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Pointing error standard deviations for two theodolites, the Wild T-2 and
Odom Aztrac, were determined under conditions closely approximating those of
range-azimuth or azimuth-azimuth hydrographic surveys. Pointing errors found
for both Instruments were about 1.3 meters, and were independent of distance.
No statistical difference between the errors of the two instruments was found.
The accuracy of the interpolation methods used by the National Ocean Service
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distance of about 2.5 meters was observed between interpolated positions and
corresponding observed positions. The overall range-azimuth posit ion errors
of the two theodolites were then compared to positioning standards of NOS and
the International Hydrographic Organization, using ssumed ranging standard
deviations of 1.0 and 3.0 mters. Both instruments met all standards except
the NOS range-azimuth standard for 1:5,000 scale surveys. Interpolated
positions may fail to meet more of the standards because of additional
inherent error.
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I DSTRACT

Pointing error standard deviations for two theodolites,

the gild T-2 and Odom Aztrac, were letermined under condi-

tions closely approximating those of range-azimuth or

azimuth-azimuth hydrographic surveys. Pointing errors found

for both instruments were about 1.3 meters, and were inde-

pendent of distance. No statistical difference between the

errors of the two instruments was found. The accuracy of

the interpolation methods used by the National Ocean Service

(NOS) for range-azimuth positioning were investigated, and

an average inverse distance of about 2.5 metsrs was observed

between interpolated positions and corresponding observed

positions. The overall range-azimuth position errors of the

two theodolites were then compared to positioning standards

of NOS and the International Hydrographic Organizaticn,

using assumed ranging standard deviations of 1.0 and 3.0

meters. Both instruments met all standards except the NIOS

range-azimuth standard for 1:5,000 scale surveys.

Interpolated positions may fail to meet more of the stan-
dards because of additional inherent error.
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A. TEZ RAIGN-AZIMUTH POSITIONING INETOD

The fundamental purpose of a hydrographic survey is

defined by Inghas (1974) as being to "lepict the relief of

the seabed, including all features, natural and manmade, and
to indicate the nature of the seabed in a manner similar to
the topographic map of land areas." He goes on to describe

two factors defining a single point on the seabed:

(i)."Theposition of the point in the
horizontal plane in, for example, latitude
and ion? itue, qrid co-ordinates or anales
and distances fon known control pointt.

(ii) rho depth of the point below the sea
surface, corrected for the vertical
distance between the point of measurement
and water level and for the height of the
tide above the datum or reference level o
which depths are to be related."

Thus the hydrographer must answer the two primary ques-

tions of "how deep" and "where" for each of the thousands of
soundings acquired on every survey. Because every area to
be surveyed has different geophysical characteristics and

levels of use, the hydrographer must possess a suite of
tools and techniques to accomplish each survey. A survey of

a large metropolitan harbor requires different equipment and

measurement precision than one for a deep ocean area.

Only the first of Ingham's two factors cited above is

considered, and it is further narrowed in scope to t echni-
ques used in the most precise surveys. Such a survey might

be one of a winding, narrow river carrying deep draft

vessels, or perhaps a very large scale survey of an inner

harbor. both areas require the highest positioning accuracy

and a minimum of shore control stations.
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Any method of positioning employs the intersection of

lines of position (LOP's) to construct a fix. Although

advanced methods may use multiple L3P's, traditional hydrog-

raphy uses the simple intersection of two lines to fix the

vessel's position. The vessel is located somewhere along

each of two lines of position, and the only point satisfying

these conditions is the intersection of the lines.

The error associated with one of the simplest posi-

tioning methods, that of the two LP range-azimuth fix,

which is illustrated in Figure 1.1, is analyzed.

observed angle

• / vessel

range
and azimuth

Figure 1.1 Illustration of Range- Azimuth Positioning.

Also called the rho/theta method, ringe-azimuth positioning

consists of the observation of a distance and an azimuth to

a vessel from either one or two known locations (Umbach,
1976 ]. An ensple of this mthod is the use of radar aboard

ship. A relative position for a radar contact is determined
by observing a radar range and azimuth, or a radar range and

visual azimuth, to a contact. The two lines of position

10



always intersect at right angles because the observation is

made from a single point, and this concentric geometry

provides the strongest fix possible. Mariners also know
that the fix obtained via a visual azimuth is stronger than

the one using a radar azimuth, because the visual bearing is
more accurate.

This example shows the advantages that make the range-

azimuth method popular for hydrography. It provides the

gecmetrically strongest possible fix, and only one location

on shore need be occupied to control the survey. Such a

positioning method is ideal in harbors or rivers where

maximum accuracy is needed but where obstructions make ether

types of fix geometry impractical. In 1982 the U.S.

National Ocean Service (NOS) obtained twenty thousand linear

nautical miles of launch hydrography, and sixty percent of

this was controlled by the range-azimuth method [Wallace,

1983 Jo
There are limitations associated with this method Just

as with any fix geometry. It is labor intensive and

requires more radio communication (to establish fix timing)
than mcst other methcds. In totally nonautomated situ-

ations, distances to the survey vessel are recorded manually

aboard the vessel, and azimuths are recorded ashore by the

theodolite observer at prescribed intervals. These fix data

are later put into computer compatible digital form via a

process called logging. Manual recording of these fix data

are generally toe slow to position every sounding.
Therefore, individual sounding positions must be

interpclated from the observed fixes.

Systems have been designed that have an intermediate

level of automation. The NOS Hydroplot System is an example
of this type :Wallace, 1967]. When used in the range-

azimuth ods, the vessel is usually steered along arcs of
constant range from the theodolite station, and the

111
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Hydroplot System autcmatically records a distance measure-

ment for each sounding. Azimuths are not telemetered to the

vessel but are relayed over voice radio and are manually

entered into the computer system. Since the maximum data

rate is atout two angles per minute, the interpolation of
angles for sounding positions between fixes is necessary.

Recently a digital theodolite, the Odom Aztrac, has been
developed which can record and telemeter angles with great

speed -- up to ten angles per second [Odom Offshore Surveys,

Inc., 1982]. A computer system aboard the survey vessel can

thus record aad plot an observed position for each sounding.

This rapid position fixing, combined with a computer's

ability to provide cross-track error indications to the

helmsman, enables the hydrographer to systematically cover a
survey area with maximum efficiency by running straight and

parallel sounding lines.
The Aztrac system is still considered a sesiautomated

system because an observer is required to manually track the

vessel with the theodolite. Two fully automated range-

azimuth systems which feature fully automatic tracking have
been devoloped. One is the Polarfix system developed by

Krupp-Atlas Elektronik in Germany [Smith, 1983], and the

other is the Artemis system developed by Christiaan

Huygenslaboratorium in the Netherlands (Newell, 1981).

B. HYDROGRAPHIC POSITION IRROR STANDARDS

Historically, most national hydrographic organizations,

as well as the International Hydrographic Organization

(IHO), have used linear plotting error at the scale of the

survey to be the standard for sounding position accuracy.

Prior to 1982, the standards recommended by IHO (IHO, 1968]

were:

"The indicated repeatability of a fix
(accuracy of location referred to shore

12_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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ccntroll in the operating area, whether
observed by visual or electronIc methods,
ccmb~ned wlth p lott ing arror shall seldom
exceed 1.5 am 10.05 in) at te A.scale of
the sarvey."

The IHO recently published new recommendations for error

standards [IBO, 1982] which are:

"... any probable error, measured relative
tc shore cont;ol, shall seldom exceed
twice the minimum plottable error at tze
scale of the survey (normally 1.0 am on
paper)."

Neither of the IHO standards make any reference as to

what probability level they apply. Nunson (1977) inter-

preted the words "shall seldom exceed" in the above state-
ments to mean "less than 10% of the time", which seems

reasonable. rhe 1982 IHO standard is somewhat confusing due

to its use cf both the terms "seldom exceed" and "probable

error". The latter term is associated with a 50% prob-

ability by most statisticians including Greenwalt (1971).

However, the author of these standards, Commodore A. H.

Cooper, RAN (retd|, has stated that he intended no statis-

tical significance to the term "probable error" [Wallace,

1983].

The NOS has not yet incorporatei the latest IHO stan-

dards, but such acticn is being considered in some form

[Wallace, 1983]. Current NOS standards have been developed

to ensure that "accuracies attained for all hydrographic

surveys conducted by NOS shall equal or exceed the specifi-

cations" of the 1968 IHO standards rUmbach, 1976]. Unlike

the international standards, the NOS standards for all olec-

tronic positioning systems use the concept of root mean

square error (droqs or rase) , which has a somewhat variable

probability of between 68.3 and 63.2 percent. The NOS stan-

dards for fully visual and for hybrid (combination elec-

tronic and visual) positioning have no explicit reference to

probability.

13



Specific operational standards for range-azimuth posi-

tioning have been neglected by many hylrographic organiza-

tions. However, NOS [Umbach, 1976] requires the following

observational procedures be followal for all range-azimuth

positions.

"Objects siqhted on should be at least 500
a from the theodolite... the azimuth
check should not ex;peed one minute of
arc.., observed azimuths or directions to
the sounding vessel for a position fix
shall be read to the nearest 1 min of arc
or better if necessary to produce a post-
tional accuracy of 0.5 m at the scale of
the survey."

Since the range-azimuth method is classified as a hybrid

positioning system, it is not referenced tc any particular

probability, but a reasonable assumption may be made that

the d,, concept also applies in this case.
The U.S. Naval Oceanographic office (NAVOCEANO) also

requires that its surveys meet the standards of the NOS

Hydrographic Manual. The Army Corps of Engineers presently

have no formal positioning requirements that must be met by

all districts, although draft specifications are being

written at this time EHart, 1983]. !he range-azimuth tech-

nique and its applicability to Corps of Engineers surveys is

discussed in Hart (1977). No specific requi:ements for

range-azimuth positioning could be found for either the

Canadian Hydrographic Service or the British Hydrographic

Service. Palikaris (1983| also reports no published stan-

dards for these organizations.

C. OBJECTIVES

All position error standards using an explicit prob-

ability are based on the idea that an observation is a
normally distributed random variable with zero mean and

standard deviation 4r These standards require a value for

14



the standard deviation of the component lines of positicn

that make up the fix. The standard deviation is a value

such that there is a 68.27% probability of an observation

falling within tl T" of the mean. It is unfortunate that

often the I T" values of a hydrographic measurement are

simply not known, or known only for ideal conditions and

provided by manufacturers who have a vested interest in the

measuring instrument.

This paper and experiment, then, has as its primary

purpose the determination of a pointing error standard devi-

ation for two theodolites used to measure azimuths under

hydrographic corditicns. One instrument (the Wild T-2) is

the standard used by NOS field units. The other (the Odom

kz-rac) is a new digital telemetering theodolite, which may

prove useful in automating the presently tedlous manual

methods. No estimation of standard deviation has ever been

made on these devices under typical range-azimuth

conditions.

The T-2 is the standard instrument used by NOS surveying

pa-ties for land surveying and, to a lesser extent, hydrog-

raphy. It is a very precise instrument used in third-order

horizontal control and provides an angular resolution of one

second of arc. However, it dces possess features that are

less than ideal for range-azimuth work. The horizontal

tangent screw of this instrument is awkward for range-

aztnuth surveying because it is not an infinite gearing

device. The observer often encounters the end of the drive

mechanism, stopping the instrument's movement while tracking

the vessel. A soluticn to this problem for many observers

is to track the vessel with the tangent screw unclamped,

then clamp the screw cnly seconds before the fix occurs.

The inverted image feature of the Z-2's in use by NOS

simplifies the optical system and reduces optical error.

This is satisfactory for land survey work but creates some

15__ _ _ j



confusion when tracking a fast moving vessel. This is

because the observer sees an image of the survey boat upside

down and moving apparently in the opposite direction from
its actual movement. Another disadvantage is that the mech-

anism for reading the horizontal circle of a T-2 is more

complicated than desired for the rapid observations neces-

sary in hydrographic survey work. The operator is required

to stop tracking the vessel, remove his eye from the tele-

scope, and use an auxiliary eyepiece to read the angle.

There is a practical linit of about 30 seconds to the speed
with which successive angles can be observed and read. The

paticular unit tested was serial number 30504.

The Odom Aztrac theodolite is a seai-automated,

line-of-sight angle measuring system. The Aztrac system

consists of a Wild T-16 theodolite (serial number 2534880
was tested) which was modified for infinite tangent drive

and to provide angular information in a digital format. The

shore unit decodes the observed angle, determines the direc-
tion of rotation of the instrument and displays the angle on

its front panel. The angle is then converted to binary

coded decimal (BCD) format and used to frequency shift key

(FSK) an F transmitter to link the data with the survey
vessel. The data is transmitted at the rate of 10 angles
per second. On board the vessel the ztrac receiver

converts the received data to parallel form and displays it

on the front panel for manual recording. For automated
recording or processing by onboard computer a serial data

ouut is provided. The Aztrac has an angular resolution of

0.01 degree (36 arc seconds) (Odom, 1983].
With the notable exception of angular resolution, this

theodolite is more appropriate for range-azimuth hydrography

thin the Wild T-2. It has an erect image and infinite

tangent screw which allow the vessel to be.constantly

tracked. Its digital output requires no action on the

16
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operator's part to record observed angles. An additional

positive feature of the digital output is the ability to

rapidly zero the instrument on an initial pointing. This is

done by pressing a manual reset button on the instrumant

control panel. Figures 1.2 and 1.3 show photographs of the

Aztrac equipment. Figure 1.2 illustrates a typical shore

station. The observer is adjusting the hztrac instrument,

and the transmitter unit is on the ground to the right of

the Azt.ac tripod. The distance masuring equipment is
mounted on a tripod behind the observer, and the Aztrac

t-ansmitting antenna is at the top of a pole on the extreme

right of the photograph. Figure 1.3 shows the hztrac trans-

mitter unit, with its digital angular display in hundredths
of a degree. Both photographs ver provided by Odom

Offshore Surveys, Inc.

A seccnd objective of this paper is to evaluate the
interpolation methods used by the IUS for raage-azimuth

work. The availability of the digital theodolite, with its
direct measurement of all positions, enable& a comparison of

observed and interpolated fixes to 6e made. This made

possible an estimate of whether intarpolated positions meet

required accuracy standards, and whether direct measurement
of all positions is needed. The estimate presented here was

not made statistically rigorous so that the thesis could be
kept to a manageable size. More theoretical statistical

work is needed to fully reduce the interpolation data.

The final objective of this investigation is to compare
the position errors of these two instruments with the

various position error standards discussed in section B of

this chapter. The conclusions resulting from this objective

will assist the hydrographer to select equipment and oper-

ating conditi~ns that met required position error

standards.

18 ___ __ _



................. ..........

f

Figure 1.3 The &ztrac Transmitting Unit.
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B. ASS3 z| IZ 11 1U IAIU:,AiIUI jQjEIZ

The method of range-azimuth positioning is usually

selected for large scale surveys because of its simplicity

and accuracy. This is the result of both angle and distance
measurement devices being co-locatel, with the intersection

of the two lines of position always being ninety degrees.
In practice, however, the co-location of both instruments is

often not achieved. The result is an eccentric geometry for

the position fix. This section will analyze the geometry of

both eccentric and ccncentric fixes. Position error indices

in common use will be reviewed and analyzed for the special

cases of range-azimuth methods, and the error of an

interpolated fix will be derived.

A. DFIIIIOS

Although a complete and general treatment of error

theory will not be presented, some basic definitions are

necessary to understand the data analysis presented here.

The ideas in this section are incluled in many basic statis-

tics textbooks, and were specifically drawn from Wonnacott

(1977), Dowditch (1977), Heinzen (1977), Kaplan (1980), and

Davis (1981).

Error may be defined as "the difference betveen a
specific value and the correct or standard value" (Bowditch,
1977], or as "the difference between a given measurement and
the "true" or "exact" value of the measured quantity"

(Davis, 1981], athematically it can be defined as:

e= *x A - T (2.1)

"j. T

20



where o is the error, xjis an observation, and T is the

"correct" or Otrue" value. The word error implies that

there is a known true value for a quantity, with which a

measurement may be ccepared to find the "error" associated
with that measurement. Since the true value of a measured
quantity is rarely kncwn, the term "error" is not precisely

correct. Davis (1981) states that it is more appropriate to
speak of the theory of observations rather than the theory

of errors, but it can be shown that the difference between
the two is largely one of semantics.

A single seasurement of a particular quantity may be
considered sufficient for many purposes, even if it is known

that additional measurements will probably be slightly
different than the first. If the quantity to be measured is
of sufficient importance, then multiple measurements are

made and the sample mean, 7, is usel. Each of these

multiple measurements can be a considered numerical value
for a random variable. a random variable is one that takes
on a range of possible values, each associated with a

particular probablility.
The sample mean may be expressed mathematically by equa-

tion 2.2 [cnnacott, 1977]:

Ku x (2.2)

where n is the sample size. If the sample size were
increased without limit (n -- . equation 2.2 would give

the population mean,i. The sample mean is always an esti-

mate of the population mean, which is never directly
computed. This leads to the concept of the residual, v,
which is the difference between the estimate Y of the popu-

lation mean and the observation xI o This is shown in

equation 2.3.

21



v X- (2.3)

The residual is computationally the negative of the

error. Nevertheless, equation 2.3 is more appropriate
because it uses an estimate, Y, of the unknowable pcpulaticn

mean,,. The presence of f in equations 2.3 implies that

multiple measarements have been made, and allows a partic-

ular confidence to be assigned to the estimate of

depending on the number of such measurements. Because the

word error is still used in much of the hydrographic profes-
sicn, it will be used interchangeably in this paper with the

term residual. It is important, however, to understand that

the concept of the residual, whatever its name may be, is
fundamental to any measurement operation.

Errors are classically divided into three groups: blun-

ders, systematic errcr, and random errors [Greenwalt, 1962].
Bowditch (1977) and Davis (1981) do not classify errors as

including blunders, but like the term error itself, the

distincticn is largely a semantic one. Ideally blunders and

systematic errors are completely eliminated from the data.

The most precise measurements reduce random error as much as

possible, but it can never be complately eliminated.

Blunders are mistakes that are "usually gross in

magnitude ccmpared to the other two types of errors" [Davis,

1981], and are most often caused by carelessness on the part

of the observer, or by grossly malfunctioning observing

equipment. They are usually detected and eliminated by

procedural checks during the data a-cquistion process. The

recognition of a blunder is not always easy, since a blunder

"may have any magnitude, and may be positive or negative"

(Bowditch, 1977].
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Systematic errors are defined by Davis (1981) as

those that occur "according to a &nj.g which, if known, can

always be expressed by mathematical formulation." This

mathematical model results in correctors that are applied to
all measurements obtained, thus eliminating the systematic
errors from the observations. The model may be as simple as
a constant corrector subtracted from lengths obtained with a

steel tape, or it may be as complicated as modelling the

effects of atmospheric refraction on electronic distance

measuring equipment.
If the systematic error is such that it cannot be

modelled, it is then estimated by a process known as cali-

bration. Kaplan (1980) defines calibration as the process

of comparing the measuring instrument against a "known"

standard. The word "known" is usually operationally defined

as a measurement operation or instrument that is such more

accurate than the one being calibrated. The difference

between the observed and standard value is used as an esti-
mate of the total effect of all systematic errors present.I

This process is very close to the classical concept of
"errors" presented above, and is entirely proper for use in

the correction of systematic errors [Davis, 1981]. Of

course, one must be careful to apply the corrector only to

those measurments made under the same conditions as the

calibration.

A systematic error found in theodolite or sextant
observations is known as the personal error of the observer

([ueller, 1969], (Bowditch, 19773. This type of error is

rarely quantifled for hydrogaphic applications, but never-
theless it does exist. The observer must rely on the senses

of hearing and vision to make measurements, which vary

between individuals as well as with time in one individual.
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Some personal errors are constant and some are erratic

[Davis, 19811. These errors are minimized by training and

standardizing observational procedures. The best way to
eliminate personal error is by the use of completely

automated observation equipment.

3. MuIS La

"Random errors are chance errors, unpredictable in

magnitude or sign", and are "governed by the laws of prob-

ability" [Bowditch, 1977]. If one assumes that all blurders

and systematic errors have been removed from the observa-

tions, the remaining values can be regarded as sample values

for a random variable. As noted earlier, a random variable

can take on a range of values, each associated with a

particular probability. A random error has high probability

of being close to the population mean,. , and a low prob-

ability of being very much different than. [Greenwalt,

19621.
A probability density function expresses the rela-

tion tetween a value for a random variable and the prob-

ability of its occurrence. Hydrographic survey measurements

often use the normal or Gaussian probability density func-

tion. & concise explanation of this function is given in

Greenvalt (1962) and Kaplan (1980). The function itself is

given as equation 2.4, where p(v) is the probability of the

occurrence of a particular residual v, and 4 is the popula-

tion variance which is approximated by the sample variance,

$ , given by equation 2.5.

I IP 1"

p(v) 1 _ (2.4)
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To find the probability of a residual falling

between two residuals v, and v., equation 2.4 must be inte-

grated over the interval v, to vL. This corresponds to the

area under the gaussian curve between those two points, as

is shcwn in Figure 2.1. If p(v) ware integrated from -1oto

+14r, the area under the curve would be 68.27% of the total

area. This means that there is a 68.27% probability of a

particular residual falling between plus or minus one stan-

dard deviation of the mean, where the standard deviation, a,

is defined as the square root of the variance given in

equation 2.5.

A~V)

II

.i I

(II ' _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 2.1 The Normal Probability Curve.

The combined effect of blunders, systematic errors

and randca errors can now be seen in overview. If it is

assumed that blunders and systematic errors have been

completely elimInated from a set of observations, there

remain only random errors. If the sample size is large

enough, then the sample mean and variance are good
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approximations of the population mean and variance. That

is, there is a 68.27% probability that any future measure-

ments made under the same conditions will not fall farther

than plus or minus one standard deviation from the mean.

B. TVO-DINEVSIOU&L ERROR FIGURES

The two-dimensional error of a position, as applied to
the special case of range-azimuth fixes, must next be exam-

inel. Two figures, the ellipse and the circle, are used to

characterize two-dimensional error. The "error diamond" is

also sometimes used but has no statistical significance

[Thomson, 1977). The error ellipse is discussed first since
it is the most general index of error. Another is root mean
square distance (drs ), also known as root mean square error
(Bowditch,1977], which is the radius of a circular figure

commonly used in hydrography. It is the error index used

for Nos positioning standards (Umba~h, 1976]. A second

circular figure, known as circular standard error, is also

examined briefly because of the ease of converting it to

circular figures which have different probabilities.

For clarification of the issues involved in this

section, the following assumptions are made.

(i) Only random errors are considered.

(ii) Errors associated with each LOP are normally

distributed.

(iii) Errors are independent.

(iv) Errors are limited to the two-dimensional case.

(v) LOP's are straight lines at their point

of intersection.
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These are the same assumptions made by Kaplan (1980),
except that Kaplan allows systematic error to be considerei

in assumption (i). This appears to be an oversight since

the remainder of his discussion, f:om which this section

draws heavily, considers only random error.

=M.i WO'ceSr. 19292.qt..i .92222111z

Before proceeding further into a discussion of error

figures, it is necessary to examine the two special cases of

range-azimuth positioning, that of eccentric and concentric

geometry. Each is illustrated in Figures 2.2 and 2.3.

1100 vessel position

d ist ance device 0. -thoolt

Figure 2.2 Ecentric Range-lzimuth Geometry.

in actual practice the geometry used is often eccen-

tric, but the concentric assumption is made. This is

* because it is usually difficult to co-locate both theodolite

and ranging equipment. Hence, they are offset one or two

* meters from each other. It should be noted that this

assumpticn will introduce a systematic error in all

27
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/ ~ vessel position

.. ~. theodolite and
distance device j

Figure 2.3 Concentric Range-kzimuth Geometry.

positions, which must be eliminated before an analysis of

random errors can be made. The systematic error is often

ignored (by use of the concentric assumption) if the total

uncompensated error is within the tolerance of the standards

being used. An algorithm for eliminating this error is
shown in Figure 2.4& and given by equation 2.6. This algo-

rith. assumes that the size of d in Figure 2.'i is small

compa red to r.

c - d cos 9 (2.6)

where:

C a the corrector to be applied to r

r - observed range to the vessel

d a distance between theodolite and ranging device
9 a the angle between the visual LOP and the

line connecting the two stations
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vessel position

ri
device I

d theodolite

Figure 2.14 Eccentric Error Compensation.

2. Th Xj UA j

Detailed discussions of the development of the error

ellipse can be found in many references, especially in
Greenwalt (1962) and in Burt (1966). This paper will only
present enough background to apply the error ellipse concept

to two LOP range-azimuth positioning. The error ellipse

formed when multiple LOP observations are made is not

considered here.
A range-azimuth position is formed by the intersec-

tion of two L3P's, each having an associated standard devia-

tion. By applying the two-dimensional normal distribution
to the errors, elliptical contours of equal probability

density are formed. The contours center on the intersection

point of the lines of position. This is illustrated in

Figure 2.5, and shown mathematically by

P(V ueb) -+- (2.7)
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where:

v= residual (error) in the 1 i-ac-ion of J
vy- residual e-ror) in +he direction of dJ

4= length of the semi-major axis
4. a length of the s-mi-minor axis

I' can be shown that

K -z [ (V.tV 6)a 2, ] (2.9)

"For values of p(v ,v ) from 0 to f , a family of squal

probability density ellipses are for29 with axqs K O3 and

K4 " [Greenwalt, 1962]. rhe probability density fuc-ion in

equation 2.7, when intear-ted over i prticular are a,

becomes the probability distribution func-tion. This yields

the probability that the residuals v,, and v will occur

simultaneously within that region. This probability disri-
bution function of an ellipse is given by

P(V. ) = - e (2. 10)

The solution of equation 2.8 for different values of K

yields diffareat probabilities. For example, for 39.35w

probability, the axes of the allipsa are 1.000G, and 1.000
6 b (Greenwalt, 1962]. In other worls, a one-sigma error

ellipse around a measured position indicat.s a 39.359 prob-

ability that the position is actually within that elliose.

It is seen in Figure 2.5 that the standard devia-

tions , and Tof the measured LOP's are not the same as the

standard deviations and L0 of the error ellipse. A
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Pigure 2.5 Error Ellipse and .

codina'e transformation is :equired to obtain thqm. This

transforuatiom is found in Heinzen (1977) arnd will not be

discussed herg. Results of the triasformation ire presente4

in equations 2. 1 1 and 2. 12, from BDwditch (1977).

+ c, -Ts (2. 11)2 sin/s
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where:

length of the semi-major axis

O= length of the semi-minor axis

01 standard deviation of the range LOP

o,=standard deviation of the angle LOP

when converted to distance units

'2 = ingle of intersection of LOP's

Per range-azimuth positioning, a; and Oj are nj

equal. 0G' is the error in distance measurement, and it is

dependent on the equipment used for ranging. k diagram of a

range-azimuth position is shown in Figure 2.6.

a; :

Figure 2. 6 a Range-Azimuth Position.
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The error in the visual LOP, d, is a function of the

angular error of the theodolite and the distance to the

vessel, where r is the distance and 06 is the angular stan-

dard deviation of the theodolite, in units of degrees. This

is given by equation 2.13, which is a modification from

Heinzen (1977]. Heinzen uses the term angular resolution in

place of the more correct 4.

(r2 r (2.13)57.2%C

The error ellipse concept can now be applied to the

eccentric geometry by using equation 2.11, 2.12, and 2.13
directly. In the concentric case, since the angle of inter-

section R , is always ninety degrees, equations 2.11 and

2.12 can be simplified to equations 2.14 and 2.15.

+ +j~.2+T (2. 14)

+,- * -(2. 15)

3.. j g z Vif 4)- a

Boot mean square distance (d,,) is presented here

because of its common use in hydrography. It is not

commonly known among hydrographers that unlike the error
ellipse, d,.,shas a variable probability depending on the
eccentricity of its associated error ellipse, and ranges
from 68.3% to 63.2%, as shown in Fi;ure 2.7 from
(Burt,1977]. Eccentricity is defined as the ratio of the
semi-miner to the somi-major axes of the error ellipse.

Root mean square distance is also called Mean Square

Positional Error (SPSE) by Greenwalt (1962), who recommends
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eccentricity 
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Figure 2.7 Variation of irl'.s Probability.

that this index not be used because of its variation in

probability.
Root mean square distance is defined in Bovditch

(1977) as equation 2.16. An alternativ, form is given by

Heinzen (1977) as equation 2.17. If the errors are assumed

independent, the correlation coefficient em is zero and

equation 2.17 is reduced to equation 2.18. An alternate
method of arriving at equation 2. 18 is to substitute equa-

tions 2.11 and 2.12 directly into equation 2.16.

d?*% (2. 16)

dr$* SIN + 2~C.T,T1C-os/9 2.7
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drmi T- (2. 18)

If concentric geometry is assumed, the angle/3 is equal to

ninety degrees and equation 2.18 is reduced to equation

2.19.

"" '- (2. 19)

Substituting equation 2.13 into equation 2.19, the final
form for range-azimuth d,,, is obtained.

d - (2.20)

4. Ci;c &g IanS7. 21.9

Circular standard error has experienced little use

in hydrography but is valuable because it allows easy
conversion between circles of different probability. It is
derived in Greenalt (1962) and given by equation 2.21. It

should be noted that this equation is only an approximation,

although a very good one.

= 0.5000 ( +, + O3j. ) (2.21)

Circular standard error has a probability of 39.35% for a

completely circular error ellipse. It is preferred over
ders because it can be converted to other circular error
indices cf different probability by a constant conversion
factor, as long as the ratio of I/d4 is between 0.2 and

1.0. The equation for circular standard error, and for
other circular error figures, is given in Table I, which is

taken directly from Greenwalt (1962). This table gives all
error indices in terms of either O or the error ellipse
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TABLE I

Circular Error Formulae

Percentage
Precision Index Probability Formula

Circular 39.35% cc - 0.5000 (ax + )
Standard Error (X

when amin/amax> 0.2'

Circular 50% CPE - 1.1774 aC
Probable Error

CPE = 0.5887 (ax + ay)

when cmin/0max _ 0.2

CP-- (0.21.41Z a min + 0.6621 max)
when 0.1 < amon/amax < 0.2 1

CPE -(0.0900 min + o.6745 afIX

_____________ when 0.0 < am, a

Circular Map 90% CMAS = 2.1460 cc

Accuracy Standard
CMAS = 1.0730 (ax + o )

when amin/amax > 0.2
Circular Near- 99.78% 3- 5000 ac
Certainty Error(Three-five sigma)

semi-major and semi-minor axes a and 4. Applying the

assumptions of the previous section on dris to this case, 0,

for the concentric range-azimuth case is given by equation

2.22.

o',- 0.5000 (r. r . (2.22)
~V''57.296)
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C. THE ERROR OF AN INTERPOLATED FIX

The error in an interpolated position for both methods

of interpolation used in range-azimuth positioning will now

be derived. Fundamental to the derivation is an under-

standing of the concept of error propagation, which is

explained in detail in Greenvalt (1962) and Davis (1981).

Error propagation is summarized here for the special case of
range-azimuth positioning. It must be noted that any inter-

polation discussed in this chapter is strictly due to errors

in the observed positions between which the interpolation is

made. Error due to the vessel not being at its interpolated
position (due to steering or wind and sea conditions) will

be considered in later chapters.

The present NOS methods of interpolating range-

azimuth fixes are of two types. One interpolates both the

range and angle between two observe! positions. The second

is used when actual range information is acquired on each

sounding. In this case only the angle is interpolated, and

is used with the observed range to compute a position. In

each case a linear interpolation is used [Ehchardt, 1979].
Algorithms for the interpolated value of the range, rA, and
the angle e;, are given in equations 2.23 and 2.24.

= r, + (J/K+1) (r,-r ) (2.23)

e. e 6 (j/K+1) (9L-,) (2.24)

where:

Subscript i denotes interpolated.
Subscipt I denotes observed position number 1.
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Subscript 2 denotes observed posit'-on number 2.

X denotes the number of interpolations.

j steps from one to K.

The following example of the interpolation process

is also sketched in figure 2.8.

Figur 2.8 Example of &rigalar interpolation.

Let: 0, - 251 r, = 1501 wn J = 1 to 2

e, 2440 r, 148 5mn K = 2

The values of the interpolated angles and ranges are

computed by equations 2.24 and 2.23.

251 (1/) (44-211 251- 23 - 48.

eA2 251 + (2/3) (244-251) - 251 - 2.3 = 246.4 (2.26)
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*1501 + (1/3) (1485-15 01) - 150 1-5. 3 =1495. 7m (2. 27)

rZ=1501 + (2/3) (1485-1501) = 1501-10.7 *1490.3v"(2. 28)

"Error propagation is better termed the propagation

of variances and covariances" [Davis, 19813. The following

paragraphs are a general derivation of error propagation,

and will be applied below. In reading this section, the

terms x and y are general, yet the reader should remember

that they will be applied specifically to range-azimuth

interpolaticn. Let y be a set of quantities each of which

is a function of another set of random variables x. The

random variables in our application are the observed x

given in equation 2.1, and y is the interpolated 9,, or r.,

given in equations 2.24 or 2.23.

The covariance matrix Zis given by the matrix
equation 2.29, where J, Is called the Jacobian mat-rix and

is given in equation 2.30.

LYY - JY1A zJ%%T (2. 29)

jyXtU ?~~-f (2. 30)
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,y, is the transpose of J,,, and . is another covariance

matrix given by :

T, 3 C (2.31)

IN

The covariance matrix in equation 2.31 is written
for the general case of correlated random variables. If y

is a single quantity rather than a set of quantities, and if
the variables are assumed uncorrelated, equation 2.29

reduces to:

a,'

; (2.32)

J . ',,N .

By carrying out the multiplication in equation 2.32, the
expanded form is given in equation 2.33.

. 1 2. 2

' + ,. + .... + (2.33)

If y is a linear function of random variables, the

partial derivative terms in equation 2.33 become constants.
Thus the matrix equation 2.29 becomes equation 2.34, where
abec, and d ar. constants.

ay, + b aC, + -.--- +d (2.34)
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Now let us apply equation 2.34 to the _ange-azimu-h

case. The assumptions made above are:

(i) y is a single quantity

(ii) The random variables x are assumed

uncorrelated.

(iii) y is a linear function of x

If these are applied to the two intarpolation algcrithms,

equations 2.24 and 2.23, it can be seen that:

(i) 8 and rA are single quantities.

(ii) The random variables e, , ea and

r, , r. are assumed uncorrelated.

(iii) The two interpolation algorithms are linear.

From the foregoing general liscussion the interpo-

lated variances of equations 2.23 and 2.24 can be given as:

ar 2. t (2.35)

2/ 2
=8 ( ~e)2. 36)

but,

0". I s 4"6 (2.37)
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and:

(To T (z e (2. 38)

By substituting equations 2.37 and 2.38 into equations 2.35

and 2.36, we have:

IL (2.39)

and

" r = (2.40)

This error propagation applies only to vessels

moving in an arc. For a vessel moving in a straight line

the angular interpolation algorithm is not linear and the

partial derivative terms analagous to those in equation 2.33

are not constants. The error ellipse for an interpolated

position can now be formed. The ellipse is seen to be the

same as fcr an observed position (figure 2.5) since equa-

tions 2.39 and 2.40 show that errors in interpolated

distance and angle are the same as for an observed distance

and angle.
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The experimental work performed in this investigation
can be conceptually divided into two parts, although both
parts were acomplished simultaneously. Part one involved
pointing error and variance determination for the two theo-

dolites, and part two investigated the accuracy of
interpolated positions.

A. FIELD WOBK

The actual field work was representative of a typical
range~azinuth survey. Two full days (8 and 15 April, 1983)
were required to obtain 143 position fixes and over 2500

Aztrac angles. The experiment took place in southern

Monterey Bay near the Monterey Harbor Coast Guard Pier, as

shown in Figure 3.1. The vessel used was a chartered
36-foot Uniflite with a fiberglass hull and twin enqines,

and its operator had about two months' hydrographic survey

experience, including steering range arcs.

For each position of the vessel, six lines of position

were observed. Three Wild T-2 theodolites located at
stations MUSSEL, SOFAR, and USE MON ware used to obtain the
" eference" or best estimate positions of the vessel. Two

additional test theodclites, a Wild T-2 and an Odom Aztrac,
made observations from stations T2 and AZTRAC. Finally, a

Del Norte Trisponder (model RO4) provided a distance LOP to
the vessel from staticn GEOCEIVER. The reference positions
were obtained at one minute intervals, and five Aztrac

angles were observed between each of these positions for

later use in evaluating interpolation methods. Figure 3.2

shows the sources of the various LOP's to the vessel. It
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Geodetic control for the reference positions consisted

entirely of mon umented third-order stations. Station
GEOCEIVER, although not a published station, was located to

third order specifications by Mr. William Anderson of

NAVOCEANO in 1982, and the other two stations were located

as eccentrics of this station. Each was less than one meter

from GROCEIVER. GEOCEITER is a monumented station, while

Aztrac and T2 are marked by masonry nails driven into the

concrete pier. Positions for Iztr&a: and T2 were computed on
an HP-98l5 computer using the UGS geodetic direct program.

The initial pointing by both instruments was to station USE
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rmrussel ,

error ellipse

Q/ 3~ 000m
oas a range arc

sofar use mon

Figure 3.2 nes of Position Observed to the Vessel.

SON. Initial pointigs at all stations were made to thi_d-

order staticns at least 500 meters distant. Geodetic pos -

tens of all control station is i given in Appendix B.

Underway operations were very similar to a nonauomated

range-azimuth survey, except that five theodolites, rather

than one, were trained on the boat for each fix. The survey

boat steered alo g the appropriate range arc, and fix marks

were give difr voice radio to the observers on shore. All
T-2 angles were obtained once each minute, and ztrac angles
were recorded every ten seconds. The sequence -3f events for
each reference position is given in Table II.

This process continued throughout the two-day field
operation. Breaks in data collection occurred at the ends
of each range arc, and also when theodolite observers were
rotated. The monotony of the events shown in Table 11 was
sufficient to approximate the monotony (with its associated
observer difficulties) of in actual survey.
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TABLE 1I

Data Acquisition Sequence of Events

time priorJ
to Vix actio n

0 cdepress ztra manual fix button I

15 sac / "15 second standby" over voice radio
10 sec Idepress Aztraz manual fix button

5 sec "standby" over voice radio

0 sec I mark" over voice radio
depress Aztra- manual lix button, I
T- operators make observations

Observers at stations MUSSEL and USE MON were required

to record angles as well as to observe. T-2 observers at

stations T2 and SOFAR were provided with separate recorders,

because at times the high angular speeds of the vessel at

these stations (due to closeness of the boat) made observing

and recording difficult for one person.

The Trisponder was calibrated using the standard NOS

method over a geodetic baseline (GEOCEIVER to USE MON) and

no systematic errors were observed. The geodetic baseline

was determined by computing an inverse distance between

staticns USE MON and GEOCEIVER using the HP9815 computer and

NGS geodetic software. The Trisponder was reported by Odom

Offshore Surveys to have a standard deviation of its ranging

error of 1.0 seters. The master unit and antenna were

mounted at the highest part of the boat, about one meter

above and aft of a radar antenna enclosure, which was about

one meter in diameter and 0.4 meter high. The master unit

was a cube about 0.3 meter on a side and was covered with

46

A;



green signal cloth. This unit was the target to which
angles were observed. The Trisponlar Distance Measuring

Unit (DMU) was mounted next to the steering station inside
the boat.

Data logging for both Trispondar and Aztrac was accom-

plished by an Odom Navtrace computer system. Both the

Trisponder DHU and Aztrac receiver were interfaced to this
unit. The Navtrace computer is programmed to automatically

log fix data not on intervals of equal time, but on equal

distance intervals from a reference line. For this reason,

all fixes were logged by using the manual fix feature of the
computer. This simply caused the computer to log distance

and angle each time a button was manually pressed. Timing
for fixes was provided by an NOS standard sounding clock.

This is a mechanical clock with a buzzer set to ring every
ten seconds.

The weather during both days of field work was good to

fair for survey work. Visibility was good at all times, and

winds were calm on each morning of operations. Afternoon

northwest winds were a maximum of about 15 knots on both
days, which produced two to three foot seas in the offshore

part of the operating area.

B. THEODOLITE POINTING ERROR

The pointing error, x, Is defined as the difference

between an observed and computed angle given by

X.- - ( 3.1)

and the mean pointing error, Y, is therefore

" "(3.2)
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where n is the number of observa--ions, 90 ±s the observel

azimuth and e. is the computed azimuth from the theodolite

position to the reference position of the vessel. The stan-

dard deviation. '. , of a set of pointing errors can be

expressed mathematically as

= -x (3.3)

This is the usual definition in most statistics texts and

agrees with the discussion in section II.A. of this paper.

The ccmputed azimuth, 9, , was datermined by computing a

geodetic forward aziauth from either test theodolite posi-

tion to the reference position of the vessel. There is some.

potential error in ac due to an una-ertainty in the reference

position of the vessel. The reference position of ths

vessel was determined by a least squares adjus-ment of the

three LOP's from the three Wild T-2 theodolites. A

by-product of this adjustment is an erzor ellipse for each

position. The angle subtending this error ellipse from each

test theodolite is the error in ec. This is illustrated in

Figure 3.3.

uncertainty0 ----.. .... ...-
I error
ellipse _

Figure 3.3 Uncertainty of an Observed Error.
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The least squares method was developed in 1794 by Gauss.
It is based on the ccncept that as soon as redundant obser-
vations are present there appear discrepancies among the
observations. In order to eliminate these discrepancies a

residual, v, must be added to each observation. In the
method of least squares the residuals are determined such
that the sum of their squares becomes a minimum, provided

all cbservations have the same accuracy (Mueller, 1979]. It
is assumed that the three LOP's used in this adjustment do

in fact have the same accuracy. Further information on the
method of least squares as applied to hydrography is given

by Kaplan (1980).
Reference positions were calculited by the least-squares

FORTRAN program AZLSQ2, written by the author, which is a
modification of program SILVA1 [Silva, 1979]. The program
generated plane and geodetic coordinates for each position
fix, as well as the lengths of the semi-major and semi-minor
axes of its error ellipse. The angle made by the semi-major

axis and the x-axis was also computed.

C. INTERPOLATION ALGORITHN EVALUATION

The present NOS method of observing azimuths to the
sounding vessel is totally nonautomited, as explained in
section k. This precludes recording an azimuth for each
sounding because of the speed with which soundings are
taken. Consequently interpolation &igorithms are employed
to plct soundings between observed positions. Two algo-
rithms are used: one interpolates only the azimuth and uses
an observed distance to the vessel, while the other interpo-
lates both azimuth and distance. Figures 3.4 and 3.5
illustrate the situation.
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azra positions
ac-tu a Iused for interpolation,

trac k

interpolated aztrac
Sposition position

Figure 3.4 interpolation of Angle Only.

1 aztrac positions
used for interpolation

-actual

.trcckiterolte

positions positions

Figure 3. 5 interpolation of angle and Distance.

The method used to evaluate thus. interpolation methods

is simple. Actual distances and angles to the vessel were
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recorded every ten seconds, using the telemetering theo-

dolite and associated computer logging system. A ncnauto-

mated system was then simulated by interpolating between

positions obtained every minute. Thus two data sets were

produced, an interpolated set and a corresponding set of
actually observed positions. These two sets of positions

were then compared and their differences examined. Both NOS

interpolation algorithms were evaluated in this manner. An

analysis cf the experimental results is given in Chapter IV.

D. CHOICE OF EXPERISINTAL CONDITIONS

Any experiment must be performed under conditions

similar to those under which the results will be applied.

This section will describe the specific error sources to be
examined under range-azimuth conditions. By carefully

choosing the experimental -onditions, these error sources

can be brought into the foreground for examination, while

all cther sources of error can be kept in the background.
It is necessary to intrcduce some standard statistical

terminology to help understand the experiment design. The

classical experimental method studies the effect of only one
variable. That is, it holds all effects but one to be

constant, and varies that single one systematically. In the

case of this thesis, one factor (a theodolite) was varied

systematically by introducing two levels (Aztrac and T-2) of

the factor. It is desired to find the effect of that factor

(the theodolite) on the error of a range-azimuth position.

It is known, however, that the observer also has a consider-

able effect on the error of a position. Thus another factor

(the observer) is introduced into the experiment. Four

levels (four different individual observers) of this factor

were selected.
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The following four observers, who are attached to the

Naval Postgraduate School, constitute the four levels of the
observer factor.

LCDR 3erald B. Mills, NOAA. Instructor in

Hydrography. Ten years experience in

geodetic and hydrographic sarveying.

LT Maureen Kenny, NOAA. Student in

hydrography. 2 years field experience

aboard the NOAA Ship Davidson, primarily

in Alaskan and West Coast waters.

LT Mary C. Schomaker, NOAA. Student in
hydrography. 4 years field experience

aboard NOAA Ship Davidson, and on NGS
horizontal control and leveling parties.

Mr. James R. cherry, Supervisory

Geodesist, Naval Postgraduate School. 23

years field experience in nydrography and

geodesy, with the Naval Oceanographic

Office.

Although additional observers would have been desired, none

were available who had any experience with theodolites.

Aside from the factors to be investigated, it was recog-
nized that there were background conditions that affected

the results of the experiment (Crow, 1955]. Some of these

were taken into account explicitly in the design. The

influence of all others was minimized by scheduling the

experiment such that each combination of instrument and
observer was evaluated in candom order, thereby randomizing

the effects of these other conditions.
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Blunders and some systematic errors were explicitly

accounted for in the design. Blunders were identified visu-

ally by their large magnitude and were simply deleted from

the data set using the editor on the NPS computer. The

"ztrac instrument essentially eliminates all blunders due to

its automatic data logging feature.

Systematic errors integral to :he theodolites, such as

collimation and eccentricity, were not accounted for, since

they were very small compared to the size of the errors

under investigation. One systematic error that could be

quite large is the initial pointing error, which is due

largely to the observer. The NOS Hydrographic Manual

[Umbach, 1976] requires the initial pointing -o be "accurate

to within ±30 seconds of arc". That is, the difference

between beginning and ending pointings is not to exceed one

minute. For this experiment, the mean of the beginning and

ending pointings to the initial azimuth was algebraically

subtracted from all cbserved angles for that set. It could

be argued that a more accurate way of removing this system-

atic error would be to prorate the difference in initial

readings between the beginning and ending pointings.

However, the former method is often used by NOS hydrographic

survey units.

One background ccndition, the angular speed of the

vessel, was explicitly taken into account in the design by

dividing the experiment into groups. Six separate subsets

of the experiment were created by measuring pointing error

at six different angular speeds. These speeds were chosen

to be closely representative of speeds found under actual
surveying conditions. To this end, integral values of

angular speed were not used, but rather integral distances

from the vezl to the theodolite station. This corresponds
to actual practice in most nonautomated or semiautomated
surveys. The vessel maintains constant engine speed, and is
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navigated in a circle such that a constant distance value is

displayed in the ranging equipment. For this experiment,

distances of 300, 500, 700, 1000, 1500, 3000 meters were

used. Using the approximate vessel speed of 2 meters per

second (4 knots) , the angular speeds in minutes per second

corresponding to these distances were 22.9, 13.8, 9.8, 6.9,

4.6, and 2.3, respectively.

Another background condition that was explicitly

accounted for in the design was the experience of the

observers. For a completely general investigation, one
would desire to evaluate the error using observers of widely

varying experience. only experienzed observers were used in

order to conserve resources of time and money, although none

of them were experienced in using the new Aztrac instrument.
All observers except LCDR Hills had acted as observer for

range-azimuth hydrography within the past yea= using the

Wild T-2.

There were other background conditions that affected the

results of the experiment, including weather and lighting

conditions, and observer fatigue. 3ther subtle factors may
have also contributed to the error. In nonautomated

systems, there might have been a time lag by the radio oper-
ator in the vessel as the fix mark was relayed to the theo-

dolite operator ashore. The design of the experiment could
not explicitly account for all these conditions, so several

steps were taken to randomize the order of observations for

each combination of instrument and observer.
It was assumed that the theodolites used were randomly

drawn from the entire population of r-2 and Aztrac instru-

ments. This is a fairly good assumption for the T-2, since

the particular unit tested is one of several maintained by

the Naval Postgraduate School, and has seen several years of
service. The assumption for the Aztrac theodolite is not as

good, since it is one of only five in existence at this

time. It was provided by the manufacturer for testing.
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Theodclite observers were required to be paired, since

the experimental theodolites observed simultaneous angles to

the vessel. & random selection of observer pairs was accom-

plished by consulting a random number table in Wonnacott
(1977). The order of observation for the six different

range arcs was important and required randomization.

Failure to do so could allow the error associated with each

to be influenced by time varying condi:ions. Examples of
these are the changing effect of sun glare on the instru-

ment, observer fatigue, the effect of repetition acting to

decrease error, or increasing afternoon winds disturbing the

theodClite. Randomization was again accomplished with the

aid of a random number table. A random number was assigned

to each range arc, and the order of observation was estab-

lished by selecting the arcs from the lowest to highest

number.
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IV. R Mt.U U AD 21Th &ILIU

A. DATA PROCESSING SYSTEM

All data acquired for this experiment were manually
entered into the NPS computer facility. A data processing

system was designed and implemented to log the raw data and

perform the necessary computations to arrive at the finished

form given in this chapter. This system was divided into

numerous subsystems to enter data, determine the pointing
error, compute interpolated positions, compute means and
variances, test for randomness, and compute analysis of

variance (ANOVA) statistics. ANOVA is a standard statis-
tical technique used in testirg for a difference between the

effects of two or more factors.

The data processing system was designed and programmed

by the author. As mentioned previously, the NGS geodetic

inverse and direct subroutines [Pfeifer, 1975], as well as
the least-squares adjustment program (Silva, 1979], were

adapted for use here. The ANOVA computations were performed
by the Statistical Package for Social Sciences (SPSS) on the

Naval Postgraduate School mainframe computer (Hull, 1981].
The pointing error and interpolat-oa subsystems were
designed as described in Chapter III.

B. POINTING ERROR DRTERMINATION

The pointing error standard deviation for each theo-

dolite needs to be quantified, and i determination must be

made as to whether there is a statistically significant
difference between the two instruments. Pointing error for
each combination of instrument and observer was determined
by the methods discussed in Chapter III. Standard deviation
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of the pointing error was computed using equation 3.3, for

each combination of instrument and observer, at each range

arc, and are given in Appendix A. This entire procedure was

performed first for the T-2 angles observed to the nearest

second of arc, which is the maximum resolution for this

instrument, and second, for T-2 angles rounded to the

nearest minute of arc, which is specifically allowed by the

OS Hydrographic Manual £Umbach, 1976].
Since eight different instrument-observer combinations

exist, the sample means and standard deviations for each

combination were slightly different because each sample is

only an estimate of the mean, , and standard deviation,

for the entire population. The pooled standard deviation is

the best estimate of for this case of multiple samples

because it takes the differences among sample means into

account. If an overall standard deviation is computed using

equation 3.3, the population standard deviation will be

overestimated because of the differences among sample means.
The pooled standard deviation is mathematically expressed by

equation 4.1 :Crow, 1955], [Box, 1978].

s. ( I(S-.)$; -- + (,, ) (4.1)

where:

k = total number of observer-instrument

combinations

n = number of observations for each observer-

instrument combination

s = sample variance for each observer-

instrument combination

Thus a pooled standard deviation was computed for the eight

samples available at each different range arc. These are

57 i



given in Table III for the Aztrac ind both the rounded and

unrounded T-2 data. This table gives angular speeds for the

vessel in units of minutes of arc per seconds of time. Note

that the pointing error of the Aztrac is twice as large as

that of the T-2 and that the rounded T-2 pointing error is

only slightly greater than the unrounded.

TABLE III

Pointing Error Standard Deviation (pooled estimates)

Range Approx. T-2 T-2
Arc Angular kztric (unrounded) (rounded)

(a) (min/sec) a (sec) a (sec) m (sec)
01o l . ,  4

300 22.9 I3.33 (2290) 1.26 (868) I1.31 (902)

500 13.8 3.5 (11470) 1.72 (712) 11.73 (715)
700 (9.8 2.10 (619) 1.30 382) 1 1.31 (386)

I 1000 6 .9 297 (613) 1.08 (225) 1.09 (226)

1500 46 4.25 (584) 0.92 (126) 0.93 (128)

3000 2.3 2.06 (142) 1.1 ( 97) 1.43 ( 991

_

The technique of analysis of variance (ANOVA) is used tc

determine whether a statistically significant difference

exists between the two theodolites. The ANOVA technique

allows the partitioning of overall pointing error variance

into portions caused by each factor (observer and theo-

dolite), by interaction, and by experimental error.

Interaction exists if the variance for a particular combina-

tion of instrument and observer is greater than the variance

for any other such combination. The experimental error is
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primarily due to the conditions described in Chapter IIT,

concerning the reference positions for the vessel. This

error is a measure of the precision of the experiment, where

precision is defined as the closeness with which repeated

measurements made under similar conditions are grouped

together (Greenvalt, 1971]. Experimental error is assumed

to have a population mean of zero. Further details of the

ANOVk method can be found in many statistics textbooks, such

as Wonnacott (1977), Box (1978), Crow (1955), and Walpole

(1978). This discussion was taken primarily from Crow

(1955).

The following assumptions must be made when using the

analysis of variance technique.

(i) Observations are random.

(ii) Means and variances are additive, as given

in the mathematical model below.

(iii) Experimental errors are independent.

(iv) Variances of the experimental errors

are equal.

(v) Distribution of the experimental errors

is normal.

k mathematical model --an now be given, using these

assumptions, which specifies the total effects of the vari-

ances acting on a particular observation, x1t.

x.,qt +A a., + b i 4i 44t (4.2)

where:

overall mean for all observations
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a effect of the instrument factor at level i

ba a effect of the observar factor at level I

= effect of the interaction of instrument and

observer at level i and J, respectively.

t a random effect caused by the variance of the

experimental error.

i = 1,2

j = 1,2,3,4

t = 1,2,3, ... n

n - the number of observations for a

particular observer-instrument

combination (usually 15)

It should be emphasized that the a, b, , and e of equa-

tion 4.2 are not actual variances, but a realization of the

effect of those variances on a particular observation xi.

The variances associated with observer, instrument, and
interacticn are computed by the ANOVA procedure, and these

form the basis of the test for differences. This test is

called the F-test in honor of Sir Ronald A. Fisher
[Wonnacott, 1977], and is based on a ra';io of variances. To

test for a difference between instruments, we form a ratio
with the variance among instruments in the numerator, and a

denominator composed of an estimate of the variance of the

experimental error. In terms of our mathematical model, a

(the numerator) is being compared with es (the denomi-
nator). More simply stated, it is a comparison of the

precision of the instrument (the numerator), with the preci-

sion of the experiment (the denominator). This ratio, F, is
then compared to a ratio . ,which is computed for for a

particular confidence level from the F-distribution function
given as equation 4.3 [Crow, 1955].
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F ff F ) dF (4.3)

where: F - the ratio discussed above

f, = the number of degrees of freedom

in the numerator of F

f& = the number of degrees of freedom

in the dencminator of F

A precise hypothesis must now be stated that can be

tested by the F-test. Walpole (1974) states that "a sta-:is-

tical hypothesis is an assumption or statement, which may or

may not be true, concerning one or more populations."

Experiments are desigted to test hypotheses, and "the rejec-

tion of an hypothesis is to conclude that it is false, while
acceptance merely implies that we have no reason to believe
otherwise" (Walpole, 1978]. A null hypothesis is an

"initial hypothesis, or one we hope to reject" [Crow, 1955],

and is usually stated in terms of an assumption of no

difference between the effects to be investigated by the
experiment. rhis experiment uses three null hypotheses,
which are:

(i) There is no difference between observers,

that is, the ratio F, for observers, is

small compared to P,.

(ii) There is no difference between instruments,

that is, the ratio F, for instruments, is

small compared to F .

(iii) There is no interaction, that is, the ratio
F for interaction, is small compared to Fc.
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These three null hypotheses can be accepted or rejected

on the basis of the P-test and the ANOVA procedure. If any

are to be rejected, the value of tha ratio F must exceed

that of the critical F. for that confidence level (95%). A
summary of ANUVA results is given in Table IV. For each

range arc, the computed values of F and the correspcnding

critical value needed to reject the null hypothesis are

given. The rightmost column of the areas labelled as

rounded or unrounded data indicate acceptance or rejection
of the null hypothesis. It can be seen from this table that

in no case could the null hypothesis be rejected for either

instrument or observer. In other words, it may be said with
95% confidence that there is no reason to believe there is a

difference between the four observers or between the two

instruments. It should be noted that data for the 1500

meter arc indicate a rejection of the null hypothesis for

interaction. &ccording to Crow (1955), a significant inter-

action usually occurs because unrandomized background condi-

tions are present. There is little apparent reason why this
interaction should occur, other than that there were some

unidentified, time 'varying conditions affecting the measure-

ments. The 1500 and the 1000 meter range arc were only

observed on April 8, while all the other range arcs were

investigated on both days of the experiment.

A final assumption of the ANOVA technique is that the

observations within the eight combinations of instrument and

observer are randomly drawn from their populations. Several

tests are available to determine if a particular sample is

random. The test used here was the Run Test, as given in

Crow (1955) , and a confidence level of 95% was used. This

test shoved all eight samples were random at the 95%

confidence level.
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I

T ABLE IV

Summary of ANOk Rosults at 95% Confidence

Rounded Data Unrounded Data ial I null'
F hyp. F hyp.

300 3a rc I

--instrument 3.97 0.10 accept 0.09 accep-

observer 12.70 11.69 iccept 1.69 Iaccepto.. I - I'- 1 °  I-°I I
interaction 1 2.70 I 1.36 1 accept I 1.35 I accept I

5a0 m-arcI

instrument 3.92 0.01 accept J0.01 accept

observer 2.68 | 0.13 accept 0.1'4 accept

interaction 2.68 0.25 accept 0.25 accept f
i 7003n arc

instrument 3.84 0.05 accept 0.05 accept

observer 12.60 11.86 1accept 1.86 1accept
interaction 12.60 0.28 accept 0.29 1accept
1000 m arc=

instrument I3.92 0.01 accept accep

observer 12.68 0.45 Iaccept 0.5 acpS- oo I I. ,. I Io. ,. I I. ,
interaction I2.68 I1.74 accept I1.79 accept

1500 a arcI

instrument 3.84 j0.78 Jaccept 0.73 jaccept
observer 2.68 1.44 accept 1.41 I accept

interaction 12.68 15.01 reject 15.02 1reject

instrument 3.95 0.10 accept 0.12 accept

observer J2.70 1.69 Jaccept j1.74 accept

interaction 2.70 1.36 a1ccept 1.37 jaccept
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C. INTERPOLATION EVALUATION

The two methods of interpolation used by NOS were next

evaluated. As explained in section III.C., three sets of

positions were computed. These were a set of actually

observed positions using Aztrac, and two sets of corre-
sponding positions computed by the two different interpola-

tion algorithms discussed in section II.C. These two

algorithms were evaluated by computing the distance between

each observed positicn and each corresponding interpolated
position. A FORTRAN program written by the author performed

the ccmputations. The NGS geodetiz direct subroutine

[Pfeifer, 1975] was used to compute positions from observed

distances and Aztrac directions to tha vessel. The interpo-

lated positions were computed using equations 2.23 and 2.24,
which are the same algorithms used in the NOS interpolation

subroutine TCARC [Ehrhardt, 1979]. Distances between the

two corresponding positions were computed on a plane, rather

than using a geodetic computation. There is negligible

difference between plane and geodetic methods at the

distances (about ten meters) under consideration here.

Results of these computations are given in Table V, which
shows for each range arc the average distance in meters

separating the interpolated and the corresponding observed

positions. An indication of the variability of these values
is shown by the percentage of interpolated positions falling

farther than 1.0 meter away from the actual position.

Little can be inferred from the results in Table V
because this table is really an intermediate step towards a

rigorous evaluation of the raw data. This table should be
viewed as only a general indication of the effectiveness of

interpolaticn. Since it is a direct result of the ability
of the boat operator to steer the vessel in an arc, wind and

sea conditions have a tremendous effect on interpolation
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TABLE V

Results of Interpolation Evaluation

Range Angle Only Angle and Distance

I - >,.0 f ->m.
from mean X from mean

3000 1.15 47% 2.141 55%

1500 2.09 85% 4.98 91%

1000 1.63 72% 4.07 78%

700 2.04I 75 3.01 80%

1 500 1.86 79% f 4.15 83%

300 2.59 79% 5.32 8L4%I I

effectiveness. Although this experiment was carried out in

representative survey conditions, Table V should not be

viewed as being applicable to all situations. The -able

does indicate that, whenever possible, automatic recording

of range data should be used.
Full analysis of the interpolation algorithms should be

the two-dimensional equivalent of testing for the difference

between means. This is because both the interpolated and

observed positions are not "true" positions, but have some

error. A one-dimensional test of differences between means

is well established, and is discussed in several references,

including Vonzacott (1977). The null hypothesis for such a

test is
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where,, and.,& are the means of the two populations, and d

is some arbitrary distance selected by the experimer9r.

The two-dimensional problem has the same null hypcthesis but

the mathematics of the test have not been established. This

problem is illustrated in Figures 4.1 and 4.2.

IIII

Figure 4.1 One-Dimensional Difference Between Means.

A proper analysis of the data would inquire for Pach

interpolated-observed pair of positions, whether the

distance between the two positions was greater than d fo. a

particular confidence. More work than could be incorporated

into this thesis is required to fully evaluate the data.

D. ANALYSIS OF FACTORS AFFECTING THE RESULTS

The results of this experiment ware presented in Tables

II, IV, and V. An attempt will now be made to analyze the

experiment for errors in logic and technique, in order to

better understand these findings.
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d%II

interpolated observed -

Figure 4.2 Two-Dimensional Difference Between Means.

The most important results from this thesis are the

estimates of C" for theodolite pointing error. It is obvious

from Table III that standard deviations of both the rounded

and unrounded T-2 error values are about one-half that of
the Azt.ac, for all angular speeds considered. The ANOVA

technique, however, shows no statistical difference between
the instruments at the 95% confidence level. An analysis of

the data used to obtain the results yields a potential

explanation for this apparent contradiction.

The original data (pointing errors in seconds of arc)
were made the subject of empirical probability density plots

using the subroutine HISTG [Robinson, 1974] on the NPS
computer. These plots show probability density versus

error, as well as mean and standard deviation. An example

of these Flcts, for the 500 meter rang* arc, is given in
Figure 4.3. The remaining plots arm found in Appendix C.

Plots are shown for both hztrac and T-2 (unrounded), for

each range arc. A striking feature of the kztrac curves is
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Figure 4.3 Probability Density vs. Error.

their bimodal shape, as compared to a single peak for the

T-2 curves. It can be easily seen from the curves how the

spread of this bimodal distribution would increase the

comDuted standard deviation for the Aztrac data.

The method of data acquistion for this thesis was

semiautcmated in that all T-2 angles were manually recorded,

while the Aztrac angles were recorded by pressing a button

aboard the vessel. It is probable that a time lag existed

between all the T-2 observations and the &ztrac observa-

tions, despite the best efforts of the observers, because

the observation procedure was not totally automated. If

this were true, there would be little difference between the

observed angle e for the T-2 and the computed angle e.,
because Sc is associated with a reference position also

derived from 2-2 observations. The observed angle e, for

the Aztrac would, however, be consistently different from q'

because of this time lag and because the vessel was moving

to the left or right with respect to the Aztrac observer.
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Since approximately equal numbers of observations were made
with the boat moving to the left or right along the range

arc, the distribution of Aztrac pointing errors would take
on a bimodal shape.

It is understood that the data analyzed by these curves

com from not one but four different samples, and tha- the
curves should not be expected to be perfectly peaked. The

T-2 curves, however, also come from four samples and do not

have multiple peaks. This analysis is further supported by

finding the distance between one peak of the kztrac curve

and the single peak of the T-2 curve in figure 4.3. The

distance in arc seconds, when converted to meters, is

roughly the distance the vessel traveled in one seccnd. One

second of time is certainly a reasonable figure for the tims

lag discussed above. k manual check of the raw data

recorded in the field also suggests such a time lag. The

original data were sorted into two sets of "left" and

"right" observations, which were analyzed for mean and stan-

dard deviation. Results of the analysis are shown in Table

VI. This table gives the mean and standard deviation for

the "left" and "right" data sets, and shows that the mean of

both sets was about two meters to the left or right of the

reference pcsition of the vessel. rhis two meter difference

corresponds closely to a nominal vessel speed of two meters

per second (four knots) for the boat used, and a time lag of

one second. Means for the 1500 and 3000 meter ranges are

somewhat unequal because sea conditions at these offshore

ranges caused the boat to travel slower in one direction.

The rightmost column in Table VI gives the pooled standard

deviation of each "left" and "right" data set, which is the
best estimate of the population standard deviation 6 4 , for

the kztrac.
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TBLZ TI

Corrected lAztrac Standard Deviation

)l f W,I ean *I j s Aztrac Pooled I

right a (sec) m (sec) Deviation

300 L 2.95 2035) 1.17 ( 806) 1.07 (741)

I -2.67 (-1836) 0.99 (682)

500 L 2.40 ( 993) 1.50 (660)591
R -2.69 (-1112) 1.31 (539)

700 L 1.61 ( 476) 0.90 (266) -23 70 .8(7)~ 1.05 (312)70 R w2.37 ( -7 001 1.28 13791

1000 1 L 2.49 ( 51) 1.55 (321) 1.43 (296)
R I -2.92 (-604) 1.30 (268) I 1

1500 L j1.93 (266) 1.56 (228) 11.45 (199) 1
R | -3.22 (-44 ) 1.36 (147)

3000 L 0e48 (33) 1.42 (98) 11.30 (90)
I I -3.97 (-273) 1.22 (84)

The systematic error caused by a time lag as the boat

moved left or right in the observer's field of view was -he

result of faulty design of the experimant. The proper way

to correct this problem would be to duplicate the experiment

using better synchronization of all observations. An alter-

native would be to model the systematic error and apply

corrections to the existing data. Such a model should

include an estimate cf the boat speed and its left or right

direction with respect to the observer.

Different ANOVA results might ba obtained using the data

corrected for systematic error, but this vould not explain

the AOV results in Table IV. TL., conditions affecting

data acquistin mst again be considered, as well as an

7
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understanding of the ANOVA process, when offering an

explanation.

The denominator of the F-ratio discussed in section B is
essentially the experimental error of the measurement

process. This error is primarily a function of the error

ellipse for the "reference" position shown in Figure 3.3.

Table VII gives an estimation of this experimental error, by

comparing the size of the error in 3, and er. Uncertainty

in e, is given as the mean major axis of all error ellipses
for a given range arc. Uncertainty in 00 is the pooled

standard deviation , , of each test theodolite. The

values for 09 in the Aztraz column are from Table VI, and the

T-2 values are from Table III. An examination of Figure 3.3

shows that use of the major axis of the ellipse is a worst

case estimate of the uncertainty, since the ellipse could

have any orientation in the x-y plane. Thus it can be seen

from Table VII that the uncertainty in e, is smaller than
that of the observed azimuth 8,. This comparison is an

indicator of the precision of the experiment.

If this error in the computed ingle, e0, could be

reduced by decreasing the size of the error ellipse, the

denominator of the F-ratio would be smaller and the ratio

itself would be larger. Thus a more precise experiment

could produce a rejection of the null hypothesis, although

this is not indicated in light of the values of a& for the

Aztrac and T-2 shown in Table VII. Reducing experimental

error any further than this study would be difficult under
typical hydrographic conditions, because the three LOP

theodolite intersection position, ijusted by the least-

squares methol, is one of the most precise positioning means

available today. The size of the reference position error

ellipse could possibly have been reduced if better intersec-
tion angles were available, but this was not possible with

the particular geographic shape of Sonterey Bay.
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TABLE VII

Expeciment Precision and Zhoodolito Error

Range, I Rean major I ztrac poo~ed I T-2. pooled
meters I axis I std. ev.aton std. dav.

meters (5sc) meters (sec) meters (s8c)
d&__ TO a% O

300 .974 (668) 1.07 (741) ( 1.26 (868)

500 1.838 (344) 1.44 (598) I 1.72 (712)

700 .754 (222) 1.05 (312) 1.30 (382)

1000 .824 (170) 1.43 (296) 1.08 (225)

1500 .738 (102) 1.45 (199) 1 0.92 (126)

3000 1.188 (82) 1.30 (90) 1 1.41 (97)

In summary, the analysis of variance performed or these

data do, in fact, show that there is no statistical differ-

ence between Aztrac and T-2 at 95% confidence. This proce-

dure is a strictly numerical one ani must be viewed in light
of the original research conditions. When these conditions

are carefully analyzed to remove as much systematic error as
possible, the data strongly suggest that the AMOVA results

are indeed correct.

Z. APPLICATTO TO POSITZOI EROR SUA3DARDS

?ros Chapter I it can be seen that there is some confu-

sion in the hydrographic community as to the application of

probability to positioning standarls. With this in mind,

there appear to be four possibilities for consideration as
standards with which to compare the results of this thesis,
as given bolow.

(i) The 1968 lEO standarl of 1.5 sm at the

72

IX/



survey scale, with tha 90% probability

suggested by Munson (1977).

(ii) The 1982 IHO standard of 1.0 am at the

scale of the survey, vith 90% probability.

(iii) The current range-azimuth standard of OS

(0.5 am at the survey scale) assuming a

probability associated with d 5 .

(iv) The d,, standard of microwave range-

range positioning found in Umbach (1976).

This requires that dr,5 values at the

survey scale not exceed 0.5 mm for 1:20,000

scale surveys and smaller, 1.0 mm for

1:10,000 scale surveys, and 1.5 mm for

surveys of 1:5,000 scale and larger.

These four possibilities may now be compared to the

position errors of the Aztrac and T-2 by using the pcinting

error results given in Table VII. Since the precision of a

range-azimuth positicn is also a function of the standard

deviation of ranging error, a,' , assumed values of 1.0 and

3.0 meters are used in this analysis. Some manufacturers of

microwave ranging equipment used in range-azimuth posi-
tioning report a 1.0 meter value for o, but 3.0 meters is

most often used by NOS personnel [Wallace, 1983] and has

some supporting experimental evidence by unbiased

experimenters [8unson, 1977 ].

Using these assumed values for , and the observed

values for 0' given in Table VII, the error ellipse axes may

be computed using equations 2.11 and 2.12. However, the

error ellipse must be converted to a circular error figure

in order to be compared with the standards above. The

assumed standards (i) and (ii) must use a 90% probability

circle, which can be computed using Table I, and standards
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5 Aztrac (uncorrected)

-4
£ -T-2

r3
!I

Aztrac (corrected)

L

0

E

5 10 15 20
angular speed (arc min/sec) I

Figure 4.4 Results Coparea to d,s*

(iii) and (iv) must use the d, $ formula given by equation

2.16. Results of these computations are shown graphically
in Figure 4.5 for 90% probability, and in Figure 4.4 for

dvm,. Each figure has angular speed of the theodolite along

the abscissa, and an ordinate consisting of a distance

scale, in mters, indicating the radius of the error circle.
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The error circle for Figure 4.5 is associated with the 90%

probability level. while the d,,.,s circle for Figure 4.4 is

of somewhat variable probability, as discussed in Chapter

II. The points plotted in Figure 4.5 have eccentricity

values (0/,, I ranging from 0.3 to 3.6, which indicate a

probability range of from about 65% to 67.5%.
These figures also clearly show an improvement in the

estimate of 0" for the Aztrac as a result of the time lag

correction discussed earlier. The position error values for
the uncorrected kztrac error is shown by triangles in both

figures, while position error computed using the corrected

(, values are shown by solid dots. For both Aztrac cases,

two solid linear regression lines are drawn. Both figures

show that the uncorrected Aztrac values have a much greater

variability than the corrected values, and that the

corrected values are almost the same as the T-2 position

error values indicated by open dots and dashed linear

regression lines. If the corrected Aztrac values are taken

to be the best estimate of position error for this instru-

ment, then a relatively constant error is indicated for the

entire range of angular speeds considered here. This is

about 3.3 meters drm and 4.6 meters (90% probability) for

both instruments using a C, value of 3.0 meters, and 1.6

meters dr and 2.5 meters (90%) for a dj value of 1.0
meters. Plots are not shown for computations using a range

error of 1.0 meter.
The four possible assumptions for position error stan-

dards are compared to &ztrac and T-2 position errors in

Table VIII. The roman numerals heating the columns of this

table refer to the position standards associated with the

same numerals at the beginning of this section. The reader

should use the table by selecting one of these columns and
inspecting it from the top to the bottom of the table. The

first row of Table VIII indicates the probability associated
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Aztrac (uncorrected)

0.7
E

0

0 T-2
05

LV) 0

0

Aztrac (corrected)

anngular ed(arc min/sec)j

Figure 41.5 Results compared to 90% Probability.

with each positioning standard. The second row lists the

maximum Fosition error allowed by that standard, at the

* scale of the survey. Rows three ani four show the errors

allowed in row two, when converted to actual distances for

two representative survey scales of 1:5#000 and 1:10,000.
Rows five and six show the radius of the associated
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probability circle fcr both Aztrac and T-2, for ranging

error values of 3.0 and 1.0 meters, respectively. The dual

probability percentages in columns (iii) and (iv) indicate

the variable probability of ds . Dual values in cclumn

(iii) for maximum error at the survey scale result from the

NOS standard for range-range positioning. The :.mainder of
the table presents conclusions as to whether the T-2 and

Aztrac meet the various standards. For example, in column

(iv) the observed 3.3 meter d,,,, value in row five is less

than the maximua allowable error of 5.0 meters shown in row

four. Therefore, the T-2 and &ztraz do meet the NOS range-

azimuth standards of 0.5 mm at the scale of the survey for

1:10,000 scale surveys.
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TABLE V111
Position Standards Comparison

a () 1) I V
(1968) (1982) (r/r) (r/a)

Assumed 90% 90% 68%- 68%-
Probability I -63% -63%
Allowable IIJI
Max Error 1.5 *m 1.0 mm 1.5,
at Scale I 1.3 0.5m 

Allowable75..Max Error 7.5 a 5.0 2 7.5 a 2.5 a
at 1:5,000

Allowable I
Max Error 15.0 a 10.0 a 10.0 a 5.0 
at 1:109000

Error 4.6 a 4.6 m 3.3 a 3.3 m
(a. a3.0 I a I

Error T 2.5 a 2.5 3 1.6 1.6 3
(0" 1.0m)

Conclusion As To Meeting Standards: , = 3.0 a

I (I I (i) I (iii) a (V)
1:5,000 yes I yes yes
scale e I s I no

1:10 000 yes yes yes yes
scale I I I

Conclusion An To feeting Standards: Cr, - 1.0 a

I~~~~ (i i) I(ii) I (v)1:5,000 yes yes yes yes

scale 7C

1:10 000 yes yes yes yes
sca.e I I
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V. Ilk U 211i UR UCORIK ZMULQf

Of the original cbjectives for this thesis discussed in

chapter I, the first and most basic was the determination of
pointing error standard deviation for the Aztrac and T-2

theodolites. No investigation of this type had ever been

done for conditions typical of a range-azimuth survey. An

experiment was carefully designed to determine this pointing
error and to determine if there was a statistically signifi-

cant difference between the instruments. The initial esti-

mates of pointing error were given in Table III, which shows
the Aztrac to have an error, when converted to distance, of

about 3.0 meters, while the estimate was about 1.3 meters

for the T-2.

An uncompensated systematic error in the data, due to
the time lag discussed in Chapter III, was discovered when

empirical probability density function plots were made of

the entire data set for each instrument. This led to a

revised estimate of the pointing error for the Aztrac,

because the bimodal distribution caused by this time lag
adversely affected the original estimate for d.- This

revised estimate is about 1.3 meters, as shown in Table VII,
and is almost the same as the value of do for the T-2
instrument. When these estimates for C9 are viewed in light
of the precision of the experiment, as shown in the table,

it is seen that the actual values of 4 could be smaller
than indicated, because smaller values would be masked by
the relative imprecision of the experiment. It is to be

concluded, however, that the actual values of the pointing
error of each instrument are no larger than those given

here.
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The question of a statistically significant difference

between the instruments was then considered using the ANOV|

technique, which can be said to compare a variance component

due to the instruments with a variance component due to the

precision of the experiment. This precision was not very

much greater than the variance of the instruments, but was

based on the most precise positioning method generally

available for hydrography -- an intersection position using

three theodolites. The ANOVk procedure indicated no signif-

icant difference between instruments, but if the precision

of the experiment had been increasel, a significant differ-

ence could possibly have been detected. In light of the

subsequent discovery and elimination of the systematic error

due to a time lag, this conclusion of no difference between

theodolites appears to be well justified.

An evaluation of interpolation methods was the second
objective of this thesis, and although the analysis was not

as rigorous as it could be, it can be concluded that there
is a measurable distance between an interpolate position

and a corresponding observed position. This has never been

done for the case of range-azimuth positioning because the

rapid position fixing available with Aztrac has not been
available. It has been shown, through an error propagation

analysis of the interpolation algorithms, that the interpo-

lated error is not inherently due to the algorithms them-
selves. The error is therefore due to the inability of the
vessel tc follow the range arc, which is caused primarily
because of environmental conditions and the vessel opera-

tor's track keeping capability. The distance between the

interpolated and corresponding observed positions may be as
much as two to four meters, as indicated in rable V, and is

roughly twice as great for a position that is computed using

both distance and angular interpolation, as for a position

using angle interpolation alone. It is therefore
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recommended that, whenever possible, automatic recording of

range data should be used.
The third and most important objective of the thesis is

a comparison of the tctal position error using these instru-

ents with the required error standards of the major hydro-

graphic survey organizations. The lower half of Table VIII
gives these results, which are that all the standards

considered are indeed met, except the NOS range-azimuth

standard at 1:5,000 scale using a range error of 3.0 meters.

This conclusion requires a very important qualification

regarding the T-2 instrument and the errors encountered

while pursuin; the first two objectives. These are errors

due to interpolation, and to the time lag discussed in

Chapter IV.

The approximately one second time lag discovered with
the &ztrac data set is not actually associated with the

Aztrac at all but is associated with the T-2. It appeared

to be a systematic error of the Aztrac in this experiment

only because the reference postions were obtained using T-2

instruments similar to the test T-2. It must be concluded

from ths data acquired in this project that there exists,
for any angle measured with a T-2, a time lag of about one

second between angle observations and any measurement made

aboard the vessel, including both automatic and manually
recorded depth and range data. There is then an associated

position error for these measurements, the magnitude of

which depends upon vessel speed, which was about two meters
for the four knot speed used in this experiment. The

conclusions and position accuracies for observed T-2 posi-
tions in Table VIII do not take this additional error into

account. When the error contributions from both the time

lag and interpolation are considered, it can be concluded

that. positions interpolated between observed T-2 positions

have an additional error of about two to four meters. Thus
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the total actual position error for T-2 positions and posi-

tions interpolated between T-2 positions might fail to meet

more of the standards than are indicated in Table VIII.

Having reached conclusions related to the objectives of

the thesis, another set of conclusions and recommendations

can be made f~r the Odon ztrac theodolite, regarding its

ease of use and suitability for range-azimuth hydrography.

The Aztrac instrument was expressly designed for range-

azimuth or azimuth-azimuth positioning, and h-s features
which are advantageous to the operator of the instrument in

the field. Such advantages are discussed in Chapter I, and
include ease of tracking, because of an upright telescope

image and an infinitely geared tangent screw.

The Aztrac theodclize possesses advantages much more

important than ease of use in the field, and these addi-
tional advantages are derived primarily from its ability to

be interfaced with a computer aboard the survey vessel.

Besides eliminating systematic error due to a time lag, a

computer based survey system offers the additional advantage

of being able to measure and record a position every few

seconds. This allows three important advantages over a

system that can only measure positions once per minute.

First, since each position is individually measured, no

interpolation is required and thus better accuracy is

obtained than with a nonautomated system. Second, no manual

data logging is required, which reduces blunders and greatly

increases the speed with which a survey may be processed.

Third, an automated system allows the surveyor to run

straight sounding lines rather than curved arcs, because an

automated system can provide an almost real-time cross track

error indication to the helmsman. Running straight sounding

lines increases survey efficiency by orienting the lines

more normal to the depth contours, and by requiring fewer

total linear miles of hydrography for each survey. A vessel
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may of course steer straight lines with a nonautomated

system, but it is extremely difficult to maintain the strict

line spacing requirements for hydrographic surveys without

an indication of cross-track error, so curved range arcs are

usually fclloved.

Disadvantages encountered during this experiment include

additional operator fatigue caused by the requirement to

constantly track the vessel. 'his is necessary if the

substantially increased data rate available with this

instrument is to be utilized. The extra effort to track the
vessel is mcre than offset, however, by the elimination of

manual data logging. Care is required by the operator when

rotating the instrument through an arc, because if the

instrument is moved too rapidly the maximum telemetry data

rate is exceeded and erroneous angle data will be trans-
mitted. This can only be detected by checking the criginal
initial pcinting. Although this problem was observed during

a manufacturer's demonstration, it did not occur during the
experimental field work. Finally, the transmitter range of
5 km is rather short for the distances used by NOS, which

can be up to about 10 km. The manufacturer has stated that

the system range can be easily extended by increasing the

transmitter power [Apsey, 19831. Although this thesis meas-

ured Aztrac error at a maximum distance of 3 km from the
shora- station, the conclusio.s stated here should not be
blindly extrapolated to increased ranges, still, if the
Aztrac pointing error standard deviation is reduced to its

angular resolution (0.01 degree) at the very slow angular

speed of the vessel at long ranges, the error appears to

remain acceptable. For example, 0.01 degree pointing error

at a range of 10 km results in an error of only 1.74 meters.

The advantages of the Aztrac clearly outweigh its disad-
vantages, so it is therefore recommended that the Odom

ztrac system be incorporated into the computer based equip-
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meLt used by NOS. It should be used only in situations

where it meets required positioning standards based on the
value for do found in this investigation. It is also recom-

mended that the systematic error induced by the time lag

discussed here should be accounted for in operational stan-
dards for range-azimuth positioning using the Wild T-2.

This could be done fcr semi-automated systems by providing
an automatic radio signal to the observer on shore that

precedes the actual depth measurement by one second. &
simpler method of reducing this systematic error could be a

limit on the speed of the vessel, depending on the accuracy

standard required for the particular survey.

& final recommendation must be made regarding the posi-
tioning standards of NOS. At present there are conflicting

standards for a given survey scale, depending on whether

electronic, hybrid (including range-azimuth), or visual

methods are used. For example, positions for a 1:5,000

scale survey may be required to have an accuracy of either

7.5 meters d,,s , or 2.5 meters at some unspecified prob-

ability, depending on whether microwave range-range or
range-azimuth methods are employed. The NOS is certainly

the most progressive hydrographic organization with regard
to position error specifications, but it is recommended that

the concept of probability be applied to all positioning

methods and not only electronic ones. Further, if the

meaning of "seldom exceed" in the IO standards is to be
interpreted as a 90% probability circle, then all the NOS
standards should be changed to -eflact that standard.
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REARS AND STANDARD DEVIATIONS OF ACQUIRED DATA SETS

All values for means and standard deviations aro in

units of seconds of arc.

TABLE IX

3000 meter AreI

Hills Kenny Schomaker Cherry

I =a> 53 (306 68 -2421
Aztrac s=> 257 I 93 76 63

overall mean = -106 pooled s 142

T-2 I I -34 29 113 I-16

un- am> 67 59 164 60
rverall mean z 23 pooled s = 97

T-2 X==> -39 26 109 -10

rounded S =a> 75 62 163 ' 57

overall mean = 89 pooled s 9L
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TABLE X I

1500 meter Arc

Hills IKenny I Schomaker Cherry

X-1214 '476 1 37 -34

Aztrac s => 392 990 1 431 476

:verall mean = 88 pooled s = 514

T-2 j 27 ~-116 '47 7

un- Is as> 95 )145 ) 164 107
rounded

overall mean = 8 pooled s = 12

T-2 X ==> 32 -114 48 75

rounded s ==> 102 145 167 106

overall mean = 11 pooled s = 118
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TABLE XI

1000 metor Arc

Hills IKenny fSchouaker ICherry

T- a => 115 16 -120 1995kztrac :a=>I 482 22534 768 j711
overal men 20 pooled s =61

an-de San> 286 1111 269 196 -

rounded s a=> 282 11 | 274 199

:veral sa =mn 11 polad s 126

i
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T& BLE XII

700 motor Arc

Hills Ken n y  Schmaker Cherry

I 1 m 123 -1114 1 36 12081
lztrac s => 585 777 o508 52

D veral I mean *63 poolad 9.. .. -v ,= l ,. , - _-_. _ _I _ _ _ _ _

T-2 xi= -14 -53 -55 156
un- is >1307 1 38 1210 681

rounded I II

rounded s-=> 311 342 205 690

overall mean a9 pooled s 316
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TABLE XII

500 moter Arc

B ills jKenny I Schomaker ICherry- -i ;o I o.' I ';

1a=.> 281 4 98 -127

Aztrac s a=> 1543 11423 1957 930

.. .over mean a 65 pooled s = 10

T2 I=>156 14 1 9 1160
roied S :=>j 710 1037 1 452 72618ounman 57 pod s

-------------------- ------------ I

T-2 I ==> 62 0 15 163

rounded s =a> ( 710 1041 455 623

overall mean * 60 poolad s = 15

89
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TABLE XIV
300 eer Arc

ill Kenny Schomaker I Cherry

I am> 425 -20069 19

kztrac 2274 1605 2104 3516

1 mean a -74 pooled s = 2 90

T-2 X -21 32 27610

un- s 652 933 1290 682
rounded

v verall -2ean- 124- pooled s 8

T-2 X = -215 1313 1 274 43~

rounded s a:>l 654 929 1289 843

overall mean a 104 poolad s 901
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IAU.UDU I
GEODETIC POSITION OF HORIZONTAL CONTROL STATIONS

Station lame Latitide Longitude

SOlkR (1947) 36 36' 32".117 121 53' 24".004

USE RON (1978) 36 36, 04".685 121 521 35".900

MUSSEL (19321 36 37' 18".151 121 54' 11".628

AZTRAC 36 36' 32".530 121 53' 25".310

T2 36 361 32".493 121 53' 25".254

GEOCEIVIR 36 36' 32".512 121 53 t 25".286
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BIPIRCAL PROBABILITY DEISIT FUNCTIOI PLOTS

1

6-

300 METER ARC
T-2: SOLID LINE

R7RRC- DASHED LINE

a-

% J-JI

It I
*J

I • 
I

E ,
,I - I

- 2000.

RRRIN COD

fi:lgu e C. 1 Pro bb iLlit y ens ty lo t:: 300 m arc.
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500 METER ARC
T-2; SOLID LINE

RZTRRC; DASHED LINE

0, / \ " I

%- - -- --- --
-4000.0 -2000.0 . 2000.0 400

ERROR IN SECONDS

Pigure C. 2 Probability Density Plot: 500 m arc.
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700 METER ARC
T-2: SOLID LINE

RZTRAC; DASHED LINE

IfI

2000 -1000.0 0. 0002000.1
ERROR IN SECONDS

Figure C.3 Probability Density Plot: 700 a arc.
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Li

1000 METER ARC
o- T-2: SOLID LINE

AZTRAC: DASHED LINE

£ /I
% % 

X I
# 

% %,

0 
-500.0 0.0 500.0 1000.0 ] 5O

ERROR IN SECONDS

Figure C. 4 Probability Density Plot: 1000 a arc.
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1500 METER ARC
c-- T-2: SOLID LINE i

R(IrRRC:. iRSHED LINE ,

0/ \
- _ "/ I I0

-1500.0-]000.0 -500.0 0.0 500.0 1000.0 1500
ERROR IN SECONDS

Figure C.5 Probability Density Plot: 1500 a arc.
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3000 MIETER ARC
T-2: SOLID LINE

AZTRAC: DAISHED LINE

% I

T- / ' I
-500-00.0-300.0-200l.0-100.0 0.0 100.0 200.0 300400.0 5001

ERROR IN SECONDS

Figure C.6 Probability Density Plot: 3000 a arc.
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