna-

tives to the prototype, such as axponential or normal

distributions.

We use a standard template for each tuple wilth. &
porticn cf this template is standard for aach relation (see
F4gure 2.1). Each relation contains: a sequential-intager

attribute, a 4-byt e-integer, 'key'; a character-a+tribute
'mirror', which is identical in numerical value to 'lky' but
stored as a character string and not as in integ.r: a
randos-integer-attritute 'raad' of !&-byt- i-tegers; an a
charactqr-strn g-at tribute 'chars', which contains

20

T oo 7ET-iT 200 BiYTES 1 1000 ,YTE . I 20 YTES I
gF li... 0 TYPE * FIELD TYPE I FIELD FYPE I FIELD) rypt

IKlEV 14 1 KEY 14 1 KEY IA 1 KEY 14
IMIAQOR Ctl I MIRR!)R :11 1 MIRROR Cit I 9IQRof cit
I RA'#4U 14 1 RAND 14 R $AN V 14 k A NO,) 14
IUNIO2RAND 14 1 UNIURAND 14 ICHAkS C63 ICH-ARlS C7q I
I CHARS C4 1 CHARS CI4 0 p5 C9 I s PS cp
#LETTER CI I LETTER cI I P1(0 C4 1 pio C()I
*Ps C9 1 PS C9 1 p2J C 2 C9I

to~ C9 I Plo C9 IP25 C4 p -v~ C9
I b20 C9 0 P20 C9 930 C') IP3a C9
3 Ue s C9 I P25 C9 1 p3-5 C9 1 040 Cq
3 033 C9 $P30 CQ 1 P40 c r~ I iP sa C9 I
as~o C9 Ip3b C9 1 P45 c 9 I p60 CQ I

IP75 C9 IP40 C9 4P50 C4 1 d7I) C9 I
IP80 C4i P45 C9 Ipbo CY I P75 C9) 1

- -I Ps0 CQ IP65 C4 1 080 C4 4
*P55 C9 P 10 C r I P40 cc)I

I P60 C9 I P75 C9 I P100 C9 I
*P65 C9 I POO C9 I UPIo LUC25faI
IP70 C9 1 Pd5 C9) I w 20 UC2SI
IP75 C9 IP90 Cc) I UP25 UiC2sbI
IPao C9 I P100 C9 I WPSJ UC2551
IPas C9 1 UPIG UC2551 UP75 UC2S51
1P90 C9 1 UP25 UC2551 U1380 LiC2551
IP100 C9 1 UP50 UC2SIUP104o tc 2sa

FIELD TYPES

C- COMPRESSED CHARACTER STRINMG
II4AXIMUM OF 255 CHARACTERSO

liZ - UNCO04PQESSFD CHA:?RAC1ER ST*41,NG
404AXIMU04 OF 255 CHAR4ACTERS)

14 - FOUJR-BYTE INTEGER
THIS FIELD MAY CONTAIN ANY tNTEGER VALUt 3ErWEEN
-2eI1.A*8396A8 AND 0.29147st83.647

liqurs 2. 1 Tuple Templates.

21

T -

characters in a collating sequence. The number of cha_=c -

tars in 'chars' is depend.nt on the tuple width, in c-dsr to

ensure that tuples are exactly 100, 200, 1000, and 20.0

bytes wide. The length of 'chars' is set t- the pr cise

number of characters required to ensure that the -up! = is of
the proper width. The random field is present to aid in

randomizing the order of the tuples and the purpose of the
mirror field is to compare the performance cf id-ntica1

retrieve operations basad on queries qualified on -h.
sequential-integer-attribute, 'key', and th. charactr-
attribute, 'mirror'. The 100-byte and 200-by-e tuples also

contain a sequential-unit-letter field of 1-byte charactear
in collating sequence, 'letter', and a unique
random-integer-attribute of 4-byte integers, 'uniqrand'.

Each template is then filled out with attributas for

which the values are chosen from a number of enumerated

-alues. For example, the PlO attribute specifies attribute
values with a uniform distribution over ten unique valu.s.
A retrievoe statement with one qualifier could th-.n be
written tc retrieve 101 of the tuplss in the :e_aticn. The

number of such fields is dependent on the tuple width.
Once the design cf the databases is complete, mulTiple

instances of each relation ar . built using -the interactive
generaticn tool on the IBM 3033. The relations a:. then

transferred to tape storage for transport to Pt. Mugu and
the UNIVAC 1100. The data is loaded onto the UNIVAC 1100
disks and then loaded to the backand database machine using
a bulk-load utility.

Tsts are planned on the basis of an assumed capability
to ccntrcl the distribution of the data on the RDM 1100
disks. The capability to direct a relation mo a specific

disk is not implemented, althcugh the space allocation for a

databas, car be split across multiple disks. The patt.rn of
block allccation for relations within the database is cont-

rolled within the database machine, and is no-- predictable.

22

. 2 2 % *

Ill. LU b ._X.j ". E

The interaction between the user and -he RDM-1100 is

through the. so.tware interface, RQL (rllationel query

languags), provided by Amperif. The interfaca -ransla-as
the user's ROL command into the back.nd-machine's int-nal

format and sends the formatted command to the REM-1101.
The softwars requirement for the host is minimal, and -he

backend machine is independent of the host.
When performing the test runs, the test queriss are

grouped intc run-streams in erder to make aor - ifficien' use

of the available time. The time provided for our tast runs

has been very restricted. Since we prefer to make our t.s-.

runs in a stand-alone, single user environment tc minimiz

the hcst vcrkload variability, we ar. forced to execute cur
run streams during the evenings and on weekends. In addi-
tion V! vant to rnn sets cf tests over several system

configurations. This again reduces -he overall -- me Fo= us
to run cur performance tests on each configuration.

Additional constrain-s are imposed by the nature of the
interface software provided by Amperif and by .hG ccnfigura-
ticn of the machine at Pt. Mugu. Pre-compilation of the
queries is not supported. We therefore have chosen tc use

the s.oed-commands facility of the backenld machine to

reduce varability in the parsing time. The stored-commands
facility allows the user to store the parss-tress produc-d

by the interpreter as named commands in a relation in the

user's database. When these storbd commands ars invoked a-

a later time, the parsing is reduced to a Vinimum. Using
the stor4d-comnand facility also eliminates th, -ime

required to look up target-list and q'alification a-t.ributs
in the data dictionary.

23

- ,-- . i 92 -', ,,, ' * .. ," *#.**. ,- ..- , '- .,*'..'. , - . :. .. -.- - .. - • -,v - .. "
' J **% * * *.* * .~ * v ''' -~

A. SYNTX11 M SIMANTICS

The tasic operations i.nvclved in et.ievirg -. a "n a

relational system are selection, pzojecticn and loin. This

section will provide a basic overview of the syntax of the

Rglaticnal Query Language (RQL) , with per-insnt -xamples.

For a more detailed explana-ion of ths languag- as well as

the database adsinzsct-ator func-ion s p lase refer to

[Ref. 5]. This thesis focuses exclusivq!y -n the se!ec--on

and projection operations. The interested reader is ancour-

aged to read [Ref. 4], for an explanation and evaluaticn of

the join operations as performed on the RDM-1100 and its
varicus ccnfigurations.

Simple selection in RQL is expressed as follows:

RiTRIEVE (&.ILL) WHERE A.CITY = "CHICAGO"

The keyword to the selecticn operation is RETRIEVE. The

relaticn referred to in this case is a and the qualifisr - ALL

indicates that all attribute values, i.e. th- entire tupe.,

are to be returned for each qualifying tuple. In this

example an cptio-al qualifier consisting of a single predi-
cate has been added, WHERE A.CITY = "CHICAGO". This

qualifier restricts the tuples rat-arned to only those tuples

in which the city attribute has a value of "CHICAGO". The

qualifier Cculd have multiple predicates, related by any of

the tcclean operators, such as AND, OR, = (EQUIL), != (NOT
EQU&L), etc. An example is:

RETRIEVE (A.ALL) WHEPE A.CITY-"CHICAGO" OR A.CITY=" CNT7REY"

24

-. K,- -J- -.- 2 -. r-~

In this case. the backend machin . will return all th . tupirs

in the relation A in which the city attr'bute- has cmith.r the

value "CHICAGO" or t.e value ".NONTEREY".

The select ion cperation restricts the tupl.s to be

returned. The projection operation rstricts the attribute

values of a tuple: only a portion of the attibu-e values of

each tuple are returned. For example:

RETRIEVE (A.CITY,A.NAM!)

In this case, the target list (A.CITY,&.NA13) , specifies the

attribute values to be projected out of the tuple and

returned to the user. Only the values of attributes CITY

and NSAE for each of the tuples in the relation A will be

returned. A qualifier (not shown) could be added as in a

previcus example to limit the number of tuples raturned to a

specific subset of the relation.
Commands like these make up the bulk of the querios userl

in the selection and projection tests, with varying quali-

fiers attached. RQL has many more capabilities, such as the

aggregate functions and the BY clause. For further dztails,

again refer to [Ref. 5],

B. TEST QUEIES

The test queries used are all selection and projection

operations in the form of the previous two examples.

Qualifications are used on these queri.s to select given
percentages of the attribute values, as well as given

percentages of the tuples in each relation. As described in

Chapter II, single qualifiers are used on the attribute

values having discrete distributions to select only a given
percentage cf each relation. Comparisons are made on the

25

Na

tackend database machine's perfomanca as the psrcsn-oag cf

data retrievP4 is varied. This variat:ion covers two dimsn-

sions: the percentage of tuples in a relation and ehs

percentage of attritute values in a tuple. A ditional

testing is done on single-tuple retrieves and queries using

range predicates on the key field. Each of -hese: expe ri-
vents is described in further detail in Chapc-s IV _nd V

along with a detailed descriptir, of the, commands usea tc

retrieve the data.

1. it Qnjlajans

As mentioned tefore, the most critical restriction

placed on the performance tests is the lack of measurement

tools. There are no monitors available to keep track of CPU

or I/C activities in the backend da:abase machine. The only

available measurement capability is a measurement of elapse!

time that could be extracted from the backerd database

machine clock, which has a rtsolution of 1/60th of a second.

Our prime concern in this performance evaluation is to

determine the effects of varying certain parameters on a

tackend database machine and gather some gross cverall

measures. In this sense, therefore, we feel thal the rough

measurements afforded by the backeni machine are still

acceptable fcr our purpose.

In crder to determine the elapsed tim. in processing

a query, a retrieve command to extract- he time from the

backend database machine clock is exacuted b.fore ard after

each query. The retrieve command is of the form:

RETRIVE (TIME = GETTIMEO) GO

-ETTIN! is a system function of the backend machine. This

command is cuzd to print a time, in 1/60 secnd incraiants,

26

before and after our queries. Using this throughcut our

experiments we can get gross, yet consistent measurcmer.'s of
total time required to execute the queries. Ever. wih .
poor resclu'ion, tke comparison of ilertical gueriss will

yield relevent performance comparisons of th. rpsponsQ tims
..-- of the backend machine.

2- 2bjiv2xes

The final cJective of these tests is not to

genrats large volumes of data with figures cf _et r ivA!
times for particular queries. Ouz primary goal is to make
relevent comparisons of the machine performar.ce as the
queries are varied irside specific parameters. To this end

w& hope to make some judgements of the overall performance
of this particular backend database machine, but more impor-

tantly to gain some insight into the testing methodology for
tackend eatabase machines in general. In the n-xt chap'ets,

examples of the run-streams used in the Pxperiuents ars

given alcng with graphical representa:ions of the tsst
resul2s.

27

'II

II

A. r OPIIIOI OF A SELECTION

Selection is a means for the ussr to retrieve and

examine pertinent infcrmation from a relation. The user may

se.sct the entir - relation or he may restrict the infrma-

tion returned to him in two ways. He may limit the numbe_

of tupl.s returned by adding a qualification to the sx.lec-
tion cperation. The qualification will limit the tuples
rsetrieved tc those whose attribute values satisfy the cc.di-
tions of the qualification. Qualification consists of
predicates, assertions on the attribute values of the .ule
cr tuples. Multiple predicates may be combined with bcolean

operators, such as AND, OR, EQUAL, NOT EQUAL, etc. The uiser

way also restrict ts atribute values r-:.turned by 4xpli-

citly listing those attributes which he desires, a

projection of the relation. This is fur-her described i.

the fcllowing sections of this chapter.

B. S!LECTCYS IN TH! QUERY LANGUAGE

In RG the uer is given consideraDle powr of select.io.

through use of the RETRIEVE command. Using -he 100-byte

relation described in Table 2.1 as a format for a relation

A, a typical RQL selection command might be:

RETRIEVE (A.ALL) WHERE A. KEY = 25

In this command the keyword RETRIEVE is used to signify

selecticn, the A.ALL indicates that all at-"ribute values

i.e., entire tuples, arc to be returned, and th - ksywcrM.

28

AA *.. y 'be

•-W . V_ .- °Tiro o .o.-W

WHERE identifies the quantifier. The A.ALL may be _eplacad

with an explicit listing of those attributes desired. The

attributes may be listad in any order the user d-si_-s.

Using the key word WHERE and a qualification, -he uss: may

then indicate which cf the tuplss are to be retu-ned. Ir

this example, only those in which the KEY field is equal tc
25 are returned. The user may use other cpezatcrs such as <

cr >, and is given the option to use more than o.:- predi-
cate. For example:

RETRIEVE (oLLL) WHERE A.KEY > 25 AND &.KEY < 100

would return all tuples with the KEY field in the ranq? 26
through 99. The user 's given great latitude in dilimit.ing
the subset of the relation he desires. For more d-tailed

informaticn concerning the capabilities and syntax, the

reader is encouraged to read [Ref. 5].

C. Au BUTIRONEINT FOR THE MEASUREMENTS

7he results discussed in this chapter are from tists

parforned or the system configuration with 2-msgabyts cache
memory and the optional accelerator. Lack of time prevented

a significant number of tests on alter.atse ccnficu.ations
for ccaparison. However, these tests can be ccnducted on

ether configurations without modifications.
as described in Chapter III, the timing measuraments are

the tackend system's response to a retrieve for its ints_-ral
system clock time in 1/60-second rasolution. In most cases
the measurements are based on single queries due to the time

involved, Some measurements are averages cv.r several query

responses; these are differn tiatad -n the sections which
follow. In all cases the tests are runs performed in the

29

evenings and weekends with viz:.ually no other users or ths

sytem.

D. S1LICICI KEASURPHINTS

The figures in the first section -epresent results gath-

ered for selections with and without indiciis. The number
of tuples returned is restricted to a fixed, prpcrticr of
the total number of tuples in the relation; no project.ic. is
involved. The final sections give comparisons of :he system
ordering capabilities on the frontand as wll as the

backend, and the effects of data comp---ssicn.

1. "be fercentj - of t 11

Figures 4. 1 and 4.2 show the system rc.spc:nse time

for selection. Figure 4.1 shows measurements on a databas
with no indicies; Figure 4.2 shows measurements on a data-
base with a non-clustered index on the P5 and PIO

attriutes. As described in Chapter II, *-he P5 and P1O
attributes axe attributes whose values are in a uniform
distribution over the corresponding percentage. The PS
attribute values will be 20 unique values each appearing in
5% of the tuples and the P1O values are 10 unique values

each appearing in 10% of the tuplas. The quaries used ar.

qualified on the P5 attribute. Therefore, fCr each query

the system will return exactly 5% of the tuples in the
relat ion.

As evident in Figure 4.1 the system respons, time
increas-s nearly linearly as the amount of data returnsd

increases. as qxpected, the larger is the tupla size; the
steeper is the slope, since the volume of the data increasas

more rapidly for the larger tuple size.

30

44

iz 0
* I I ;

f ' S

-
I-4

LNN

1. cm

I0 0 40 a CD c a C3

M ~ ~ ~ ~ 4 CI %t nC

801 4-4.-4.d s.,

31 I!*

. .. . • to,

!' t ' to

I'! , , ! ! I I ! I
t I . i \ i i , ! ,

1 C
•i I :1 0

-

S I

--.4•.-.-.----' - -
!t \ ! , i . .

1 !I I . I,!. , .1

t'to

-"--i-- -4 --.& -4--. . .-.-.-- -. \' ' /
! ' ,i i • I:I i / .

I Ii \ I i J
", £ * \i I i1 "N

3 s a l \ I ! * 0n.

!i I i3i 2

! i ' i I" i; . --
II i i U,

* I \. '

S --.. "
.~ I i i I i ! . i\ <>,

i ,_ I- ; . . i " --. ---.- - --i ,- - ', -..--1 ,,

* gt . ',

'I, 'i (Sq

-- C

-') "uI.' S uodse

! i " :, 32

* .,,. .. 9l.*

Figure 4.2 shcws the rasults of ths same querii.s r'il.

against a database with indicies on :he P5 and P10 a -- i-

butes. Comparing Figura 4.2 and 4.1, we notice that -.h

overall timas are greatly reduced. The graph sl--fl hcwS

nearly linear relaticnship of the inzreasing r.spcnse tim-

and of the increasing volume of data. Furth-r discussions

cf the effects of indicies follow in the nex- socticn.

The linearity of the response time appears to indi-
cato that the system performance is bound by ths spe.d of

the channel between the host and the backend. The larger

the velume of lata is to be zgturned; the longer th? chlnnel

will ke active in order tc transfer the data.

2. I 2 Clust£_ered %d Non-Cluse9;.d In&ici-s

The RDM-1100 supports two types of indiries, clus-

t.red and non-clustered. Creating a clustered index causes

the tuples to be ordered by KEY for storage. A sparse index

con-aining cne entr! per block is built. A non-clustere=d

index, on the other hand, contains a unique entry fc- each

tuple in the relation. No ordering of tuples within the_

relation is implied.

Figure 4.3 shows response times for the retria-val

query with no qualification, but with an ordering specifica-

tion. The queries are of the form:

RETRIEVE (k.ALL) ORDER BY A.KEY

where A is th. relation name and KEY is an a-tribute in A.

In an ordered retrieve, the tuplas ara sorted in the backend

machine and then sent to the host for display. Similar

queries are run against a relation with no index, a relation
with a ncn-clusterel index on the K_T ittribute, and a rzla-

tion with a clustered index on the KEY a-t.ribut,.. Th.

33

44

CO 311 yu~gj~*

4J

3: I u

13313131311I 113ct'1

3334

-7- .7- 17 ;%T

response times are similar throughout the ringe of :ea on

sizes. Tbe indicies, clustered or non-clustered, povi . -.c
significant improvement for this range of r.laticn sizes.
The expected results would have shown a significant 4gaove-
aen for the relation with a cluszered in dex. Ths

similarity in response times may indicata that -hc- RDM sorts
the the tuples, even though the tuples have beqn in sortpl
order due to the use of a clustered index on the crdering
attribute.

Pigure 4.4 shows the r.sults of te.st runs cn rsla-
tions with and without non-clustered indiciss on the P5 and
P10 attributes. The graph shows a significart improvement
in response times fcr the relations with tho non-clustered
index. Locking at Figurs 4.5, the improvqmen-t ratio is mads
more evident for simply qualified retrieves when th . index
is on the attributes used in the predicates cf the qualifi-
cation. The larger is the tuple size; the greater becomes
the !prcvesent. The 200-byte tup!e shows a nearly 95I
increase in the response time. rhe other tuple sizes show
similar imp:ovemnnts.

3. o _ o__rension 2 Selection 21jer &j

The backend latabase machine has the capability of

storing character strings in either compressd or uncom-

Fressed format. & character string in compr-.ssed format is
stored on the disk with no trailing blanks. The advantage
ij a savings in disk space. The tradeoff is the increased
CPU time required to compress and uncompress the strings as
data is moved to and from the disk. Figur . 4.6 shows the
results of test runs on relations having only uncompressed
attribute values and on relations having only ccmpre-ssed
attriute values. In the initial test runs the relations

hav toth compressed and uncompressed attributes as seci-
fied in Table 2.1, in order to ensure the correct byte-width
of the tufle.

35

00

.e4

ow 'e

404

(jil s.I l aaodo

I 1 i1 i'..36

00

ol

8 ilColl

II It . 1

AD 10 C. 2 ~ C

Ojj~~~~~j IIMAOdl 084 I

ooh

1 '37

0

C)

I A

o

4A V. ii i I I ! ! i-

j~ Ii i . I i H

.1\ : I 5.4 I I t
I X i i :, * , , ,'

l bII -I. 1

.1 4b ab 4b

30) gi , U !
I i ! ' 1 , , , , ! ! t , ,

ii i 1 i " I : a

i ' I I i l I I :

* jI i 5 ' : I i J

I I . aul soi .. .ji : ' I i ! I :38

4.! ' " " ' ' ' " ' '

mcre specifically, Figure 4.6 shows th -esul:Z zf

the tes-s for ths relations of 103-by-e tupia sizc ani -,-

2000-byto tuple size, respectively. For the 103-byte tupl-
the storage requirement is reduced by apprexm atsly 501 when

all attributes are !ally ccmpressed. In the caze of -he

2000-byte tuple size, the savings in storage .s

approximately 90%.

The graph shcws a major improvement in the -ssponss

time for compressed relations. From the stz=p slcp, of thF-

line it appears eviden- that the greatest impact on system

speed is the amount of data that must pass over the inte:nal

bus. T.a large reductions in tuple size for the co.prrssed

relation shcws a clear advantage over ths uncompress.d r a-

tion. Th@ delay becone s increasingly significant for
relations of larger tuple sizes. Approximately, a 1lay

factor of 10 for the larger tuple size and 10000-tuple rela-
tion is observable.

4. Efet 21 Crdri and Ranlomizinq the Databass

Figure 4.7 shcws the resul-s of rests to measure the

tacke d system's sorting capabilities. The rela:icns use.l

are stored in the backend; their taples are ordered on their

KEY attributes. The graph depicts retrieves with and

withcut crdering specifications on the KEY a-.tributs.. There

is a slight increase in the responsa time for the ordered

retrieves, as might be expected. The differential line
depicts tke extra time necessary for the ordering, which
increases as the relation size increases.

Figure 4.8 shcws the cost of performing the ordering
on the backend versus the host. In this casq batch rurs on
the hcst art used to perform the queries. In general, -he
batch retrieves show a marked improvement in response time

for identical queries over the run-stream queries used in

39

0

40

L - -- -- ._ _..._

I if

Cl 40

40

- ---
".-.I ~

4 -

0

0
w

.. ...
14.

4 0
0

0 j0 g

I,

I i '.a 0
a

p)
asJOtSO

410 Iwl

, ,.; ,, , ,i ,i3., , . .-, .- ,
.-5.+- .-- , ,

- ' , < i +:;+,", .,,+i ,,' ' ,i .''" ... - -". +,-]," . D.-.' .. D'].. '..," - "'+,'","". - ." ._."-. .. .a

Figure 4.7. This may be due tc the decreased cverhe 'os-

for batch vprsus an interactive envicnmaent. F-.gur-: 4.8

also shous that for smaller-size relations th.e back-.nd

perfcrms a more efficient ordering than the host does. Even
for larger relations the sort time of the host and the so :
time cf the tackend are comparable.

Finally, Figure 1.9 shows the effect of _-ar.fonizing
the order of the tuples in the relation. Using the random-

number attribute to scatter the tuples in -.he rela'ion,

similar retrieves are performed on the ordered and -andcm-

ized relaticns. In this case there is a non-clusterd ine%

on the KEY attribute for the relations. ThP craph shows
minor variances in response times between the two, clevar-ly

indicating that the crder in which the tuplss ares s-.o:.d is
no a significant factor in response time for the ordered

retrieves.

L. COlCIDSIONS

The tescnse times are generally linear, increasitg as

the amount of data tc be returned is increasing. The amount
cf data may be varied as the number of tuples in a relation

or tbe width of the tuples.

The creation of indicies on tupies shows significant

improvement in response times when the retrive ccsmand is

qualified on the indexed attributes. The Indicies prcvide
marked improvement as the tuple size increases.

The effects of data compression shows some interesting
results. Figure 4.6 has shown a very large improvemont for

compressed tuples. This improvement is most likely attribu-

table tc the decrease in the number of disk blocks accessed.
In fact, the difference in time is proportional to the.

decrease !n the number of blocks used for -he tupls.

42

*W k- K7--9 1 7 ;- 7 7 7 7 7.

Io!: I

II I !l0

i i! 1 !l i Ii !,

I t

IiIi liiIi:i

ft *. f t C I I i ". 4 " w!Ii

ti4i

" 1 ' I l j I 8 2 -1 ,L 2.. ! . .. 1 . .
!*1 11112. . 2ll

:.l!..! i i £ £2 * i i i

1 1'.I Ii: \ i .

II I Ii I i . : !11 I 2 C
, II I I6.4i

• 2£t :1 th :lI i Ia
"" ,'iiHII i;Ihii i SII'!1j:;IijJIiklI:

Cs"), l ...l .., i ..., .

-.- ~ * q * \ *~. , , I . t % .! ! \i . .. A l..id.l l i l-.i: !

Finally, the ordering test shows tha" :ne backerd 7-."

sort tupl$es at least as fast as the host can. .Natur:ally,

the major Fcrtion of the tim. is spent irn transfer-rin he

data frcu t1e disk tc either thse host or thA back-ini; but

revarthsl.ss, the tackar.d proves more efficiin- for h

smaller sizs of ralations.

44

V. 2-III!AI UOA o0 .T1_ OP IAI:QN

A. DEFINITION OP A PROJECTION

Projection is a means to restrict the amount and to

order the sequence of information returned to the uss-r in a

retrieval operation. More specifically, projection will

restrict the attribute values that will be returned from

each tulle selected. Project.ion and selection can be

combined to limit the range of values return.d. in addi-
tion, a user can rearrange the ordering of the attribute

values as the relation is displayed by varying the order of

the attribute names in the target list. This is not +c say

that the actual order of the stored relation is altered but

that the subset disflayed to the user is ordered according

to his 3pecifications.

B. PROJECTIONS IN TEE QUERY LINGUAGE

In CL the user is given considerable latitude to

describe Erscisely which attributa values that he wants to
be returned. Using the 100-byte relation 4escribed in Table

2.1 as a format for a relation A, the RQL command:

RETRIEVE (A.KEY9 A.5IRROR)

will return to the user only those attribute values in the

relation A whose attribute names are KEY and MIRROR. The

user can list as many attribute ,aaes as he desires and

place them in any order in tha target list of the RETRIEVE

ccmmand. In the casq whq.- all attribute values of a r-ela-

tion are to be listed, the user may simply uss A.ALL. Ai l

45

attritutt values, i.2., snti-rv tupl,3.s, will1 b e re'-n i

order as they are stored. The user can also add qualifiars
to restrict the number of tuples returned. These quali-fie4rs
need not, to on the attributes isted. For exampl.e,

R!TR1UYR (1.92Y*A.MIEROR) WHERE A.P5 - "RED"

will again :&eturn to the user only those attribute values inl

the rulatict & whose atzribute names are KEY and MIRROR. In
addition, the qualifier will ristrict the tuples relturnPA to
those whcse PS attribute value 4-S RED. T h Is RETRIEVE

command aisc illustrates the means to perform a percentage
selection2. The PS attribute values are colors selected f rom
an enumerated set. Each different .color value in the P5

attribute is present in 51r of the tuples in the A relat.o 4

Using those known percentages, the P 5 qua lifi -ca1ion wLll

select exactly 5% of the tuples in relation A.

C. AS EVVINlEN~f? FOR THE URASURENENTS

The projection measuremants discussed hpre ar-i all or

the same system configurat ion with 2-megabyte cache memory
and the optional accelerator. Lack of time has pr:svented as
from obtaining measurements on othar confi-gurations.

The frojection measurements are conducted for feur tuple
s5iz*s5 i.e. -100-byte,, 200-byte, 1000-byte, and4 2000-byte:,
in three percentages of returns, 25%, 50%, and 75%. These
percentages refer to the number of attribute values in th-

tuple that is returned. With the exception of the 100-byts

tuple size, these are exact percentages; in the 100-byte
cass, the number of attributes returned was 29% and 71%.
This is due to the toples in the 100-byte relation having 14

attritutes. A strict percentage of 25% and 75% was not

46

attainable. Nevsrtheless, they are still =efzerred tc as 251
and 75% projections. Further, the retrieval commands ar.

qualified by 51 and 10% selections in order to :=duce
further tte amount of data to be returned. Each query is

executel 10 times, each time with a different qualification.
This is done to eliminate any effects due to -hp location of
the data in ths relation and provides a better average

response tire.

D. PROJECTION EASUREMERTS

The test queries used are qualifiad on tho PS and P10

fields of the relation to perform the aforementioned selec-

tion. Each query is then repeated 10 times with a differen-
qualifier. The figures represent the average response time

for those ten tests. Each graph shows the response time in
seconds plotted against the number of tuples in the

relation.

1. 1s nlan = Po12ctions 2afl Attributes

It general tle difference in raspons-s times for the
five-percent and ten-percent selections is negligible, this

is particularly true for the smaller-size relations.
Doubling the number of tuples returned in a query can result
in approximately a 201 increase (i. e., 1/3 second increase
in the respcnse time on the average) in the smalle: tuples
and a 10! increase (i.e., 7 seconds on the average) in the

larger tuples. Figures 5.1 and 5.2 show the results of a
25% projection over varying tuple widths, with Figure 5.1
for a 5% selection and Figure 5.2 for a 10% selection. As
can be seen, the graphs in these two figures are nearly

identical. This is also the case for the graphs on the 50%
and 75% projections. For example, in Figures 5.3 and 5.4,
similar graphs for the 5% selection with 50% and 75%

47

I I -

i jin

0

M0 0
O- 0 4.

j=) mI i \' Isuo s

48 0
4~ C O

-
40

u" 4

I \I TI\Kw

a. P42n I 1

*8 48

I Ii!

; - ,, Q miammimmjm' mim+.im m .'. ", ," ... -. -,,..-. , ,. -. , . ,--,,. . . _..-. ..,

0
W

I~i IS Iin

jJ I j co

\ 3" so a i s : a

49J

\ ____ *_1_ ... ,_ l__iL_

I .
-- "" i - • ~......- - l 'i u

i _ _ ii - - -i----.9--- - -4 0

0
I CI

-40

i i0

al u

i iI
1

a CD

* f-~----------,---

Ii -

I n,_
(",,. s°il

"Iso

S - '. C"

; i iI

(.q ; o .*.* *.... .-.. *-..' . " . S1 .*. - - ,V. . . * . " -o

i _ _ , , ii , ,' , ' . . . * - . * - . -

- -~ - - . -

________m

_____- . - - -*-- --4 - a

~ _____

a at

IC L

40.

0) C4

(36 Sii * Cso

w II ~ -1---.-* *--- .- b.-+- 51

projections are disrlay.d respectively. In each grarh of

the aforementioned figures response time=.s increase almost
linearly as the relation size increases, and incr1asa

dramatically as the number of attribute values t turned
increases.

Figures 5.5 and 5.6 give a lifferen" perspec-iv4 on
the saas data. In this case the time for differing prcJ.c-
tion sizes is graphed over a constant -uple width. As

expectel, the greater the numbez of attribute values
returned, the larger the response time. Again a much

steeper slope is evident in Figure 5.6 for the bigqer-width
tuple.

Figures 5.7, 5.8, 5.9, and 5.10 show the differences

in the response time as the number of attribute values

returned per guery is varied. In sach graph, the tuple size
remains constant. In addition to the varied prcJection
percentages, a fourth line representing a splection, in
which all attribute values in each tuple, (i.e., the entire
tupl.) are returned, is added. The tes: queries used for
the line marked 'full selec' use the ALL specification to
return all attribute values in each tuple. As in the
proJecticn measures, each such query is repeated 10 times.
The 51 selections are done on the P5 field and a different
value is used in the qualifier for each of the 10 queries.

As would be expected each figur4 shows a marked
difference in the response time as the number of attribute
values returned is increased. The smaller-i-dth tuples in
Figures 5.7 and 5.8 show a nearly linear increase in the
response time as the relation size (the number cf tuplis of
the same tuple widtb) increases, and an inc-=ase in the

slope of the line as the projection siza increases. In
Figure 5.7 the response time for full select is strictly

52

.. V

~~3 ~ .1 -' - .~ v.7 7,-

V 4

w

0

% %

0

I I

I 553

-.
.-

4';

. 0)

94J

414

I Is

1* 0

44

4.)

in 1 4
~ I 0

(3 6 oIi e1a o pi

I I I. I _54

i

.44

C-4

0

SI E i

3 I3

4-0

_ _\ ! 1 _ _ _1

•3 a I 0

iil .,. ...

* i 1 0 \

0 0

I .l

"1 asado

,, . .i. .. .L,\.-.:.:.'---

00

~cob

ql-r
I Uo

Cl nIdo c0 %

56N

71 -- - - 77 7a 51 W. D. -a~ 3 1 7 .

U,
1Q

Cl

ICIO

co

ii i " 0>

I 1 i i 4.)

II in

0

4.4

0

I .1-i

I I __<\ i-

, I C - l

4, 4 I*

hi C

S)ol'& oauodstlo
57

' - I .'\ 4-1

I',

V441

I A

1m 0

400

6 I I I ..421 1x
mis

8 ii4b
[-A

S%

, L -- ,. - . . ----------- -~d t i. -...- ,..

smaller than any projection time, which indicates -h-- f)r
the smaller tuples the backend does a strict selacticn pio:

to extracting ths attribute values specified in the prciec-
tion gualifi!r. As the tuple width increases, the fall
select may take sore time than that of the poject icn. For

the 200-byte tuple in Figure 5.8, the fu2l se!act time is
again nearly linear, and the times are slightly %cre than
the times fer a 25% projection. The difference in response
between the full select and the 25% projac-ion steadily

increases as the relation size increases, but evan so the
full select is faster than the 50% and 75% projections.

For much-bigger-width tuples, Figures 5.9 and 5.11
showvthat the full select time is higher than the projection

time for the small percentage projections. The full sealct,

however, has a such smaller slope, thereby crossing the line
of the projection time and eventually showing a trend of
quicker response as the relation size increases. Also of

particular note is the uniformity of the curves for the
varying projections in the 1000-byte and 2000-byte tuples in

Figures 5.9 and 5.10. in contrast, for the smaller tuples

the lines are nearly linear with increasing slopes. The

lines for the larger tuples are not linear and the slopes

are very even.

3. COIIcOSzIS

In general, the projection results are very predictabls

in that the response time is nearly linear and the rosponse

time increases an the amount of data returned increases.

The amount of data may be determined by either the relation

size cc the projecticn size.
The full select comparisons in Figures 5.7, 5.8, 5.9,

and 5.10, on the other hand, show scme unanticipated

results. Instead of showing a clear advantage in the

59

response time for full select in all relation sizes, as

might be axFected, the results vary with the tupli- widths.

In the smaller tuple width as depicted in Figure 5.7, the
full select appears tc run faster even though the amour.- of
data returned is greater. For the 200-byt- tupl.s as

depicted in Figure 5.8, the relationship is markeldy diffe-

rent. Fcr the larger tuples as graphed in Figures 5.9 and

5.10, the full select requires more time for -he sm!llOr

relations. Nevertheless, its advantage becomes evident as
the relation size increases. In summary, the fuil-select

operation is sensitive to the width of the tuples. In other

words, the greater is the tuple width; the higher is +he
select time. The full-select operation is also r.sitivs to

the size of the relations, although in an opposite way.

That is, the larger is the relation; the smaller is t-he

select time in proportion tc the projection time.

It is difficult to determine what effect 'hq cache and
accelerator with other configurations may play in th.s
tests. A need exists for more research in this area to
verify the figures and ccllect more data over a wider range

of tuple widths and relation sizes in hopes of obtaining a

clearer trend to the relationship of the full select and the

projections as the widths and sizes varies.

60

_ , r ',, * , ,-.- . , , - .

-....- C S I.,~ . " ' ~ ~ a

VI. CONQLUD"N "El"R

A. OVERALL OBSERVATIONS OF THE RACHINE PERFORMANCE

The experiments described in Chapters IV and V show scme

predictatle rasults as well as some unexpected surprises.
Generally the simple select operations, with c: wi 5out
irdicies, display expected trends. The respcns. -imq
increases as the amount of data to be returned 4o the host
increases, as shown in Figures 4.1 and 4.5. A similar trend
is seen for relations with compressed at-tribut@ value. As
Figure 4.6 illustrates, reduction in the response time car,
bp significamt for the large tuple widths where the degree
of compression is high. The relations with indicies also
show expected improvements in the response time for
retrieves qualified cn these attribute values.

some unoxpected results, however, are seen for the test

results dealing with ordered retrieves, Figre 4.8. The

backend shovs an unexpected superiority in scrting over the
host for smaller-size relations. Even for the large rela-
tions, up to 10000 tuples, the backend maintains a rasponse
time comparable with the host. One would expect that the

mainframe wculd have a significant advantaga in computing
power and show a major improvement when the relation is

ordered in the host instead of in the backend.
Another interesting result is the effect of clustered

and nn-clustered indicies on ordered retrieves. Creating

a clustered index on a relation will cause the tupi.as to be

stored in a specific order while a non-clustered index does

not imply any ordering of the tuples. Figure 4.3 shows very
similar response times throughout the range of r.lation

sizes, regardless of whether the index is clus-ered or

61

... ' "' " '' 'Ov i , .,. ; .,.,",,."- _".' ' ,"., -",' .- '""".v v-,,',

non-clustered. This implies that the retrieved tuplIs are

sorted even when a clustered index exists for zhe qualifier
attributes.

The tests ccncerning projection of tuple attributes in
Chapter V again show predictable results. Through all -he
figures fcr differing projection p9rcentaqes and tuple
widths, the graphs display near linearity in both dimen-
sions. The response time increases as the tuple width or
the number of tuples returned increases. But surprising

results are evident when comparing projaction to full
selection.

Consider Figures 5.7, 5.8, 5.9, and 5.10 again. As
explained in Chapter V, the overlay of the full select on
the varying projection sizes shows no positive trend. The
projection measurements are consistent throughout th.
figures, yet the full selects relationship to th* projec-
tions varies from one figure to the next. Two of the four
figures indicate that it is cheaper to retrieve entire

tuples tban to project attribute values from the tuple. One
figure indicates that beyond a fixed -elation size, it is
cheaper tc retrieve entire tuples. Th- fourth figure s:ems
to indicate that some degree of projection is always cheaper

than rstrieving the entire tuple. No clear conclusion can
be drawn. sore tests over a wider range of tuple widths are
required to identify an overall trend or relationship
between prcjection percentage and the !ull selction

retrieves.

B. DATIIASI AND BACNII LIKITATIONS

When considering the test environment, two specific
limitaticns stand above all else. The first of these is the

low resclution of the clock from which measurements are
tak-en. The standardized use of the GETTIRE function

62

-zhroughcut the tests has made comparison of various test

results over differing periods meaningful. Evqn so, the low
resoluticn makes the need for average timas over many

similar test runs a necessity. This greatly liaiuts the

amount of tim that cue can spend in running more meaningful
tests and in verifying previous results. A great effort has

been made to find some other timing mechanism. In the end,
GETTINE prcves to be the easiest to usi, the most

consistert, and, most impcrtantly, the easiest to control.
he second limitation concerns the system configuration

and the inability tc control the environment of both the
host and the backend. The performance of these tests has
not been a very high priority of the paren.t command at Pt.

jaugu. Ihis is to be expected, since the host machine is in

a production environment. Gaining exclusive use is very
difficult and extremely costly. With this rest-ction, cur
tests are limited to weekend and evening runs, at times of

relatively low activity. This significantly reduced the
time cf system availibility. Also, in terms of the environ-

ment, the tackend system we used is a relatively new piece

of equipsent. Lastly, the sytem configuration has been
changing fregmently during the expsrimentation period. The
tine each configuration becomes available has been short.

Consequently, not qnough data can be collected to make any

significant compariscns.

C. RCCBRINDATIONS FOR FUTURE BNCHEARKIIG EFFORTS

In light of the test results discussed here, the di-c-

tion of future work should be toward effects of various
indicies and ordering capabilities. The results of tests on
various types of indicies and the ordering of relatcns show

the mscat startling results. In addition, some work is
-squired over a wider range of tuple widths to refine
previcus results.

63

N77

Anc'her aspect that warrants research is a mix of tasts

to simulate a more realistic system load, specifically .=3ts
with mult.iple users cf the backend and a more resaistic host

worklcad. The tests in this thesis are runs on an unlcad-d
system. In actuality, the use of the system will mcst

likely cccur closer to peak loading. Perhaps different
trends may develop when the host and/or backend ars

subjected to different load conditions.

Even though these tests are on a specific system, they

are general enough in nature to provide insight for t-sts on

other relational machines and to aid in making a comparison

cf different backends.

64

; :: .' '.. d n'fi ,*-** % ,"*%. :. . -,- .,:... ,., , .. ;, ,

LIST OF REFERENCES

1.~~l Gibson 3. Ch I BMlE Tpch. Rrrpt.
ZROO. 2643,- June C197YL

2. F1 u, f J. "Trends and problems in coon ter organi-

3. Knuth, D. 2 , In at.34 of FOR RAN pr l
Softvara - prj.aIc ~T-nxoner ence-T-T

41. Crccker, if. D.p Beg~rkn - h joi J rato of a

.1 jt,,jb NW P 11 Caiiornia, June 1983

5. Ryde C. 3'-" ": 4 WAe 2 jal DatabUj,-

Ca cna, s.;t 18

6. stone# V. C., 922 61 . Database janchpaxks

caflcrn~, . *1,981

65

INITIAL DISTRIBUTION LIST

sIo. CcPias

1. Defense Tech~gical Inforuaticn Center 2
Camerca etai on
Alexandria, V~rginia 223114

2. Librl, Code 0122
lava 1 ost qradate School
flonterey California 93940

3. Department Chairman, Code 52 1
De artuent cf Computer Sci.ence
Naval Poutmqra lat School
Montereyr Cal forn-a 93940

4. Curricula Officpr, Code 37 1
corn put. Technology
sa, Il Postnifl~'aa te school
Houterey 7Calr ornia 93940

5. Dr. t. K. Nfiao, 52, Hq 1
Copter.Sc. e Ce Dopartment
laval Po tga t Icbool
Montereye Cal for-nia 939140

6. ft. Paula S~r!avser, 512 1
Conf ute r scle ce Do artaent

Nv1 Postgr; uate Ichcol
Montere y, Cail ornia 939140

7. LT Robert A, Bogdanovicz, USN 2
Cornfuter SCcl' e~~ Departzent
May 1 Poxtqralua t e school
Monterey, California 93940

8. LT Michael P. Croc ker USN 1
Copute= SC..efce Departsent
Naval Post gra a ate SCo 1
Montore y, Call iorn ia ~940

9. LCD! Vincent C, Stoner USN 1
NAVGESCO I CAMEECK
i Tln;fode 513
1-.:qlua 3*lea Virginia 231461

10. LCD! Curtis 3. Ryder, USN 1
coal; to: SC±ccDo partm.'nt
NavaI Postgr:aae ch

11. fs. Dris 81qczko 1
Data PzocesEsn q Service Center West (Code 0340)

ftva lirSt ~ on
Ito logo, Call oriamIa 930142

12.j jinda Niduier:, 031 1
V oodb go7 Vrinia 22192

66

13.~r 3cspi Njkszak (666-14)
Staff Consul t
Blue Cross/ Blue Shield Association

v Chicago, jI11no~s 60611
14-jIj nst o L. Val ies, 1S
14.Gut r e St. Avt. 15
Nonterey, Californii 93940O

is.F ~ U 8Wiedi illiams, USN

Dry~n,'V rginia 241243

67

---------------------*lee.

44

4'J41
ev 7

II

IJr.

2=8

ILI

